WorldWideScience

Sample records for blood cells bind

  1. Cobalt uptake and binding in human red blood cells.

    Science.gov (United States)

    Simonsen, Lars Ole; Brown, Anthony M; Harbak, Henrik; Kristensen, Berit I; Bennekou, Poul

    2011-04-15

    is not observed in the case of (54)Mn. Tightly bound and the major part of reversibly bound (57)Co co-migrate with hemoglobin in Sephadex column chromatography of a lysate of (57)Co-loaded cells. (57)Co also co-migrates with hemoglobin when added to a lysate of unlabeled cells or to a solution of purified hemoglobin, in both cases with a time-dependent development of tight binding. Cobalt is known to bind to the globin moiety of hemoglobin. The results imply that during long-term cobalt exposure in vivo cobalt will be taken up practically irreversibly in the red cells during their 120 days life span. Thus, for biomonitoring of cobalt exposure, it could be appropriate to measure the cobalt content in red cells to give, compared with timed or in-competition whole-blood and serum analysis, an average value for the exposure over the last couple of months.

  2. Cobalt uptake and binding in human red blood cells

    DEFF Research Database (Denmark)

    Simonsen, Lars Ole; Brown, Anthony M; Harbak, Henrik

    2011-01-01

    The basal uptake and cytoplasmic binding of cobalt was studied in human red cells using (57)Co as tracer. The basal uptake is linear with time, at a rate of about 10 µmol (l cells)(-1) h(-1) at 100 µM [Co(2+)](o), and is almost irreversible, as there is hardly any efflux into excess EDTA. Ionophore...

  3. Analysis of Hereditary Elliptocytosis with Decreased Binding of Eosin-5-maleimide to Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Suemori

    2015-01-01

    Full Text Available Flow cytometric test for analyzing the eosin-5-maleimide (EMA binding to red blood cells has been believed to be a specific method for diagnosing hereditary spherocytosis (HS. However, it has been reported that diseases other than HS, such as hereditary pyropoikilocytosis (HPP and Southeast Asian ovalocytosis (SAO, which are forms in the category of hereditary elliptocytosis (HE, show decreased EMA binding to red blood cells. We analyzed EMA binding to red blood cells in 101 healthy control subjects and 42 HS patients and obtained a mean channel fluorescence (MCF cut-off value of 36.4 (sensitivity 0.97, specificity 0.95. Using this method, we also analyzed 12 HE patients. Among them, four HE patients showed the MCF at or below the cut-off value. It indicates that some HE patients have decreased EMA binding to red blood cells. Two of these four HE patients were classified as common HE, and two were spherocytic HE with reduced spectrin. This study demonstrates that, in addition to patients with HPP or SAO, some HE patients have decreased EMA binding to red blood cells.

  4. Analysis of Hereditary Elliptocytosis with Decreased Binding of Eosin-5-maleimide to Red Blood Cells.

    Science.gov (United States)

    Suemori, Shin-ichiro; Wada, Hideho; Nakanishi, Hidekazu; Tsujioka, Takayuki; Sugihara, Takashi; Tohyama, Kaoru

    2015-01-01

    Flow cytometric test for analyzing the eosin-5-maleimide (EMA) binding to red blood cells has been believed to be a specific method for diagnosing hereditary spherocytosis (HS). However, it has been reported that diseases other than HS, such as hereditary pyropoikilocytosis (HPP) and Southeast Asian ovalocytosis (SAO), which are forms in the category of hereditary elliptocytosis (HE), show decreased EMA binding to red blood cells. We analyzed EMA binding to red blood cells in 101 healthy control subjects and 42 HS patients and obtained a mean channel fluorescence (MCF) cut-off value of 36.4 (sensitivity 0.97, specificity 0.95). Using this method, we also analyzed 12 HE patients. Among them, four HE patients showed the MCF at or below the cut-off value. It indicates that some HE patients have decreased EMA binding to red blood cells. Two of these four HE patients were classified as common HE, and two were spherocytic HE with reduced spectrin. This study demonstrates that, in addition to patients with HPP or SAO, some HE patients have decreased EMA binding to red blood cells.

  5. Macromolecular depletion modulates the binding of red blood cells to activated endothelial cells.

    Science.gov (United States)

    Yang, Yang; Koo, Stephanie; Lin, Cheryl Shuyi; Neu, Björn

    2010-09-01

    Adhesion of red blood cells (RBCs) to endothelial cells (ECs) is usually insignificant but an enhanced adhesion has been observed in various diseases associated with vascular complications. This abnormal adhesion under pathological conditions such as sickle cell disease has been correlated with increased levels of various plasma proteins but the detailed underlying mechanism(s) remains unclear. Usually it is assumed that the proadhesive effects of plasma proteins originate from ligand interactions cross-linking receptors on adjacent cells, but explicit results detailing binding sites or receptors for some proteins (e.g., fibrinogen) on either RBC or EC surfaces that would support this model are missing. In this study, the authors tested whether there is an alternative mechanism. Their results demonstrate that dextran 2 MDa promotes the adhesion of normal RBCs to thrombin-activated ECs and that this effect becomes more pronounced with increasing thrombin concentration or with prolonged thrombin incubation time. It is concluded that depletion interaction originating from nonadsorbing macromolecules (i.e., dextran) can modulate the adhesion of red blood cells to thrombin-activated EC. This study thereby suggests macromolecular depletion as an alternative mechanism for the adhesion-promoting effects of nonadsorbing plasma proteins. These findings should not only aid in getting a better understanding of diseases associated with vascular complications but should also have many potential applications in biomedical or biotechnological areas that require the control of cell-cell or cell surface interactions.

  6. Nuclear thyroid hormone receptor binding in human mononuclear blood cells after goitre resection

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E; Blichert-Toft, M

    1989-01-01

    Nuclear thyroxine and triiodothyronine receptor-binding in human mononuclear blood cells were examined in 14 euthyroid persons prior to and 1, 6, 24 and 53 weeks after goitre resection. One week after resection decreased serum T3 from 1.47 nmol/l to 1.14 nmol/l (P less than 0.05), FT4I from 103 a...

  7. Quantifying cell binding kinetics mediated by surface-bound blood type B antigen to immobilized antibodies

    Institute of Scientific and Technical Information of China (English)

    LI BaoXia; CHEN Juan; LONG Mian

    2008-01-01

    Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration,flow duration and rate, antibody-presenting level, as well as Ph value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions.These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.

  8. Binding of toxic-shock-syndrome toxin-1 to human peripheral blood mononuclear cells

    Energy Technology Data Exchange (ETDEWEB)

    Poindexter, N.J.; Schlievert, P.M.

    1987-07-01

    Toxic-shock-syndrome toxin-1 (TSST-1), produced by Staphylococcus aureus and associated with toxic shock syndrome, functions in vitro as both a lymphoproliferative and immunosuppressive protein for human peripheral blood mononuclear cells (PBMs). We analyzed TSST-1-target cell interactions by receptor-ligand binding analyses. In competitive binding experiments, 2 X 10(5) human PBMs or purified cell populations were incubated in the presence of small amounts of (5-50 ng) of /sup 125/I-labeled TSST-1 and increasing amounts of unlabeled TSST-1 (25-10,000 ng). Data were analyzed by the method of Scatchard. Toxin-specific receptors were shown to exist on T lymphocytes within the PBM population. T4+ cells had 27.5 X 10(6) receptors per cell, and T8+ cells had 9 X 10(6) receptors per cell. T4+ and T8+ receptors had dissociation constants of 2.58 X 10(-8) M and 1.8 X 10(-8) M, respectively. These studies confirm earlier work showing that TSST-1 causes the functional activation of a population of T lymphocytes involved in suppression of immunoglobulin responses.

  9. Interactions of opsonized immune complexes with whole blood cells: binding to erythrocytes restricts complex uptake by leucocyte populations

    DEFF Research Database (Denmark)

    Nielsen, C H; Svehag, S E; Marquart, H V;

    1994-01-01

    The binding of opsonized, fluorescein-labelled bovine serum albumin (BSA)/rabbit anti-BSA complexes (IC) to washed human whole blood cells and isolated leucocytes in the presence of autologous serum was investigated by flow cytometry. In the presence of erythrocytes (E), the IC-binding to granulo......The binding of opsonized, fluorescein-labelled bovine serum albumin (BSA)/rabbit anti-BSA complexes (IC) to washed human whole blood cells and isolated leucocytes in the presence of autologous serum was investigated by flow cytometry. In the presence of erythrocytes (E), the IC...

  10. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid.

    Science.gov (United States)

    Brody, A R; George, G; Hill, L H

    1983-10-01

    Chrysotile and crocidolite are commonly used forms of asbestos. Hemolysis has been widely used as a test of membrane injury, and it has been shown previously that chrysotile causes rapid breakdown of red blood cells (RBCs), whereas crocidolite is only weakly hemolytic. A reasonable hypothesis set forth to explain the cytotoxic effects of chrysotile maintains that positively charged chrysotile fibers bind to negatively charged sialic acid residues on RBC membranes causing clustering of membrane proteins and increased cell permeability to Na and K ions. Our studies presented here provide two lines of evidence in direct support of this hypothesis. (a) Morphologic--Ultrastructural techniques showed that both chrysotile and crocidolite asbestos bind to and distort more than 85% of RBCs treated for 15 minutes. The distorting effects of chrysotile, but not crocidolite, were almost totally ablated by pretreating the cells with neuraminidase. In addition, gold-conjugated wheat germ agglutinin was used to label the distribution of sialic acid groups on RBC membranes. Pretreatment of the RBCs with chrysotile, but not crocidolite, reduced the number of gold-conjugated wheat germ agglutinin-labeled sites to less than 30% of the control level. (b) Biochemical--The thiobarbituric acid assay was used to determine the percentage of sialic acid that remained with the cell pellet after neuraminidase and/or asbestos treatment. Asbestos treatment alone caused no release of sialic acid from the cells. Neuraminidase treatment for 3.5 hours removed more than 80% of the sialic acid from cell surfaces. Chrysotile, but not crocidolite, asbestos prevented neuraminidase-mediated removal of sialic acid from RBCs. In addition, x-ray energy spectrometry of freeze-dried cells showed that RBCs distorted by chrysotile, but not by crocidolite, exhibited significant alterations in intracellular Na:K ratios. The morphologic and biochemical data strongly support the hypothesis that chrysotile asbestos

  11. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.; Masouredis, S.P. (Univ. of California, San Diego (USA))

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.

  12. Red Blood Cell Immune Complex Binding Capacity in Children with Sickle Cell Trait (HbAS) Living in P. falciparum Malaria Holoendemic Region of Western Kenya

    Science.gov (United States)

    2012-12-08

    Children with Sickle Cell Trait (HbAS) Living in P. falciparum Malaria Holoendemic Region of Western Kenya Walter Otieno1,2, Benson BA Estambale1...anemia. Children with sickle cell trait (HbAS) are less predisposed to getting severe manifestations of malaria. We carried out a study to determine the...2012 to 00-00-2012 4. TITLE AND SUBTITLE Red Blood Cell Immune Complex Binding Capacity in Children with Sickle Cell Trait (HbAS) Living in P

  13. TSH, thyroid hormones and nuclear-binding of T3 in mononuclear blood cells from obese and non-obese women

    DEFF Research Database (Denmark)

    Matzen, L E; Kvetny, J; Pedersen, K K

    1989-01-01

    The specific nuclear-binding of T3 (NBT3) in mononuclear blood cells, and the concentrations of TSH, thyroid hormones, and binding proteins were measured after overnight fasting in 12 obese and in 14 non-obese women, none of the subjects were taking any medicine. The concentrations of TSH and free...

  14. Binding of human myeloperoxidase to red blood cells: Molecular targets and biophysical consequences at the plasma membrane level.

    Science.gov (United States)

    Gorudko, Irina V; Sokolov, Alexey V; Shamova, Ekaterina V; Grigorieva, Daria V; Mironova, Elena V; Kudryavtsev, Igor V; Gusev, Sergey A; Gusev, Alexander A; Chekanov, Andrey V; Vasilyev, Vadim B; Cherenkevich, Sergey N; Panasenko, Oleg M; Timoshenko, Alexander V

    2016-02-01

    Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also bind to cellular surface proteins. We found that band 3 protein and glycophorins A and B were the key MPO-binding targets of human red blood cells (RBCs). The interaction of MPO with RBC proteins was mostly electrostatic in nature because it was inhibited by desialation, exogenic sialic acid, high ionic strength, and extreme pH. In addition, MPO failed to interfere with the lectin-induced agglutination of RBCs, suggesting a minor role of glycan-recognizing mechanisms in MPO binding. Multiple biophysical properties of RBCs were altered in the presence of native (i.e., not hypochlorous acid-damaged) MPO. These changes included transmembrane potential, availability of intracellular Ca(2+), and lipid organization in the plasma membrane. MPO-treated erythrocytes became larger in size, structurally more rigid, and hypersensitive to acidic and osmotic hemolysis. Furthermore, we found a significant correlation between the plasma MPO concentration and RBC rigidity index in type-2 diabetes patients with coronary heart disease. These findings suggest that MPO functions as a mediator of novel regulatory mechanism in microcirculation, indicating the influence of MPO-induced abnormalities on RBC deformability under pathological stress conditions.

  15. Phenotype-associated lectin-binding profiles of normal and transformed blood cells: a comparative analysis of mannose- and galactose-binding lectins from plants and human serum/placenta.

    Science.gov (United States)

    Mann, K K; André, S; Gabius, H J; Sharp, J G

    1994-10-01

    Surface glycoconjugates of normal and transformed blood cells are commonly characterized by plant lectins. To infer physiological significance of protein-carbohydrate interactions, mammalian lectins are obviously preferable as research tools. So far, human serum lectins have not been used to assess their binding to immunophenotyped human normal or transformed blood cells. Thus, our study combines two groups of lectins with different specificity from plant and human sources. Besides concanavalin A (ConA) we have isolated the mannose-binding protein and serum amyloid P component from human serum. Especially the mannose-binding protein is believed to play a role in host defence against bacteria and yeast cells with unknown impact on normal and tumor cells. These three lectins establish the first group. In addition to the immunomodulatory mistletoe lectin, whose binding can elicit enhanced cytokine secretion from mononuclear blood cells, we included the beta-galactoside-binding lectin (14 kDa) from human placenta in the second group. The initial series of measurements was undertaken using two-color flow cytometry to determine the phenotype-associated binding (based on cluster designation; CD) of the lectins to blood and bone marrow cells from normal donors and the cell line CEM (T-lymphoblastoid), KG1-A (primitive myeloid leukemia) and Croco II (B-lymphoblastoid). Heterogeneity was apparent for each lectin in the CD-defined cell populations. Significant differences in binding were noted between Viscum album agglutinin (VAA) and other lectins for CD4+ cells from blood and between mannose-binding protein (MBP) and VAA versus 14 kDa, ConA and serum amyloid P component (SAP) for CD19+ cells from bone marrow.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Flow cytometry analysis of FITC-labeled concanavalin A binding to human blood cells as an indicator of radiation-induced membrane alterations

    Energy Technology Data Exchange (ETDEWEB)

    Donnadieu-Claraz, M.; Paillole, N.; Voisin, P. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de la Sante de l`Homme et de Dosimetrie; Djounova, J. [National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    1995-12-31

    The {sup 3}H concanavalin-A binding to human blood cells have been described as a promising biological indicator of radiation overexposure. Flow cytometry adaptation of this technique using fluorescein-labelled concanavalin-A were performed to estimate time-dependent changes in binding on human blood cells membranes after in vitro {gamma} irradiation ({sup 60}Co). Result revealed significant enhanced lectin-binding to platelets and erythrocytes in a dose range of 0,5-5 Gy, 1 and 3 hours after irradiation. However for both platelets and erythrocytes, it was impossible to discriminate between the different doses. Further studies are necessary to confirm the suitability of lectin-binding as a biological indicator for radiation dose assessment. (authors). 5 refs., 1 fig.

  17. The Lipid Moiety of Haemozoin (Malaria Pigment and P. falciparum Parasitised Red Blood Cells Bind Synthetic and Native Endothelin-1

    Directory of Open Access Journals (Sweden)

    Nicoletta Basilico

    2010-01-01

    Full Text Available Endothelin1 (ET-1 is a 21-amino acid peptide produced by the vascular endothelium under hypoxia, that acts locally as regulator of vascular tone and inflammation. The role of ET-1 in Plasmodium falciparum malaria is unknown, although tissue hypoxia is frequent as a result of the cytoadherence of parasitized red blood cell (pRBC to the microvasculature. Here, we show that both synthetic and endothelial-derived ET-1 are removed by parasitized RBC (D10 and W2 strains, chloroquine sensitive, and resistant, resp. and native haemozoin (HZ, malaria pigment, but not by normal RBC, delipidized HZ, or synthetic beta-haematin (BH. The effect is dose dependent, selective for ET-1, but not for its precursor, big ET-1, and not due to the proteolysis of ET-1. The results indicate that ET-1 binds to the lipids moiety of HZ and membranes of infected RBCs. These findings may help understanding the consequences of parasite sequestration in severe malaria.

  18. White Blood Cell Count

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? ... Count; Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , ...

  19. Red blood cell production

    Science.gov (United States)

    ... to one part of the body or another. Red blood cells are an important element of blood. Their job ... is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of ...

  20. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    Science.gov (United States)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  1. Increased nuclear tri-iodothyronine binding and thyroid hormone-stimulated glucose consumption in mononuclear blood cells from patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1991-01-01

    Nuclear tri-iodothyronine (T3) maximal binding capacity (MBC) and thyroxine- and T3-stimulated cellular oxygen consumption and glucose consumption were examined in mononuclear blood cells from six patients with liver cirrhosis (LC), in six patients with alcoholic hepatitis (AH), and in six healthy...... control subjects. Serum T3 was decreased in patients with LC. The MBC of T3 was increased significantly (P less than 0.05) in cells from patients with LC compared with patients with AH and controls, whereas the equilibrium association constants did not differ. Unstimulated glucose consumption was slightly...... increased (P less than 0.05) in cells from patients with AH and LC compared with controls. Thyroid hormone-stimulated glucose consumption was significantly (P less than 0.05) increased in cells from patients with LC compared with controls and patients with AH. Unstimulated oxygen consumption did not differ...

  2. Decreased complement mediated binding of antibody//sup 3/-dsDNA immune complexes to the red blood cells of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Horgan, C.; Buschbacher, R.; Brunner, C.M.; Hess, C.E.; O' Brien, W.M.; Wanebo, H.J.

    1983-06-01

    The complement mediated binding of prepared antibody//sup 3/H-dsDNA immune complexes to the red blood cells obtained from a number of patient populations has been investigated. Patients with solid tumors have binding activity similar to that seen in a normal group of individuals. However, a significant fraction of patients with systemic lupus erythematosus, rheumatoid arthritis, and hematologic malignancies have lowered binding activity compared with normal subjects. Quantitative studies indicate the lowered activity probably arises due to a decrease in complement receptors on the respective red blood cells. The potential importance and implications of these findings are briefly discussed.

  3. The influence of caloric deprivation and food composition on TSH, thyroid hormones and nuclear binding of T3 in mononuclear blood cells in obese women

    DEFF Research Database (Denmark)

    Matzen, L E; Kvetny, J

    1989-01-01

    In vivo changes in thyroid-stimulating hormone (TSH), thyroxin (T4), triiodothyronine (T3) and nuclear binding of T3 (NBT3) in mononuclear blood cells were studied in obese women during seven days of caloric deprivation (maximum 1,100 kcal/d). In seven women given a high protein diet (80% protein......, 7% carbohydrates, 7% fat) and in two women who fasted (group 1), total T3 (TT3) decreased from 1.66 +/- 0.43 nmol/L to 1.11 +/- 0.32 nmol/L (P less than .01), free T3 (FT3) decreased from 5.7 +/- 1.1 pmol/L to 4.3 +/- 1.6 pmol/L (P less than .01), and free T4 (FT4) increased from 17.8 +/- 2.3 pmol...

  4. High Red Blood Cell Count

    Science.gov (United States)

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  5. Storing Blood Cells

    Science.gov (United States)

    1976-01-01

    The National Cancer Institute worked with Goddard Space Flight Center to propose a solution to the blood-cell freezing problem. White blood cells and bone marrow are stored for future use by leukemia patients as a result of Goddard and Jet Propulsion Laboratory expertise in electronics and cryogenics. White blood cell and bone marrow bank established using freezing unit. Freezing unit monitors temperature of cells themselves. Thermocouple placed against polyethylene container relays temperature signals to an electronic system which controls small heaters located outside container. Heaters allow liquid nitrogen to circulate at constant temperature and maintain consistent freezing rate. Ability to freeze, store, and thaw white cells and bone marrow without damage is important in leukemia treatment.

  6. Low White Blood Cell Count

    Science.gov (United States)

    Symptoms Low white blood cell count By Mayo Clinic Staff A low white blood cell count (leukopenia) is a decrease in disease-fighting cells ( ... a decrease in a certain type of white blood cell (neutrophil). The definition of low white blood cell ...

  7. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  8. Red blood cell alloimmunization after blood transfusion

    NARCIS (Netherlands)

    Schonewille, Henk

    2008-01-01

    Current pretransfusion policy requires the patients’ serum to be tested for the presence of irregular red blood cell antibodies. In case of an antibody, red blood cells lacking the corresponding antigen are transfused after an antiglobulin crossmatch. The aim of the studies in this thesis is primari

  9. Preclinical investigation of the pharmacokinetics, metabolism, and protein and red blood cell binding of DRDE-07: a prophylactic agent against sulphur mustard

    Directory of Open Access Journals (Sweden)

    Pankaj Verma

    2014-10-01

    Full Text Available DRDE-07, a newly synthesized amifostine analog currently under clinical investigation in a phase I trial, is a potent antidote against sulfur mustard toxicity. The purpose of this research was to evaluate the pharmacokinetic profile of DRDE-07 in female Swiss Albino mice after a single oral dose of 400 or 600 mg/kg. The physicochemical properties of DRDE-07, including solubility, pKa, Log P, plasma protein binding and plasma/blood partitioning, were determined to support the pharmacokinetic characterization. DRDE-07 concentration was determined by an HPLC-UV method. The profile of plasma concentration versus time was analyzed using a non-compartmental model. Plasma protein binding was assessed using ultrafiltration. DRDE-07 appeared rapidly in plasma after oral administration with peak plasma levels (Cmax observed in less than 15 min. There was a rapid decline in the plasma levels followed by a smaller second peak about 90 min after dosing. The plasma protein binding of DRDE-07 was found to be less than 25% at all concentrations studied. Plasma clearance of DRDE-07 is expected to be ~1.5 fold higher than the blood clearance of DRDE-07. The probable metabolite of DRDE-07 was identified as phenyl-S-ethyl amine.

  10. Red blood cells, multiple sickle cells (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  11. Red Blood Cell Antibody Identification

    Science.gov (United States)

    ... ID, RBC; RBC Ab ID Formal name: Red Blood Cell Antibody Identification Related tests: Direct Antiglobulin Test ; RBC ... I should know? How is it used? Red blood cell (RBC) antibody identification is used as a follow- ...

  12. White Blood Cell Disorders

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  13. Rare red blood cell abnormalities

    NARCIS (Netherlands)

    van Zwieten, R.

    2015-01-01

    The aim of this thesis is to give insight in the process of diagnosing rare red blood cell defects, to clarify the relation of a defect with cell function and to extend, in this respect, our knowledge about normal red cell function and biochemistry. It is possible to categorize different red cell ab

  14. Red blood cells, spherocytosis (image)

    Science.gov (United States)

    Spherocytosis is a hereditary disorder of the red blood cells (RBCs), which may be associated with a mild anemia. Typically, the affected RBCs are small, spherically shaped, and lack the light centers seen ...

  15. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    Energy Technology Data Exchange (ETDEWEB)

    Serck-Hanssen, G.; Soevik, O.

    1987-12-28

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of /sup 125/I-insulin was carried out at 15/sup 0/C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table.

  16. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  17. Low white blood cell count and cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000675.htm Low white blood cell count and cancer To use ... high blood pressure, or seizures Continue Reading How Low is too Low? When your blood is tested, ...

  18. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  19. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  20. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  1. Becoming a Blood Stem Cell Donor

    Science.gov (United States)

    ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  2. Z-DNA binding protein from chicken blood nuclei

    Science.gov (United States)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  3. Autologous antibodies that bind neuroblastoma cells.

    Science.gov (United States)

    Sun, Yujing; Sholler, Giselle S; Shukla, Girja S; Pero, Stephanie C; Carman, Chelsea L; Zhao, Ping; Krag, David N

    2015-11-01

    Antibody therapy of neuroblastoma is promising and our goal is to derive antibodies from patients with neuroblastoma for developing new therapeutic antibodies. The feasibility of using residual bone marrow obtained for clinical indications as a source of tumor cells and a source of antibodies was assessed. From marrow samples, neuroblastoma cells were recovered, grown in cell culture and also implanted into mice to create xenografts. Mononuclear cells from the marrow were used as a source to generate phage display antibody libraries and also hybridomas. Growth of neuroblastoma patient cells was possible both in vitro and as xenografts. Antibodies from the phage libraries and from the monoclonal hybridomas bound autologous neuroblastoma cells with some selectivity. It appears feasible to recover neuroblastoma cells from residual marrow specimens and to generate human antibodies that bind autologous neuroblastoma cells. Expansion of this approach is underway to collect more specimens, optimize methods to generate antibodies, and to evaluate the bioactivity of neuroblastoma-binding antibodies.

  4. Alterations of serum concentrations of thyroid hormones and sex hormone-binding globulin, nuclear binding of tri-iodothyronine and thyroid hormone-stimulated cellular uptake of oxygen and glucose in mononuclear blood cells from patients with non-thyroidal illness

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L

    1990-01-01

    Nuclear tri-iodothyronine (T3) binding and thyroid hormone-stimulated oxygen consumption and glucose uptake were examined in mononuclear blood cells from patients with non-thyroidal illness (NTI) in which serum T3 was significantly (P less than 0.05) depressed (0.62 +/- 0.12 (S.D.) nmol/l) compared...... micrograms DNA). Unstimulated glucose uptake was increased in cells from patients with NTI (2.03 +/- 0.49 mmol/l per mg DNA per h, P less than 0.01) compared with controls (1.13 +/- 0.20 mmol/l per mg DNA per h). Thyroxine-stimulated glucose uptake (stimulated glucose uptake--unstimulated glucose uptake......) was increased in cells from patients with NTI (2.06 +/- 1.67 mmol/l per mg DNA per h, P less than 0.01) compared with controls (0.26 +/- 0.12 mmol/l per mg DNA per h), and T3-stimulated glucose uptake was also increased in cells from patients with NTI (1.34 +/- 0.81 mmol/l per mg DNA per h, P less than 0...

  5. 21 CFR 640.10 - Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  6. Trapping cells in paper for white blood cell count.

    Science.gov (United States)

    Zhang, Yi; Bai, Jianhao; Wu, Hong; Ying, Jackie Y

    2015-07-15

    White blood cell count is an important indicator of each individual's health condition. An abnormal white blood cell count usually results from an infection, cancer, or other conditions that trigger systemic inflammation responses. White blood cell count also provides predictive information on the incidence of cardiovascular diseases and Type 2 diabetes. Therefore, monitoring white blood cell count on a regular basis can potentially help individuals to take preventive measures and improve healthcare outcomes. Currently, white blood cell count is primarily conducted in centralized laboratories, and it requires specialized equipment and dedicated personnel to perform the test and interpret the results. So far there has been no rapid test that allows white blood cell count in low-resource settings. In this study, we have demonstrated a vertical flow platform that quantifies white blood cells by trapping them in the paper. White blood cells were tagged with gold nanoparticles, and flowed through the paper via a small orifice. The white blood cell count was determined by measuring the colorimetric intensity of gold nanoparticles on the surface of white blood cells that were trapped in the paper mesh. Using this platform, we were able to quantify white blood cells in 15 μL of blood, and visually differentiate the abnormal count of white blood cells from the normal count. The proposed platform enabled rapid white blood cell count in low resource settings with a small sample volume requirement. Its low-cost, instrument-free operations would be attractive for point-of-care applications.

  7. Aggregation of Red Blood Cells: From Rouleaux to Clot Formation

    CERN Document Server

    Wagner, C; Svetina, S

    2013-01-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the binding mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the binding strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life saving in the case of wound healing but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  8. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.

    Science.gov (United States)

    Ahluwalia, Balpreet Singh; McCourt, Peter; Oteiza, Ana; Wilkinson, James S; Huser, Thomas R; Hellesø, Olav Gaute

    2015-01-07

    Red blood cells squeeze through micro-capillaries as part of blood circulation in the body. The deformability of red blood cells is thus critical for blood circulation. In this work, we report a method to optically squeeze red blood cells using the evanescent field present on top of a planar waveguide chip. The optical forces from a narrow waveguide are used to squeeze red blood cells to a size comparable to the waveguide width. Optical forces and pressure distributions on the cells are numerically computed to explain the squeezing process. The proposed technique is used to quantify the loss of blood deformability that occurs during blood storage lesion. Squeezing red blood cells using waveguides is a sensitive technique and works simultaneously on several cells, making the method suitable for monitoring stored blood.

  9. Cord blood stem cell banking and transplantation.

    Science.gov (United States)

    Dhot, P S; Nair, V; Swarup, D; Sirohi, D; Ganguli, P

    2003-12-01

    Stem cells have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Cord blood as a source of hematopoietic stem cells (HSC) has several advantages as it is easily available, involves non-invasive collection procedure and is better tolerated across the HLA barrier. Since the first cord blood transplant in 1988, over 2500 cord blood HSC transplants have been done world wide. Since then, the advantages of cord blood as a source of hematopietic stem cells for transplantation have become clear. Firstly, the proliferative capacity of HSC in cord blood is superior to that of cells in bone marrow or blood from adults. A 100 ml unit of cord blood contains 1/10th the number of nucleated cells and progenitor cells (CD34+ cells) present in 1000 ml of bone marrow, but because they proliferate rapidly, the stem cell in a single unit of cord blood can reconstitute the entire haematopoietic system. Secondly, the use of cord blood reduces the risk of graft vs host disease. Cord Blood Stem Cell banks have been established in Europe and United States to supply HSC for related and unrelated donors. Currently, more than 65,000 units are available and more than 2500 patients have received transplants of cord blood. Results in children have clearly shown that the number of nucleated cells in the infused cord blood influences the speed of recovery of neutrophils and platelets after myeloablative chemotherapy. The optimal dose is about 2 x 10(7) nucleated cells/kg of body weight. The present study was carried out for collection, separation, enumeration and cryopreservation of cord blood HSC and establishing a Cord Blood HSC Bank. 172 samples of cord blood HSC were collected after delivery of infant prior to expulsion of placenta. The average cord blood volume collected was 101.20 ml. Mononuclear cell count ranged from 7.36 to 25.6 x 10(7)/ml. Viability count of mononuclear cells was 98.1%. After 1 year of cryopreservation, the viability count on

  10. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  11. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  12. Inhibition of RNA Polymerase II Transcription in Human Cells by Synthetic DNA-Binding Ligands

    Science.gov (United States)

    Dickinson, Liliane A.; Gulizia, Richard J.; Trauger, John W.; Baird, Eldon E.; Mosier, Donald E.; Gottesfeld, Joel M.; Dervan, Peter B.

    1998-10-01

    Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole--imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located with RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.

  13. Inhibitors of serotonin reuptake and specific imipramine binding in human blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Brusov, O.S.; Fomenko, A.M.; Katasonov, A.B.; Lidemann, R.R.

    1985-12-01

    This paper describes a method of extraction of endogenous inhibitors of specific IMI binding and of 5-HT reuptake, from human blood plasma and the heterogeneity of these compounds is demonstrated. Specific binding was determined as the difference between binding of /sup 3/H-IMI in the absence and in the presence of 50 microM IMI. Under these conditions, specific binding amounted to 70-80% of total binding of /sup 3/H-IMI. It is shown that extract obtained from human blood contains a material which inhibits dose-dependently both 5-HT reuptake and specific binding of /sup 3/H-IMI. Gel-chromatography of extracts of human blood plasma on Biogel P-2 is also shown.

  14. Inhibition of cell-cell binding by lipid assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA); Bargatze, Robert F. (Bozeman, MT)

    2001-05-22

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  15. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  16. Red blood cell decreases of microgravity

    Science.gov (United States)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  17. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  18. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from ... later? Sign in to add this video to a playlist. Sign in Share More Report Need to ...

  19. Red blood cells serve as intravascular carriers of myeloperoxidase.

    Science.gov (United States)

    Adam, Matti; Gajdova, Silvie; Kolarova, Hana; Kubala, Lukas; Lau, Denise; Geisler, Anne; Ravekes, Thorben; Rudolph, Volker; Tsao, Philip S; Blankenberg, Stefan; Baldus, Stephan; Klinke, Anna

    2014-09-01

    Myeloperoxidase (MPO) is a heme enzyme abundantly expressed in polymorphonuclear neutrophils. MPO is enzymatically capable of catalyzing the generation of reactive oxygen species (ROS) and the consumption of nitric oxide (NO). Thus MPO has both potent microbicidal and, upon binding to the vessel wall, pro-inflammatory properties. Interestingly, MPO - a highly cationic protein - has been shown to bind to both endothelial cells and leukocyte membranes. Given the anionic surface charge of red blood cells, we investigated binding of MPO to erythrocytes. Red blood cells (RBCs) derived from patients with elevated MPO plasma levels showed significantly higher amounts of MPO by flow cytometry and ELISA than healthy controls. Heparin-induced MPO-release from patient-derived RBCs was significantly increased compared to controls. Ex vivo experiments revealed dose and time dependency for MPO-RBC binding, and immunofluorescence staining as well as confocal microscopy localized MPO-RBC interaction to the erythrocyte plasma membrane. NO-consumption by RBC-membrane fragments (erythrocyte "ghosts") increased with incrementally greater concentrations of MPO during incubation, indicating preserved catalytic MPO activity. In vivo infusion of MPO-loaded RBCs into C57BL/6J mice increased local MPO tissue concentrations in liver, spleen, lung, and heart tissue as well as within the cardiac vasculature. Further, NO-dependent relaxation of aortic rings was altered by RBC bound-MPO and systemic vascular resistance significantly increased after infusion of MPO-loaded RBCs into mice. In summary, we find that MPO binds to RBC membranes in vitro and in vivo, is transported by RBCs to remote sites in mice, and affects endothelial function as well as systemic vascular resistance. RBCs may avidly bind circulating MPO, and act as carriers of this leukocyte-derived enzyme.

  20. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins.

    Science.gov (United States)

    Sandhya, B; Hegde, Ashwini H; Seetharamappa, J

    2013-05-01

    The binding of stavudine (STV) to two human blood proteins [human hemoglobin (HHb) and human serum albumin (HSA)] was studied in vitro under simulated physiological conditions by spectroscopic methods viz., fluorescence, UV absorption, resonance light scattering, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence. The binding parameters of STV-blood protein were determined from fluorescence quenching studies. Stern-Volmer plots indicated the presence of static quenching mechanism in the interaction of STV with blood proteins. The values of n close to unity indicated that one molecule of STV bound to one molecule of blood protein. The binding process was found to be spontaneous. Analysis of thermodynamic parameters revealed the presence of hydrogen bond and van der Waals forces between protein and STV. Displacement experiments indicated the binding of STV to Sudlow's site I on HSA. Secondary structures of blood proteins have undergone changes upon interaction with STV as evident from the reduction of α-helices (from 46.11% in free HHb to 38.34% in STV-HHb, and from 66.44% in free HSA to 52.26% in STV-HSA). Further, the alterations in secondary structures of proteins in the presence of STV were confirmed by synchronous and 3D-fluorescence spectral data. The distance between the blood protein (donor) and acceptor (STV) was found to be 5.211 and 5.402 nm for STV-HHb and STV-HSA, respectively based on Föster's non-radiative energy transfer theory. Effect of some metal ions was also investigated. The fraction of STV bound to HSA was found to be 87.8%.

  1. Separation of blood cells using hydrodynamic lift

    Science.gov (United States)

    Geislinger, T. M.; Eggart, B.; Braunmüller, S.; Schmid, L.; Franke, T.

    2012-04-01

    Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBCs) from other blood components based on a repulsive hydrodynamic cell-wall-interaction. We exploit this purely viscous lift effect at low Reynolds numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid, which closely follows theoretical prediction by Olla [J. Phys. II 7, 1533, (1997)]. We study the effects of flow rate and fluid viscosity on the separation efficiency and demonstrate the separation of RBCs, blood platelets, and solid microspheres from each other. The method can be used for continuous and label-free cell classification and sorting in on-chip blood analysis.

  2. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  3. Screening of specific binding peptide targeting blood vessel of human esophageal cancer in vivo in mice

    Institute of Scientific and Technical Information of China (English)

    ZHI Min; WU Kai-chun; HAO Zhi-ming; GUO Chang-cun; YAO Jia-yin

    2011-01-01

    analyzing the homology of these peptide sequences. The staining distribution of phage with the sequence of PNPNNST was similar to that of the blood vessel marker factor Ⅷ-related antigen staining. After sequencing, each phage with the selected peptide of PNPNNST with 1.0×1011 pfu/ml was injected intravenously into mice. The homing ability to tumor vessel of these 9 kinds of peptides in the xenograft was higher than control tissues (lung and spleen).Conclusion Nine peptides obtained from in vivo screening homed to the blood vessel of human esophageal cancer,and the two motifs of YSXNXW and PXNXXN are the possible biochemical recognition units binding to vascular endothelial cells of esophageal cancer.

  4. The origin of blood stem cells

    NARCIS (Netherlands)

    J.C. Boisset

    2012-01-01

    textabstractThe development of cell biology research coincides with the advance of microscopes in the 19th century. It was finally possible to directly observe the various blood cell types and to witness their proliferation and differentiation (Mazzarello, 1999). On the basis of his observations, th

  5. 21 CFR 864.9245 - Automated blood cell separator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle...

  6. 21 CFR 864.8200 - Blood cell diluent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  7. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  8. Some technetium complexes for labelling red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Emery, M.F.

    1988-01-01

    A new approach to produce technetium labelled red blood cells, used routinely in diagnostic nuclear medicine, is reported. The enzyme Carbonic Anhydrase (CA), present in erythrocytes, is strongly inhibited by primary aromatic sulphonamides, which bind at the enzyme active site. Three types of ligand able to coordinate to technetium and suitable for modification to include a primary aromatic sulphonamide group were studied; bis(thiosemicarbazones), Schiff bases and some propylene amine oximes. The experimental conditions needed to label the ligands were determined. Both the thiosemicarbazone and propyleneamine oxime derivatives were labelled, but under no conditions attempted were the Schiff bases complexed by Technetium. The two major isozymes of Human Carbonic Anhydrase, HCA I and HCA II, were isolated from blood. The strength of binding of the free ligands SET, PN130 and PN135 with each of the isozymes was measured and expressed as the Dissociation Constant K{sub d}. The rate of uptake of the technetium complexes into washed RBCs and whole blood was measured and found to be much slower in whole blood. The biodistribution of both TcPN130 and TcPN135 in rats was determined and scintigraphic images for the TcPN130 complex were recorded. Attempts to synthesise the Tc-99 analogues on the milligram scale to allow chemical characterisation of these complexes were unsuccessful. (author).

  9. White blood cell deformation and firm adhesion

    Science.gov (United States)

    Szatmary, Alex; Eggleton, Charles

    2011-11-01

    For a white blood cell (WBC) to arrive at infection sites, it forms chemical attachments with activated endothelial cells. First, it bonds with P-selectin, which holds it to the wall, but weakly; this allows the WBC to roll under the shear flow of the blood around it. Later, the WBCs bond with the stronger intracellular adhesion molecule-1 (ICAM-1); it is these ICAM bonds that allow the WBCs to fully resist the flow and stop rolling, allowing them to crawl through the endothelial wall. We model this numerically. Our model uses the immersed boundary method to represent the interaction of the shear flow with the deformable cell membrane. Receptors are on the tips of microvilli-little fingers sticking off of the cell membrane. The microvilli also deform. The receptors stochastically form and break bonds with molecules on the wall. Using this method, the history of each microvillus and its bonds can be found, as well as the distribution of the adhesion traction forces and how all of these vary with the deformability of the white blood cell. At higher shear rates, the white blood cell membrane deforms more, increasing its contact area with the surface; this effect is larger for softer membranes. We investigate how the deformability of the WBC affects the ease with which it forms firm adhesion.

  10. The number of fetal cells in maternal blood is associated to exercise and fetal gender

    DEFF Research Database (Denmark)

    Schlütter, Jacob Mørup; Kirkegaard, Ida; Christensen, Connie Britta;

    were then stained with a cocktail of fetal cell-specific antibodies, identified and counted. Results: Participants carrying male fetuses had higher median number of fcmbs per 30 mL blood than those carrying female fetuses (5 vs. 3, p=0.004). Exercise within 3 hours (1.5 vs. 4, p=0.02) and 24 hours (2......Introduction: We have established a robust method to specifically identify and isolate a placental fetal cell in maternal blood (fcmbs) at a gestational age of 12 weeks. The concentration of these cells, however, varies considerably among pregnant women (median 3 fcmbs/30 mL blood, range 0...... activity was obtained by a questionnaire and a structured interview. The number of fcmbs was assessed in 30 mL blood processed by a proprietary method developed in-house. Fetal cells in the blood, binding to fetal cell specific antibodies, were initially isolated by magnetic cell sorting. The fetal cells...

  11. Red blood cells in retinal vascular disorders.

    Science.gov (United States)

    Agrawal, Rupesh; Sherwood, Joseph; Chhablani, Jay; Ricchariya, Ashutosh; Kim, Sangho; Jones, Philip H; Balabani, Stavroula; Shima, David

    2016-01-01

    Microvascular circulation plays a vital role in regulating physiological functions, such as vascular resistance, and maintaining organ health. Pathologies such as hypertension, diabetes, or hematologic diseases affect the microcirculation posing a significant risk to human health. The retinal vasculature provides a unique window for non-invasive visualisation of the human circulation in vivo and retinal vascular image analysis has been established to predict the development of both clinical and subclinical cardiovascular, metabolic, renal and retinal disease in epidemiologic studies. Blood viscosity which was otherwise thought to play a negligible role in determining blood flow based on Poiseuille's law up to the 1970s has now been shown to play an equally if not a more important role in controlling microcirculation and quantifying blood flow. Understanding the hemodynamics/rheology of the microcirculation and its changes in diseased states remains a challenging task; this is due to the particulate nature of blood, the mechanical properties of the cells (such as deformability and aggregability) and the complex architecture of the microvasculature. In our review, we have tried to postulate a possible role of red blood cell (RBC) biomechanical properties and laid down future framework for research related to hemorrheological aspects of blood in patients with retinal vascular disorders.

  12. Binding of the blood group-reactive lectins to human adult kidney specimens.

    Science.gov (United States)

    Laitinen, L; Juusela, H; Virtanen, I

    1990-01-01

    The binding of a panel of blood group-reactive lectins to frozen sections of human kidney was studied with a special emphasis on reactivity with endothelia and basement membranes. The blood group A-reactive lectins, all specific for alpha-D-N-acetylgalactosamine (GalNAc), Helix aspersa (HAA), Helix pomatia (HPA), and Griffonia simplicifolia I-A4 (GSA-I-A4) agglutinins bound to the endothelium in specimens with blood groups A and AB. In other samples, these lectins reacted predominantly with tubular basement membranes, as well as with certain tubules. Both Dolichos biflorus (DBA) and Vicia villosa agglutinins (VVA), reported to react with blood group A1 substance, failed to reveal endothelia in most specimens, but bound differently to tubules in all blood groups. The blood group B-reactive lectins, specific for alpha-D-galactose (alpha-Gal) or GalNAc, respectively, GSA-I-B4 and Sophora japonica agglutinin (SJA), bound to the endothelia in specimens from blood group B or AB and in other specimens bound only to certain tubules. Among the blood group O-reactive lectins, specific for alpha-L-fucose (Fuc), Ulex europaeus I agglutinin (UEA-I) conjugates, but not other lectins with a similar nominal specificity, bound strongly to endothelia in specimens with blood group O. The UEA-I conjugates bound distinctly more faintly to endothelia in specimens of other blood groups. The present results indicate that lectins, binding to defined blood group determinants, react with endothelia in specimens of the respective blood group status. Furthermore, they suggest that basement membranes and some tubules in the human kidney show a distinct heterogeneity in their expression of saccharide residues, related to their blood group status.

  13. Characterization of Plasminogen Binding to NB4 Promyelocytic Cells Using Monoclonal Antibodies against Receptor-Induced Binding Sites in Cell-Bound Plasminogen

    Directory of Open Access Journals (Sweden)

    Mercè Jardí

    2012-01-01

    Full Text Available The NB4 promyelocytic cell line exhibits many of the characteristics of acute promyelocytic leukemia blast cells, including the translocation (15 : 17 that fuses the PML gene on chromosome 15 to the RARα gene on chromosome 17. These cells have a very high fibrinolytic capacity. In addition to a high secretion of urokinase, NB4 cells exhibit a 10-fold higher plasminogen binding capacity compared with other leukemic cell lines. When tissue-type plasminogen activator was added to acid-treated cells, plasmin generation was 20–26-fold higher than that generated by U937 cells or peripheral blood neutrophils, respectively. We found that plasminogen bound to these cells can be detected by fluorescence-activated cell sorting using an antiplasminogen monoclonal antibody that specifically reacts with this antigen when it is bound to cell surfaces. All-trans retinoid acid treatment of NB4 cells markedly decreased the binding of this monoclonal antibody. This cell line constitutes a unique model to explore plasminogen binding and activation on cell surfaces that can be modulated by all-trans retinoid acid treatment.

  14. Colour measurement and white blood cell recognition

    CERN Document Server

    Gelsema, E S

    1972-01-01

    As a part of a collaboration with NEMCH aimed at the automation of the differential white blood cell count, studies have been made of the different possibilities for using colour to help in the recognition process. Results are presented comparing data obtained with a microspectrophotometer and with a simulated three-colour scanner.

  15. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    Science.gov (United States)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  16. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood...

  17. Inflight Assay of Red Blood Cell Deformability

    Science.gov (United States)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  18. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  19. [Production of mature red blood cell by using peripheral blood mononuclear cells].

    Science.gov (United States)

    Jia, Yan-Jun; Liu, Jiang; Zhang, Ke-Ying; Shang, Xiao-Yan; Li, Wei; Wang, Li-Jun; Liu, Na; Wang, Lin; Cui, Shuang; Ni, Lei; Zhao, Bo-Tao; Wang, Dong-Mei; Gao, Song-Ming; Zhang, Zhi-Xin

    2014-10-01

    Most protocols for in vitro producing red blood cells (RBC) use the CD34(+) cells or embryonic stem cells from cord blood, bone marrow or peripheral blood as the start materials. This study was purposed to produce the mature RBC in vitro by using peripheral blood mononuclear cells as start material. The peripheral blood mononuclear cells (PBMNC) were isolated from buffy coat after blood leukapheresis, the mature red blood cells (RBC) were prepared by a 4-step culture protocol. The results showed that after culture by inducing with the different sets of cytokines and supporting by mouse MS-5 cell line, the expansion of PBMNC reached about 1000 folds at the end of the culture. About 90% of cultured RBC were enucleated mature cells which had the comparable morphological characteristics with normal RBC. Colony-forming assays showed that this culture system could stimulate the proliferation of progenitors in PBMNC and differentiate into erythroid cells. The structure and function analysis indicated that the mean cell volume of in vitro cultured RBC was 118 ± 4 fl, which was slight larger than that of normal RBC (80-100 fl); the mean cell hemoglobin was 36 ± 1.2 pg, which was slight higher than that of normal RBC (27-31 pg); the maximal deformation index was 0.46, which approachs level of normal RBC; the glucose-6-phosphate dehydrogenase and pyrurvate kinase levels was consistant with young RBC. It is concluded that PBMNC are feasble, convenient and low-cost source for producing cultured RBC and this culture system is suitable to generate the RBC from PBMNC.

  20. Simulation of red blood cell aggregation in shear flow.

    Science.gov (United States)

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  1. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  2. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  3. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  4. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  5. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    Science.gov (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  6. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  7. Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion.

    Science.gov (United States)

    Ebihara, Yasuhiro; Ma, Feng; Tsuji, Kohichiro

    2012-06-01

    Red blood cell (RBC) transfusion is necessary for many patients with emergency or hematological disorders. However, to date the supply of RBCs remains labile and dependent on voluntary donations. In addition, the transmission of infectious disease via blood transfusion from unspecified donors remains a risk. Establishing a large quantity of safe RBCs would help to address this issue. Human embryonic stem (hES) cells and the recently established human induced pluripotent stem (hiPS) cells represent potentially unlimited sources of donor-free RBCs for blood transfusion, as they can proliferate indefinitely in vitro. Extensive research has been done to efficiently generate transfusable RBCs from hES/iPS cells. Nevertheless, a number of challenges must be overcome before the clinical usage of hES/iPS cell-derived RBCs can become a reality.

  8. An effect of glycoprotein IIb/IIIa inhibitors on the kinetics of red blood cells aggregation.

    Science.gov (United States)

    Sokolova, Irina A; Muravyov, Alexei V; Khokhlova, Maria D; Rikova, Sofya Yu; Lyubin, Evgeny V; Gafarova, Marina A; Skryabina, Maria N; Fedyanin, Angrey A; Kryukova, Darya V; Shahnazarov, Alexander A

    2014-01-01

    The reversible aggregation of red blood cells (RBCs) continues to be of the basic science and clinical interest. Recently it has been reported about a specific binding between fibrinogen and unknown erythrocyte glycoprotein receptors. The aim of this study was to investigate whether the red blood cell aggregation (RBCA) include the cell-cell interaction using the membrane receptors that bind such ligands as fibrinogen or fibronectin. To test this hypothesis the RBCs were incubated with monafram - the drug of the monoclonal antibodies against glycoprotein (GP) IIb/IIIa, with the GPIIb-IIIa receptor antagonist tirofiban, epifibatide and with the fibrinogen inhibiting peptide. It has been found that the RBC incubation with monafram resulted in a marked RBCA decrease mainly in persons with high level of aggregation. Another research session has shown that RBC incubation with fibronectin was accompanied by a significant RBCA rise. The monafram addition to red cell incubation medium resulted in a significant RBCA lowering. The cell incubation with tirofiban and epifibatide issued in RBCA decrease. The similar results were obtained when RBCs were incubated with the fibrinogen inhibiting peptide. Although monafram, tirofiban, eptifibatide and the fibrinogen inhibiting peptide were related to fibrinogen function they didn't inhibit RBCA completely. Therefore, under moderate and low red blood cell aggregation the cell binding is probably related to nonspecific mode. It seems evident that the specific and nonspecific modes of red blood cell aggregate formation could co-exist. Additional theoretical and experimental investigations in this area are needed.

  9. Binding of Clostridium botulinum C3 exoenzyme to intact cells.

    Science.gov (United States)

    Rohrbeck, Astrid; von Elsner, Leonie; Hagemann, Sandra; Just, Ingo

    2014-06-01

    C3 from Clostridium botulinum (C3) specifically modifies Rho GTPases RhoA, RhoB, and RhoC by mono-ADP-ribosylation. The confined substrate profile of C3 is the basis for its use as pharmacological tool in cell biology to study cellular functions of Rho GTPases. Although C3 exoenzyme does not possess a cell-binding/-translocation domain, C3 is taken up by intact cells via an unknown mechanism. In the present work, binding of C3 to the hippocampus-derived HT22 cells and J774A.1 macrophages was characterized. C3 bound concentration-dependent to HT22 and J774A.1 cells. Pronase treatment of intact cells significantly reduced both C3 binding and C3 cell entry. Removal of sugar residues by glycosidase F treatment resulted in an increased binding of C3, but a reduced cell entry. To explore the involvement of phosphorylation in the binding process of C3, intact HT22 and J774A.1 cells were pre-treated with vanadate prior to incubation with C3. Inhibition of de-phosphorylation by vanadate resulted in an increased binding of C3. To differentiate between intracellular and extracellular phosphorylation, intact cells were treated with CIP (calf intestine phosphatase) to remove extracellular phosphate residues. The removal of phosphate residues resulted in a strong reduction in binding of C3 to cells. In sum, the C3 membranous binding partner is proteinaceous, and the glycosylation as well as the phosphorylation state is critical for efficient binding of C3.

  10. Risk of Abnormal Red Blood Cell to Get Malarial Infection

    OpenAIRE

    Viroj Wiwanitkit

    2008-01-01

    Malarial infection in red blood cell disorder is an interesting topic in tropical medicine. In this work, the author proposes a new idea on the physical property of red blood cell and risk for getting malarial infection. The study on scenario of red blood cell disorders is performed. Conclusively, the author found that physical property of red blood cell is an important determinant for getting malarial infection

  11. Cocaine induces a reversible stomatocytosis of red blood cells and increases blood viscosity.

    Science.gov (United States)

    Cagienard, F; Schulzki, T; Furlong, P; Reinhart, W H

    2013-01-01

    Severe side effects of cocaine consumption are vasoocclusive events such as myocardial infarction and stroke. We have hypothesized that cocaine could affect red blood cells (RBCs) and alter the rheological behaviour of blood. Heparinized blood from healthy volunteers was incubated with a final hematocrit of 45% with increasing cocaine concentrations: 0, 10, 100, 1000, and 10'000 μmol/L plasma. Time dependence of the shape change was tested in phosphate buffered saline containing cocaine. RBCs were fixed in 1% glutaraldehyde for morphological analysis. Blood viscosity was measured with a Couette Viscometer (Contraves LS 30) at 37°C and a shear rate of 69.5 s⁻¹. RBC aggregation was assessed with a Myrenne aggregometer. Cocaine induced a dose-dependent stomatocytic shape transformation of RBCs, which was more pronounced in buffer than in plasma (plasma protein binding of the drug). Stomatocytosis occurs when a drug intercalates preferentially in the inner half of the membrane lipid bilayer. It was a time-dependent process with two components, an almost instant shape change occurring within 1 s, followed by a gradual further shape change during 10 min. Stomatocytosis was reversible by resuspension of the RBCs in cocaine-free buffer. This stomatocytic shape change increased whole blood viscosity at high shear rate from 5.69±0.31 mPa.s to 6.39±0.34 mPa.s for control and 10'000 μmol/L cocaine, respectively (p<0.01). RBC aggregation was not affected by the shape change. These effects occurred at a cocaine concentration, which is several-fold above those measured in vivo. Therefore, it is unlikely that hemorheological factors are involved in vascular events after cocaine consumption.

  12. 21 CFR 660.30 - Reagent Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  13. 21 CFR 864.6160 - Manual blood cell counting device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6160 Manual blood cell counting device. (a) Identification. A manual blood cell counting device is a device used...

  14. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  15. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  16. Automated red blood cell analysis compared with routine red blood cell morphology by smear review

    Directory of Open Access Journals (Sweden)

    Dr.Poonam Radadiya

    2015-01-01

    Full Text Available The RBC histogram is an integral part of automated haematology analysis and is now routinely available on all automated cell counters. This histogram and other associated complete blood count (CBC parameters have been found abnormal in various haematological conditions and may provide major clues in the diagnosis and management of significant red cell disorders. Performing manual blood smears is important to ensure the quality of blood count results and to make presumptive diagnosis. In this article we have taken 100 samples for comparative study between RBC histograms obtained by automated haematology analyzer with peripheral blood smear. This article discusses some morphological features of dimorphism and the ensuing characteristic changes in their RBC histograms.

  17. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  18. Characterization of human platelet binding of recombinant T cell receptor ligand

    Directory of Open Access Journals (Sweden)

    Meza-Romero Roberto

    2010-11-01

    Full Text Available Abstract Background Recombinant T cell receptor ligands (RTLs are bio-engineered molecules that may serve as novel therapeutic agents for the treatment of neuroinflammatory conditions such as multiple sclerosis (MS. RTLs contain membrane distal α1 plus β1 domains of class II major histocompatibility complex linked covalently to specific peptides that can be used to regulate T cell responses and inhibit experimental autoimmune encephalomyelitis (EAE. The mechanisms by which RTLs impede local recruitment and retention of inflammatory cells in the CNS, however, are not completely understood. Methods We have recently shown that RTLs bind strongly to B cells, macrophages, and dendritic cells, but not to T cells, in an antigenic-independent manner, raising the question whether peripheral blood cells express a distinct RTL-receptor. Our study was designed to characterize the molecular mechanisms by which RTLs bind human blood platelets, and the ability of RTL to modulate platelet function. Results Our data demonstrate that human blood platelets support binding of RTL. Immobilized RTL initiated platelet intracellular calcium mobilization and lamellipodia formation through a pathway dependent upon Src and PI3 kinases signaling. The presence of RTL in solution reduced platelet aggregation by collagen, while treatment of whole blood with RTL prolonged occlusive thrombus formation on collagen. Conclusions Platelets, well-known regulators of hemostasis and thrombosis, have been implicated in playing a major role in inflammation and immunity. This study provides the first evidence that blood platelets express a functional RTL-receptor with a putative role in modulating pathways of neuroinflammation.

  19. [Molecular basis of red blood cell adhesion to endothelium].

    Science.gov (United States)

    Wautier, J-L; Wautier, M-P

    2011-01-01

    The extent of red blood cell adhesion is correlated with the incidence of vascular complications and the severity of the disease. Patients with sickle cell anemia (HbSS) experience vasoocclusive episodes. The adhesion of RBCs from HbSS patients is increased and related to VLA-4 exposure, which binds to vascular cell adhesion molecule (VCAM-1). Inter Cellular Adhesion Molecule (ICAM-1), CD31, CD36 and glycans are potential receptors for PfEMP1 of RBCs parasited by plasmodium falciparum. The incidence of vascular complications is very high in patients with diabetes mellitus. RBC adhesion is increased and statistically correlated with the severity of the angiopathy. Glycation of RBC membrane proteins is responsible for binding to the receptor for advanced glycation end products (RAGE). Polycythemia Vera (PV) is the most frequent myeloproliferative disorder and characterized by a high occurrence of thrombosis of mesenteric and cerebral vessels. PV is due to a mutation of the Janus kinase 2 (JAK2 V617F). This mutation stimulates erythropoiesis and is the cause of Lu/BCAM (CD239) phosphorylation, which potentiated the interaction with laminin alpha 5. The couple laminin alpha 5 endothelial and phosphorylated Lu/BCAM explained the increased adhesion of RBCs from patients PV to endothelium.

  20. Blood flow dependence of the intratumoral distribution of peripheral benzodiazepine receptor binding in intact mouse fibrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Amitani, Misato [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan) and Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)]. E-mail: amitani@sahs.med.osaka-u.ac.jp; Zhang, Ming-Rong [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Noguchi, Junko [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service, Shinagawa-ku, Tokyo 141-8686 (Japan); Kumata, Katsushi [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Ito, Takehito [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); SHI Accelerator Service, Shinagawa-ku, Tokyo 141-8686 (Japan); Takai, Nobuhiko [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Suzuki, Kazutoshi [Radiochemistry Section, Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Hosoi, Rie [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan); Inoue, Osamu [Course of Allied Health Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 (Japan)

    2006-11-15

    The intratumoral distribution of [{sup 11}C]AC-5216 binding, a novel peripheral benzodiazepine receptor (PBR) ligand, was examined by autoradiography both in vitro and in vivo using a murine fibrosarcoma model. The regional distribution of [{sup 11}C]AC-5216 in a tumor in vivo was significantly heterogeneous; the uptake of [{sup 11}C]AC-5216 was comparatively higher in the outer rim of the tumor and was lower in the central area. In contrast, the images obtained following the injection of [{sup 11}C]AC-5216 with a large amount of nonlabeled PK11195 showed a relatively homogeneous distribution, suggesting that [{sup 11}C]AC-5216 uptake represented specific binding to PBRs. In vitro autoradiograms of [{sup 11}C]AC-5216 binding were also obtained using the section of the fibrosarcoma that was the same as that used to examine in vivo binding. In vitro autoradiographic binding images showed homogeneous distribution, and significant discrepancies of the intratumoral distribution of [{sup 11}C]AC-5216 were observed between in vivo and in vitro images. The in vivo images of [{sup 11}C]AC-5216 uptake, compared with those of [{sup 14}C]iodoantipyrine uptake, obtained by dual autoradiography to evaluate the influence of blood flow revealed the similar intratumoral distributions of both tracers. These results indicate that the delivery process from the plasma to the tumor might be the rate-limiting step for the intratumoral distribution of PBR binding in vivo in a fibrosarcoma model.

  1. Protein C inhibitor (PCI binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Directory of Open Access Journals (Sweden)

    Daniela Rieger

    Full Text Available Protein C Inhibitor (PCI is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells. PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  2. Protein C inhibitor (PCI) binds to phosphatidylserine exposing cells with implications in the phagocytosis of apoptotic cells and activated platelets.

    Science.gov (United States)

    Rieger, Daniela; Assinger, Alice; Einfinger, Katrin; Sokolikova, Barbora; Geiger, Margarethe

    2014-01-01

    Protein C Inhibitor (PCI) is a secreted serine protease inhibitor, belonging to the family of serpins. In addition to activated protein C PCI inactivates several other proteases of the coagulation and fibrinolytic systems, suggesting a regulatory role in hemostasis. Glycosaminoglycans and certain negatively charged phospholipids, like phosphatidylserine, bind to PCI and modulate its activity. Phosphatidylerine (PS) is exposed on the surface of apoptotic cells and known as a phagocytosis marker. We hypothesized that PCI might bind to PS exposed on apoptotic cells and thereby influence their removal by phagocytosis. Using Jurkat T-lymphocytes and U937 myeloid cells, we show here that PCI binds to apoptotic cells to a similar extent at the same sites as Annexin V, but in a different manner as compared to live cells (defined spots on ∼10-30% of cells). PCI dose dependently decreased phagocytosis of apoptotic Jurkat cells by U937 macrophages. Moreover, the phagocytosis of PS exposing, activated platelets by human blood derived monocytes declined in the presence of PCI. In U937 cells the expression of PCI as well as the surface binding of PCI increased with time of phorbol ester treatment/macrophage differentiation. The results of this study suggest a role of PCI not only for the function and/or maturation of macrophages, but also as a negative regulator of apoptotic cell and activated platelets removal.

  3. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms

    DEFF Research Database (Denmark)

    Lopez-Perez, Mary; Villasis, Elizabeth; Machado, Ricardo L D;

    2012-01-01

    Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully...

  4. Microfluidic Device for Continuous Magnetophoretic Separation of Red Blood Cells

    CERN Document Server

    Iliescu, Ciprian; Avram, Marioara; Xu, G; Avram, Andrei

    2008-01-01

    This paper presents a microfluidic device for magnetophoretic separation red blood cells from blood under contionous flow. The separation method consist of continous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom "dots" of feromagnetic layer. By appling a magnetic field perpendicular on the flowing direction, the feromagnetic "dots" generates a gradient of magnetic field which amplifies the magnetic force. As a result, the red blood cells are captured on the bottom of the microfluidic channel while the rest of the blood is collected at the outlet. Experimental results show that an average of 95 % of red blood cells are trapped in the device

  5. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  6. Inhibition Of Call-Cell Binding By Kipid Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Jon O. (Rodeo, CA), Bargatze, Robert F. (Bozeman, MT)

    2003-12-16

    This invention relates generally to the field of therapeutic compounds designed to interfere between the binding of ligands and their receptors on cell surface. More specifically, it provides products and methods for inhibiting cell migration and activation using lipid assemblies with surface recognition elements that are specific for the receptors involved in cell migration and activation.

  7. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  8. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low......, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal...

  9. Hierarchy of ADAM12 binding to integrins in tumor cells

    DEFF Research Database (Denmark)

    Thodeti, Charles Kumar; Fröhlich, Camilla; Nielsen, Christian Kamp;

    2005-01-01

    ADAMs (a disintegrin and metalloprotease) comprise a family of cell surface proteins with protease and cell-binding activities. Using different forms and fragments of ADAM12 as substrates in cell adhesion and spreading assays, we demonstrated that alpha9beta1 integrin is the main receptor for ADAM......12. However, when alpha9beta1 integrin is not expressed--as in many carcinoma cells--other members of the beta1 integrin family can replace its ligand binding activity. In attachment assays, the recombinant disintegrin domain of ADAM12 only supported alpha9 integrin-dependent tumor cell attachment......, whereas full-length ADAM12 supported attachment via alpha9 integrin and other integrin receptors. Cells that attached to full-length ADAM12 in an alpha9 integrin-dependent manner also attached to ADAM12 in which the putative alpha9beta1 integrin-binding motif in the disintegrin domain had been mutated...

  10. Binding of mitomycin C to blood proteins: A spectroscopic analysis and molecular docking

    Science.gov (United States)

    Jang, Jongchol; Liu, Hui; Chen, Wei; Zou, Guolin

    2009-06-01

    Mitomycin C (MMC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. The binding of MMC to two human blood proteins, human serum albumin (HSA) and human hemoglobin (HHb), have been investigated by fluorescence quenching, synchronous fluorescence, circular dichroism (CD) spectroscopy and molecular docking methods. The fluorescence data showed that binding of MMC to proteins caused strong fluorescence quenching of proteins through a static quenching way, and each protein had only one binding site for the drug. The binding constants of MMC to HSA and HHb at 298 K were 2.71 × 10 4 and 2.56 × 10 4 L mol -1, respectively. Thermodynamic analysis suggested that both hydrophobic interaction and hydrogen bonding played major roles in the binding of MMC to HSA or HHb. The CD spectroscopy indicated that the secondary structures of the two proteins were not changed in the presence of MMC. The study of molecular docking showed that MMC was located in the entrance of site I of HSA, and in the central cavity of HHb.

  11. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  12. Inhibition of histo-blood group antigen binding as a novel strategy to block norovirus infections.

    Directory of Open Access Journals (Sweden)

    Xu-Fu Zhang

    Full Text Available Noroviruses (NoVs are the most important viral pathogens that cause epidemic acute gastroenteritis. NoVs recognize human histo-blood group antigens (HBGAs as receptors or attachment factors. The elucidation of crystal structures of the HBGA-binding interfaces of a number of human NoVs representing different HBGA binding patterns opens a new strategy for the development of antiviral compounds against NoVs through rational drug design and computer-aided virtual screening methods. In this study, docking simulations and virtual screening were used to identify hit compounds targeting the A and B antigens binding sites on the surface of the capsid P protein of a GII.4 NoV (VA387. Following validation by re-docking of the A and B ligands, these structural models and AutoDock suite of programs were used to screen a large drug-like compound library (derived from ZINC library for inhibitors blocking GII.4 binding to HBGAs. After screening >2 million compounds using multistage protocol, 160 hit compounds with best predicted binding affinities and representing a number of distinct chemical classes have been selected for subsequent experimental validation. Twenty of the 160 compounds were found to be able to block the VA387 P dimers binding to the A and/or B HBGAs at an IC50<40.0 µM, with top 5 compounds blocking the HBGA binding at an IC50<10.0 µM in both oligosaccharide- and saliva-based blocking assays. Interestingly, 4 of the top-5 compounds shared the basic structure of cyclopenta [a] dimethyl phenanthren, indicating a promising structural template for further improvement by rational design.

  13. On-Orbit, Immuno-Based, Label-Free White Blood Cell Counting System with Microelectromechanical Sensor Technology (OILWBCS-MEMS)

    Science.gov (United States)

    Edmonds, Jessica

    2015-01-01

    Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.

  14. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell

    DEFF Research Database (Denmark)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris;

    2008-01-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much...

  15. In vivo evidence of a functional association between immune cells in blood and brain in healthy human subjects.

    Science.gov (United States)

    Kanegawa, Naoki; Collste, Karin; Forsberg, Anton; Schain, Martin; Arakawa, Ryosuke; Jucaite, Aurelija; Lekander, Mats; Olgart Höglund, Caroline; Kosek, Eva; Lampa, Jon; Halldin, Christer; Farde, Lars; Varrone, Andrea; Cervenka, Simon

    2016-05-01

    Microglia, the resident macrophages in the central nervous system, are thought to be maintained by a local self-renewal mechanism. Although preclinical and in vitro studies have suggested that the brain may contain immune cells also from peripheral origin, the functional association between immune cells in the periphery and brain at physiological conditions is poorly understood. We examined 32 healthy individuals using positron emission tomography (PET) and [(11)C]PBR28, a radioligand for the 18-kDa translocator protein (TSPO) which is expressed both in brain microglia and blood immune cells. In 26 individuals, two measurements were performed with varying time intervals. In a subgroup of 19 individuals, of which 12 had repeat examinations, leukocyte numbers in blood was measured on each day of PET measurements. All individuals were genotyped for TSPO polymorphism and categorized as high, mixed, and low affinity binders. We assessed TSPO binding expressed as total distribution volume of [(11)C]PBR28 in brain and in blood cells. TSPO binding in brain was strongly and positively correlated to binding in blood cells both at baseline and when analyzing change between two PET examinations. Furthermore, there was a significant correlation between change of leukocyte numbers and change in TSPO binding in brain, and a trend-level correlation to change in TSPO binding in blood cells. These in vivo findings indicate an association between immunological cells in blood and brain via intact BBB, suggesting a functional interaction between these two compartments, such as interchange of peripherally derived cells or a common regulatory mechanism. Measurement of radioligand binding in blood cells may be a way to control for peripheral immune function in PET studies using TSPO as a marker of brain immune activation.

  16. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    Science.gov (United States)

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  17. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    Science.gov (United States)

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  18. Specific binding of benzodiazepines to human breast cancer cell lines.

    Science.gov (United States)

    Beinlich, A; Strohmeier, R; Kaufmann, M; Kuhl, H

    1999-01-01

    Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.

  19. Blood Types

    Science.gov (United States)

    ... maternity. Learn About Blood Blood Facts and Statistics Blood Components Whole Blood and Red Blood Cells Platelets Plasma ... About Blood Blood Facts and Statistics Blood Types Blood Components What Happens to Donated Blood Blood and Diversity ...

  20. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.

    Science.gov (United States)

    Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko

    2013-07-01

    Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs.

  1. The Gametocytes of Leucocytozoon sabrazesi Infect Chicken Thrombocytes, Not Other Blood Cells.

    Science.gov (United States)

    Zhao, Wenting; Liu, Jianwen; Xu, Ruixue; Zhang, Cui; Pang, Qin; Chen, Xin; Liu, Shengfa; Hong, Lingxian; Yuan, Jing; Li, Xiaotong; Chen, Yixin; Li, Jian; Su, Xin-Zhuan

    2015-01-01

    Leucocytozoon parasites infect a large number of avian hosts, including domestic chicken, and cause significant economical loss to the poultry industry. Although the transmission stages of the parasites were observed in avian blood cells more than a century ago, the specific host cell type(s) that the gametocytes infect remain uncertain. Because all the avian blood cells, including red blood cells (RBCs), are nucleated, and the developing parasites dramatically change the morphology of the infected host cells, it has been difficult to identify Leucocytozoon infected host cell(s). Here we use cell-type specific antibodies to investigate the identities of the host cells infected by Leucocytozoon sabrazesi gametocytes. Anti-RBC antibodies stained RBCs membrane strongly, but not the parasite-infected cells, ruling out the possibility of RBCs being the infected host cells. Antibodies recognizing various leukocytes including heterophils, monocytes, lymphocytes, and macrophages did not stain the infected cells either. Antisera raised against a peptide of the parasite cytochrome B (CYTB) stained parasite-infected cells and some leukocytes, particularly cells with a single round nucleus as well as clear/pale cytoplasm suggestive of thrombocytes. Finally, a monoclonal antibody known to specifically bind chicken thrombocytes also stained the infected cells, confirming that L. sabrazesi gametocytes develop within chicken thrombocytes. The identification of L. sabrazesi infected host cell solves a long unresolved puzzle and provides important information for studying parasite invasion of host cells and for developing reagents to interrupt parasite transmission.

  2. Lipopolysaccharide-binding protein: localization in secretory granules of Paneth cells in the mouse small intestine

    DEFF Research Database (Denmark)

    Hansen, Gert H; Rasmussen, Karina; Niels-Christiansen, Lise-Lotte;

    2009-01-01

    in closer detail the synthesis and storage of LBP in the intestinal mucosal epithelium, we performed an immunolocalization of LBP in mouse small intestine. By immunofluorescence microscopy, an antibody recognizing the 58-60 kDa protein of LBP distinctly labeled a small population of cells located deep......Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein involved in the host's response to endotoxin and mainly synthesized and secreted to the blood by the liver. But in addition, LBP is also made by extrahepatic cells, including the enterocyte-like cell line Caco-2. To study...... into the crypts. This cell population was also positive for lysozyme and alpha-defensin 4, identifying Paneth cells as the main intestinal LBP-producing cells. By immunogold electron microscopy, intense labeling was observed in the secretory granules of these cells. We conclude that Paneth cells express LBP...

  3. Comprehensive analysis of blood group antigen binding to classical and El Tor cholera toxin B-pentamers by NMR.

    Science.gov (United States)

    Vasile, Francesca; Reina, José J; Potenza, Donatella; Heggelund, Julie E; Mackenzie, Alasdair; Krengel, Ute; Bernardi, Anna

    2014-08-01

    Cholera is a diarrheal disease responsible for the deaths of thousands, possibly even hundreds of thousands of people every year, and its impact is predicted to further increase with climate change. It has been known for decades that blood group O individuals suffer more severe symptoms of cholera compared with individuals with other blood groups (A, B and AB). The observed blood group dependence is likely to be caused by the major virulence factor of Vibrio cholerae, the cholera toxin (CT). Here, we investigate the binding of ABH blood group determinants to both classical and El Tor CTB-pentamers using saturation transfer difference NMR and show that all three blood group determinants bind to both toxin variants. Although the details of the interactions differ, we see no large differences between the two toxin genotypes and observe very similar binding constants. We also show that the blood group determinants bind to a site distinct from that of the primary receptor, GM1. Transferred NOESY data confirm that the conformations of the blood group determinants in complex with both toxin variants are similar to those of reported X-ray and solution structures. Taken together, this detailed analysis provides a framework for the interpretation of the epidemiological data linking the severity of cholera infection and an individual's blood group, and brings us one step closer to understanding the molecular basis of cholera blood group dependence.

  4. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  5. Binding and endocytosis of monoterbium transferrin by K562 cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Using isotopic labeling of human serum apotransferrin, the binding and the endocytosis of monoterbium transferrin (TbC-apotransferrin, TbC-apotransferrin- FeN) by K562 cells, a human leukemic cell line, have been investigated. There are about (8.58±2.41)×105 binding sites per cell surface at 0℃. The association constant for TbC-apo- transferrin binding is 4.1×107 mol-1@L, for TbC-apo- transferrin-FeN 2.7×107 mol-1@L at 0℃. At pH 7.4, upon warming cells to 37℃, endocytosis starts. The rate constants for the endocytosis are about 0.97 min-1 and 0.31 min-1 and the endocytosis ratio reaches 56% and 80% for TbC-apo- transferrin and TbC-apotransferrin-FeN, respectively.

  6. Structure and ligand-binding properties of the biogenic amine-binding protein from the saliva of a blood-feeding insect vector of Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xueqing; Chang, Bianca W. [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States); Mans, Ben J. [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States); Agricultural Research Council, Onderstepoort 0110 (South Africa); Ribeiro, Jose M. C.; Andersen, John F., E-mail: jandersen@niaid.nih.gov [NIH/NIAID, 12735 Twinbrook Parkway, Rockville, MD 20852 (United States)

    2013-01-01

    Biogenic amine-binding proteins mediate the anti-inflammatory and antihemostatic activities of blood-feeding insect saliva. The structure of the amine-binding protein from R. prolixus reveals the interaction of biogenic amine ligands with the protein. Proteins that bind small-molecule mediators of inflammation and hemostasis are essential for blood-feeding by arthropod vectors of infectious disease. In ticks and triatomine insects, the lipocalin protein family is greatly expanded and members have been shown to bind biogenic amines, eicosanoids and ADP. These compounds are potent mediators of platelet activation, inflammation and vascular tone. In this paper, the structure of the amine-binding protein (ABP) from Rhodnius prolixus, a vector of the trypanosome that causes Chagas disease, is described. ABP binds the biogenic amines serotonin and norepinephrine with high affinity. A complex with tryptamine shows the presence of a binding site for a single ligand molecule in the central cavity of the β-barrel structure. The cavity contains significant additional volume, suggesting that this protein may have evolved from the related nitrophorin proteins, which bind a much larger heme ligand in the central cavity.

  7. Investigation of two blood proteins binding to Cantharidin and Norcantharidin by multispectroscopic and chemometrics methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong; Cheng, Zhengjun, E-mail: ncczj1112@126.com; Li, Tian; Jiang, Xiaohui

    2015-01-15

    The interactions of Cantharidin/Norcantharidin (CTD/NCTD) with two blood proteins, i.e., bovine serum albumin (BSA) and bovine hemoglobin (BHb), have been investigated by the fluorescence, UV–vis absorption, and FT-IR spectra under imitated physiological condition. The binding characteristics between CTD/NCTD and BSA/BHb were determined by fluorescence emission and resonance light scattering (RLS) spectra. The quenching mechanism of two blood proteins with CTD/NCTD is a static quenching. Moreover, the experimental data were further analyzed based on multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain the concentration profiles and pure spectra for three species (BSA/BHb, CTD/NCTD and CTD/NCTD–BSA/BHb complexes) which existed in the interaction procedure. The number of binding sites n and binding constants K{sub b} were calculated at various temperatures. The thermodynamic parameters (such as, ΔG, ΔH, and ΔS) for BSA–CTD/NCTD and BHb–CTD/NCTD systems were calculated by the Van’t Hoff equation and also discussed. The distance r between CTD/NCTD and BSA/BHb were evaluated according to Förster no-radiation energy transfer theory. The results of Fourier transform infrared (FT-IR), synchronous fluorescence and three-dimensional fluorescence spectra showed that the conformations of BSA/BHb altered with the addition of CTD/NCTD. In addition, the effects of common ions on the binding constants of BSA–CTD/NCTD and BHb–CTD/NCTD systems were also discussed.

  8. The PUF binding landscape in metazoan germ cells.

    Science.gov (United States)

    Prasad, Aman; Porter, Douglas F; Kroll-Conner, Peggy L; Mohanty, Ipsita; Ryan, Anne R; Crittenden, Sarah L; Wickens, Marvin; Kimble, Judith

    2016-07-01

    PUF (Pumilio/FBF) proteins are RNA-binding proteins and conserved stem cell regulators. The Caenorhabditis elegans PUF proteins FBF-1 and FBF-2 (collectively FBF) regulate mRNAs in germ cells. Without FBF, adult germlines lose all stem cells. A major gap in our understanding of PUF proteins, including FBF, is a global view of their binding sites in their native context (i.e., their "binding landscape"). To understand the interactions underlying FBF function, we used iCLIP (individual-nucleotide resolution UV crosslinking and immunoprecipitation) to determine binding landscapes of C. elegans FBF-1 and FBF-2 in the germline tissue of intact animals. Multiple iCLIP peak-calling methods were compared to maximize identification of both established FBF binding sites and positive control target mRNAs in our iCLIP data. We discovered that FBF-1 and FBF-2 bind to RNAs through canonical as well as alternate motifs. We also analyzed crosslinking-induced mutations to map binding sites precisely and to identify key nucleotides that may be critical for FBF-RNA interactions. FBF-1 and FBF-2 can bind sites in the 5'UTR, coding region, or 3'UTR, but have a strong bias for the 3' end of transcripts. FBF-1 and FBF-2 have strongly overlapping target profiles, including mRNAs and noncoding RNAs. From a statistically robust list of 1404 common FBF targets, 847 were previously unknown, 154 were related to cell cycle regulation, three were lincRNAs, and 335 were shared with the human PUF protein PUM2.

  9. Influence of Molecular Structure on O2-Binding Properties and Blood Circulation of Hemoglobin‒Albumin Clusters.

    Directory of Open Access Journals (Sweden)

    Kana Yamada

    Full Text Available A hemoglobin wrapped covalently by three human serum albumins, a Hb-HSA3 cluster, is an artificial O2-carrier with the potential to function as a red blood cell substitute. This paper describes the synthesis and O2-binding properties of new hemoglobin‒albumin clusters (i bearing four HSA units at the periphery (Hb-HSA4, large-size variant and (ii containing an intramolecularly crosslinked Hb in the center (XLHb-HSA3, high O2-affinity variant. Dynamic light scattering measurements revealed that the Hb-HSA4 diameter is greater than that of either Hb-HSA3 or XLHb-HSA3. The XLHb-HSA3 showed moderately high O2-affinity compared to the others because of the chemical linkage between the Cys-93(β residues in Hb. Furthermore, the blood circulation behavior of 125I-labeled clusters was investigated by assay of blood retention and tissue distribution after intravenous administration into anesthetized rats. The XLHb-HSA3 was metabolized faster than Hb-HSA3 and Hb-HSA4. Results suggest that the molecular structure of the protein cluster is a factor that can influence in vivo circulation behavior.

  10. Backward elastic light scattering of malaria infected red blood cells

    Science.gov (United States)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  11. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma.

    Science.gov (United States)

    Sakota, Daisuke; Sakamoto, Ryuki; Sobajima, Hideo; Yokoyama, Naoyuki; Waguri, Satoshi; Ohuchi, Katsuhiro; Takatani, Setsuo

    2008-10-01

    In this study, mean cell volume (MCV), mean cell hemoglobin concentration (MCHC), and mean cell hemoglobin (MCH) were measured to quantify RBC damage by rotary blood pumps. Six-hour hemolysis tests were conducted with a Bio-pump BPX-80, a Sarns 15200 roller pump, and a prototype mag-lev centrifugal pump (MedTech Heart) using fresh porcine blood circulated at 5 L/min against a 100 mm Hg head pressure. The temperature of the test and noncirculated control blood was maintained at 37 degrees C. The normalized index of hemolysis (NIH) of each pump was determined by measuring the plasma-free hemoglobin level. The MCV was measured with a Coulter counter, and MCHC was derived from total hemoglobin and hematocrit. MCH was derived from MCV and MCHC. A multivariance statistical analysis (ANOVA) revealed statistically significant differences (n = 15, P < 0.05) in MCV, MCHC, and MCH between the blood sheared by the rotary blood pumps and the nonsheared control blood. Normalized to the control blood, the Bio-pump BPX-80 showed an MCV of 1.04 +/- 0.03, an MCHC of 0.95 +/- 0.04, and an MCH of 0.98 +/- 0.02; the mag-lev MedTech Heart had an MCV of 1.02 +/- 0.02, an MCHC of 0.97 +/- 0.02, and an MCH of 0.99 +/- 0.01; and the roller pump exhibited an MCV of 1.03 +/- 0.03, an MCHC of 0.96 +/- 0.03, and an MCH of 0.99 +/- 0.01. Per 0.01 increase in NIH, the BPX-80 showed a normalized MCV change of +10.1% and a normalized MCHC change of -14.0%; the MedTech Heart demonstrated a +6.9% MCV and -9.5% MCHC change; and the roller pump had a +0.5% MCV and -0.6% MCHC change. Due to shear in the pump circuits, the RBC increased while the MCHC decreased. The likely mechanism is that older RBCs with smaller size and higher hemoglobin concentration were destroyed fast by the shear, leaving younger RBCs with larger size and lower hemoglobin concentration. Subhemolytic trauma caused the intracellular hemoglobin to decrease due to gradual hemoglobin leakage through the micropores formed in the thinned

  12. Infusion of hemolyzed red blood cells within peripheral blood stem cell grafts in patients with and without sickle cell disease.

    Science.gov (United States)

    Fitzhugh, Courtney D; Unno, Hayato; Hathaway, Vincent; Coles, Wynona A; Link, Mary E; Weitzel, R Patrick; Zhao, Xiongce; Wright, Elizabeth C; Stroncek, David F; Kato, Gregory J; Hsieh, Matthew M; Tisdale, John F

    2012-06-14

    Peripheral blood stem cell (PBSC) infusions are associated with complications such as elevated blood pressure and decreased creatinine clearance. Patients with sickle cell disease experience similar manifestations, and some have postulated release of plasma-free hemoglobin with subsequent nitric oxide consumption as causative. We sought to evaluate whether the infusion of PBSC grafts containing lysed red blood cells (RBCs) leads to the toxicity observed in transplant subjects. We report a prospective cohort study of 60 subjects divided into 4 groups based on whether their infusions contained dimethyl sulfoxide (DMSO) and lysed RBCs, no DMSO and fresh RBCs, DMSO and no RBCs, or saline. Our primary end point, change in maximum blood pressure compared with baseline, was not significantly different among groups. Tricuspid regurgitant velocity and creatinine levels also did not differ significantly among groups. Our data do not support free hemoglobin as a significant contributor to toxicity associated with PBSC infusions. This study was registered at clinicaltrials.gov (NCT00631787).

  13. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  14. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  15. HAMLET binding to α-actinin facilitates tumor cell detachment.

    Science.gov (United States)

    Trulsson, Maria; Yu, Hao; Gisselsson, Lennart; Chao, Yinxia; Urbano, Alexander; Aits, Sonja; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-08

    Cell adhesion is tightly regulated by specific molecular interactions and detachment from the extracellular matrix modifies proliferation and survival. HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a protein-lipid complex with tumoricidal activity that also triggers tumor cell detachment in vitro and in vivo, suggesting that molecular interactions defining detachment are perturbed in cancer cells. To identify such interactions, cell membrane extracts were used in Far-western blots and HAMLET was shown to bind α-actinins; major F-actin cross-linking proteins and focal adhesion constituents. Synthetic peptide mapping revealed that HAMLET binds to the N-terminal actin-binding domain as well as the integrin-binding domain of α-actinin-4. By co-immunoprecipitation of extracts from HAMLET-treated cancer cells, an interaction with α-actinin-1 and -4 was observed. Inhibition of α-actinin-1 and α-actinin-4 expression by siRNA transfection increased detachment, while α-actinin-4-GFP over-expression significantly delayed rounding up and detachment of tumor cells in response to HAMLET. In response to HAMLET, adherent tumor cells rounded up and detached, suggesting a loss of the actin cytoskeletal organization. These changes were accompanied by a reduction in β1 integrin staining and a decrease in FAK and ERK1/2 phosphorylation, consistent with a disruption of integrin-dependent cell adhesion signaling. Detachment per se did not increase cell death during the 22 hour experimental period, regardless of α-actinin-4 and α-actinin-1 expression levels but adherent cells with low α-actinin levels showed increased death in response to HAMLET. The results suggest that the interaction between HAMLET and α-actinins promotes tumor cell detachment. As α-actinins also associate with signaling molecules, cytoplasmic domains of transmembrane receptors and ion channels, additional α-actinin-dependent mechanisms are discussed.

  16. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  17. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature

    Directory of Open Access Journals (Sweden)

    Mariia Zhurova

    2012-01-01

    Full Text Available Red blood cells (RBCs from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.

  18. Segmentation and Analysis of Cancer Cells in Blood Samples

    Directory of Open Access Journals (Sweden)

    Arjun Nelikanti

    2015-10-01

    Full Text Available Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. Acute Lymphoblastic Leukemia (ALL is one of the kinds of blood cancer which can be affected at any age in the humans. The analysis of peripheral blood samples is an important test in the procedures for the diagnosis of leukemia. In this paper the blood sample images are used and implementing a clustering algorithm for detection of the cancer cells. This paper also implements morphological operations and feature extraction techniques using MATLAB for the analysis of cancer cells in the images.

  19. Effect of a commercial extract of Paullinia cupana (guarana) on the binding of 99mTc-DMSA on blood constituents: An in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.S. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Moreno, S.R.F. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Lima-Filho, G.L. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Fonseca, A.S. [Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 5 Andar, Rio de Janeiro, 20551-030 (Brazil)]. E-mail: adenilso@uerj.br; Bernardo-Filho, M. [Departamento de Biofisica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87 Fundos, 4 Andar, Rio de Janeiro 20551-030 (Brazil); Instituto Nacional do Cancer, Coordenadoria de Pesquisa, Praca Cruz Vermelha 23, Rio de Janeiro, 20230-130 (Brazil)

    2007-05-15

    We studied the influence of a commercial extract of Paullinia cupana (guarana) on the binding of technetium-99m-dimercaptosuccinic acid ({sup 99m}Tc-DMSA) on blood constituents. Plasma (P) and blood cells (BC) from Wistar rats (control and treated) were separated. P and BC were precipitated with trichloroacetic acid (TCA) or ammonium sulphate (AS) and soluble (SF) and insoluble fractions (IF) isolated. The percentage of incorporated radioactivity (%ATI) in each fraction was determined. The treatment influenced the %ATI in IF-P and in IF-BC isolated by TCA precipitation.

  20. Binding to histo-blood group antigen-expressing bacteria protects human norovirus from acute heat stress

    Directory of Open Access Journals (Sweden)

    Dan eLi

    2015-07-01

    Full Text Available This study aims to investigate if histo-blood group antigen (HBGA expressing bacteria have any protective role on human norovirus (NoV from acute heat stress. Eleven bacterial strains were included, belonging to Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Clostridium difficile, Bifidobacterium adolescentis, and Bifidobacterium longum. HBGA expression of the bacteria as well as binding of human NoV virus-like particles (VLPs, GI.1 and GII.4 strains to the bacteria were detected by flow cytometry. NoV VLPs pre-incubated with HBGA expressing or non-HBGA expressing bacteria were heated and detected by both direct ELISA and porcine gastric mucin-binding assay. The NoV-binding abilities of the bacteria correlated well with their HBGA expression profiles. Two HBGA expressing E.coli (LMG8223 and LFMFP861, both GI.1 and GII.4 binders and one non-HBGA expressing E.coli (ATCC8739, neither GI.1 nor GII.4 binder were selected for the heat treatment test with NoV VLPs. Compared with the same cell numbers of non-HBGA expressing E.coli, the presence of HBGA-expressing E.coli could always maintain higher antigen integrity, as well as mucin-binding ability of NoV VLPs of both GI.1 and GII.4 after heat-treatment at 90°C for 2 min. These results indicate that HBGA-expressing bacteria may protect NoVs during the food processing treatments, thereby facilitating their transmission.

  1. Leucocyte filtration of salvaged blood during cardiac surgery : effect on red blood cell function in concentrated blood compared with diluted blood

    NARCIS (Netherlands)

    Gu, Y. John; de Vries, Adrianus J.; Hagenaars, J. Ans M.; van Oeveren, Willem

    2009-01-01

    Objective: Leucocyte filtration of salvaged blood has been suggested to prevent patients from receiving activated leucocytes during autotransfusion in cardiac surgery. This study examines whether leucocyte filtration of salvaged blood affects the red blood cell (RBC) function and whether there is a

  2. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  3. Antibodies to Phospholipids and Liposomes: Binding of Antibodies to Cells

    Science.gov (United States)

    1987-01-01

    LIPOSOMES: BINDING OF ANTIBODIES TO CELLS 12. PERSONAL AUTHOR(S) W.E. FOGLER , G. M. SWARTZ, AND C.R. ALVING 13a TYPE OF REPORT 13b. TIME COVERED 14. DATE...Elsevier BBA 73693 Antibodies to phospholipids and liposomes: binding of antibodies to cells William E. Fogler *, Glenn M. Swartz, Jr. and Carl R. Alving...Immunol. 21. Research Associateship from the U.S. National 12863-86812Hall. T. and Esser, K. (1984) 3. Immunol. 132. 2059-2063 Research Council. 13 Fogler

  4. Neurological Complications following Blood Transfusions in Sickle Cell Anemia

    Science.gov (United States)

    Khawar, Nayaab; Kulpa, Jolanta; Bellin, Anne; Proteasa, Simona; Sundaram, Revathy

    2017-01-01

    In Sickle Cell Anemia (SCA) patient blood transfusions are an important part of treatment for stroke and its prevention. However, blood transfusions can also lead to complications such as Reversible Posterior Leukoencephalopathy Syndrome (RPLS). This brief report highlights two cases of SCA who developed such neurological complications after a blood transfusion. RLPS should be considered as the cause of neurologic finding in patients with SCA and hypertension following a blood transfusion.

  5. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  6. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...... transcriptase polymerase chain reaction. The effect of glucocorticoid and phorbol ester stimulation on monocyte and dendritic cell CD163 and CD91 expression was investigated in cell culture of mononuclear cells using multicolor flow cytometry. We identified two CD163+ subsets in human blood with dendritic cell...

  7. Adhesion of subsets of human blood mononuclear cells to porcine endothelial cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cellular immune response is a major barrier to xenotransplantation, and cell adhesion is the first step in intercellular recognition. Flow-cytometric adhesion assay has been used to investigate the differential adhesions of monocyte (Mo), natural killer cell (NK) and T lymphocyte (T) present within human peripheral blood mononuclear cells (PBMC) to porcine aortic endothelial cells (PAEC), and to demonstrate the effect of human interferon-γ(hIFN-γ) or/and tumor necrosis factor-α (hTNF-α) pretreatment of PAEC on their adhesiveness for different PBMC subsets. The preferential sequence for PBMC subset binding to resting PAEC is Mo, NK and T cells, among which T cells show the slightest adherence; hTNF-α can act across the species, and augment Mo, NK and T cell adhesion ratios by 40%, 110% and 3 times, respectively. These results confirm at the cell level that host Mo and NK cells are major participants in the cellular xenograft rejection, thereby, providing a prerequisite for further studying the human Mo/NK-PAEC interactive mechanisms.

  8. Multiple loci are associated with white blood cell phenotypes

    NARCIS (Netherlands)

    M.A. Nalls (Michael); D. Couper (David); T. Tanaka (Toshiko); F.J.A. van Rooij (Frank); M-H. Chen (Ming-Huei); A.V. Smith (Albert Vernon); D. Toniolo (Daniela); N.A. Zakai (Neil); Q. Yang (Qiong Fang); A. Greinacher (Andreas); A.R. Wood (Andrew); M. Garcia (Melissa); P. Gasparini (Paolo); Y. Liu (Yongmei); T. Lumley (Thomas); A.R. Folsom (Aaron); A.P. Reiner (Alex); C. Gieger (Christian); V. Lagou (Vasiliki); J.F. Felix (Janine); H. Völzke (Henry); N.A. Gouskova (Natalia); A. Biffi (Alessandro); A. Döring (Angela); U. Völker (Uwe); S. Chong (Sean); K.L. Wiggins (Kerri); A. Rendon (Augusto); A. Dehghan (Abbas); M. Moore (Matt); K.D. Taylor (Kent); J.G. Wilson (James); G. Lettre (Guillaume); A. Hofman (Albert); J.C. Bis (Joshua); N. Pirastu (Nicola); C.S. Fox (Caroline); C. Meisinger (Christa); J.G. Sambrook (Jennifer); S. Arepalli (Sampath); M. Nauck (Matthias); H. Prokisch (Holger); J. Stephens (Jonathan); N.L. Glazer (Nicole); L.A. Cupples (Adrienne); Y. Okada (Yukinori); A. Takahashi (Atsushi); Y. Kamatani (Yoichiro); K. Matsuda (Koichi); T. Tsunoda (Tatsuhiko); M. Kubo (Michiaki); Y. Nakamura (Yusuke); K. Yamamoto (Kazuhiko); M. Stumvoll (Michael); A. Tönjes (Anke); I. Prokopenko (Inga); T. Illig (Thomas); K.V. Patel (Kushang); S.F. Garner (Stephen); B. Kuhnel (Brigitte); M. Mangino (Massimo); B.A. Oostra (Ben); S.L. Thein; J. Coresh (Josef); H.E. Wichmann (Heinz Erich); S. Menzel (Stephan); J. Lin; G. Pistis (Giorgio); A.G. Uitterlinden (André); T.D. Spector (Timothy); A. Teumer (Alexander); G. Eiriksdottir (Gudny); V. Gudnason (Vilmundur); S. Bandinelli (Stefania); T.M. Frayling (Timothy); A. Chakravarti (Aravinda); P. Tikka-Kleemola (Päivi); D. Melzer (David); W.H. Ouwehand (Willem); D. Levy (Daniel); E.A. Boerwinkle (Eric); A. Singleton (Andrew); D.G. Hernandez (Dena); D.L. Longo (Dan); N. Soranzo (Nicole); J.C.M. Witteman (Jacqueline); B.M. Psaty (Bruce); L. Ferrucci (Luigi); T.B. Harris (Tamara); C.J. O'Donnell (Christopher); S.K. Ganesh (Santhi)

    2011-01-01

    textabstractWhite blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types.

  9. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.

    Science.gov (United States)

    Li, Xuejin; Li, He; Chang, Hung-Yu; Lykotrafitis, George; Em Karniadakis, George

    2017-02-01

    We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.

  10. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders.

    Science.gov (United States)

    Ye, Zhaohui; Zhan, Huichun; Mali, Prashant; Dowey, Sarah; Williams, Donna M; Jang, Yoon-Young; Dang, Chi V; Spivak, Jerry L; Moliterno, Alison R; Cheng, Linzhao

    2009-12-24

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS cell lines were generated from previously frozen cord blood or adult CD34(+) cells of healthy donors, and could be redirected to hematopoietic differentiation. Multiple iPS cell lines were also generated from peripheral blood CD34(+) cells of 2 patients with myeloproliferative disorders (MPDs) who acquired the JAK2-V617F somatic mutation in their blood cells. The MPD-derived iPS cells containing the mutation appeared normal in phenotypes, karyotype, and pluripotency. After directed hematopoietic differentiation, the MPD-iPS cell-derived hematopoietic progenitor (CD34(+)CD45(+)) cells showed the increased erythropoiesis and gene expression of specific genes, recapitulating features of the primary CD34(+) cells of the corresponding patient from whom the iPS cells were derived. These iPS cells provide a renewable cell source and a prospective hematopoiesis model for investigating MPD pathogenesis.

  11. Angiotensin II Inhibits Insulin Binding to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Su-Jin Oh

    2011-06-01

    Full Text Available BackgroundInsulin-mediated glucose uptake in insulin target tissues is correlated with interstitial insulin concentration, rather than plasma insulin concentration. Therefore, insulin delivery to the interstitium of target tissues is very important, and the endothelium may also play an important role in the development of insulin resistance.MethodsAfter treating bovine aortic endothelial cells with angiotensin II (ATII, we observed the changes in insulin binding capacity and the amounts of insulin receptor (IR on the cell membranes and in the cytosol.ResultsAfter treatment of 10-7M ATII, insulin binding was decreased progressively, up to 60% at 60 minutes (P<0.05. ATII receptor blocker (eprosartan dose dependently improved the insulin binding capacity which was reduced by ATII (P<0.05. At 200 µM, eprosartan fully restored insulin binding capacity, althogh it resulted in only a 20% to 30% restoration at the therapeutic concentration. ATII did not affect the total amount of IR, but it did reduce the amount of IR on the plasma membrane and increased that in the cytosol.ConclusionATII decreased the insulin binding capacity of the tested cells. ATII did not affect the total amount of IR but did decrease the amount of IR on the plasma membrane. Our data indicate that ATII decreases insulin binding by translocating IR from the plasma membrane to the cytosol. The binding of insulin to IR is important for insulin-induced vasodilation and transendothelial insulin transport. Therefore, ATII may cause insulin resistance through this endothelium-based mechanism.

  12. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  13. Regional differences in lectin binding patterns of vestibular hair cells

    Science.gov (United States)

    Baird, Richard A.; Schuff, N. R.; Bancroft, J.

    1994-01-01

    Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.

  14. Staphylococcal SSL5 Binding to Human Leukemia Cells Inhibits Cell Adhesion to Endothelial Cells and Platelets

    Directory of Open Access Journals (Sweden)

    Annemiek M. E. Walenkamp

    2010-01-01

    Full Text Available Bacterial proteins provide promising tools for novel anticancer therapies. Staphylococcal superantigen-like 5 (SSL5 was recently described to bind P-selectin glycoprotein ligand-1 (PSGL-1 on leukocytes and to inhibit neutrophil rolling on a P-selectin surface. As leukocytes and tumor cells share many characteristics in migration and dissemination, we explored the potential of SSL5 as an antagonist of malignant cell behavior. Previously, it was demonstrated that rolling of human HL-60 leukemia cells on activated endothelial cells was mediated by P-selectin. In this study, we show that SSL5 targets HL-60 cells. Binding of SSL5 was rapid and without observed toxicity. Competition of SSL5 with the binding of three anti-PSGL-1 antibodies and P-selectin to HL-60 cells identified PSGL-1 as the ligand on HL-60 cells. Presence of sialyl Lewis x epitopes on PSGL-1 was crucial for its interaction with SSL5. Importantly, SSL5 not only inhibited the interaction of HL-60 cells with activated endothelial cells but also with platelets, which both play an important role in growth and metastasis of cancers. These data support the concept that SSL5 could be a lead in the search for novel strategies against hematological malignancies.

  15. A Simulation of Blood Cells in Branching Capillaries

    CERN Document Server

    Isfahani, Amir H G; Freund, Jonathan B

    2008-01-01

    The multi-cellular hydrodynamic interactions play a critical role in the phenomenology of blood flow in the microcirculation. A fast algorithm has been developed to simulate large numbers of cells modeled as elastic thin membranes. For red blood cells, which are the dominant component in blood, the membrane has strong resistance to surface dilatation but is flexible in bending. Our numerical method solves the boundary integral equations built upon Green's functions for Stokes flow in periodic domains. This fluid dynamics video is an example of the capabilities of this model in handling complex geometries with a multitude of different cells. The capillary branch geometries have been modeled based upon observed capillary networks. The diameter of the branches varies between 10-20 mum. A constant mean pressure gradient drives the flow. For the purpose of this fluid dynamics video, the red blood cells are initiated as biconcave discs and white blood cells and platelets are initiated as spheres and ellipsoids resp...

  16. SDS-binding assay based on tyrosine fluorescence as a tool to determine binding properties of human serum albumin in blood plasma

    Science.gov (United States)

    Zhdanova, Nadezda; Shirshin, Evgeny; Fadeev, Victor; Priezzhev, Alexander

    2016-04-01

    Among all plasma proteins human serum albumin (HSA) is the most studied one as it is the main transport protein and can bind a wide variety of ligands especially fatty acids (FAs). The concentration of FAs bound to HSA in human blood plasma differs by three times under abnormal conditions (fasting, physical exercises or in case of social important diseases). In the present study a surfactant sodium dodecyl sulfate (SDS) was used to simulate FAs binding to HSA. It was shown that the increase of Tyr fluorescence of human blood plasma due to SDS addition can be completely explained by HSA-SDS complex formation. Binding parameters of SDS-HSA complex (average number of sites and apparent constant of complex formation) were determined from titration curves based on tyrosine (Tyr) fluorescence.

  17. Red blood cells and thrombin generation in sickle cell disease.

    Science.gov (United States)

    Whelihan, Matthew F; Lim, Ming Y; Key, Nigel S

    2014-05-01

    The prothrombotic nature of sickle cell disease (SCD) is evidenced by the chronically elevated levels of almost all coagulation activation biomarkers, and an increased incidence of certain thrombotic events, including venous thromboembolism. Numerous studies have attempted to define the extent and elucidate the mechanism of the observed increase in thrombin generation in SCD patients in vivo. In general, these studies were performed using thrombin generation assays in platelet poor or platelet rich plasma and showed little difference in endogenous thrombin potential between the SCD cohort and healthy matched controls. In SCD, erythrocytes and monocytes have been demonstrated to exhibit procoagulant characteristics. Thus, the absence of these cellular components in standard thrombin generation assays may fail to reflect global hypercoagulability in the whole blood of patients with SCD. We were therefore surprised to see no difference in net thrombin generation in tissue factor-initiated initiated clotting of whole blood from patients with SCD. However, we are continuing to reconcile these seemingly disparate observations by slight modifications of the whole blood model that include alternative coagulation triggers and a re-examination of the net thrombin generation when the protein/protein S system is simultaneously interrogated.

  18. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  19. Detecting Newcastle disease virus in combination of RT-PCR with red blood cell absorption

    Directory of Open Access Journals (Sweden)

    Liu Chengqian

    2011-05-01

    Full Text Available Abstract Reverse transcription-polymerase chain reaction (RT-PCR has limited sensitivity when treating complicated samples, such as feces, waste-water in farms, and nucleic acids, protein rich tissue samples, all the factors may interfere with the sensitivity of PCR test or generate false results. In this study, we developed a sensitive RT-PCR, combination of red blood cell adsorption, for detecting Newcastle disease virus (NDV. One pair of primers which was highly homologous to three NDV pathotypes was designed according to the consensus nucleocapsid protein (NP gene sequence. To eliminate the interfere of microbes and toxic substances, we concentrated and purified NDV from varied samples utilizing the ability of NDV binding red blood cells (RBCs. The RT-PCR coupled with red blood cell adsorption was much more sensitive in comparison with regular RT-PCR. The approach could also be used to detect other viruses with the property of hemagglutination, such as influenza viruses.

  20. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian;

    2015-01-01

    the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. DESIGN: Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA......OBJECTIVES: Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from......) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. SETTING: Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. PARTICIPANTS: 60 donors (≥50 years old...

  1. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells

    Directory of Open Access Journals (Sweden)

    Heimo eMairbäurl

    2013-11-01

    Full Text Available During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood’s buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called sports anemia. This is not anemia in a clinical sense because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume. The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g. in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise.

  2. Red blood cell vesiculation in hereditary hemolytic anemia

    Directory of Open Access Journals (Sweden)

    Amr eAlaarg

    2013-12-01

    Full Text Available Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterised by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely asessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary

  3. Red blood cell vesiculation in hereditary hemolytic anemia.

    Science.gov (United States)

    Alaarg, Amr; Schiffelers, Raymond M; van Solinge, Wouter W; van Wijk, Richard

    2013-12-13

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.

  4. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    , such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated...

  5. Sodium renders endothelial cells sticky for red blood cells

    Directory of Open Access Journals (Sweden)

    Hans eOberleithner

    2015-06-01

    Full Text Available Negative charges in the glycocalyx of red blood cells (RBC and vascular endothelial cells (EC facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i after enzymatic removal of negative charges in the glycocalyx, (ii under different ambient Na+ and (iii after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+. Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  6. Sodium renders endothelial cells sticky for red blood cells.

    Science.gov (United States)

    Oberleithner, Hans; Wälte, Mike; Kusche-Vihrog, Kristina

    2015-01-01

    Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na(+) selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na(+) concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na(+) and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na(+) from 133 to 140 mM does not affect them. However, beyond 140 mM Na(+) adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na(+)). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na(+) concentration determines the availability of free negative charges. Na(+) concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na(+) in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na(+) induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  7. Nomenclature of monocytes and dendritic cells in blood

    NARCIS (Netherlands)

    L. Ziegler-Heitbrock (Loems); P. Ancuta (Petronela); S. Crowe (Suzanne); M. Dalod (Marc); V. Grau (Veronika); D.N. Hart (Derek); P.J. Leenen (Pieter); Y.J. Liu; G. MacPherson (Gordon); G.J. Randolph (Gwendalyn); J. Scherberich (Juergen); J. Schmitz (Juergen); K. Shortman (Ken); S. Sozzani (Silvano); H. Strobl (Herbert); M. Zembala (Marek); J.M. Austyn (Jonathan); M.B. Lutz (Manfred)

    2010-01-01

    textabstractMonocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface mark

  8. Electrochemical Red Blood Cell Counting: One at a Time.

    Science.gov (United States)

    Sepunaru, Lior; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2016-08-08

    We demonstrate that the concentration of a red blood cell solution under physiological conditions can be determined by electrochemical voltammetry. The magnitude of the oxygen reduction currents produced at an edge-plane pyrolytic graphite electrode was diagnosed analytically at concentrations suitable for a point-of-care test device. The currents could be further enhanced when the solution of red blood cells was exposed to hydrogen peroxide. We show that the enhanced signal can be used to detect red blood cells at a single entity level. The method presented relies on the catalytic activity of red blood cells towards hydrogen peroxide and on surface-induced haemolysis. Each single cell activity is expressed as current spikes decaying within a few seconds back to the background current. The frequency of such current spikes is proportional to the concentration of cells in solution.

  9. Seasonal variation of imipramine binding in the blood platelets of normal controls and depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Arora, R.C.; Meltzer, H.Y.

    1988-02-01

    Imipramine binding (IB) was studied in the blood platelets from normal controls and depressed patients over a 4-year period (1981-1984) to determine if seasonal variation was present in Bmax or KD. Bimonthly variation in the Bmax of IB was found in normal controls studied longitudinally. No such variation was found when individual values from normal controls were examined on a monthly or seasonal basis. Bmax in depressed patients showed a significant seasonal, but not monthly, variation. KD of IB varied in normal controls using monthly or seasonal data, but not in the probably more reliable bimonthly data. These results suggest that IB studies comparing groups of subjects should match groups for season of the year or, for greater accuracy, month of the year.

  10. Antibody binding to Streptococcus mitis and Streptococcus oralis cell fractions

    Science.gov (United States)

    Wirth, Katherine A.; Bowden, George H.; Richmond, Dorothy A.; Sheridan, Michael J.; Cole, Michael F.

    2008-01-01

    Summary Objective To determine which cell fraction(s) of Streptococcus mitis biovar 1 serve as the best source of antigens recognized by salivary SIgA antibodies in infants. Design Whole cells of 38 reference and wild-type isolates of Streptococcus mitis, S. oralis, S. gordonii, Enterococcus casseliflavus, and E. faecalis were fractionated into cell walls CW), protease-treated cell walls (PTCW), cell membranes (CM) and cell protein (CP). Whole cells and these fractions were tested for binding by rabbit anti-S. mitis SK145 and anti-S. oralis SK100 sera, and also by salivary SIgA antibodies from infants and adults. Results Anti-SK145 and anti-SK100 sera bound whole cells and fractions of all strains of S. mitis and S. oralis variably. Cluster analysis of antibody binding data placed the strains into S. mitis, S. oralis and ‘Non-S. mitis/non-S. oralis’ clusters. Antigens from CW and CM best discriminated S. mitis from S. oralis. CM bound the most infant salivary SIgA antibody and PTCW bound the least. In contrast, adult salivary SIgA antibody bound all of the cell fractions and at higher levels. Conclusions Presumably the relatively short period of immune stimulation and immunological immaturity in infants, in contrast to adults, result in low levels of salivary SIgA antibody that preferentially bind CM of S. mitis but not PTCW. By utilizing isolated cell walls and membranes as sources of antigens for proteomics it may be possible to identify antigens common to oral streptococci and dissect the fine specificity of salivary SIgA antibodies induced by oral colonization by S. mitis. PMID:17904095

  11. [Promising technologies of packed red blood cells production and storage].

    Science.gov (United States)

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.

  12. Ginkgo biloba extract alters the binding of the sodium [{sup 123}I] iodide (Na{sup 123}I) on blood constituents

    Energy Technology Data Exchange (ETDEWEB)

    Aleixo, Luiz Claudio Martins [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil); Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, Via Cinco s/n, 21945-450 Rio de Janeiro (Brazil); Moreno, Silvana Ramos Farias, E-mail: srfmoreno@hotmail.com [Departamento de Patologia, Universidade Federal Fluminense, 24030-210, Niteroi, RJ (Brazil); Programa de Pos-Graduacao em Ciencias Medicas, Universidade Federal Fluminense, 24030-210, Niteroi, RJ (Brazil); Freitas, Rosimeire de Souza [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil); Thomaz, Helio [Comissao Nacional de Energia Nuclear, Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, Via Cinco s/n, 21945-450 Rio de Janeiro (Brazil); Santos-Filho, Sebastiao David [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, 28 de Setembro, 87, 20551-030, Rio de Janeiro, RJ (Brazil)

    2012-01-15

    We evaluated the in vitro effect of an aqueous extract of Ginkgo biloba (EGb) on the distribution in blood cells (BC) and plasma (P) and on the binding of Na{sup 123}I to the blood constituents using precipitation with trichloroacetic acid. The radioactivity percentages insoluble (SF) and insoluble fraction (IF) of blood constituents were determined. The EGb interfered (p<0.05) on the distribution of Na{sup 123}I in the P (from 69.64 to 86.13) and BC (from 30.36 to 13.87) and altered the fixation of the Na{sup 123}I in IF-P and in IF-BC. - Highlights: Black-Right-Pointing-Pointer Interaction between the Ginkgo biloba and blood constituents radiolabeled. Black-Right-Pointing-Pointer Modification of the binding of sodium iodide (Na{sup 123}I) to the blood constituents. Black-Right-Pointing-Pointer This alteration should have influence in a diagnosis of nuclear medicine.

  13. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  14. Characterization of the Duffy-Binding-Like Domain of Plasmodium falciparum Blood-Stage Antigen 332

    Directory of Open Access Journals (Sweden)

    Sandra Nilsson

    2011-01-01

    Full Text Available Studies on Pf332, a major Plasmodium falciparum blood-stage antigen, have largely been hampered by the cross-reactive nature of antibodies generated against the molecule due to its high content of repeats, which are present in other malaria antigens. We previously reported the identification of a conserved domain in Pf332 with a high degree of similarity to the Duffy-binding-like (DBL domains of the erythrocyte-binding-like (EBL family. We here describe that antibodies towards Pf332-DBL are induced after repeated exposure to P. falciparum and that they are acquired early in life in areas of intense malaria transmission. Furthermore, a homology model of Pf332-DBL was found to be similar to the structure of the EBL-DBLs. Despite their similarities, antibodies towards Pf332-DBL did not display any cross-reactivity with EBL-proteins as demonstrated by immunofluorescence microscopy, Western blotting, and peptide microarray. Thus the DBL domain is an attractive region to use in further studies on the giant Pf332 molecule.

  15. Staphylococcal SSL5 binding to human leukemia cells inhibits cell adhesion to endothelial cells and platelets

    NARCIS (Netherlands)

    Walenkamp, Annemiek M. E.; Bestebroer, Jovanka; Boer, Ingrid G. J.; Kruizinga, Roeline; Verheul, Henk M.; van Strijp, Jos A. G.; de Haas, Carla J. C.

    2010-01-01

    Bacterial proteins provide promising tools for novel anticancer therapies. Staphylococcal superantigen-like 5 (SSL5) was recently described to bind P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes and to inhibit neutrophil rolling on a P-selectin surface. As leukocytes and tumor cells share m

  16. A model for red blood cells in simulations of large-scale blood flows

    CERN Document Server

    Melchionna, Simone

    2011-01-01

    Red blood cells (RBCs) are an essential component of blood. A method to include the particulate nature of blood is introduced here with the goal of studying circulation in large-scale realistic vessels. The method uses a combination of the Lattice Boltzmann method (LBM) to account for the plasma motion, and a modified Molecular Dynamics scheme for the cellular motion. Numerical results illustrate the quality of the model in reproducing known rheological properties of blood as much as revealing the effect of RBC structuring on the wall shear stress, with consequences on the development of cardiovascular diseases.

  17. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation

    Science.gov (United States)

    Tan, Jifu; Thomas, Antony; Liu, Yaling

    2011-11-01

    In this paper, a particle-cell hybrid model is developed to model Nanoparticle (NP) transport, dispersion, and binding dynamics in blood suspension under the influence of Red blood cells (RBCs). The motion and deformation of RBCs is captured through the Immersed Finite Element Method. The motion and adhesion of individual NPs are tracked through Brownian adhesion dynamics. A mapping algorithm and an interaction potential function are introduced to consider the cell-particle collision. NP dispersion and binding rates are derived from the developed model under various rheology conditions. The influence of RBCs, vascular flow rate, and particle size on NP distribution and delivery efficacy is characterized. A non-uniform NP distribution profile with higher particle concentration near the vessel wall is observed. Such distribution leads to over 50% higher particle binding rate compared to the case without RBC considered. The tumbling motion of RBCs in the core region of the capillary is found to enhance NP dispersion, with dispersion rate increases as shear rate increases. Results from this study contribute to the fundamental understanding and knowledge on how the particulate nature of blood influences NP delivery, which will provide mechanistic insights on the nanomedicine design for targeted drug delivery applications.

  18. Factor XII binding to endothelial cells depends on caveolae

    DEFF Research Database (Denmark)

    Schousboe, Inger; Thomsen, Peter; van Deurs, Bo

    2004-01-01

    to human umbilical vein endothelial cells (HUVEC) has never been shown to be localized to these specialized membrane structures. Using microscopical techniques, we here report that FXII binds to specific patches of the HUVEC plasma membrane with a high density of caveolae. Further investigations of FXII...... binding to caveolae were performed by sucrose density-gradient centrifugations. This showed that the majority of FXII, chemically cross-linked to HUVEC, could be identified in the same fractions of the gradient as caveolin-1, a marker of caveolae, while the majority of u-PAR was identified in noncaveolae...... the structural elements within caveolae. Thus, FXII binding to HUVEC depends on intact caveolae on the cellular surface....

  19. Atomic force microscopy measurements reveal multiple bonds between Helicobacter pylori blood group antigen binding adhesin and Lewis b ligand.

    Science.gov (United States)

    Parreira, P; Shi, Q; Magalhaes, A; Reis, C A; Bugaytsova, J; Borén, T; Leckband, D; Martins, M C L

    2014-12-01

    The strength of binding between the Helicobacter pylori blood group antigen-binding adhesin (BabA) and its cognate glycan receptor, the Lewis b blood group antigen (Le(b)), was measured by means of atomic force microscopy. High-resolution measurements of rupture forces between single receptor-ligand pairs were performed between the purified BabA and immobilized Le(b) structures on self-assembled monolayers. Dynamic force spectroscopy revealed two similar but statistically different bond populations. These findings suggest that the BabA may form different adhesive attachments to the gastric mucosa in ways that enhance the efficiency and stability of bacterial adhesion.

  20. Electrical properties of the red blood cell membrane and immunohematological investigation

    Directory of Open Access Journals (Sweden)

    Heloise Pöckel Fernandes

    2011-01-01

    Full Text Available Hemagglutination is widely used in transfusion medicine and depends on several factors including antigens, antibodies, electrical properties of red blood cells and the environment of the reaction. Intermolecular forces are involved in agglutination with cell clumping occurring when the aggregation force is greater than the force of repulsion. Repulsive force is generated by negative charges on the red blood cell surface that occur due to the presence of the carboxyl group of sialic acids in the cell membrane; these charges create a repulsive electric zeta potential between cells. In transfusion services, specific solutions are used to improve hemagglutination, including enzymes that reduce the negative charge of red blood cells, LISS which improves the binding of antibodies to antigens and macromolecules that decrease the distance between erythrocytes. The specificity and sensitivity of immunohematological reactions depend directly on the appropriate use of these solutions. Knowledge of the electrical properties of red blood cells and of the action of enhancement solutions can contribute to the immunohematology practice in transfusion services.

  1. Amyloid β levels in human red blood cells.

    Directory of Open Access Journals (Sweden)

    Takehiro Kiko

    Full Text Available UNLABELLED: Amyloid β-peptide (Aβ is hypothesized to play a key role by oxidatively impairing the capacity of red blood cells (RBCs to deliver oxygen to the brain. These processes are implicated in the pathogenesis of Alzheimer's disease (AD. Although plasma Aβ has been investigated thoroughly, the presence and distribution of Aβ in human RBCs are still unclear. In this study, we quantitated Aβ40 and Aβ42 in human RBCs with ELISA assays, and provided evidence that significant amounts of Aβ could be detected in RBCs and that the RBC Aβ levels increased with aging. The RBC Aβ levels increased with aging. On the other hand, providing an antioxidant supplement (astaxanthin, a polar carotenoid to humans was found to decrease RBC Aβ as well as oxidative stress marker levels. These results suggest that plasma Aβ40 and Aβ42 bind to RBCs (possibly with aging, implying a pathogenic role of RBC Aβ. Moreover, the data indicate that RBC Aβ40 and Aβ42 may constitute biomarkers of AD. As a preventive strategy, therapeutic application of astaxanthin as an Aβ-lowering agent in RBCs could be considered as a possible anti-dementia agent. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN42483402.

  2. [Intracellular gold content of circulating blood cells using various gold compounds].

    Science.gov (United States)

    Herrlinger, J D; Beress, R; Hecker, U

    1984-01-01

    Evidence on the action mechanisms of gold salts in the treatment of rheumatoid arthritis is still inconclusive. The intracellular localization of the place of action is likely. Therefore not only the serum gold levels but also the intracellular concentration of gold are of special interest. We measured the gold concentration in the serum and in the blood cells after in vitro application of aurothiomalate (Tauredon), gold keratinate (Auro-Detoxin) and triethylphosphine-gold (Ridaura) and in blood samples of patients undergoing these gold salts treatments. Cell-bound concentrations were found to vary extensively as a function of the gold compound used. While no or very little gold was present intracellularly after administration of the 2 parenteral drugs, up to 40% of the circulating gold was found to bind to the cells after administration of the triethylphosphine compound for gastro-intestinal absorption. The red cell concentration was more or less the same as that in the extracellular compartment. Gold apparently accumulated in the white cells, because the cell-bound concentration relative to unit volume was up to 20 times higher than the plasma level. The method used did not offer any information on the actual binding site of gold in white cells, i.e. cytoplasm versus nucleus versus cell membrane.

  3. Fluorescence Quenching Property of C-Phycocyanin from Spirulina platensis and its Binding Efficacy with Viable Cell Components.

    Science.gov (United States)

    Paswan, Meenakshi B; Chudasama, Meghna M; Mitra, Madhusree; Bhayani, Khushbu; George, Basil; Chatterjee, Shruti; Mishra, Sandhya

    2016-03-01

    Phycocyanin is a natural brilliant blue colored, fluorescent protein, which is commonly present in cyanobacteria. In this study, C-phycocyanin was extracted and purified from Spirulina platensis, which are multicellular and filamentous cyanobacteria of greater importance because of its various biological and pharmacological potential. It was analyzed for its binding affinity towards blood cells, algal cells, genomic DNA of microalgae, and bacteria at different temperature and incubation time. It showed good binding affinity with these components even at low concentration of 2.5 μM. The purpose of this study was to evaluate the applicability of C-phycocyanin as a green fluorescent dye substituting carcinogenic chemical dyes.

  4. The retinol esterifying enzyme LRAT supports cell signaling by retinol-binding protein and its receptor STRA6

    OpenAIRE

    Marwarha, Gurdeep; Berry, Daniel C.; Croniger, Colleen M.; Noy, Noa

    2014-01-01

    Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP). At some tissues, holo-RBP is recognized by a plasma membrane receptor termed STRA6, which serves a dual role: it mediates transport of retinol from RBP into cells, and it functions as a cytokine receptor that, on binding holo-RBP, activates JAK2/STAT5 signaling. As STAT target genes include SOCS3, an inhibitor of insulin receptor, holo-RBP suppresses insulin responses in STRA6-expressing cells. We have shown previ...

  5. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...... cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.......Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells...... generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine...

  6. Rifins, rosetting, and red blood cells

    DEFF Research Database (Denmark)

    Wang, Christian W; Hviid, Lars

    2015-01-01

    The binding of multiple uninfected erythrocytes to a central malaria parasite-infected erythrocyte (IE) is called rosetting. Rosetting has been associated with severe disease, but its functional significance,and the host receptors and parasite ligands involved are only partially known. A recent s...

  7. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...

  8. Color contrast of red blood cells on solid substrate

    Science.gov (United States)

    Paiziev, Adkham A.

    2013-02-01

    In present study we developed the new method of colour visualization of red blood cells without using any chemical staining. The method based on physical phenomena a white light interference on thin transparent films. It is shown that in the case of thin human blood smears colour interference contrast occurs on solid polished substrates. The best contrast shows substrates with maximal refractive index (Mo, W, Si). These materials have been selected as substrate instead of ordinary microscopic slide in reflected light microscopy. It is shown that reflection of incident white light from blood cell surface and boundary cell-substrate generate two coherent lights. The second one (object signal) after passing through red blood cell gathers additional phase and after interference interaction with reference signal (light reflected from outer cell surface) enables cell image in colour. Number of blood smears of healthy persons (control) and patients who were diagnosed with cancer are presented. It is concluded that the offered method may be used as an effective diagnostic tool to detect early stage blood cells lesion by its interference painting in white light. Offered method may be used in research laboratories, hospitals, diagnostic centres, emergency medicine and other as complementary diagnostic tool to present convenient optical and electron microscopy technique.

  9. Differential carbohydrate binding and cell surface glycosylation of human cancer cell lines.

    Science.gov (United States)

    Arndt, Nadia X; Tiralongo, Joe; Madge, Paul D; von Itzstein, Mark; Day, Christopher J

    2011-09-01

    Currently there is only a modest level knowledge of the glycosylation status of immortalised cell lines that are commonly used in cancer biology as well as their binding affinities to different glycan structures. Through use of glycan and lectin microarray technology, this study has endeavoured to define the different bindings of cell surface carbohydrate structures to glycan-binding lectins. The screening of breast cancer MDA-MB435 cells, cervical cancer HeLa cells and colon cancer Caco-2, HCT116 and HCT116-FM6 cells was conducted to determine their differential bindings to a variety of glycan and lectin structures printed on the array slides. An inverse relationship between the number of glycan structures recognised and the variety of cell surface glycosylation was observed. Of the cell lines tested, it was found that four bound to sialylated structures in initial screening. Secondary screening in the presence of a neuraminidase inhibitor (4-deoxy-4-guanidino-Neu5Ac2en) significantly reduced sialic acid binding. The array technology has proven to be useful in determining the glycosylation signatures of various cell-lines as well as their glycan binding preferences. The findings of this study provide the groundwork for further investigation into the numerous glycan-lectin interactions that are exhibited by immortalised cell lines.

  10. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Ioana Mozos

    2015-01-01

    Full Text Available The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk.

  11. Mechanisms linking red blood cell disorders and cardiovascular diseases.

    Science.gov (United States)

    Mozos, Ioana

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk.

  12. Drawings of Blood Cells Reveal People's Perception of Their Blood Disorder: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Steven Ramondt

    Full Text Available Sickle cell disease (SCD and thalassemia are rare but chronic blood disorders. Recent literature showed impaired quality of life (QOL in people with these blood disorders. Assessing one of the determinants of QOL (i.e. illness perceptions therefore, is an important next research area.We aimed to explore illness perceptions of people with a blood disorder with drawings in addition to the Brief Illness Perception Questionnaire (Brief IPQ. Drawings are a novel method to assess illness perceptions and the free-range answers drawings offer can add additional insight into how people perceive their illness.We conducted a cross-sectional study including 17 participants with a blood disorder. Participants' illness perceptions were assessed by the Brief IPQ and drawings. Brief IPQ scores were compared with reference groups from the literature (i.e. people with asthma or lupus erythematosus.Participants with SCD or thalassemia perceived their blood disorder as being more chronic and reported more severe symptoms than people with either asthma or lupus erythematosus. In the drawings of these participants with a blood disorder, a greater number of blood cells drawn was negatively correlated with perceived personal control (P<0.05, indicating that a greater quantity in the drawing is associated with more negative or distressing beliefs.Participants with a blood disorder perceive their disease as fairly threatening compared with people with other chronic illnesses. Drawings can add additional insight into how people perceive their illness by offering free-range answers.

  13. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags.

    Science.gov (United States)

    Buckley, K; Atkins, C G; Chen, D; Schulze, H G; Devine, D V; Blades, M W; Turner, R F B

    2016-03-07

    After being separated from (donated) whole blood, red blood cells are suspended in specially formulated additive solutions and stored (at 4 °C) in polyvinyl chloride (PVC) blood-bags until they are needed for transfusion. With time, the prepared red cell concentrate (RCC) is known to undergo biochemical changes that lower effectiveness of the transfusion, and thus regulations are in place that limit the storage period to 42 days. At present, RCC is not subjected to analytical testing prior to transfusion. In this study, we use Spatially Offset Raman Spectroscopy (SORS) to probe, non-invasively, the biochemistry of RCC inside sealed blood-bags. The retrieved spectra compare well with conventional Raman spectra (of sampled aliquots) and are dominated by features associated with hemoglobin. In addition to the analytical demonstration that SORS can be used to retrieve RCC spectra from standard clinical blood-bags without breaking the sterility of the system, the data reveal interesting detail about the oxygenation-state of the stored cells themselves, namely that some blood-bags unexpectedly contain measurable amounts of deoxygenated hemoglobin after weeks of storage. The demonstration that chemical information can be obtained non-invasively using spectroscopy will enable new studies of RCC degeneration, and points the way to a Raman-based instrument for quality-control in a blood-bank or hospital setting.

  14. Mesoscale Model for Blood Cell Adhesion and Transport using Ellipsoidal Particles

    Science.gov (United States)

    Chesnutt, Jennifer; Marshall, Jeffrey

    2008-11-01

    A novel discrete-element computational model for efficient transport, collision, and adhesion of ellipsoidal particles is applied to blood cells adhering through receptor-ligand binding in three-dimensional flow. The model has been used for simulation of over 13,000 adhesive cells through approximation of blood cells as elastic particles and other physically-justifiable approximations. The computational model is validated against experimental data of red blood cell (RBC) aggregation in shear and channel flows. The structure of aggregates formed by RBCs is analyzed by various measures that relate RBCs which are in contact with each other and that characterize an aggregate by fitting an ellipse to the projection of cells contained in the aggregate. Factors such as shear rate and adhesive surface energy density between cells are examined for their effects on the size and structure of RBC aggregates in both two- and three-dimensional computations. The effect of RBC aggregation on migration of blood elements (RBCs, leukocytes, platelets) in channel flow is also investigated.

  15. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    OpenAIRE

    Ioana Mozos

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular dise...

  16. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  17. Is red blood cell rheology preserved during routine blood bank storage?

    NARCIS (Netherlands)

    Henkelman, Sandra; Dijkstra-Tiekstra, Margriet J.; de Wildt-Eggen, Janny; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: Red blood cell (RBC) units stored for more than 2 weeks at 4 degrees C are currently considered of impaired quality. This opinion has primarily been based on altered RBC rheologic properties (i.e., enhanced aggregability, reduced deformability, and elevated endothelial cell interaction),

  18. Blood flow simulation on a role for red blood cells in platelet adhesion

    Science.gov (United States)

    Shimizu, Kazuya; Sugiyama, Kazuyasu; Takagi, Shu

    2016-11-01

    Large-scale blood flow simulations were conducted and a role for red blood cells in platelet adhesion was discussed. The flow conditions and hematocrit values were set to the same as corresponding experiments, and the numerical results were compared with the measurements. Numerical results show the number of platelets adhered on the wall is increased with the increase in hematocrit values. The number of adhered platelets estimated from the simulation was approximately 28 (per 0.01 square millimeter per minute) for the hematocrit value of 20%. These results agree well with the experimental results qualitatively and quantitatively, which proves the validity of the present numerical model including the interaction between fluid and many elastic bodies and the modeling of platelet adhesion. Numerical simulation also reproduces the behavior of red blood cells in the blood flow and their role in platelet adhesion. Red blood cells deform to a flat shape and move towards channel center region. In contrast, platelets are pushed out and have many chances to contact with the wall. As a result, the large number of adhered platelets is observed as hematocrit values becomes high. This result indicates the presence of red blood cells plays a crucial role in platelet adhesion.

  19. Dodecamer is required for agglutination of Litopenaeus vannamei hemocyanin with bacterial cells and red blood cells.

    Science.gov (United States)

    Pan, Jian-yi; Zhang, Yue-ling; Wang, San-ying; Peng, Xuan-xian

    2008-01-01

    Hemocyanins are multi-functional proteins, although they are well known to be respiratory proteins of invertebrate to date. In the present study, the agglutination ability of two oligomers of hemocyanin, hexamer and dodecamer, with pathogenic bacteria and red blood cells (RBCs) is investigated in pacific white shrimp, Litopenaeus vannamei. Hexameric hemocyanin exhibits an extremely high stability even in the absence of Ca(2+) and in alkaline pH. Dodecamer (di-hexamer) is easily dissociated into hexamers in unphysiological conditions. Hexamer and dodecamer are interchanged reciprocally with environmental conditions. Both oligomers can bind to bacteria and RBCs, but agglutination is observed only using dodecamer but not using hexamer in agglutination assay. However, the agglutination is detected when hexamer is utilized in the presence of antiserum against hemocyanin. These results indicate that dodecamer of hemocyanin is required for agglutination with bacteria and RBCs. It can be logically inferred that there is only one carbohydrate-binding site to bacterial cells and RBCs in the hexamer, while at least two sites in the dodecamer. Our finding has provided new insights into structural-functional relationship of hemocyanin.

  20. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells that have been destroyed by high doses of ... EuroStemCell 312,828 views 15:53 Understanding Your Cancer Prognosis ... views 6:48 Stem cell donation from brother saves child from cancer - Duration: ...

  1. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs.

    Science.gov (United States)

    Burlak, C; Paris, L L; Lutz, A J; Sidner, R A; Estrada, J; Li, P; Tector, M; Tector, A J

    2014-08-01

    Xenotransplantation using genetically modified pig organs could solve the donor organ shortage problem. Two inactivated genes that make humans unique from pigs are GGTA1 and CMAH, the products of which produce the carbohydrate epitopes, aGal and Neu5Gc that attract preformed human antibody. When the GGTA1 and CMAH genes were deleted in pigs, human antibody binding was reduced in preliminary analysis. We analyzed the binding of human IgM and IgG from 121 healthy human serum samples for binding to GGTA1 KO and GGTA1/CMAH KO peripheral blood mononuclear cells (PBMCs). We analyzed a sub population for reactivity toward genetically modified pig PBMCs as compared to chimpanzee and human PBMCs. Deletion of the GGTA1 and CMAH genes in pigs improved the crossmatch results beyond those observed with chimpanzees. Sorting the 121 human samples tested against the GGTA1/CMAH KO pig PBMCs did not reveal a distinguishing feature such as blood group, age or gender. Modification of genes to make pig carbohydrates more similar to humans has improved the crossmatch with human serum significantly.

  2. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    Science.gov (United States)

    Penuela, Oscar Andrés; Palomino, Fernando; Gómez, Lina Andrea

    2015-01-01

    Background Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. Objective The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one of two groups: erythropoietin (addition of 665 IU of recombinant human erythropoietin) and control (isotonic buffer solution was added). The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value 6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19 ± 0.05 μmol/L vs. 3.53 ± 0.02 μmol/L; p-value = 0.009). The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77% ± 3.8% vs. 71% ± 2.3%; p-value <0.05), while the number of apoptotic cells was lower (9.4% ± 0.3% vs. 22% ± 0.8%; p-value <0.05). Conclusions Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis. PMID:26969770

  3. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  4. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  5. On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood.

    Science.gov (United States)

    Choi, Jongchan; Hyun, Ji-chul; Yang, Sung

    2015-10-14

    The extraction of virological markers in white blood cells (WBCs) from whole blood--without reagents, electricity, or instruments--is the most important first step for diagnostic testing of infectious diseases in resource-limited settings. Here we develop an integrated microfluidic chip that continuously separates WBCs from whole blood and mechanically ruptures them to extract intracellular proteins and nucleic acids for diagnostic purposes. The integrated chip is assembled with a device that separates WBCs by using differences in blood cell size and a mechanical cell lysis chip with ultra-sharp nanoblade arrays. We demonstrate the performance of the integrated device by quantitatively analyzing the levels of extracted intracellular proteins and genomic DNAs. Our results show that compared with a conventional method, the device yields 120% higher level of total protein amount and similar levels of gDNA (90.3%). To demonstrate its clinical application to human immunodeficiency virus (HIV) diagnostics, the developed chip was used to process blood samples containing HIV-infected cells. Based on PCR results, we demonstrate that the chip can extract HIV proviral DNAs from infected cells with a population as low as 10(2)/μl. These findings suggest that the developed device has potential application in point-of-care testing for infectious diseases in developing countries.

  6. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  7. Hematologic assessment in pet rats, mice, hamsters, and gerbils: blood sample collection and blood cell identification.

    Science.gov (United States)

    Lindstrom, Nicole M; Moore, David M; Zimmerman, Kurt; Smith, Stephen A

    2015-01-01

    Hamsters, gerbils, rats, and mice are presented to veterinary clinics and hospitals for prophylactic care and treatment of clinical signs of disease. Physical examination, history, and husbandry practice information can be supplemented greatly by assessment of hematologic parameters. As a resource for veterinarians and their technicians, this article describes the methods for collection of blood, identification of blood cells, and interpretation of the hemogram in mice, rats, gerbils, and hamsters.

  8. Blood cell manufacture: current methods and future challenges.

    Science.gov (United States)

    Timmins, Nicholas E; Nielsen, Lars K

    2009-07-01

    Blood transfusion depends on availability of donor material, and concerns over supply and safety have spurred development of methods to manufacture blood from stem cells. Current methods could theoretically yield therapeutic doses of red blood cells (RBCs) and platelets. However, due to the very large number of cells required to have any impact on supply (currently 10(19) RBC/year in the US), realization of routine manufacture faces significant challenges. Current yields are orders of magnitude too low for production of meaningful quantities, and the physical scale of the problem is a challenge in itself. We discuss these challenges in relation to current methods and how it might be possible to realize limited 'blood pharming' of neutrophils in the near future.

  9. Laser-photophoretic migration and fractionation of human blood cells.

    Science.gov (United States)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.

  10. Computational modeling of red blood cells: A symplectic integration algorithm

    Science.gov (United States)

    Schiller, Ulf D.; Ladd, Anthony J. C.

    2010-03-01

    Red blood cells can undergo shape transformations that impact the rheological properties of blood. Computational models have to account for the deformability and red blood cells are often modeled as elastically deformable objects. We present a symplectic integration algorithm for deformable objects. The surface is represented by a set of marker points obtained by surface triangulation, along with a set of fiber vectors that describe the orientation of the material plane. The various elastic energies are formulated in terms of these variables and the equations of motion are obtained by exact differentiation of a discretized Hamiltonian. The integration algorithm preserves the Hamiltonian structure and leads to highly accurate energy conservation, hence he method is expected to be more stable than conventional finite element methods. We apply the algorithm to simulate the shape dynamics of red blood cells.

  11. Shear induced diffusion in a red blood cell suspension

    Science.gov (United States)

    Podgorski, Thomas; Grandchamp, Xavier; Srivastav, Aparna; Coupier, Gwennou

    2012-11-01

    In the microcirculation, blood exhibits an inhomogeneous structure which results in the well know Fahraeus-Lindqvist effect : the apparent viscosity decreases when the diameter of the capillary decreases due to the formation of a marginal cell depletion layer (known as plasma skimming). This structure is a consequence of several phenomena, which include i) the migration of cells aways from walls due to lift forces and gradients of shear and ii) shear induced diffusion due to collisions and interactions among cells. We investigated these phenomena through experiments in simple shear and microchannel flows, with dilute suspensions of vesicles and blood cells. Pairwise interactions between suspended objects result in non-linear and flow-dependent diffusion, whose properties have been measured in different experiments for vesicles and blood cells. The injection of a sheet of concentrated blood cell suspension in a microchannel with a rectangular cross-section allows, through the measurement of its widening along the channel, to measure the diffusivity of blood cells, both in the local plane of shear and in the vorticity direction.

  12. [Research Progress on Expression and Function of P2 Purinergic Receptor in Blood Cells].

    Science.gov (United States)

    Feng, Wen-Li; Wang, Li-Na; Zheng, Guo-Guang

    2015-10-01

    Nucleotides have unambiguously emerged as a family of mediators of intercellular communication, which bind a class of plasma membrane receptors, P2 purinergic receptors, to trigger intercellular signaling. P2 receptors can be further divided into two structurally and functionally different sub-famlies, the P2X and P2Y receptors. Different blood cells express diverse spectrum of P2 receptors at different levels. Extracellular adenosine triphosphate (ATP) exerts different effects on blood cells, regulating cell proliferation, differentiation, migration, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species. The relationship between abnormal P2 receptors and human diseases attracts more and more attention. This review briefly discusses the expression and function of P2 receptors in hematopoietic system.

  13. Aptamers Selected to Postoperative Lung Adenocarcinoma Detect Circulating Tumor Cells in Human Blood

    Science.gov (United States)

    Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Glazyrin, Yury E; Krat, Alexey V; Zubkova, Olga; Spivak, Ekaterina; Wehbe, Mohammed; Gargaun, Ana; Muharemagic, Darija; Komarova, Mariia; Grigorieva, Valentina; Savchenko, Andrey; Modestov, Andrey A; Berezovski, Maxim V; Zamay, Anna S

    2015-01-01

    Circulating tumor cells (CTCs) are rare cells and valuable clinical markers of prognosis of metastasis formation and prediction of patient survival. Most CTC analyses are based on the antibody-based detection of a few epithelial markers; therefore miss an important portion of mesenchymal cancer cells circulating in blood. In this work, we selected and identified DNA aptamers as specific affinity probes that bind to lung adenocarcinoma cells derived from postoperative tissues. The unique feature of our selection strategy is that aptamers are produced for lung cancer cell biomarkers in their native state and conformation without previous knowledge of the biomarkers. The aptamers did not bind to normal lung cells and lymphocytes, and had very low affinity to A549 lung adenocarcinoma culture. We applied these aptamers to detect CTCs, apoptotic bodies, and microemboli in clinical samples of peripheral blood of lung cancer and metastatic lung cancer patients. We identified aptamer-associated protein biomarkers for lung cancer such as vimentin, annexin A2, annexin A5, histone 2B, neutrophil defensin, and clusterin. Tumor-specific aptamers can be produced for individual patients and synthesized many times during anticancer therapy, thereby opening up the possibility of personalized diagnostics. PMID:26061649

  14. Recombinant spider silk with cell binding motifs for specific adherence of cells.

    Science.gov (United States)

    Widhe, Mona; Johansson, Ulrika; Hillerdahl, Carl-Olof; Hedhammar, My

    2013-11-01

    Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types.

  15. Cord blood transplants for SCID: better B-cell engraftment?

    Science.gov (United States)

    Chan, Wan-Yin; Roberts, Robert Lloyd; Moore, Theodore B; Stiehm, E Richard

    2013-01-01

    Hematopoietic stem-cell transplantation is the treatment of choice for severe combined immunodeficiency (SCID). Despite successful T-cell engraftment in transplanted patients, B-cell function is not always achieved; up to 58% of patients require immunoglobulin therapy after receiving haploidentical transplants. We report 2 half-sibling males with X-linked γ-chain SCID treated with different sources of stem cells. Sibling 1 was transplanted with T-cell-depleted haploidentical maternal bone marrow and sibling 2 was transplanted with 7/8 human leukocyte antigen-matched unrelated umbilical cord blood. Both patients received pretransplant conditioning and posttransplant graft-versus-host-disease prophylaxis. B-cell engraftment and function was achieved in sibling 1 but not in sibling 2. This disparate result is consistent with a review of 19 other SCID children who received cord blood transplants. B-cell function, as indicated by no need for immunoglobulin therapy, was restored in 42% of patients given haploidentical transplants and in 68% of patients given matched unrelated donor transplants compared with 80% of patients given cord blood transplants. Cord blood is an alternative source of stem cells for transplantation in children with SCID and has a higher likelihood of B-cell reconstitution.

  16. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  17. Malaria and human red blood cells.

    Science.gov (United States)

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  18. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells.

    Science.gov (United States)

    Das, Lipsa; Anderson, Todd A; Gard, Jaime M C; Sroka, Isis C; Strautman, Stephanie R; Nagle, Raymond B; Morrissey, Colm; Knudsen, Beatrice S; Cress, Anne E

    2017-05-01

    Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual ) of 3.25 min(-1) , threefold faster than α3 integrin (1.0 min(-1) ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min(-1) ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min(-1) ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc.

  19. CIRCULATING MICROPARTICLES, BLOOD CELLS, AND ENDOTHELIUM INDUCE PROCOAGULANT ACTIVITY IN SEPSIS THROUGH PHOSPHATIDYLSERINE EXPOSURE.

    Science.gov (United States)

    Zhang, Yan; Meng, Huan; Ma, Ruishuang; He, Zhangxiu; Wu, Xiaoming; Cao, Muhua; Yao, Zhipeng; Zhao, Lu; Li, Tao; Deng, Ruijuan; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Thatte, Hemant S; Zhou, Jin; Shi, Jialan

    2016-03-01

    Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.

  20. International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012).

    Science.gov (United States)

    Storry, J R; Castilho, L; Daniels, G; Flegel, W A; Garratty, G; de Haas, M; Hyland, C; Lomas-Francis, C; Moulds, J M; Nogues, N; Olsson, M L; Poole, J; Reid, M E; Rouger, P; van der Schoot, E; Scott, M; Tani, Y; Yu, L-C; Wendel, S; Westhoff, C; Yahalom, V; Zelinski, T

    2014-07-01

    The International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology convened during the International congress in Cancun, July 2012. This report details the newly identified antigens in existing blood group systems and presents three new blood group systems.

  1. Challenges for red blood cell biomarker discovery through proteomics

    NARCIS (Netherlands)

    Barasa, B.A.; Slijper, M.

    2014-01-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. T

  2. Control of red blood cell mass during spaceflight

    Science.gov (United States)

    Lane, H. W.; Alfrey, C. P.; Driscoll, T. B.; Smith, S. M.; Nyquist, L. E.

    1996-01-01

    Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.

  3. Spatial distributions of red blood cells significantly alter local haemodynamics.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics.

  4. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  5. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking.

    Science.gov (United States)

    Focosi, Daniele; Pistello, Mauro

    2016-03-01

    Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises.

  6. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells ... use of BMT and PBSCT, see http://www.cancer.gov/cancertopics/fa... If you are interested in ...

  7. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... be donors at http://www.marrow.org . Category Science & Technology License Standard YouTube License ... - Duration: 49:19. Children's Health 33,509 views 49:19 Stem Cell Fraud: ...

  8. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.

  9. Structural Analysis of Histo-Blood Group Antigen Binding Specificity in a Norovirus GII.4 Epidemic Variant: Implications for Epochal Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Shanker, Sreejesh; Choi, Jae-Mun; Sankaran, Banumathi; Atmar, Robert L.; Estes, Mary K.; Prasad, B.V. Venkataram (Baylor); (LBNL)

    2012-03-23

    Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract.

  10. Evaluation of cell binding activities of Leptospira ECM adhesins.

    Directory of Open Access Journals (Sweden)

    Gregory T Robbins

    2015-04-01

    Full Text Available Pathogenic spirochetes of the genus Leptospira are the causative agents of leptospirosis, a zoonotic infection that occurs globally. The bacteria colonize the renal proximal tubules of many animals and are shed in the urine. Contact with the urine, or with water contaminated with the urine of infected animals can cause infection of new host animals, including humans. Mechanisms of colonization of the proximal tubule and other tissues are not known, but specific interactions between bacterial adhesins and host substrates are likely to be critical in this process. Several extracellular matrix (ECM adhesins have been previously identified, but more recently, it has been shown that Leptospira bind more efficiently to cells than ECM. In this work, recombinant forms of five putative Leptospira ECM adhesins, namely LipL32, Loa22, OmpL1, p31/LipL45, and LenA were evaluated for binding to cells as well as an expanded variety of ECM components. Reproducible and significant adhesin activity was demonstrated only for OmpL1, which bound to both mammalian cell lines tested and to glycosaminoglycans (GAGs. While determination of biologically significant bacterial adhesion activity will require generation of site-directed mutant strains, our results suggest that OmpL1 is a strong candidate for future evaluation regarding the roles of the adhesin activity of the protein during L. interrogans infection.

  11. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70.

    Science.gov (United States)

    Fitter, Stephen; Gronthos, Stan; Ooi, Soo Siang; Zannettino, Andrew C W

    2016-12-27

    Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1(+) but not STRO-1(-) cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1(BRIGHT) /HSP70(-) fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2016.

  12. Length of Storage of Red Blood Cells and Patient Survival After Blood Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Rostgaard, Klaus; Lee, Brian K

    2017-01-01

    Background: Possible negative effects, including increased mortality, among persons who receive stored red blood cells (RBCs) have recently garnered considerable attention. Despite many studies, including 4 randomized trials, no consensus exists. Objective: To study the association between...... received transfusions from 2003 to 2012. Measurements: Patients were followed from first blood transfusion. Relative and absolute risks for death in 30 days or 1 year in relation to length of RBC storage were assessed by using 3 independent analytic approaches. All analyses were conducted by using Cox...... proportional hazards regression. Results: Regardless of the analytic approach, no association was found between the length of RBC storage and mortality. The difference in 30-day cumulative mortality between patients receiving blood stored for 30 to 42 days and those receiving blood stored for 10 to 19 days...

  13. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... is challenged by the size overlap between cancer cells and the 106 times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells....... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  14. In-vitro red blood cell partitioning of doxycycline

    OpenAIRE

    P.V. Deshmukh; Badgujar, P.C.; Gatne, M.M.

    2009-01-01

    Objective: In-vitro red blood cell (RBC) partitioning of doxycycline was studied to determine whether doxycycline penetrates RBC and its concentration was assayed keeping in view its high lipophilicity. Materials and Methods: Standardization of doxycycline was performed in whole blood and plasma of cattle by microbiological assay using Bacillus subtillis ATCC 6633 as indicator organizm. Actual concentration of the drug was obtained by comparing zone inhibition with standard graph and the exte...

  15. Bacterial glycosidases for the production of universal red blood cells

    DEFF Research Database (Denmark)

    Liu, Qiyong P; Sulzenbacher, Gerlind; Yuan, Huaiping;

    2007-01-01

    Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating...... of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions....

  16. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell.

    Science.gov (United States)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris; Mortensen, Peter; Mann, Matthias; Thomas, Alan W

    2008-07-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membrane-bound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.

  17. Autoradiographic localization of /sup 3/H-digoxin binding by neural cells in the medulla

    Energy Technology Data Exchange (ETDEWEB)

    Traurig, H.H.; Bhagat, A.; Bass, N.H.

    1985-01-01

    The purpose of this investigation was to localize binding sites for the cardiac glycoside digoxin in the medulla of the rat in vivo. Adult male Sprague-Dawley rats were injected (IV) with /sup 3/H-digoxin and killed 30 minutes later. Autoradiographs of medullas showed evidence of /sup 3/H-digoxin binding to small- and medium-sized neural cells in the regions of the nucleus solitarius, dorsal motor nucleus of the vagus, area postrema, and in the zone between the area postrema and the underlying neuropil. However, the parasympathetic preganglionic neurons of the dorsal motor nucleus were not labeled. The /sup 3/H-digoxin-labeled cells in the medulla were located mainly in the commissural and medial portions of nucleus solitarius at the level of the area postrema. Animals injected with unlabeled digoxin followed by /sup 3/H-digoxin showed reduced binding of radioactivity. The small- and medium-sized neurons of the caudal portions of the nucleus solitarius are internuncial in position with respect to cardiovascular afferents of the glossopharyngeal and vagus nerves and sympathetic and parasympathetic cardiovascular efferent neurons of the medulla. The results of this study suggest that these /sup 3/H-digoxin-labeled cells, presumably neurons of nucleus solitarius, may possess high affinity binding sites for digoxin. Further, the area postrema, which lacks a blood-brain barrier, may provide a portal of entry for /sup 3/H-digoxin into regions of the medulla known to contain neurons that play a role in the regulation of cardiac rhythm.

  18. A pH-sensitive heparin-binding sequence from Baculovirus gp64 protein is important for binding to mammalian cells but not to Sf9 insect cells.

    Science.gov (United States)

    Wu, Chunxiao; Wang, Shu

    2012-01-01

    Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.

  19. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.

    Science.gov (United States)

    Su, Ruijun Jeanna; Neises, Amanda; Zhang, Xiao-Bing

    2016-01-01

    Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.

  20. Hormonal and nonhormonal factors affecting sex hormone-binding globulin levels in blood.

    Science.gov (United States)

    Thijssen, J H

    1988-01-01

    Researchers in Utrecht, the Netherlands have studied the effects of different factors, such as oral contraceptives (OCs), on sex hormone binding globulin (SHBG) levels in blood. The SHBG levels in women who continuously used OCs consisting only of .05 mg of ethinyl estradiol (EE2) rose as high as 260% + or - 25% of those in women not using OCs. Further, mean SHBG levels of women using combination OCs of EE2 and levonorgestrel were 10-60% higher than women not using OCs. SHBG levels were significantly higher than the use of a sequential OC containing decreasing amounts of EE2 and increasing amounts of levonorgestrel than those cause by use of a continuous combined OC with .03 mg and .15 mg respectively. As the dosage of EE2 increased in combination OCs with 2.5 mg lynestrenol, the SHBG increased from 20% (.05 mg EE2) to 150% (.75 mg EE2). SHBG levels after taking EE2 and cyproterone acetate increased significantly more (240%) than levels after EE2 and desogestrel (170%), or after EE2 and gestoden (140%) [p.001]. SHBG levels of women who took OCs containing only .03 mg of levonorgestrel daily decreased 35% (p.01). These levels fell by 30% in women who received 150 mg of medroxyprogesterone acetate intramuscularly every 3 months (p.001). SHBG concentrations increased when estrogens were taken orally for noncontraceptive purposes, but they did not change when they were administered percutaneously. As body weight increased the SHBG levels decreased despite hormonal status or sex. Further, the lower the fat content of one's diet the higher the SHBG levels and vice versa. SHBG levels are higher in males with flaccid lungs than they are in males with healthy lungs.

  1. Analysis of zinc oxide nanoparticles binding proteins in rat blood and brain homogenate

    Directory of Open Access Journals (Sweden)

    Shim KH

    2014-12-01

    Full Text Available Kyu Hwan Shim,1 John Hulme,1 Eun Ho Maeng,2 Meyoung-Kon Kim,3 Seong Soo A An1 1Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Sungnam-si, Gyeonggi-do, South Korea; 2Department of Analysis, KTR, Kimpo, Gyeonggi-do, South Korea; 3Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, South Korea Abstract: Nanoparticles (NPs are currently used in chemical, cosmetic, pharmaceutical, and electronic products. Nevertheless, limited safety information is available for many NPs, especially in terms of their interactions with various binding proteins, leading to potential toxic effects. Zinc oxide (ZnO NPs are included in the formulation of new products, such as adhesives, batteries, ceramics, cosmetics, cement, glass, ointments, paints, pigments, and supplementary foods, resulting in increased human exposures to ZnO. Hence, we investigated the potential ZnO nanotoxic pathways by analyzing the adsorbed proteins, called protein corona, from blood and brain from four ZnO NPs, ZnOSM20(-, ZnOSM20(+, ZnOAE100(-, and ZnOAE100(+, in order to understand their potential mechanisms in vivo. Through this study, liquid chromatography–mass spectroscopy/mass spectroscopy technology was employed to identify all bound proteins. Totals of 52 and 58 plasma proteins were identified as being bound to ZnOSM20(- and ZnOSM20(+, respectively. For ZnOAE100(- and ZnOAE100(+, 58 and 44 proteins were bound, respectively. Similar numbers of proteins were adsorbed onto ZnO irrespective of size or surface charge of the nanoparticle. These proteins were further analyzed with ClueGO, a Cytoscape plugin, which provided gene ontology and the biological interaction processes of identified proteins. Interactions between diverse proteins and ZnO nanoparticles could result in an alteration of their functions, conformation, and clearance, eventually affecting many biological processes. Keywords: brain

  2. Apheresis techniques for collection of peripheral blood progenitor cells.

    Science.gov (United States)

    Moog, Rainer

    2004-12-01

    The combination of effective mobilisation protocols and efficient use of apheresis machines has caused peripheral blood progenitor cells (PBPC) transplantation to grow rapidly. The development of apheresis technology has improved over the years. Today PBSC procedures have changed towards systems to minimise operator interaction and to reduce the collection of undesired cells such as polymorphonuclear cells and platelets using functionally closed, sterile environments for PBSC collection in keeping with Good Manufacturing Practice guidelines. Blood cell separators with continuous flow technique allow the processing of more blood than intermittent flow devices resulting in higher PBSC yields. Large volume leukapheresis with the processing of 3-4-fold donor's/patient's blood volume can increase the number of collected progenitor cells. Therefore, intermittent flow cell separators are indicated if only single vein access is available. Anticoagulant induced hypocalcaemia is an often observed side effect in long lasting PBPC harvesting and monitoring of electrolytes should be performed especially at the end of the apheresis procedure to supplement low levels of potassium, calcium or magnesium. Refinement and improvement of collection techniques continue to add to the armamentarium of current approaches for cancer and non-malignant conditions and will enable future strategies.

  3. State of the science of blood cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs.

  4. Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells.

    Science.gov (United States)

    Kim, Hak Jun; Shim, Hye Eun; Lee, Jun Hyuck; Kang, Yong-Cheol; Hur, Young Baek

    2015-12-28

    Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1°C/min in a -80°C freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

  5. Histomorphometric study on blood cells in male adult ostrich

    Directory of Open Access Journals (Sweden)

    Mina Tadjalli

    2013-09-01

    Full Text Available In order to perform a histomorphometric study of blood cells in male adult ostrich, blood samples were obtained from jugular vein of 10 clinically healthy male adult ostriches (2 - 3 years old. The slides were stained with the Giemsa methods and the smears were evaluated for cellular morphology, with cellular size being determined by micrometry. The findings of this study revealed that the shape of the cell, cytoplasm and nucleus of erythrocytes in male adult ostriches were similar to those in other birds such as quails, chickens, Iranian green-head ducks.

  6. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    Science.gov (United States)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  7. Binding of white spot syndrome virus to Artemia sp. cell membranes.

    Science.gov (United States)

    Feng, Shuying; Li, Guangda; Feng, Wenpo; Huang, Jie

    2013-10-01

    Using differential velocity centrifugation, cell membranes of Artemia sp. were prepared, and their binding to white spot syndrome virus (WSSV) was analyzed in vitro. The results indicated that WSSV can specifically bind to Artemia cell membranes, and that WSSV receptor very likely existed in this membrane, which suggested that Artemia sp. may be a reservoir of WSSV. This study investigated the specific WSSV binding site by performing competitive inhibition experiments using shrimp gill cell membranes to bind WSSV to Artemia cell membranes. The results showed that shrimp gill cell membranes had a distinct inhibition effect on the specific binding of Artemia cell membranes to WSSV. Thus, potentially similar WSSV receptors or binding sites existed on Artemia sp. cell membranes and shrimp gill cell membranes. Taken together, these findings may provide experimental basis for the development of an effective approach to controlling WSSV, and theoretical basis for the study of WSSV receptors.

  8. [Verification of complete blood cell count (CBC) data from heparinized blood gas samples].

    Science.gov (United States)

    Sakoguchi, Takafumi; Fujii, Seiji; Inuzumi, Koji; Kaminoh, Yoshiroh; Hirose, Munetaka; Masaki, Mitsuru; Koshiba, Masahiro

    2014-02-01

    Complete blood cell count (CBC) data from heparinized blood gas (H-Gas) samples were verified with primary focus on the platelet count (PLT). When a part of H-Gas sample was taken to a separation tube from the blood collection syringe and CBC of the sample in the separation tube was repeatedly measured (Procedure 1), the PLT from 5 samples relative to that obtained immediately after the separation was gradually reduced to 72.6-94.2% during serial measurements (every 5 minutes, up to 30 minutes). The change in the scattergram pattern suggested that this PLT decrease was due to the formation of platelet clumps. The white blood cell count (WBC), red blood cell count (RBC), hemoglobin (Hb) and hematocrit (Ht) values did not significantly change during the repeated measurements. On the other hand, PLT was significantly improved to 96.8-99.8% when the H-Gas sample was kept in the blood collection syringe so as to minimizing the exposure to the air, and the sample for the measurement from H-Gas was taken every time to separation tube from the syringe, followed by CBC measurement without delay (Procedure 2). In addition, while there were significant variations (CV: 11.8-18.2%) in PLT reproducibility among H-Gas samples by Procedure 1, measurements utilizing the Procedure 2 resulted in much smaller variations (CV: 2.2-3.7%). Thus the CBC data obtained from H-Gas samples were equivalent to those from EDTA samples when the Procedure 2 was applied. These data suggest that H-Gas samples can be used for the accurate CBC measurement, including PLT, by applying the Procedure 2.

  9. Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae).

    Science.gov (United States)

    Martins, G S; Alevi, K C C; Azeredo-Oliveira, M T V; Bonini-Domingos, C R

    2016-03-18

    The hematology of wild and captive animals is essential for obtaining details about species and represents a simple method of diagnosing disease and determining prognosis. Few studies have described the morphology of chelonian blood cells, which are more common in sea and freshwater turtle species. Thus, in order to further our understanding and recognition of different chelonian cells types, the present study aimed to describe blood cells from the two species of Brazilian tortoises, Chelonoidis carbonarius and C. denticulatus. Cytochemical analysis of tortoise blood tissue with Panótico®, made it possible to describe all the of the chelonian cell types (with the exception of thrombocytes): erythrocytes, agranular leukocytes (monocytes and lymphocytes), and granular leukocytes (eosinophils, heterophils, basophils, and azurophils). These data are of high importance for establishing hematological profiles of Brazilian tortoises and reptiles. Therefore, based on our results and on comparative analyses with data from the literature for other reptile species, we can conclude that the blood cells described for Brazilian tortoises are found in all species of reptiles that have been analyzed thus far, and may be characterized and used as a comparative parameter between different groups to evaluate the health status of these animals.

  10. Membranotropic photobiomodulation on red blood cell deformability

    Science.gov (United States)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  11. Related Hematopoietic Stem Cell Transplantation (HSCT) for Genetic Diseases of Blood Cells

    Science.gov (United States)

    2016-05-11

    Stem Cell Transplantation; Bone Marrow Transplantation; Peripheral Blood Stem Cell Transplantation; Allogeneic Transplantation,; Genetic Diseases; Thalassemia; Pediatrics; Diamond-Blackfan Anemia; Combined Immune Deficiency; Wiskott-Aldrich Syndrome; Chronic Granulomatous Disease; X-linked Lymphoproliferative Disease; Metabolic Diseases

  12. Omeprazole Blocks STAT6 Binding to the Eotaxin-3 Promoter in Eosinophilic Esophagitis Cells

    Science.gov (United States)

    Zhang, Xi; Cheng, Edaire; Huo, Xiaofang; Yu, Chunhua; Zhang, Qiuyang; Pham, Thai H.; Wang, David H.; Spechler, Stuart J.; Souza, Rhonda F.

    2012-01-01

    Background Patients who have esophageal eosinophilia without gastroesophageal reflux disease (GERD) nevertheless can respond to proton pump inhibitors (PPIs), which can have anti-inflammatory actions independent of effects on gastric acid secretion. In esophageal cell cultures, omeprazole has been reported to inhibit Th2 cytokine-stimulated expression of eotaxin-3, an eosinophil chemoattractant contributing to esophageal eosinophilia in eosinophilic esophagitis (EoE). The objective of this study was to elucidate molecular mechanisms underlying PPI inhibition of IL-4-stimulated eotaxin-3 production by esophageal cells. Methods/Findings Telomerase-immortalized and primary cultures of esophageal squamous cells from EoE patients were treated with IL-4 in the presence or absence of acid-activated omeprazole or lansoprazole. We measured eotaxin-3 protein secretion by ELISA, mRNA expression by PCR, STAT6 phosphorylation and nuclear translocation by Western blotting, eotaxin-3 promoter activation by an exogenous reporter construct, and STAT6, RNA polymerase II, and trimethylated H3K4 binding to the endogenous eotaxin-3 promoter by ChIP assay. Omeprazole in concentrations ≥5 µM significantly decreased IL-4-stimulated eotaxin-3 protein secretion and mRNA expression. Lansoprazole also blocked eotaxin-3 protein secretion. Omeprazole had no effect on eotaxin-3 mRNA stability or on STAT6 phosphorylation and STAT6 nuclear translocation. Rather, omeprazole blocked binding of IL-4-stimulated STAT6, RNA polymerase II, and trimethylated H3K4 to the eotaxin-3 promoter. Conclusions/Significance PPIs, in concentrations achieved in blood with conventional dosing, significantly inhibit IL-4-stimulated eotaxin-3 expression in EoE esophageal cells and block STAT6 binding to the promoter. These findings elucidate molecular mechanisms whereby patients with Th2 cytokine-driven esophageal eosinophilia can respond to PPIs, independent of effects on gastric acid secretion. PMID:23185525

  13. Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation.

    Science.gov (United States)

    Lee, K; Kinnunen, M; Danilina, A V; Ustinov, V D; Shin, S; Meglinski, I; Priezzhev, A V

    2016-05-03

    The aggregation of red blood cells (RBC) is an intrinsic feature of blood that has a strong impact on its microcirculation. For a number of years it has been attracting a great attention in basic research and clinical studies. Here, we study a relationship between the RBC aggregation parameters measured at the individual cell level and in a whole blood sample. The home made optical tweezers were used to measure the aggregating and disaggregating forces for a pair of interacting RBCs, at the individual cell level, in order to evaluate the corresponding shear stresses. The RheoScan aggregometer was used for the measurements of critical shear stress (CSS) in whole blood samples. The correlation between CSS and the shear stress required to stop an RBC pair from aggregating was found. The shear stress required to disaggregate a pair of RBCs using the double channel optical tweezers appeared to be about 10 times higher than CSS. The correlation between shear stresses required to prevent RBCs from aggregation at the individual cell level and in whole blood samples was estimated and assessed quantitatively. The experimental approach developed has a high potential for advancing hemorheological studies.

  14. Magnetic nanoparticle effects on the red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, D E; Nadejde, C; Curecheriu, L [' Al. I. Cuza' University, Faculty of Physics, 11A Blvd. Carol I, Iasi (Romania)], E-mail: dorinacreanga@yahoo.com; Culea, M [' Babes Bolyai' University, Cluj-Napoca (Romania); Oancea, S [University of Veterinary Medicine ' I. Ionescu de la Brad' , Iasi (Romania); Racuciu, M [' Lucian Blaga' University, Sibiu (Romania)

    2009-05-01

    In vitro tests on magnetite colloidal nanoparticles effects upon animal red blood cells were carried out. Magnetite cores were stabilized with citric acid in the form of biocompatible magnetic fluid administrated in different dilutions in the whole blood samples. The hemolysis extent was found increased up to 2.75 in horse blood and respectively up to 2.81 in the dog blood. The electronic transitions assigned to the heme group were found shifted with about 500 cm{sup -1} or, respectively, affected by supplementary vibronic structures. The Raman vibrations assigned to oxyhemoglobin were much diminished in intensity probably due to the bonding of OH group from citrate shell to the heme iron ion.

  15. Lattice Boltzmann Simulation of Healthy and Defective Red Blood Cell Settling in Blood Plasma.

    Science.gov (United States)

    Hashemi, Z; Rahnama, M; Jafari, S

    2016-05-01

    In this paper, an attempt has been made to study sedimentation of a red blood cell (RBC) in a plasma-filled tube numerically. Such behaviors are studied for a healthy and a defective cell which might be created due to human diseases, such as diabetes, sickle-cell anemia, and hereditary spherocytosis. Flow-induced deformation of RBC is obtained using finite-element method (FEM), while flow and fluid-membrane interaction are handled using lattice Boltzmann (LB) and immersed boundary methods (IBMs), respectively. The effects of RBC properties as well as its geometry and orientation on its sedimentation rate are investigated and discussed. The results show that decreasing frontal area of an RBC and/or increasing tube diameter results in a faster settling. Comparison of healthy and diabetic cells reveals that less cell deformability leads to slower settling. The simulation results show that the sicklelike and spherelike RBCs have lower settling velocity as compared with a biconcave discoid cell.

  16. Cord Blood as a Source of Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Rohtesh S Mehta

    2016-01-01

    Full Text Available Cord blood (CB offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT. The risk of relapse and graft-versus-host disease (GVHD after cord blood transplantation (CBT are lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen (HLA mismatch. Natural killer (NK cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors (KIR-ligand mismatch and outcomes after CBT. Finally, we will touch on current strategiesfor the use of CB NK cells in cellular immunotherapy.

  17. Sertoli cell origin of testicular androgen-binding protein (ABP)

    Energy Technology Data Exchange (ETDEWEB)

    Hagenaes, L. (Pediatric Endocrinology Unit, Stockholm); Ritzen, E.M.; Ploeen, L.; Hansson, V.; French, F.S.; Nayfeh, S.N.

    1975-05-01

    In this report it is suggested that the specific androgen-binding protein (ABP), previously shown to originate in the testes of rat and other species, is produced by the Sertoli cells. This suggestion is based upon the following experimental findings: (1) ABP was found in high concentrations in testicular efferent duct fluid but only in trace amounts in inter-tubular lymph. (2) ABP could be recovered from crude preparations of testes tubules, but not from Leydig cells from the same testes. (3) Testes whose germinal epithelium had been severely damaged by gamma irradiation showed no decrease in ABP content. The transport of ABP to epididymis was also preserved as judged from the levels of ABP in caput epididymis. (4) Testes that were completely devoid of germ cells following prenatal gamma irradiation showed high levels of ABP. These high levels approached zero following hypophysectomy, but could be restored by FSH administration to the hypophysectomized animals. ABP has been well characterized and now provides a valuable experimental tool as an indicator of Sertoli cell function.

  18. Concise review: programming human pluripotent stem cells into blood.

    Science.gov (United States)

    Easterbrook, Jennifer; Fidanza, Antonella; Forrester, Lesley M

    2016-06-01

    Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion-transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long-term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future.

  19. The Laminin 511/521 Binding Site on the Lutheran Blood Group Glycoprotein is Located at theFlexible Junction of Ig Domains 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Mankelow, Tosti J.; Burton, Nicholas; Stedansdottir, Fanney O.; Spring, Frances A.; Parsons, Stephen F.; Pesersen, Jan S.; Oliveira, Cristiano L.P.; Lammie, Donna; Wess, Timothy; Mohandas, Narla; Chasis, Joel A.; Brady, R. Leo; Anstee, David J.

    2007-07-01

    The Lutheran blood group glycoprotein, first discovered on erythrocytes, is widely expressed in human tissues. It is a ligand for the {alpha}5 subunit of Laminin 511/521, an extracellular matrix protein. This interaction may contribute to vasocclusive events that are an important cause of morbidity in sickle cell disease. Using X-ray crystallography, small angle X-ray scattering and site directed mutagenesis we show that the extracellular region of Lutheran forms an extended structure with a distinctive bend between the second and third immunoglobulin-like domains. The linker between domains 2 and 3 appears to be flexible and is a critical determinant in maintaining an overall conformation for Lutheran that is capable of binding to Laminin. Mutagenesis studies indicate that Asp312 of Lutheran and the surrounding cluster of negatively charged residues in this linker region form the Laminin binding site. Unusually, receptor binding is therefore not a function of the domains expected to be furthermost from the plasma membrane. These studies imply that structural flexibility of Lutheran may be essential for its interaction with Laminin and present a novel opportunity for the development of therapeutics for sickle cell disease.

  20. A minimum of three motifs is essential for optimal binding of pseudomurein cell wall-binding domain of Methanothermobacter thermautotrophicus.

    Directory of Open Access Journals (Sweden)

    Ganesh Ram R Visweswaran

    Full Text Available We have biochemically and functionally characterized the pseudomurein cell wall-binding (PMB domain that is present at the C-terminus of the Surface (S-layer protein MTH719 from Methanothermobacter thermautotrophicus. Chemical denaturation of the protein with guanidinium hydrochloride occurred at 3.8 M. A PMB-GFP fusion protein not only binds to intact pseudomurein of methanogenic archaea, but also to spheroplasts of lysozyme-treated bacterial cells. This binding is pH dependent. At least two of the three motifs that are present in the domain are necessary for binding. Limited proteolysis revealed a possible cleavage site in the spacing sequence between motifs 1 and 2 of the PMB domain, indicating that the motif region itself is protected from proteases.

  1. Mechanopathology of red blood cell diseases—Why mechanics matters

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the onset of a disease a cell may experience alterations in both the composition and organization of its cellular and molecular structures.These alterations may eventually lead to changes in its geometrical and mechanical properties such as cell size and shape,deformability and adhesion.As such,knowing how diseased cells respond to mechanical forces can reveal ways by which they differ from healthy ones.Here,we will present biomechanistic insights into red blood cell related diseases that manifest...

  2. Macromolecular Dynamics in Red Blood Cells Investigated Using Neutron Spectroscopy

    CERN Document Server

    Stadler, Andreas Maximilian; Demmel, Franz; Artmann, Gerhard; 10.1098/rsif.2010.0306

    2011-01-01

    We present neutron scattering measurements on the dynamics of hemoglobin (Hb) in human red blood cells in vivo. Global and internal Hb dynamics were measured in the ps to ns time- and {\\AA} length-scale using quasielastic neutron backscattering spectroscopy. We observed the cross-over from global Hb short-time to long-time self-diffusion. Both short- and long-time diffusion coefficients agree quantitatively with predicted values from hydrodynamic theory of non-charged hard-sphere suspensions when a bound water fraction of around 0.23g H2O/ g Hb is taken into account. The higher amount of water in the cells facilitates internal protein fluctuations in the ps time-scale when compared to fully hydrated Hb powder. Slower internal dynamics of Hb in red blood cells in the ns time-range were found to be rather similar to results obtained with fully hydrated protein powders, solutions and E. coli cells.

  3. RBCs and Parasites Segmentation from Thin Smear Blood Cell Images

    Directory of Open Access Journals (Sweden)

    Vishal V. Panchbhai

    2012-09-01

    Full Text Available Manually examine the blood smear for the detection of malaria parasite consumes lot of time for trend pathologists. As the computational power increases, the role of automatic visual inspection becomes more important. An automated system is therefore needed to complete as much work as possible for the identification of malaria parasites. The given scheme based on used of RGB color space, G layer processing, and segmentation of Red Blood Cells (RBC as well as cell parasites by auto-thresholding with offset value and use of morphological processing. The work compare with the manual results obtained from the pathology lab, based on total RBC count and cells parasite count. The designed system successfully detects malaria parasites and RBC cells in thin smear image.

  4. Use of cryopreserved peripheral mononuclear blood cells in biomonitoring

    DEFF Research Database (Denmark)

    Risom, Lotte; Knudsen, Lisbeth E.

    1999-01-01

    cells (PMBC) obtained from donor blood. Measurements of DNA-repair, mutant frequency, and subcell content were included. Samples for large biomonitoring studies are usually taken from study groups within a short time period of days/weeks and storing of study material for later analysis can be necessary......This study was performed to investigate the effect of storing blood samples by freezing on selected biomarkers and possible implications for biomonitoring. Comparative measurements were performed in order to investigate the use of cryopreserved vs. freshly separated peripheral mononuclear blood....... We measured the DNA repair activity as dimethylsulfate induced unscheduled DNA synthesis (UDS) in PMBC incubated with either autologous plasma or fetal bovine serum (FBS). Comparison of the hprt mutant frequency by the T cell cloning assay was made in parallel. Finally the content of B...

  5. A spectral and morphologic method for white blood cell classification

    Science.gov (United States)

    Wang, Qian; Chang, Li; Zhou, Mei; Li, Qingli; Liu, Hongying; Guo, Fangmin

    2016-10-01

    The identification of white blood cells is important as it provides an assay for diagnosis of various diseases. To overcome the complexity and inaccuracy of traditional methods based on light microscopy, we proposed a spectral and morphologic method based on hyperspectral blood images. We applied mathematical morphology-based methods to extract spatial information and supervised method is employed for spectral analysis. Experimental results show that white blood cells could be segmented and classified into five types with an overall accuracy of more than 90%. Moreover, the experiments including spectral features reached higher accuracy than the spatial-only cases, with a maximum improvement of nearly 20%. By combing both spatial and spectral features, the proposed method provides higher classification accuracy than traditional methods.

  6. Binding of transcobalamin II by human mammary epithelial cells.

    Science.gov (United States)

    Adkins, Y; Lönnerdal, B

    2001-01-01

    The presence of nutrient binders in milk may have an important role during milk production and may influence the nutrient's bioavailability to the infant. Human milk and plasma contain at least two types of vitamin B12 binders: transcobalamin II (TCII) and haptocorrin (Hc). Vitamin B12 in milk is exclusively bound to Hc (Hc-B12). In plasma, the major vitamin B12 binding protein that is responsible for delivering absorbed vitamin B12 to most tissues and cells is TCII (TCII-B12). Currently, little is known about the route of secretion of vitamin B12 into human milk. It is possible that a receptor-mediated pathway is involved, since maternal vitamin B12 supplementation increases the amount of the vitamin secreted into human milk if the mother's vitamin B12 consumption is low, but remains unchanged if her intake is adequate. In this study, we investigated the process by which the mammary gland acquires vitamin B12 from maternal circulation, whether as a free vitamin or as a Hc-B12 or TCII-B12 complex. TCII was purified from plasma incubated with [57Co]vit B12 (B12*), while Hc was purified from whey incubated with B12*. Both proteins were separated by fast protein liquid chromatography using gel filtration and anion-exchange columns. Purity of the separated proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Binding studies were carried out on a monolayer of normal human mammary epithelial cells (HMEC) at 4 degrees C using free B12* and TCII-B12* and Hc-B12* complexes. Minimal binding of free B12* and Hc-B12* to HMEC was observed; however, HMEC exhibited a high affinity for the TCII-B12* complex. This study suggests that a specific cell surface receptor for the TCII-B12 complex exists in the mammary gland. It is possible that once vitamin B12 is in the mammary gland it is transferred to Hc (which may be synthesized by the mammary gland) and then secreted into milk as a Hc-B12 complex.

  7. Net haemoglobin increase from reinfusion of refrigerated vs. frozen red blood cells after autologous blood transfusions

    DEFF Research Database (Denmark)

    Ashenden, M; Mørkeberg, Jakob Sehested

    2011-01-01

    objective was to examine which storage procedure yielded the largest increase in circulating haemoglobin after reinfusion compared to baseline. MATERIALS AND METHODS  Equal volumes of blood from 15 men were withdrawn and stored either frozen or refrigerated as packed red blood cells. Serial measures...... freezing. Nevertheless, frozen storage allowed haemoglobin to fully recover before reinfusion, while the haemoglobin was 10% lower in the refrigerated group compared with baseline. After reinfusion, the haemoglobin levels were 11·5% higher than the baseline values in the group reinfused with frozen blood......, while for the refrigerated group, haemoglobin levels were only 5·2% higher than baseline. CONCLUSION  The relatively larger recovery from anaemia in the frozen group during storage more than compensated for the larger loss of haemoglobin during freezing and resulted in a larger net gain in haemoglobin...

  8. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  9. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  10. Red blood cell transfusion during septic shock in the ICU

    DEFF Research Database (Denmark)

    Perner, A; Smith, S H; Carlsen, S

    2012-01-01

    Transfusion of red blood cells (RBCs) remains controversial in patients with septic shock, but current practice is unknown. Our aim was to evaluate RBC transfusion practice in septic shock in the intensive care unit (ICU), and patient characteristics and outcome associated with RBC transfusion....

  11. Automated counting of white blood cells in synovial fluid.

    NARCIS (Netherlands)

    R. de Jonge (Robert); R.W. Brouwer (Reinoud); M. Smit (Marij); M. de Frankrijker-Merkestijn; R.J. Dolhain; J.M.W. Hazes (Mieke); A.W. van Toorenenbergen (Albert); J. Lindemans (Jan)

    2004-01-01

    textabstractOBJECTIVES: To evaluate the performance of automated leucocyte (white blood cell; WBC) counting by comparison with manual counting. METHODS: The number of WBC was determined in heparinized synovial fluid samples by the use of (i) a standard urine cytometer (Kova) and a

  12. Hypoxia, hormones, and red blood cell function in chick embryos.

    Science.gov (United States)

    Dragon, Stefanie; Baumann, Rosemarie

    2003-04-01

    The red blood cell function of avian embryos is regulated by cAMP. Adenosine A(2A) and beta-adrenergic receptor activation during hypoxic conditions cause changes in the hemoglobin oxygen affinity and CO(2) transport. Furthermore, experimental evidence suggests a general involvement of cAMP in terminal differentiation of avian erythroblasts.

  13. Red blood cells intended for transfusion : quality criteria revisited

    NARCIS (Netherlands)

    Hogman, CF; Meryman, HT

    2006-01-01

    Great variation exists with respect to viability and function of fresh and stored red blood cells (RBCs) as well as of the contents of RBC hemoglobin (Hb) in individual units. Improved technology is available for the preparation as well as the storage of RBCs. The authors raise the question whether

  14. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  15. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  16. Red blood cell antibodies in pregnancy and their clinical consequences

    DEFF Research Database (Denmark)

    Nordvall, Maria; Dziegiel, Morten Hanefeld; Hegaard, Hanne Kristine;

    2009-01-01

    The objective was to determine clinical consequences of various specificities for the infant/fetus. The population was patients referred between 1998 and 2005 to the tertiary center because of detected red blood cell (RBC) alloimmunization. Altogether 455 infants were delivered by 390 alloimmunized...

  17. Expression of Serum Retinol Binding Protein and Transthyretin within Mouse Gastric Ghrelin Cells.

    Directory of Open Access Journals (Sweden)

    Angela K Walker

    Full Text Available Ghrelin is an orexigenic peptide hormone produced mainly by a distinct group of dispersed endocrine cells located within the gastric oxyntic mucosa. Besides secreted gene products derived from the preproghrelin gene, which include acyl-ghrelin, desacyl-ghrelin and obestatin, ghrelin cells also synthesize the secreted protein nesfatin-1. The main goal of the current study was to identify other proteins secreted from ghrelin cells. An initial gene chip screen using mRNAs derived from highly enriched pools of mouse gastric ghrelin cells demonstrated high levels of serum retinol-binding protein (RBP4 and transthyretin (TTR, both of which are known to circulate in the bloodstream bound to each other. This high expression was confirmed by quantitative RT-PCR using as template mRNA derived from the enriched gastric ghrelin cell pools and from two ghrelin-producing cell lines (SG-1 and PG-1. RBP4 protein also was shown to be secreted into the culture medium of ghrelin cell lines. Neither acute nor chronic caloric restriction had a significant effect on RBP4 mRNA levels within stomachs of C57BL/6J mice, although both manipulations significantly decreased stomach TTR mRNA levels. In vitro studies using PG-1 cells showed no effect on RBP4 release of octanoic acid, epinephrine or norepinephrine, all of which are known to act directly on ghrelin cells to stimulate ghrelin secretion. These data provide new insights into ghrelin cell physiology, and given the known functions of RBP4 and TTR, support an emerging role for the ghrelin cell in blood glucose handling and metabolism.

  18. 78 FR 47714 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2013-08-06

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Health Service Act, as amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises... Advancing Hematopoietic Stem Cell Transplantation for Hemoglobinopathies. The Council also will...

  19. 78 FR 23571 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2013-04-19

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises the Secretary of the... Hematopoietic Stem Cell Transplantation for Hemoglobinopathies. The Council will also hear presentations...

  20. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......We present a novel method for the determination of density and compressibility of individual particles and cells undergoing microchannel acoustophoresis in an arbitrary 2D acoustic field. Our method is a critical advancement within acoustophoretic separation of biological cells, as the ability......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  1. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Bookchin, R.M.

    1984-08-01

    An examination was made of the O/sub 2/ affinity, Bohr effect, transmembrane pH gradient, mean cell hemoglobin concentration, and red blood cell sickling at half O/sub 2/ saturation in whole sickle cell (SS) and normal (AA) blood during CO/sub 2/ titration and acid-base titration at three Pco/sub 2/ levels, 10, 40, and 80 mm Hg. The CO/sub 2/-induced Bohr effect of SS blood was considerably larger than normal (maximum, 0.91, referred to cell pH) and similar to that found with acid-base titration at Pco/sub 2/ of 40. In contrast to AA blood, SS blood showed an increased O/sub 2/ affinity when Pco/sub 2/ was raised from 40 to 80, and at half O/sub 2/ saturation showed biphasic or sigmoid Bohr curves, a fall in transmembrane pH gradient with rising Pco/sub 2/, and an absence of the normal cell volume increase at low pH and Pco/sub 2/. Sickling of SS cells at half O/sub 2/ saturation was partly inhibited by increasing Pc/sub 2/, particularly in the higher pH ranges. These complex differences in the behavior of SS blood are interpreted in terms of the balancing of several effects: the lowering of hemoglobin O/sub 2/-affinity by polymerization, low pH and increased CO/sub 2/ binding, inhibition of hemoglobin S polymerization by CO/sub 2/ binding to ..beta../sup s/-chain amino termini, differences between hemoglobin S and A in competitive binding of CO/sub 2/ and 2,3-diphosphoglycerate at different pH levels, and an increased net negative charge exhibited by intracellular deoxyhemoglobin S polymers. From a clinical standpoint, in the absence of hypoxia or acidosis, an increased blood Pco/sub 2/ might have a beneficial effect by inhibiting red blood cell sickling, whereas a metabolic acidosis, with low blood pH and Pco/sub 2/, would be very hazardous.

  2. Design and development of in situ albumin binding surfaces: Evaluation in the paradigm of blood-biomaterial compatibility

    Science.gov (United States)

    Guha Thakurta, Sanjukta

    Biocompatibility of natural and synthetic implant materials as blood contacting devices is crucial to host response. Implantation often raises complications from thrombotic and thromboembolic events. The aspect of hemocompatibility concentrates on minimizing thrombotic and thromboembolic response of foreign materials in contact with blood. The initial layer of surface adsorbed proteins plays a pivotal role in the adhesion and subsequent aggregation of platelets and in the activation of the coagulation cascade. Therefore, an improved surface architecture is required to gain control over the initial protein adsorption events, thereby extending the sustainability of an implantable device. In general, surfaces with an ability to bind endogenous albumin has been known to minimize platelet adhesion and activation. While the scope of applicability is broad, in this study silicon-based surfaces were selected as model surfaces. A densely packed uniformly distributed silane monolayer was achieved on silicon based surfaces with -- NH2 functionality, upon a careful optimization of hydroxylation and the subsequent silanization with 2 vol% of 3-Aminopropyltriethoxy Silane (APTES). Two linear peptides with affinity for albumin over other serum proteins were selected to create affinity surfaces. Silanized surfaces covalently immobilized with albumin binding peptides were evaluated in the paradigm of blood-biomaterial compatibility. When compared to control surfaces, albumin binding surfaces prepared in this study: (a) possessed 2.0 to 3.0 mug/cm2 of surface bound albumin with minimal surface adsorbed fibrinogen, (b) depicted low levels of adhered platelets and supported a rounded platelet morphology, (c) displayed delayed clotting, (d) showed reduced platelet adhesion and activation under shearing, and (f) exhibited faster adsorption kinetics. Conclusively, in-situ albumin binding surfaces selectively and specifically interacted with albumin without being severely displaced by

  3. Inhibition of pseudoperoxiadse activity of human red blood cell hemoglobin by methocarbamol.

    Science.gov (United States)

    Minai-Tehrani, Dariush; Toofani, Sara; Yazdi, Fatemeh; Minai-Tehrani, Arash; Mollasalehi, Hamidreza; Bakhtiari Ziabari, Kourosh

    2017-01-01

    After red blood cells lysis, hemoglobin is released to blood circulation. Hemoglobin is carried in blood by binding to haptoglobin. In normal individuals, no free hemoglobin is observed in the blood, because most of the hemoglobin is in the form of haptoglobin complex. In some diseases that are accompanied by hemolysis, the amount of released hemoglobin is higher than its complementary haptoglobin. As a result, free hemoglobin appears in the blood, which is a toxic compound for these patients and may cause renal failure, hypertensive response and risk of atherogenesis. Free hemoglobin has been determined to have peroxidase activity and considered a pseudoenzyme. In this study, the effect of methocarbamol on the peroxidase activity of human hemoglobin was investigated. Our results showed that the drug inhibited the pseudoenzyme by un-competitive inhibition. Both Km and Vmax decreased by increasing the drug concentration. Ki and IC50 values were determined as 6 and 10mM, respectively. Docking results demonstrated that methocarbamol did not attach to heme group directly. A hydrogen bond linked NH2 of carbamate group of methocarbamol to the carboxyl group of Asp126 side chain. Two other hydrogen bonds could be also observed between hydroxyl group of the drug and Ser102 and Ser133 residues of the pseudoenzyme.

  4. Acetylsalicylic acid and morphology of red blood cells

    Directory of Open Access Journals (Sweden)

    Jacques Natan Grinapel Frydman

    2010-06-01

    Full Text Available This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (pEste trabalho avaliou o efeito do tratamento in vitro e in vivo com AAS na morfologia dos eritrócitos. Amostras de sangue ou ratos Wistar foram tratadas com AAS por uma hora. Amostras sangüíneas ou animais tratados com salina foram utilizados como grupos controle. Distensões de sangue foram preparadas, fixadas, coradas e a análise morfológica qualitativa e quantitativa dos eritrócitos foi realizada em microscópio óptico. Os dados mostraram que o tratamento in vitro por uma hora com AAS na maior dose utilizada modificou significativamente (p<0.05 a relação perímetro/área dos eritrócitos. Não foram obtidas alterações morfológicas com o tratamento in vivo. O uso do AAS em doses altas poderia interferir na forma dos eritrócitos.

  5. The effect of neurotoxin on rabies virus binding to mouse neuroblastoma cells.

    Science.gov (United States)

    Briggs, D J; Phillips, R M

    1991-08-01

    Mouse neuroblastoma cells were exposed to alpha bungarotoxin, a neurotoxin known to inhibit rabies virus binding to the nicotinic acetylcholine receptor located at the neuromuscular junction in muscle tissue. The total amount of 3H-CVS virus that bound to neurotoxin treated cells was separated into specific and non-specific binding using a cold competition assay. Comparison of untreated and neurotoxin treated cells demonstrated that the majority of cell-associated virus in untreated cells was of a specific nature whereas the majority of the cell-associated virus in neurotoxin treated cells was due to non-specific binding.

  6. Differentiation of Human Cord Blood and Stromal Derived Stem Cells into Neuron Cells

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2007-01-01

    Full Text Available The most basic properties of stem cells are the capacities to self-renew indefinitely and to differentiate into multiple cell or tissue types. Umbilical cord blood has been utilized for human hematopoietic stem cell transplantation as an alternative source to bone marrow.The experiments show that Wharton’s jelly cells are easily attainable and can be expanded in vitro, maintained in culture, and induced to differentiate into neural cells. Almost recent studies it has been discovered that the cord blood-derived cells can differantiate not only to blood cells but also to various somatic cells like neuron or muscle cell with the signals taken from the envoirenment.Interestingly, neural cells obtained from umbilical cord blood show a relatively high spontaneous differentiation into oligodendrocytes, Embryonic stem cells proliferate indefinitely and can differentiate spontaneously into all tissue types.It has been shown that embryonic stem cells can be induced to differentiate into neurons and glia by treatment with retinoic acid or basic fibroblast growth factor. It has been studied that the diseases as Motor Neuron Disease, Parkinson, Alzheimer and degeneration of medulla spinalis and also paralysises could be treated with transplantation of cord blood-dericed stem cells.

  7. Probing the cytoadherence of malaria infected red blood cells under flow.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xu

    Full Text Available Malaria is one of the most widespread and deadly human parasitic diseases caused by the Plasmodium (P. species with the P. falciparum being the most deadly. The parasites are capable of invading red blood cells (RBCs during infection. At the late stage of parasites' development, the parasites export proteins to the infected RBCs (iRBC membrane and bind to receptors of surface proteins on the endothelial cells that line microvasculature walls. Resulting adhesion of iRBCs to microvasculature is one of the main sources of most complications during malaria infection. Therefore, it is important to develop a versatile and simple experimental method to quantitatively investigate iRBCs cytoadhesion and binding kinetics. Here, we developed an advanced flow based adhesion assay to demonstrate that iRBC's adhesion to endothelial CD36 receptor protein coated channels is a bistable process possessing a hysteresis loop. This finding confirms a recently developed model of cell adhesion which we used to fit our experimental data. We measured the contact area of iRBC under shear flow at different stages of infection using Total Internal Reflection Fluorescence (TIRF, and also adhesion receptor and ligand binding kinetics using Atomic Force Microscopy (AFM. With these parameters, we reproduced in our model the experimentally observed changes in adhesion properties of iRBCs accompanying parasite maturation and investigated the main mechanisms responsible for these changes, which are the contact area during the shear flow as well as the rupture area size.

  8. Nanomechanical mapping of first binding steps of a virus to animal cells

    Science.gov (United States)

    Alsteens, David; Newton, Richard; Schubert, Rajib; Martinez-Martin, David; Delguste, Martin; Roska, Botond; Müller, Daniel J.

    2016-10-01

    Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

  9. LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis.

    Science.gov (United States)

    Piccolo, Enza; Tinari, Nicola; Semeraro, Daniela; Traini, Sara; Fichera, Imma; Cumashi, Albana; La Sorda, Rossana; Spinella, Francesca; Bagnato, Anna; Lattanzio, Rossano; D'Egidio, Maurizia; Di Risio, Annalisa; Stampolidis, Pavlos; Piantelli, Mauro; Natoli, Clara; Ullrich, Axel; Iacobelli, Stefano

    2013-01-01

    Elevated serum or tissue levels of lectin galactoside-binding soluble 3 binding protein (LGALS3BP) have been associated with short survival and development of metastasis in a variety of human cancers. However, the role of LGALS3BP, particularly in the context of tumor-host relationships, is still missing. Here, we show that LGALS3BP knockdown in MDA-MB-231 human breast cancer cells leads to a decreased adhesion to fibronectin, a reduced transendothelial migration and, more importantly, a reduced expression of vascular endothelial growth factor (VEGF). Production of VEGF, that was restored by exposure of silenced cells to recombinant LGALS3BP, required an intact PI3k/Akt signaling. Furthermore, we show that LGALS3BP was able to directly stimulate HUVEC tubulogenesis in a VEGF-independent, galectin-3-dependent manner. Immunohistochemical analysis of human breast cancer tissues revealed a correlation among LGALS3BP expression, VEGF expression, and blood vessel density. We propose that in addition to its prometastatic role, LGALS3BP secreted by breast cancer cells functions critically as a pro-angiogenic factor through a dual mechanism, i.e by induction of tumor VEGF and stimulation of endothelial cell tubulogenesis.

  10. Blood cell counting and classification by nonflowing laser light scattering method

    Science.gov (United States)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  11. Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia

    Science.gov (United States)

    Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.

    1983-06-01

    A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.

  12. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  13. Umbilical Cord Blood Stem Cells. Who has the right word?

    Directory of Open Access Journals (Sweden)

    Gisela Laporta

    2014-12-01

    Full Text Available In this article we analyze bioethical and legal aspects related to the cryopreservation of cord blood stem cells in Argentina. To unify definitions, the concept and variety of stem cells, together with the understanding of the means to obtain and store umbilical cord blood stem cells, are provided.  Options that arise in our country, mainly analyzing the conceptual differences underlying legal body and parts by public and private biobanks, are described. Additionally, the current Argentinean legislation and circumstances arising from a resolution which INCUCAI sought to regulate private biobanks, is analyzed. This analysis leads to thoughts on the way conflicts are solved when the health and life of people are judicialized. In this particular case, the appearance of a complex new topic which gives rise to new social and healthcare scenarios, must be further understood.

  14. Structural analysis of red blood cell aggregates under shear flow.

    Science.gov (United States)

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  15. Biomechanics and biorheology of red blood cells in sickle cell anemia

    Science.gov (United States)

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-01

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis. PMID:27876368

  16. Biomechanics and biorheology of red blood cells in sickle cell anemia.

    Science.gov (United States)

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-04

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.

  17. Erythropoietic Potential of CD34+ Hematopoietic Stem Cells from Human Cord Blood and G-CSF-Mobilized Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Honglian Jin

    2014-01-01

    Full Text Available Red blood cell (RBC supply for transfusion has been severely constrained by the limited availability of donor blood and the emergence of infection and contamination issues. Alternatively, hematopoietic stem cells (HSCs from human organs have been increasingly considered as safe and effective blood source. Several methods have been studied to obtain mature RBCs from CD34+ hematopoietic stem cells via in vitro culture. Among them, human cord blood (CB and granulocyte colony-stimulating factor-mobilized adult peripheral blood (mPB are common adult stem cells used for allogeneic transplantation. Our present study focuses on comparing CB- and mPB-derived stem cells in differentiation from CD34+ cells into mature RBCs. By using CD34+ cells from cord blood and G-CSF mobilized peripheral blood, we showed in vitro RBC generation of artificial red blood cells. Our results demonstrate that CB- and mPB-derived CD34+ hematopoietic stem cells have similar characteristics when cultured under the same conditions, but differ considerably with respect to expression levels of various genes and hemoglobin development. This study is the first to compare the characteristics of CB- and mPB-derived erythrocytes. The results support the idea that CB and mPB, despite some similarities, possess different erythropoietic potentials in in vitro culture systems.

  18. Multiscale Modeling of Red Blood Cells Squeezing through Submicron Slits

    Science.gov (United States)

    Peng, Zhangli; Lu, Huijie

    2016-11-01

    A multiscale model is applied to study the dynamics of healthy red blood cells (RBCs), RBCs in hereditary spherocytosis, and sickle cell disease squeezing through submicron slits. This study is motivated by the mechanical filtration of RBCs by inter-endothelial slits in the spleen. First, the model is validated by comparing the simulation results with experiments. Secondly, the deformation of the cytoskeleton in healthy RBCs is investigated. Thirdly, the mechanisms of damage in hereditary spherocytosis are investigated. Finally, the effects of cytoplasm and membrane viscosities, especially in sickle cell disease, are examined. The simulations results provided guidance for future experiments to explore the dynamics of RBCs under extreme deformation.

  19. Collagen-binding protein, Aegyptin, regulates probing time and blood feeding success in the dengue vector mosquito, Aedes aegypti.

    Science.gov (United States)

    Chagas, Andrezza Campos; Ramirez, José Luis; Jasinskiene, Nijole; James, Anthony A; Ribeiro, José M C; Marinotti, Osvaldo; Calvo, Eric

    2014-05-13

    Mosquito salivary glands have important roles in blood feeding and pathogen transmission. However, the biological relevance of many salivary components has yet to be determined. Aegyptin, a secreted salivary protein from Aedes aegypti, binds collagen and inhibits platelet aggregation and adhesion. We used a transgenic approach to study the relevance of Aegyptin in mosquito blood feeding. Aedes aegypti manipulated genetically to express gene-specific inverted-repeat RNA sequences exhibited significant reductions in Aegyptin mRNA accumulation (85-87%) and protein levels (>80-fold) in female mosquito salivary glands. Transgenic mosquitoes had longer probing times (78-300 s, P transgenic mosquitoes failed to inhibit collagen-induced platelet aggregation in vitro. Reductions of Aegyptin did not affect salivary ADP-induced platelet aggregation inhibition or disturb anticlotting activities. Our results demonstrate the relevance of Aegyptin for A. aegypti blood feeding, providing further support for the hypothesis that platelet aggregation inhibition is a vital salivary function in blood feeding arthropods. It has been suggested that the multiple mosquito salivary components mediating platelet aggregation (i.e., Aegyptin, apyrase, D7) represent functional redundancy. Our findings do not support this hypothesis; instead, they indicate that multiple salivary components work synergistically and are necessary to achieve maximum blood feeding efficiency.

  20. Blood smear

    Science.gov (United States)

    ... some red blood cells shaped like spheres ( hereditary spherocytosis ) Increased breakdown of RBCs Presence of RBCs with ... normal Red blood cells, elliptocytosis Red blood cells, spherocytosis Acute lymphocytic leukemia - photomicrograph Red blood cells, multiple ...

  1. [Morphometry and electrophoretic mobility of red blood cells from patients with asthma in the intravenous blood laser irradiation].

    Science.gov (United States)

    Sarycheva, T G; Tsybzhitova, E B; Popova, O V; Aleksandrov, O V

    2009-03-01

    The morphometry and electrophoretic mobility of red blood cells from patients with infection-dependent asthma were comparatively studied prior to and following treatment. The patients who had underwent intravenous laser irradiation of blood (ILIB) in addition to conventional therapy had better morphofunctional parameters of red blood cells, by restoring their normal forms, decreasing their transitional ones, and increasing their electrophoretic mobility to normal values. Those who received traditional drug therapy showed no considerable morphofunctional changes of erythrocytes. Thus, in asthmatic patients, the changes in the morphology and function of red blood cells may suggest their membranous structural changes for whose correction ILIB should used.

  2. Human growth hormone binding and stimulation of insulin biosynthesis in cloned rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, Nils

    1985-01-01

    Binding of 125I labelled human growth hormone to cloned insulin producing RIN-5AH cells is described. Binding was specific for somatotropic hormones since both human and rat growth hormone could compete for binding sites, whereas much higher concentrations of lactogenic hormones were needed...

  3. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  4. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David;

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  5. Lacking deoxygenation-linked interaction between cytoplasmic domain of band 3 and HbF from fetal red blood cells

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Aim: Several of the red blood cell's metabolic and membrane functions display dependence on haemoglobin oxygenation. In adult human red cells, the increased glycolytic rate at low O2 tension results from binding of deoxygenated HbA at negatively charged, N-terminal, cytoplasmic domain...... of the membrane protein band 3, which liberates glycolytic enzymes from this site. This study aims to investigate the role of fetal HbF (that has lower anion-binding capacity than HbA) in fetal red cells (that are subjected to low O2 tensions), and to elucidate possible linkage (e.g. via the major red cell...... membrane organising centre, band 3) between the individual oxygenation-linked reactions encountered in red cells. Methods: The interaction between band 3 and Hb is analysed in terms of the effects, measured under different conditions, of a 10-mer peptide that corresponds to the N-terminus of human band 3...

  6. Characterization of red blood cells (RBCs) using dual Brillouin/Raman micro-spectroscopy

    Science.gov (United States)

    Meng, Zhaokai; Bustamante-Lopez, Sandra C.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-04-01

    Erythrocytes, or red blood cells, transport oxygen to and carbon dioxide from the body's tissues and organs. Red blood cell mechanical properties are altered in a number of diseases such as sickle cell anaemia and malaria. Additionally, mechanically modified red blood cell ghosts are being considered as a long-term, biocompatible carrier for drug delivery and for blood analyte sensing. Brillouin spectroscopy enables viscoelastic characterization of samples at the microscale. In this report, Brillouin spectroscopy is applied to characterize the mechanical properties of red blood cells and red blood cell ghosts.

  7. Saving the leftovers: models for banking cord blood stem cells.

    Science.gov (United States)

    Cogdell, Kimberly J

    2009-01-01

    Each year there are over four million live births in the United States. Each birth produces umbilical cord blood stem cells, which are usually discarded. The author argues that rather than discarding the umbilical cord, this valuable resource of cord blood should be banked and used for research and therapeutic purposes. Umbilical cord blood could provide a solution to the critical need to find matching donors for hematopoietic transplants in patients who have no matching bone marrow donors. Creating a system of universal donation to a public bank will greatlyincrease the number of donors and therefore, the number of matches for patients. Such a system will facilitate the development and use of new technologies and transplant procedures, while providing an opportunity for treatment to individuals who would otherwise not be able to find suitable donors.

  8. Mobility Enhancement of Red Blood Cells with Biopolymers

    Science.gov (United States)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  9. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  10. Effects of chronic kidney disease on blood cells membrane properties.

    Science.gov (United States)

    Kaderjakova, Z; Lajdova, I; Horvathova, M; Morvova, M; Sikurova, L

    2012-10-01

    Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.

  11. SNPs in microRNA binding sites in 3'-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Hansen, Jakob Liebe; Doggen, Carine

    2011-01-01

    We hypothesized that single nucleotide polymorphisms (SNPs) located in microRNA (miR) binding sites in genes of the renin angiotensin aldosterone system (RAAS) can influence blood pressure and risk of myocardial infarction.......We hypothesized that single nucleotide polymorphisms (SNPs) located in microRNA (miR) binding sites in genes of the renin angiotensin aldosterone system (RAAS) can influence blood pressure and risk of myocardial infarction....

  12. Synthesis and characterisation of glucose-functional glycopolymers and gold nanoparticles: study of their potential interactions with ovine red blood cells.

    Science.gov (United States)

    Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I

    2015-03-20

    Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications.

  13. Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods

    Directory of Open Access Journals (Sweden)

    Andrew W. Shih

    2016-01-01

    Full Text Available Background. Whole blood donations in Canada are processed by either the red cell filtration (RCF or whole blood filtration (WBF methods, where leukoreduction is potentially delayed in WBF. Fresh WBF red blood cells (RBCs have been associated with increased in-hospital mortality after transfusion. Cell-free DNA (cfDNA is released by neutrophils prior to leukoreduction, degraded during RBC storage, and is associated with adverse patient outcomes. We explored cfDNA levels in RBCs prepared by RCF and WBF and different storage durations. Methods. Equal numbers of fresh (stored ≤14 days and older RBCs were sampled. cfDNA was quantified by spectrophotometry and PicoGreen. Separate regression models determined the association with processing method and storage duration and their interaction on cfDNA. Results. cfDNA in 120 RBC units (73 RCF, 47 WBF were measured. Using PicoGreen, WBF units overall had higher cfDNA than RCF units (p=0.0010; fresh WBF units had higher cfDNA than fresh RCF units (p=0.0093. Using spectrophotometry, fresh RBC units overall had higher cfDNA than older units (p=0.0031; fresh WBF RBCs had higher cfDNA than older RCF RBCs (p=0.024. Conclusion. Higher cfDNA in fresh WBF was observed compared to older RCF blood. Further study is required for association with patient outcomes.

  14. Pyruvate effects on red blood cells during in vitro cardiopulmonary bypass with dogs' blood.

    Science.gov (United States)

    Gou, DaMing; Tan, HongJing; Cai, HuiJun; Zhou, FangQiang

    2012-11-01

    To investigate the effects of pyruvate (Pyr) on adenosine triphosphate (ATP), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) in red blood cells (RBCs) during the cardiopulmonary bypass procedure (CPB), blood, 500 mL, was collected from each of 10 healthy dogs (weight 12-18 kg). The blood was divided into two parts (250 mL each) and randomly assigned into the control group (Group C, n = 10) or the Pyr group (Group P, n = 10). The blood was commingled with an equal volume of 0.9% NaCl and pyruvated isotonic solution (Pyr 50 mM) in the extracorporeal circuit in the two groups, respectively. The CPB procedure was fixed at 120 min, and the transferring flow was 4 L/min. Contents of ATP in RBCs, eNOS activities, and NO productions in plasma were measured before CPB and during CPB at 30, 60, 90, and 120 min in both groups. The ATP level, eNOS activity, and NO production were not different prior to CPB between the two groups. A decline of ATP levels was shown in both groups but remained significantly higher in Group P than in Group C at the same time points during in vitro CPB (P dogs' RBCs in the ATP level, eNOS activity, and NO production, in vitro, but Pyr effectively protected RBCs in these functions during CPB. Pyr would be clinically protective for RBCs during CPB.

  15. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria

    Science.gov (United States)

    Mitchell, Adam J.; Gray, Warren D.; Schroeder, Max; Yi, Hong; Taylor, Jeannette V.; Dillard, Rebecca S.; Ke, Zunlong; Wright, Elizabeth R.; Stephens, David; Roback, John D.; Searles, Charles D.

    2016-01-01

    Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators. PMID:27760197

  16. A C-type lectin isolated from the skin of Japanese bullhead shark (Heterodontus japonicus) binds a remarkably broad range of sugars and induces blood coagulation.

    Science.gov (United States)

    Tsutsui, Shigeyuki; Dotsuta, Yuma; Ono, Ayaka; Suzuki, Masanari; Tateno, Hiroaki; Hirabayashi, Jun; Nakamura, Osamu

    2015-05-01

    The aim of this study was to determine the physiological role of skin lectins of the Japanese bullhead shark (Heterodontus japonicus). A skin extract was subjected to affinity chromatography using seven different sugars as ligands. Molecular mass and N-terminal amino acid sequence analyses indicated elution of the same protein by each of the seven respective cognate ligands from sugar affinity columns. The predicted amino acid sequence encoded by the cDNA of this protein [designated as H. japonicus C-type-lectin (HjCL)] identified it as a novel fish subgroup VII C-type lectin evolutionarily related to snake venom lectins. HjCL was predicted to bind to mannose because of the presence of a Glu-Pro-Asn (EPN) motif; however, haemagglutination inhibition assays and glycoconjugate microarray analysis demonstrated its binding to numerous structurally diverse sugars. Competitive sugar-binding assays using affinity chromatography indicated that HjCL bound multiple sugars via a common carbohydrate-recognition domain. The mRNA encoding HjCL was specifically detected in the skin, and immunohistochemical analysis detected its expression in uncharacterized large cells in the epidermis. HjCL agglutinated the bacterial pathogen Edwardsiella tarda and promoted immediate clotting of shark blood, indicating that HjCL is involved in host defence on the skin surface especially when the shark is injured and bleeds.

  17. Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3.

    Directory of Open Access Journals (Sweden)

    Yagna P R Jarajapu

    Full Text Available Previously, we showed that insulin growth factor (IGF-1 binding protein-3 (IGFBP-3, independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR. The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1 and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP. IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab. Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs. NO release was neither associated with an increase in intracellular calcium nor decreased by Ca(2+/calmodulin-dependent protein kinase II (CamKII blockade; however, dephosphorylation of eNOS-Thr(495 was observed. Phosphatidylinositol 3-kinase (PI3K activity and Akt-Ser(473 phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate

  18. Red cell properties after different modes of blood transportation

    Directory of Open Access Journals (Sweden)

    Asya Makhro

    2016-07-01

    Full Text Available Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extend has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 hours of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin and citrate-based CPDA for two temperatures (4oC and room temperature were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination, red blood cell (RBC volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations and formation of micro vesicles, Ca2+ handling, RBC metabolism, activity of numerous enzymes and O2 transport capacity. Our findings indicate that individual sets of parameter may require different shipment settings (anticoagulants, temperature. Most of the parameters except for ion (Na+, K+, Ca2+ handling and, possibly, reticulocytes counts, tend to favor transportation at 4oC. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using optimized shipment protocol the majority of parameters were stable within 24 hours, the condition that may not hold for the samples of patients with rare anemias. This implies for the as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the

  19. Blood cell telomere length is a dynamic feature.

    Directory of Open Access Journals (Sweden)

    Ulrika Svenson

    Full Text Available There is a considerable heterogeneity in blood cell telomere length (TL for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g. life style and/or environmental factors can affect TL during life. Collectively, these studies imply that blood cell TL might fluctuate during a life time and that the actual TL at a defined time point is the result of potential regulatory mechanism(s and environmental factors. We analyzed relative TL (RTL in subsequent blood samples taken six months apart from 50 individuals and found significant associations between RTL changes and RTL at baseline. Individual RTL changes per month were more pronounced than the changes recorded in a previously studied population analyzed after 10 years' follow up. The data argues for an oscillating TL pattern which levels out at longer follow up times. In a separate group of five blood donors, a marked telomere loss was demonstrated within a six month period for one donor where after TL was stabilized. PCR determined RTL changes were verified by Southern blotting and STELA (single telomere elongation length analysis. The STELA demonstrated that for the donor with a marked telomere loss, the heterogeneity of the telomere distribution decreased considerably, with a noteworthy loss of the largest telomeres. In summary, the collected data support the concept that individual blood cell telomere length is a dynamic feature and this will be important to recognize in future studies of human telomere biology.

  20. Computer-Aided Diagnosis Of Leukemic Blood Cells

    Science.gov (United States)

    Gunter, U.; Harms, H.; Haucke, M.; Aus, H. M.; ter Meulen, V.

    1982-11-01

    In a first clinical test, computer programs are being used to diagnose leukemias. The data collected include blood samples from patients suffering from acute myelomonocytic-, acute monocytic- and acute promyelocytic, myeloblastic, prolymphocytic, chronic lymphocytic leukemias and leukemic transformed immunocytoma. The proper differentiation of the leukemic cells is essential because the therapy depends on the type of leukemia. The algorithms analyse the fine chromatin texture and distribution in the nuclei as well as size and shape parameters from the cells and nuclei. Cells with similar nuclei from different leukemias can be distinguished from each other by analyzing the cell cytoplasm images. Recognition of these subtle differences in the cells require an image sampling rate of 15-30 pixel/micron. The results for the entire data set correlate directly to established hematological parameters and support the previously published initial training set .

  1. Generation of induced pluripotent stem cells from human cord blood.

    Science.gov (United States)

    Haase, Alexandra; Olmer, Ruth; Schwanke, Kristin; Wunderlich, Stephanie; Merkert, Sylvia; Hess, Christian; Zweigerdt, Robert; Gruh, Ina; Meyer, Johann; Wagner, Stefan; Maier, Lars S; Han, Dong Wook; Glage, Silke; Miller, Konstantin; Fischer, Philipp; Schöler, Hans R; Martin, Ulrich

    2009-10-02

    Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.

  2. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  3. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.

    Science.gov (United States)

    Li, Xiang; Chen, Weiqiang; Liu, Guangyu; Lu, Wei; Fu, Jianping

    2014-07-21

    White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for examining WBC phenotypes and functions; however, such functionality is still challenging for blood-on-a-chip systems, as existing microfluidic cell sorting techniques are inadequate for efficiently processing unprocessed whole blood on chip with concurrent high throughput and cell purity. Herein we report a microfluidic chip for continuous-flow isolation and sorting of WBCs from whole blood with high throughput and separation efficiency. The microfluidic cell sorting chip leveraged the crossflow filtration scheme in conjunction with a surface-micromachined poly(dimethylsiloxane) (PDMS) microfiltration membrane (PMM) with high porosity. With a sample throughput of 1 mL h(-1), the microfluidic cell sorting chip could recover 27.4 ± 4.9% WBCs with a purity of 93.5 ± 0.5%. By virtue of its separation efficiency, ease of sample recovery, and high throughput enabled by its continuous-flow operation, the microfluidic cell sorting chip holds promise as an upstream component for blood sample preparation and analysis in integrated blood-on-a-chip systems.

  4. Harvesting, processing and inventory management of peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Mijovic Aleksandar

    2007-01-01

    Full Text Available By 2003, 97% autologous transplants and 65% of allogeneic transplants in Europe used mobilised peripheral blood stem cells (PBSC. Soon after their introduction in the early 1990′s, PBSC were associated with faster haemopoietic recovery, fewer transfusions and antibiotic usage, and a shorter hospital stay. Furthermore, ease and convenience of PBSC collection made them more appealing than BM harvests. Improved survival has hitherto been demonstrated in patients with high risk AML and CML. However, the advantages of PBSC come at a price of a higher incidence of extensive chronic GVHD. In order to be present in the blood, stem cells undergo the process of "mobilisation" from their bone marrow habitat. Mobilisation, and its reciprocal process - homing - are regulated by a complex network of molecules on the surface of stem cells and stromal cells, and enzymes and cytokines released from granulocytes and osteoclasts. Knowledge of these mechanisms is beginning to be exploited for clinical purposes. In current practice, stem cell are mobilised by use of chemotherapy in conjunction with haemopoietic growth factors (HGF, or with HGF alone. Granulocyte colony stimulating factor has emerged as the single most important mobilising agent, due to its efficacy and a relative paucity of serious side effects. Over a decade of use in healthy donors has resulted in vast experience of optimal dosing and administration, and safety matters. PBSC harvesting can be performed on a variety of cell separators. Apheresis procedures are nowadays routine, but it is important to be well versed in the possible complications in order to avoid harm to the patient or donor. To ensure efficient collection, harvesting must begin when sufficient stem cells have been mobilised. A rapid, reliable, standardized blood test is essential to decide when to begin harvesting; currently, blood CD34+ cell counting by flow cytometry fulfils these criteria. Blood CD34+ cell counts strongly

  5. Cinnamomum zeylanicum extract on the radiolabelling of blood constituents and the morphometry of red blood cells: In vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Benarroz, M.O. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180 Natal, RN (Brazil); Fonseca, A.S. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil)], E-mail: adenilso@uerj.br; Rocha, G.S. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Frydman, J.N.G. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180 Natal, RN (Brazil); Rocha, V.C.; Pereira, M.O. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil)] (and others)

    2008-02-15

    Effects of Cinnamomum zeylanicum (cinnamon) on the labelling of blood constituents with technetium-99 m({sup 99m}Tc) and on the morphology of red blood cells were studied. Blood samples from Wistar rats were incubated with cinnamon extract for 1hour or with 0.9% NaCl, as control. Labelling of blood constituents with {sup 99m}Tc was performed. Plasma (P) and blood cells (BC), soluble (SF-P and SF-BC) and insoluble (IF-P and IF-BC) fractions were separated. The radioactivity in each fraction was counted and the percentage of radioactivity incorporated (%ATI) was calculated. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphological analysis of the red blood cells was evaluated. The data showed that the cinnamon extract decreased significantly (p<0.05) the %ATI on BC, IF-P and IF-BC. No modifications were verified on shape of red blood cells. Cinnamon extracts could alter the labelling of blood constituents with {sup 99m}Tc, and although our results were obtained with animals, precaution is suggested in interpretations of nuclear medicine examinations involving the labelling of blood constituents in patients who are using cinnamon.

  6. Protoporphyrin IX-induced structural and functional changes in human red blood cells, haemoglobin and myoglobin

    Indian Academy of Sciences (India)

    Susmita Sil; Tania Bose; Dibyendu Roy; Abhay Sankar Chakraborti

    2004-09-01

    Protoporphyrin IX and its derivatives are used as photosensitizers in the photodynamic therapy of cancer. Protoporphyrin IX penetrates into human red blood cells and releases oxygen from them. This leads to a change in the morphology of the cells. Spectrophotometric studies reveal that protoporphyrin IX interacts with haemoglobin and myoglobin forming ground state complexes. For both proteins, the binding affinity constant decreases, while the possible number of binding sites increases, as the aggregation state of the porphyrin is increased. The interactions lead to conformational changes of both haemoglobin and myoglobin as observed in circular dichroism studies. Upon binding with the proteins, protoporphyrin IX releases the heme-bound oxygen from the oxyproteins, which is dependent on the stoichiometric ratios of the porphyrin: protein. The peroxidase activities of haemoglobin and myoglobin are potentiated by the protein-porphyrin complexation. Possible mechanisms underlying the relation between the porphyrin-induced structural modifications of the heme proteins and alterations in their functional properties have been discussed. The findings may have a role in establishing efficacy of therapeutic uses of porphyrins as well as in elucidating their mechanisms of action as therapeutic agents.

  7. Detection of cell type and marker specificity of nuclear binding sites for anionic carbohydrate ligands.

    Science.gov (United States)

    Chovanec, M; Smetana, K; Purkrábková, T; Holíková, Z; Dvoránková, B; André, S; Pytlík, R; Hozák, P; Plzák, J; Sedo, A; Vacík, J; Gabius, H

    2004-01-01

    The emerging functionality of glycosaminoglycan chains engenders interest in localizing specific binding sites using cytochemical tools. We investigated nuclear binding of labeled heparin, heparan sulfate, a sulfated fucan, chondroitin sulfate, and hyaluronic acid in epidermal keratinocytes, bone marrow stromal cells, 3T3 fibroblasts and glioma cells using chemically prepared biotinylated probes. Binding of the markers was cell-type specific and influenced by extraction of histones, but was not markedly affected by degree of proliferation, differentiation or malignancy. Cell uptake of labeled heparin and other selected probes and their transport into the nucleus also was monitored. Differences between keratinocytes and bone marrow stromal cells were found. Preincubation of permeabilized bone marrow stromal cells with label-free heparin reduced the binding of carrier-immobilized hydrocortisone to its nuclear receptors. Thus, these tools enabled binding sites for glycosaminoglycans to be monitored in routine assays.

  8. Peripheral red blood cell split chimerism as a consequence of intramedullary selective apoptosis of recipient red blood cells in a case of sickle cell disease.

    Science.gov (United States)

    Marziali, Marco; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid; Fraboni, Daniela; Paciaroni, Katia; Gallucci, Cristiano; Alfieri, Cecilia; Roveda, Andrea; De Angelis, Gioia; Cardarelli, Luisa; Ribersani, Michela; Andreani, Marco; Lucarelli, Guido

    2014-01-01

    Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC) has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80% circulating donor red blood cells (RBC). The analysis of apoptosis at the Bone Marrow level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.

  9. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie;

    2014-01-01

    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation...... in newborns. The objective of the study was to profile innate and adaptive immune cell subsets in cord blood of children born by cesarean section or natural birth....

  10. Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood

    Science.gov (United States)

    Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto

    2017-03-01

    With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.

  11. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging

    Science.gov (United States)

    Park, Hyunjoo; Lee, Sangyun; Ji, Misuk; Kim, Kyoohyun; Son, Yonghak; Jang, Seongsoo; Park, Yongkeun

    2016-10-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusions. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called citrate phosphate dextrose adenine-1 (CPDA-1). With 3-D quantitative phase imaging techniques, the optical measurements for 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and progressive alterations of stored RBCs. Our results show that stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within two weeks which was accompanied by significant decreases in cell deformability and cell surface area, and increases in sphericity. However, the stored RBCs with CPDA-1 maintained their morphology and deformability for up to 6 weeks.

  12. RED BLOOD CELL ABNORMALITIES IN DECOMPENSATED CHRONIC LIVER DISEASE (DCLD

    Directory of Open Access Journals (Sweden)

    Anbazhagan

    2015-02-01

    Full Text Available BACKGROUND: Liver plays an important role in normal erythropoiesis, especially in formation and destruction of RBC’s. Chronic liver diseases are frequently associated with hematological abnormalities. Anemia of diverge etiology occurs in about 75% patients with DCLD ( 36. This can ultimately culminate in grave complications. AIM OF THE STUDY: To detect various abnormalities in Red Blood Cells and to assess the type of anemia in DCLD. METHODS: The study was conducted in 50 patients of DCLD, in Meenakshi Medical College. A detailed History, clinical examination and also Ultrasound Abdomen, GI endoscopy to establish DCLD and complete Red Blood Cell assessment was done. RESULTS AND OBSERVATION : Among the 50 patients, 40 patients (80% had anemia and only 10 pts had normal h emoglobin above 13 gms%. About 15 patients (30% had severe Anemia of less than 6 gm%. Among the 40 patients, 25 patients had normocytic normochronic anemia, 10 patients had microcytic anemia, and 4 patients had macrocytosis and only one had dimorphic anem ia. CONCLUSION : Most common Red Blood Cell abnormality in DCLD is anemia (80% and most common anemia is normochronic normocytic anemia (62.5%, while microcytic anemia and macrocytosis were common among females and Alcoholics, respectively

  13. Neisseria meningitidis and Escherichia coli are protected from leukocyte phagocytosis by binding to erythrocyte complement receptor 1 in human blood

    DEFF Research Database (Denmark)

    Brekke, O. L.; Hellerud, B. C.; Christiansen, D.

    2011-01-01

    The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant ......-primates and that the bacteria were mainly found in the lungs. In conclusion, complement-dependent binding of Gram-negative bacteria to erythrocyte CR1 decreases phagocytosis and oxidative burst by leukocytes in human whole blood. (C) 2011 Elsevier Ltd. All rights reserved.......The initial interaction of Gram-negative bacteria with erythrocytes and its implications on leukocyte phagocytosis and oxidative burst in human whole blood were examined. Alexa-labeled Escherichia coli, wild-type H44/76 N. meningitidis and the H44/76lpxA lipopolysaccharide (LPS)-deficient mutant...... were incubated with whole blood using lepirudin as anticoagulant which has no adverse effects on complement. Bacteria free in plasma, bound to erythrocytes or phagocytized by granulocytes and monocytes were quantified using flow cytometry. The effects of the C3 inhibitor compstatin, a C5a receptor...

  14. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  15. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  16. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    Science.gov (United States)

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion.

  17. Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development.

    Science.gov (United States)

    Johnston, J; Power, C

    1999-03-01

    Feline immunodeficiency virus (FIV) is a lentivirus causing immune suppression and neurological disease in cats. Like primate lentiviruses, FIV utilizes the chemokine receptor CXCR4 for infection. In addition, FIV gene expression has been demonstrated in immortalized human cell lines. To investigate the extent and mechanism by which FIV infected primary and immortalized human cell lines, we compared the infectivity of two FIV strains, V1CSF and Petaluma, after cell-free infection. FIV genome was detected in infected human peripheral blood mononuclear cells (PBMC) and macrophages at 21 and 14 days postinfection, respectively. Flow cytometry analysis of FIV-infected human PBMC indicated that antibodies to FIV p24 recognized 12% of the cells. Antibodies binding the CCR3 chemokine receptor maximally inhibited infection of human PBMC by both FIV strains compared to antibodies to CXCR4 or CCR5. Reverse transcriptase levels increased in FIV-infected human PBMC, with detection of viral titers of 10(1.3) to 10(2.1) 50% tissue culture infective doses/10(6) cells depending on the FIV strain examined. Cell death in human PBMC infected with either FIV strain was significantly elevated relative to uninfected control cultures. These findings indicate that FIV can productively infect primary human cell lines and that viral strain specificity should be considered in the development of an FIV vector for gene therapy.

  18. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma.

    Science.gov (United States)

    Galietta, Annamaria; Gunby, Rosalind H; Redaelli, Sara; Stano, Paola; Carniti, Cristiana; Bachi, Angela; Tucker, Philip W; Tartari, Carmen J; Huang, Ching-Jung; Colombo, Emanuela; Pulford, Karen; Puttini, Miriam; Piazza, Rocco G; Ruchatz, Holger; Villa, Antonello; Donella-Deana, Arianna; Marin, Oriano; Perrotti, Danilo; Gambacorti-Passerini, Carlo

    2007-10-01

    The oncogenic fusion tyrosine kinase nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) induces cellular transformation in anaplastic large-cell lymphomas (ALCLs) carrying the t(2;5) chromosomal translocation. Protein-protein interactions involving NPM/ALK are important for the activation of downstream signaling pathways. This study was aimed at identifying novel NPM/ALK-binding proteins that might contribute to its oncogenic transformation. Using a proteomic approach, several RNA/DNA-binding proteins were found to coimmunoprecipitate with NPM/ALK, including the multifunctional polypyrimidine tract binding proteinassociated splicing factor (PSF). The interaction between NPM/ALK and PSF was dependent on an active ALK kinase domain and PSF was found to be tyrosine-phosphorylated in NPM/ALK-expressing cell lines and in primary ALK(+) ALCL samples. Furthermore, PSF was shown to be a direct substrate of purified ALK kinase domain in vitro, and PSF Tyr293 was identified as the site of phosphorylation. Y293F PSF was not phosphorylated by NPM/ALK and was not delocalized in NPM/ALK(+) cells. The expression of ALK fusion proteins induced delocalization of PSF from the nucleus to the cytoplasm and forced overexpression of PSF-inhibited proliferation and induced apoptosis in cells expressing NPM/ALK. PSF phosphorylation also increased its binding to RNA and decreased the PSF-mediated suppression of GAGE6 expression. These results identify PSF as a novel NPM/ALK-binding protein and substrate, and suggest that PSF function may be perturbed in NPM/ALK-transformed cells.

  19. 77 FR 22791 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2012-04-17

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Health Service Act, as amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises... Thawing and Washing, (4) Access to Transplantation, and (5) Advancing Hematopoietic Stem...

  20. Binding of /sup 125/I-labeled reovirus to cell surface receptors

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, R.L.; Powers, M.L.; Rogart, R.B.; Weiner, H.L.

    1984-02-01

    Quantitative studies of /sup 125/I-labeled reovirus binding at equilibrium to several cell types was studied, including (1) murine L cell fibroblasts; (2) murine splenic T lymphocytes; (3) YAC cells, a murine lymphoma cell line; and (4) R1.1 cells, a murine thymoma cell line. Competition and saturation studies demonstrated (1) specific, saturable, high-affinity binding of reovirus types 1 and 3 to nonidentical receptors on L cell fibroblasts; (2) high-affinity binding of type 3 reovirus to murine splenic lymphocytes and R1.1 cells; (3) low-affinity binding of reovirus type 1 to lymphocytes and R1.1 cells; and (4) no significant binding of either serotype to YAC cells. Differences in the binding characteristics of the two reovirus serotypes to L cell fibroblasts were found to be a property of the viral hemagglutinin, as demonstrated using a recombinant viral clone. The equilibrium dissociation constant (Kd) for viral binding was of extremely high affinity (Kd in the range of 0.5 nM), and was slowly reversible. Experiments demonstrated temperature and pH dependence of reovirus binding and receptor modification studies using pronase, neuraminidase, and various sugars confirmed previous studies that reovirus receptors are predominantly protein in structure. The reovirus receptor site density was in the range of 2-8 X 10(4) sites/cell. These studies demonstrate that the pseudo-first-order kinetic model for ligand-receptor interactions provides a useful model for studying interactions of viral particles with membrane viral receptors. They also suggest that one cell may have distinct receptor sites for two serotypes of the same virus, and that one viral serotype may bind with different kinetics depending on the cell type.

  1. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    Science.gov (United States)

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  2. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  3. Development and application of resistive pulse spectroscopy: studies on the size, form and deformability of red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Yee, J.P.

    1979-01-01

    The following studies were conducted using the resistive pulse spectroscopy (RPS) technique: cumulative spectra and individual pulse forms for rigid latex polymer spheres; acquisition and analysis of RPS spectral data by means of special computer program; interaction of red blood cells with glutaraldehyde; membrane properties of erythrocytes undergoing abrupt osmotic hemolysis; reversible effects of the binding of chlorpromazine HCl at the red cell membrane surface; effects of high cholesterol diet on erythrocytes of guinea pigs; and multi-population analysis for a mixture of fetal and maternal red cells. (HLW)

  4. Interleukin-15 Promotes the Commitment of Cord Blood CD34+ Stem Cells into NK Cells

    Institute of Scientific and Technical Information of China (English)

    张建; 夏青; 孙汭; 田志刚

    2004-01-01

    To explore the effect of rhlL-15 on CB-CD34+ stem cells committing to NK cells, CD34+ stem cells were obtained from cord blood (CB) by magnetic-assisted cell sorting (MACS) method. CD3, CD16 and CD56 molecules expressed on cell surface were detected by flow cytometer. MTF method was used to test the cytotoxicity of NK cells. The results were that stem cell factor (SCF) alone has no effect on CD34+ stem cells. IL-15 stimulated CD34+ stem cells commit to NK cells, and SCF showed strong synergistic effect with IL-15. It was concluded that IL-15 and SCF played different roles during NK cell development, llr15 promoted CD34+ stem cells differentiate to NK cell precursor and SCF improved the effectsof IL-15 on NK cell differentiation.

  5. In-vitro stem cell derived red blood cells for transfusion: are we there yet?

    Science.gov (United States)

    Kim, Hyun Ok

    2014-03-01

    To date, the use of red blood cells (RBCs) produced from stem cells in vitro has not proved practical for routine transfusion. However, the perpetual and widespread shortage of blood products, problems related to transfusion-transmitted infections, and new emerging pathogens elicit an increasing demand for artificial blood. Worldwide efforts to achieve the goal of RBC production through stem cell research have received vast attention; however, problems with large-scale production and cost effectiveness have yet to prove practical usefulness. Some progress has been made, though, as cord blood stem cells and embryonic stem cells have shown an ability to differentiate and proliferate, and induced pluripotent stem cells have been shown to be an unlimited source for RBC production. However, transfusion of stem cell-derived RBCs still presents a number of challenges to overcome. This paper will summarize an up to date account of research and advances in stem cell-derived RBCs, delineate our laboratory protocol in producing RBCs from cord blood, and introduce the technological developments and limitations to current RBC production practices.

  6. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  7. CD1c+ blood dendritic cells have Langerhans cell potential.

    Science.gov (United States)

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  8. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  9. Binding of peanut lectin to germinal-centre cells: a marker for B-cell subsets of follicular lymphoma?

    OpenAIRE

    De Rose, M L; Habeshaw, J A; R. Kennedy; Sloane, J.; Wiltshaw, E; Davies, A. J.

    1981-01-01

    The binding of horseradish-peroxidase-labelled peanut lectin (HRP-PNL) to cryostat sections of tonsil, lymphoma lymph nodes, reactive lymph nodes and miscellaneous tumours demonstrated that PNL binds selectively to lymphocytes in germinal centres. Lymph nodes from 21 patients with non-Hodgkin's lymphomas were phenotyped as cell suspensions for PNL binding, and the following surface markers: E rosetting, C3d, SIg, OK markers of T-cell subsets, Ig heavy-chain and light-chain classes. There was ...

  10. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    Science.gov (United States)

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  11. Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study.

    NARCIS (Netherlands)

    Evers, D.; Middelburg, R.A.; Haas, M. de; Zalpuri, S.; Vooght, K.M. De; Kerkhof, D. van de; Visser, O; Pequeriaux, N.C.V.; Hudig, F.; Schonewille, H.; Zwaginga, J.J.; Bom, J.G. Van Der

    2016-01-01

    BACKGROUND: Matching donor red blood cells based on recipient antigens prevents alloimmunisation. Knowledge about the immunogenicity of red-blood-cell antigens can help optimise risk-adapted matching strategies. We set out to assess the immunogenicity of red-blood-cell antigens. METHODS: In an incid

  12. Utilization and quality of cryopreserved red blood cells in transfusion medicine

    NARCIS (Netherlands)

    Henkelman, S.; Noorman, F.; Badloe, J. F.; Lagerberg, J. W. M.

    2015-01-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular det

  13. Development and testing of a new disposable sterile device for labelling white blood cells

    NARCIS (Netherlands)

    Signore, A.; Glaudemans, A. W. J. M.; Malviya, G.; Lazzeri, E.; Prandini, N.; Viglietti, A. L.; De Vries, E. F. J.; Dierckx, R. A. J. O.

    2012-01-01

    Aim. White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well eq

  14. Isolation of the phagocytosis-inducing IgG-binding antigen on senescent somatic cells

    Science.gov (United States)

    Kay, Marguerite M. B.

    1981-02-01

    To remove senescent red blood cells (RBCs) from the circulation, macrophages must distinguish them from mature RBCs. That is achieved by a specific recognition system1,2. An antigen that develops on the surface of a senescing RBC is recognized and bound by the Fab region1 of an IgG autoantibody in the serum2. Subsequently the Fc region of the autoantibody is recognized and bound by a macrophage3, which proceeds to phagocytose the RBC. The antigenic molecule can be extracted from senescent but not young RBCs with Triton X-100 (ref. 4), although 10-30% as much antigen can be extracted from middle-aged as from senescent RBCs4. I have now used IgG autoantibodies eluted from senescent RBCs to isolate and purify the IgG-binding antigen on senescent RBCs, andto detect the antigen on other somatic cells. The antigen is a ~=62,000-Mr protein which is present on stored platelets, lymphocytes and neutrophils, and on cultured human adult liver and embryonic kidney cells, as well as senescent RBCs.

  15. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson's disease.

    Science.gov (United States)

    Si, Lihui; Xu, Tianmin; Wang, Fengzhang; Liu, Qun; Cui, Manhua

    2012-04-01

    X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.

  16. X-box-binding protein 1-modified neural stem cells for treatment of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Lihui Si; Tianmin Xu; Fengzhang Wang; Qun Liu; Manhua Cui

    2012-01-01

    X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson's disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson's disease in rats.

  17. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  18. Utilization and quality of cryopreserved red blood cells in transfusion medicine.

    Science.gov (United States)

    Henkelman, S; Noorman, F; Badloe, J F; Lagerberg, J W M

    2015-02-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized.

  19. Macrophages in T cell/histiocyte rich large B cell lymphoma strongly express metal-binding proteins and show a bi-activated phenotype.

    Science.gov (United States)

    Hartmann, Sylvia; Tousseyn, Thomas; Döring, Claudia; Flüchter, Patricia; Hackstein, Holger; Herreman, An; Ponzoni, Maurilio; de Wolf-Peeters, Chris; Facchetti, Fabio; Gascoyne, Randy D; Küppers, Ralf; Steidl, Christian; Hansmann, Martin-Leo

    2013-12-01

    Abundant macrophage infiltration in tumors often correlates with a poor prognosis. T cell/histiocyte rich large B cell lymphoma (THRLBCL) is a distinct aggressive B cell lymphoma entity showing a high macrophage content. To further elucidate the role of tumor-associated macrophages in THRLBCL, we performed gene expression profiling of microdissected histiocyte subsets of THRLBCL, nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), Piringer lymphadenitis, sarcoidosis, nonspecific lymphadenitis and monocytes from peripheral blood. In a supervised principal component analysis, histiocytes from THRLBCL were most closely related to epithelioid cells from NLPHL, with both types of cells expressing genes related to proinflammatory and regulatory macrophage activity. Moreover, histiocytes from THRLBCL strongly expressed metal-binding proteins like MT2A, by which histiocytes of THRLBCL can be distinguished from the other histiocyte subsets investigated. Interestingly, the validation at the protein level showed a strong expression of TXN, CXCL9, MT2A and SOD2 not only in macrophages of THRLBCL but also in the tumor cells of NLPHL and classical Hodgkin lymphoma (cHL). Overall, the present findings indicate that macrophages in the microenvironment of THRLBCL have acquired a distinct gene expression pattern that is characterized by a mixed M1/M2 phenotype and a strong expression of several metal binding proteins. The microenvironments in NLPHL and THRLBCL appear to have a similar influence on the macrophage phenotype. The high expression of metal binding proteins in histiocytes of THRLBCL may be diagnostically useful, but a potential pathophysiological role remains to be identified.

  20. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  1. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.

    Directory of Open Access Journals (Sweden)

    Guixin Shi

    Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.

  2. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    Science.gov (United States)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  3. Characterisation of the Immunomodulatory Effects of Meningococcal Opa Proteins on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Claire Jones

    Full Text Available Opa proteins are major surface-expressed proteins located in the Neisseria meningitidis outer membrane, and are potential meningococcal vaccine candidates. Although Opa proteins elicit high levels of bactericidal antibodies following immunisation in mice, progress towards human clinical trials has been delayed due to previous findings that Opa inhibits T cell proliferation in some in vitro assays. However, results from previous studies are conflicting, with different Opa preparations and culture conditions being used. We investigated the effects of various Opa+ and Opa- antigens from N. meningitidis strain H44/76 in a range of in vitro conditions using peripheral blood mononuclear cells (PBMCs and purified CD4+ T cells, measuring T cell proliferation by CFSE dilution using flow cytometry. Wild type recombinant and liposomal Opa proteins inhibited CD4+ T cell proliferation after stimulation with IL-2, anti-CD3 and anti-CD28, and these effects were reduced by mutation of the CEACAM1-binding region of Opa. These effects were not observed in culture with ex vivo PBMCs. Opa+ and Opa- OMVs did not consistently exert a stimulatory or inhibitory effect across different culture conditions. These data do not support a hypothesis that Opa proteins would be inhibitory to T cells if given as a vaccine component, and T cell immune responses to OMV vaccines are unlikely to be significantly affected by the presence of Opa proteins.

  4. Lowering of blood pressure by increasing hematocrit with non nitric oxide scavenging red blood cells.

    Science.gov (United States)

    Salazar Vázquez, Beatriz Y; Cabrales, Pedro; Tsai, Amy G; Johnson, Paul C; Intaglietta, Marcos

    2008-02-01

    Isovolemic exchange transfusion of 40% of the blood volume in awake hamsters was used to replace native red blood cells (RBCs) with RBCs whose hemoglobin (Hb) was oxidized to methemoglobin (MetHb), MetRBCs. The exchange maintained constant blood volume and produced different final hematocrits (Hcts), varying from 48 to 62% Hct. Mean arterial pressure (MAP) did not change after exchange transfusion, in which 40% of the native RBCs were replaced with MetRBCs, without increasing Hct. Increasing Hct with MetRBCs lowered MAP by 12 mm Hg when Hct was increased 12% above baseline. Further increases of Hct with MetRBCs progressively returned MAP to baseline, which occurred at 62% Hct, a 30% increase in Hct from baseline. These observations show a parabolic "U" shaped distribution of MAP against the change in Hct. Cardiac index, cardiac output divided by body weight, increased between 2 and 17% above baseline for the range of Hcts tested. Peripheral vascular resistance (VR) was decreased 18% from baseline when Hct was increased 12% from baseline. VR and MAP were above baseline for increases in Hct higher than 30%. However, vascular hindrance, VR normalized by blood viscosity (which reflects the contribution of vascular geometry), was lower than baseline for all the increases in Hct tested with MetRBC, indicating prevalence of vasodilation. These suggest that acute increases in Hct with MetRBCs increase endothelium shear stress and stimulate the production of vasoactive factors (e.g., nitric oxide [NO]). When MetRBCs were compared with functional RBCs, vasodilation was augmented for MetRBCs probably due to the lower NO scavenging of MetHb. Consequently, MetRBCs increased the viscosity related hypotension range compared with functional RBCs as NO shear stress vasodilation mediated responses are greater.

  5. Blood

    Science.gov (United States)

    ... Also, blood is either Rh-positive or Rh-negative. So if you have type A blood, it's either A positive or A negative. Which type you are is important if you need a blood transfusion. And your Rh factor could be important ...

  6. Contribution of explicit solvent effects to the binding affinity of small-molecule inhibitors in blood coagulation factor serine proteases.

    Science.gov (United States)

    Abel, Robert; Salam, Noeris K; Shelley, John; Farid, Ramy; Friesner, Richard A; Sherman, Woody

    2011-06-06

    The prevention of blood coagulation is important in treating thromboembolic disorders, and several serine proteases involved in the coagulation cascade have been classified as pharmaceutically relevant. Whereas structure-based drug design has contributed to the development of some serine protease inhibitors, traditional computational methods have not been able to fully describe structure-activity relationships (SAR). Here, we study the SAR for a number of serine proteases by using a method that calculates the thermodynamic properties (enthalpy and entropy) of the water that solvates the active site. We show that the displacement of water from specific subpockets (such as S1-4 and the ester binding pocket) of the active site by the ligand can govern potency, especially for cases in which small chemical changes (i.e., a methyl group or halogen) result in a substantial increase in potency. Furthermore, we describe how relative binding free energies can be estimated by combining the water displacement energy with complementary terms from an implicit solvent molecular mechanics description binding.

  7. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  8. Analysis of White Blood Cell Dynamics in Nailfold Capillaries

    Science.gov (United States)

    Bourquard, Aurélien; Butterworth, Ian; Sánchez-Ferro, Alvaro; Giancardo, Luca; Soenksen, Luis; Cerrato, Carolina; Flores, Rafael; Castro-González, Carlos

    2016-01-01

    Based on video data acquired with low-cost, portable microscopy equipment, we introduce a semi-automatic method to count visual gaps in the blood flow as a proxy for white blood cells (WBC) passing through nailfold capillaries. Following minimal user interaction and a pre-processing stage, our method consists in the spatio-temporal segmentation and analysis of capillary profiles. Besides the mere count information, it also estimates the speed associated with every WBC event. The accuracy of our algorithm is validated through the analysis of two capillaries acquired from one healthy subject. Results are compared with manual counts from four human raters and confronted with related physiological data reported in literature. PMID:26738019

  9. Metabolic pathways that correlate with post-transfusion circulation of stored murine red blood cells.

    Science.gov (United States)

    de Wolski, Karen; Fu, Xiaoyoun; Dumont, Larry J; Roback, John D; Waterman, Hayley; Odem-Davis, Katherine; Howie, Heather L; Zimring, James C

    2016-05-01

    Transfusion of red blood cells is a very common inpatient procedure, with more than 1 in 70 people in the USA receiving a red blood cell transfusion annually. However, stored red blood cells are a non-uniform product, based upon donor-to-donor variation in red blood cell storage biology. While thousands of biological parameters change in red blood cells over storage, it has remained unclear which changes correlate with function of the red blood cells, as opposed to being co-incidental changes. In the current report, a murine model of red blood cell storage/transfusion is applied across 13 genetically distinct mouse strains and combined with high resolution metabolomics to identify metabolic changes that correlated with red blood cell circulation post storage. Oxidation in general, and peroxidation of lipids in particular, emerged as changes that correlated with extreme statistical significance, including generation of dicarboxylic acids and monohydroxy fatty acids. In addition, differences in anti-oxidant pathways known to regulate oxidative stress on lipid membranes were identified. Finally, metabolites were identified that differed at the time the blood was harvested, and predict how the red blood cells perform after storage, allowing the potential to screen donors at time of collection. Together, these findings map out a new landscape in understanding metabolic changes during red blood cell storage as they relate to red blood cell circulation.

  10. Why and how does collective red blood cells motion occur in the blood microcirculation?

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Asmi, Lassaad El; Misbah, Chaouqi

    2012-10-01

    The behaviour of red blood cells (RBCs), modelled as vesicles, in Poiseuille flow, mimicking the microvasculature, is studied with numerical simulations in two dimensions. RBCs moving in the centre of the Poiseuille flow (as in blood capillaries) are shown to attract each other and form clusters only due to hydrodynamic interactions, provided that their distance at a given time is below a certain critical value. This distance depends on physical parameters, such as the flow strength. Our simulations reveal that clusters are unstable above a threshold value in the number of forming RBCs, beyond which one or few cells escape the pack by a self-regulating mechanism that select the marginally stable size. This size selection depends on the flow strength as well as on the RBC swelling ratio. The results are interpreted via the analysis of the perturbation of the flow field induced by the vesicles and the interplay with bending and tension forces. This sheds a novel light on the process of collective motion of RBCs observed in vivo.

  11. Manipulation on human red blood cells with femtosecond optical tweezers

    Institute of Scientific and Technical Information of China (English)

    Ming Zhou; Haifeng Yang; Jianke Di; Enlan Zhao

    2008-01-01

    Different types of femtosecond optical tweezers have become a powerful tool in the modern biological field. However, how to control the irregular targets, including biological cells, using femtosecond optical tweezers remains to be explored. In this study, human red blood cells (hRBCs) are manipulated with femtosecond optical tweezers, and their states under different laser powers are investigated. The results indicate that optical potential traps only can capture the edge of hRBCs under the laser power from 1.4 to 2.8 mW, while it can make hRBCs turn over with the laser power more than 2.8 roW. It is suggested that femtosecond optical tweezers could not only manipulate biological cells, but also subtly control its states by adjusting the laser power.

  12. The role of antigen specificity in the binding of murine monoclonal anti-DNA antibodies to microparticles from apoptotic cells.

    Science.gov (United States)

    Ullal, Anirudh J; Marion, Tony N; Pisetsky, David S

    2014-10-01

    Antibodies to DNA (anti-DNA) are the serological hallmark of systemic lupus erythematosus and markers of underlying immune system disturbances. These antibodies bind to both single-stranded and double-stranded DNA, mediating pathogenesis by forming immune complexes. As shown recently, DNA in blood exists in both free and particulate forms, with DNA representing an important component of microparticles. Microparticles are membrane-bound vesicles containing nuclear molecules, released by membrane blebbing during cell death and activation. A panel of monoclonal NZB/NZW F1 anti-DNA antibodies was tested for binding to microparticles generated from apoptotic THP-1 and Jurkat cells. These studies showed that only certain anti-DNA antibodies in the panel, specific for double-stranded DNA, bound to microparticles. Binding to particles was reduced by soluble DNA or DNase treatment. Together, these results indicate that particle binding is a feature of only certain anti-DNA antibodies, reflecting immunochemical properties of the antibodies and the nature of the exposed DNA antigens.

  13. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.

    Science.gov (United States)

    Wang, Mingjun; Tang, Sheila T; Stryhn, Anette; Justesen, Sune; Larsen, Mette V; Dziegiel, Morten H; Lewinsohn, David M; Buus, Søren; Lund, Ole; Claesson, Mogens H

    2011-04-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.

  14. Spectrophotometric determination of total proteins in blood plasma: a comparative study among dye-binding methods

    OpenAIRE

    Dimas Augusto Morozin Zaia; Fábio Rangel Marques; Cássia Thaïs Bussamra Vieira Zaia

    2005-01-01

    A comparative study between the biuret method (standard method for total proteins) and spectrophotometric methods using dyes (Bradford, 3',3",5',5"-tetrabromophenolphthalein ethyl ester-TBPEE, and erythrosin-B) was carried out for the determination of total proteins in blood plasma from rats. Bradford method showed the highest sensitivity for proteins and biuret method showed the lowest. For all the methods, the absorbance for different proteins (BSA, casein, and egg albumin) was measured and...

  15. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  16. Production of Induced Pluripotent Stem Cells by Reprogramming of Blood Cells

    Directory of Open Access Journals (Sweden)

    Sadia Zia

    2011-06-01

    Full Text Available Blood cells are the simple, efficient and economical source for the production of induced pluripotent cells. The discovery of induced pluripotent cells was not novel; it was pedestal on the scientific principals and technologies which have been developed over last six decades. These are nuclear transfer and the cloning of Animals, Pluripotent cell lines and fusion hybrids and Transcription Factors and lineage switching. The use of human embryonic stem cells in regenerative medicines was a breakthrough but make use of these cells arise ethical issues as they are obtained from human embryos. An alternative advancement using induced pluripotent stem cells, which mimics the embryonic stem cells has the significant gain that they replaced the embryonic stem cells. The pluripotent cells can be induced from terminally differentiated somatic cells by the Induction of only four defined factors including c-Myc, klf4, Oct4 and Sox2 which are enough to alter the fate of cell.

  17. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Samad Ibitokou

    Full Text Available Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery. We used ex vivo flow cytometry to identify peripheral blood mononuclear cell (PBMC profiles that are associated with PAM and anaemia, determining the phenotypic composition and activation status of PBMC in selected sub-groups with and without PAM both at inclusion and at delivery in a total of 302 women. Both at inclusion and at delivery PAM was associated with significantly increased frequencies both of B cells overall and of activated B cells. Infection-related profiles were otherwise quite distinct at the two different time-points. At inclusion, PAM was associated with anaemia, with an increased frequency of immature monocytes and with a decreased frequency of regulatory T cells (Treg. At delivery, infected women presented with significantly fewer plasmacytoid dendritic cells (DC, more myeloid DC expressing low levels of HLA-DR, and more effector T cells (Teff compared to uninfected women. Independent associations with an increased risk of anaemia were found for altered antigen-presenting cell frequencies at inclusion, but for an increased frequency of Teff at delivery. Our findings emphasize the prominent role played by B cells during PAM whenever it arises during pregnancy, whilst also revealing signature changes in other circulating cell types that, we conclude, primarily reflect the relative duration of the infections. Thus, the acute, recently-acquired infections present at delivery were marked by changes in DC and Teff frequencies, contrasting with infections at inclusion, considered chronic in

  18. Significance of affinity and cooperativity in oxygen binding to hemoglobin of horse fetal and maternal blood.

    Science.gov (United States)

    Zhang, Yan; Kobayashi, Keiko; Sasagawa, Keisuke; Imai, Kiyohiro; Kobayashi, Michiyori

    2003-09-01

    The physiological significance of the position and shape of the oxygen equilibrium curve (OEC) of horse hemoglobin (Hb) is considered from the viewpoint of oxygen (O2) transport efficiency and the effectiveness of the Bohr effect. In horse fetal and maternal bloods, their physiological O2 affinities are nearly optimized with respect to the effectiveness of the Bohr shift occurring at the O2 release site, when it is measured by the change in O2 saturation per unit change in P50. With relatively low cooperativity (n=2.69) of horse Hb under physiological conditions, the effectiveness of the Bohr shift for fetal blood at O2 uptake site and maternal blood at O2 release site is high. These facts imply that the position and the cooperativity of horse Hb OEC are optimized to receive maximal benefit from the double Bohr shift. Before exercise, the position of the OEC for adult mares is nearly optimized for the effectiveness of the Bohr shift occurring at the O2 release site, whereas, at maximal exercise, the position of the OEC tends to become advantageous for O2 transport efficiency.

  19. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

    Directory of Open Access Journals (Sweden)

    Soheir Korraa1, Tawfik M.S.1, Mohamed Maher 2 and Amr Zaher

    2014-07-01

    Full Text Available Background: The aim of the present study was to evaluate the rejuvenation capacity among cardiac catheterization technicians occupationally exposed to ionizing radiation. Subjects and methods: The individual annual collective dose information was measured by thermoluminscent personal dosimeters (TLD for those technicians and found to be ranging between 2.16 and 8.44 mSv/y. Venous blood samples were obtained from 30 cardiac catheterization technicians exposed to X-ray during fluoroscopy procedures at the National Heart Institute in Embaba. The control group involved 25 persons not exposed to ionizing radiation and not working in hospitals in addition to 20 persons not exposed to ionizing radiation and working in hospitals. Blood samples were assayed for total and differential blood counts, micronucleus formation (FMN plasma stromal derived growth factor-1α (SDF-1 α and cell phenotype of circulating endothelial progenitor cells (EPCs, whose surface markers were identified as the CD34, CD133 and kinase domain receptors (KDR. Results: SDF-1α (2650± 270 vs. 2170 ± 430 pg/ml and FMN (19.9 ± 5.5 vs. 2.8 ± 1.4/1000 cells were significantly higher among cardiac catheterization staff compared to those of the controls respectively. Similarly, EPCs: CD34 (53 ± 3.9 vs. 48 ± 8.5/105 mononuclear cells, CD133 (62.4 ± 4.8 vs. 54.2 ± 10.6 /105 mononuclear cells KDR (52.7 ± 10.6 vs.43.5± 8.2 /105 mononuclear cells were also significantly higher among cardiac catheterization staff compared to the values of controls respectively. Smoking seemed to have a positive effect on the FMN and SDF-1 but had a negative effect on EPCs. It was found that among cardiac catheterization staff, the numbers of circulating progenitor cells had increased and accordingly there was an increased capacity for tissue repair. Conclusion: In conclusion, the present work shows that occupational exposure to radiation, well within permissible levels, leaves a genetic mark on the

  20. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members

    DEFF Research Database (Denmark)

    Närhi, M; Natri, O; Desbois, I;

    2013-01-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB...

  1. Effects of Cinnamomum zeylanicum treatment on radiolabeling of blood constituents and morphology of red blood cells in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Benarroz, Monica Oliveira; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria]. E-mail: adenilso@uerj.br; Rocha, Gabrielle de Souza; Pereira, Marcia Oliveira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Geller, Mauro [Centro Universitario Serra dos Orgaos, Teresopolis, RJ (Brazil). Centro de Ciencias da Saude; Presta, Giuseppe Antonio [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ (Brazil). Inst. Biomedico. Dept. de Fisiologia Humana

    2008-12-15

    The aim of this study was to evaluate the effect of in vivo treatment with an aqueous cinnamon extract on the labeling of blood constituents with {sup 99m}Tc and on the morphology of red blood cells from Wistar rats. Animals were treated with cinnamon extract at different doses and for different periods of time. As controls, animals treated with 0.9% NaCl. Labeling of blood constituents with {sup 99}mTc was performed. Plasma, blood cells and insoluble fractions were isolated. Radioactivity in each fraction was counted and the percentage of radioactivity (%ATI) was calculated. Also, blood smears were prepared to morphological analysis of red blood cells from. Data showed that in vivo cinnamon extract did not significantly (p>0.05) modify the %ATI of blood constituents and morphology of red blood cells. The results suggest that in vivo aqueous cinnamon could not affect the membrane structures involved in transport of ions or the oxidation state of stannous and pertechnetate ions. (author)

  2. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  3. The enzyme-inhibitor approach to cell-selective labelling. Pt. 1; Sulphonamide inhibitors of carbonic anhydrase as carriers for red cell labelling: in vitro uptake of pIBS by human red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Wyeth, P. (Southampton Univ. (UK))

    1991-01-01

    Red cell carbonic anhydrase is identified as an ideal target in an enzyme-inhibitor approach to radiolabel localisation. Current problems in blood pool labelling could be overcome by using selective sulphonamide inhibitors as carriers. p-Iodobenzenesulphonamide (pIBS) was selected as the choice reagent for red blood cell labelling. Rapid uptake of ({sup 125}I)-pIBS was found in vitro, consistent with passive diffusion across the cell membrane. The intracellular binding could be attributed to interaction with two specific acceptor sites, with dissociation constants of 4.9 +- 1.0 and 0.10+- 0.05 {mu}mol dm{sup -3}, and maximum binding capacities of 166 +- 5 and 19.9 +- 1.0 {mu}mol dm{sup -3}, respectively under the experimental conditions. These data correlate with the two major carbonic anhydrase isozymes; acceptor assignments were confirmed by gel chromatography of the red cell lysate. (author).

  4. Measuring skewness of red blood cell deformability distribution by laser ektacytometry

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S Yu; Priezzhev, A V; Lugovtsov, A E [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Ustinov, V D [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)

    2014-08-31

    An algorithm is proposed for measuring the parameters of red blood cell deformability distribution based on laser diffractometry of red blood cells in shear flow (ektacytometry). The algorithm is tested on specially prepared samples of rat blood. In these experiments we succeeded in measuring the mean deformability, deformability variance and skewness of red blood cell deformability distribution with errors of 10%, 15% and 35%, respectively. (laser biophotonics)

  5. General coarse-grained red blood cell models: I. Mechanics

    OpenAIRE

    FEDOSOV, DMITRY A.; Caswell, Bruce; Karniadakis, George E.

    2009-01-01

    We present a rigorous procedure to derive coarse-grained red blood cell (RBC) models, which lead to accurate mechanical properties of realistic RBCs. Based on a semi-analytic theory linear and non-linear elastic properties of the RBC membrane can be matched with those obtained in optical tweezers stretching experiments. In addition, we develop a nearly stress-free model which avoids a number of pitfalls of existing RBC models, such as non-biconcave equilibrium shape and dependence of RBC mech...

  6. Manipulation of microparticles and red blood cells using optoelectronic tweezers

    Indian Academy of Sciences (India)

    R S Verma; R Dasgupta; N Kumar; S Ahlawat; A Uppal; P K Gupta

    2014-02-01

    We report the development of an optoelectronic tweezers set-up which works by lightinduced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photoconductive layer on ITO-coated glass slide. Compare to the conventional optical tweezers, the technique requires optical power in W range and provides a manipulation area of a few mm2. The set-up was used to manipulate the polystyrene microspheres and red blood cells (RBCs). The RBCs could be attracted or repelled by varying the frequency of the applied AC bias.

  7. Swinging of red blood cells under shear flow

    CERN Document Server

    Abkarian, M; Viallat, A; Abkarian, Manouk; Faivre, Magalie; Viallat, Annie

    2007-01-01

    We reveal that under moderate shear stress (of the order of 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tanktreading (TT) motion. A model based on a fluid ellipsoid surrounded by a visco-elastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing the shear stress, a shear stress-triggered transition towards a narrow shear stress-range intermittent regime of successive swinging and tumbling, and a pure tumbling motion at lower shear stress-values.

  8. The nature of multiphoton fluorescence from red blood cells

    Science.gov (United States)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  9. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    Directory of Open Access Journals (Sweden)

    B. T. Dzumabaeva

    2011-01-01

    Full Text Available The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19 is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis germs, thus to reduce the pancytopenia associating complications in this population. 

  10. DETERMINANTS OF RED-BLOOD-CELL DEFORMABILITY IN RELATION TO CELL AGE

    NARCIS (Netherlands)

    BOSCH, FH; WERRE, JM; ROERDINKHOLDERSTOELWINDER, B; HULS, T; WILLEKENS, FLA; WICHERS, G; HALIE, MR

    1994-01-01

    Red blood cell (RBC) deformability was determined with an ektacytometer in fractions separated on the basis of differences in cell volume or density. Deformability was measured with ektacytometry (rpm-scan and osmo-scan). We studied three groups of RBC fractions:l. By counterflow centrifugation we o

  11. Lectin binding patterns and carbohydrate mediation of sperm binding to llama oviductal cells in vitro.

    Science.gov (United States)

    Apichela, Silvana A; Valz-Gianinet, Jorge N; Schuster, Stefanie; Jiménez-Díaz, María A; Roldán-Olarte, Eugenia M; Miceli, Dora C

    2010-04-01

    Sperm binding to oviductal epithelium would be involved in sperm reservoir formation in the utero tubal junction (UTJ). Although in other mammals sperm-oviduct interaction has been proved to be mediated by carbohydrate-recognition mechanisms, the factors implicated in the sperm adhesion to oviductal epithelium of llama are still unknown. In order to assess the role of carbohydrates present in the mucosa surface, we examined the distribution of glycoconjugates in the llama oviduct by confocal lectin-histochemistry. Mannosyl, glucosyl, N-acetylglucosaminyl, galactosyl, N-acetylgalactosaminyl and sialic acid residues were detected in the oviductal mucose glycocalyx. By incubation of UTJ oviductal explants with LCA, DBA, UEA-1 or PNA lectin previous to co-culture with sperm, we observed a significant decrease in sperm binding only with LCA lectin. In the mucosa surface there were numerous d-glucosyl and D-manosyl residues, which were spotted by this lectin. Probably, this fact promotes the whole covering of the oviduct luminal surface by the sugar-lectin complex, preventing sperm access and adhesion of further residues. However, sperm incubation with mannose or glucose does not significantly prevent binding, which means that glucose and mannose would not be involved in a specific sperm-oviduct interaction. On the other hand, we observed a high reduction in sperm binding to UTJ explants with N-acetylgalactosamine and galactose (pllama sperm have lectin-like molecules in their surface, as is the case in other mammals. Probably, these lectin-like molecules, by means of N-acetylgalactosamine and galactose recognition, could link the sperm to the oviductal mucosa with the purpose of forming storing sites in the UTJ. Our results support the idea that more than one carbohydrate could participate in sperm reservoir formation in the llama UTJ oviductal segment.

  12. Efficient induction of pluripotent stem cells from menstrual blood.

    Science.gov (United States)

    Li, Yang; Li, Xiaoni; Zhao, Hongxi; Feng, Ruopeng; Zhang, Xiaoyan; Tai, Dapeng; An, Guangyu; Wen, Jinhua; Tan, Jichun

    2013-04-01

    The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs.

  13. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction.

    Science.gov (United States)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh; Jensen, Frank B; Wang, Tobias; Bayley, Mark

    2015-06-01

    Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.

  14. Binding properties of a blood group Le(a+) active sialoglycoprotein, purified from human ovarian cyst, with applied lectins.

    Science.gov (United States)

    Wu, A M; WU, J H; Watkins, W M; Chen, C P; Tsai, M C

    1996-06-07

    Studies on the structures and binding properties of the glycoproteins, purified from human ovarian cyst fluids, will aid the understanding of the carbohydrate alterations occurring during the biosynthesis of blood group antigens and neoplasm formation. These glycoproteins can also serve as important biological materials to study blood group A, B, H, Le(a), Le(b), Le(x), Le(y), T and Tn determinants, precursor type I and II sequences and cold agglutinin I and i epitopes. In this study, the binding property of a cyst glycoprotein from a human blood group Le(a+) nonsecretor individual, that contains an unusually high amount (18%) of sialic acid (HOC 350) was characterized by quantitative precipitin assay with a panel of lectins exhibiting a broad range of carbohydrate-binding specificities. Native HOC 350 reacted well only with three out of nineteen lectins tested. It precipitated about 80% of Ricinus communis (RCA1), 50% of Triticum vulgaris (WGA) and 37% of Bauhinia purpurea aba (BPA) agglutinins, respectively. However, its asialo product had dramatically enhanced reactivity and reacted well with many I/II (Gal beta1 --> 3/4GcNAc), T(Gal beta1 --> 3GalNAc) and Tn(GaNIAc alphaI --> Ser/Thr) active lectins. It bound best to Jacalin, BPA, and abrin-a and completely precipitated all the lectins added. Asialo-HOC 350 also reacted strongly with Wistaria floribunda, Abrus precatorius agglutinin, ricin and RCA1 and precipitated over 75% of the lectin nitrogen added, and moderately with Arachis hypogaea, Maclura pomifera, WGA, Vicia viosa-B4, Codium fragile tomentosoides and Ulex europaeus-II. But native HOC 350 and its asialo product reacted not at all or poorly with Dolichos biflorus, Helix pomatia, Lotus tetra-gonolobus, Ulex europaeus-I, Lens culinaris lectins and Con A. The lectin-glycoform interactions through bioactive sugars were confirmed by precipitin inhibition assay. Mapping the precipitation profiles of the interactions have led to the conclusion that HOC 350

  15. Photodynamic treatment of red blood cell concentrates for virus inactivation enhances red blood cell aggregation: protection with antioxidants.

    Science.gov (United States)

    Ben-Hur, E; Barshtein, G; Chen, S; Yedgar, S

    1997-10-01

    Photodynamic treatment (PDT) using phthalocyanines and red light appears to be a promising procedure for decontamination of red blood cell (RBC) concentrates for transfusion. A possible complication of this treatment may be induced aggregation of RBC. The production of RBC aggregates was measured with a novel computerized cell flow properties analyzer (CFA). The PDT of RBC concentrates with sulfonated aluminum phthalocyanine (AIPcS4) and the silicon phthalocyanine Pc 4 under virucidal conditions markedly enhanced RBC aggregation and higher shear stress was required to disperse these aggregates. The clusters of cells were huge and abnormally shaped, unlike the rouleaux formed by untreated RBC. This aggregation was prevented when a mixture of antioxidants was included during PDT. Addition of the antioxidants after PDT reduced aggregation only partially. It is concluded that inclusion of antioxidants during PDT of RBC concentrates prior to transfusion may reduce or eliminate the hemodynamic risk that the virucidal treatment may present to the recipient.

  16. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels

    CERN Document Server

    Wang, Tong; Xing, Zhongwen

    2016-01-01

    Blood exhibits a heterogeneous nature of hematocrit, velocity, and effective viscosity in microcapillaries. Microvascular bifurcations have a significant influence on the distribution of the blood cells and blood flow behavior. This paper presents a simulation study performed on the two-dimensionalmotions and deformation of multiple red blood cells in microvessels with diverging and converging bifurcations. Fluid dynamics and membrane mechanics were incorporated. Effects of cell shape, hematocrit, and deformability of the cell membrane on rheological behavior of the red blood cells and the hemodynamics have been investigated. It was shown that the blood entering the daughter branch with a higher flow rate tended to receive disproportionally more cells. The results also demonstrate that red blood cells in microvessels experienced lateral migration in the parent channel and blunted velocity profiles in both straight section and daughter branches, and this effect was influenced by the shape and the initial posit...

  17. Biological effects of the electrostatic field: red blood cell-related alterations of oxidative processes in blood

    Science.gov (United States)

    Harutyunyan, Hayk A.; Sahakyan, Gohar V.

    2016-01-01

    The aim of this study was to determine activities of pro-/antioxidant enzymes, reactive oxygen species (ROS) content, and oxidative modification of proteins and lipids in red blood cells (RBCs) and blood plasma of rats exposed to electrostatic field (200 kV/m) during the short (1 h) and the long periods (6 day, 6 h daily). Short-term exposure was characterized by the increase of oxidatively damaged proteins in blood of rats. This was strongly expressed in RBC membranes. After long-term action, RBC content in peripheral blood was higher than in control ( P < 0.01) and the attenuation of prooxidant processes was shown.

  18. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    Science.gov (United States)

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.

  19. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells.

    Science.gov (United States)

    Li, Taihang; Jing, Xiabin; Huang, Yubin

    2011-07-07

    In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.

  20. ATP Binding Cassette Transporter Mediates Both Heme and Pesticide Detoxification in Tick Midgut Cells.

    Directory of Open Access Journals (Sweden)

    Flavio Alves Lara

    Full Text Available In ticks, the digestion of blood occurs intracellularly and proteolytic digestion of hemoglobin takes place in a dedicated type of lysosome, the digest vesicle, followed by transfer of the heme moiety of hemoglobin to a specialized organelle that accumulates large heme aggregates, called hemosomes. In the present work, we studied the uptake of fluorescent metalloporphyrins, used as heme analogs, and amitraz, one of the most regularly used acaricides to control cattle tick infestations, by Rhipicephalus (Boophilus microplus midgut cells. Both compounds were taken up by midgut cells in vitro and accumulated inside the hemosomes. Transport of both molecules was sensitive to cyclosporine A (CsA, a well-known inhibitor of ATP binding cassette (ABC transporters. Rhodamine 123, a fluorescent probe that is also a recognized ABC substrate, was similarly directed to the hemosome in a CsA-sensitive manner. Using an antibody against conserved domain of PgP-1-type ABC transporter, we were able to immunolocalize PgP-1 in the digest vesicle membranes. Comparison between two R. microplus strains that were resistant and susceptible to amitraz revealed that the resistant strain detoxified both amitraz and Sn-Pp IX more efficiently than the susceptible strain, a process that was also sensitive to CsA. A transcript containing an ABC transporter signature exhibited 2.5-fold increased expression in the amitraz-resistant strain when compared with the susceptible strain. RNAi-induced down-regulation of this ABC transporter led to the accumulation of metalloporphyrin in the digestive vacuole, interrupting heme traffic to the hemosome. This evidence further confirms that this transcript codes for a heme transporter. This is the first report of heme transport in a blood-feeding organism. While the primary physiological function of the hemosome is to detoxify heme and attenuate its toxicity, we suggest that the use of this acaricide detoxification pathway by ticks may

  1. Deep sequencing and proteomic analysis of the microRNA-induced silencing complex in human red blood cells.

    Science.gov (United States)

    Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver

    2015-05-01

    During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information.

  2. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  3. Blood analyte sensing using fluorescent dye-loaded red blood cells

    Science.gov (United States)

    Ritter, Sarah C.; Shao, Xiaole; Cooley, Nicholas; Milanick, Mark A.; Glass, Timothy E.; Meissner, Kenith E.

    2014-02-01

    Measurement of blood analytes provides crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Due to analyte transporters on red blood cell (RBC) membranes that equilibrate intracellular and extracellular analyte levels, RBCs serve as an attractive alternative for encapsulating analyte sensors. Once reintroduced to the blood stream, the functionalized RBCs may continue to live for the remainder of their life span (120 days for humans). They are biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed sensing system utilizes the ability of the RBCs to swell in response to a decrease in the osmolarity of the extracellular solution. Just before lysis, they develop small pores on the scale of tens of nanometers. While at low temperature, analyte-sensitive dyes in the extracellular solution diffuse into the perforated RBCs and become entrapped upon restoration of temperature and osmolarity. Since the fluorescent signal from the entrapped dye reports on changes in the analyte level of the extracellular solution via the RBC transporters, interactions between the RBCs and the dye are critical to the efficacy of this technique. In this work, we study the use of a near infrared pH sensitive dye encapsulated within RBCs and assess the ability to measure dye fluorescence in vivo.

  4. Binding Strength Between Cell Adhesion Proteoglycans Measured by Atomic Force Microscopy

    Science.gov (United States)

    Dammer, Ulrich; Popescu, Octavian; Wagner, Peter; Anselmetti, Dario; Guntherodt, Hans-Joachim; Misevic, Gradimir N.

    1995-02-01

    Measurement of binding forces intrinsic to adhesion molecules is necessary to assess their contribution to the maintenance of the anatomical integrity of multicellular organisms. Atomic force microscopy was used to measure the binding strength between cell adhesion proteoglycans from a marine sponge. Under physiological conditions, the adhesive force between two cell adhesion molecules was found to be up to 400 piconewtons. Thus a single pair of molecules could hold the weight of 1600 cells. High intermolecular binding forces are likely to form the basis for the integrity of the multicellular sponge organism.

  5. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not

    Institute of Scientific and Technical Information of China (English)

    MinjunYu; ZhifengXiao; LiShen; LingsongLi

    2005-01-01

    Stem cell transplantation is a promising treatment for many conditions.Although stem cells can be isolated from many tissues, blood is the ideal source of these cells due to the ease of collection. Mesenchymal stem cells (MSCs) have been paid increased attention because of their powerful proliferation and pluripotent differentiating ability. But whether MSCs reside in blood (newborn umbilical cord blood and fetal or adult peripheral blood) is also debatable. The present study showed that MSC-like cells could be isolated and expanded from 16-26 weeks fetal blood but were not acquired efficiently from full-term infants' umbilical cord blood (UCB). Adherent cells separated from postnatal UCB were heterogeneous in cell morphology. Their proliferation capacity was limited and they were mainly CD45+, which indicated their haematopoietic derivation. On the contrary, MSC-like cells shared a similar phenotype to bone marrow MSCs. They were CD34- CD45- CD44+ CD71+ CD90+ CD105+. They could be induced to differentiate into osteogenic, adipogenic and neural lineage cells. Single cell clones also showed similar phenotype and differentiation ability. Our results suggest that early fetal blood is rich in MSCs but term UCB is not.

  6. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  7. Stretching and relaxation of malaria-infected red blood cells.

    Science.gov (United States)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2013-09-03

    The invasion of red blood cells (RBCs) by malaria parasites is a complex dynamic process, in which the infected RBCs gradually lose their deformability and their ability to recover their original shape is greatly reduced with the maturation of the parasites. In this work, we developed two types of cell model, one with an included parasite, and the other without an included parasite. The former is a representation of real malaria-infected RBCs, in which the parasite is treated as a rigid body. In the latter, where the parasite is absent, the membrane modulus and viscosity are elevated so as to produce the same features present in the parasite model. In both cases, the cell membrane is modeled as a viscoelastic triangular network connected by wormlike chains. We studied the transient behaviors of stretching deformation and shape relaxation of malaria-infected RBCs based on these two models and found that both models can generate results in agreement with those of previously published studies. With the parasite maturation, the shape deformation becomes smaller and smaller due to increasing cell rigidity, whereas the shape relaxation time becomes longer and longer due to the cell's reduced ability to recover its original shape.

  8. Red blood cell cluster separation from digital images for use in sickle cell disease.

    Science.gov (United States)

    González-Hidalgo, Manuel; Guerrero-Peña, F A; Herold-García, S; Jaume-I-Capó, Antoni; Marrero-Fernández, P D

    2015-07-01

    The study of cell morphology is an important aspect of the diagnosis of some diseases, such as sickle cell disease, because red blood cell deformation is caused by these diseases. Due to the elongated shape of the erythrocyte, ellipse adjustment and concave point detection are applied widely to images of peripheral blood samples, including during the detection of cells that are partially occluded in the clusters generated by the sample preparation process. In the present study, we propose a method for the analysis of the shape of erythrocytes in peripheral blood smear samples of sickle cell disease, which uses ellipse adjustments and a new algorithm for detecting notable points. Furthermore, we apply a set of constraints that allow the elimination of significant image preprocessing steps proposed in previous studies. We used three types of images to validate our method: artificial images, which were automatically generated in a random manner using a computer code; real images from peripheral blood smear sample images that contained normal and elongated erythrocytes; and synthetic images generated from real isolated cells. Using the proposed method, the efficiency of detecting the two types of objects in the three image types exceeded 99.00%, 98.00%, and 99.35%, respectively. These efficiency levels were superior to the results obtained with previously proposed methods using the same database, which is available at http://erythrocytesidb.uib.es/. This method can be extended to clusters of several cells and it requires no user inputs.

  9. Geometric localization of thermal fluctuations in red blood cells

    Science.gov (United States)

    Evans, Arthur A.; Bhaduri, Basanta; Popescu, Gabriel; Levine, Alex J.

    2017-01-01

    The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, “singular lines,” leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes. PMID:28242681

  10. Geometric localization of thermal fluctuations in red blood cells.

    Science.gov (United States)

    Evans, Arthur A; Bhaduri, Basanta; Popescu, Gabriel; Levine, Alex J

    2017-02-27

    The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, "singular lines," leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes.

  11. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective.

    Science.gov (United States)

    Qi, Huayu

    2016-01-01

    Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.

  12. The whole blood oxygen binding properties of a large but presumably sluggish polar elasmobranch, the Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2012-01-01

    Australian and New Zealand Society for Comparative Physiology and Biochemistry. Auckland, N.Z., December 2012. Herbert, N.A.1, Skov, p.V.l, Tirsgaard, B.z and Steffensen, J.F. Z Only a few species of elasmobranch live in cold polar waters and the Greenland shark (Somniosus microcephalus) is the m......Australian and New Zealand Society for Comparative Physiology and Biochemistry. Auckland, N.Z., December 2012. Herbert, N.A.1, Skov, p.V.l, Tirsgaard, B.z and Steffensen, J.F. Z Only a few species of elasmobranch live in cold polar waters and the Greenland shark (Somniosus microcephalus......) is the most notable example. These extremely large and long-lived sharks are thought to be sluggish but their active hunting lifestyle has recently been questioned by the finding of mobile prey species in their stomach (i.e. squid, fish and seal). The whole blood oxygen binding property of S. microcephalus...

  13. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.

    Science.gov (United States)

    Pawar, Parag; Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2008-10-01

    Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.

  14. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  15. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Giovanni Nardo

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments. METHODOLOGY/PRINCIPAL FINDINGS: We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC, a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%, and from patients with neurological disorders that may resemble ALS (91%, between two levels of disease severity (90%, and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing. CONCLUSIONS/SIGNIFICANCE: Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.

  16. 75 FR 62843 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2010-10-13

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Act, as amended) the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises the.... L. 92-463), notice is hereby given of the following meeting: Name: Advisory Council on Blood...

  17. Quantification of the fraction poorly deformable red blood cells using ektacytometry

    NARCIS (Netherlands)

    Streekstra, G.J.; Dobbe, J.G.G.; Hoekstra, A.G.

    2010-01-01

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a la

  18. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    Science.gov (United States)

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  19. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    Science.gov (United States)

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  20. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood

    Science.gov (United States)

    Reisbeck, Mathias; Helou, Michael Johannes; Richter, Lukas; Kappes, Barbara; Friedrich, Oliver; Hayden, Oliver

    2016-09-01

    Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.

  1. Sequence-selective DNA binding with cell-permeable oligoguanidinium-peptide conjugates.

    Science.gov (United States)

    Mosquera, Jesús; Sánchez, Mateo I; Valero, Julián; de Mendoza, Javier; Vázquez, M Eugenio; Mascareñas, José L

    2015-03-21

    Conjugation of a short peptide fragment from a bZIP protein to an oligoguanidinium tail results in a DNA-binding miniprotein that selectively interacts with composite sequences containing the peptide-binding site next to an A/T-rich tract. In addition to stabilizing the complex with the target DNA, the oligoguanidinium unit also endows the conjugate with cell internalization properties.

  2. alpha isoforms of soluble and membrane-linked folate-binding protein in human blood

    DEFF Research Database (Denmark)

    Hoier-Madsen, M.; Holm, J.; Hansen, S.I.

    2008-01-01

    supported the hypothesis that serum FBP (29 kDa) mainly originates from neutrophils. The presence of FBP/FR alpha isoforms were established for the first time in human blood using antibodies specifically directed against human milk FBP alpha. The alpha isoforms identified on erythrocyte membranes...... a non-functional FR beta on the surface, and, in addition, nanomolar concentrations of a secretory functional FBP (29 kDa) can be present in the secondary granules. A statistically significant correlation between the concentrations of functional FBP, probably a gamma isoform, in granulocytes and serum......, and in granulocytes and serum, only constituted an almost undetectable fraction of the functional FBP The FBP alpha in neutrophil granulocytes was identified as a cytoplasmic component by indirect immunofluorescence. Gel filtration of serum revealed a peak of FBP alpha (>120 kDa), which could represent receptor...

  3. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia.

    Science.gov (United States)

    Grau, Marijke; Lauten, Alexander; Hoeppener, Steffen; Goebel, Bjoern; Brenig, Julian; Jung, Christian; Bloch, Wilhelm; Suhr, Frank

    2016-09-12

    The aim was to study impacts of mild to severe hypoxia on human red blood cell (RBC)-nitric oxide synthase (NOS)-dependent NO production, protein S-nitrosylation and deformability.Ambient air oxygen concentration of 12 healthy subjects was step-wisely reduced from 20.95% to 16.21%, 12.35%, 10% and back to 20.95%. Additional in vitro experiments involved purging of blood (±sodium nitrite) with gas mixtures corresponding to in vivo intervention.Vital and hypoxia-associated parameters showed physiological adaptation to changing demands. Activation of RBC-NOS decreased with increasing hypoxia. RBC deformability, which is influenced by RBC-NOS activation, decreased under mild hypoxia, but surprisingly increased at severe hypoxia in vivo and in vitro. This was causatively induced by nitrite reduction to NO which increased S-nitrosylation of RBC α- and β-spectrins -a critical step to improve RBC deformability. The addition of sodium nitrite prevented decreases of RBC deformability under hypoxia by sustaining S-nitrosylation of spectrins suggesting compensatory mechanisms of non-RBC-NOS-produced NO.The results first time indicate a direct link between maintenance of RBC deformability under severe hypoxia by non-enzymatic NO production because RBC-NOS activation is reduced. These data improve our understanding of physiological mechanisms supporting adequate blood and, thus, oxygen supply to different tissues under severe hypoxia.

  4. Interactions of hemoglobin in live red blood cells measured by the electrophoresis release test.

    Science.gov (United States)

    Su, Yan; Gao, Lijun; Ma, Qiang; Zhou, Lishe; Qin, Liangyi; Han, Lihong; Qin, Wenbin

    2010-09-01

    To elucidate the protein-protein interactions of hemoglobin (Hb) variants A and A(2), HbA was first shown to bind with HbA(2) in live red blood cells (RBCs) by diagonal electrophoresis and then the interaction between HbA and HbA(2) outside the RBC was shown by cross electrophoresis. The starch-agarose gel electrophoresis of hemolysate, RBCs, freeze-thawed RBCs and the supernatant of freeze-thawed RBCs showed that the interaction between HbA and HbA(2) was affected by membrane integrity. To identify the proteins involved in the interaction, protein components located between HbA and HbA(2) in RBCs (RBC HbA-HbA(2)) and hemolysate (hemolysate HbA-HbA(2)) were isolated from the starch-agarose gel and separated by 5-12% SDS-PAGE. The results showed that there was a ≈22 kDa protein band located in the RBC HbA-HbA(2) but not in hemolysate HbA-HbA(2). Sequencing by LC/MS/MS showed that this band was a protein complex that included mainly thioredoxin peroxidase B, α-globin, δ-globin and β-globin. Thus, using our unique in vivo whole blood cell electrophoresis release test, Hbs were proven for the first time to interact with other proteins in the live RBC.

  5. The role of the mycobacterial DNA-binding protein 1 (MDP1 from Mycobacterium bovis BCG in host cell interaction

    Directory of Open Access Journals (Sweden)

    Kunisch Ralph

    2012-08-01

    Full Text Available Abstract Background Mycobacterium tuberculosis differs from most pathogens in its ability to multiply inside monocytes and to persist during long periods of time within granuloma in a status of latency. A class of proteins called mycobacterial histone-like proteins has been associated with regulation of replication and latency, but their precise role in the infection process has yet to be uncovered. Our study aimed at defining the impact of the histone-like protein MDP1 from M. bovis BCG (mycobacterial DNA-binding protein 1, corresponding to Rv2986c from M. tuberculosis on early steps of infection. Results Previously, a BCG (Bacillus Calmette Guérin strain had been generated by antisense-technique exhibiting reduced MDP1 expression. This strain was now used to analyse the impact of reduced amount of MDP1 on the interaction with human blood monocytes, macrophage lines and PBMC (peripheral blood mononuclear cells. MDP1 was revealed to be required for growth at acidic pH and for intracellular replication in human blood monocytes. Down-regulation of MDP1 resulted in reduced secretion of the cytokine IL-1β by infected human PBMC. In addition, a reduction of MDP1 expression had a major impact on the formation of fused multi-nucleated macrophages. In monocyte preparations from human blood as well as in human and mouse macrophage cell lines, both the percentage of multi-nucleated cells and the number of nuclei per cell were much enhanced when the monocytes were infected with BCG expressing less MDP1. Conclusion MDP1 from M. bovis BCG affects the growth at acidic pH and the intracellular replication in human monocytes. It furthermore affects cytokine secretion by host cells, and the formation of fused multi-nucleated macrophages. Our results suggest an important role of MDP1 in persistent infection.

  6. Cerebral blood flow in sickle cell cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  7. The where, when, how and why of hyaluronan binding by immune cells

    Directory of Open Access Journals (Sweden)

    Sally S. M. Lee-Sayer

    2015-04-01

    Full Text Available Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues is indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of CD44, the hyaluronan receptor, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.

  8. The where, when, how, and why of hyaluronan binding by immune cells.

    Science.gov (United States)

    Lee-Sayer, Sally S M; Dong, Yifei; Arif, Arif A; Olsson, Mia; Brown, Kelly L; Johnson, Pauline

    2015-01-01

    Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.

  9. 76 FR 19101 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2011-04-06

    .... Bill Young Cell Transplantation Program (Program) and the National Cord Blood Inventory (NCBI) Program...; National Marrow Donor Program (NMDP) Analysis of National Cord Blood Inventory (NCBI) and Non-NCBI...

  10. Novel decapeptides that bind avidly and deliver radioisotope to colon cancer cells.

    Directory of Open Access Journals (Sweden)

    John M Abraham

    Full Text Available The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor-ablating material such as radioisotope, directed against a specific molecule.This report describes the discovery of nine novel decapeptides which can be radioactively labeled, bind to, and deliver (32P to colon cancer cells. The decapeptides vary from one another by one to three amino acids and demonstrate vastly different binding abilities. The most avidly binding decapeptide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other types of cancer or from normal tissue.This experimental approach represents a new example of a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas.

  11. Binding of concanavalin A by the cell membrane of a unicellular organism, Paramecium aurelia.

    Science.gov (United States)

    Wyroba, E

    1975-01-01

    As demonstrated by electron microscopy, Concanavalin A receptors exist on the cell membrane of Paramecium aurelia. The interpretation of the cytochemical detection of Con A binding is not very precise because of a slight, unspecific peroxidase adsorption.

  12. Interaction of cationic carbosilane dendrimers and their complexes with siRNA with erythrocytes and red blood cell ghosts.

    Science.gov (United States)

    Wrobel, Dominika; Kolanowska, Katarzyna; Gajek, Arkadiusz; Gomez-Ramirez, Rafael; de la Mata, Javier; Pedziwiatr-Werbicka, Elżbieta; Klajnert, Barbara; Waczulikova, Iveta; Bryszewska, Maria

    2014-03-01

    We have investigated the interactions between cationic NN16 and BDBR0011 carbosilane dendrimers with red blood cells or their cell membranes. The carbosilane dendrimers used possess 16 cationic functional groups. Both the dendrimers are made of water-stable carbon-silicon bonds, but NN16 possesses some oxygen-silicon bonds that are unstable in water. The nucleic acid used in the experiments was targeted against GAG-1 gene from the human immunodeficiency virus, HIV-1. By binding to the outer leaflet of the membrane, carbosilane dendrimers decreased the fluidity of the hydrophilic part of the membrane but increased the fluidity of the hydrophobic interior. They induced hemolysis, but did not change the morphology of the cells. Increasing concentrations of dendrimers induced erythrocyte aggregation. Binding of short interfering ribonucleic acid (siRNA) to a dendrimer molecule decreased the availability of cationic groups and diminished their cytotoxicity. siRNA-dendrimer complexes changed neither the fluidity of biological membranes nor caused cell hemolysis. Addition of dendriplexes to red blood cell suspension induced echinocyte formation.

  13. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  14. What Happens to Donated Blood?

    Science.gov (United States)

    ... week. Learn About Blood Blood Facts and Statistics Blood Components Whole Blood and Red Blood Cells Platelets Plasma ... About Blood Blood Facts and Statistics Blood Types Blood Components What Happens to Donated Blood Blood and Diversity ...

  15. Identification of Suitable Reference Genes for Peripheral Blood Mononuclear Cell Subset Studies in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Oturai, D B; Søndergaard, H B; Börnsen, L;

    2016-01-01

    Quantitative real-time PCR (qPCR) involves the need of a proper standard for normalizing the gene expression data. Different studies have shown the validity of reference genes to vary greatly depending on tissue, cell subsets and experimental context. This study aimed at the identification...... of suitable reference genes for qPCR studies using different peripheral blood cell subsets (whole blood (WB) cells, peripheral blood mononuclear cells (PBMCs) and PBMC subsets (CD4(+) T cells, CD8(+) T cells, NK cells, monocytes, B cells and dendritic cells) from healthy controls (HC), patients with relapsing...... stable combination for analyses of cell subsets between HC and RRMS patients, while the combination of UBC and YWHAZ was superior for analysis of cell subsets between HC, RRMS and RRMS-IFN-β groups. GAPDH was generally unsuitable for blood cell subset studies in multiple sclerosis. In conclusion, we...

  16. Cell-Specific Variation in E-Selectin Ligand Expression among Human Peripheral Blood Mononuclear Cells: Implications for Immunosurveillance and Pathobiology.

    Science.gov (United States)

    Silva, Mariana; Fung, Ronald Kam Fai; Donnelly, Conor Brian; Videira, Paula Alexandra; Sackstein, Robert

    2017-03-22

    Both host defense and immunopathology are shaped by the ordered recruitment of circulating leukocytes to affected sites, a process initiated by binding of blood-borne cells to E-selectin displayed at target endothelial beds. Accordingly, knowledge of the expression and function of leukocyte E-selectin ligands is key to understanding the tempo and specificity of immunoreactivity. In this study, we performed E-selectin adherence assays under hemodynamic flow conditions coupled with flow cytometry and Western blot analysis to elucidate the function and structural biology of glycoprotein E-selectin ligands expressed on human PBMCs. Circulating monocytes uniformly express high levels of the canonical E-selectin binding determinant sialyl Lewis X (sLe(X)) and display markedly greater adhesive interactions with E-selectin than do circulating lymphocytes, which exhibit variable E-selectin binding among CD4(+) and CD8(+) T cells but no binding by B cells. Monocytes prominently present sLe(X) decorations on an array of protein scaffolds, including P-selectin glycoprotein ligand-1, CD43, and CD44 (rendering the E-selectin ligands cutaneous lymphocyte Ag, CD43E, and hematopoietic cell E-selectin/L-selectin ligand, respectively), and B cells altogether lack E-selectin ligands. Quantitative PCR gene expression studies of glycosyltransferases that regulate display of sLe(X) reveal high transcript levels among circulating monocytes and low levels among circulating B cells, and, commensurately, cell surface α(1,3)-fucosylation reveals that acceptor sialyllactosaminyl glycans convertible into sLe(X) are abundantly expressed on human monocytes yet are relatively deficient on B cells. Collectively, these findings unveil distinct cell-specific patterns of E-selectin ligand expression among human PBMCs, indicating that circulating monocytes are specialized to engage E-selectin and providing key insights into the molecular effectors mediating recruitment of these cells at inflammatory

  17. Machupo Virus Glycoprotein Determinants for Human Transferrin Receptor 1 Binding and Cell Entry

    Science.gov (United States)

    2011-07-01

    and form enveloped virions [1]. Seven arenaviruses cause viral hemorrhagic fever in humans: the Old World arenaviruses Lassa and ‘Lujo,’ and the New...hemorrhagic fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to... fever in humans. MACV, as well as other pathogenic New World arenaviruses, enter cells after their GP1 attachment glycoprotein binds to their cellular

  18. Molecular Detection of Neuron-Specific ELAV-Like-Positive Cells in the Peripheral Blood of Patients with Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Vito D’Alessandro

    2008-01-01

    Full Text Available Background: n-ELAV (neuronal-Embryonic Lethal, Abnormal Vision-like genes belong to a family codifying for onconeural RNA-binding proteins. Anti-Hu-antibodies (anti-Hu-Ab are typically associated with paraneoplastic encephalomyelitis/sensory neuropathy (PEM/PSN, and low titres of anti-Hu-Ab, were found in newly diagnosed Small Cell Lung Cancer (SCLC. The aim of this study is to develop a sensitive and quantitative molecular real-time PCR assay to detect SCLC cells in peripheral blood (PB through nELAV-like transcripts quantification.

  19. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  20. Multiple loci are associated with white blood cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael A Nalls

    2011-06-01

    Full Text Available White blood cell (WBC count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2, including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across

  1. The relationship between stroke mortality and red blood cell parameters.

    Directory of Open Access Journals (Sweden)

    Hamidreza Hatamian

    2014-12-01

    Full Text Available Several factors influence on the outcome of ischemic stroke. The aim of this study was determination the relationship between stroke mortality and red blood cell parameters.This cross-sectional study was conducted from 2011 July to June 2012. For all patients with ischemic stroke in middle cerebral artery (MCA territory, the cell blood count test was performed. We recorded their mortality on the 1(st week and the 1(st month after ischemic stroke. Data analysis was performed using t-test, χ(2, Mann-Whitney U-test, logistic regression and receiver operating characteristic curve in SPSS for Windows 19.0.A total of 98 subjects (45.9% men and 54.1% women with the mean age of 71.0 ± 13.9 years were assessed, while 67.3% of them were anemic. The prevalence of 1(st week mortality among anemic and non-anemic patients was 40.9% and 34.4% (P = 0.534. The prevalence of mortality after 1(st week till 1(st month was 19.6% and 21.0% respectively (P = 0.636. In univariant analysis, only 1(st month mortality had a significant relationship with red blood cell (RBC count (P = 0.022. However, the result of logistic regression model showed that RBC (P = 0.012 and mean corpuscular volume (MCV (P = 0.021 remained as predictors of the 1(st week and the 1(st month mortality (P = 0.011 and P = 0.090 respectively. The best cutoff point of RBC for the prediction of the 1(st week mortality with 44.7% specificity and 69.5% sensitivity was estimated 4.07 million/μl and for the 1(st month mortality with 46.6% specificity and 72.2% sensitivity was estimated 4.16 million/μl.The RBC count and MCV are independent predictors of ischemic stroke short-term mortality.

  2. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells.

    Science.gov (United States)

    Wang, Xue-Ying; Pei, Ying; Xie, Min; Jin, Zi-He; Xiao, Ya-Shi; Wang, Yang; Zhang, Li-Na; Li, Yan; Huang, Wei-Hua

    2015-02-21

    Reproducing a tumor microenvironment consisting of blood vessels and tumor cells for modeling tumor invasion in vitro is particularly challenging. Here, we report an artificial blood vessel implanted 3D microfluidic system for reproducing transvascular migration of tumor cells. The transparent, porous and elastic artificial blood vessels are obtained by constructing polysaccharide cellulose-based microtubes using a chitosan sacrificial template, and possess excellent cytocompatibility, permeability, and mechanical characteristics. The artificial blood vessels are then fully implanted into the collagen matrix to reconstruct the 3D microsystem for modeling transvascular migration of tumor cells. Well-defined simulated vascular lumens were obtained by proliferation of the human umbilical vein endothelial cells (HUVECs) lining the artificial blood vessels, which enables us to reproduce structures and functions of blood vessels and replicate various hemodynamic parameters. Based on this model, the adhesion and transvascular migration of tumor cells across the artificial blood vessel have been well reproduced.

  3. Modifying the red cell surface: towards an ABO-universal blood supply

    DEFF Research Database (Denmark)

    Olsson, Martin L; Clausen, Henrik

    2007-01-01

    Eliminating the risk for ABO-incompatible transfusion errors and simplifying logistics by creating a universal blood inventory is a challenging idea. Goldstein and co-workers pioneered the field of enzymatic conversion of blood group A and B red blood cells (RBCs) to O (ECO). Using alpha-galactos......Eliminating the risk for ABO-incompatible transfusion errors and simplifying logistics by creating a universal blood inventory is a challenging idea. Goldstein and co-workers pioneered the field of enzymatic conversion of blood group A and B red blood cells (RBCs) to O (ECO). Using alpha...

  4. [Allogenic hematopoietic stem cell transplantation with unrelated cord blood: report of three cases from the Chilean cord blood bank].

    Science.gov (United States)

    Barriga, Francisco; Wietstruck, Angélica; Rojas, Nicolás; Bertin, Pablo; Pizarro, Isabel; Carmona, Amanda; Guilof, Alejandro; Rojas, Iván; Oyarzún, Enrique

    2013-08-01

    Public cord blood banks are a source of hematopoietic stem cells for patients with hematological diseases who lack a family donor and need allogeneic transplantation. In June 2007 we started a cord blood bank with units donated in three maternity wards in Santiago, Chile. We report the first three transplants done with cord blood units form this bank. Cord blood units were obtained by intrauterine collection at delivery. They were depleted of plasma and red cells and frozen in liquid nitrogen. Tests for total nucleated cells, CD34 cell content, viral serology, bacterial cultures and HLA A, B and DRB1 were done. Six hundred cord blood units were stored by March 2012. Three patients received allogeneic transplant with cord blood from our bank, two with high risk lymphoblastic leukemia and one with severe congenital anemia. They received conditioning regimens according to their disease and usual supportive care for unrelated donor transplantation until full hematopoietic and immune reconstitution was achieved. The three patients had early engraftment of neutrophils and platelets. The child corrected his anemia and the leukemia patients remain in complete remission. The post-transplant course was complicated with Epstein Barr virus, cytomegalovirus and BK virus infection. Two patients are fully functional 24 and 33 months after transplant, the third is still receiving immunosuppression.

  5. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells.

    Science.gov (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie

    2016-11-01

    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  6. From human monocytes to genome-wide binding sites--a protocol for small amounts of blood: monocyte isolation/ChIP-protocol/library amplification/genome wide computational data analysis.

    Directory of Open Access Journals (Sweden)

    Sebastian Weiterer

    Full Text Available Chromatin immunoprecipitation in combination with a genome-wide analysis via high-throughput sequencing is the state of the art method to gain genome-wide representation of histone modification or transcription factor binding profiles. However, chromatin immunoprecipitation analysis in the context of human experimental samples is limited, especially in the case of blood cells. The typically extremely low yields of precipitated DNA are usually not compatible with library amplification for next generation sequencing. We developed a highly reproducible protocol to present a guideline from the first step of isolating monocytes from a blood sample to analyse the distribution of histone modifications in a genome-wide manner.The protocol describes the whole work flow from isolating monocytes from human blood samples followed by a high-sensitivity and small-scale chromatin immunoprecipitation assay with guidance for generating libraries compatible with next generation sequencing from small amounts of immunoprecipitated DNA.

  7. Red Blood Cell Antigen Genotyping for Sickle Cell Disease, Thalassemia, and Other Transfusion Complications.

    Science.gov (United States)

    Fasano, Ross M; Chou, Stella T

    2016-10-01

    Since the discovery of the ABO blood group in the early 20th century, more than 300 blood group antigens have been categorized among 35 blood group systems. The molecular basis for most blood group antigens has been determined and demonstrates tremendous genetic diversity, particularly in the ABO and Rh systems. Several blood group genotyping assays have been developed, and 1 platform has been approved by the Food and Drug Administration as a "test of record," such that no phenotype confirmation with antisera is required. DNA-based red blood cell (RBC) phenotyping can overcome certain limitations of hemagglutination assays and is beneficial in many transfusion settings. Genotyping can be used to determine RBC antigen phenotypes in patients recently transfused or with interfering allo- or autoantibodies, to resolve discrepant serologic typing, and/or when typing antisera are not readily available. Molecular RBC antigen typing can facilitate complex antibody evaluations and guide RBC selection for patients with sickle cell disease (SCD), thalassemia, and autoimmune hemolytic anemia. High-resolution RH genotyping can identify variant RHD and RHCE in patients with SCD, which have been associated with alloimmunization. In the future, broader access to cost-efficient, high-resolution RBC genotyping technology for both patient and donor populations may be transformative for the field of transfusion medicine.

  8. Binding of insulin-like growth factors to Tera-2 human embryonal carcinoma cells during differentiation.

    Science.gov (United States)

    Fleck, J F; Sledge, G W; Benenati, S V; Frolik, C A; Roth, B J; Hirsch, K S

    1991-08-15

    Differentiation of Tera-2 human embryonal carcinoma cells by exposure to 2.1 mM alpha-difluoromethylornithine resulted in changes in morphology, a decrease in growth rate, and changes in the expression of SSEA-1 differentiation antigen. While the binding of 125I-insulin-like growth factor I (IGF-I) remained relatively constant during differentiation, binding of 125I-IGF-II increased 2-3-fold. Further, the binding of IGF-II was 87 times greater than IGF-I in both undifferentiated and differentiated cells. Undifferentiated Tera-2 cells exhibited a single class of binding sites for both IGF-I (KD = 1.2 nM, 7.0 x 10(3) sites/cell) and IGF-II (KD = 8.3 nM, 3.4 x 10(5) sites/cell). Following differentiation, IGF-I continued to bind to a single class of binding sites (KD 1.0 nM, 6.7 x 10(3) sites/cell) whereas IGF-II bound to both high-affinity sites (KDH 0.3 nM, 2.2 x 10(5) sites/cell) and low-affinity sites (KDL 15.1 nM, 1.6 x 10(7) sites/cell). The binding of iodinated IGF-II was blocked by unlabeled IGF-II but not IGF-I. In contrast, 125I-IGF-I binding was prevented by either IGF-I or IGF-II. Affinity cross-linking experiments demonstrated the presence of both type I and type II IGF receptors along with a number of IGF binding proteins. IGF-I failed to stimulate the incorporation of [3H]thymidine in both undifferentiated and differentiated cells. Although IGF-II caused a significant increase in [3H]thymidine incorporation in both undifferentiated and differentiated Tera-2 cells, the magnitude of the response and the sensitivity of the cells to IGF-II stimulation was diminished following differentiation. The observed changes in IGF-II binding, which occur in conjunction with cellular differentiation, may be an important feature of the expression of the differentiated phenotype by human germ cell tumors.

  9. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  10. Perioperative Red Blood Cell Transfusion: What We Do Not Know

    Institute of Scientific and Technical Information of China (English)

    Chong Lei; Li-Ze Xiong

    2015-01-01

    Objective:Blood transfusion saves lives but may also increase the risk of injury.The objective of this review was to evaluate the possible adverse effects related to transfusion of red blood cell (RBC) concentrates stored for prolonged periods.Data Sources:The data used in this review were mainly from PubMed articles published in English up to February 2015.Study Selection:Clinical and basic research articles were selected according to their relevance to this topic.Results:The ex vivo changes to RBC that occur during storage are collectively called storage lesion.It is still inconclusive if transfusion of RBC with storage lesion has clinical relevance.Multiple ongoing prospective randomized controlled trials are aimed to clarify this clinical issue.It was observed that the adverse events related to stored RBC transfusion were prominent in certain patient populations,including trauma,critical care,pediatric,and cardiac surgery patients,which leads to the investigation of underlying mechanisms.It is demonstrated that free hemoglobin toxicity,decreasing of nitric oxide bioavailability,and free iron-induced increasing of inflammation may play an important role in this process.Conclusion:It is still unclear whether transfusion of older RBC has adverse effects,and if so,which factors determine such clinical effects.However,considering the magnitude of transfusion and the widespread medical significance,potential preventive strategies should be considered,especially for the susceptible recipients.

  11. EFFECT OF ELECTROACUPUNCTURE ON RED BLOOD CELL IMMUNE AND T-CELL SUBGROUP IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    高巍; 黄裕新; 陈洪; 孙大勇; 张洪新

    2000-01-01

    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluorescence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythrocytic immune function. Resuits showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CDs+ had no any considerable changes and a positive correlation between CD~ and RBC-C3bRR was found. In immtttaosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EAgroup and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.

  12. EFFECT OF ELECTROACUPUNCTURE ON RED BLOOD CELL IMMUNE AND T-CELL SUBGROUP IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    GaoWei; HuangYuxin; ChenHong; SunDayong; ZhangHongxin

    2000-01-01

    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluoreseence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythroeytic immune function. Results showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CD8+ had no any considerable changes and a positive correlation between CD4+ and RBC-C3bRR was found. In immuoosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EA group and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.

  13. Fragmented red cells reference range (Sysmex XN(®) automated blood cell counter).

    Science.gov (United States)

    Lesesve, Jean-François; Daigney, Amandine; Henry, Sylvain; Speyer, Elodie

    2015-01-01

    Fragmented red cells (FRCs) is a new parameter automatedly determined by recent blood cell counters. Their count might be of interest because FRCs are supposed to reflect schistocytes counts measured on a stained peripheral blood smear observed under the microscope. But FRCs depend from the technical procedure used to detect them and thus reference ranges are device-dependent. The XN-9000(®) is one of the last model from Sysmex series. We aimed to establish reference range for FRCs, from 2389 controls. The mean ± SD was 0.32% ± 0.81, the median 0.02% (95% confidence interval ot the mean: 0.29-0.35%). We observed that the percentage of red blood cells with less than 17 pg of hemoglobin content (Hypo-He) was correlated to FRC increase, Hypo-He increase resulting in spurious FRCs majoration. FRCs reference range should be useful for: 1) laboratory staff in order to select which blood smears to check optically; 2) Sysmex company to set-up more optimal rules proposed with the counter (automated making of blood smear).

  14. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  15. A multiscale model for red blood cell mechanics.

    Science.gov (United States)

    Hartmann, Dirk

    2010-02-01

    The objective of this article is the derivation of a continuum model for mechanics of red blood cells via multiscale analysis. On the microscopic level, we consider realistic discrete models in terms of energy functionals defined on networks/lattices. Using concepts of Gamma-convergence, convergence results as well as explicit homogenisation formulae are derived. Based on a characterisation via energy functionals, appropriate macroscopic stress-strain relationships (constitutive equations) can be determined. Further, mechanical moduli of the derived macroscopic continuum model are directly related to microscopic moduli. As a test case we consider optical tweezers experiments, one of the most common experiments to study mechanical properties of cells. Our simulations of the derived continuum model are based on finite element methods and account explicitly for membrane mechanics and its coupling with bulk mechanics. Since the discretisation of the continuum model can be chosen freely, rather than it is given by the topology of the microscopic cytoskeletal network, the approach allows a significant reduction of computational efforts. Our approach is highly flexible and can be generalised to many other cell models, also including biochemical control.

  16. Absence of peripheral blood mononuclear cells priming in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Santos B.C.

    2003-01-01

    Full Text Available As a consequence of the proinflammatory environment occurring in dialytic patients, cytokine overproduction has been implicated in hemodialysis co-morbidity. However, there are discrepancies among the various studies that have analyzed TNF-alpha synthesis and the presence of peripheral blood mononuclear cell (PBMC priming in this clinical setting. We measured bioactive cytokine by the L929 cell bioassay, and evaluated PBMC TNF-alpha production by 32 hemodialysis patients (HP and 51 controls. No difference in TNF-alpha secretion was observed between controls and HP (859 ± 141 vs 697 ± 130 U/10(6 cells. Lipopolysaccharide (5 µg/ml did not induce any further TNF-alpha release, showing no PBMC priming. Paraformaldehyde-fixed HP PBMC were not cytotoxic to L929 cells, suggesting the absence of membrane-anchored TNF-alpha. Cycloheximide inhibited PBMC cytotoxicity in HP and controls, indicating lack of a PBMC TNF-alpha pool, and dependence on de novo cytokine synthesis. Actinomycin D reduced TNF-alpha production in HP, but had no effect on controls. Therefore, our data imply that TNF-alpha production is an intrinsic activity of normal PBMC and is not altered in HP. Moreover, TNF-alpha is a product of de novo synthesis by PBMC and is not constitutively expressed on HP cell membranes. The effect of actinomycin D suggests a putative tighter control of TNF-alpha mRNA turnover in HP. This increased dependence on TNF-alpha RNA transcription in HP may reflect an adaptive response to hemodialysis stimuli.

  17. Current issues relating to the transfusion of stored red blood cells.

    Science.gov (United States)

    Zimrin, A B; Hess, J R

    2009-02-01

    The development of blood storage systems allowed donation and transfusion to be separated in time and space. This separation has permitted the regionalization of donor services with subsequent economies of scale and improvements in the quality and availability of blood products. However, the availability of storage raises the question of how long blood products can and should be stored and how long they are safe and effective. The efficacy of red blood cells was originally measured as the increment in haematocrit and safety began with typing and the effort to reduce the risk of bacterial contamination. Appreciation of a growing list of storage lesions of red blood cells has developed with our increasing understanding of red blood cell physiology and our experience with red blood cell transfusion. However, other than frank haemolysis, rare episodes of bacterial contamination and overgrowth, the reduction of oxygen-carrying capacity associated with the failure of some transfused cells to circulate, and the toxicity of lysophospholipids released from membrane breakdown, storage-induced lesions have not had obvious correlations with safety or efficacy. The safety of red blood cell storage has also been approached in retrospective epidemiologic studies of transfused patients, but the results are frequently biased by the fact that sicker patients are transfused more often and blood banks do not issue blood products in a random order. Several large prospective studies of the safety of stored red blood cells are planned.

  18. Sucralose sweetener in vivo effects on blood constituents radiolabeling, red blood cell morphology and radiopharmaceutical biodistribution in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, G.S.; Pereira, M.O. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Benarroz, M.O.; Frydman, J.N.G.; Rocha, V.C. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Pereira, M.J. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Fisiologia, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Fonseca, A.S., E-mail: adnfonseca@ig.com.b [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Estado do Rio de Janeiro, Instituto Biomedico, Departamento de Ciencias Fisiologicas, Rua Frei Caneca, 94, Rio de Janeiro 20211040 (Brazil); Medeiros, A.C. [Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Bernardo-Filho, M. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Instituto Nacional do Cancer, Coordenadoria de Pesquisa Basica, Praca Cruz Vermelha, 23, 20230130 Rio de Janeiro (Brazil)

    2011-01-15

    Effects of sucralose sweetener on blood constituents labelled with technetium-99m ({sup 99m}Tc) on red blood cell (RBC) morphology, sodium pertechnetate (Na{sup 99m}TcO{sub 4}) and diethylenetriaminepentaacetic acid labeled with {sup 99m}Tc ({sup 99m}Tc-DTPA) biodistribution in rats were evaluated. Radiolabeling on blood constituents from Wistar rats was undertaken for determining the activity percentage (%ATI) on blood constituents. RBC morphology was also evaluated. Na{sup 99m}TcO{sub 4} and {sup 99m}Tc-DTPA biodistribution was used to determine %ATI/g in organs. There was no alteration on RBC blood constituents and morphology %ATI. Sucralose sweetener was capable of altering %ATI/g of the radiopharmaceuticals in different organs. These findings are associated to the sucralose sweetener in specific organs.

  19. Restrictive versus liberal transfusion strategy for red blood cell transfusion

    DEFF Research Database (Denmark)

    Holst, Lars B; Petersen, Marie W; Haase, Nicolai;

    2015-01-01

    OBJECTIVE: To compare the benefit and harm of restrictive versus liberal transfusion strategies to guide red blood cell transfusions. DESIGN: Systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. DATA SOURCES: Cochrane central register of controlled...... trials, SilverPlatter Medline (1950 to date), SilverPlatter Embase (1980 to date), and Science Citation Index Expanded (1900 to present). Reference lists of identified trials and other systematic reviews were assessed, and authors and experts in transfusion were contacted to identify additional trials....... TRIAL SELECTION: Published and unpublished randomised clinical trials that evaluated a restrictive compared with a liberal transfusion strategy in adults or children, irrespective of language, blinding procedure, publication status, or sample size. DATA EXTRACTION: Two authors independently screened...

  20. Red blood cell sodium transport in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Ulrik Lütken; Kiszka-Kanowitz, Marianne; Bendtsen, Flemming

    2016-01-01

    Patients with advanced cirrhosis have abnormal sodium homoeostasis. The study was undertaken to quantify the sodium transport across the plasma membrane of red blood cells (RBC) in patients with cirrhosis. RBC efflux and influx of sodium were studied in vitro with tracer (22) Na(+) according...... to linear kinetics in 24 patients with cirrhosis and 14 healthy controls. The sodium efflux was modified by ouabain (O), furosemide (F) and a combination of O and F (O + F). RBC sodium was significantly decreased (4·6 versus control 6·3 mmol l(-1) , Psodium (r = 0·57, P......sodium efflux was higher in patients with cirrhosis (+46%, Psodium buffers showed that the F-insensitive sodium efflux was twice as high in cirrhosis as in controls (P = 0...

  1. Stretching Behavior of Red Blood Cells at High Strain Rates

    Science.gov (United States)

    Mancuso, Jordan; Ristenpart, William

    2016-11-01

    Most work on the mechanical behavior of red blood cells (RBCs) has focused on simple shear flows. Relatively little work has examined RBC deformations in the physiologically important extensional flow that occurs at the entrance to a constriction. In particular, previous work suggests that RBCs rapidly stretch out and then retract upon entering the constriction, but to date no model predicts this behavior for the extremely high strain rates typically experienced there. In this work, we use high speed video to perform systematic measurements of the dynamic stretching behavior of RBCs as they enter a microfluidic constriction. We demonstrate that a simple viscoelastic model captures the observed stretching dynamics, up to strain rates as high as 1000 s-1. The results indicate that the effective elastic modulus of the RBC membrane at these strain rates is an order of magnitude larger than moduli measured by micropipette aspiration or other low strain rate techniques.

  2. The Antioxidant Effect of Erythropoietin on Thalassemic Blood Cells

    Directory of Open Access Journals (Sweden)

    Johnny Amer

    2010-01-01

    Full Text Available Because of its stimulating effect on RBC production, erythropoietin (Epo is used to treat anemia, for example, in patients on dialysis or on chemotherapy. In β-thalassemia, where Epo levels are low relative to the degree of anemia, Epo treatment improves the anemia state. Since RBC and platelets of these patients are under oxidative stress, which may be involved in anemia and thromboembolic complications, we investigated Epo as an antioxidant. Using flow-cytometry technology, we found that in vitro treatment with Epo of blood cells from these patients increased their glutathione content and reduced their reactive oxygen species, membrane lipid peroxides, and external phosphatidylserine. This resulted in reduced susceptibility of RBC to undergo hemolysis and phagocytosis. Injection of Epo into heterozygous (Hbbth3/+ β-thalassemic mice reduced the oxidative markers within 3 hours. Our results suggest that, in addition to stimulating RBC and fetal hemoglobin production, Epo might alleviate symptoms of hemolytic anemias as an antioxidant.

  3. Autoimmune Hemolytic Anemia and Red Blood Cell Autoantibodies.

    Science.gov (United States)

    Quist, Erin; Koepsell, Scott

    2015-11-01

    Autoimmune hemolytic anemia is a rare disorder caused by autoreactive red blood cell (RBC) antibodies that destroy RBCs. Although autoimmune hemolytic anemia is rare, RBC autoantibodies are encountered frequently and can complicate transfusion workups, impede RBC alloantibody identification, delay distribution of compatible units, have variable clinical significance that ranges from benign to life-threatening, and may signal an underlying disease or disorder. In this review, we discuss the common presenting features of RBC autoantibodies, laboratory findings, ancillary studies that help the pathologist investigate the clinical significance of autoantibodies, and how to provide appropriate patient care and consultation for clinical colleagues. Pathologists must be mindful of, and knowledgeable about, this entity because it not only allows for direct clinical management but also can afford an opportunity to preemptively treat an otherwise silent malignancy or disorder.

  4. Interaction of C4-binding protein with cell-bound C4b. A quantitative analysis of binding and the role of C4-binding protein in proteolysis of cell-bound C4b

    OpenAIRE

    1983-01-01

    Purified C4-binding protein (C4-bp) was shown to bind to cell-bound C4b by radioactive tracer techniques. With EAC4 bearing greater than 3,000 C4b-molecules/cell, the number of C4-bp molecules bound was directly proportional to the number of C4b molecule on the cell surface; EAC4 bearing less than 3,000 C4b-molecules/cell bound a very small amount of C4-bp. Scatchard analysis of binding of C4-bp indicated an equilibrium constant of 4.6 X 10(8) L/M and a maximum of 0.43 C4-bp molecules bound p...

  5. The retinol esterifying enzyme LRAT supports cell signaling by retinol-binding protein and its receptor STRA6.

    Science.gov (United States)

    Marwarha, Gurdeep; Berry, Daniel C; Croniger, Colleen M; Noy, Noa

    2014-01-01

    Vitamin A, retinol, circulates in blood bound to retinol-binding protein (RBP). At some tissues, holo-RBP is recognized by a plasma membrane receptor termed STRA6, which serves a dual role: it mediates transport of retinol from RBP into cells, and it functions as a cytokine receptor that, on binding holo-RBP, activates JAK2/STAT5 signaling. As STAT target genes include SOCS3, an inhibitor of insulin receptor, holo-RBP suppresses insulin responses in STRA6-expressing cells. We have shown previously that the two functions of STRA6 are interdependent. These observations suggest factors that regulate STRA6-mediated retinol transport may also control STRA6-mediated cell signaling. One such factor is retinol metabolism, which enables cellular uptake of retinol by maintaining an inward-directed concentration gradient. We show here that lecithin:retinol acyl transferase (LRAT), which catalyzes esterification of retinol to its storage species retinyl esters, is necessary for activation of the STRA6/JAK2/STAT5 cascade by holo-RBP. In accordance, LRAT-null mice are protected from holo-RBP-induced suppression of insulin responses. Hence, STRA6 signaling, which requires STRA6-mediated retinol transport, is supported by LRAT-catalyzed retinol metabolism. The observations demonstrate that STRA6 regulates key cellular processes by coupling circulating holo-RBP levels and intracellular retinol metabolism to cell signaling.

  6. Targeting the Cryptococcus neoformans var. grubii Cell Wall Using Lectins: Study of the Carbohydrate-Binding Domain

    Directory of Open Access Journals (Sweden)

    Pamella de Brito Ximenes

    2015-02-01

    Full Text Available Cryptococcus neoformans var. grubii is considered to be the major cause of cryptococcosis in immunosuppressed patients. Understanding cell wall glycoproteins using lectins is of medical interest and can contribute to specific therapy. The aim of this study was to evaluate the carbohydrates on the cell wall of Cryptococcus neoformans var. grubii clinical isolates, using a fluorescein isothiocyanate-lectin binding protocol. Thirty yeast strains stocked in the culture collection were cultivated for 2 days at 30 °C with shaking. Cells were obtained by centrifugation, washed in phosphate-buffered saline, and a suspension of 107 cells/mL was obtained. To determine the binding profile of lectins, concanavalin A (Con A, wheat germ agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, and peanut agglutinin (PNA conjugated to fluorescein were used. All the tested clinical isolates of Cryptococcus neoformans var. grubii were intensely stained by WGA, moderately stained by Con A, and weakly stained by PNA and UEA-I. Thus, Cryptococcus can be detected in clinical specimens such as blood and cerebrospinal fluid using the fluorescent lectin WGA, which may be considered as an option for detection in cases of suspected cryptococcosis with low laboratory sensitivity. Future applications may be developed using this basic tool.

  7. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  8. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells.

    Science.gov (United States)

    Lippmann, Ethan S; Azarin, Samira M; Kay, Jennifer E; Nessler, Randy A; Wilson, Hannah K; Al-Ahmad, Abraham; Palecek, Sean P; Shusta, Eric V

    2012-08-01

    The blood-brain barrier (BBB) is crucial to the health of the brain and is often compromised in neurological disease. Moreover, because of its barrier properties, this endothelial interface restricts uptake of neurotherapeutics. Thus, a renewable source of human BBB endothelium could spur brain research and pharmaceutical development. Here we show that endothelial cells derived from human pluripotent stem cells (hPSCs) acquire BBB properties when co-differentiated with neural cells that provide relevant cues, including those involved in Wnt/β-catenin signaling. The resulting endothelial cells have many BBB attributes, including well-organized tight junctions, appropriate expression of nutrient transporters and polarized efflux transporter activity. Notably, they respond to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance (1,450 ± 140 Ω cm2), and they possess molecular permeability that correlates well with in vivo rodent blood-brain transfer coefficients.

  9. Effect of polyclonal activators on cytokine production by blood cells and by malignant breast cancer cells.

    Science.gov (United States)

    Kunts, T A; Karpukhina, K V; Mikhaylova, E S; Marinkin, I O; Varaksin, N A; Autenshlyus, A I; Lyakhovich, V V

    2016-01-01

    The production of cytokines by peripheral blood cells and biopsy specimens of tumors stimulated by polyclonal activators (PAs) was evaluated in 34 patients with invasive ductal breast carcinoma using enzyme-linked immunosorbent assay (ELISA). Positive correlation between the stimulation index of polyclonal activators (SIPA) for IL-18 production by the tumor and the relative content of poorly differentiated cells was revealed. The latter, in turn, was positively correlated with the numbers of normal and pathologic mitoses and the degree of malignancy. Cancer cells can produce IL-18, which is involved in the process of angiogenesis, stimulates invasion and metastasis. Decrease in SIPA for the production of IL-6 and GCSF by peripheral blood cells could serve as an indicator of malignant progression in invasive ductal breast carcinoma.

  10. Autoantigenic targets of B-cell receptors derived from chronic lymphocytic leukemias bind to and induce proliferation of leukemic cells.

    Science.gov (United States)

    Zwick, Carsten; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Stilgenbauer, Stephan; Bühler, Andreas; Pfreundschuh, Michael; Preuss, Klaus-Dieter

    2013-06-06

    Antigenic targets of the B-cell receptor (BCR) derived from malignant cells in chronic lymphocytic leukemia (CLL) might play a role in the pathogenesis of this neoplasm. We screened human tissue-derived protein macroarrays with antigen-binding fragments derived from 47 consecutive cases of CLL. An autoantigenic target was identified for 12/47 (25.5%) of the cases, with 3 autoantigens being the target of the BCRs from 2 patients each. Recombinantly expressed autoantigens bound specifically to the CLL cells from which the BCR used for the identification of the respective autoantigen was derived. Moreover, binding of the autoantigen to the respective leukemic cells induced a specific activation and proliferation of these cells. In conclusion, autoantigens are frequent targets of CLL-BCRs. Their specific binding to and induction of proliferation in the respective leukemic cells provide the most convincing evidence to date for the long-time hypothesized role of autoantigens in the pathogenesis of CLL.

  11. [Red Blood Cells Raman Spectroscopy Comparison of Type Two Diabetes Patients and Rats].

    Science.gov (United States)

    Wang, Lei; Liu, Gui-dong; Mu, Xin; Xiao, Hong-bin; Qi, Chao; Zhang, Si-qi; Niu Wen-ying; Jiang, Guang-kun; Feng, Yue-nan; Bian, Jing-qi

    2015-10-01

    By using confocal Raman spectroscopy, Raman spectra were measured in normal rat red blood cells, normal human red blood cells, STZ induced diabetetic rats red blood cells, Alloxan induced diabetetic rats red blood cells and human type 2 diabetes red blood cells. Then principal component analysis (PCA) with support vector machine (SVM) classifier was used for data analysis, and then the distance between classes was used to judge the degree of close to two kinds of rat model with type 2 diabetes. The results found significant differences in the Raman spectra of red blood cell in diabetic and normal red blood cells. To diabetic red blood cells, the peak in the amide VI C=O deformation vibration band is obvious, and amide V N-H deformation vibration band spectral lines appear deviation. Belong to phospholipid fatty acyl C-C skeleton, the 1 130 cm(-1) spectral line is enhanced and the 1 088 cm(-1) spectral line is abated, which show diabetes red cell membrane permeability increased. Raman spectra of PCA combined with SVM can well separate 5 types of red blood cells. Classifier test results show that the classification accuracy is up to 100%. Through the class distance between the two induced method and human type 2 diabetes, it is found that STZ induced model is more close to human type 2 diabetes. In conclusion, Raman spectroscopy can be used for diagnosis of diabetes and rats STZ induced diabetes method is closer to human type 2 diabetes.

  12. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium.

    Science.gov (United States)

    Chinthamani, Sreedevi; Odusanwo, Olutayo; Mondal, Nandini; Nelson, Joel; Neelamegham, Sriram; Baker, Olga J

    2012-04-01

    Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sjögren's syndrome (SS).

  13. Study on the induction and differentiation of megakaryocyte progenitor cell derived from umbilical cord blood

    Institute of Scientific and Technical Information of China (English)

    陈琳

    2014-01-01

    Objective To build a protocol of separation and induction of megakaryocytes derived from cord blood mononuclear cells.Methods Red blood cells were precipitated by hydroxyethyl starch(HES).Mononuclear cells were obtained by density gradient centrifugation with Ficoll.The inducing efficiencies of megakaryocytes using different cytokine cocktails and culture media were analyzed.Results The best choice for erythrocyte sedimenta-

  14. 75 FR 14175 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2010-03-24

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... sciences; basic scientists with expertise in the biology of adult stem cells; ethicists; hematology and transfusion medicine researchers with expertise in adult blood stem cells; persons with expertise in...

  15. Spectrophotometric determination of total proteins in blood plasma: a comparative study among dye-binding methods

    Directory of Open Access Journals (Sweden)

    Dimas Augusto Morozin Zaia

    2005-05-01

    Full Text Available A comparative study between the biuret method (standard method for total proteins and spectrophotometric methods using dyes (Bradford, 3',3",5',5"-tetrabromophenolphthalein ethyl ester-TBPEE, and erythrosin-B was carried out for the determination of total proteins in blood plasma from rats. Bradford method showed the highest sensitivity for proteins and biuret method showed the lowest. For all the methods, the absorbance for different proteins (BSA, casein, and egg albumin was measured and Bradford method showed the lowest variation of absorbance. The concentration of total protein obtained by using Bradford method was not statistically different (p>0.05 from concentration of total protein obtained by the biuret method. But in regard to erythrosin-B and TBPEE methods the concentrations of total protein were statistically different (pA determinação de proteínas totais em plasma sangüíneo é importante em diversas áreas de pesquisa. Um estudo comparativo entre o método de biureto (método padrão para proteínas totais e diversos métodos que utilizam corantes (Bradford, tetrabromofenolftaleína etil éster-TBPEE, e eritrosina-B foi realizado para a determinação de proteínas totais em plasma sangüíneo de ratos. O método de Bradford mostrou a maior sensibilidade para proteínas e o de biureto a menor. Para todos os métodos, as absorbâncias para diferentes proteínas (BSA, caseína, e ovoalbumina foram medidas e o método de Bradford mostrou a menor variação da absorbância. Utilizando o método de Bradford a concentração de proteínas totais obtida não foi estatisticamente diferente (p>0.05 daquela obtida pelo método do biureto. Porém, para os métodos da eritrosina-B e TBPEE as concentrações de proteínas totais foram estatisticamente diferentes (p<0.05 da obtida pelo método de biureto. Portanto o método de Bradford pode ser utilizado no lugar do método de biureto para a determinação de proteínas totais em plasma sangüíneo.

  16. Red blood cell transfusion in preterm neonates: current perspectives

    Directory of Open Access Journals (Sweden)

    Chirico G

    2014-06-01

    Full Text Available Gaetano ChiricoNeonatology and Neonatal Intensive Care Unit, Children Hospital, Spedali Civili, Brescia, ItalyAbstract: Preterm neonates, especially very low birth weight infants, remain a category of patients with high transfusion needs; about 90% of those with <1,000 g birth weight may be transfused several times during their hospital stay. However, neonatal red blood cells (RBC transfusion is not without risks. In addition to well-known adverse events, several severe side effects have been observed unique to preterm infants, such as transfusion-related acute gut injury, intraventricular hemorrhage, and increased mortality risk. It is therefore important to reduce the frequency of RBC transfusion in critically ill neonates, by delayed clamping or milking the umbilical cord, using residual cord blood for initial laboratory investigations, reducing phlebotomy losses, determining transfusion guidelines, and ensuring the most appropriate nutrition, with the optimal supplementation of iron, folic acid, and vitamins. Ideally, RBC transfusion should be tailored to the individual requirements of the single infant. However, many controversies still remain, and the decision on whether to transfuse or not is often made on an empirical basis. Recently, a few clinical trials have been performed with the aim to compare the risk/benefit ratio of restrictive versus liberal transfusion criteria. No significant differences in short-term outcomes were observed, suggesting that the restrictive criteria may reduce the need for transfusion and the related side effects. Neurodevelopmental long-term outcome seemed more favorable in the liberal group at first evaluation, especially for boys, and significantly better in the restrictive group at a later clinical investigation. Magnetic resonance imaging scans, performed at an average age of 12 years, showed that intracranial volume was substantially smaller in the liberal group compared with controls. When sex effects

  17. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.

    Science.gov (United States)

    Daly, Amanda; Raval, Jay S; Waters, Jonathan H; Yazer, Mark H; Kameneva, Marina V

    2014-01-01

    It was previously demonstrated that red blood cell (RBC) deformability progressively decreases during storage along with other changes in RBC mechanical properties. Recently, we reported that the magnitude of changes in RBC mechanical fragility associated with blood bank storage in a variety of additive solutions was strongly dependent on the donor gender [15]. Yet, the potential dependence of changes in the deformability and relaxation time of stored blood bank RBCs on donor gender is not known. The objective of this study was to determine the effects of donor gender and blood bank storage on RBC deformability and relaxation time through the measurement of RBC suspension viscoelasticity. Packed RBC units preserved in AS-5 solution from 12 male and 12 female donors (three from each ABO group) were obtained from the local blood center and tested at 1, 4 and 7 weeks of storage at 1-6°C. At each time point, samples were aseptically removed from RBC units and hematocrit was adjusted to 40% before assessment of cell suspension viscoelasticity. RBC suspensions from both genders demonstrated progressive increases (p blood bank storage may reduce tissue perfusion and RBC lifespan in patients receiving blood bank RBCs.

  18. Membrane androgen binding sites are preferentially expressed in human prostate carcinoma cells

    Directory of Open Access Journals (Sweden)

    Delakas Dimitrios

    2003-01-01

    Full Text Available Abstract Background Prostate cancer is one of the most frequent malignancies in males. Nevertheless, to this moment, there is no specific routine diagnostic marker to be used in clinical practice. Recently, the identification of a membrane testosterone binding site involved in the remodeling of actin cytoskeleton structures and PSA secretion, on LNCaP human prostate cancer cells has been reported. We have investigated whether this membrane testosterone binding component could be of value for the identification of prostate cancer. Methods Using a non-internalizable testosterone-BSA-FITC analog, proven to bind on membrane sites only in LNCaP cells, we have investigated the expression of membrane testosterone binding sites in a series of prostate carcinomas (n = 14, morphologically normal epithelia, taken from areas of the surgical specimens far from the location of the carcinomas (n = 8 and benign prostate hyperplasia epithelia (n = 10. Isolated epithelial cells were studied by flow cytometry, and touching preparations, after 10-min incubation. In addition, routine histological slides were assayed by confocal laser microscopy. Results We show that membrane testosterone binding sites are preferentially expressed in prostate carcinoma cells, while BPH and non-malignant epithelial cells show a low or absent binding. Conclusions Our results indicate that membrane testosterone receptors might be of use for the rapid routine identification of prostate cancer, representing a new diagnostic marker of the disease.

  19. Binding of erythropoietin to CFU-E derived from fetal mouse liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Fukamachi, H.; Saito, T.; Tojo, A.; Kitamura, T.; Urabe, A.; Takaku, F.

    1987-09-01

    The binding of recombinant erythropoietin (EPO) to fetal mouse liver cells (FMLC) was investigated using a radioiodinated derivative which retained full biological activity. FMLC were fractionated using a preformed Percoll density gradient. Using the fractionated FMLC, the ability to form CFU-E colonies in a semisolid culture was examined, and the binding of (/sup 125/I)EPO was measured. The highest specific binding of (/sup 125/I)EPO was observed in a fraction with a density between 1.062 and 1.076 g/ml. The same fraction showed the highest ability to form CFU-E-derived colonies. After suspension culture of FMLC with EPO for 2 days, differentiated erythroid cells with higher density markedly increased. The specific binding of (/sup 125/I)EPO to these cells almost disappeared with differentiation. Scatchard analysis with cells of the CFU-E-enriched fraction showed a nonlinear curve, suggesting the existence of two classes of binding sites. One binding site was high-affinity (Kd1 = 0.41 nM), and the other low-affinity (Kd2 = 3.13 nM). These results suggest that the expression of EPO receptors on the erythroid cells is highest in CFU-E.

  20. Influenza a virus induces an immediate cytotoxic activity in all major subsets of peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Sanda Sturlan

    Full Text Available BACKGROUND: A replication defective influenza A vaccine virus (delNS1 virus was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMCs, isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood. CONCLUSIONS/SIGNIFICANCE: Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer.

  1. Measurement of interaction forces between red blood cells in aggregates by optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Maklygin, A Yu; Priezzhev, A V; Karmenian, A; Nikitin, Sergei Yu; Obolenskii, I S; Lugovtsov, Andrei E; Kisun Li

    2012-06-30

    We have fabricated double-beam optical tweezers and demonstrated the possibility of their use for measuring the interaction forces between red blood cells (erythrocytes). It has been established experimentally that prolonged trapping of red blood cells in a tightly focused laser beam does not cause any visible changes in their shape or size. We have measured the interaction between red blood cells in the aggregate, deformed by optical tweezers.

  2. Understanding Blood Counts

    Science.gov (United States)

    ... Lab and Imaging Tests Understanding Blood Counts Understanding Blood Counts Understanding Blood Counts SHARE: Print Glossary Blood cell counts give ... your blood that's occupied by red cells. Normal Blood Counts Normal blood counts fall within a range ...

  3. The Dynamic Pollen Tube Cytoskeleton: Live Cell Studies Using Actin-Binding and Microtubule-Binding Reporter Proteins

    Institute of Scientific and Technical Information of China (English)

    Alice Y. Cheung; Qiao-hong Duan; Silvia Santos Costa; Barend H.J.de Graaf; Veronica S.Di Stilio; Jose Feijo; Hen-Ming Wu

    2008-01-01

    Pollen tubes elongate within the pistil to transport sperm cells to the embryo sac for fertilization.Growth occurs exclusively at the tube apex,rendering pollen tube elongation a most dramatic polar cell growth process.A hall-mark pollen tube feature is its cytoskeleton,which comprises elaborately organized and dynamic actin microfilaments and microtubules.Pollen tube growth is dependent on the actin cytoskeleton;its organization and regulation have been exalined extensively by various approaches.including fluorescent protein labeled actin-binding proteins in live cell studies.Using the previously described GFP-NtADF1 and GFP-LIADF1, and a new actin reporter protein NtPLIM2b-GFP,we re-affirm that the predominant actin structures in elongating tobacco and lily pollen tubes are long,streaming actin cables along the pollen tube shank,and a subapical structure comprising shorter actin cables.The subapical collection of actin microfilaments undergoes dynamic changes,giving rise to the appearance of structures that range from basket-or funnel-shaped,mesh-like to a subtle ring.NtPLIM2b-GFP is used in combination with a guanine nucleotide exchange factor for the Rho GTPases,AtROP-GEF1,to illustrate the use of these actin reporter proteins to explore the linkage between the polar cell growth process and its actin cytoskeleton.Contrary to the actin cytoskeleton,microtubules appear not to play a direct role in supporting the polar cell growth process in angiosperm pollen tubes.Using a microtubule reporter protein based on the microtubule end-binding protein from Arabidopsis AtEB1,GFP-AtEB1,we show that the extensive microtubule network in elongating pollen tubes displays varying degrees of dynamics.These reporter proteins provide versatile tools to explore the functional connection between major structural and signaling components of the polar pollen tube growth process.

  4. Reduced pCREB in Alzheimer's disease prefrontal cortex is reflected in peripheral blood mononuclear cells

    Science.gov (United States)

    Bartolotti, N; Bennett, D A; Lazarov, O

    2016-01-01

    Cyclic-AMP response element-binding protein (CREB) signaling has a critical role in the formation of memories. CREB signaling is dysfunctional in the brains of mouse models of Alzheimer's disease (AD), and evidence suggests that CREB signaling may be disrupted in human AD brains as well. Here, we show that both CREB and its activated form pCREB-Ser133 (pCREB) are reduced in the prefrontal cortex of AD patients. Similarly, the transcription cofactors CREB-binding protein (CBP) and p300 are reduced in the prefrontal cortex of AD patients, indicating additional dysfunction of CREB signaling in AD. Importantly, we show that pCREB expression is reduced in peripheral blood mononuclear cells (PBMC) of AD subjects. In addition, pCREB levels in PBMC positively correlated with pCREB expression in the postmortem brain of persons with AD. These results suggest that pCREB expression in PBMC may be indicative of its expression in the brain, and thus offers the intriguing possibility of pCREB as a biomarker of cognitive function and disease progression in AD. PMID:27480489

  5. Characterization of Microvesicles Released from Human Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Duc Bach Nguyen

    2016-03-01

    Full Text Available Background/Aims: Extracellular vesicles (EVs are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. Methods: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS, scanning electron microscopy (SEM, atomic force microscopy (AFM and dynamic light scattering (DLS. The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. Results: Treatment of RBCs with 4-bromo-A23187 (positive control, lysophosphatidic acid (LPA, or phorbol-12 myristate-13 acetate (PMA in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 m

  6. Tc-99m-labeled red blood cells for the measurement of red cell mass in newborn infants: concise communication

    Energy Technology Data Exchange (ETDEWEB)

    Linderkamp, O.; Betke, K.; Fendel, H.; Klemm, J.; Lorenzen, K.; Riegel, K.P.

    1980-07-01

    In vitro and in vivo investigations were performed to examine the binding of Tc-99m to neonatal red blood cells (RBC). Labeling efficiency was about 90%, and unbound Tc-99m less than 3% after one washing, in premature and full-term newborns and in children. Thus presence of high percentages of fetal hemoglobin (Hb F) did not influence the labeling of RBCs with Tc-99m. RBCs of 11 newborns were hemolysed and the distribution of Tc-99m on RBC components was analyzed. Although Hb F percentage averaged (60.0 +- 8.10)% (s.d.), only (11.9 +- 3.7)% of Tc-99m was bound by Hb F, whereas (45.0 +- 6.1)% was associated with Hb A. RBC membranes bound (13.7 +- 4.3)% and (29.3 +- 4.0)% were found unbound in hemolysates. These results indicate that Tc-99m preferentially binds to beta chains. In vivo equilibration of Tc-99m RBCs and of albumin labeled with Evans blue was investigated in five newborn infants. Tc-99m RBCs were stable in each case during the first hour after injection. Elution of Tc-99m from RBCs was (3.4 +- 1.5)% per h. Body-to-venous hematocrit ratio averaged 0.86 +- 0.03.

  7. Ethyl Pyruvate Combats Human Leukemia Cells but Spares Normal Blood Cells

    Science.gov (United States)

    Kurz, Susanne; Bigl, Marina; Buchold, Martin; Thieme, Rene; Wichmann, Gunnar; Dehghani, Faramarz

    2016-01-01

    Ethyl pyruvate, a known ROS scavenger and anti-inflammatory drug was found to combat leukemia cells. Tumor cell killing was achieved by concerted action of necrosis/apoptosis induction, ATP depletion, and inhibition of glycolytic and para-glycolytic enzymes. Ethyl lactate was less harmful to leukemia cells but was found to arrest cell cycle in the G0/G1 phase. Both, ethyl pyruvate and ethyl lactate were identified as new inhibitors of GSK-3β. Despite the strong effect of ethyl pyruvate on leukemia cells, human cognate blood cells were only marginally affected. The data were compiled by immune blotting, flow cytometry, enzyme activity assay and gene array analysis. Our results inform new mechanisms of ethyl pyruvate-induced cell death, offering thereby a new treatment regime with a high therapeutic window for leukemic tumors. PMID:27579985

  8. Generation of glycosylphosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yuan, Xuan; Braunstein, Evan M; Ye, Zhaohui; Liu, Cyndi F; Chen, Guibin; Zou, Jizhong; Cheng, Linzhao; Brodsky, Robert A

    2013-11-01

    PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.

  9. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.

    Science.gov (United States)

    Giani, Felix C; Fiorini, Claudia; Wakabayashi, Aoi; Ludwig, Leif S; Salem, Rany M; Jobaliya, Chintan D; Regan, Stephanie N; Ulirsch, Jacob C; Liang, Ge; Steinberg-Shemer, Orna; Guo, Michael H; Esko, Tõnu; Tong, Wei; Brugnara, Carlo; Hirschhorn, Joel N; Weiss, Mitchell J; Zon, Leonard I; Chou, Stella T; French, Deborah L; Musunuru, Kiran; Sankaran, Vijay G

    2016-01-07

    Multipotent and pluripotent stem cells are potential sources for cell and tissue replacement therapies. For example, stem cell-derived red blood cells (RBCs) are a potential alternative to donated blood, but yield and quality remain a challenge. Here, we show that application of insight from human population genetic studies can enhance RBC production from stem cells. The SH2B3 gene encodes a negative regulator of cytokine signaling and naturally occurring loss-of-function variants in this gene increase RBC counts in vivo. Targeted suppression of SH2B3 in primary human hematopoietic stem and progenitor cells enhanced the maturation and overall yield of in-vitro-derived RBCs. Moreover, inactivation of SH2B3 by CRISPR/Cas9 genome editing in human pluripotent stem cells allowed enhanced erythroid cell expansion with preserved differentiation. Our findings therefore highlight the potential for combining human genome variation studies with genome editing approaches to improve cell and tissue production for regenerative medicine.

  10. Genome Sequence of Enterobacter cloacae Strain SENG-6, a Bacterium Producing Histo-Blood Group Antigen-Like Substances That Can Bind with Human Noroviruses.

    Science.gov (United States)

    Ishii, Satoshi; Amarasiri, Mohan; Hashiba, Satoshi; Yang, Peiyi; Okabe, Satoshi; Sano, Daisuke

    2016-01-01

    Enterobacter sp. strain SENG-6, isolated from healthy human feces, produces histo-blood group antigen (HBGA)-like substances that can bind with human noroviruses. Based on the genome sequence analysis, strain SENG-6 belongs to the species Enterobacter cloacae The genome sequence of this strain should help identify genes associated with the production of HBGA-like substances.

  11. SNPs in MicroRNA Binding Sites in 3′-UTRs of RAAS Genes Influence Arterial Blood Pressure and Risk of Myocardial Infarction

    NARCIS (Netherlands)

    Nossent, A.Yael; Hansen, Jakob L.; Doggen, Carine; Quax, Paul H.A.; Sheikh, Soren P.; Rosendaal, Frits R.

    2011-01-01

    Background We hypothesized that single nucleotide polymorphisms (SNPs) located in microRNA (miR) binding sites in genes of the renin angiotensin aldosterone system (RAAS) can influence blood pressure and risk of myocardial infarction. Methods Using online databases dbSNP and TargetScan, we ident

  12. Peripheral blood cell variations in cirrhotic portal hypertension patients with hypersplenism

    Institute of Scientific and Technical Information of China (English)

    Yun-Fu Lu; Xin-Qiu Li; Xiao-Yu Han; Xiao-Guang Gong; Shun-Wu Chang

    2013-01-01

    Objective:To explore peripheral blood cell variations in hepatic cirrhosis portal hypertension patients with hypersplenism. Methods: Clinical data of 322 hypersplenism patients with decreased peripheral blood cells, admitted with cirrhotic portal hypertension, was retrospectively studied over the last 17 years. Results:In 64% (206/322) of patients, more than 2 kinds of blood cell were decreased, including 89 cases of pancytopenia (43.2%), 52 cases of WBC+PLT decrease (25.2%), 29 cases of RBC + PLT decrease (14.1%), and 36 cases of WBC + RBC decrease (17.5%);in 36% (116/322) of patients, single type blood cell decrease occurred, including 31 cases of PLT decrease (26.7%), 29 cases of WBC decrease (25%) and 56 cases of RBC decrease (48.3%). Of 227 routine bone marrow examinations, bone marrow hyperplasia was observed in 118 cases (52.0%), the remainder showed no hyperplasia. For the distinct scope and extent of peripheralblood cell decreases, preoperative blood component transfusions were carried out, then treated by surgery, after whole group splenectomy, the peripheral blood cell count was significantly higher (P<0.05). Conclusions: Of portal hypertensive patients with splenomegaly and hypersplenism, 64%have simultaneous decrease in various blood cells, 36%have decrease in single type blood cells, 52%of patients have bone marrow hyperplasia. A splenectomy can significantly increase the reduction of peripheral blood cells.

  13. New algorithm and system for measuring size distribution of blood cells

    Institute of Scientific and Technical Information of China (English)

    Cuiping Yao(姚翠萍); Zheng Li(李政); Zhenxi Zhang(张镇西)

    2004-01-01

    In optical scattering particle sizing, a numerical transform is sought so that a particle size distribution can be determined from angular measurements of near forward scattering, which has been adopted in the measurement of blood cells. In this paper a new method of counting and classification of blood cell, laser light scattering method from stationary suspensions, is presented. The genetic algorithm combined with nonnegative least squared algorithm is employed to inverse the size distribution of blood cells. Numerical tests show that these techniques can be successfully applied to measuring size distribution of blood cell with high stability.

  14. A Comprehensive Fluid Dynamic-Diffusion Model of Blood Microcirculation with Focus on Sickle Cell Disease

    Science.gov (United States)

    Le Floch, Francois; Harris, Wesley L.

    2009-11-01

    A novel methodology has been developed to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the capillaries. Our investigations focus on the coupling between oxygen delivery and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this blood disease. The main part of our work is an extensive study of blood dynamics through simulations of red cells deforming within the capillary vessels, and relies on the use of a large mathematical system of equations describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. This model is expected to lead to the development of new research strategies for sickle cell disease. Our simulation model could be used not only to assess current researched remedies, but also to spur innovative research initiatives, based on our study of the physical properties coupled in sickle cell disease.

  15. P2X and P2Y receptor signaling in red blood cells.

    Science.gov (United States)

    Sluyter, Ronald

    2015-01-01

    Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology.

  16. Dynamics of Red Blood Cells through submicronic splenic slits

    Science.gov (United States)

    Helfer, Emmanuele; Gambhire, Priya; Atwell, Scott; Bedu, Frederic; Ozerov, Igor; Viallat, Annie; Charrier, Anne; Badens, Catherine; Centre de reference Thalassemie, Badens Team; Physics; Engineering of Living Systems Team

    2016-11-01

    Red Blood Cells (RBCs) are periodically monitored for changes in their deformability by the spleen, and are entrapped and destroyed if unable to pass through the splenic interendothelial slits (IESs). In particular, in sickle cell disease (SCD), where hemoglobin form fibers inside the RBCs, and in hereditary spherocytosis (HS), where RBCs are more spherical and membrane-cytoskekeleton bonds are weakened, the loss of RBC deformability leads to spleen dysfunction. By combining photolithography and anisotropic wet etching techniques, we developed a new on-chip PDMS device with channels replicating the submicronic physiological dimensions of IESs to study the mechanisms of deformation of the RBCs during their passage through these biomimetic slits. For the first time, with HS RBCs, we show the disruption of the links between the RBC membrane and the underlying spectrin network. In the case of SCD RBCs we show the appearance of a tip at the front of the RBC with a longer time relaxation due to the increased cytoplasmic viscosity. This work has been carried out thanks to the support of the A*MIDEX project (n° ANR-11-IDEX-0001-02) funded by the «Investissements d'Avenir». French Government program, managed by ANR.

  17. Fish peripheral blood mononuclear cells preparation for future monitoring applications.

    Science.gov (United States)

    Pierrard, Marie-Aline; Roland, Kathleen; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-07-15

    Fish species possess many specific characteristics that support their use in ecotoxicology. Widely used in clinical research, peripheral blood mononuclear cells (PBMCs) can reasonably be exploited as relevant target cells in the assessment of environmental chemical toxicity. The current article focuses on the methods necessary to isolate, characterize, and culture fish PBMCs. These procedures were successfully applied on an endangered species, the European eel (Anguilla anguilla L.), and on an economically important and worldwide exported species, the Asian catfish (Pangasianodon hypophthalmus S.). Proteomic approaches can be useful to screen xenobiotic exposure at the protein expression level, giving the opportunity to develop early warning signals thanks to molecular signatures of toxicity. To date, a major limitation of proteomic analyses is that most protein expression profiles often reveal the same predominant and frequently differentially expressed families of proteins regardless of the experimental stressing conditions. The current study describes a methodology to get a postnuclear fraction of high quality isolated from fish PBMCs in order to perform subsequent subproteomic analyses. Applied on samples from eel, the subproteomic analysis (two-dimensional differential in-gel electrophoresis) allowed the identification by liquid chromatography-tandem mass spectrometry and searches in the full NCBInr (National Center for Biotechnology Information nonredundant) database of 66 proteins representing 36 different proteins validated through Peptide and Protein Prophet of Scaffold software.

  18. Intracellular trehalose improves the survival of human red blood cells by freeze-drying

    Institute of Scientific and Technical Information of China (English)

    HE Hui; LIU Baolin; HUA Zezhao; LI Chuan; WU Zhengzheng

    2007-01-01

    Freeze-drying of human red blood cells has a potential important application for blood transfusion.The aim of this study was to investigate the effects ofintracellular trehalose on the survival of red blood cells after freeze-drying and rehydration.Fresh red blood cells were incubated in trehalose solutions of various concentrations at 37℃ for 7 h following freeze-drying.Polyvinylpyrrolidone,Trehalose,sodium citrate,and human serum albumin were used as extracellular protective agents for the freeze-drying of red blood cells.The results indicated that the intracellular trehalose concentration was increased with increasing concentration of extracellular trehalose solution,and the maximum concen tration of intracellular trehalose reached 35 mmol/L.The viability of freeze-dried red blood cells increased with the increment of intracellular trehalose concentration.

  19. Factor H Binds to Extracellular DNA Traps Released from Human Blood Monocytes in Response to Candida albicans

    Science.gov (United States)

    Halder, Luke D.; Abdelfatah, Mahmoud A.; Jo, Emeraldo A. H.; Jacobsen, Ilse D.; Westermann, Martin; Beyersdorf, Niklas; Lorkowski, Stefan; Zipfel, Peter F.; Skerka, Christine

    2017-01-01

    Upon systemic infection with human pathogenic yeast Candida albicans (C. albicans), human monocytes and polymorph nuclear neutrophilic granulocytes are the first immune cells to respond and come into contact with C. albicans. Monocytes exert immediate candidacidal activity and inhibit germination, mediate phagocytosis, and kill fungal cells. Here, we show that human monocytes spontaneously respond to C. albicans cells via phagocytosis, decondensation of nuclear DNA, and release of this decondensed DNA in the form of extracellular traps (called monocytic extracellular traps: MoETs). Both subtypes of monocytes (CD14++CD16−/CD14+CD16+) formed MoETs within the first hours upon contact with C. albicans. MoETs were characterized by the presence of citrullinated histone, myeloperoxidase, lactoferrin, and elastase. MoETs were also formed in response to Staphylococcus aureus and Escherichia coli, indicating a general reaction of monocytes to infectious microbes. MoET induction differs from extracellular trap formation in macrophages as MoETs are not triggered by simvastatin, an inhibitor of cholesterol synthesis and inducer of extracellular traps in macrophages. Extracellular traps from both monocytes and neutrophils activate complement and C3b is deposited. However, factor H (FH) binds via C3b to the extracellular DNA, mediates cofactor activity, and inhibits the induction of the inflammatory cytokine interleukin-1 beta in monocytes. Altogether, the results show that human monocytes release extracellular DNA traps in response to C. albicans and that these traps finally bind FH via C3b to presumably support clearance without further inflammation. PMID:28133459

  20. Osteopontin and the C-terminal peptide of thrombospondin-4 compete for CD44 binding and have opposite effects on CD133+ cell colony formation

    Directory of Open Access Journals (Sweden)

    Dobocan Monica C

    2009-10-01

    Full Text Available Abstract Background C21, the C-terminal peptide of thrombospondin-4, has growth promoting activity and was discovered as one of several erythropoietin-dependent endothelial proteins. C21 stimulates red cell formation in anemic mice and is a growth factor for CD34+ and CD36+ hematopoietic cells, skin fibroblasts and kidney epithelial cells. ROD1 has been identified as an intracellular mediator. Nothing is known about the existence of putative C21 receptors on plasma membranes of target cells. Findings We analyzed the nature of C21-binding proteins in cell lysates of skin fibroblasts using C21 affinity columns. The membrane receptor CD44 was identified as C21-binding protein by mass spectrometry. We were unable to demonstrate any direct involvement of CD44 on cell growth or the effect of C21 on cell proliferation. A soluble form of CD44 was synthesized in insect cells and purified from culture supernatants with a combination of PVDF filtration in the presence of ammonium sulphate and HPLC. Both osteopontin and hyaluronic acid competitively displaced Biotin-C21 binding to CD44. In a colony-forming assay using primitive CD133+ hematopoietic stem cells from cord blood, osteopontin and C21 had opposite effects and C21 reduced the inhibitory action of osteop