WorldWideScience

Sample records for blood cell production

  1. Red blood cell production

    Science.gov (United States)

    ... to one part of the body or another. Red blood cells are an important element of blood. Their job ... is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of ...

  2. [Promising technologies of packed red blood cells production and storage].

    Science.gov (United States)

    Maksimov, A G; Golota, A S; Krassiĭ, A B

    2013-10-01

    The current article is dedicated to promising technologies of packed red blood cells production and storage. The following new technical approaches are presented: (1) erythrocytes storage in strict anaerobic argon-hydrogen environment, (2) lyophilization of erythrocyte suspension by its atomization in nitrogen gas, (3) lyophilization of erythrocytes by directional freezing under the influence of radio frequency radiation, (4) automated pharming of antigen free packed red blood cells from progenitor cell directly at the battlefield.

  3. Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood.

    Science.gov (United States)

    Olivier, Emmanuel; Qiu, Caihong; Bouhassira, Eric E

    2012-08-01

    The current supply of red blood cells expressing rare blood groups is not sufficient to cover all the existing transfusion needs for chronically transfused patients, such as sickle cell disease homozygous carriers, because of alloimmunization. In vitro production of cultured red blood cells is slowly emerging as a possible complement to the existing collection-based red blood cell procurement system. The yield of cultured red blood cells can theoretically be maximized by amplifying the stem, progenitor, or precursor compartment. Here, we combined methods designed to expand these three compartments to optimize the yield of cultured red blood cells and found that exposing CD34(+) cells to a short pulse of cytokines favorable for erythroid differentiation prior to stem cell expansion followed by progenitor expansion produced the highest yield of erythroid cells. This novel serum-free red blood cell production protocol was efficient on CD34(+) cells derived from human embryonic stem cells, 6-8-week yolk sacs, 16-18-week fetal livers, cord blood, and peripheral blood. The yields of cells obtained with these new protocols were larger by an order of magnitude than the yields observed previously. Globin expression analysis by high-performance liquid chromatography revealed that these expansion protocols generally yielded red blood cells that expressed a globin profile similar to that expected for the developmental age of the CD34(+) cells.

  4. [Production of mature red blood cell by using peripheral blood mononuclear cells].

    Science.gov (United States)

    Jia, Yan-Jun; Liu, Jiang; Zhang, Ke-Ying; Shang, Xiao-Yan; Li, Wei; Wang, Li-Jun; Liu, Na; Wang, Lin; Cui, Shuang; Ni, Lei; Zhao, Bo-Tao; Wang, Dong-Mei; Gao, Song-Ming; Zhang, Zhi-Xin

    2014-10-01

    Most protocols for in vitro producing red blood cells (RBC) use the CD34(+) cells or embryonic stem cells from cord blood, bone marrow or peripheral blood as the start materials. This study was purposed to produce the mature RBC in vitro by using peripheral blood mononuclear cells as start material. The peripheral blood mononuclear cells (PBMNC) were isolated from buffy coat after blood leukapheresis, the mature red blood cells (RBC) were prepared by a 4-step culture protocol. The results showed that after culture by inducing with the different sets of cytokines and supporting by mouse MS-5 cell line, the expansion of PBMNC reached about 1000 folds at the end of the culture. About 90% of cultured RBC were enucleated mature cells which had the comparable morphological characteristics with normal RBC. Colony-forming assays showed that this culture system could stimulate the proliferation of progenitors in PBMNC and differentiate into erythroid cells. The structure and function analysis indicated that the mean cell volume of in vitro cultured RBC was 118 ± 4 fl, which was slight larger than that of normal RBC (80-100 fl); the mean cell hemoglobin was 36 ± 1.2 pg, which was slight higher than that of normal RBC (27-31 pg); the maximal deformation index was 0.46, which approachs level of normal RBC; the glucose-6-phosphate dehydrogenase and pyrurvate kinase levels was consistant with young RBC. It is concluded that PBMNC are feasble, convenient and low-cost source for producing cultured RBC and this culture system is suitable to generate the RBC from PBMNC.

  5. Effects of blood products on inflammatory response in endothelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Martin Urner

    Full Text Available BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC, platelet concentrates (PC and fresh frozen plasma (FFP was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells.

  6. Bacterial glycosidases for the production of universal red blood cells

    DEFF Research Database (Denmark)

    Liu, Qiyong P; Sulzenbacher, Gerlind; Yuan, Huaiping;

    2007-01-01

    Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating...... of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions....

  7. Effect of polyclonal activators on cytokine production by blood cells and by malignant breast cancer cells.

    Science.gov (United States)

    Kunts, T A; Karpukhina, K V; Mikhaylova, E S; Marinkin, I O; Varaksin, N A; Autenshlyus, A I; Lyakhovich, V V

    2016-01-01

    The production of cytokines by peripheral blood cells and biopsy specimens of tumors stimulated by polyclonal activators (PAs) was evaluated in 34 patients with invasive ductal breast carcinoma using enzyme-linked immunosorbent assay (ELISA). Positive correlation between the stimulation index of polyclonal activators (SIPA) for IL-18 production by the tumor and the relative content of poorly differentiated cells was revealed. The latter, in turn, was positively correlated with the numbers of normal and pathologic mitoses and the degree of malignancy. Cancer cells can produce IL-18, which is involved in the process of angiogenesis, stimulates invasion and metastasis. Decrease in SIPA for the production of IL-6 and GCSF by peripheral blood cells could serve as an indicator of malignant progression in invasive ductal breast carcinoma.

  8. Production of Induced Pluripotent Stem Cells by Reprogramming of Blood Cells

    Directory of Open Access Journals (Sweden)

    Sadia Zia

    2011-06-01

    Full Text Available Blood cells are the simple, efficient and economical source for the production of induced pluripotent cells. The discovery of induced pluripotent cells was not novel; it was pedestal on the scientific principals and technologies which have been developed over last six decades. These are nuclear transfer and the cloning of Animals, Pluripotent cell lines and fusion hybrids and Transcription Factors and lineage switching. The use of human embryonic stem cells in regenerative medicines was a breakthrough but make use of these cells arise ethical issues as they are obtained from human embryos. An alternative advancement using induced pluripotent stem cells, which mimics the embryonic stem cells has the significant gain that they replaced the embryonic stem cells. The pluripotent cells can be induced from terminally differentiated somatic cells by the Induction of only four defined factors including c-Myc, klf4, Oct4 and Sox2 which are enough to alter the fate of cell.

  9. Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells.

    Science.gov (United States)

    Giani, Felix C; Fiorini, Claudia; Wakabayashi, Aoi; Ludwig, Leif S; Salem, Rany M; Jobaliya, Chintan D; Regan, Stephanie N; Ulirsch, Jacob C; Liang, Ge; Steinberg-Shemer, Orna; Guo, Michael H; Esko, Tõnu; Tong, Wei; Brugnara, Carlo; Hirschhorn, Joel N; Weiss, Mitchell J; Zon, Leonard I; Chou, Stella T; French, Deborah L; Musunuru, Kiran; Sankaran, Vijay G

    2016-01-07

    Multipotent and pluripotent stem cells are potential sources for cell and tissue replacement therapies. For example, stem cell-derived red blood cells (RBCs) are a potential alternative to donated blood, but yield and quality remain a challenge. Here, we show that application of insight from human population genetic studies can enhance RBC production from stem cells. The SH2B3 gene encodes a negative regulator of cytokine signaling and naturally occurring loss-of-function variants in this gene increase RBC counts in vivo. Targeted suppression of SH2B3 in primary human hematopoietic stem and progenitor cells enhanced the maturation and overall yield of in-vitro-derived RBCs. Moreover, inactivation of SH2B3 by CRISPR/Cas9 genome editing in human pluripotent stem cells allowed enhanced erythroid cell expansion with preserved differentiation. Our findings therefore highlight the potential for combining human genome variation studies with genome editing approaches to improve cell and tissue production for regenerative medicine.

  10. Establishing a cell biology platform: isolation and preservation of human blood products

    OpenAIRE

    2014-01-01

    Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina The use of human primary cells provide researchers in different areas with irrefutable more biologically relevant data than using cell lines or animal blood cells. The work was performed in the scope of the Cell Biology Services @ CEDOC, aiming to provide viable and trustful human primary cells and products. We had three main objectives: protocol optimizations for blood cell isolation, culture and cryopre...

  11. Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Jeurink, P.V.; Lull Noguera, C.; Savelkoul, H.F.J.; Wichers, H.J.

    2008-01-01

    Immunomodulation by fungal compounds can be determined by the capacity of the compounds to influence the cytokine production by human peripheral blood mononuclear cells (hPBMC). These activities include mitogenicity, stimulation and activation of immune effector cells. Eight mushroom strains (Agaric

  12. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    Science.gov (United States)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  13. Pancreatic Cancer Cell Lines Can Induce Prostaglandin E2 Production from Human Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Svitlana P. Grekova

    2011-01-01

    Full Text Available Accumulating evidence suggests an important role for cyclooxygenase-2 (COX-2 in the pathogenesis of a wide range of malignancies. The protumorigenic properties of COX-2 are generally thought to be mediated by its product, PGE2, which is shown to promote tumor spread and growth by multiple mechanisms but most importantly through modulation of the local immune response in the tumor. Pancreatic tumor cells produce various amounts of PGE2, some of them being even deficient in COX enzymes or other PGE2 synthases. Here we describe that, beside pancreatic tumor cells or stromal fibroblasts, human peripheral blood mononuclear cells can also produce PGE2 upon coculture with pancreatic cancer cells. Stimulating of cellular cPLA2 within PBMCs by secreted factors, presumably sPLA2, from tumor cells appeared crucial, while the direct contact between PBMCs and PDACs seemed to be dispensable for this effect. Our data is emphasizing the complex interactions participating in the formation of the tolerogenic immune milieu within pancreatic tumors.

  14. Banking of pluripotent adult stem cells as an unlimited source for red blood cell production: potential applications for alloimmunized patients and rare blood challenges.

    Science.gov (United States)

    Peyrard, Thierry; Bardiaux, Laurent; Krause, Claire; Kobari, Ladan; Lapillonne, Hélène; Andreu, Georges; Douay, Luc

    2011-07-01

    The transfusion of red blood cells (RBCs) is now considered a well-settled and essential therapy. However, some difficulties and constraints still occur, such as long-term blood product shortage, blood donor population aging, known and yet unknown transfusion-transmitted infectious agents, growing cost of the transfusion supply chain management, and the inescapable blood group polymorphism barrier. Red blood cells can be now cultured in vitro from human hematopoietic, human embryonic, or human-induced pluripotent stem cells (hiPSCs). The highly promising hiPSC technology represents a potentially unlimited source of RBCs and opens the door to the revolutionary development of a new generation of allogeneic transfusion products. Assuming that in vitro large-scale cultured RBC production efficiently operates in the near future, we draw here some futuristic but realistic scenarios regarding potential applications for alloimmunized patients and those with a rare blood group. We retrospectively studied a cohort of 16,486 consecutive alloimmunized patients (10-year period), showing 1 to 7 alloantibodies with 361 different antibody combinations. We showed that only 3 hiPSC clones would be sufficient to match more than 99% of the 16,486 patients in need of RBC transfusions. The study of the French National Registry of People with a Rare Blood Phenotype/Genotype (10-year period) shows that 15 hiPSC clones would cover 100% of the needs in patients of white ancestry. In addition, one single hiPSC clone would meet 73% of the needs in alloimmunized patients with sickle cell disease for whom rare cryopreserved RBC units were required. As a result, we consider that a very limited number of RBC clones would be able to not only provide for the need for most alloimmunized patients and those with a rare blood group but also efficiently allow for a policy for alloimmunization prevention in multiply transfused patients.

  15. Evaluation of Stem Cell-Derived Red Blood Cells as a Transfusion Product Using a Novel Animal Model.

    Science.gov (United States)

    Shah, Sandeep N; Gelderman, Monique P; Lewis, Emily M A; Farrel, John; Wood, Francine; Strader, Michael Brad; Alayash, Abdu I; Vostal, Jaroslav G

    2016-01-01

    Reliance on volunteer blood donors can lead to transfusion product shortages, and current liquid storage of red blood cells (RBCs) is associated with biochemical changes over time, known as 'the storage lesion'. Thus, there is a need for alternative sources of transfusable RBCs to supplement conventional blood donations. Extracorporeal production of stem cell-derived RBCs (stemRBCs) is a potential and yet untapped source of fresh, transfusable RBCs. A number of groups have attempted RBC differentiation from CD34+ cells. However, it is still unclear whether these stemRBCs could eventually be effective substitutes for traditional RBCs due to potential differences in oxygen carrying capacity, viability, deformability, and other critical parameters. We have generated ex vivo stemRBCs from primary human cord blood CD34+ cells and compared them to donor-derived RBCs based on a number of in vitro parameters. In vivo, we assessed stemRBC circulation kinetics in an animal model of transfusion and oxygen delivery in a mouse model of exercise performance. Our novel, chronically anemic, SCID mouse model can evaluate the potential of stemRBCs to deliver oxygen to tissues (muscle) under resting and exercise-induced hypoxic conditions. Based on our data, stem cell-derived RBCs have a similar biochemical profile compared to donor-derived RBCs. While certain key differences remain between donor-derived RBCs and stemRBCs, the ability of stemRBCs to deliver oxygen in a living organism provides support for further development as a transfusion product.

  16. Do blood components affect the production of reactive oxygen species (ROS by equine synovial cells in vitro?

    Directory of Open Access Journals (Sweden)

    Patrícia M. Brossi

    2012-12-01

    Full Text Available Blood-derived products are commonly administered to horses and humans to treat many musculoskeletal diseases, due to their potential antioxidant and anti-inflammatory effects. Nevertheless, antioxidant effects have never been shown upon horse synovial fluid cells in vitro. If proved, this could give a new perspective to justify the clinical application of blood-derived products. The aim of the present study was to investigate the antioxidant effects of two blood-derived products - plasma (unconditioned blood product - UBP and a commercial blood preparation (conditioned blood product - CBP¹ - upon stimulated equine synovial fluid cells. Healthy tarsocrural joints (60 were tapped to obtain synovial fluid cells; these cells were pooled, processed, stimulated with lipopolysaccharide (LPS or phorbol 12-myristate 13-acetate (PMA, and evaluated by flow cytometry for the production of reactive oxygen species (ROS. Upon addition of any blood-derived product here used - UBP and CBP - there was a significant decrease in the oxidative burst of synovial fluid cells (P<0.05. There was no difference between UBP and CBP effects. In conclusion, treatment of stimulated equine synovial cells with either UBP or CBP efficiently restored their redox equilibrium.

  17. White Blood Cell Count

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? ... Count; Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , ...

  18. Elevated peripheral blood mononuclear cell-derived superoxide production in healthy young black men.

    Science.gov (United States)

    Deo, Shekhar H; Holwerda, Seth W; Keller, David M; Fadel, Paul J

    2015-03-01

    Several studies have demonstrated that blacks exhibit elevations in systemic oxidative stress. However, the source(s) and mechanism(s) contributing to the elevation in oxidative stress remain unclear. Given that peripheral blood mononuclear cells (PBMCs) can be a major source of NADPH oxidase-derived superoxide production, we tested the hypothesis that young black men demonstrate greater superoxide production and NADPH oxidase expression in PBMCs compared with whites. PBMCs were freshly isolated from whole blood in young normotensive black (n = 18) and white (n = 16) men. Intracellular superoxide production in PBMCs was measured using dihydroethidium fluorescence, protein expression of NADPH oxidase subunits, gp91(phox) (membranous) and p47(phox) (cytosolic) in PBMCs were assessed using Western blot analysis, and plasma protein carbonyls were measured as a marker of systemic oxidative stress. Black men showed elevated intracellular superoxide production (4.3 ± 0.5 vs. 2.0 ± 0.6 relative fluorescence units; black men vs. white men, P superoxide production or NADPH oxidase subunit protein expression. These findings indicate that black men exhibit greater resting PBMC-derived superoxide production and an upregulation of the NADPH oxidase pathway with a possible contribution to increases in systemic oxidative stress.

  19. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E

    2011-01-01

    We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  20. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    Full Text Available We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.

  1. Production of lipase from Pseudomonas gessardii using blood tissue lipid and thereof for the hydrolysis of blood cholesterol and triglycerides and lysis of red blood cells.

    Science.gov (United States)

    Ramani, K; Sekaran, G

    2012-08-01

    The study demonstrates the production of lipase (LIP) from Pseudomonas gessardii using blood tissue lipid as the substrate for the hydrolysis of blood cholesterol and triglycerides. The lipase was purified with the specific activity of 828 U/mg protein and the molecular weight of 56 kDa. The maximum lipase activity was observed at the pH 7.0 and the temperature 37 °C. The amino acid composition of purified lipase was determined by HPLC. The mesoporous activated carbon (MAC) was used for the immobilization of lipase for the repeated use of the enzyme catalyst. The K (m) value of immobilized lipase (MAC-LIP) and the free lipase (LIP) was 0.182 and 1.96 mM, respectively. The V (max) value of MAC-LIP and LIP was 1.33 and 1.26 mM/min, respectively. The MAC and MAC-LIP were characterized by scanning electron microscopy (SEM). The hydrolysis study showed 78 and 100% hydrolysis of triglycerides and cholesterol, respectively, for LIP and 84 and 100% hydrolysis of triglycerides and cholesterol, respectively, for MAC-LIP at the reaction time of 1 h. The effect of lipase on cell wall lysis was carried out on the RBCs of blood plasma. Interestingly, 99.9% lysis of RBCs was observed within 2 h. SEM images and phase contrast microscopy confirmed the lysis of RBCs. This work provides a potential biocatalyst for the hydrolysis of blood cholesterol and triglycerides.

  2. A cord blood monocyte–derived cell therapy product accelerates brain remyelination

    Science.gov (United States)

    Buntz, Susan; Scotland, Paula; Xu, Li; Noeldner, Pamela; Patel, Sachit; Wollish, Amy; Gunaratne, Aruni; Gentry, Tracy; Matsushima, Glenn K.; Kurtzberg, Joanne; Balber, Andrew E.

    2016-01-01

    Microglia and monocytes play important roles in regulating brain remyelination. We developed DUOC-01, a cell therapy product intended for treatment of demyelinating diseases, from banked human umbilical cord blood (CB) mononuclear cells. Immunodepletion and selection studies demonstrated that DUOC-01 cells are derived from CB CD14+ monocytes. We compared the ability of freshly isolated CB CD14+ monocytes and DUOC-01 cells to accelerate remyelination of the brains of NOD/SCID/IL2Rγnull mice following cuprizone feeding–mediated demyelination. The corpus callosum of mice intracranially injected with DUOC-01 showed enhanced myelination, a higher proportion of fully myelinated axons, decreased gliosis and cellular infiltration, and more proliferating oligodendrocyte lineage cells than those of mice receiving excipient. Uncultured CB CD14+ monocytes also accelerated remyelination, but to a significantly lesser extent than DUOC-01 cells. Microarray analysis, quantitative PCR studies, Western blotting, and flow cytometry demonstrated that expression of factors that promote remyelination including PDGF-AA, stem cell factor, IGF1, MMP9, MMP12, and triggering receptor expressed on myeloid cells 2 were upregulated in DUOC-01 compared to CB CD14+ monocytes. Collectively, our results show that DUOC-01 accelerates brain remyelination by multiple mechanisms and could be beneficial in treating demyelinating conditions. PMID:27699230

  3. Productive infection of human peripheral blood mononuclear cells by feline immunodeficiency virus: implications for vector development.

    Science.gov (United States)

    Johnston, J; Power, C

    1999-03-01

    Feline immunodeficiency virus (FIV) is a lentivirus causing immune suppression and neurological disease in cats. Like primate lentiviruses, FIV utilizes the chemokine receptor CXCR4 for infection. In addition, FIV gene expression has been demonstrated in immortalized human cell lines. To investigate the extent and mechanism by which FIV infected primary and immortalized human cell lines, we compared the infectivity of two FIV strains, V1CSF and Petaluma, after cell-free infection. FIV genome was detected in infected human peripheral blood mononuclear cells (PBMC) and macrophages at 21 and 14 days postinfection, respectively. Flow cytometry analysis of FIV-infected human PBMC indicated that antibodies to FIV p24 recognized 12% of the cells. Antibodies binding the CCR3 chemokine receptor maximally inhibited infection of human PBMC by both FIV strains compared to antibodies to CXCR4 or CCR5. Reverse transcriptase levels increased in FIV-infected human PBMC, with detection of viral titers of 10(1.3) to 10(2.1) 50% tissue culture infective doses/10(6) cells depending on the FIV strain examined. Cell death in human PBMC infected with either FIV strain was significantly elevated relative to uninfected control cultures. These findings indicate that FIV can productively infect primary human cell lines and that viral strain specificity should be considered in the development of an FIV vector for gene therapy.

  4. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    Science.gov (United States)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  5. 21 CFR 640.10 - Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  6. Production of nitric oxide by peripheral blood mononuclear cells from the Florida manatee, Trichechus manatus latirostris.

    Science.gov (United States)

    Walsh, Catherine J; Stuckey, Joyce E; Cox, Heather; Smith, Brett; Funke, Christina; Stott, Jeff; Colle, Clarence; Gaspard, Joseph; Manire, Charles A

    2007-08-15

    Florida manatees (Trichechus manatus latirostris) are exposed to many conditions in their habitat that may adversely impact health and impair immune function in this endangered species. In an effort to increase the current knowledge base regarding the manatee immune system, the production of an important reactive nitrogen intermediate, nitric oxide (NO), by manatee peripheral blood mononuclear cells (PBMC) was investigated. PBMC from healthy captive manatees were stimulated with LPS, IFN-gamma, or TNF-alpha, either alone or in various combinations, with NO production assessed after 24, 48, 72, and 96 h of culture. NO production in response to LPS stimulation was significantly greater after 48, 72, or 96 h of culture compared to NO production after 24h of culture. A specific inhibitor of inducible nitric oxide synthase (iNOS), L-NIL (L-N(6)-(1-iminoethyl)lysine), significantly decreased NO production by LPS-stimulated manatee PBMC. Manatee specific oligonucleotide primers for iNOS were designed to measure expression of relative amounts of mRNA in LPS-stimulated manatee PBMC from captive manatees. NO production by PBMC from manatees exposed to red tide toxins was analyzed, with significantly greater NO production by both unstimulated and LPS stimulated PBMC from red tide exposed compared with healthy captive or cold-stress manatees. Free-ranging manatees produced significantly lower amounts of nitric oxide compared to either captive or red tide rescued manatees. Results presented in this paper contribute to the current understanding of manatee immune function and represent the first report of nitric oxide production in the immune system of a marine mammal.

  7. Production of cytokine and chemokines by human mononuclear cells and whole blood cells after infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Karine Rezende-Oliveira

    2012-02-01

    Full Text Available INTRODUCTION: The innate immune response is the first mechanism of protection against Trypanosoma cruzi, and the interaction of inflammatory cells with parasite molecules may activate this response and modulate the adaptive immune system. This study aimed to analyze the levels of cytokines and chemokines synthesized by the whole blood cells (WBC and peripheral blood mononuclear cells (PBMC of individuals seronegative for Chagas disease after interaction with live T. cruzi trypomastigotes. METHODS: IL-12, IL-10, TNF-α, TGF-β, CCL-5, CCL-2, CCL-3, and CXCL-9 were measured by ELISA. Nitrite was determined by the Griess method. RESULTS: IL-10 was produced at high levels by WBC compared with PBMC, even after incubation with live trypomastigotes. Production of TNF-α by both PBMC and WBC was significantly higher after stimulation with trypomastigotes. Only PBMC produced significantly higher levels of IL-12 after parasite stimulation. Stimulation of cultures with trypomastigotes induced an increase of CXCL-9 levels produced by WBC. Nitrite levels produced by PBMC increased after the addition of parasites to the culture. CONCLUSIONS: Surface molecules of T. cruzi may induce the production of cytokines and chemokines by cells of the innate immune system through the activation of specific receptors not evaluated in this experiment. The ability to induce IL-12 and TNF-α contributes to shift the adaptive response towards a Th1 profile.

  8. Altered Cytokine Production By Specific Human Peripheral Blood Cell Subsets Immediately Following Spaceflight

    Science.gov (United States)

    Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.

    1999-01-01

    In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased

  9. Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor

    OpenAIRE

    Männel, Daniela N.; Kist, A.; Ho, A D; Räth, U.; Reichardt, P; Wiedenmann, B; Schlick, E.; Kirchner, H.

    1989-01-01

    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced ...

  10. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  11. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  12. In vitro large scale production of human mature red blood cells from hematopoietic stem cells by coculturing with human fetal liver stromal cells.

    Science.gov (United States)

    Xi, Jiafei; Li, Yanhua; Wang, Ruoyong; Wang, Yunfang; Nan, Xue; He, Lijuan; Zhang, Peng; Chen, Lin; Yue, Wen; Pei, Xuetao

    2013-01-01

    In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation in normal and pathological conditions. Here we describe an erythroid liquid culture system starting from cord blood derived hematopoietic stem cells (HSCs). HSCs were cultured for more than 50 days in erythroid differentiation conditions and resulted in a more than 10(9)-fold expansion within 50 days under optimal conditions. Homogeneous erythroid cells were characterized by cell morphology, flow cytometry, and hematopoietic colony assays. Furthermore, terminal erythroid maturation was improved by cosculturing with human fetal liver stromal cells. Cocultured erythroid cells underwent multiple maturation events, including decrease in size, increase in glycophorin A expression, and nuclear condensation. This process resulted in extrusion of the pycnotic nuclei in up to 80% of the cells. Importantly, they possessed the capacity to express the adult definitive β -globin chain upon further maturation. We also show that the oxygen equilibrium curves of the cord blood-differentiated red blood cells (RBCs) are comparable to normal RBCs. The large number and purity of erythroid cells and RBCs produced from cord blood make this method useful for fundamental research in erythroid development, and they also provide a basis for future production of available RBCs for transfusion.

  13. Biochemical measurements on single erythroid progenitor cells shed light on the combinatorial regulation of red blood cell production.

    Science.gov (United States)

    Wang, Weijia; Akbarian, Vahe; Audet, Julie

    2013-02-02

    Adult bone marrow (BM) erythrocyte colony-forming units (CFU-Es) are important cellular targets for the treatment of anemia and also for the manufacture of red blood cells (RBCs) ex vivo. We obtained quantitative biochemical measurements from single and small numbers of CFU-Es by isolating and analyzing c-Kit(+)CD71(high)Ter119(-) cells from adult mouse BM and this allowed us to identify two mechanisms that can be manipulated to increase RBC production. As expected, maximum RBC output was obtained when CFU-Es were stimulated with a combination of Stem Cell Factor (SCF) and Erythropoietin (EPO) mainly because SCF supports a transient CFU-E expansion and EPO promotes the survival and terminal differentiation of erythroid progenitors. However, we found that one of the main factors limiting the output in RBCs was that EPO induces a downregulation of c-Kit expression which limits the transient expansion of CFU-Es. In the presence of SCF, the EPO-mediated downregulation of c-Kit on CFU-Es is delayed but still significant. Moreover, treatment of CFU-Es with 1-Naphthyl PP1 could partially inhibit the downregulation of c-Kit induced by EPO, suggesting that this process is dependent on a Src family kinase, v-Src and/or c-Fyn. We also found that CFU-E survival and proliferation was dependent on the level of time-integrated extracellular-regulated kinase (ERK) activation in these cells, all of which could be significantly increased when SCF and EPO were combined with mouse fetal liver-derived factors. Taken together, these results suggest two novel molecular strategies to increase RBC production and regeneration.

  14. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlated with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.

  15. Phosphatidylserine exposure on stored red blood cells as a parameter for donor-dependent variation in product quality

    NARCIS (Netherlands)

    Dinkla, S.; Peppelman, M.; Raadt, J. van der; Atsma, F.; Novotny, V.M.J.; Kraaij, M.G.J. van; Joosten, I.; Bosman, G.J.C.G.M.

    2014-01-01

    BACKGROUND: Exposure of phosphatidylserine on the outside of red blood cells contributes to recognition and removal of old and damaged cells. The fraction of phosphatidylserine-exposing red blood cells varies between donors, and increases in red blood cell concentrates during storage. The susceptibi

  16. High Red Blood Cell Count

    Science.gov (United States)

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  17. Temporal stochasticity leads to nondeterministic chaos in a model for blood cell production

    Energy Technology Data Exchange (ETDEWEB)

    Mehr, R.; Agur, Z. [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Applied Mathematics

    1993-12-01

    All types of blood cells are formed by differentiation from a small population of pluripotent stem cells in the bone marrow. This population should maintain the balance between self-renewal and differentiation, even under severe perturbations, e.g. the massive cell death caused by chemotherapy or irradiation. The authors constructed a cellular-automata model for bone marrow dynamics, which retrieves its homeostatic capabilities even under periodic perturbations with constant or random amplitude. However, temporally stochastic perturbations result in a chaotic-like behavior. Several methods of analysis failed to distinguish between the time series in this case and a chaotic time series, although the chaotic-like behavior has no deterministic source.

  18. Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform.

    Directory of Open Access Journals (Sweden)

    Josefina Dykes

    Full Text Available BACKGROUND: Excessive collection of platelets is an unwanted side effect in current centrifugation-based peripheral blood progenitor cell (PBPC apheresis. We investigated a novel microchip-based acoustophoresis technique, utilizing ultrasonic standing wave forces for the removal of platelets from PBPC products. By applying an acoustic standing wave field onto a continuously flowing cell suspension in a micro channel, cells can be separated from the surrounding media depending on their physical properties. STUDY DESIGN AND METHODS: PBPC samples were obtained from patients (n = 15 and healthy donors (n = 6 and sorted on an acoustophoresis-chip. The acoustic force was set to separate leukocytes from platelets into a target fraction and a waste fraction, respectively. The PBPC samples, the target and the waste fractions were analysed for cell recovery, purity and functionality. RESULTS: The median separation efficiency of leukocytes to the target fraction was 98% whereas platelets were effectively depleted by 89%. PBPC samples and corresponding target fractions were similar in the percentage of CD34+ hematopoetic progenitor/stem cells as well as leukocyte/lymphocyte subset distributions. Median viability was 98%, 98% and 97% in the PBPC samples, the target and the waste fractions, respectively. Results from hematopoietic progenitor cell assays indicated a preserved colony-forming ability post-sorting. Evaluation of platelet activation by P-selectin (CD62P expression revealed a significant increase of CD62P+ platelets in the target (19% and waste fractions (20%, respectively, compared to the PBPC input samples (9%. However, activation was lower when compared to stored blood bank platelet concentrates (48%. CONCLUSION: Acoustophoresis can be utilized to efficiently deplete PBPC samples of platelets, whilst preserving the target stem/progenitor cell and leukocyte cell populations, cell viability and progenitor cell colony-forming ability

  19. Storing Blood Cells

    Science.gov (United States)

    1976-01-01

    The National Cancer Institute worked with Goddard Space Flight Center to propose a solution to the blood-cell freezing problem. White blood cells and bone marrow are stored for future use by leukemia patients as a result of Goddard and Jet Propulsion Laboratory expertise in electronics and cryogenics. White blood cell and bone marrow bank established using freezing unit. Freezing unit monitors temperature of cells themselves. Thermocouple placed against polyethylene container relays temperature signals to an electronic system which controls small heaters located outside container. Heaters allow liquid nitrogen to circulate at constant temperature and maintain consistent freezing rate. Ability to freeze, store, and thaw white cells and bone marrow without damage is important in leukemia treatment.

  20. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    Science.gov (United States)

    van den Berk, Lieke C J; Roelofs, Helene; Huijs, Tonnie; Siebers-Vermeulen, Kim G C; Raymakers, Reinier A; Kögler, Gesine; Figdor, Carl G; Torensma, Ruurd

    2009-12-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.

  1. Low White Blood Cell Count

    Science.gov (United States)

    Symptoms Low white blood cell count By Mayo Clinic Staff A low white blood cell count (leukopenia) is a decrease in disease-fighting cells ( ... a decrease in a certain type of white blood cell (neutrophil). The definition of low white blood cell ...

  2. Bacillus Calmette-Guérin enhances production and secretion of type IV collagenases in peripheral blood mononuclear cells.

    Science.gov (United States)

    Kageyama, Y; Kawakami, S; Fujii, Y; Kihara, K; Oshima, H

    1997-03-01

    Intravesical administration of bacillus Calmette-Guérin (BCG) is an effective and widely accepted treatment for superficial bladder cancer. Rapid progression of the disease after BCG therapy, however, has been reported in some cases refractory to the treatment. We examined whether BCG treatment and coexistence of peripheral blood mononuclear cells (PBMCs) alter the invasive potential of bladder cancer cells. Production and secretion of two type IV collagenases, matrix metalloproteinase (MMP) 2 and MMP 9, by PBMCs from five healthy donors or bladder cancer cells (T24, JTC 30, and JTC 32) were evaluated by gelatin zymography, western blot analysis, and northern blot analysis. Invasion of bladder cancer cells was also examined using reconstituted basement membrane (Matrigel). BCG (5, 50, and 500 micrograms/ml) had no effect on secretion of MMP 2 and MMP 9 by bladder cancer cells, but increased the production and secretion of MMP 9 by PBMCs in a dose-dependent manner. The coexistence of PBMCs increased invasion of T24 cells and BCG further enhanced the invasion. Thus, BCG promotes invasion of bladder cancer cells under certain conditions. An increase in the secretion of MMP 9 by PBMCs may account in part for the effect.

  3. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Maynard, Scott; Keijzers, Guido; Gram, Martin

    2013-01-01

    . Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production...

  4. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch. PMID:27651560

  5. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  6. Whole-blood culture is a valid low-cost method to measure monocytic cytokines - A comparison of cytokine production in cultures of human whole-blood, mononuclear cells and monocytes

    DEFF Research Database (Denmark)

    Damsgaard, Camilla T.; Lauritzen, Lotte; Calder, Philip C.

    2009-01-01

    assessed the intra- and inter-individual variation in cytokine production. In 64 healthy men (age 19-40 years) IL-6, TNF and IL-10 were measured by enzyme-linked immunosorbent assay in supernatants from whole-blood, PBMC and monocytes cultured 24 h with lipopolysaccharide (LPS) or UV-killed L acidophilus......Whole-blood and peripheral blood mononuclear cell (PBMC) cultures are used as non-validated surrogate measures of monocytic cytokine production. The aim of this investigation was to compare ex vivo cytokine production from human whole-blood and PBMC with that from isolated monocytes. We also...

  7. Red blood cell alloimmunization after blood transfusion

    NARCIS (Netherlands)

    Schonewille, Henk

    2008-01-01

    Current pretransfusion policy requires the patients’ serum to be tested for the presence of irregular red blood cell antibodies. In case of an antibody, red blood cells lacking the corresponding antigen are transfused after an antiglobulin crossmatch. The aim of the studies in this thesis is primari

  8. Production of Autoantibodies in Chronic Hepatitis B Virus Infection Is Associated with the Augmented Function of Blood CXCR5+CD4+ T Cells

    Science.gov (United States)

    Lei, Yu; Hu, Tingting; Song, Xiaofei; Nie, Hong; Chen, Min; Chen, Weixian; Zhou, Zhi; Zhang, Dazhi; Hu, Huaidong; Hu, Peng; Ren, Hong

    2016-01-01

    T follicular helper cells (Tfh) provide help to B cells to support their activation, expansion and differentiation. However, the role of Tfh cells in chronic HBV infection is poorly defined. The aim of this research was to examine the function of Tfh cells and whether they are involved in HBV related disease. Blood CXCR5+CD4+T cells and B cells in 85 patients with chronic HBV infection (HBV patients) and health controls (HC) were examined by flow cytometry. The molecule expression in blood CXCR5+CD4+ T cells was detected by real-time PCR. Blood CXCR5+CD4+ T cells and B cells were co-cultured and the production of Ig and cytokines was detected by ELISA. Autoantibodies were detected by indirect immunofluorescence and immunospot assay. We found that blood CXCR5+CD4+ T cells in patients with chronic HBV infection (HBV patients) expressed higher level of activation related molecules and cytokines than that from health controls (HC).In HBV patients, the frequency of blood CXCR5+CD4+ T cells was significantly correlated with serum ALT and AST. We also found that blood CXCR5+CD4+ T cells from HBV patients could induce B cells to secret higher level of immunoglobulin than that from HC. Several autoantibodies, including ANA, ss-A, ss-B, Scl-70, Jo-1, ect, were indeed positive in 65% HBV patients. Among HBV patients, expression of function related molecules was significantly higher in blood CXCR5+CD4+ T cells from patients with autoantibodies than that without autoantibodies. Our research indicated that blood CXCR5+CD4+ T cells from HBV patients were over activated and show augmented capacity to help B cells for antibody secreting, which might correlated with liver inflammation and the production of autoantibodies in extrahepatic manifestations. PMID:27612199

  9. Saponin, an inhibitory agent of carbon dioxide production by white cells : its use in the microbiologic examination of blood components in an automated bacterial culture system

    NARCIS (Netherlands)

    van Doorne, H; van der Tuuk Adriani, WPA; van de Ven, LI; Bosch, EH; de Natris, T; Sibinga, CTS

    1998-01-01

    BACKGROUND: Blood components with a white cell count >100 x 10(9) per L may cause false-positive results when the BacT/Alert system is used for the microbiologic examination. The effects of different concentrations of saponin on bacterial growth and on carbon dioxide production by blood fractions wi

  10. A method for production and determination of histamine releasing activity from human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Kampen, G T; Poulsen, L K; Reimert, C M

    1997-01-01

    Histamine releasing factors, i.e. cytokines capable of inducing histamine release from basophils or mast cells, have been suggested to be involved in the pathogenesis of, for example, allergic late-phase reactions. Here we describe a controlled method for production and determination of histamine......). The preparations of HRA induced dose- and Ca2+-dependent histamine release from leukocytes. Supernatants of parallel cultures of unstimulated MNC did not induce histamine release. The HRA was neither due to exogenous histamine releasing compounds (e.g. Con A) nor to residual histamine in the preparations of HRA....... The kinetics of HRA induced histamine release (half-maximal release after > 40 min) were slower and more protracted than those of anti-IgE induced histamine release. However, based on a comparison between HRA induced histamine release from leukocytes and purified (97%) basophils, this did not appear to be due...

  11. PRODUCTION OF PROINFLAMMATORY CYTOKINES AND ALPHA-2-MACROGLOBULIN BY PERIPHERAL BLOOD CELLS IN THE PATIENTS WITH COLORECTAL CANCER

    Directory of Open Access Journals (Sweden)

    V. N. Zorina

    2016-01-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer worldwide, being quite complicated, with respect to diagnostics and postoperative prognosis. Proinflammatory cytokines are shown to be involved into CRC pathogenesis. However, the changes in alpha-2-macroglobulin (α2-MG, a known regulator of cytokine production, still remain unclear. The aim of this work was to compare contents and production of a2-MG and several pro-inflammatory cytokines in blood serum and supernates from short-term blood cell cultures. The samples were taken from the patients with CRC at initial terms and after surgical removal of the tumor.Studies of cytokines and a2-MG concentrations in serum and supernates of 24-h blood cell cultures from the patients with verified CRC (stages T2-3N0-1M0 and T4N0-1M0 have shown some sufficient differences from healthy volunteers (control group. Pre-surgery IL-6 and TNFα contents in blood of CRC patients was significantly increased agains healthy controls (respectively, 29.9±5.4 and 3.4±1.5 pg/mL versus control group (1.0±0.3 and 0 pg/mL, respectively. Following surgical treatment, the cytokine levels were decreased by 40- 60% after the operation, however, without significant differences from initial values.The supernates of blood cultures stimulated with polyclonal mitogens exhibited significant reduction of IFNγ levels prior to surgery (273±123 pg/ml versus 804±154 pg/mL, and elevated IL-6 levels (14412±2570 pg/mL versus 1970±457 pg/mL. The mean α2-MG concentrations before CRC surgery comprised 1.96±0.11 g/L for blood serum, 0.0304±0.0047 g/L, for non-stimulated blood cell cultures, and 0.0300±0.0052 g/L in mitogen-induced cultures. These parameters did not significantly differ from control values (2.21±0.17 g/L, 0.0328±0.0018 g/L, and 0.0314±0.0019 g/L, respectively. Similar results have been yielded with the samples obtained after surgical treatment of the CRC patients.The obtained data indicate that surgical

  12. Inflammatory cytokines in vitro production are associated with Ala16Val superoxide dismutase gene polymorphism of peripheral blood mononuclear cells.

    Science.gov (United States)

    Montano, Marco Aurélio Echart; da Cruz, Ivana Beatrice Mânica; Duarte, Marta Maria Medeiros Frescura; Krewer, Cristina da Costa; da Rocha, Maria Izabel de Ugalde Marques; Mânica-Cattani, Maria Fernanda; Soares, Felix Alexandre Antunes; Rosa, Guilherme; Maris, Angélica Francesca; Battiston, Francielle Garghetti; Trott, Alexis; Lera, Juan Pablo Barrio

    2012-10-01

    Obesity is considered a chronic low-grade inflammatory state associated with a chronic oxidative stress caused by superoxide production (O(2)(-)). The superoxide dismutase manganese dependent (SOD2) catalyzes O(2)(-) in H(2)O(2) into mitochondria and is encoded by a single gene that presents a common polymorphism that results in the replacement of alanine (A) with a valine (V) in the 16 codon. This polymorphism has been implicated in a decreased efficiency of SOD2 transport into targeted mitochondria in V allele carriers. Previous studies described an association between VV genotype and metabolic diseases, including obesity and diabetes. However, the causal mechanisms to explain this association need to be more elucidated. We postulated that the polymorphism could influence the inflammatory response. To test our hypothesis, we evaluated the in vitro cytokines production by human peripheral blood mononuclear cells (PBMCs) carrier's different Ala16Val-SOD2 genotypes (IL-1, IL-6, IL-10, TNF-α, IFN-γ). Additionally, we evaluated if the culture medium glucose, enriched insulin, could influence the cytokine production. Higher levels of proinflammatory cytokines were observed in VV-PBMCs when compared to AA-PBMCs. However, the culture medium glucose and enriched insulin did not affect cytokine production. The results suggest that Ala16Val-SOD2 gene polymorphism could trigger the PBMCs proinflammatory cytokines level. However, discerning if a similar mechanism occurs in fat cells is an open question.

  13. Diminished production of TWEAK by the peripheral blood mononuclear cells is associated with vascular involvement in patients with systemic sclerosis.

    Directory of Open Access Journals (Sweden)

    Otylia Kowal-Bielecka

    2010-02-01

    Full Text Available Widespread vasculopathy and profound fibrosis are key features of the pathogenesis of systemic sclerosis (SSc. We hypothesized that the TNF-like weak inducer of apoptosis (TWEAK, a recently recognized multifunctional cytokine which regulates angiogenesis and tissue remodeling, may play a role in the development of SSc. The production of TWEAK by the peripheral blood mononuclear cells (PBMC was investigated, by means of ELISA, in 24 SSc patients and 14 healthy subjects. Moreover, production of TWEAK was correlated with clinical features of SSc. PBMC were isolated using density gradient centrifugation on Histopaque and were cultured in FCS supplemented RPMI medium at 37 degrees C under 5% CO2. Production of TWEAK by PBMC was significantly diminished in patients with more severe microvascular damage, as indicated by the presence of "active" capillaroscopic pattern, compared with SSc patients with less pronounced microangiopathy ("slow" pattern, and healthy subjects. Moreover production of TWEAK correlated inversely with duration of Raynaud's phenomenon. PBMC from patients with scleroderma-related interstitial lung disease tended to produce lower amounts of TWEAK compared with SSc patients without lung involvement but the difference was not significant. The results of our study suggest that diminished production of TWEAK might play a role in the pathogenesis of vascular injury in SSc patients. Whether TWEAK may represent a new therapeutic target in SSc requires further studies.

  14. Microbial contamination of peripheral blood and bone marrow hematopoietic cell products and environmental contamination in a stem cell bank: a single-center report.

    Science.gov (United States)

    Kozlowska-Skrzypczak, M; Bembnista, E; Kubiak, A; Matuszak, P; Schneider, A; Komarnicki, M

    2014-10-01

    Hematopoietic stem cells (HSC) derived from peripheral blood (PB) and bone marrow (BM) are frequently used for autologous and allogenic transplantations. Establishing quality control at appropriate steps of the stem cell preparation process is crucial for a successful transplantation. Microbial contamination of haematopoietic stem cells is rare but could cause a potentially mortal complication of a stem cells transplantation. We investigated the microbiological contamination of PB (291 donations) and BM (39 donations) products. Microbial cultures of 330 donations between January 2012 and June 2013 were retrospectively analyzed after the collection and preparation steps. The microbiological analysis was performed with an automated system. Hematopoietic stem cells were processed in a closed system. Additionally, in this report the environment of the working areas of stem cell preparation was monitored. We analyzed microbial contamination of the air in a class I laminar air flow clean bench at the time of preparation and in the laboratory once per month. We reported 9 (2.73%) contaminated HSC products. The most frequent bacteria isolated from PB and BM products were Bacillus species. Coagulase-negative staphylococci and Micrococcus species were the most frequent micro-organisms detected in the air microbial control. Microbial control results are necessary for the safety of hematopoietic stem cell products transplantation. Microbial control of hematopoietic stem cell products enables an early contamination detection and allows for knowledgeable decision making concerning either discarding the contaminated product or introducing an efficient antibiotic therapy. Each step of cell processing may cause a bacterial contamination. A minimum of manipulation steps is crucial for increasing the microbial purity of the transplant material. Also, the air contamination control is essential to ensure the highest quality standards of HSC products preparation.

  15. 21 CFR 864.9245 - Automated blood cell separator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell separator. 864.9245 Section... Blood and Blood Products § 864.9245 Automated blood cell separator. (a) Identification. An automated blood cell separator is a device that uses a centrifugal or filtration separation principle...

  16. Red blood cells, multiple sickle cells (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  17. Red Blood Cell Antibody Identification

    Science.gov (United States)

    ... ID, RBC; RBC Ab ID Formal name: Red Blood Cell Antibody Identification Related tests: Direct Antiglobulin Test ; RBC ... I should know? How is it used? Red blood cell (RBC) antibody identification is used as a follow- ...

  18. Infections Transmitted By the Transfusion of Blood and Blood Products

    Directory of Open Access Journals (Sweden)

    Tekin A.

    2011-05-01

    Full Text Available Especially viral hepatitis viruses and human immunodeficiency virus(HIV which were transmitted by the transfusion of blood and blood products have been an important public health problem for a long time on the world. Transfusion of blood and blood products is an ideal and an easiest and a simplest route for transmission of infectious diseases. It is known that many infectious agents, either bacterial, viral, parasitic and fungal agents may be transmitted by the transfusion of blood and blood products. In present study, we reviewed infection diseases that transmitted by the transfusion of blood and blood products.Additionally, we were aimed to emphasize a rare but a very important complication of transfusion of blood and blood products.

  19. Long-term culture of chicken primordial germ cells isolated from embryonic blood and production of germline chimaeric chickens.

    Science.gov (United States)

    Naito, Mitsuru; Harumi, Takashi; Kuwana, Takashi

    2015-02-01

    Production of germline chimaeric chickens by the transfer of cultured primordial germ cells (PGC) is a useful system for germline manipulation. A novel culture system was developed for chicken PGC isolated from embryonic blood. The isolated PGC were cultured on feeder cells derived from chicken embryonic fibroblast. The cultured PGC formed colonies and they proliferated about 300-times during the first 30 days. The cultured PGC retained the ability to migrate to recipient gonads and were also chicken VASA homologue (CVH)-positive. Female PGC were present in the mixed-sex PGC populations cultured for more than 90 days and gave rise to viable offspring efficiently via germline chimaeric chickens. Male cultured PGC were transferred to recipient embryos and produced putative chimaeric chickens. The DNA derived from the cultured PGC was detected in the sperm samples of male putative chimaeric chickens, but no donor derived offspring were obtained. Donor-derived offspring were also obtained from germline chimaeric chickens by the transfer of frozen-thawed cultured PGC. The culture method for PGC developed in the present study is useful for manipulation of the germline in chickens, such as preservation of genetic resources and gene transfer.

  20. High-pressure processing for preservation of blood products

    NARCIS (Netherlands)

    Matser, A.M.; Ven, van der C.; Gouwerok, C.W.N.; Korte, de D.

    2005-01-01

    The possibilities of high pressure as a preservation method for human blood products were evaluated by examining the functional properties of blood fractions, after high-pressure processing at conditions which potentially inactivate micro-organisms and viruses. Blood platelets, red blood cells and b

  1. Differential mRNA expression and production of interleukin-4 and interferon-gamma in stimulated peripheral blood mononuclear cells of house-dust mite-allergic patients

    NARCIS (Netherlands)

    Laan, M.P.; Baert, M.R.M.; Vredendaal, A.E.C.M.; Savelkoul, H.F.J.

    1998-01-01

    Summary : Optimal culture conditions were established for the analysis of interleukin-4 (IL-4) and interfe-ron-gamma (IFN- ) mRNA expression and protein production, as well as proliferative capacity of peripheral blood mononuclear cells (PBMC). These culture conditions permitted the analysis of diff

  2. Porcine blood mononuclear cell cytokine responses to PAMP molecules: comparison of mRNA and protein production

    DEFF Research Database (Denmark)

    Sørensen, Nanna Skall; Skovgaard, Kerstin; Heegaard, Peter M. H.

    2011-01-01

    -α and IL-12 p40, and PGN, LPS and Pam3Cys inducing varying amounts of IL-12 p40, IL-1β, TNF-α, IL-6 and IL-10. Surprisingly, the ssRNA-mimic poly-U induced IL-6 and IL-1β only. Using CpG, PGN and LPS, the kinetics of cytokine production measured as mRNA (reverse transcription (RT)-qPCR) and protein (ELISA...... the induction of IFN-α, IL-12 p40, IL-1β, TNF-α, IL-6 and IL-10 by PAMP-molecules [CpG oligonucleotide D19 (CpG), peptidoglycan (PGN), lipopolysaccharide (LPS), Pam3Cys and poly-U] in porcine blood mononuclear cells (BMC) within a 24h period. As expected, cytokine responses were PAMP-specific, CpG inducing IFN......), respectively, correlated well, mRNA responses preceding protein responses. With the exception of IL-1β and IL-6, mRNA-responses were transient, whereas protein responses, except for TNF-α, followed saturation kinetics. Remarkably, LPS-induced TNF-α mRNA was not followed by a protein response. These results...

  3. Sickle red cells as danger signals on proinflammatory gene expression, leukotriene B4 and interleukin-1 beta production in peripheral blood mononuclear cell.

    Science.gov (United States)

    Pitanga, Thassila N; Oliveira, Ricardo R; Zanette, Dalila L; Guarda, Caroline C; Santiago, Rayra P; Santana, Sanzio S; Nascimento, Valma M L; Lima, Jonilson B; Carvalho, Graziele Q; Maffili, Vitor V; Carvalho, Magda O S; Alcântara, Luiz C J; Borges, Valéria M; Goncalves, Marilda S

    2016-07-01

    This study tested the hypothesis that sickle red blood cell (SS-RBC) induce Toll-like receptors (TLR) and Nod-like receptor family, pyrin domain containing 3 (NLRP3)- inflammasome expression in peripheral blood mononuclear cells (PBMC). TLR and NLRP3 inflammasome could contribute to the maintenance of the inflammatory status in sickle cell anemia (SCA) patients, since SS-RBC act as danger signals activating these pathways. In this study, first, we evaluated TLR (2, 4, 5 and 9), NLRP3, Caspase-1, interleukin (IL)-1β and IL-18 expression in PBMC freshly isolated from SCA patients (SS-PBMC) in comparison with PBMC from healthy individuals (AA-PBMC). In the second moment, we investigated whether SS-RBC could interfere with the expression of these molecules in PBMC from healthy donor, in the absence or presence of hydroxyurea (HU) in vitro. TLRs and NLRP3 inflammasome expression were investigated by qPCR. IL-1β, Leukotriene-B4 (LTB4) and nitrite production were measured in PBMC (from healthy donor) culture supernatants. TLR2, TLR4, TLR5, NLRP3 and IL-1β were highly expressed in SS-PBMC when compared to AA-PBMC. Additionally, SS-RBC induced TLR9, NLRP3, Caspase-1, IL-1β and IL-18 expression and induced IL-1β, LTB4 and nitrite production in PBMC cultures. HU did not prevent TLR and NLRP3 inflammasome expression, but increased TLR2 and IL-18 expression and reduced nitrite production. In conclusion, our data suggest that TLR and inflammasome complexes may be key inducers of inflammation in SCA patients, probably through SS-RBC; also, HU does not prevent NLRP3 inflammasome- and TLR-dependent inflammation, indicating the need to develop new therapeutic strategies to SCA patients that act with different mechanisms of those observed for HU.

  4. White Blood Cell Disorders

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  5. Tooth Tissue Engineering: The Importance of Blood Products as a Supplement in Tissue Culture Medium for Human Pulp Dental Stem Cells.

    Science.gov (United States)

    Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo

    2015-11-01

    One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.

  6. Effect of advanced glycosylation end products on activity of protein kinase C in human peripheral blood mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives TO investigate the effect of advanced glycosylation end products (AGEs) on the activity of protein kinese C (PKC) in human peripheral bloodmononuclear Cells (PBMC) and to observe whether aminoguanidine (AG) can influence the effect of AGEs. Methods After PBMC were isoiated from human peripheral blood and incubated with different concentrations of AGEs-BSA for various periods, total PKC activity in PBMC was determined by measuring the incorporation of 32P from [γ-32P] ATP=into a special substrate using Prornega PKC assay kit. Results AGEs-BSA increased the total PKC activity in PBMC from 83.43±6.57 pmol/min/mg protein to 116.8±13.82 pmol/min/mg protein with a peak at 15 min.AGEs-BSA also increased the total PKC activity in a concentration-dependent manner from 83.1±6.4 pmol/min/mg protein(control) to 119.1±13.3 pmol/min/mg protein (control vs AGEs-BSA 400 mg/L, P<0.01). Furthermore, AGEs-BSA induced an elevation of PKC activity in a glycosylating time-related manner,from 80.9±8.2 (control) to 118.3±11.5 pmol/min/mg protein (glycasytation for 12 wk, P<0.01). The total PKC activity stimulated by AGEs-BSA pretreated with AG (100, 200 mg/L) was markedly lower than that of AGEs-BSA group not pretreated with AG ( P<0.05, P<0.01). Conclusions AGEs-BSA increased the total PKC activity in PBMC in a concentration and incubation time dependent manner. The ability of AGEs-B.SA to stimulate PKC activity was markedly decreased by pretreatment of AGEs-BSA with AG.

  7. Determination of Rate and Causes of Wastage of Blood and Blood Products in Iranian Hospitals

    Directory of Open Access Journals (Sweden)

    Rafat Mohebbi Far

    2014-06-01

    Full Text Available OBJECTIVE: The purpose of this study was to determine the rate and causes of wastage of blood and blood products (packed red cells, plasma, platelets, and cryoprecipitate in Qazvin hospitals. METHODS: The study was conducted in all hospitals in Qazvin, including 5 teaching hospitals, 2 social welfare hospitals, 3 private hospitals, 1 charity hospital, and 1 military hospital. This descriptive study was based on available data from hospital blood banks in the province of Qazvin. The research instrument was a 2-part questionnaire. The first part was related to demographic characteristics of hospitals and the second part elicited information about blood and blood component wastage. The collected data were then analyzed using descriptive statistic methods and SPSS 11.5. RESULTS: Blood wastage may occur for a number of reasons, including time expiry, wasted imports, blood medically or surgically ordered but not used, stock time expired, hemolysis, or miscellaneous reasons. Data indicated that approximately 77.9% of wasted pack cell units were wasted for the reason of time expiry. Pack cell wastage in hospitals is reported to range from 1.93% to 30.7%. Wastage at all hospitals averaged 9.8% among 30.913 issued blood products. Overall blood and blood product (packed red cells, plasma, platelets, and cryoprecipitate wastage was 3048 units and average total wastage per participant hospital for all blood groups was 254 units per year. CONCLUSION: Blood transfusion is an essential part of patient care. The blood transfusion system has made significant advancements in areas such as donor management, storage of blood, cross-matching, rational use of blood, and distribution. In order to improve the standards of blood banks and the blood transfusion services in Iran, comprehensive standards have been formulated to ensure better quality control in collection, storage, testing, and distribution of blood and its components for the identified major factors

  8. Interleukin-4 and interferon-¿ production by Leishmania stimulated peripheral blood mononuclear cells from nonexposed individuals

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Kemp, M; Poulsen, L K

    1995-01-01

    Leishmania reactive CD4+ T cells could be demonstrated. The cells from different individuals showed different patterns of IFN-gamma and/or IL-4 production upon antigenic stimulation. In experimental leishmaniasis the early balance between IFN-gamma and IL-4 is important for the clinical outcome. Our findings...

  9. Rare red blood cell abnormalities

    NARCIS (Netherlands)

    van Zwieten, R.

    2015-01-01

    The aim of this thesis is to give insight in the process of diagnosing rare red blood cell defects, to clarify the relation of a defect with cell function and to extend, in this respect, our knowledge about normal red cell function and biochemistry. It is possible to categorize different red cell ab

  10. Ophthalmic use of blood-derived products.

    Science.gov (United States)

    Nugent, Ryan B; Lee, Graham A

    2015-01-01

    There is a wide spectrum of blood-derived products that have been used in many different medical and surgical specialties with success. Blood-derived products for clinical use can be extracted from autologous or allogeneic specimens of blood, but recombinant products are also commonly used. A number of blood derivatives have been used for a wide range of ocular conditions, from the ocular surface to the retina. With stringent preparation guidelines, the potential risk of transmission of blood-borne diseases is minimized. We review blood-derived products and how they are improving the management of ocular disease.

  11. 21 CFR 660.30 - Reagent Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  12. Detection of Intracellular Cytokine Production in Peripheral Blood CD3+ T Cells of Patients with Recurrent Genital Herpes

    Institute of Scientific and Technical Information of China (English)

    QIAN Qifeng(钱起丰); GUO Hongwei(郭红卫)

    2002-01-01

    Objective:To study the role of Th1fTh2 cytokines in the pathogenesis of recurrent genital herpes (RGH), and to better understand the relationship between them.Methods: A two-color immunofluorescent staining of cell surface antigen and intracellular cytokines for flow cytometric analysis was used for CD3, IL-2, IL-10, IL-12,IFN-γ and TNF-α in CD3+ T-lymphocytes in activated peripheral blood mononuclear cells of patients with RGH.Results: Compared to controls, patients with RGH showed fewer CD3+T cells (P<0.05) and IL-2 producing and IFN-γ producing T cells (P<0.02 and P<0.001, respectively)after in vitro stimulation with PMA and ionomycin in the presence of a protein transport inhibitor. More IL-10 producing and IL-12 producing T cells were found in patients with RGH (P<0.01). There was no significant difference in the number of TNF-α producing cells between RGH patients and controls (P<0.05).Conclusion: RGH patients showed relatively more Th2 cytokines. The imbalance between Th1 and Th2 cytokines results in inhibitory effects on a series of cell-immune responses, which may play an important role in the pathogenesis of RGH.

  13. In vitro cytokine production and phenotype expression by blood mononuclear cells from umbilical cords, children and adults

    DEFF Research Database (Denmark)

    Müller, K; Zak, M; Nielsen, S

    1996-01-01

    production of interleukin IL-6, tumour necrosis factor alpha (TNF alpha) and interferon gamma (IFNg) in neonates, children and adults. In cultures without added polyclonal activators IL-6 and TNF alpha levels in children were 3-6 times higher than those of umbilical cords and adults. However, using optimal...... production could be ascribed to differences in the frequency of monocytes, T cells or B cells. The TNF alpha levels in suboptimally stimulated cultures correlated negatively with the expression of LFA-3 and positively with CD45RA, while IFNg correlated positively with CD2, LFA-1, CD45R0 and CD8....... In conclusion, the study provides evidence of age related differences in the production of TNF alpha, IL-6 and IFNg among neonates, children and adults. These differences may to some extent be caused by differences in the expression of cell surface molecules involved in cellular interactions and signalling....

  14. Red blood cells, spherocytosis (image)

    Science.gov (United States)

    Spherocytosis is a hereditary disorder of the red blood cells (RBCs), which may be associated with a mild anemia. Typically, the affected RBCs are small, spherically shaped, and lack the light centers seen ...

  15. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Maynard, Scott; Keijzers, Guido; Gram, Martin;

    2013-01-01

    Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint often identified as a symptom of a disease state or side effect of a treatment. No studies to date have investigated the potential link between dysfunctional mitochondrial ATP production and low vitality....... Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production...

  16. Transfusions of blood and blood products and viral infections

    Directory of Open Access Journals (Sweden)

    Marta Wróblewska

    2002-06-01

    Full Text Available Transfusions of blood and blood products are commonly used in medicine, but being biological materials they carry a risk of transmitting infections--viral, bacterial, parasitic, as well as prions. Laboratory tests used for screening of donated blood for viral infections at present cannot detect all infectious units. Criteria for selection of blood donors therefore must be very strict, while methods of inactivation of viruses and laboratory assays for detection of their presence must be improved. Indications for blood transfusion should be restricted.

  17. The Effect of Long-Term Exercise on the Production of Osteoclastogenic and Antiosteoclastogenic Cytokines by Peripheral Blood Mononuclear Cells and on Serum Markers of Bone Metabolism

    Directory of Open Access Journals (Sweden)

    J. Kelly Smith

    2016-01-01

    Full Text Available Although it is recognized that the mechanical stresses associated with physical activity augment bone mineral density and improve bone quality, our understanding of how exercise modulates bone homeostasis at the molecular level is lacking. In a before and after trial involving 43 healthy adults, we measured the effect of six months of supervised exercise training on the spontaneous and phytohemagglutinin-induced production of osteoclastogenic cytokines (interleukin-1α, tumor necrosis factor-α, antiosteoclastogenic cytokines (transforming growth factor-β1 and interleukins 4 and 10, pleiotropic cytokines with variable effects on osteoclastogenesis (interferon-γ, interleukin-6, and T cell growth and differentiation factors (interleukins 2 and 12 by peripheral blood mononuclear cells. We also measured lymphocyte phenotypes and serum markers of bone formation (osteocalcin, bone resorption (C-terminal telopeptides of Type I collagen, and bone homeostasis (25 (OH vitamin D, estradiol, testosterone, parathyroid hormone, and insulin-like growth factor 1. A combination of aerobic, resistance, and flexibility exercises done on average of 2.5 hours a week attenuated the production of osteoclastogenic cytokines and enhanced the production of antiosteoclastogenic cytokines. These changes were accompanied by a 16% reduction in collagen degradation products and a 9.8% increase in osteocalcin levels. We conclude that long-term moderate intensity exercise exerts a favorable effect on bone resorption by changing the balance between blood mononuclear cells producing osteoclastogenic cytokines and those producing antiosteoclastogenic cytokines. This trial is registered with Clinical Trials.gov Identifier: NCT02765945.

  18. Activation of p38 MAPK by feline infectious peritonitis virus regulates pro-inflammatory cytokine production in primary blood-derived feline mononuclear cells.

    Science.gov (United States)

    Regan, Andrew D; Cohen, Rebecca D; Whittaker, Gary R

    2009-02-05

    Feline infectious peritonitis (FIP) is an invariably fatal disease of cats caused by systemic infection with a feline coronavirus (FCoV) termed feline infectious peritonitis virus (FIPV). The lethal pathology associated with FIP (granulomatous inflammation and T-cell lymphopenia) is thought to be mediated by aberrant modulation of the immune system due to infection of cells such as monocytes and macrophages. Overproduction of pro-inflammatory cytokines occurs in cats with FIP, and has been suggested to play a significant role in the disease process. However, the mechanism underlying this process remains unknown. Here we show that infection of primary blood-derived feline mononuclear cells by FIPV WSU 79-1146 and FIPV-DF2 leads to rapid activation of the p38 MAPK pathway and that this activation regulates production of the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta). FIPV-induced p38 MAPK activation and pro-inflammatory cytokine production was inhibited by the pyridinyl imidazole inhibitors SB 203580 and SC 409 in a dose-dependent manner. FIPV-induced p38 MAPK activation was observed in primary feline blood-derived mononuclear cells individually purified from multiple SPF cats, as was the inhibition of TNF-alpha production by pyridinyl imidazole inhibitors.

  19. Differential interleukin-10 (IL-10) and IL-23 production by human blood monocytes and dendritic cells in response to commensal enteric bacteria.

    Science.gov (United States)

    Manuzak, Jennifer; Dillon, Stephanie; Wilson, Cara

    2012-08-01

    Human peripheral blood contains antigen-presenting cells (APC), including dendritic cells (DC) and monocytes, that may encounter microbes that have translocated from the intestine to the periphery in disease states like HIV-1 infection and inflammatory bowel disease. We investigated the response of DC and monocytes in peripheral blood mononuclear cells (PBMC) to a panel of representative commensal enteric bacteria, including Escherichia coli, Enterococcus sp., and Bacteroides fragilis. All three bacteria induced significant upregulation of the maturation and activation markers CD40 and CD83 on myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC). However, only mDC produced cytokines, including interleukin-10 (IL-10), IL-12p40/70, and tumor necrosis factor alpha (TNF-α), in response to bacterial stimulation. Cytokine profiles in whole PBMC differed depending on the stimulating bacterial species: B. fragilis induced production of IL-23, IL-12p70, and IL-10, whereas E. coli and Enterococcus induced an IL-10-predominant response. mDC and monocyte depletion experiments indicated that these cell types differentially produced IL-10 and IL-23 in response to E. coli and B. fragilis. Bacteroides thetaiotaomicron did not induce levels of IL-23 similar to those of B. fragilis, suggesting that B. fragilis may have unique proinflammatory properties among Bacteroides species. The addition of recombinant human IL-10 to PBMC cultures stimulated with commensal bacteria abrogated the IL-23 response, whereas blocking IL-10 significantly enhanced IL-23 production, suggesting that IL-10 controls the levels of IL-23 produced. These results indicate that blood mDC and monocytes respond differentially to innate stimulation with whole commensal bacteria and that IL-10 may play a role in controlling the proinflammatory response to translocated microbes.

  20. Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system.

    Science.gov (United States)

    Boyer, Lucie; Robert, Amélie; Proulx, Chantal; Pineault, Nicolas

    2008-03-20

    Expansion of hematopoietic progenitor cells (HPC) ex vivo remains an important focus in fundamental and clinical research. The aim of this study was to determine whether the implementation of such expansion phase in a two-phase culture strategy prior to the induction of megakaryocyte (Mk) differentiation would increase the yield of Mks produced in cultures. Toward this end, we first characterized the functional properties of five cytokine cocktails to be tested in the expansion phase on the growth and differentiation kinetics of CD34+-enriched cells, and on their capacity to expand clonogenic progenitors in cultures. Three of these cocktails were chosen based on their reported ability to induce HPC expansion ex vivo, while the other two represented new cytokine combinations. These analyses revealed that none of the cocktails tested could prevent the differentiation of CD34+ cells and the rapid expansion of lineage-positive cells. Hence, we sought to determine the optimum length of time for the expansion phase that would lead to the best final Mk yields. Despite greater expansion of CD34+ cells and overall cell growth with a longer expansion phase, the optimal length for the expansion phase that provided greater Mk yield at near maximal purity was found to be 5 days. Under such settings, two functionally divergent cocktails were found to significantly increase the final yield of Mks. Surprisingly, these cocktails were either deprived of thrombopoietin or of stem cell factor, two cytokines known to favor megakaryopoiesis and HPC expansion, respectively. Based on these results, a short resource-efficient two-phase culture protocol for the production of Mks near purity (>95%) from human CD34+ CB cells has been established.

  1. Transfusion of blood and blood products: indications and complications.

    Science.gov (United States)

    Sharma, Sanjeev; Sharma, Poonam; Tyler, Lisa N

    2011-03-15

    Red blood cell transfusions are used to treat hemorrhage and to improve oxygen delivery to tissues. Transfusion of red blood cells should be based on the patient's clinical condition. Indications for transfusion include symptomatic anemia (causing shortness of breath, dizziness, congestive heart failure, and decreased exercise tolerance), acute sickle cell crisis, and acute blood loss of more than 30 percent of blood volume. Fresh frozen plasma infusion can be used for reversal of anticoagulant effects. Platelet transfusion is indicated to prevent hemorrhage in patients with thrombocytopenia or platelet function defects. Cryoprecipitate is used in cases of hypofibrinogenemia, which most often occurs in the setting of massive hemorrhage or consumptive coagulopathy. Transfusion-related infections are less common than noninfectious complications. All noninfectious complications of transfusion are classified as noninfectious serious hazards of transfusion. Acute complications occur within minutes to 24 hours of the transfusion, whereas delayed complications may develop days, months, or even years later.

  2. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    Science.gov (United States)

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities.

  3. Specific Antibody Production by Blood B Cells is Retained in Late Stage Drug-naïve HIV-infected Africans

    Directory of Open Access Journals (Sweden)

    Lydie Béniguel

    2004-01-01

    Full Text Available Unseparated peripheral blood mononuclear cells (PBMCs obtained from drug-naïve African individuals living in a context of multi-infections and presenting with high viral load (VL, were cultured in vitro and tested for their ability to produce antibodies (Abs reacting with HIV-1 antigens. Within these PBMCs, circulating B cells were differentiated in vitro and produced IgG Abs against not only ENV, but also GAG and POL proteins. Under similar experimental conditions, HAART treated patients produced Abs to ENV proteins only. The in vitro antibody production by drug-naïve individuals' PBMCs depended on exogenous cytokines (IL-2 and IL-10 but neither on the re-stimulation of reactive cells in cultures by purified HIV-1-gp 160 antigen nor on the re-engagement of CD40 surface molecules. Further, it was not abrogated by the addition of various monoclonal Abs (mAbs to co-stimulatory molecules. This suggests that the in vitro antibody production by drug-naïve individuals' PBMCs resulted from the maturation of already envelope and core antigen-primed, differentiated B cells, presumably pre-plasma cells, which are not known to circulate at homeostasy. As in vitro produced Abs retained the capacity of binding antigen and forming complexes, this study provides pre-clinical support for functional humoral responses despite major HIV- and other tropical pathogen-induced B cell perturbations.

  4. [Ethical aspects of human embryonic stem cell use and commercial umbilical cord blood stem cell banking. Ethical reflections on the occasion of the regulation of the European Council and Parliament on advanced therapy medicinal products].

    Science.gov (United States)

    Virt, G

    2010-01-01

    The regulation of the European Council and Parliament on advanced therapy medicinal products also includes therapies with human embryonic stem cells. The use of these stem cells is controversially and heavily discussed. Contrary to the use of adult stem cells, medical and ethical problems concerning the use of human embryonic stem cells persists, because this use is based on the destruction of human life at the very beginning. The regulation foresees, therefore, subsidiarity within the European Member States. Although there are no ethical problems in principle with the use of stem cells from the umbilical cord blood, there are social ethical doubts with the banking of these stem cells for autologous use without any currently foreseeable medical advantage by commercial blood banks. Also in this case subsidiarity is valid.

  5. TGF-β inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors.

    Science.gov (United States)

    Gao, Xiaofei; Lee, Hsiang-Ying; da Rocha, Edroaldo Lummertz; Zhang, Cheng; Lu, Yi-Fen; Li, Dandan; Feng, Yuxiong; Ezike, Jideofor; Elmes, Russell R; Barrasa, M Inmaculada; Cahan, Patrick; Li, Hu; Daley, George Q; Lodish, Harvey F

    2016-12-08

    Burst-forming unit erythroid progenitors (BFU-Es) are so named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of "bursts" of smaller erythroid colonies derived from the later colony-forming unit erythroid progenitor erythropoietin (Epo)-dependent progenitors. "Early" BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do "late" BFU-Es forming small colonies, but the mechanism underlying this heterogeneity remains unknown. We show that the type III transforming growth factor β (TGF-β) receptor (TβRIII) is a marker that distinguishes early and late BFU-Es. Transient elevation of TβRIII expression promotes TGF-β signaling during the early BFU-E to late BFU-E transition. Blocking TGF-β signaling using a receptor kinase inhibitor increases early BFU-E cell self-renewal and total erythroblast production, suggesting the usefulness of this type of drug in treating Epo-unresponsive anemias.

  6. Effects of humoral factors on amplification of nonrecognizable erythrocytic and granulocytic precursors. [Rats, radiation effects on blood cell production

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E P; Carsten, A L; Cohen, R; Miller, M E; Moccia, G

    1978-01-01

    The purpose of these studies was to evaluate the effects of humoral factors on amplification of nonrecognizable erythrocytic and granulocytic precursors using the in vivo plasma clot diffusion chamber and the in vitro plasma clot culture methods. Plasma erythropoietin levels changes in the reticulocyte concentration and hematocrits of irradiated and non-irradiated Long-Evans rats exposed to hypoxia were also determined. While erythropoietin plasma levels appeared to effect BFU-E and CFU-E growth, results suggest erythropoietin may not be the sole regulator of red cell production and that inhibitors or chalone-like mechanisms may be involved. Measurements made on granulocyte precursors treated with CSF containing L-cell conditioned medium revealed granulocytic colonies and burst-like formations, similar to those seen for erythrocytic growth. There is strong evidence suggesting that CSF is a regulator of granulopoiesis; however, it is not the sole regulator and it appears that inhibitors may play an in vivo role. Growth of colonies with cell numbers not a power of 2 implies either asymmetric nitosis due to loss of genetic information required for continuing division, or differences in concentration of, or ability to recognize inhibitory factors. These possibilities are examined on the basis of results using in vivo and in vitro culture techniques.

  7. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  8. The antagonist activity of lipid IVa on the stimulation by lipid A of TNF-alpha production from canine blood mononuclear cells.

    Science.gov (United States)

    Takasawa, Kenji; Kano, Rui; Maruyama, Haruhiko; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-09-15

    Lipid A, the active component of lipopolysaccharide (LPS), exists in the outer membrane of Gram-negative bacteria and binds to the Toll-like receptor 4 (TLR4) and MD-2 complex. On the other hand, the synthetic precursor of Escherichia coli lipid A, tetraacylated lipid IVa, is an agonist for TLR4 and MD-2 complex in murine, equine and feline cells but is an antagonist for lipid A in human cells. The aim of the study was to examine the function of canine Toll-like receptor 4 (TLR4) and MD-2 complex on canine blood mononuclear cells (BMC), by analyzing lipid A- or lipid IVa-induction of TNF-α production from these cells in order to understand canine innate immune system. After 5-h culture of canine BMC with lipid A (lipid A culture) or lipid IVa (lipid IVa culture), the TNF-α, as determined by ELISA, had increased in the supernatants of the lipid A cultures in a dose-dependent manner, whereas the TNF-α was undetectable in supernatant of lipid IVa-treated cultures. The TNF-α was statistically significantly different between the lipid A and lipid IVa cultures (100 and 1000 ng/ml). TNF-α production from canine BMC was inhibited, in a lipid IVa-dose-dependent manner, when the BMC were pre-cultured with lipid IVa for 60 min and then cultured with lipid A for 5h, while in control BMC cultures production if TNF-α was unchanged. These results indicate that the TNF-α production stimulated by lipid A was competed out by pre-exposing the BMC to lipid IVa. Thus, lipid A is an agonist for TNF-α production in canine BMC, whereas lipid IVa appears to be an antagonist against this lipid A stimulation of canine BMC.

  9. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Maynard, Scott; Keijzers, Guido; Gram, Martin;

    2013-01-01

    . Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production......, and deoxyribonucleotide (dNTP) balance in PBMCs. The population was drawn from the Metropolit cohort of men born in 1953. Vitality level was estimated from the Medical Outcomes Study Short Form 36 (SF-36) vitality scale. We found that vitality score had no association with any of the mitochondrial respiration parameters....... However, vitality score was inversely associated with cellular ROS production and cellular deoxythymidine triphosphate (dTTP) levels and positively associated with deoxycytidine triphosphate (dCTP) levels. We conclude that self-reported persistent low vitality is not associated with specific aspects...

  10. Low white blood cell count and cancer

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000675.htm Low white blood cell count and cancer To use ... high blood pressure, or seizures Continue Reading How Low is too Low? When your blood is tested, ...

  11. INDUCTION OF CYTOKINE PRODUCTION IN CHEETAH (ACINONYX JUBATUS) PERIPHERAL BLOOD MONONUCLEAR CELLS AND VALIDATION OF FELINE-SPECIFIC CYTOKINE ASSAYS FOR ANALYSIS OF CHEETAH SERUM.

    Science.gov (United States)

    Franklin, Ashley D; Crosier, Adrienne E; Vansandt, Lindsey M; Mattson, Elliot; Xiao, Zhengguo

    2015-06-01

    Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of cheetahs (Acinonyx jubatus ; n=3) and stimulated with lipopolysaccharides (LPS) to induce the production of proinflammatory cytokines TNF-α, IL-1β, and IL-6 for establishment of cross-reactivity between these cheetah cytokines and feline-specific cytokine antibodies provided in commercially available Feline DuoSet® ELISA kits (R&D Systems, Inc., Minneapolis, Minnesota 55413, USA). This study found that feline-specific cytokine antibodies bind specifically to cheetah proinflammatory cytokines TNF-α, IL-1β, and IL-6 from cell culture supernatants. The assays also revealed that cheetah PBMCs produce a measurable, cell concentration-dependent increase in proinflammatory cytokine production after LPS stimulation. To enable the use of these kits, which are designed for cell culture supernatants for analyzing cytokine concentrations in cheetah serum, percent recovery and parallelism of feline cytokine standards in cheetah serum were also evaluated. Cytokine concentrations in cheetah serum were approximated based on the use of domestic cat standards in the absence of cheetah standard material. In all cases (for cytokines TNF-α, IL-1β, and IL-6), percent recovery increased as the serum sample dilution increased, though percent recovery varied between cytokines at a given dilution factor. A 1:2 dilution of serum resulted in approximately 45, 82, and 7% recovery of TNF-α, IL-1β, and IL-6 standards, respectively. Adequate parallelism was observed across a large range of cytokine concentrations for TNF-α and IL-1β; however, a significant departure from parallelism was observed between the IL-6 standard and the serum samples (P=0.004). Therefore, based on our results, the Feline DuoSet ELISA (R&D Systems, Inc.) kits are valid assays for the measurement of TNF-α and IL-1β in cheetah serum but should not be used for accurate measurement of IL-6.

  12. Time-dependent histamine release from stored human blood products

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K

    1996-01-01

    Perioperative transfusion of whole blood has been shown to amplify trauma-induced immunosuppression, which could be attenuated by perioperative administration of histamine2 receptor antagonists. Supernatants from different blood products were, therefore, analysed for histamine content during...... storage. Whole blood (six units), plasma-reduced whole blood (six units), and plasma- and buffy coat-reduced (saline-adenine-glucose-mannitol) (SAGM) blood (six units) from unpaid healthy donors were stored in the blood bank for 35 days at 4 degrees C. Plasma histamine and total cell-bound histamine...... content at donation, and histamine concentration in samples drawn from the units on days 0, 2, 5, 9, 14, 21, 28 and 35 were analysed with an enzyme-linked immunosorbent assay. Median plasma histamine concentration was 4.8 (range 1.9-14.3) nmol/l (n = 18). Median total cell-bound histamine content was 417...

  13. Inflight Assay of Red Blood Cell Deformability

    Science.gov (United States)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  14. Costing blood products and services.

    Science.gov (United States)

    Wallace, E L

    1991-05-01

    At present, blood centers and transfusion services have limited alternatives for offsetting the ever-rising costs of health care inputs. In the face of current revenue constraints, cost reduction or cost containment through efficiency improvements or service reduction is the principal available means. Such methods ought to be pursued vigorously by blood bankers with the aid of well-designed costing and other physical measurements systems. Experience indicates, however, that blood bankers, in their attempts to reduce or contain costs, are likely to place undue reliance on cost accounting systems as the means of capturing sought-for benefits. Management must learn enough about methods of costing to judge directly the uses and limitations of the information produced. Such understanding begins with recognition that all costs and cost comparisons should be specific to the purpose for which they are developed. No costing procedure is capable of producing measures generally applicable to all management decisions. A measure relevant to a planning decision is unlikely to be appropriate for performance evaluation. Useful comparisons among sets of organizations of costs, or of measures of physical inputs and outputs, require assurance that the methods of measurement employed are the same and that the sets of organizations from which the measures are drawn are reasonably comparable.

  15. Safety of blood and blood products in Scandinavia today.

    Science.gov (United States)

    Lindholm, A

    1988-01-01

    The safety of blood and blood products in Scandinavia today is high. An absolutely safe blood supply is, however, an unattainable goal. The dominating risk is transmission of non-A, non-B virus (NANBV). The calculated per blood unit risk is 1:200. The incidence of cirrhosis due to post-transfusion hepatitis NANB is calculated to at most 0.1% among recipients of blood components from about 5 donors. Other risk factors are transmission of hepatitis B virus (HBV), human immunodeficiency virus (HIV-1) and cytomegalovirus (CMV). The prevalence of HBsAg among first time donors is about 0.05% (Sweden). In Scandinavia, anti-HIV-1 has been found in 0.001% of donations from start of screening in 1985 to December 1987. The prevalence was higher in Denmark, lower in Finland (and perhaps Iceland). The prevalence has declined during the last years. As of June 1988, 117 patients in the Scandinavian countries have been infected by blood components, all but 2 before screening was introduced. Besides these, 226 haemophiliacs have been infected by, in almost all cases, imported clotting factor concentrates before heat treatment was introduced. Most of the infected patients are still asymptomatic. About 70% of blood donors have anti-CMV, a few percent of which will transmit CMV-infection, with severe symptoms, to immunosuppressed patients without anti-CMV.

  16. Effect of TNF-α production inhibitors on the production of pro-inflammatory cytokines by peripheral blood mononuclear cells from HTLV-1-infected individuals.

    Science.gov (United States)

    Luna, T; Santos, S B; Nascimento, M; Porto, M A F; Muniz, A L; Carvalho, E M; Jesus, A R

    2011-11-01

    Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNF-α production was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNF-α production but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNF-α production and, with the exception of thalidomide, all of them also decreased IFN-γ production.

  17. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  18. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  19. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  20. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  1. Becoming a Blood Stem Cell Donor

    Science.gov (United States)

    ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  2. Effects of selenium on peripheral blood mononuclear cell membrane fiuidity,interleukin-2 production and interleukin-2 receptor expression in patients with chronic hepatitis

    Institute of Scientific and Technical Information of China (English)

    Shui-Xiang He; Bing Wu; Xin-Ming Chang; Hong-Xia Li; Wen Qiao

    2004-01-01

    AIM: To study the effect of selenium on peripheral blood mononuclear cell (PBMC) membrane fluidity and immune function in patients with chronic hepatitis.METHODS: PBMCs were pretreated with selenium (1.156x 10-7 mol/L) for 6 h in vitro or extracted directly from patients after administration of selenium-yeast continuously for 8-12 wk (200 μg/d), and then exposed to Con-A for 48 h. The membrane fluidity, interleukin-2 (IL-2) production and interleukin-2 receptor (IL-2R) expression in PBMCs and malondialdehyde (MDA) concentration in medium and lipid peroxide (LPO) in plasma were determined.RESULTS: The PBMC membrane fluidity, IL-2 production and IL-2R expression in patients with chronic hepatitis were significantly lower than those in healthy blood donators (particle adhesive degree R, 0.17±0.01 vs0.14±0.01,P<0.01; IL-2, 40.26±9.55 vs72.96±11.36, P<0.01; IL-2R,31.05±5.09 vs 60.58±10.56, P<0.01), and the MDA concentration in medium in patients with chronic hepatitis was significantly higher than that in healthy blood donators (1.44±0.08 vs0.93±0.08, P<0.01). Both in vitro and in vivo administration of selenium could reverse the above parameters.CONCLUSION: Supplement of selenium can suppress lipid peroxidation, and improve PBMC membrane fluidity and immune function in patients with chronic hepatitis.

  3. Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows.

    Science.gov (United States)

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; Aarif, Ovais

    2016-02-01

    The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at -21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48h cultured PBMC were subjected to assorted levels of exposures viz. 37°C, 42°C to impose heat stress and 42°C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (PZinc treatment to heat stressed PBMC caused a significant (PZinc treatment reduced the IL-10 concentration. From the study, it could be concluded that the zinc supplementation in heat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock.

  4. Relationships between human vitality and mitochondrial respiratory parameters, reactive oxygen species production and dNTP levels in peripheral blood mononuclear cells.

    Science.gov (United States)

    Maynard, Scott; Keijzers, Guido; Gram, Martin; Desler, Claus; Bendix, Laila; Budtz-Jørgensen, Esben; Molbo, Drude; Croteau, Deborah L; Osler, Merete; Stevnsner, Tinna; Rasmussen, Lene Juel; Dela, Flemming; Avlund, Kirsten; Bohr, Vilhelm A

    2013-11-01

    Low vitality (a component of fatigue) in middle-aged and older adults is an important complaint often identified as a symptom of a disease state or side effect of a treatment. No studies to date have investigated the potential link between dysfunctional mitochondrial ATP production and low vitality. Therefore, we measured a number of cellular parameters related to mitochondrial activity in peripheral blood mononuclear cells (PBMCs) isolated from middle-aged men, and tested for association with vitality. These parameters estimate mitochondrial respiration, reactive oxygen species (ROS) production, and deoxyribonucleotide (dNTP) balance in PBMCs. The population was drawn from the Metropolit cohort of men born in 1953. Vitality level was estimated from the Medical Outcomes Study Short Form 36 (SF-36) vitality scale. We found that vitality score had no association with any of the mitochondrial respiration parameters. However, vitality score was inversely associated with cellular ROS production and cellular deoxythymidine triphosphate (dTTP) levels and positively associated with deoxycytidine triphosphate (dCTP) levels. We conclude that self-reported persistent low vitality is not associated with specific aspects of mitochondrial oxidative phosphorylation capacity in PBMCs, but may have other underlying cellular dysfunctions that contribute to dNTP imbalance and altered ROS production.

  5. 77 FR 20643 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-05

    ... HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Blood Products Advisory Committee. General Function of the Committee: To... following links. Blood Products Advisory Committee Web Cast Link May 15...

  6. 77 FR 67013 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-11-08

    ... HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Blood Products Advisory Committee. General Function of the Committee: To... links: December 4, 2012: Blood Products Advisory Committee Day 1:...

  7. Proliferative responses of blood mononuclear cells (BMNC) in a cohort of elderly humans: role of lymphocyte phenotype and cytokine production

    DEFF Research Database (Denmark)

    Bruunsgaard, H.; Pedersen, Agnes Nadelmann; Schroll, M.;

    2000-01-01

    -old humans and in 91 young controls. Decreased proliferation was associated with a reduced number of true naive CD4(+) cells (CD62L(+)CD45RO(-)). Furthermore, a low IL-2-stimulated proliferation was correlated with a decreased PHA response in the elderly cohort, whereas reciprocal interactions of IL-10......- and IL-2-producing cells were of importance in both elderly and young subjects. Accordingly, a minimum of true naive CD4(+) cells was required for a normal proliferative response to PHA, perhaps by providing sufficient IL-2 which is critical for growth of naive as well as memory cells....

  8. Vaccenic acid-mediated reduction in cytokine production is independent of c9,t11-CLA in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Jaudszus, Anke; Jahreis, Gerhard; Schlörmann, Wiebke; Fischer, Janine; Kramer, Ronny; Degen, Christian; Rohrer, Carsten; Roth, Alexander; Gabriel, Holger; Barz, Dagmar; Gruen, Michael

    2012-10-01

    The ruminant trans fatty acid vaccenic acid (tVA) favorably alters markers of inflammation. However, it is not yet clear whether these effects are attributed to its endogenous partial conversion to c9,t11-CLA, which is known to possess anti-inflammatory properties. We compared the cytokine reducing potential of tVA to c9,t11-CLA in human T-helper (Th) cells as a main source of cytokine production during inflammation. Secondly, we assessed whether a bioconversion of tVA to c9,t11-CLA via stearoyl-CoA desaturase (SCD) encoded activity takes place in peripheral blood mononuclear cells (PBMC) in order to relate the outcomes of intracellular cytokine measurement to the degree of conversion. TVA reduced the percentage of both IL-2 and TNF-α expressing Th cells significantly, but to a lesser extent compared to c9,t11-CLA, as determined by flow cytometry after alloreactive stimulation of PBMC. Pre-treatment with the selective PPARγ antagonist T0070907 largely re-established the IL-2 and TNF-α positive Th cell population in both tVA and c9,t11-CLA treated cultures. Interestingly, while the portion of tVA dose-dependently increased within the cellular lipid fraction, the initially marginal amount of c9,t11-CLA remained unaltered. However, SCD mRNA although abundantly expressed in PBMC was not regulated by tVA. Conclusively, these results suggest that the cytokine reducing effect of tVA in human T cells is independent of c9,t11-CLA, since no bioconversion occurred. Moreover, the data provide evidence that tVA mechanistically acts in a manner similar to c9,t11-CLA.

  9. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature

    Directory of Open Access Journals (Sweden)

    Mariia Zhurova

    2012-01-01

    Full Text Available Red blood cells (RBCs from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.

  10. Trapping cells in paper for white blood cell count.

    Science.gov (United States)

    Zhang, Yi; Bai, Jianhao; Wu, Hong; Ying, Jackie Y

    2015-07-15

    White blood cell count is an important indicator of each individual's health condition. An abnormal white blood cell count usually results from an infection, cancer, or other conditions that trigger systemic inflammation responses. White blood cell count also provides predictive information on the incidence of cardiovascular diseases and Type 2 diabetes. Therefore, monitoring white blood cell count on a regular basis can potentially help individuals to take preventive measures and improve healthcare outcomes. Currently, white blood cell count is primarily conducted in centralized laboratories, and it requires specialized equipment and dedicated personnel to perform the test and interpret the results. So far there has been no rapid test that allows white blood cell count in low-resource settings. In this study, we have demonstrated a vertical flow platform that quantifies white blood cells by trapping them in the paper. White blood cells were tagged with gold nanoparticles, and flowed through the paper via a small orifice. The white blood cell count was determined by measuring the colorimetric intensity of gold nanoparticles on the surface of white blood cells that were trapped in the paper mesh. Using this platform, we were able to quantify white blood cells in 15 μL of blood, and visually differentiate the abnormal count of white blood cells from the normal count. The proposed platform enabled rapid white blood cell count in low resource settings with a small sample volume requirement. Its low-cost, instrument-free operations would be attractive for point-of-care applications.

  11. Short-chain fatty acids produced by synbiotic mixtures in skim milk differentially regulate proliferation and cytokine production in peripheral blood mononuclear cells.

    Science.gov (United States)

    Asarat, M; Apostolopoulos, V; Vasiljevic, T; Donkor, O

    2015-01-01

    Short chain fatty acids (SCFAs) are major products of prebiotic fermentation and confer human health benefits such as immune-regulation. In this study, reconstituted skim milk supplemented with prebiotics (RSMP) including inulin, hi-maize or β-glucan was fermented by probiotic strains of Lactobacillus spp. and Bifidobacteria spp. After 24 h of fermentation, probiotics growth and SCFAs production were investigated and the produced SCFAs were extracted. Inulin and Lactobacillus rhamnosus GG ATCC 53013 (LGG) combination released highest concentrations of SCFAs compared to LGG and hi-maize or β-glucan. Extracted SCFAs were then used for in vitro immune modulation study in human peripheral blood mononuclear cells (PBMCs). In lipopolysaccharide (LPS)-stimulated PBMCs, SCFAs particularly butyrate down-regulated tumor necrosis factor alpha, interleukin (IL)-12, interferon gamma (IFN-γ) and transforming growth factor beta-1 (TGF-β1), and up-regulated IL-4, IL-10, while no significant effect was noted in non-LPS-stimulated PBMCs. The results indicate that SCFAs regulated cytokine milieu in LPS-stimulated PBMCs to anti-inflammatory cytokines.

  12. Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.

    Science.gov (United States)

    Ahluwalia, Balpreet Singh; McCourt, Peter; Oteiza, Ana; Wilkinson, James S; Huser, Thomas R; Hellesø, Olav Gaute

    2015-01-07

    Red blood cells squeeze through micro-capillaries as part of blood circulation in the body. The deformability of red blood cells is thus critical for blood circulation. In this work, we report a method to optically squeeze red blood cells using the evanescent field present on top of a planar waveguide chip. The optical forces from a narrow waveguide are used to squeeze red blood cells to a size comparable to the waveguide width. Optical forces and pressure distributions on the cells are numerically computed to explain the squeezing process. The proposed technique is used to quantify the loss of blood deformability that occurs during blood storage lesion. Squeezing red blood cells using waveguides is a sensitive technique and works simultaneously on several cells, making the method suitable for monitoring stored blood.

  13. Effect of sesamin against cytokine production from influenza type A H1N1-induced peripheral blood mononuclear cells: computational and experimental studies.

    Science.gov (United States)

    Fanhchaksai, Kanda; Kodchakorn, Kanchanok; Pothacharoen, Peraphan; Kongtawelert, Prachya

    2016-01-01

    In 2009, swine flu (H1N1) had spread significantly to levels that threatened pandemic influenza. There have been many treatments that have arisen for patients since the WHO first reported the disease. Although some progress in controlling influenza has taken place during the last few years, the disease is not yet under control. The development of new and less expensive anti-influenza drugs is still needed. Here, we show that sesamin from the seeds of the Thai medicinal plant Sesamum indicum has anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) induced by 2009 influenza virus type A H1N1. In this study, the combinatorial screening method combined with the computational approach was applied to investigate the new molecular binding structures of sesamin against the 2009 influenza virus type A H1N1 (p09N1) crystallized structure. Experimental methods were applied to propose the mechanisms of sesamin against cytokine production from H1N1-induced human PBMC model. The molecular dynamics simulation of sesamin binding with the p09N1 crystallized structure showed new molecular binding structures at ARG118, ILE222, ARG224, and TYR406, and it has been proposed that sesamin could potentially be used to produce anti-H1N1 compounds. Furthermore, the mechanisms of sesamin against cytokine production from influenza type A H1N1-induced PBMCs by ELISA and signaling transduction showed that sesamin exhibits the ability to inhibit proinflammatory cytokines, IL-1β and TNF-α, and to enhance the activity of the immune cell cytokine IL-2 via downregulating the phosphorylated JNK, p38, and ERK1/2 MAPK signaling pathways. This information might very well be useful in the prevention and treatment of immune-induced inflammatory disorders.

  14. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMI™ suppresses TNF-α production by mouse macrophages and peripheral blood mononuclear cells from asthma patients.

    Science.gov (United States)

    Liu, Changda; Yang, Nan; Song, Ying; Wang, Lixin; Zi, Jiachen; Zhang, Shuwei; Dunkin, David; Busse, Paula; Weir, David; Tversky, Jody; Miller, Rachel L; Goldfarb, Joseph; Zhan, Jixun; Li, Xiu-Min

    2015-08-01

    Asthma is a heterogeneous airway inflammatory disease, which is associated with Th2 cytokine-driven inflammation and non-Th2, TNF-α mediated inflammation. Unlike Th2 mediated inflammation, TNF-α mediated asthma inflammation is generally insensitive to inhaled corticosteroids (ICS). ASHMITM, aqueous extract of three medicinal herbs-Ganoderma lucidum (G. lucidum), Sophora flavescens Ait (S. flavescens) and Glycyrrhiza uralensis Fischer (G. uralensis), showed a high safety profile and was clinically beneficial in asthma patients. It also suppresses both Th2 and TNF-α associated inflammation in murine asthma models. We previously determined that G. uralensis flavonoids are the key active compounds responsible for ASHMITM suppression of Th2 mediated inflammation. Until now, there are limited studies on anti-TNF-α compounds presented in ASHMITM. The objective of this study was to isolate and identify TNF-α inhibitory compounds in ASHMITM. Here we report that G. lucidum, but not the other two herbal extracts, S. flavescens or G. uralensis inhibited TNF-α production by murine macrophages; and that the methylene chloride (MC)-triterpenoid-enriched fraction, but not the polysaccharide-enriched fraction, contained the inhibitory compounds. Of the 15 triterpenoids isolated from the MC fraction, only ganoderic acid C1 (GAC1) significantly reduced TNF-α production by murine macrophages (RAW 264.7 cells) and peripheral blood mononuclear cells (PBMCs) from asthma patients. Inhibition was associated with down-regulation of NF-κB expression, and partial suppression of MAPK and AP-1 signaling pathways. Ganoderic acid C1 may have potential for treating TNF-α mediated inflammation in asthma and other inflammatory diseases.

  15. Time-dependent histamine release from stored human blood products

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen; Edvardsen, L; Vangsgaard, K;

    1996-01-01

    storage. Whole blood (six units), plasma-reduced whole blood (six units), and plasma- and buffy coat-reduced (saline-adenine-glucose-mannitol) (SAGM) blood (six units) from unpaid healthy donors were stored in the blood bank for 35 days at 4 degrees C. Plasma histamine and total cell-bound histamine......Perioperative transfusion of whole blood has been shown to amplify trauma-induced immunosuppression, which could be attenuated by perioperative administration of histamine2 receptor antagonists. Supernatants from different blood products were, therefore, analysed for histamine content during.......0 (range 176.0-910.0) nmol/l in whole blood and 475.0 (range 360.0-1560.0) nmol/l in plasma-reduced whole blood, while it was undetectable in SAGM blood. Spontaneous histamine release increased in a time-dependent manner from a median of 6.7 (range 2.2-17.4) nmol/l at the time of storage to 175.0 (range 33...

  16. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  17. Cord blood stem cell banking and transplantation.

    Science.gov (United States)

    Dhot, P S; Nair, V; Swarup, D; Sirohi, D; Ganguli, P

    2003-12-01

    Stem cells have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Cord blood as a source of hematopoietic stem cells (HSC) has several advantages as it is easily available, involves non-invasive collection procedure and is better tolerated across the HLA barrier. Since the first cord blood transplant in 1988, over 2500 cord blood HSC transplants have been done world wide. Since then, the advantages of cord blood as a source of hematopietic stem cells for transplantation have become clear. Firstly, the proliferative capacity of HSC in cord blood is superior to that of cells in bone marrow or blood from adults. A 100 ml unit of cord blood contains 1/10th the number of nucleated cells and progenitor cells (CD34+ cells) present in 1000 ml of bone marrow, but because they proliferate rapidly, the stem cell in a single unit of cord blood can reconstitute the entire haematopoietic system. Secondly, the use of cord blood reduces the risk of graft vs host disease. Cord Blood Stem Cell banks have been established in Europe and United States to supply HSC for related and unrelated donors. Currently, more than 65,000 units are available and more than 2500 patients have received transplants of cord blood. Results in children have clearly shown that the number of nucleated cells in the infused cord blood influences the speed of recovery of neutrophils and platelets after myeloablative chemotherapy. The optimal dose is about 2 x 10(7) nucleated cells/kg of body weight. The present study was carried out for collection, separation, enumeration and cryopreservation of cord blood HSC and establishing a Cord Blood HSC Bank. 172 samples of cord blood HSC were collected after delivery of infant prior to expulsion of placenta. The average cord blood volume collected was 101.20 ml. Mononuclear cell count ranged from 7.36 to 25.6 x 10(7)/ml. Viability count of mononuclear cells was 98.1%. After 1 year of cryopreservation, the viability count on

  18. Down-regulated NOD2 by immunosuppressants in peripheral blood cells in patients with SLE reduces the muramyl dipeptide-induced IL-10 production.

    Directory of Open Access Journals (Sweden)

    Shui-Lian Yu

    Full Text Available BACKGROUND: Pattern recognition receptors (PRRs such as Toll-like receptors are aberrantly expressed of peripheral blood mononuclear cells (PBMCs in systemic lupus erythematosus (SLE patients, for playing immunopathological roles. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the expression and function of the PRR nucleotide-binding oligomerization domain (NOD2 in SLE. NOD2 expression in T, B lymphocytes, monocytes, myeloid dendritic cells (mDCs and plasmacytoid dendritic cells (pDCs was assessed in SLE patients and healthy controls (HCs using flow cytometric analysis. Ex vivo production of cytokines from PBMCs upon NOD2 agonist muramyl dipeptide (MDP stimulation was assessed using Cytometric Bead Array. Over-expression of NOD2 in monocytes was observed in immunosuppressant naïve SLE patients, and was positively associated with longer disease duration. Immunosuppressive therapy was an independent explanatory variable for downregulating NOD2 expression in CD8+ T, monocytes, mDCs and pDCs. Ex vivo basal productions of cytokines (IL-6, IL-8 and IL-10 were significantly increased in immunosuppressant naïve patients and patients with active disease despite immunosuppressants compared with HCs. Upon MDP stimulaiton, relative induction (% of cytokines (IL-1β from PBMC was significantly increased in immunosuppressant naïve patients with inactive disease, and patients with active disease despite immunosuppressant treatment compared with HCs. Immunosuppressant usage was associated with a decreased basal production and MDP induced relative induction (% of IL-10 in patients with inactive disease compared with immunosuppressant naïve patients and HCs. CONCLUSIONS/SIGNIFICANCE: Bacterial exposure may increase the NOD2 expression in monocytes in immunosuppressant naïve SLE patients which can subsequently lead to aberrant activation of PBMCs to produce proinflammatory cytokines, implicating the innate immune response for extracellular pathogens in the

  19. Cytokine production but lack of proliferation in peripheral blood mononuclear cells from chronic Chagas' disease cardiomyopathy patients in response to T. cruzi ribosomal P proteins.

    Directory of Open Access Journals (Sweden)

    Silvia A Longhi

    2014-06-01

    Full Text Available BACKGROUND: Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC. It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC stimulated with P2β, the C-terminal portion of P0 (CP0 proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells. CONCLUSIONS/SIGNIFICANCE: Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T

  20. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    Science.gov (United States)

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-02-26

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4.

  1. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  2. Diverse captive non-human primates with phytanic acid-deficient diets rich in plant products have substantial phytanic acid levels in their red blood cells

    Directory of Open Access Journals (Sweden)

    Moser Ann B

    2013-02-01

    Full Text Available Abstract Background Humans and rodents with impaired phytanic acid (PA metabolism can accumulate toxic stores of PA that have deleterious effects on multiple organ systems. Ruminants and certain fish obtain PA from the microbial degradation of dietary chlorophyll and/or through chlorophyll-derived precursors. In contrast, humans cannot derive PA from chlorophyll and instead normally obtain it only from meat, dairy, and fish products. Results Captive apes and Old world monkeys had significantly higher red blood cell (RBC PA levels relative to humans when all subjects were fed PA-deficient diets. Given the adverse health effects resulting from PA over accumulation, we investigated the molecular evolution of thirteen PA metabolism genes in apes, Old world monkeys, and New world monkeys. All non-human primate (NHP orthologs are predicted to encode full-length proteins with the marmoset Phyh gene containing a rare, but functional, GA splice donor dinucleotide. Acox2, Scp2, and Pecr sequences had amino acid positions with accelerated substitution rates while Amacr had significant variation in evolutionary rates in apes relative to other primates. Conclusions Unlike humans, diverse captive NHPs with PA-deficient diets rich in plant products have substantial RBC PA levels. The favored hypothesis is that NHPs can derive significant amounts of PA from the degradation of ingested chlorophyll through gut fermentation. If correct, this raises the possibility that RBC PA levels could serve as a biomarker for evaluating the digestive health of captive NHPs. Furthermore, the evolutionary rates of the several genes relevant to PA metabolism provide candidate genetic adaptations to NHP diets.

  3. Isolation of rare cancer cells from blood cells using dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Sano, Michael B; Shafiee, Hadi; Stremler, Mark A; Davalos, Rafael V

    2012-01-01

    In this study, we investigate the application of contactless dielectrophoresis (cDEP) for isolating cancer cells from blood cells. Devices with throughput of 0.2 mL/hr (equivalent to sorting 3×10(6) cells per minute) were used to trap breast cancer cells while allowing blood cells through. We have shown that this technique is able to isolate cancer cells in concentration as low as 1 cancer cell per 10(6) hematologic cells (equivalent to 1000 cancer cells in 1 mL of blood). We achieved 96% trapping of the cancer cells at 600 kHz and 300 V(RMS).

  4. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    Science.gov (United States)

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.

  5. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    Science.gov (United States)

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  6. Congener Production in Blood Samples During Preparation and Storage

    DEFF Research Database (Denmark)

    Felby, Søren; Nielsen, Erik

    1995-01-01

    Retsmedicin, congener production, preparation, head space GC, acetone, isobutanol, storage, blood samples, n-propanol, methanol, methylethylketone......Retsmedicin, congener production, preparation, head space GC, acetone, isobutanol, storage, blood samples, n-propanol, methanol, methylethylketone...

  7. 77 FR 7588 - Blood Products Advisory Committee; Cancellation

    Science.gov (United States)

    2012-02-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Blood Products...

  8. Human spleen and red blood cells

    Science.gov (United States)

    Pivkin, Igor; Peng, Zhangli; Karniadakis, George; Buffet, Pierre; Dao, Ming

    2016-11-01

    Spleen plays multiple roles in the human body. Among them is removal of old and altered red blood cells (RBCs), which is done by filtering cells through the endothelial slits, small micron-sized openings. There is currently no experimental technique available that allows us to observe RBC passage through the slits. It was previously noticed that people without a spleen have less deformable red blood cells, indicating that the spleen may play a role in defining the size and shape of red blood cells. We used detailed RBC model implemented within the Dissipative Particle Dynamics (DPD) simulation framework to study the filter function of the spleen. Our results demonstrate that spleen indeed plays major role in defining the size and shape of the healthy human red blood cells.

  9. Red blood cell decreases of microgravity

    Science.gov (United States)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  10. In vitro complement activation, adherence to red blood cells and induction of mononuclear cell cytokine production by four strains of Aggregatibacter actinomycetemcomitans with different fimbriation and expression of leukotoxin

    DEFF Research Database (Denmark)

    Damgaard, C; Reinholdt, J; Palarasah, Y

    2017-01-01

    . The JP2 clone variant HK 2092, selectively lacking LtxA production, induced higher production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 by MNCs than did the other three strains, while the four strains induced similar production of IL-12p70. RBCs facilitated the HK 2092-induced...... production of TNF-α and IL-1β, and IL-6 was enhanced by RBCs, and this facilitation could be counteracted by blockade of complement receptor 3 (CD11b/CD18). CONCLUSION: Our data suggest that the JP2 clone of A. actinomycetemcomitans, most closely resembled by the variant HK 1651, activates complement well...... with human whole blood cells in the presence of autologous serum, and assessed for RBC adherence by flow cytometry and for capacity to induce cytokine production by cytometric bead array analysis. The levels of IgG to A. actinomycetemcomitans serotype b were quantified by ELISA, as was consumption...

  11. Blood platelet production with breaks : optimization by SDP and simulation

    NARCIS (Netherlands)

    Haijema, Rene; van Dijk, Nico; van der Wal, Jan; Sibinga, Cees Smit

    2009-01-01

    The production and inventory management of blood products at blood banks and hospitals is it problem of general human interest. As a shortage may put lives at risk, shortages are to be kept to a minimum. As the supply is voluntary and costly, any spill of unused blood (products) is also to be minimi

  12. 77 FR 4567 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-30

    ... HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Blood Products Advisory Committee. General Function of the Committee: To..., the meeting will also be Web cast. The Blood Products Advisory Committee Web cast will be available...

  13. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  14. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from ... later? Sign in to add this video to a playlist. Sign in Share More Report Need to ...

  15. Utilization and quality of cryopreserved red blood cells in transfusion medicine.

    Science.gov (United States)

    Henkelman, S; Noorman, F; Badloe, J F; Lagerberg, J W M

    2015-02-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular deterioration at subzero temperatures, its usage have been hampered due to the more complex and labour intensive procedure and the limited shelf life of thawed products. Since the FDA approval of a closed (de) glycerolization procedure in 2002, allowing a prolonged postthaw storage of red blood cells up to 21 days at 2-6°C, cryopreserved red blood cells have become a more utilized blood product. Currently, cryopreserved red blood cells are mainly used in military operations and to stock red blood cells with rare phenotypes. Yet, cryopreserved red blood cells could also be useful to replenish temporary blood shortages, to prolong storage time before autologous transfusion and for IgA-deficient patients. This review describes the main methods to cryopreserve red blood cells, explores the quality of this blood product and highlights clinical settings in which cryopreserved red blood cells are or could be utilized.

  16. Blood cell manufacture: current methods and future challenges.

    Science.gov (United States)

    Timmins, Nicholas E; Nielsen, Lars K

    2009-07-01

    Blood transfusion depends on availability of donor material, and concerns over supply and safety have spurred development of methods to manufacture blood from stem cells. Current methods could theoretically yield therapeutic doses of red blood cells (RBCs) and platelets. However, due to the very large number of cells required to have any impact on supply (currently 10(19) RBC/year in the US), realization of routine manufacture faces significant challenges. Current yields are orders of magnitude too low for production of meaningful quantities, and the physical scale of the problem is a challenge in itself. We discuss these challenges in relation to current methods and how it might be possible to realize limited 'blood pharming' of neutrophils in the near future.

  17. Anti-inflammatory activity of probiotic Bifidobacterium:Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells

    Institute of Scientific and Technical Information of China (English)

    Akemi Imaoka; Tatsuichiro Shima; Kimitoshi Kato; Shigeaki Mizuno; Toshiki Uehara; Satoshi Matsumoto; Hiromi Setoyama; Taeko Hara; Yoshinori Umesaki

    2008-01-01

    AIM: To determine the anti-inflammatory activity of probiotic Bifidobacteria in Bifidobacteria-fermented milk (BFM) which is effective against active ulcerative colitis (UC) and exacerbations of UC, and to explore the immunoregulatory mechanisms.METHODS: Peripheral blood mononuclear cells (PBMNC)from UC patients or HT-29 cells were co-cultured with heat-killed probiotic bacteria or culture supernatant of Bifidobacterium breve strain Yakult (BbrY) or Bifidobacterium bifidum strain Yakult (BbiY) to estimate the amount of IL-10 or IL-8 secreted.RESULTS: Both strains of probiotic Bifidobacteria contained in the BFM induced IL-10 production in PBMNC from UC patients, though BbrY was more effective than BbiY.Conditioned medium (CM) and DNA of both strains inhibited IL-8 secretion in HT-29 cells stimulated with TNF-α, whereas no such effect was observed with heatkilled bacteria.The inhibitory effect of CM derived from BbiY was greater than that of CM derived from BbrY.DNAs of the two strains had a comparable inhibitory activity against the secretion of IL-8.CM of BbiY induced a repression of IL-8 gene expression with a higher expression of IκB-ζ mRNA 4 h after culture of HT-29 cells compared to that in the absence of CM.CONCLUSION: Probiotic Bifidobacterium strains in BFM enhance IL-10 production in PBMNC and inhibit IL-8 secretion in intestinal epithelial cells, suggesting that BFM has anti-inflammatory effects against ulcerative colitis.

  18. Separation of blood cells using hydrodynamic lift

    Science.gov (United States)

    Geislinger, T. M.; Eggart, B.; Braunmüller, S.; Schmid, L.; Franke, T.

    2012-04-01

    Using size and deformability as intrinsic biomarkers, we separate red blood cells (RBCs) from other blood components based on a repulsive hydrodynamic cell-wall-interaction. We exploit this purely viscous lift effect at low Reynolds numbers to induce a lateral migration of soft objects perpendicular to the streamlines of the fluid, which closely follows theoretical prediction by Olla [J. Phys. II 7, 1533, (1997)]. We study the effects of flow rate and fluid viscosity on the separation efficiency and demonstrate the separation of RBCs, blood platelets, and solid microspheres from each other. The method can be used for continuous and label-free cell classification and sorting in on-chip blood analysis.

  19. Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations.

    Science.gov (United States)

    Bah, Clara S F; Carne, Alan; McConnell, Michelle A; Mros, Sonya; Bekhit, Alaa El-Din A

    2016-07-01

    Protease preparations from plant (papain and bromelain) and fungal (FP400 and FPII) sources were used to hydrolyze the red blood cell fractions (RBCFs) separated from deer, sheep, pig, and cattle abattoir-sourced blood. After 1, 2, 4 and 24h of hydrolysis, the antioxidant and antibacterial activities of the peptide hydrolysates obtained were investigated. The increase in trichloroacetic acid-soluble peptides over the hydrolysis period was examined using the o-phthaldialdehyde (OPA) assay and the hydrolysis profiles were illustrated using SDS-PAGE. Papain generated RBCF hydrolysates exhibited higher ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) compared to those generated with bromelain, FP400 and FPII. At certain concentrations, 24h hydrolysates of RBCF using FP400 and FPII were able to inhibit the growth of Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The results indicated that the use of proteases from plant or fungal sources can produce animal blood hydrolysates with antioxidant and antimicrobial activities.

  20. Single-cell measurement of red blood cell oxygen affinity

    CERN Document Server

    Caprio, Di; Higgins, John M; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin in red blood cells. While the oxygen affinity of blood is well understood and is routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of red blood cell volume and hemoglobin concentration are taken millions of times per day by clinical hematology analyzers and are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume and hemoglobin concentration for individual red blood cells in high-throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.5%, which corresponds to the maximum slope of the oxygen-hemoglobin dissociation curve. In addition, single-cell oxygen affinity is positively correlated with hemoglobin concentr...

  1. 77 FR 29667 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-05-18

    ... No. FDA-2012-N-0001] Blood Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Blood Products Advisory Committee. General Function of the Committee: To..., Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA. FDA intends...

  2. 78 FR 56899 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-16

    ... HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Notice of Meeting AGENCY... will be closed to the public. Name of Committee: Blood Products Advisory Committee. General Function of... Blot 2.4, a Western Blot intended for use as a confirmatory test for blood donors. In the...

  3. 78 FR 38351 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-06-26

    ... HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Notice of Meeting AGENCY... will be closed to the public. Name of Committee: Blood Products Advisory Committee. General Function of..., Office of Blood Research and Review, Center for Biologics Evaluation and Research, FDA. FDA intends...

  4. Concise review: programming human pluripotent stem cells into blood.

    Science.gov (United States)

    Easterbrook, Jennifer; Fidanza, Antonella; Forrester, Lesley M

    2016-06-01

    Blood disorders are treated with cell therapies including haematopoietic stem cell (HSC) transplantation as well as platelet and red blood cell transfusions. However the source of cells is entirely dependent on donors, procedures are susceptible to transfusion-transmitted infections and serious complications can arise in recipients due to immunological incompatibility. These problems could be alleviated if it was possible to produce haematopoietic cells in vitro from an autologous and renewable cell source. The production of haematopoietic cells in the laboratory from human induced pluripotent stem cells (iPSCs) may provide a route to realize this goal but it has proven challenging to generate long-term reconstituting HSCs. To date, the optimization of differentiation protocols has mostly relied on the manipulation of extrinsic signals to mimic the in vivo environment. We review studies that have taken an alternative approach to modulate intrinsic signals by enforced expression of transcription factors. Single and combinations of multiple transcription factors have been used in a variety of contexts to enhance the production of haematopoietic cells from human pluripotent stem cells. This programming approach, together with the recent advances in the production and use of synthetic transcription factors, holds great promise for the production of fully functional HSCs in the future.

  5. The origin of blood stem cells

    NARCIS (Netherlands)

    J.C. Boisset

    2012-01-01

    textabstractThe development of cell biology research coincides with the advance of microscopes in the 19th century. It was finally possible to directly observe the various blood cell types and to witness their proliferation and differentiation (Mazzarello, 1999). On the basis of his observations, th

  6. 21 CFR 864.8200 - Blood cell diluent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood...

  7. Deterministic Aperiodic Sickle Cell Blood Flows

    Science.gov (United States)

    Atsaves, Louis; Harris, Wesley

    2013-11-01

    In this paper sickle cell blood flow in the capillaries is modeled as a hydrodynamical system. The hydrodynamical system consists of the axisymmetric unsteady, incompressible Navier-Stokes equations and a set of constitutive equations for oxygen transport. Blood cell deformation is not considered in this paper. The hydrodynamical system is reduced to a system of non-linear partial differential equations that are then transformed into a system of three autonomous non-linear ordinary differential equations and a set of algebraic equations. We examine the hydrodynamical system to discern stable/unstable, periodic/nonperiodic, reversible/irreversible properties of the system. The properties of the solutions are driven in large part by the coefficients of the governing system of equations. These coefficients depend on the physiological properties of the sickle cell blood. The chaotic nature of the onset of crisis in sickle cell patients is identified. Research Assistant.

  8. In-vitro stem cell derived red blood cells for transfusion: are we there yet?

    Science.gov (United States)

    Kim, Hyun Ok

    2014-03-01

    To date, the use of red blood cells (RBCs) produced from stem cells in vitro has not proved practical for routine transfusion. However, the perpetual and widespread shortage of blood products, problems related to transfusion-transmitted infections, and new emerging pathogens elicit an increasing demand for artificial blood. Worldwide efforts to achieve the goal of RBC production through stem cell research have received vast attention; however, problems with large-scale production and cost effectiveness have yet to prove practical usefulness. Some progress has been made, though, as cord blood stem cells and embryonic stem cells have shown an ability to differentiate and proliferate, and induced pluripotent stem cells have been shown to be an unlimited source for RBC production. However, transfusion of stem cell-derived RBCs still presents a number of challenges to overcome. This paper will summarize an up to date account of research and advances in stem cell-derived RBCs, delineate our laboratory protocol in producing RBCs from cord blood, and introduce the technological developments and limitations to current RBC production practices.

  9. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production

    Directory of Open Access Journals (Sweden)

    Emanuel Joseph Paul Nazareth

    2016-05-01

    Full Text Available Human pluripotent stem cells (hPSCs exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4 and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives.

  10. White blood cell deformation and firm adhesion

    Science.gov (United States)

    Szatmary, Alex; Eggleton, Charles

    2011-11-01

    For a white blood cell (WBC) to arrive at infection sites, it forms chemical attachments with activated endothelial cells. First, it bonds with P-selectin, which holds it to the wall, but weakly; this allows the WBC to roll under the shear flow of the blood around it. Later, the WBCs bond with the stronger intracellular adhesion molecule-1 (ICAM-1); it is these ICAM bonds that allow the WBCs to fully resist the flow and stop rolling, allowing them to crawl through the endothelial wall. We model this numerically. Our model uses the immersed boundary method to represent the interaction of the shear flow with the deformable cell membrane. Receptors are on the tips of microvilli-little fingers sticking off of the cell membrane. The microvilli also deform. The receptors stochastically form and break bonds with molecules on the wall. Using this method, the history of each microvillus and its bonds can be found, as well as the distribution of the adhesion traction forces and how all of these vary with the deformability of the white blood cell. At higher shear rates, the white blood cell membrane deforms more, increasing its contact area with the surface; this effect is larger for softer membranes. We investigate how the deformability of the WBC affects the ease with which it forms firm adhesion.

  11. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells.

    Science.gov (United States)

    Li, Taihang; Jing, Xiabin; Huang, Yubin

    2011-07-07

    In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.

  12. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  13. Red blood cells in retinal vascular disorders.

    Science.gov (United States)

    Agrawal, Rupesh; Sherwood, Joseph; Chhablani, Jay; Ricchariya, Ashutosh; Kim, Sangho; Jones, Philip H; Balabani, Stavroula; Shima, David

    2016-01-01

    Microvascular circulation plays a vital role in regulating physiological functions, such as vascular resistance, and maintaining organ health. Pathologies such as hypertension, diabetes, or hematologic diseases affect the microcirculation posing a significant risk to human health. The retinal vasculature provides a unique window for non-invasive visualisation of the human circulation in vivo and retinal vascular image analysis has been established to predict the development of both clinical and subclinical cardiovascular, metabolic, renal and retinal disease in epidemiologic studies. Blood viscosity which was otherwise thought to play a negligible role in determining blood flow based on Poiseuille's law up to the 1970s has now been shown to play an equally if not a more important role in controlling microcirculation and quantifying blood flow. Understanding the hemodynamics/rheology of the microcirculation and its changes in diseased states remains a challenging task; this is due to the particulate nature of blood, the mechanical properties of the cells (such as deformability and aggregability) and the complex architecture of the microvasculature. In our review, we have tried to postulate a possible role of red blood cell (RBC) biomechanical properties and laid down future framework for research related to hemorrheological aspects of blood in patients with retinal vascular disorders.

  14. Use of statistical process control in the production of blood components

    DEFF Research Database (Denmark)

    Magnussen, K.; Quere, S.; Winkel, P.

    2008-01-01

    components produced and gives an example of how to meet EU legislative requirements in a small-scale production centre. Data included quality control measurements in 363 units of red blood cells, 79 units of platelets produced by an occasional staff with 11 technologists and 79 units of platelets produced......Introduction of statistical process control in the setting of a small blood centre was tested, both on the regular red blood cell production and specifically to test if a difference was seen in the quality of the platelets produced, when a change was made from a relatively large inexperienced...... occasional component manufacturing staff to an experienced regular manufacturing staff. Production of blood products is a semi-automated process in which the manual steps may be difficult to control. This study was performed in an ongoing effort to improve the control and optimize the quality of the blood...

  15. Pathogen inactivation in cellular blood products by photodynamic treatment

    NARCIS (Netherlands)

    Trannoy, Laurence Liliane

    2010-01-01

    The safety of blood transfusion can be increased by introducing methods that eliminate blood-borne pathogens such as viruses and bacteria. In this thesis, the use of photodynamic treatment (PDT) to inactivate pathogens in cellular blood products is described. Various photosensitizers, from phenothia

  16. Metabolic pathways that correlate with post-transfusion circulation of stored murine red blood cells.

    Science.gov (United States)

    de Wolski, Karen; Fu, Xiaoyoun; Dumont, Larry J; Roback, John D; Waterman, Hayley; Odem-Davis, Katherine; Howie, Heather L; Zimring, James C

    2016-05-01

    Transfusion of red blood cells is a very common inpatient procedure, with more than 1 in 70 people in the USA receiving a red blood cell transfusion annually. However, stored red blood cells are a non-uniform product, based upon donor-to-donor variation in red blood cell storage biology. While thousands of biological parameters change in red blood cells over storage, it has remained unclear which changes correlate with function of the red blood cells, as opposed to being co-incidental changes. In the current report, a murine model of red blood cell storage/transfusion is applied across 13 genetically distinct mouse strains and combined with high resolution metabolomics to identify metabolic changes that correlated with red blood cell circulation post storage. Oxidation in general, and peroxidation of lipids in particular, emerged as changes that correlated with extreme statistical significance, including generation of dicarboxylic acids and monohydroxy fatty acids. In addition, differences in anti-oxidant pathways known to regulate oxidative stress on lipid membranes were identified. Finally, metabolites were identified that differed at the time the blood was harvested, and predict how the red blood cells perform after storage, allowing the potential to screen donors at time of collection. Together, these findings map out a new landscape in understanding metabolic changes during red blood cell storage as they relate to red blood cell circulation.

  17. Colour measurement and white blood cell recognition

    CERN Document Server

    Gelsema, E S

    1972-01-01

    As a part of a collaboration with NEMCH aimed at the automation of the differential white blood cell count, studies have been made of the different possibilities for using colour to help in the recognition process. Results are presented comparing data obtained with a microspectrophotometer and with a simulated three-colour scanner.

  18. 21 CFR 864.5240 - Automated blood cell diluting apparatus.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated blood cell diluting apparatus. 864.5240... § 864.5240 Automated blood cell diluting apparatus. (a) Identification. An automated blood cell diluting apparatus is a fully automated or semi-automated device used to make appropriate dilutions of a blood...

  19. Effects of 47C allele (rs4880) of the SOD2 gene in the production of intracellular reactive species in peripheral blood mononuclear cells with and without lipopolysaccharides induction.

    Science.gov (United States)

    Paludo, F J O; Bristot, I J; Alho, C S; Gelain, D P; Moreira, J C F

    2014-02-01

    Challenging of peripheral blood mononuclear cells (PBMCs) with lipopolysaccharides (LPS) has been shown to activate monocytes and macrophages, leading to the production of pro-inflammatory cytokines and reactive oxygen species (ROS). Manganese superoxide dismutase (MnSOD) is an important enzyme that may play a central role in the response to oxidative stress. 47C> T SNP of the SOD2 gene, the -9Val MnSOD is less efficient than the -9Ala version. We have previously characterized the cellular redox status of human PBMCs expressing either -9Ala (CC) or -9Val (TT) SOD2 and analyzed the responses of these cells to oxidative stress induced by LPS. Due to the observed alterations in the activities of these antioxidant enzymes, we decided to investigate their immunocontent and analyze the production of intracellular oxidants, as well as any resulting DNA damage. PBMCs were isolated from the blood of 30 healthy human volunteers (15 volunteers per allele). We then analyzed levels of nitrite, DNA damage by comet assay, TNF-α, carboxymethyl lysine and nitrotyrosine and assessed production of intracellular reactive species by the DCFH-DA-based assay and western blots were used to analyze protein levels. Our results show that there occurs an increase in nitric oxide production in both allele groups after challenge with LPS. A significant increase in DNA damage was observed in PBMCs after an 8-h LPS challenge. Cells expressing the SOD2 47C allele quickly adapt to a more intense metabolism by upregulating cellular detoxification mechanisms. However, when these cells are stressed over a long period, they accumulate a large quantity of toxic metabolic byproducts.

  20. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  1. 'Blind' transfusion of blood products in exsanguinating trauma patients.

    NARCIS (Netherlands)

    Geeraedts, L.M.G.; Demiral, H.; Schaap, N.P.M.; Kamphuisen, P.W.; Pompe, J.C.; Frolke, J.P.M.

    2007-01-01

    BACKGROUND: In trauma, as interventions are carried out to stop bleeding, ongoing resuscitation with blood products is of vital importance. As transfusion policy in exsanguinating patients cannot be based on laboratory tests, transfusion of blood products is performed empirically or 'blindly'. The a

  2. 78 FR 2677 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Blood Products Advisory Committee; Notice of Meeting AGENCY... public. Name of Committee: Blood Products Advisory Committee. General Function of the Committee:...

  3. Current issues relating to the transfusion of stored red blood cells.

    Science.gov (United States)

    Zimrin, A B; Hess, J R

    2009-02-01

    The development of blood storage systems allowed donation and transfusion to be separated in time and space. This separation has permitted the regionalization of donor services with subsequent economies of scale and improvements in the quality and availability of blood products. However, the availability of storage raises the question of how long blood products can and should be stored and how long they are safe and effective. The efficacy of red blood cells was originally measured as the increment in haematocrit and safety began with typing and the effort to reduce the risk of bacterial contamination. Appreciation of a growing list of storage lesions of red blood cells has developed with our increasing understanding of red blood cell physiology and our experience with red blood cell transfusion. However, other than frank haemolysis, rare episodes of bacterial contamination and overgrowth, the reduction of oxygen-carrying capacity associated with the failure of some transfused cells to circulate, and the toxicity of lysophospholipids released from membrane breakdown, storage-induced lesions have not had obvious correlations with safety or efficacy. The safety of red blood cell storage has also been approached in retrospective epidemiologic studies of transfused patients, but the results are frequently biased by the fact that sicker patients are transfused more often and blood banks do not issue blood products in a random order. Several large prospective studies of the safety of stored red blood cells are planned.

  4. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  5. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  6. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  7. Effects of faba beans with different concentrations of vicine and convicine on egg production, egg quality and red blood cells in laying hens.

    Science.gov (United States)

    Lessire, M; Gallo, V; Prato, M; Akide-Ndunge, O; Mandili, G; Marget, P; Arese, P; Duc, G

    2016-12-29

    The faba bean (Vicia faba L.) is a potential source of proteins for poultry, mainly for laying hens whose protein requirements are lower than those of other birds such as growing broilers and turkeys. However, this feedstuff contains anti-nutritional factors, that is, vicine (V) and convicine (C) that are already known to reduce laying hen performance. The aim of the experiment reported here was to evaluate the effects of a wide range of dietary V and C concentrations in laying hens. Two trials were performed with laying hens fed diets including 20% or 25% of faba bean genotypes highly contrasting in V+C content. In Trial 1, faba beans from two tannin-containing cultivars, but with high or low V+C content were dehulled in order to eliminate the tannin effect. In addition to the contrasting levels of V+C in the two cultivars, two intermediate levels of V+C were obtained by mixing the two cultivars (70/30 and 30/70). In Trial 2, two isogenic zero-tannin faba bean genotypes with high or low V+C content were used. In both trials, a classical corn-soybean diet was also offered to control hens. Each experimental diet was given to 48 laying hens for 140 (Trial 1) or 89 (Trial 2) days. Laying performance and egg quality were measured. The redox sensitivity of red blood cells (RBCs) was assessed by measuring hemolysis and reduced glutathione (GSH) concentration in these cells. Egg weight was significantly reduced by the diets containing the highest concentrations of V+C (Phens fed high V+C diets. A decrease in GSH concentration in RBCs of hens fed the highest levels of V+C was observed. Faba bean genotypes with low concentrations of V+C can therefore be used in laying hen diets up to 25% without any detrimental effects on performance levels or egg characteristics, without any risk of hemolysis of RBCs.

  8. Oxidative and pro-inflammatory impact of regular and denicotinized cigarettes on blood brain barrier endothelial cells: is smoking reduced or nicotine-free products really safe?

    Science.gov (United States)

    2014-01-01

    Background Both active and passive tobacco smoke (TS) potentially impair the vascular endothelial function in a causative and dose-dependent manner, largely related to the content of reactive oxygen species (ROS), nicotine, and pro-inflammatory activity. Together these factors can compromise the restrictive properties of the blood–brain barrier (BBB) and trigger the pathogenesis/progression of several neurological disorders including silent cerebral infarction, stroke, multiple sclerosis and Alzheimer’s disease. Based on these premises, we analyzed and assessed the toxic impact of smoke extract from a range of tobacco products (with varying levels of nicotine) on brain microvascular endothelial cell line (hCMEC/D3), a well characterized human BBB model. Results Initial profiling of TS showed a significant release of reactive oxygen (ROS) and reactive nitrogen species (RNS) in full flavor, nicotine-free (NF, “reduced-exposure” brand) and ultralow nicotine products. This release correlated with increased oxidative cell damage. In parallel, membrane expression of endothelial tight junction proteins ZO-1 and occludin were significantly down-regulated suggesting the impairment of barrier function. Expression of VE-cadherin and claudin-5 were also increased by the ultralow or nicotine free tobacco smoke extract. TS extract from these cigarettes also induced an inflammatory response in BBB ECs as demonstrated by increased IL-6 and MMP-2 levels and up-regulation of vascular adhesion molecules, such as VCAM-1 and PECAM-1. Conclusions In summary, our results indicate that NF and ultralow nicotine cigarettes are potentially more harmful to the BBB endothelium than regular tobacco products. In addition, this study demonstrates that the TS-induced toxicity at BBB ECs is strongly correlated to the TAR and NO levels in the cigarettes rather than the nicotine content. PMID:24755281

  9. Washing of stored red blood cells by an autotransfusion device before transfusion

    NARCIS (Netherlands)

    de Vroege, R.; Wildevuur, W. R.; Muradin, J. A. G.; Graves, D.; van Oeveren, W.

    2007-01-01

    Background and Objectives The use of an autotransfusion device to wash blood of the incision site is increasing. After washing, this blood is retransfused without side effects caused by activated plasma factors and cell release products. This procedure could be extended to washing of donor blood, wh

  10. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  11. A rational framework for production decision making in blood establishments.

    Science.gov (United States)

    Ramoa, Augusto; Maia, Salomé; Lourenço, Anália

    2012-07-24

    SAD_BaSe is a blood bank data analysis software, created to assist in the management of blood donations and the blood production chain in blood establishments. In particular, the system keeps track of several collection and production indicators, enables the definition of collection and production strategies, and the measurement of quality indicators required by the Quality Management System regulating the general operation of blood establishments. This paper describes the general scenario of blood establishments and its main requirements in terms of data management and analysis. It presents the architecture of SAD_BaSe and identifies its main contributions. Specifically, it brings forward the generation of customized reports driven by decision making needs and the use of data mining techniques in the analysis of donor suspensions and donation discards.

  12. Ex-vivo expansion of red blood cells: how real for transfusion in humans?

    Science.gov (United States)

    Migliaccio, Anna Rita; Masselli, Elena; Varricchio, Lilian; Whitsett, Carolyn

    2012-03-01

    Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compared to other cell therapies transfusion poses the unique challenge of requiring great cell doses (2.5×10(12) cells vs 10(7) cells). Although production of such cell numbers is theoretically possible, current technologies generate red cells in numbers sufficient only for safety studies. It is conceived that by the time these studies will be completed, technical barriers to mass cell production will have been eliminated making transfusion with ex-vivo generated red cells a reality.

  13. Controle de esterilidade de produtos de células progenitoras hematopoéticas do sangue periférico Sterility control of hematopoietic progenitor cells from peripheral blood products

    Directory of Open Access Journals (Sweden)

    Igor D. Almeida

    2010-02-01

    Full Text Available A taxa de contaminação microbiana dos produtos de células progenitoras hematopoéticas do sangue periférico é baixa. Neste estudo pesquisou-se a prevalência de hemoculturas positivas em células progenitoras hematopoéticas do sangue periférico (CPHSP no Serviço de Hemoterapia do Hospital de Clínicas de Porto Alegre. Do total de 618 coletas realizadas no período de 2000 a 2007, 26 (4,2% apresentaram contaminação por bactérias. O Staphylococcus coagulase-negativo foi predominantemente isolado nas hemoculturas. A antibioticoterapia pré e pós-infusão foi estabelecida de acordo com o microorganismo e seu antibiograma, sendo que, em cinco das doze infusões contaminadas realizadas, não foram administrados antimicrobianos profilaticamente. Episódios febris foram observados em sete pacientes (58%, enquanto cinco (42% não apresentaram febre. Das doze infusões contaminadas realizadas, seis (50% apresentaram hemocultura pós-descongelamento positivas, enquanto as restantes (50% foram negativas. Isto se deve às propriedades bactericidas do DMSO, de células fagocitose-ativas e de temperaturas muito baixas atingidas na criopreservação. Autores têm relatado sucesso neste procedimento após a infusão desses produtos contaminados com o mínimo de consequências clínicas.The rate of microbial contamination of hematopoietic progenitor cell products from peripheral blood is low. In this study, we investigated the prevalence of positive blood cultures of hematopoietic progenitor cells from peripheral blood in a hemotherapy service. Of a total of 618 samples taken during the period from 2000 to 2007, 26 (4.2% were contaminated by bacteria. Staphylococcus coagulase-negative was the predominant bacterium isolated in blood cultures. Pre- and post-infusion antibiotic therapy was established depending on the microorganism and antibiogram, whereas in five out of twelve contaminated infusions, no antibiotics were administered prophylactically

  14. Red blood cell clusters in Poiseuille flow

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Misbah, Chaouqi; Elasmi, Lassaad

    2011-11-01

    We present 2D numerical simulations of sets of vesicles (closed bags of a lipid bilayer membrane) in a parabolic flow, a setup that mimics red blood cells (RBCs) in the microvasculature. Vesicles, submitted to sole hydrodynamical interactions, are found to form aggregates (clusters) of finite size. The existence of a maximal cluster size is pointed out and characterized as a function of the flow intensity and the swelling ratio of the vesicles. Moreover bigger clusters move at lower velocity, a fact that may prove of physiological interest. These results quantify previous observations of the inhomogeneous distribution of RBCs in vivo (Gaehtgens et al., Blood Cells 6 - 1980). An interpretation of the phenomenon is put forward based on the presence of boli (vortices) between vesicles. Both the results and the explanation can be transposed to the three-dimensional case.

  15. Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion.

    Science.gov (United States)

    Ebihara, Yasuhiro; Ma, Feng; Tsuji, Kohichiro

    2012-06-01

    Red blood cell (RBC) transfusion is necessary for many patients with emergency or hematological disorders. However, to date the supply of RBCs remains labile and dependent on voluntary donations. In addition, the transmission of infectious disease via blood transfusion from unspecified donors remains a risk. Establishing a large quantity of safe RBCs would help to address this issue. Human embryonic stem (hES) cells and the recently established human induced pluripotent stem (hiPS) cells represent potentially unlimited sources of donor-free RBCs for blood transfusion, as they can proliferate indefinitely in vitro. Extensive research has been done to efficiently generate transfusable RBCs from hES/iPS cells. Nevertheless, a number of challenges must be overcome before the clinical usage of hES/iPS cell-derived RBCs can become a reality.

  16. Pyruvate effects on red blood cells during in vitro cardiopulmonary bypass with dogs' blood.

    Science.gov (United States)

    Gou, DaMing; Tan, HongJing; Cai, HuiJun; Zhou, FangQiang

    2012-11-01

    To investigate the effects of pyruvate (Pyr) on adenosine triphosphate (ATP), endothelial nitric oxide synthase (eNOS), and nitric oxide (NO) in red blood cells (RBCs) during the cardiopulmonary bypass procedure (CPB), blood, 500 mL, was collected from each of 10 healthy dogs (weight 12-18 kg). The blood was divided into two parts (250 mL each) and randomly assigned into the control group (Group C, n = 10) or the Pyr group (Group P, n = 10). The blood was commingled with an equal volume of 0.9% NaCl and pyruvated isotonic solution (Pyr 50 mM) in the extracorporeal circuit in the two groups, respectively. The CPB procedure was fixed at 120 min, and the transferring flow was 4 L/min. Contents of ATP in RBCs, eNOS activities, and NO productions in plasma were measured before CPB and during CPB at 30, 60, 90, and 120 min in both groups. The ATP level, eNOS activity, and NO production were not different prior to CPB between the two groups. A decline of ATP levels was shown in both groups but remained significantly higher in Group P than in Group C at the same time points during in vitro CPB (P dogs' RBCs in the ATP level, eNOS activity, and NO production, in vitro, but Pyr effectively protected RBCs in these functions during CPB. Pyr would be clinically protective for RBCs during CPB.

  17. Risk of Abnormal Red Blood Cell to Get Malarial Infection

    OpenAIRE

    Viroj Wiwanitkit

    2008-01-01

    Malarial infection in red blood cell disorder is an interesting topic in tropical medicine. In this work, the author proposes a new idea on the physical property of red blood cell and risk for getting malarial infection. The study on scenario of red blood cell disorders is performed. Conclusively, the author found that physical property of red blood cell is an important determinant for getting malarial infection

  18. 21 CFR 864.6160 - Manual blood cell counting device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Manual Hematology Devices § 864.6160 Manual blood cell counting device. (a) Identification. A manual blood cell counting device is a device used...

  19. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity...

  20. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  1. Automated red blood cell analysis compared with routine red blood cell morphology by smear review

    Directory of Open Access Journals (Sweden)

    Dr.Poonam Radadiya

    2015-01-01

    Full Text Available The RBC histogram is an integral part of automated haematology analysis and is now routinely available on all automated cell counters. This histogram and other associated complete blood count (CBC parameters have been found abnormal in various haematological conditions and may provide major clues in the diagnosis and management of significant red cell disorders. Performing manual blood smears is important to ensure the quality of blood count results and to make presumptive diagnosis. In this article we have taken 100 samples for comparative study between RBC histograms obtained by automated haematology analyzer with peripheral blood smear. This article discusses some morphological features of dimorphism and the ensuing characteristic changes in their RBC histograms.

  2. Multiscale modeling of blood flow: from single cells to blood rheology.

    Science.gov (United States)

    Fedosov, Dmitry A; Noguchi, Hiroshi; Gompper, Gerhard

    2014-04-01

    Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

  3. Ex-vivo expansion of red blood cells: How real for transfusion in humans?

    OpenAIRE

    Migliaccio, Anna Rita; Masselli, Elena; Varricchio, Lilian; Whitsett, Carolyn

    2011-01-01

    Blood transfusion is indispensable for modern medicine. In developed countries, the blood supply is adequate and safe but blood for alloimmunized patients is often unavailable. Concerns are increasing that donations may become inadequate in the future as the population ages prompting a search for alternative transfusion products. Improvements in culture conditions and proof-of-principle studies in animal models have suggested that ex-vivo expanded red cells may represent such a product. Compa...

  4. Generation of induced pluripotent stem cells from human cord blood.

    Science.gov (United States)

    Haase, Alexandra; Olmer, Ruth; Schwanke, Kristin; Wunderlich, Stephanie; Merkert, Sylvia; Hess, Christian; Zweigerdt, Robert; Gruh, Ina; Meyer, Johann; Wagner, Stefan; Maier, Lars S; Han, Dong Wook; Glage, Silke; Miller, Konstantin; Fischer, Philipp; Schöler, Hans R; Martin, Ulrich

    2009-10-02

    Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.

  5. Use of statistical process control in the production of blood components

    DEFF Research Database (Denmark)

    Magnussen, K; Quere, S; Winkel, P

    2008-01-01

    Introduction of statistical process control in the setting of a small blood centre was tested, both on the regular red blood cell production and specifically to test if a difference was seen in the quality of the platelets produced, when a change was made from a relatively large inexperienced...... by an experienced staff with four technologists. We applied statistical process control to examine if time series of quality control values were in statistical control. Leucocyte count in red blood cells was out of statistical control. Platelet concentration and volume of the platelets produced by the occasional...

  6. Relationship between Single Nucleotide Polymorphism in TNF-α Gene Promoter Region and Inhibitory Effects of Triptolide on TNF-α Production in Peripheral Blood Mononuclear Cells of Healthy Humans

    Institute of Scientific and Technical Information of China (English)

    TU Shenghao; CHEN Hongbo; SHENG Dongyun; HU Yonghong; LIU Peilin

    2006-01-01

    The relationship between tumour necrosis factor-α (TNF-α) gene polymorphism and inhibitory effects of triptolide on TNF-α production from peripheral blood mononuclear cells (PBMC)of healthy humans was investigated. Genomic DNA from 41 healthy people was typed for TNF-α-308 polymorphism by allele-specific polymorphism chain reaction (AS-PCR). The TNF-α concentration in the supernatant was measured by ELISA. The results showed that the production of TNF-α from TNF-α -308 non-G/G genotype PBMC was higher than that from TNF-α-308 G/G genotype PBMC after stimulated by LPS. Triptolide could lower the production of TNF-α from G/G genotype PBMC, but had no effect on the level of TNF-α from non-G/G genotype PBMC. It was concluded that TNF-α gene polymorphism was related to the TNF-α production from triptolide-inhibited PBMC culture in healthy humans.

  7. Microfluidic Device for Continuous Magnetophoretic Separation of Red Blood Cells

    CERN Document Server

    Iliescu, Ciprian; Avram, Marioara; Xu, G; Avram, Andrei

    2008-01-01

    This paper presents a microfluidic device for magnetophoretic separation red blood cells from blood under contionous flow. The separation method consist of continous flow of a blood sample (diluted in PBS) through a microfluidic channel which presents on the bottom "dots" of feromagnetic layer. By appling a magnetic field perpendicular on the flowing direction, the feromagnetic "dots" generates a gradient of magnetic field which amplifies the magnetic force. As a result, the red blood cells are captured on the bottom of the microfluidic channel while the rest of the blood is collected at the outlet. Experimental results show that an average of 95 % of red blood cells are trapped in the device

  8. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low......, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal...

  9. Alterations in cell surface area and deformability of individual human red blood cells in stored blood

    CERN Document Server

    Park, HyunJoo; Lee, SangYun; Kim, Kyoohyun; Sohn, Yong-Hak; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusion. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called CPDA-1. With 3-D quantitative phase imaging techniques, the optical measurements of the 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and their progressive alterations in stored RBCs. Our results show that the stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within 2 weeks which was accompanied with significant ...

  10. Quality improvement methodologies increase autologous blood product administration.

    Science.gov (United States)

    Hodge, Ashley B; Preston, Thomas J; Fitch, Jill A; Harrison, Sheilah K; Hersey, Diane K; Nicol, Kathleen K; Naguib, Aymen N; McConnell, Patrick I; Galantowicz, Mark

    2014-03-01

    Whole blood from the heart-lung (bypass) machine may be processed through a cell salvaging device (i.e., cell saver [CS]) and subsequently administered to the patient during cardiac surgery. It was determined at our institution that CS volume was being discarded. A multidisciplinary team consisting of anesthesiologists, perfusionists, intensive care physicians, quality improvement (QI) professionals, and bedside nurses met to determine the challenges surrounding autologous blood delivery in its entirety. A review of cardiac surgery patients' charts (n = 21) was conducted for analysis of CS waste. After identification of practices that were leading to CS waste, interventions were designed and implemented. Fishbone diagram, key driver diagram, Plan-Do-Study-Act (PDSA) cycles, and data collection forms were used throughout this QI process to track and guide progress regarding CS waste. Of patients under 6 kg (n = 5), 80% had wasted CS blood before interventions, whereas those patients larger than 36 kg (n = 8) had 25% wasted CS before interventions. Seventy-five percent of patients under 6 kg who had wasted CS blood received packed red blood cell transfusions in the cardiothoracic intensive care unit within 24 hours of their operation. After data collection and didactic education sessions (PDSA Cycle I), CS blood volume waste was reduced to 5% in all patients. Identification and analysis of the root cause followed by implementation of education, training, and management of change (PDSA Cycle II) resulted in successful use of 100% of all CS blood volume.

  11. Defect in lectin-induced interleukin 2 production by peripheral blood lymphocytes of patients with invasive urinary bladder carcinoma

    DEFF Research Database (Denmark)

    Bubeník, J; Kieler, J; Tromholt, V

    1988-01-01

    The production of interleukin 2 (IL-2) by phytohaemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC) from 21 patients with transitional cell carcinoma of the urinary bladder (BTCC) and 16 control blood donors was measured with a solid phase enzyme immunoassay based on the dual...

  12. Blood Platelet Production: Optimization by Dynamic Programming and Simulation

    NARCIS (Netherlands)

    Haijema, R.; Wal, van der J.; Dijk, van N.M.

    2007-01-01

    Blood platelets are precious, as voluntarily supplied by donors, and highly perishable, with limited lifetimes of 5¿7 days. Demand is highly variable and uncertain. A practical production and inventory rule is strived for that minimizes shortages and spill. The demand and production are periodic, as

  13. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell

    DEFF Research Database (Denmark)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris;

    2008-01-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much...

  14. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  15. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells.

    Science.gov (United States)

    Hiwarkar, Prashant; Qasim, Waseem; Ricciardelli, Ida; Gilmour, Kimberly; Quezada, Sergio; Saudemont, Aurore; Amrolia, Persis; Veys, Paul

    2015-12-24

    Unrelated cord blood transplantation (CBT) without in vivo T-cell depletion is increasingly used to treat high-risk hematologic malignancies. Following T-replete CBT, naïve CB T cells undergo rapid peripheral expansion with memory-effector differentiation. Emerging data suggest that unrelated CBT, particularly in the context of HLA mismatch and a T-replete graft, may reduce leukemic relapse. To study the role of CB T cells in mediating graft-versus-tumor responses and dissect the underlying immune mechanisms for this, we compared the ability of HLA-mismatched CB and adult peripheral blood (PB) T cells to eliminate Epstein-Barr virus (EBV)-driven human B-cell lymphoma in a xenogeneic NOD/SCID/IL2rg(null) mouse model. CB T cells mediated enhanced tumor rejection compared with equal numbers of PB T cells, leading to improved survival in the CB group (P cells that were autologous vs allogeneic to the lymphoma demonstrated that this antitumor effect was mediated by alloreactive rather than EBV-specific T cells. Analysis of tumor-infiltrating lymphocytes demonstrated that CB T cells mediated this enhanced antitumor effect by rapid infiltration of the tumor with CCR7(+)CD8(+) T cells and prompt induction of cytotoxic CD8(+) and CD4(+) T-helper (Th1) T cells in the tumor microenvironment. In contrast, in the PB group, this antilymphoma effect is impaired because of delayed tumoral infiltration of PB T cells and a relative bias toward suppressive Th2 and T-regulatory cells. Our data suggest that, despite being naturally programmed toward tolerance, reconstituting T cells after unrelated T-replete CBT may provide superior Tc1-Th1 antitumor effects against high-risk hematologic malignancies.

  16. Lol p I-induced IL-4 and IFN-gamma production by peripheral blood mononuclear cells of atopic and nonatopic subjects during and out of the pollen season.

    Science.gov (United States)

    Gagnon, R; Akoum, A; Hébert, J

    1993-04-01

    The reciprocal effects of IL-4 and IFN-gamma on IgE synthesis have been well established. It has also been shown that these two lymphokines are secreted by different subsets of CD4+ T cells (TH1 and TH2), and that TH2 helper T lymphocytes could be involved in the pathophysiology of allergic diseases. But little is known about the effects of an allergen on the profile of lymphokine synthesis by human peripheral blood mononuclear cells (PBMCs) of allergic and nonallergic subjects. We studied the production of IL-4 and IFN-gamma by PBMCs of atopic and nonatopic donors after in vitro stimulation by the group 1 allergen from Lolium perenne pollen (Lol p I), during and out of the grass pollen season. On natural exposure to pollen, Lol p I-induced IL-4 production was observed only with atopic donors (6 of 8), whereas the synthesis of IFN-gamma was observed for all nonatopic donors (7 of 7) and most allergic patients (5 of 7). At the time of the study, higher amounts of IFN-gamma were produced by PBMCs of nonatopic donors than by PBMCs of atopic patients. Out of the pollen season the production of IL-4 was not observed either by atopic (n = 11) or by nonatopic subjects (n = 5). On the other hand, IFN-gamma was produced by PBMCs of most subjects (atopic, 10 of 11; nonatopic, 5 of 5), but at the time of the study no difference was observed between the two groups. These results show that Lol p I induces different profiles of IL-4 and IFN-gamma production by PBMCs of atopic and nonatopic subjects. In atopic subjects this profile of lymphokine synthesis is influenced by the natural exposure to pollen, which is in keeping with the seasonal rise of IgE antibodies.

  17. Cryopreserved packed red blood cells in surgical patients: past, present, and future.

    Science.gov (United States)

    Chang, Alex; Kim, Young; Hoehn, Richard; Jernigan, Peter; Pritts, Timothy

    2016-09-08

    Since the advent of anticoagulation and component storage of human blood products, allogeneic red blood cell transfusion has been one of the most common practices in modern medicine. Efforts to reduce the biochemical effects of storage, collectively known as the red blood cell storage lesion, and prolong the storage duration have led to numerous advancements in erythrocyte storage solutions. Cryopreservation and frozen storage of red blood cells in glycerol have been successfully utilised by many civilian and military institutions worldwide. Through progressive improvements in liquid storage of erythrocytes in novel storage solutions, the logistical need for cryopreserved red blood cells in the civilian setting has diminished. A growing body of current literature is focused on the clinical consequences of packed red blood cell age. Modern cryopreservation techniques show promise as a cost-effective method to ameliorate the negative effect of the red blood cell storage lesion, while meeting the technical and logistical needs of both civilian and military medicine. This review outlines the history of red blood cell cryopreservation, the clinical impact of red cell storage, and highlights the current literature on frozen blood and its impact on modern transfusion.

  18. Blood Types

    Science.gov (United States)

    ... maternity. Learn About Blood Blood Facts and Statistics Blood Components Whole Blood and Red Blood Cells Platelets Plasma ... About Blood Blood Facts and Statistics Blood Types Blood Components What Happens to Donated Blood Blood and Diversity ...

  19. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  20. Splanchnic blood flow and hepatic glucose production in exercising humans

    DEFF Research Database (Denmark)

    Bergeron, R; Kjaer, M; Simonsen, L;

    2001-01-01

    The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin-converti......The study examined the implication of the renin-angiotensin system (RAS) in regulation of splanchnic blood flow and glucose production in exercising humans. Subjects cycled for 40 min at 50% maximal O(2) consumption (VO(2 max)) followed by 30 min at 70% VO(2 max) either with [angiotensin...

  1. Evaluation of the human blood entropy production: a new thermodynamic approach.

    Science.gov (United States)

    Farsaci, F; Tellone, E; Galtieri, A; Russo, A; Ficarra, S

    2016-12-01

    In this paper, we follow the thermodynamic theory with internal variables of Kluitenberg evaluating the entropy production of red blood cell in saline solution and whole blood, respectively, when they are subjected to an ultrasound wave. From a thermodynamic point of view, blood is an open system; so to fully represent the entropy variation as function of frequency perturbation we employ phenomenological coefficients which allow us to qualitatively discriminate among classes of phenomena which cannot be observed in any other way. Therefore, a correlation between these coefficients and quantities experimentally measurable allows to a deeper knowledge of biological phenomena.

  2. Backward elastic light scattering of malaria infected red blood cells

    Science.gov (United States)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  3. BLOOD TELOMERASE ACTIVITY AND ITS CORRELATIVITY WITH NON-SMALL CELL LUNG CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    胡坚; 李任远; 孙骊; 倪一鸣

    2004-01-01

    Objective: To study the correlativity between blood telomerase activity and Non-small cell lung carcinoma (NSCLC) through relative quantitative analysis of telomerase activity. Methods: Thirty-eight NSCLC and 25 inpatients with benign lung disease were selected. Telomerase repeat amplification protocol was adopted. PCR products were assayed with ELISA. Results: (a) Blood telomerase activity during operation was higher than that before or after operation (P0.05). (c) Blood telomerase activity of adenocarcinoma during and after operation was higher than that before operation (P0.05). Conclusion: The qualitative assay of blood telomerase activity can be adopted as an assistant index for diagnosis of NSCLC. Postoperative blood telomerase activity of adenocarcinoma is higher than that of squamous carcinoma. It may be an evidence for the likelihood of adenocarcinoma to metastase through blood. Blood telomerase activity increases significantly during operation, suggesting that operation may cause more cancer cells entering into circulation.

  4. Mechanical damage of red blood cells by rotary blood pumps: selective destruction of aged red blood cells and subhemolytic trauma.

    Science.gov (United States)

    Sakota, Daisuke; Sakamoto, Ryuki; Sobajima, Hideo; Yokoyama, Naoyuki; Waguri, Satoshi; Ohuchi, Katsuhiro; Takatani, Setsuo

    2008-10-01

    In this study, mean cell volume (MCV), mean cell hemoglobin concentration (MCHC), and mean cell hemoglobin (MCH) were measured to quantify RBC damage by rotary blood pumps. Six-hour hemolysis tests were conducted with a Bio-pump BPX-80, a Sarns 15200 roller pump, and a prototype mag-lev centrifugal pump (MedTech Heart) using fresh porcine blood circulated at 5 L/min against a 100 mm Hg head pressure. The temperature of the test and noncirculated control blood was maintained at 37 degrees C. The normalized index of hemolysis (NIH) of each pump was determined by measuring the plasma-free hemoglobin level. The MCV was measured with a Coulter counter, and MCHC was derived from total hemoglobin and hematocrit. MCH was derived from MCV and MCHC. A multivariance statistical analysis (ANOVA) revealed statistically significant differences (n = 15, P < 0.05) in MCV, MCHC, and MCH between the blood sheared by the rotary blood pumps and the nonsheared control blood. Normalized to the control blood, the Bio-pump BPX-80 showed an MCV of 1.04 +/- 0.03, an MCHC of 0.95 +/- 0.04, and an MCH of 0.98 +/- 0.02; the mag-lev MedTech Heart had an MCV of 1.02 +/- 0.02, an MCHC of 0.97 +/- 0.02, and an MCH of 0.99 +/- 0.01; and the roller pump exhibited an MCV of 1.03 +/- 0.03, an MCHC of 0.96 +/- 0.03, and an MCH of 0.99 +/- 0.01. Per 0.01 increase in NIH, the BPX-80 showed a normalized MCV change of +10.1% and a normalized MCHC change of -14.0%; the MedTech Heart demonstrated a +6.9% MCV and -9.5% MCHC change; and the roller pump had a +0.5% MCV and -0.6% MCHC change. Due to shear in the pump circuits, the RBC increased while the MCHC decreased. The likely mechanism is that older RBCs with smaller size and higher hemoglobin concentration were destroyed fast by the shear, leaving younger RBCs with larger size and lower hemoglobin concentration. Subhemolytic trauma caused the intracellular hemoglobin to decrease due to gradual hemoglobin leakage through the micropores formed in the thinned

  5. Infusion of hemolyzed red blood cells within peripheral blood stem cell grafts in patients with and without sickle cell disease.

    Science.gov (United States)

    Fitzhugh, Courtney D; Unno, Hayato; Hathaway, Vincent; Coles, Wynona A; Link, Mary E; Weitzel, R Patrick; Zhao, Xiongce; Wright, Elizabeth C; Stroncek, David F; Kato, Gregory J; Hsieh, Matthew M; Tisdale, John F

    2012-06-14

    Peripheral blood stem cell (PBSC) infusions are associated with complications such as elevated blood pressure and decreased creatinine clearance. Patients with sickle cell disease experience similar manifestations, and some have postulated release of plasma-free hemoglobin with subsequent nitric oxide consumption as causative. We sought to evaluate whether the infusion of PBSC grafts containing lysed red blood cells (RBCs) leads to the toxicity observed in transplant subjects. We report a prospective cohort study of 60 subjects divided into 4 groups based on whether their infusions contained dimethyl sulfoxide (DMSO) and lysed RBCs, no DMSO and fresh RBCs, DMSO and no RBCs, or saline. Our primary end point, change in maximum blood pressure compared with baseline, was not significantly different among groups. Tricuspid regurgitant velocity and creatinine levels also did not differ significantly among groups. Our data do not support free hemoglobin as a significant contributor to toxicity associated with PBSC infusions. This study was registered at clinicaltrials.gov (NCT00631787).

  6. Harvesting, processing and inventory management of peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Mijovic Aleksandar

    2007-01-01

    Full Text Available By 2003, 97% autologous transplants and 65% of allogeneic transplants in Europe used mobilised peripheral blood stem cells (PBSC. Soon after their introduction in the early 1990′s, PBSC were associated with faster haemopoietic recovery, fewer transfusions and antibiotic usage, and a shorter hospital stay. Furthermore, ease and convenience of PBSC collection made them more appealing than BM harvests. Improved survival has hitherto been demonstrated in patients with high risk AML and CML. However, the advantages of PBSC come at a price of a higher incidence of extensive chronic GVHD. In order to be present in the blood, stem cells undergo the process of "mobilisation" from their bone marrow habitat. Mobilisation, and its reciprocal process - homing - are regulated by a complex network of molecules on the surface of stem cells and stromal cells, and enzymes and cytokines released from granulocytes and osteoclasts. Knowledge of these mechanisms is beginning to be exploited for clinical purposes. In current practice, stem cell are mobilised by use of chemotherapy in conjunction with haemopoietic growth factors (HGF, or with HGF alone. Granulocyte colony stimulating factor has emerged as the single most important mobilising agent, due to its efficacy and a relative paucity of serious side effects. Over a decade of use in healthy donors has resulted in vast experience of optimal dosing and administration, and safety matters. PBSC harvesting can be performed on a variety of cell separators. Apheresis procedures are nowadays routine, but it is important to be well versed in the possible complications in order to avoid harm to the patient or donor. To ensure efficient collection, harvesting must begin when sufficient stem cells have been mobilised. A rapid, reliable, standardized blood test is essential to decide when to begin harvesting; currently, blood CD34+ cell counting by flow cytometry fulfils these criteria. Blood CD34+ cell counts strongly

  7. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines.

  8. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  9. Photodynamic treatment of red blood cell concentrates for virus inactivation enhances red blood cell aggregation: protection with antioxidants.

    Science.gov (United States)

    Ben-Hur, E; Barshtein, G; Chen, S; Yedgar, S

    1997-10-01

    Photodynamic treatment (PDT) using phthalocyanines and red light appears to be a promising procedure for decontamination of red blood cell (RBC) concentrates for transfusion. A possible complication of this treatment may be induced aggregation of RBC. The production of RBC aggregates was measured with a novel computerized cell flow properties analyzer (CFA). The PDT of RBC concentrates with sulfonated aluminum phthalocyanine (AIPcS4) and the silicon phthalocyanine Pc 4 under virucidal conditions markedly enhanced RBC aggregation and higher shear stress was required to disperse these aggregates. The clusters of cells were huge and abnormally shaped, unlike the rouleaux formed by untreated RBC. This aggregation was prevented when a mixture of antioxidants was included during PDT. Addition of the antioxidants after PDT reduced aggregation only partially. It is concluded that inclusion of antioxidants during PDT of RBC concentrates prior to transfusion may reduce or eliminate the hemodynamic risk that the virucidal treatment may present to the recipient.

  10. 糖基化终末产物对人外周血内皮祖细胞生物学特性的影响%Effects of advanced glycation end products on endothelial progenitor cells in the blood

    Institute of Scientific and Technical Information of China (English)

    闫醒军; 施森; 姜隽; 何延政; 边忠平; 刘勇; 黄启荣; 崔驰; 周秀娟; 杨辉; 钟武; 曾宏

    2010-01-01

    Objective In addition to be involved in the angiogenesis, endothelial progenitor cells (EPCs) have roles in endothelium repairing, wound healing, and for protecting blood vessels from restenosis, Advanced glycation end products (AGEs) facilitate the development and progression of atherosclerosis, diabetes associated vascular complications and uremia through various mechanisms such as damaging the endothelium, promoting leukocyte adhension, increasing the aggregation of platelets, and stimulating the proliferation of vascular smooth muscles. This study was designed to explore whether AGEs have effects on biological characteristics of EPCs in cultured human peripheral blood cells. Methods Total mononuclear cells (MNCs), isolated from human peripheral blood by density gradient centrifugatian and adherence cells filtration, were incuba-ted in fibronectin-coated culture dishes. Endothelial cells were identified by means of the adsorption of ulex eurepaeus-aggluti-nin- Ⅰ (UEA- Ⅰ) labelled with fluorescein isothiacyanate (FITC) and Dil-acLDL internalization. Four days later,various con-centrations of AGEs were added to the adherent cells and remained for48 hours. MTT assay and Boyden chamber were used for observing the proliferation and migration of EPCs. Human fibronectin was used to examine the adhesion ability of EPCs. Apop-tosis was induced in the EPCs with formaldehyde and Dnase Ⅰ as a positive control group. Annexin V-FITC/PI and TUNEL method of flow cytometry were used for evaluating the effects of AGEs on the rate of apeptosis in the EPCs. Results AGEs at high concentration decreased the number of EPCs independently (P < 0.01) ; reduced the proliferation (P < 0.01), migration (P<0.001) and adhesive capacity (P<0.05) of EPCs significantly,as well as increasing the apoptasis rate of EPCs in the early stage (P < 0.001). Conclusion AGEs may have adverse effects on EPCs from cultured human peripheral MNCs, such as decreasing their numbers and impairing their

  11. Segmentation and Analysis of Cancer Cells in Blood Samples

    Directory of Open Access Journals (Sweden)

    Arjun Nelikanti

    2015-10-01

    Full Text Available Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. Acute Lymphoblastic Leukemia (ALL is one of the kinds of blood cancer which can be affected at any age in the humans. The analysis of peripheral blood samples is an important test in the procedures for the diagnosis of leukemia. In this paper the blood sample images are used and implementing a clustering algorithm for detection of the cancer cells. This paper also implements morphological operations and feature extraction techniques using MATLAB for the analysis of cancer cells in the images.

  12. Leucocyte filtration of salvaged blood during cardiac surgery : effect on red blood cell function in concentrated blood compared with diluted blood

    NARCIS (Netherlands)

    Gu, Y. John; de Vries, Adrianus J.; Hagenaars, J. Ans M.; van Oeveren, Willem

    2009-01-01

    Objective: Leucocyte filtration of salvaged blood has been suggested to prevent patients from receiving activated leucocytes during autotransfusion in cardiac surgery. This study examines whether leucocyte filtration of salvaged blood affects the red blood cell (RBC) function and whether there is a

  13. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders

    OpenAIRE

    2009-01-01

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS ...

  14. Regulation of red blood cell deformability is independent of red blood cell-nitric oxide synthase under hypoxia.

    Science.gov (United States)

    Grau, Marijke; Lauten, Alexander; Hoeppener, Steffen; Goebel, Bjoern; Brenig, Julian; Jung, Christian; Bloch, Wilhelm; Suhr, Frank

    2016-09-12

    The aim was to study impacts of mild to severe hypoxia on human red blood cell (RBC)-nitric oxide synthase (NOS)-dependent NO production, protein S-nitrosylation and deformability.Ambient air oxygen concentration of 12 healthy subjects was step-wisely reduced from 20.95% to 16.21%, 12.35%, 10% and back to 20.95%. Additional in vitro experiments involved purging of blood (±sodium nitrite) with gas mixtures corresponding to in vivo intervention.Vital and hypoxia-associated parameters showed physiological adaptation to changing demands. Activation of RBC-NOS decreased with increasing hypoxia. RBC deformability, which is influenced by RBC-NOS activation, decreased under mild hypoxia, but surprisingly increased at severe hypoxia in vivo and in vitro. This was causatively induced by nitrite reduction to NO which increased S-nitrosylation of RBC α- and β-spectrins -a critical step to improve RBC deformability. The addition of sodium nitrite prevented decreases of RBC deformability under hypoxia by sustaining S-nitrosylation of spectrins suggesting compensatory mechanisms of non-RBC-NOS-produced NO.The results first time indicate a direct link between maintenance of RBC deformability under severe hypoxia by non-enzymatic NO production because RBC-NOS activation is reduced. These data improve our understanding of physiological mechanisms supporting adequate blood and, thus, oxygen supply to different tissues under severe hypoxia.

  15. Neurological Complications following Blood Transfusions in Sickle Cell Anemia

    Science.gov (United States)

    Khawar, Nayaab; Kulpa, Jolanta; Bellin, Anne; Proteasa, Simona; Sundaram, Revathy

    2017-01-01

    In Sickle Cell Anemia (SCA) patient blood transfusions are an important part of treatment for stroke and its prevention. However, blood transfusions can also lead to complications such as Reversible Posterior Leukoencephalopathy Syndrome (RPLS). This brief report highlights two cases of SCA who developed such neurological complications after a blood transfusion. RLPS should be considered as the cause of neurologic finding in patients with SCA and hypertension following a blood transfusion.

  16. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  17. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...... transcriptase polymerase chain reaction. The effect of glucocorticoid and phorbol ester stimulation on monocyte and dendritic cell CD163 and CD91 expression was investigated in cell culture of mononuclear cells using multicolor flow cytometry. We identified two CD163+ subsets in human blood with dendritic cell...

  18. Absence of peripheral blood mononuclear cells priming in hemodialysis patients

    Directory of Open Access Journals (Sweden)

    Santos B.C.

    2003-01-01

    Full Text Available As a consequence of the proinflammatory environment occurring in dialytic patients, cytokine overproduction has been implicated in hemodialysis co-morbidity. However, there are discrepancies among the various studies that have analyzed TNF-alpha synthesis and the presence of peripheral blood mononuclear cell (PBMC priming in this clinical setting. We measured bioactive cytokine by the L929 cell bioassay, and evaluated PBMC TNF-alpha production by 32 hemodialysis patients (HP and 51 controls. No difference in TNF-alpha secretion was observed between controls and HP (859 ± 141 vs 697 ± 130 U/10(6 cells. Lipopolysaccharide (5 µg/ml did not induce any further TNF-alpha release, showing no PBMC priming. Paraformaldehyde-fixed HP PBMC were not cytotoxic to L929 cells, suggesting the absence of membrane-anchored TNF-alpha. Cycloheximide inhibited PBMC cytotoxicity in HP and controls, indicating lack of a PBMC TNF-alpha pool, and dependence on de novo cytokine synthesis. Actinomycin D reduced TNF-alpha production in HP, but had no effect on controls. Therefore, our data imply that TNF-alpha production is an intrinsic activity of normal PBMC and is not altered in HP. Moreover, TNF-alpha is a product of de novo synthesis by PBMC and is not constitutively expressed on HP cell membranes. The effect of actinomycin D suggests a putative tighter control of TNF-alpha mRNA turnover in HP. This increased dependence on TNF-alpha RNA transcription in HP may reflect an adaptive response to hemodialysis stimuli.

  19. The Antioxidant Effect of Erythropoietin on Thalassemic Blood Cells

    Directory of Open Access Journals (Sweden)

    Johnny Amer

    2010-01-01

    Full Text Available Because of its stimulating effect on RBC production, erythropoietin (Epo is used to treat anemia, for example, in patients on dialysis or on chemotherapy. In β-thalassemia, where Epo levels are low relative to the degree of anemia, Epo treatment improves the anemia state. Since RBC and platelets of these patients are under oxidative stress, which may be involved in anemia and thromboembolic complications, we investigated Epo as an antioxidant. Using flow-cytometry technology, we found that in vitro treatment with Epo of blood cells from these patients increased their glutathione content and reduced their reactive oxygen species, membrane lipid peroxides, and external phosphatidylserine. This resulted in reduced susceptibility of RBC to undergo hemolysis and phagocytosis. Injection of Epo into heterozygous (Hbbth3/+ β-thalassemic mice reduced the oxidative markers within 3 hours. Our results suggest that, in addition to stimulating RBC and fetal hemoglobin production, Epo might alleviate symptoms of hemolytic anemias as an antioxidant.

  20. Multiple loci are associated with white blood cell phenotypes

    NARCIS (Netherlands)

    M.A. Nalls (Michael); D. Couper (David); T. Tanaka (Toshiko); F.J.A. van Rooij (Frank); M-H. Chen (Ming-Huei); A.V. Smith (Albert Vernon); D. Toniolo (Daniela); N.A. Zakai (Neil); Q. Yang (Qiong Fang); A. Greinacher (Andreas); A.R. Wood (Andrew); M. Garcia (Melissa); P. Gasparini (Paolo); Y. Liu (Yongmei); T. Lumley (Thomas); A.R. Folsom (Aaron); A.P. Reiner (Alex); C. Gieger (Christian); V. Lagou (Vasiliki); J.F. Felix (Janine); H. Völzke (Henry); N.A. Gouskova (Natalia); A. Biffi (Alessandro); A. Döring (Angela); U. Völker (Uwe); S. Chong (Sean); K.L. Wiggins (Kerri); A. Rendon (Augusto); A. Dehghan (Abbas); M. Moore (Matt); K.D. Taylor (Kent); J.G. Wilson (James); G. Lettre (Guillaume); A. Hofman (Albert); J.C. Bis (Joshua); N. Pirastu (Nicola); C.S. Fox (Caroline); C. Meisinger (Christa); J.G. Sambrook (Jennifer); S. Arepalli (Sampath); M. Nauck (Matthias); H. Prokisch (Holger); J. Stephens (Jonathan); N.L. Glazer (Nicole); L.A. Cupples (Adrienne); Y. Okada (Yukinori); A. Takahashi (Atsushi); Y. Kamatani (Yoichiro); K. Matsuda (Koichi); T. Tsunoda (Tatsuhiko); M. Kubo (Michiaki); Y. Nakamura (Yusuke); K. Yamamoto (Kazuhiko); M. Stumvoll (Michael); A. Tönjes (Anke); I. Prokopenko (Inga); T. Illig (Thomas); K.V. Patel (Kushang); S.F. Garner (Stephen); B. Kuhnel (Brigitte); M. Mangino (Massimo); B.A. Oostra (Ben); S.L. Thein; J. Coresh (Josef); H.E. Wichmann (Heinz Erich); S. Menzel (Stephan); J. Lin; G. Pistis (Giorgio); A.G. Uitterlinden (André); T.D. Spector (Timothy); A. Teumer (Alexander); G. Eiriksdottir (Gudny); V. Gudnason (Vilmundur); S. Bandinelli (Stefania); T.M. Frayling (Timothy); A. Chakravarti (Aravinda); P. Tikka-Kleemola (Päivi); D. Melzer (David); W.H. Ouwehand (Willem); D. Levy (Daniel); E.A. Boerwinkle (Eric); A. Singleton (Andrew); D.G. Hernandez (Dena); D.L. Longo (Dan); N. Soranzo (Nicole); J.C.M. Witteman (Jacqueline); B.M. Psaty (Bruce); L. Ferrucci (Luigi); T.B. Harris (Tamara); C.J. O'Donnell (Christopher); S.K. Ganesh (Santhi)

    2011-01-01

    textabstractWhite blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types.

  1. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders.

    Science.gov (United States)

    Li, Xuejin; Li, He; Chang, Hung-Yu; Lykotrafitis, George; Em Karniadakis, George

    2017-02-01

    We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.

  2. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders.

    Science.gov (United States)

    Ye, Zhaohui; Zhan, Huichun; Mali, Prashant; Dowey, Sarah; Williams, Donna M; Jang, Yoon-Young; Dang, Chi V; Spivak, Jerry L; Moliterno, Alison R; Cheng, Linzhao

    2009-12-24

    Human induced pluripotent stem (iPS) cells derived from somatic cells hold promise to develop novel patient-specific cell therapies and research models for inherited and acquired diseases. We and others previously reprogrammed human adherent cells, such as postnatal fibroblasts to iPS cells, which resemble adherent embryonic stem cells. Here we report derivation of iPS cells from postnatal human blood cells and the potential of these pluripotent cells for disease modeling. Multiple human iPS cell lines were generated from previously frozen cord blood or adult CD34(+) cells of healthy donors, and could be redirected to hematopoietic differentiation. Multiple iPS cell lines were also generated from peripheral blood CD34(+) cells of 2 patients with myeloproliferative disorders (MPDs) who acquired the JAK2-V617F somatic mutation in their blood cells. The MPD-derived iPS cells containing the mutation appeared normal in phenotypes, karyotype, and pluripotency. After directed hematopoietic differentiation, the MPD-iPS cell-derived hematopoietic progenitor (CD34(+)CD45(+)) cells showed the increased erythropoiesis and gene expression of specific genes, recapitulating features of the primary CD34(+) cells of the corresponding patient from whom the iPS cells were derived. These iPS cells provide a renewable cell source and a prospective hematopoiesis model for investigating MPD pathogenesis.

  3. Parvovirus transmission by blood products - a cause for concern?

    Science.gov (United States)

    Norja, Päivi; Lassila, Riitta; Makris, Mike

    2012-11-01

    The introduction of dual viral inactivation of clotting factor concentrates has practically eliminated infections by viruses associated with significant pathogenicity over the last 20 years. Despite this, theoretical concerns about transmission of infection have remained, as it is known that currently available viral inactivation methods are unable to eliminate parvovirus B19 or prions from these products. Recently, concern has been raised following the identification of the new parvoviruses, human parvovirus 4 (PARV4) and new genotypes of parvovirus B19, in blood products. Parvoviruses do not cause chronic pathogenicity similar to human immunodeficiency virus or hepatitis C virus, but nevertheless may cause clinical manifestations, especially in immunosuppressed patients. Manufacturers should institute measures, such as minipool polymerase chain reaction testing, to ensure that their products contain no known viruses. So far, human bocavirus, another new genus of parvovirus, has not been detected in fractionated blood products, and unless their presence can be demonstrated, routine testing during manufacture is not essential. Continued surveillance of the patients and of the safety of blood products remains an important ongoing issue.

  4. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  5. Lowering of blood pressure by increasing hematocrit with non nitric oxide scavenging red blood cells.

    Science.gov (United States)

    Salazar Vázquez, Beatriz Y; Cabrales, Pedro; Tsai, Amy G; Johnson, Paul C; Intaglietta, Marcos

    2008-02-01

    Isovolemic exchange transfusion of 40% of the blood volume in awake hamsters was used to replace native red blood cells (RBCs) with RBCs whose hemoglobin (Hb) was oxidized to methemoglobin (MetHb), MetRBCs. The exchange maintained constant blood volume and produced different final hematocrits (Hcts), varying from 48 to 62% Hct. Mean arterial pressure (MAP) did not change after exchange transfusion, in which 40% of the native RBCs were replaced with MetRBCs, without increasing Hct. Increasing Hct with MetRBCs lowered MAP by 12 mm Hg when Hct was increased 12% above baseline. Further increases of Hct with MetRBCs progressively returned MAP to baseline, which occurred at 62% Hct, a 30% increase in Hct from baseline. These observations show a parabolic "U" shaped distribution of MAP against the change in Hct. Cardiac index, cardiac output divided by body weight, increased between 2 and 17% above baseline for the range of Hcts tested. Peripheral vascular resistance (VR) was decreased 18% from baseline when Hct was increased 12% from baseline. VR and MAP were above baseline for increases in Hct higher than 30%. However, vascular hindrance, VR normalized by blood viscosity (which reflects the contribution of vascular geometry), was lower than baseline for all the increases in Hct tested with MetRBC, indicating prevalence of vasodilation. These suggest that acute increases in Hct with MetRBCs increase endothelium shear stress and stimulate the production of vasoactive factors (e.g., nitric oxide [NO]). When MetRBCs were compared with functional RBCs, vasodilation was augmented for MetRBCs probably due to the lower NO scavenging of MetHb. Consequently, MetRBCs increased the viscosity related hypotension range compared with functional RBCs as NO shear stress vasodilation mediated responses are greater.

  6. A Simulation of Blood Cells in Branching Capillaries

    CERN Document Server

    Isfahani, Amir H G; Freund, Jonathan B

    2008-01-01

    The multi-cellular hydrodynamic interactions play a critical role in the phenomenology of blood flow in the microcirculation. A fast algorithm has been developed to simulate large numbers of cells modeled as elastic thin membranes. For red blood cells, which are the dominant component in blood, the membrane has strong resistance to surface dilatation but is flexible in bending. Our numerical method solves the boundary integral equations built upon Green's functions for Stokes flow in periodic domains. This fluid dynamics video is an example of the capabilities of this model in handling complex geometries with a multitude of different cells. The capillary branch geometries have been modeled based upon observed capillary networks. The diameter of the branches varies between 10-20 mum. A constant mean pressure gradient drives the flow. For the purpose of this fluid dynamics video, the red blood cells are initiated as biconcave discs and white blood cells and platelets are initiated as spheres and ellipsoids resp...

  7. Red blood cells and thrombin generation in sickle cell disease.

    Science.gov (United States)

    Whelihan, Matthew F; Lim, Ming Y; Key, Nigel S

    2014-05-01

    The prothrombotic nature of sickle cell disease (SCD) is evidenced by the chronically elevated levels of almost all coagulation activation biomarkers, and an increased incidence of certain thrombotic events, including venous thromboembolism. Numerous studies have attempted to define the extent and elucidate the mechanism of the observed increase in thrombin generation in SCD patients in vivo. In general, these studies were performed using thrombin generation assays in platelet poor or platelet rich plasma and showed little difference in endogenous thrombin potential between the SCD cohort and healthy matched controls. In SCD, erythrocytes and monocytes have been demonstrated to exhibit procoagulant characteristics. Thus, the absence of these cellular components in standard thrombin generation assays may fail to reflect global hypercoagulability in the whole blood of patients with SCD. We were therefore surprised to see no difference in net thrombin generation in tissue factor-initiated initiated clotting of whole blood from patients with SCD. However, we are continuing to reconcile these seemingly disparate observations by slight modifications of the whole blood model that include alternative coagulation triggers and a re-examination of the net thrombin generation when the protein/protein S system is simultaneously interrogated.

  8. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.

    Science.gov (United States)

    Katanov, Dinar; Gompper, Gerhard; Fedosov, Dmitry A

    2015-05-01

    Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. In this paper, the development of blood flow and its resistance starting from a dispersed configuration of red blood cells is investigated in simulations for different hematocrit levels, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow. The universality allows an estimation of the length of a vessel required for full flow development, lc ≲ 25D, for vessel diameters in the range 10 μm red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length lc. Aggregation interactions between red blood cells generally lead to a reduction of blood flow resistance. The simulations are performed using the same viscosity for both external and internal fluids and the RBC membrane viscosity is not considered; however, we discuss how the viscosity contrast may affect the results. Finally, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness at steady-state flow with respect to flow rate. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow

  9. Safe extension of red blood cell storage life at 4{degree}C

    Energy Technology Data Exchange (ETDEWEB)

    Bitensky, M.; Yoshida, Tatsuro

    1996-04-01

    The project sought to develop methods to extend the storage life of red blood cells. Extended storage would allow donor to self or autologous transfusion, expand and stabilize the blood supply, reduce the cost of medical care and eliminate the risk of transfusion related infections, including a spectrum of hepatitides (A, B and C) and HIV. The putative cause of red blood cell spoilage at 4 C has been identified as oxidative membrane damage resulting from deoxyhemoglobin and its denaturation products including hemichrome, hemin and Fe{sup 3+}. Trials with carbon monoxide, which is a stabilizer of hemoglobin, have produced striking improvement of red blood cell diagnostics for cells stored at 4 C. Carbonmonoxy hemoglobin is readily converted to oxyhemoglobin by light in the presence of oxygen. These findings have generated a working model and an approach to identify the best protocols for optimal red cell storage and hemoglobin regeneration.

  10. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian;

    2015-01-01

    the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. DESIGN: Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA......OBJECTIVES: Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from......) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. SETTING: Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. PARTICIPANTS: 60 donors (≥50 years old...

  11. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae (L.

    Directory of Open Access Journals (Sweden)

    Pimenta Paulo FP

    2011-06-01

    Full Text Available Abstract Background The insect gut harbors a variety of microorganisms that probably exceed the number of cells in insects themselves. These microorganisms can live and multiply in the insect, contributing to digestion, nutrition, and development of their host. Recent studies have shown that midgut bacteria appear to strengthen the mosquito's immune system and indirectly enhance protection from invading pathogens. Nevertheless, the physiological significance of these bacteria for mosquitoes has not been established to date. In this study, oral administration of antibiotics was employed in order to examine the contribution of gut bacteria to blood digestion and fecundity in Aedes aegypti. Results The antibiotics carbenicillin, tetracycline, spectinomycin, gentamycin and kanamycin, were individually offered to female mosquitoes. Treatment of female mosquitoes with antibiotics affected the lysis of red blood cells (RBCs, retarded the digestion of blood proteins and reduced egg production. In addition, antibiotics did not affect the survival of mosquitoes. Mosquito fertility was restored in the second gonotrophic cycle after suspension of the antibiotic treatment, showing that the negative effects of antibiotics in blood digestion and egg production in the first gonotrophic cycle were reversible. Conclusions The reduction of bacteria affected RBC lysis, subsequently retarded protein digestion, deprived mosquito from essential nutrients and, finally, oocyte maturation was affected, resulting in the production of fewer viable eggs. These results indicate that Ae. aegypti and its midgut bacteria work in synergism to digest a blood meal. Our findings open new possibilities to investigate Ae. aegypti-associated bacteria as targets for mosquito control strategies.

  12. Acquired immunodeficiency syndrome associated with blood-product transfusions

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J.R.; Kuritsky, J.N.; Katzmann, J.A.; Homburger, H.A.

    1983-11-01

    A 53-year-old white man had fever, malaise, and dyspnea on exertion. His chest roentgenogram was normal, but pulmonary function tests showed impaired diffusion capacity and a gallium scan showed marked uptake in the lungs. Results of an open-lung biopsy documented Pneumocystis carinii pneumonia. Immunologic test results were consistent with the acquired immunodeficiency syndrome. The patient denied having homosexual contact or using intravenous drugs. Twenty-nine months before the diagnosis of pneumocystis pneumonia was made, the patient had had 16 transfusions of whole blood, platelets, and fresh-frozen plasma during coronary artery bypass surgery at another medical center. This patient is not a member of any currently recognized high-risk group and is believed to have contracted the acquired immunodeficiency syndrome from blood and blood-product transfusions.

  13. Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells

    Directory of Open Access Journals (Sweden)

    Heimo eMairbäurl

    2013-11-01

    Full Text Available During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood’s buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called sports anemia. This is not anemia in a clinical sense because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume. The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g. in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise.

  14. Red blood cell vesiculation in hereditary hemolytic anemia

    Directory of Open Access Journals (Sweden)

    Amr eAlaarg

    2013-12-01

    Full Text Available Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterised by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely asessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary

  15. Red blood cell vesiculation in hereditary hemolytic anemia.

    Science.gov (United States)

    Alaarg, Amr; Schiffelers, Raymond M; van Solinge, Wouter W; van Wijk, Richard

    2013-12-13

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.

  16. Efficient induction of pluripotent stem cells from menstrual blood.

    Science.gov (United States)

    Li, Yang; Li, Xiaoni; Zhao, Hongxi; Feng, Ruopeng; Zhang, Xiaoyan; Tai, Dapeng; An, Guangyu; Wen, Jinhua; Tan, Jichun

    2013-04-01

    The technology to reprogram human somatic cells back to pluripotency allows the production of patient-specific induced pluripotent stem cells (iPSCs) and holds a great promise for regenerative medicine. Choosing the most suitable cell type for induction and reducing the risk of viral transgene activation, especially oncogene activation, are important for iPSC research. To date, human dermal fibroblasts (HDFs) are the most frequent cell source used for iPSC generation, but they have several limitations. An invasive skin biopsy must be performed to obtain HDFs, and HDFs must be cultured for a prolonged period before they can be used for experiments. Thus, in an effort to develop a suitable source for iPSC studies to avoid the limitations mentioned above, we have here identified stromal cells derived from menstrual blood (MenSCs) as suitable candidates. In the present study, we found that MenSCs can be reprogrammed to pluripotent status by doxycycline-inducible lentiviral transduction of OCT4, SOX2, and KLF4. Additionally, we found that MenSCs have a significantly higher reprogramming efficiency than HDFs. The combination of OCT4 and SOX2 is sufficient to reprogram MenSCs into iPSCs without the use of c-MYC or KLF4. The resulting MenSC-iPSCs showed the same characteristics as human embryonic stem cells with regard to morphology, pluripotent markers, gene expression, and the epigenetic status of pluripotent-cell-specific genes. These cells were able to differentiate into various cell types of all 3 germ layers both in vitro and in vivo. Therefore, MenSCs may be a preferred candidate for generation of iPSCs.

  17. Sodium renders endothelial cells sticky for red blood cells

    Directory of Open Access Journals (Sweden)

    Hans eOberleithner

    2015-06-01

    Full Text Available Negative charges in the glycocalyx of red blood cells (RBC and vascular endothelial cells (EC facilitate frictionless blood flow through blood vessels. Na+ selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na+ concentration controls RBC-EC interaction. Using atomic force microscopy (AFM adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i after enzymatic removal of negative charges in the glycocalyx, (ii under different ambient Na+ and (iii after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na+ from 133 to 140 mM does not affect them. However, beyond 140 mM Na+ adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na+. Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na+ concentration determines the availability of free negative charges. Na+ concentrations in the low physiological range (below 140 mM allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na+ in the high physiological range (beyond 140 mM saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na+ induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  18. Sodium renders endothelial cells sticky for red blood cells.

    Science.gov (United States)

    Oberleithner, Hans; Wälte, Mike; Kusche-Vihrog, Kristina

    2015-01-01

    Negative charges in the glycocalyx of red blood cells (RBC) and vascular endothelial cells (EC) facilitate frictionless blood flow through blood vessels. Na(+) selectively shields these charges controlling surface electronegativity. The question was addressed whether the ambient Na(+) concentration controls RBC-EC interaction. Using atomic force microscopy (AFM) adhesion forces between RBC and endothelial glycocalyx were quantified. A single RBC, mounted on an AFM cantilever, was brought in physical contact with the endothelial surface and then pulled off. Adhesion forces were quantified (i) after enzymatic removal of negative charges in the glycocalyx, (ii) under different ambient Na(+) and (iii) after applying the intracellular aldosterone receptor antagonist spironolactone. Removal of negative surface charges increases RBC-EC interaction forces. A stepwise increase of ambient Na(+) from 133 to 140 mM does not affect them. However, beyond 140 mM Na(+) adhesion forces increase sharply (10% increase of adhesion force per 1 mM increase of Na(+)). Spironolactone prevents this response. It is concluded that negative charges reduce adhesion between RBC and EC. Ambient Na(+) concentration determines the availability of free negative charges. Na(+) concentrations in the low physiological range (below 140 mM) allow sufficient amounts of vacant negative charges so that adhesion of RBC to the endothelial surface is small. In contrast, Na(+) in the high physiological range (beyond 140 mM) saturates the remaining negative surface charges thus increasing adhesion. Aldosterone receptor blockade by spironolactone prevents Na(+) induced RBC adhesion to the endothelial glycocalyx. Extrapolation of in vitro experiments to in vivo conditions leads to the hypothesis that high sodium intake is likely to increase the incidence of thrombotic events.

  19. Generation of glycosylphosphatidylinositol anchor protein-deficient blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Yuan, Xuan; Braunstein, Evan M; Ye, Zhaohui; Liu, Cyndi F; Chen, Guibin; Zou, Jizhong; Cheng, Linzhao; Brodsky, Robert A

    2013-11-01

    PIG-A is an X-linked gene required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors; thus, PIG-A mutant cells have a deficiency or absence of all GPI-anchored proteins (GPI-APs). Acquired mutations in hematopoietic stem cells result in the disease paroxysmal nocturnal hemoglobinuria, and hypomorphic germline PIG-A mutations lead to severe developmental abnormalities, seizures, and early death. Human induced pluripotent stem cells (iPSCs) can differentiate into cell types derived from all three germ layers, providing a novel developmental system for modeling human diseases. Using PIG-A gene targeting and an inducible PIG-A expression system, we have established, for the first time, a conditional PIG-A knockout model in human iPSCs that allows for the production of GPI-AP-deficient blood cells. PIG-A-null iPSCs were unable to generate hematopoietic cells or any cells expressing the CD34 marker and were defective in generating mesodermal cells expressing KDR/VEGFR2 (kinase insert domain receptor) and CD56 markers. In addition, PIG-A-null iPSCs had a block in embryonic development prior to mesoderm differentiation that appears to be due to defective signaling through bone morphogenetic protein 4. However, early inducible PIG-A transgene expression allowed for the generation of GPI-AP-deficient blood cells. This conditional PIG-A knockout model should be a valuable tool for studying the importance of GPI-APs in hematopoiesis and human development.

  20. Nomenclature of monocytes and dendritic cells in blood

    NARCIS (Netherlands)

    L. Ziegler-Heitbrock (Loems); P. Ancuta (Petronela); S. Crowe (Suzanne); M. Dalod (Marc); V. Grau (Veronika); D.N. Hart (Derek); P.J. Leenen (Pieter); Y.J. Liu; G. MacPherson (Gordon); G.J. Randolph (Gwendalyn); J. Scherberich (Juergen); J. Schmitz (Juergen); K. Shortman (Ken); S. Sozzani (Silvano); H. Strobl (Herbert); M. Zembala (Marek); J.M. Austyn (Jonathan); M.B. Lutz (Manfred)

    2010-01-01

    textabstractMonocytes and cells of the dendritic cell lineage circulate in blood and eventually migrate into tissue where they further mature and serve various functions, most notably in immune defense. Over recent years these cells have been characterized in detail with the use of cell surface mark

  1. Electrochemical Red Blood Cell Counting: One at a Time.

    Science.gov (United States)

    Sepunaru, Lior; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2016-08-08

    We demonstrate that the concentration of a red blood cell solution under physiological conditions can be determined by electrochemical voltammetry. The magnitude of the oxygen reduction currents produced at an edge-plane pyrolytic graphite electrode was diagnosed analytically at concentrations suitable for a point-of-care test device. The currents could be further enhanced when the solution of red blood cells was exposed to hydrogen peroxide. We show that the enhanced signal can be used to detect red blood cells at a single entity level. The method presented relies on the catalytic activity of red blood cells towards hydrogen peroxide and on surface-induced haemolysis. Each single cell activity is expressed as current spikes decaying within a few seconds back to the background current. The frequency of such current spikes is proportional to the concentration of cells in solution.

  2. Artificial blood

    Directory of Open Access Journals (Sweden)

    Sarkar Suman

    2008-01-01

    Full Text Available Artificial blood is a product made to act as a substitute for red blood cells. While true blood serves many different functions, artificial blood is designed for the sole purpose of transporting oxygen and carbon dioxide throughout the body. Depending on the type of artificial blood, it can be produced in different ways using synthetic production, chemical isolation, or recombinant biochemical technology. Development of the first blood substitutes dates back to the early 1600s, and the search for the ideal blood substitute continues. Various manufacturers have products in clinical trials; however, no truly safe and effective artificial blood product is currently marketed. It is anticipated that when an artificial blood product is available, it will have annual sales of over $7.6 billion in the United States alone.

  3. Artificial blood.

    Science.gov (United States)

    Sarkar, Suman

    2008-07-01

    Artificial blood is a product made to act as a substitute for red blood cells. While true blood serves many different functions, artificial blood is designed for the sole purpose of transporting oxygen and carbon dioxide throughout the body. Depending on the type of artificial blood, it can be produced in different ways using synthetic production, chemical isolation, or recombinant biochemical technology. Development of the first blood substitutes dates back to the early 1600s, and the search for the ideal blood substitute continues. Various manufacturers have products in clinical trials; however, no truly safe and effective artificial blood product is currently marketed. It is anticipated that when an artificial blood product is available, it will have annual sales of over $7.6 billion in the United States alone.

  4. White blood cell-based detection of asymptomatic scrapie infection by ex vivo assays.

    Directory of Open Access Journals (Sweden)

    Sophie Halliez

    Full Text Available Prion transmission can occur by blood transfusion in human variant Creutzfeldt-Jakob disease and in experimental animal models, including sheep. Screening of blood and its derivatives for the presence of prions became therefore a major public health issue. As infectious titer in blood is reportedly low, highly sensitive and robust methods are required to detect prions in blood and blood derived products. The objectives of this study were to compare different methods--in vitro, ex vivo and in vivo assays--to detect prion infectivity in cells prepared from blood samples obtained from scrapie infected sheep at different time points of the disease. Protein misfolding cyclic amplification (PMCA and bioassays in transgenic mice expressing the ovine prion protein were the most efficient methods to identify infected animals at any time of the disease (asymptomatic to terminally-ill stages. However scrapie cell and cerebellar organotypic slice culture assays designed to replicate ovine prions in culture also allowed detection of prion infectivity in blood cells from asymptomatic sheep. These findings confirm that white blood cells are appropriate targets for preclinical detection and introduce ex vivo tools to detect blood infectivity during the asymptomatic stage of the disease.

  5. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to iron and contribution to normal formation of haemoglobin and red blood cells pursuant to Article 14 of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Specialised Nutrition Europe (formerly IDACE), submitted pursuant to Article 14 of Regulation (EC) No 1924/2006 via the Competent Authority of France, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific...... physiological effect for infants and young children. A claim on iron and contribution to normal formation of haemoglobin and red blood cells in the general population has already been assessed by the Panel with a favourable outcome. The Panel considers that the role of iron in normal formation of haemoglobin...... and red blood cells applies to all ages, including infants and young children (from birth to three years). The Panel concludes that a cause and effect relationship has been established between dietary intake of iron and contribution to normal formation of haemoglobin and red blood cells....

  6. [Labile blood product traceability: definition, regulation, evaluation, and perspectives].

    Science.gov (United States)

    Pélissier, E; Nguyen, L

    2000-06-01

    The traceability of blood products is an essential part of hemovigilance and transfusion safety. Law no 94-68 of 24 January 1994 is the legal foundation of the system of traceability. In this article, the structures of the system and the main actors are discussed. An evaluation of the system of traceability showed that it is both feasible and adaptable. An evaluation process is needed to assess the proper functioning of the system and to detect and prevent possible deficiencies.

  7. Lymphoid Cell-Glioma Cell Interaction Enhances Cell Coat Production by Human Gliomas: Novel Suppressor Mechanism

    Science.gov (United States)

    Dick, Steven J.; Macchi, Beatrice; Papazoglou, Savvas; Oldfield, Edward H.; Kornblith, Paul L.; Smith, Barry H.; Gately, Maurice K.

    1983-05-01

    Certain human glioma lines produce mucopolysaccharide coats that impair the generation of cytolytic lymphocytes in response to these lines in vitro. Coat production is substantially enhanced by the interaction of glioma cells with a macromolecular factor released by human peripheral blood mononuclear cells in culture. This interaction thus constitutes an unusual mechanism by which inflammatory cells may nonspecifically suppress the cellular immune response to at least one class of solid tumors in humans.

  8. Generation of induced pluripotent stem cells from human blood.

    Science.gov (United States)

    Loh, Yuin-Han; Agarwal, Suneet; Park, In-Hyun; Urbach, Achia; Huo, Hongguang; Heffner, Garrett C; Kim, Kitai; Miller, Justine D; Ng, Kitwa; Daley, George Q

    2009-05-28

    Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.

  9. Use of a pneumatic tube system for delivery of blood bank products and specimens.

    Science.gov (United States)

    Tanley, P C; Wallas, C H; Abram, M C; Richardson, L D

    1987-01-01

    This study evaluated the effect of pneumatic tube transport on blood bank specimens and products. No important differences were found between aliquots transported in the tube system and those stored in the laboratory as controls. ABO, Rh, antibody detection or identification, direct antiglobulin testing, and elution were studied. Further, no differences in plasma hemoglobin and potassium concentration were found between units of whole blood and packed cells handled in either manner. Platelet counts in platelet concentrates were not decreased and coagulation factor levels in units of fresh-frozen plasma and cryoprecipitate did not decrease after pneumatic transport. The system tested is currently providing expeditious transport of specimens and blood between blood banks and patient care areas.

  10. A model for red blood cells in simulations of large-scale blood flows

    CERN Document Server

    Melchionna, Simone

    2011-01-01

    Red blood cells (RBCs) are an essential component of blood. A method to include the particulate nature of blood is introduced here with the goal of studying circulation in large-scale realistic vessels. The method uses a combination of the Lattice Boltzmann method (LBM) to account for the plasma motion, and a modified Molecular Dynamics scheme for the cellular motion. Numerical results illustrate the quality of the model in reproducing known rheological properties of blood as much as revealing the effect of RBC structuring on the wall shear stress, with consequences on the development of cardiovascular diseases.

  11. Red blood cells transfusions in oncological patients treated with radio- and chemoterapy

    Directory of Open Access Journals (Sweden)

    Antić Ana

    2011-01-01

    Full Text Available Background/Aim. Anemia is one of the most frequent hematology disorders in patients with malignant diseases. It has a great influence on reduction of the quality of life, so it requires early diagnosis and an adequate treatment. The aim of this study was to present and analyze the treatment of anemia using red blood cell transfusions in patients with malignancies, to analyze adequate use of red blood cell transfusions according to hemoglobin concentration, and also the influence of the treatment of malignant disease on the level of anemia and use of red blood cells transfusion. Methods. This retrospective analysis included the data on the use of red blood cells in Oncological Clinic of Clinical Center Niš in a period from the 1st January 2008 to the 31st December 2008. Results. None of the patients received the whole blood. In this period, 735 patients received 1,006 units of red blood cells (red blood cell concentrate, resuspended, washed, filtered. An average use of red blood cell transfusion was 1.37 unit per oncological patient who received transfusion. The use of red blood cell units was adequate (87.60% of patients received transfusion of red cells when Hgb < 80 g/L. During radio- and chemotherapy we noticed a decrease of hematological parameter values. The patients of the experimental group were dependant on red blood cells transfusion. Statistically, a significant decrease of hemoglobin level was observed in patients treated only with radiotherapy who are the greatest consumers of red blood cells. Two patients were registered who more likely to have febrile nonhemolytic transfusion reactions. Posttransfusion alloimmunization occurred in 0.68% of the patients. Conclusion. The use of red blood cells in oncological patients is in compliance with the up to date tendencies and recommendations published in clinical guidelines. For the purpose of efficient transfusion support in patients with malignant diseases, we have to follow the newest

  12. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...... cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.......Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells...... generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine...

  13. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...

  14. Color contrast of red blood cells on solid substrate

    Science.gov (United States)

    Paiziev, Adkham A.

    2013-02-01

    In present study we developed the new method of colour visualization of red blood cells without using any chemical staining. The method based on physical phenomena a white light interference on thin transparent films. It is shown that in the case of thin human blood smears colour interference contrast occurs on solid polished substrates. The best contrast shows substrates with maximal refractive index (Mo, W, Si). These materials have been selected as substrate instead of ordinary microscopic slide in reflected light microscopy. It is shown that reflection of incident white light from blood cell surface and boundary cell-substrate generate two coherent lights. The second one (object signal) after passing through red blood cell gathers additional phase and after interference interaction with reference signal (light reflected from outer cell surface) enables cell image in colour. Number of blood smears of healthy persons (control) and patients who were diagnosed with cancer are presented. It is concluded that the offered method may be used as an effective diagnostic tool to detect early stage blood cells lesion by its interference painting in white light. Offered method may be used in research laboratories, hospitals, diagnostic centres, emergency medicine and other as complementary diagnostic tool to present convenient optical and electron microscopy technique.

  15. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Ioana Mozos

    2015-01-01

    Full Text Available The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk.

  16. Mechanisms linking red blood cell disorders and cardiovascular diseases.

    Science.gov (United States)

    Mozos, Ioana

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular diseases, and targets for hemoglobin level should be established. Risk scores in several cardiovascular diseases should include red blood cell count and RDW. Complete blood count and hemorheological parameters represent useful, inexpensive, widely available tools for the management and prognosis of patients with coronary heart disease, heart failure, hypertension, arrhythmias, and stroke. Hypoxia and iron accumulation cause the most important cardiovascular effects of sickle cell disease and thalassemia. Patients with congenital chronic hemolytic anemia undergoing splenectomy should be monitored, considering thromboembolic and cardiovascular risk.

  17. Drawings of Blood Cells Reveal People's Perception of Their Blood Disorder: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Steven Ramondt

    Full Text Available Sickle cell disease (SCD and thalassemia are rare but chronic blood disorders. Recent literature showed impaired quality of life (QOL in people with these blood disorders. Assessing one of the determinants of QOL (i.e. illness perceptions therefore, is an important next research area.We aimed to explore illness perceptions of people with a blood disorder with drawings in addition to the Brief Illness Perception Questionnaire (Brief IPQ. Drawings are a novel method to assess illness perceptions and the free-range answers drawings offer can add additional insight into how people perceive their illness.We conducted a cross-sectional study including 17 participants with a blood disorder. Participants' illness perceptions were assessed by the Brief IPQ and drawings. Brief IPQ scores were compared with reference groups from the literature (i.e. people with asthma or lupus erythematosus.Participants with SCD or thalassemia perceived their blood disorder as being more chronic and reported more severe symptoms than people with either asthma or lupus erythematosus. In the drawings of these participants with a blood disorder, a greater number of blood cells drawn was negatively correlated with perceived personal control (P<0.05, indicating that a greater quantity in the drawing is associated with more negative or distressing beliefs.Participants with a blood disorder perceive their disease as fairly threatening compared with people with other chronic illnesses. Drawings can add additional insight into how people perceive their illness by offering free-range answers.

  18. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags.

    Science.gov (United States)

    Buckley, K; Atkins, C G; Chen, D; Schulze, H G; Devine, D V; Blades, M W; Turner, R F B

    2016-03-07

    After being separated from (donated) whole blood, red blood cells are suspended in specially formulated additive solutions and stored (at 4 °C) in polyvinyl chloride (PVC) blood-bags until they are needed for transfusion. With time, the prepared red cell concentrate (RCC) is known to undergo biochemical changes that lower effectiveness of the transfusion, and thus regulations are in place that limit the storage period to 42 days. At present, RCC is not subjected to analytical testing prior to transfusion. In this study, we use Spatially Offset Raman Spectroscopy (SORS) to probe, non-invasively, the biochemistry of RCC inside sealed blood-bags. The retrieved spectra compare well with conventional Raman spectra (of sampled aliquots) and are dominated by features associated with hemoglobin. In addition to the analytical demonstration that SORS can be used to retrieve RCC spectra from standard clinical blood-bags without breaking the sterility of the system, the data reveal interesting detail about the oxygenation-state of the stored cells themselves, namely that some blood-bags unexpectedly contain measurable amounts of deoxygenated hemoglobin after weeks of storage. The demonstration that chemical information can be obtained non-invasively using spectroscopy will enable new studies of RCC degeneration, and points the way to a Raman-based instrument for quality-control in a blood-bank or hospital setting.

  19. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    OpenAIRE

    Ioana Mozos

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular dise...

  20. Recharging Red Blood Cell Surface by Hemodialysis

    Directory of Open Access Journals (Sweden)

    Katrin Kliche

    2015-02-01

    Full Text Available Background: Similar as in vascular endothelium the negatively charged glycocalyx of erythrocytes selectively buffers sodium. Loss of glycocalyx (i.e. loss of negative charges leads to increased erythrocyte sodium sensitivity (ESS quantified by a recently developed salt-blood-test (SBT. The hypothesis was tested whether a regular 4-hour hemodialysis (4h-HD alters ESS. Methods: In 38 patients with end stage renal disease (ESRD ESS was measured before and after 4h-HD, together with standard laboratory and clinical parameters (electrolytes, acid-base status, urea, creatinine, hemoglobin, c-reactive protein and blood pressure. Results: Before 4h-HD, 20 patients (out of 38 were classified as “salt sensitive” by SBT. After 4h-HD, this number decreased to 11. Erythrocyte sodium buffering power remained virtually constant in patients with already low ESS before dialysis, whereas in patients with high ESS, 4h-HD improved the initially poor sodium buffering power by about 20%. No significant correlations could be detected between standard blood parameters and the respective ESS values except for plasma sodium concentration which was found increased by 3.1 mM in patients with high salt sensitivity. Conclusions: 4h-HD apparently recharges “run-down” erythrocytes and thus restores erythrocyte sodium buffering capacity. Besides the advantage of efficient sodium buffering in blood, erythrocytes with sufficient amounts of free negative charges at the erythrocyte surface will cause less (mechanical injury to the negatively charged endothelial surface due to efficient repulsive forces between blood and vessel wall. Hemodialysis improves erythrocyte surface properties and thus may prevent early vascular damage in patients suffering from ESRD.

  1. Is red blood cell rheology preserved during routine blood bank storage?

    NARCIS (Netherlands)

    Henkelman, Sandra; Dijkstra-Tiekstra, Margriet J.; de Wildt-Eggen, Janny; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: Red blood cell (RBC) units stored for more than 2 weeks at 4 degrees C are currently considered of impaired quality. This opinion has primarily been based on altered RBC rheologic properties (i.e., enhanced aggregability, reduced deformability, and elevated endothelial cell interaction),

  2. Blood flow simulation on a role for red blood cells in platelet adhesion

    Science.gov (United States)

    Shimizu, Kazuya; Sugiyama, Kazuyasu; Takagi, Shu

    2016-11-01

    Large-scale blood flow simulations were conducted and a role for red blood cells in platelet adhesion was discussed. The flow conditions and hematocrit values were set to the same as corresponding experiments, and the numerical results were compared with the measurements. Numerical results show the number of platelets adhered on the wall is increased with the increase in hematocrit values. The number of adhered platelets estimated from the simulation was approximately 28 (per 0.01 square millimeter per minute) for the hematocrit value of 20%. These results agree well with the experimental results qualitatively and quantitatively, which proves the validity of the present numerical model including the interaction between fluid and many elastic bodies and the modeling of platelet adhesion. Numerical simulation also reproduces the behavior of red blood cells in the blood flow and their role in platelet adhesion. Red blood cells deform to a flat shape and move towards channel center region. In contrast, platelets are pushed out and have many chances to contact with the wall. As a result, the large number of adhered platelets is observed as hematocrit values becomes high. This result indicates the presence of red blood cells plays a crucial role in platelet adhesion.

  3. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells that have been destroyed by high doses of ... EuroStemCell 312,828 views 15:53 Understanding Your Cancer Prognosis ... views 6:48 Stem cell donation from brother saves child from cancer - Duration: ...

  4. Diagnosis and epidemiology of red blood cell enzyme disorders

    Directory of Open Access Journals (Sweden)

    Richard Van Wijk

    2013-03-01

    Full Text Available The red blood cell possess an active metabolic machinery that provides the cell with energy to pump ions against electrochemical gradients, to maintain its shape, to keep hemoglobin iron in the reduced (ferrous form, and to maintain enzyme and hemoglobin sulfhydryl groups. The main source of metabolic energy comes from glucose. Glucose is metabolized through the glycolytic pathway and through the hexose monophosphate shunt. Glycolysis catabolizes glucose to pyruvate and lactate, which represent the end products of glucose metabolism in the erythrocyte. Adenosine diphosphate (ADP is phosphorylated to adenosine triphosphate (ATP, and nicotinamide adenine dinucleotide (NAD+ is reduced to NADH in glycolysis. 2,3- Bisphosphoglycerate, an important regulator of the oxygen affinity of hemoglobin, is generated during glycolysis by the Rapoport-Luebering shunt. The hexose monophosphate shunt oxidizes glucose-6-phosphate, reducing NADP+ to reduced nicotinamide adenine dinucleotide phosphate (NADPH. The red cell lacks the capacity for de novo purine synthesis but has a salvage pathway that permits synthesis of purine nucleotides from purine bases...

  5. [Molecular basis of red blood cell adhesion to endothelium].

    Science.gov (United States)

    Wautier, J-L; Wautier, M-P

    2011-01-01

    The extent of red blood cell adhesion is correlated with the incidence of vascular complications and the severity of the disease. Patients with sickle cell anemia (HbSS) experience vasoocclusive episodes. The adhesion of RBCs from HbSS patients is increased and related to VLA-4 exposure, which binds to vascular cell adhesion molecule (VCAM-1). Inter Cellular Adhesion Molecule (ICAM-1), CD31, CD36 and glycans are potential receptors for PfEMP1 of RBCs parasited by plasmodium falciparum. The incidence of vascular complications is very high in patients with diabetes mellitus. RBC adhesion is increased and statistically correlated with the severity of the angiopathy. Glycation of RBC membrane proteins is responsible for binding to the receptor for advanced glycation end products (RAGE). Polycythemia Vera (PV) is the most frequent myeloproliferative disorder and characterized by a high occurrence of thrombosis of mesenteric and cerebral vessels. PV is due to a mutation of the Janus kinase 2 (JAK2 V617F). This mutation stimulates erythropoiesis and is the cause of Lu/BCAM (CD239) phosphorylation, which potentiated the interaction with laminin alpha 5. The couple laminin alpha 5 endothelial and phosphorylated Lu/BCAM explained the increased adhesion of RBCs from patients PV to endothelium.

  6. Erythropoietin reduces storage lesions and decreases apoptosis indices in blood bank red blood cells

    Science.gov (United States)

    Penuela, Oscar Andrés; Palomino, Fernando; Gómez, Lina Andrea

    2015-01-01

    Background Recent evidence shows a selective destruction of the youngest circulating red blood cells (neocytolysis) trigged by a drop in erythropoietin levels. Objective The aim of this study was to evaluate the effect of recombinant human erythropoietin beta on the red blood cell storage lesion and apoptosis indices under blood bank conditions. Methods Each one of ten red blood cell units preserved in additive solution 5 was divided in two volumes of 100 mL and assigned to one of two groups: erythropoietin (addition of 665 IU of recombinant human erythropoietin) and control (isotonic buffer solution was added). The pharmacokinetic parameters of erythropoietin were estimated and the following parameters were measured weekly, for six weeks: Immunoreactive erythropoietin, hemolysis, percentage of non-discocytes, adenosine triphosphate, glucose, lactate, lactate dehydrogenase, and annexin-V/esterase activity. The t-test or Wilcoxon's test was used for statistical analysis with significance being set for a p-value 6 weeks under blood bank conditions, with persistent supernatant concentrations of erythropoietin during the entire storage period. Adenosine triphosphate was higher in the Erythropoietin Group in Week 6 (4.19 ± 0.05 μmol/L vs. 3.53 ± 0.02 μmol/L; p-value = 0.009). The number of viable cells in the Erythropoietin Group was higher than in the Control Group (77% ± 3.8% vs. 71% ± 2.3%; p-value <0.05), while the number of apoptotic cells was lower (9.4% ± 0.3% vs. 22% ± 0.8%; p-value <0.05). Conclusions Under standard blood bank conditions, an important proportion of red blood cells satisfy the criteria of apoptosis. Recombinant human erythropoietin beta seems to improve storage lesion parameters and mitigate apoptosis. PMID:26969770

  7. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  8. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    Science.gov (United States)

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  9. On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood.

    Science.gov (United States)

    Choi, Jongchan; Hyun, Ji-chul; Yang, Sung

    2015-10-14

    The extraction of virological markers in white blood cells (WBCs) from whole blood--without reagents, electricity, or instruments--is the most important first step for diagnostic testing of infectious diseases in resource-limited settings. Here we develop an integrated microfluidic chip that continuously separates WBCs from whole blood and mechanically ruptures them to extract intracellular proteins and nucleic acids for diagnostic purposes. The integrated chip is assembled with a device that separates WBCs by using differences in blood cell size and a mechanical cell lysis chip with ultra-sharp nanoblade arrays. We demonstrate the performance of the integrated device by quantitatively analyzing the levels of extracted intracellular proteins and genomic DNAs. Our results show that compared with a conventional method, the device yields 120% higher level of total protein amount and similar levels of gDNA (90.3%). To demonstrate its clinical application to human immunodeficiency virus (HIV) diagnostics, the developed chip was used to process blood samples containing HIV-infected cells. Based on PCR results, we demonstrate that the chip can extract HIV proviral DNAs from infected cells with a population as low as 10(2)/μl. These findings suggest that the developed device has potential application in point-of-care testing for infectious diseases in developing countries.

  10. Quantification of depletion-induced adhesion of Red Blood Cells

    CERN Document Server

    Steffen, Patrick; Wagner, Christian

    2012-01-01

    Red blood cells (RBC) are known to form aggregates in the forms of rouleaux due to the presence of plasma proteins under physiological conditions. Rouleaux formation can be also induced in vitro by the addition of macromolecules to the RBC solution. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly rely on indirect measurements like flow chamber experiments, but on the single cell level data is lacking. Here we present measurements on the dextran induced aggregation of red blood cells by use of atomic force microscopy based single cell force spectroscopy (SCFS). The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs was determined. The results are in good agreement with a model based on the depletion effect and former experimental studies.

  11. Hematologic assessment in pet rats, mice, hamsters, and gerbils: blood sample collection and blood cell identification.

    Science.gov (United States)

    Lindstrom, Nicole M; Moore, David M; Zimmerman, Kurt; Smith, Stephen A

    2015-01-01

    Hamsters, gerbils, rats, and mice are presented to veterinary clinics and hospitals for prophylactic care and treatment of clinical signs of disease. Physical examination, history, and husbandry practice information can be supplemented greatly by assessment of hematologic parameters. As a resource for veterinarians and their technicians, this article describes the methods for collection of blood, identification of blood cells, and interpretation of the hemogram in mice, rats, gerbils, and hamsters.

  12. Laser-photophoretic migration and fractionation of human blood cells.

    Science.gov (United States)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.

  13. Computational modeling of red blood cells: A symplectic integration algorithm

    Science.gov (United States)

    Schiller, Ulf D.; Ladd, Anthony J. C.

    2010-03-01

    Red blood cells can undergo shape transformations that impact the rheological properties of blood. Computational models have to account for the deformability and red blood cells are often modeled as elastically deformable objects. We present a symplectic integration algorithm for deformable objects. The surface is represented by a set of marker points obtained by surface triangulation, along with a set of fiber vectors that describe the orientation of the material plane. The various elastic energies are formulated in terms of these variables and the equations of motion are obtained by exact differentiation of a discretized Hamiltonian. The integration algorithm preserves the Hamiltonian structure and leads to highly accurate energy conservation, hence he method is expected to be more stable than conventional finite element methods. We apply the algorithm to simulate the shape dynamics of red blood cells.

  14. Shear induced diffusion in a red blood cell suspension

    Science.gov (United States)

    Podgorski, Thomas; Grandchamp, Xavier; Srivastav, Aparna; Coupier, Gwennou

    2012-11-01

    In the microcirculation, blood exhibits an inhomogeneous structure which results in the well know Fahraeus-Lindqvist effect : the apparent viscosity decreases when the diameter of the capillary decreases due to the formation of a marginal cell depletion layer (known as plasma skimming). This structure is a consequence of several phenomena, which include i) the migration of cells aways from walls due to lift forces and gradients of shear and ii) shear induced diffusion due to collisions and interactions among cells. We investigated these phenomena through experiments in simple shear and microchannel flows, with dilute suspensions of vesicles and blood cells. Pairwise interactions between suspended objects result in non-linear and flow-dependent diffusion, whose properties have been measured in different experiments for vesicles and blood cells. The injection of a sheet of concentrated blood cell suspension in a microchannel with a rectangular cross-section allows, through the measurement of its widening along the channel, to measure the diffusivity of blood cells, both in the local plane of shear and in the vorticity direction.

  15. Cord blood transplants for SCID: better B-cell engraftment?

    Science.gov (United States)

    Chan, Wan-Yin; Roberts, Robert Lloyd; Moore, Theodore B; Stiehm, E Richard

    2013-01-01

    Hematopoietic stem-cell transplantation is the treatment of choice for severe combined immunodeficiency (SCID). Despite successful T-cell engraftment in transplanted patients, B-cell function is not always achieved; up to 58% of patients require immunoglobulin therapy after receiving haploidentical transplants. We report 2 half-sibling males with X-linked γ-chain SCID treated with different sources of stem cells. Sibling 1 was transplanted with T-cell-depleted haploidentical maternal bone marrow and sibling 2 was transplanted with 7/8 human leukocyte antigen-matched unrelated umbilical cord blood. Both patients received pretransplant conditioning and posttransplant graft-versus-host-disease prophylaxis. B-cell engraftment and function was achieved in sibling 1 but not in sibling 2. This disparate result is consistent with a review of 19 other SCID children who received cord blood transplants. B-cell function, as indicated by no need for immunoglobulin therapy, was restored in 42% of patients given haploidentical transplants and in 68% of patients given matched unrelated donor transplants compared with 80% of patients given cord blood transplants. Cord blood is an alternative source of stem cells for transplantation in children with SCID and has a higher likelihood of B-cell reconstitution.

  16. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  17. Storage and survival of red blood cells with elevated sodium levels.

    Science.gov (United States)

    Wallas, C H; Harris, A S; Wetherall, N T

    1982-01-01

    Approximately 25 percent of black blood donors have an elevated red blood cell (RBC) sodium (Nai) level compared with white donors. This elevation results in a significant increase in the mean Nai from black (9.00 +/- 2.96 mmoles/l RBC) as compared to white blood donors (7.04 +/- 1.48 mmoles/l RBC, p less than 0.001). Red blood cells from four black donors with mean Nai levels of 15 +/- 2.8 mmoles/l RBC were stored for 35 days in citrate-phosphate-dextrose-adenine and compared to that of four donors with normal levels of Nai. Serial measurements of red blood cell adenosine triphosphate, diphosphoglycerate, glucose-6-phosphate dehydrogenase, pyruvic kinase, lactate production rates, and intracellular cations showed no differences between the two donor groups. Furthermore, the mean 24-hour posttransfusion survival was not significantly different for the high Nai group (83.2 +/- 5.6%) as compared with the control group (82.3 +/- 6.9%). Based on this study, it is not necessary to eliminate individuals with an elevated red blood cell Nai level as blood donors.

  18. Malaria and human red blood cells.

    Science.gov (United States)

    Mohandas, Narla; An, Xiuli

    2012-11-01

    Invasion by the malaria parasite, Plasmodium falciparum, brings about extensive changes in the host red cells. These include loss of the normal discoid shape, increased rigidity of the membrane, elevated permeability to a wide variety of ionic and other species and increased adhesiveness, most notably to endothelial surfaces. These effects facilitate survival of the parasite within the host cell and tend to increase the virulence of disease that includes cerebral malaria and anemia. Numerous proteins secreted by the internalized parasite and interacting with red cell membrane proteins are responsible for the changes occurring to the host cell. Anemia, a serious clinical manifestation of malaria, is due to increased destruction of both infected and uninfected red cells due to membrane alterations, as well as ineffective erythropoiesis. There is very good evidence that various red cell disorders including hemoglobinopathies and hereditary ovalocytosis decrease the virulence of disease following parasite infection. A number of mechanism(s) are likely responsible for the protective effect of various red cell abnormalities including decreased invasion, impaired intraerythrocytic development of the parasites and altered interaction between exported parasite proteins and the red cell membrane skeleton.

  19. 21 CFR 607.7 - Establishment registration and product listing of blood banks and other firms manufacturing human...

    Science.gov (United States)

    2010-04-01

    ... blood banks and other firms manufacturing human blood and blood products. 607.7 Section 607.7 Food and... Provisions § 607.7 Establishment registration and product listing of blood banks and other firms... permit any blood bank or similar establishment to ship blood products in interstate commerce. (b)...

  20. International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Cancun report (2012).

    Science.gov (United States)

    Storry, J R; Castilho, L; Daniels, G; Flegel, W A; Garratty, G; de Haas, M; Hyland, C; Lomas-Francis, C; Moulds, J M; Nogues, N; Olsson, M L; Poole, J; Reid, M E; Rouger, P; van der Schoot, E; Scott, M; Tani, Y; Yu, L-C; Wendel, S; Westhoff, C; Yahalom, V; Zelinski, T

    2014-07-01

    The International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology convened during the International congress in Cancun, July 2012. This report details the newly identified antigens in existing blood group systems and presents three new blood group systems.

  1. Challenges for red blood cell biomarker discovery through proteomics

    NARCIS (Netherlands)

    Barasa, B.A.; Slijper, M.

    2014-01-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. T

  2. Control of red blood cell mass during spaceflight

    Science.gov (United States)

    Lane, H. W.; Alfrey, C. P.; Driscoll, T. B.; Smith, S. M.; Nyquist, L. E.

    1996-01-01

    Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.

  3. Spatial distributions of red blood cells significantly alter local haemodynamics.

    Directory of Open Access Journals (Sweden)

    Joseph M Sherwood

    Full Text Available Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics.

  4. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  5. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking.

    Science.gov (United States)

    Focosi, Daniele; Pistello, Mauro

    2016-03-01

    Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises.

  6. XAS spectroscopy, sulfur, and the brew within blood cells from Ascidia ceratodes.

    Science.gov (United States)

    Frank, Patrick; Hedman, Britt; Hodgson, Keith O

    2014-02-01

    We report the first use of K-edge X-ray absorption spectroscopy (XAS) as a direct spectroscopic probe of pH and cytosolic emf within living cells. A new accuracy metric of model-based fits to K-edge spectra is further developed. Sulfur functional groups in three collections of living blood cells and one sample of cleared blood plasma from the tunicate Ascidia ceratodes were speciated using K-edge XAS. Cysteine and cystine, the preferred thiol-disulfide model, averaged about 12% of total sulfur. Sulfate monoesters and cyclic diesters unexpectedly constituted 36% of blood cell sulfur. Soluble sulfate averaged about 25% across the three blood cell samples, while the ratio of SO4(2-) to HSO4(-) implied average signet ring vacuolar pH values of 0.85, 1.4, or 3.1. Intracellular (VSO4)(+) was unobserved, while [V(RSO3)n]((3-n)+) was detected in the two lowest pH blood cell samples. About 5% of sulfur was distributed as mono- or dibenzothiophene or ethylene-epi-sulfide, or as a thiadiazole reminiscent of the polycarpathiamines. Blood plasma was dominated by sulfate (83%), but with 15% of an alkylsulfate ester and about 2% of low-valent sulfur. Gravimetric analysis of soluble sulfate yielded average concentrations of blood cell sulfur. Average [cysteine] and [cystine] (ranging ~10-30 mM and ~20-90 mM, respectively) implied blood-cell cytosolic emf values of approximately -0.20 V. High cellular [cysteine] is consistent with the proposed model for enzymatic reduction of vanadate by endogenous thiol, wherein the trajectory of metal site-symmetry is controlled and directed through to a thermodynamically favored 7-coordinate V(III) product.

  7. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells ... use of BMT and PBSCT, see http://www.cancer.gov/cancertopics/fa... If you are interested in ...

  8. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... be donors at http://www.marrow.org . Category Science & Technology License Standard YouTube License ... - Duration: 49:19. Children's Health 33,509 views 49:19 Stem Cell Fraud: ...

  9. Red blood cell lifespan, erythropoiesis and hemoglobin control.

    Science.gov (United States)

    Kruse, Anja; Uehlinger, Dominik E; Gotch, Frank; Kotanko, Peter; Levin, Nathan W

    2008-01-01

    Erythropoietin (EPO) and iron deficiency as causes of anemia in patients with limited renal function or end-stage renal disease are well addressed. The concomitant impairment of red blood cell (RBC) survival has been largely neglected. Properties of the uremic environment like inflammation, increased oxidative stress and uremic toxins seem to be responsible for the premature changes in RBC membrane and cytoskeleton. The exposure of antigenic sites and breakdown of the phosphatidylserine asymmetry promote RBC phagocytosis. While the individual response to treatment with EPO-stimulating agents (ESA) depends on both the RBC's lifespan and the production rate, uniform dosing algorithms do not meet that demand. The clinical use of mathematical models predicting ESA-induced changes in hematocrit might be greatly improved once independent estimates of RBC production rate and/or lifespan become available, thus making the concomitant estimation of both parameters unnecessary. Since heme breakdown by the hemoxygenase pathway results in carbon monoxide (CO) which is exhaled, a simple CO breath test has been used to calculate hemoglobin turnover and therefore RBC survival and lifespan. Future research will have to be done to validate and implement this method in patients with kidney failure. This will result in new insights into RBC kinetics in renal patients. Eventually, these findings are expected to improve our understanding of the hemoglobin variability in response to ESA.

  10. Automatic tracking of red blood cells in micro channels using OpenCV

    Science.gov (United States)

    Rodrigues, Vânia; Rodrigues, Pedro J.; Pereira, Ana I.; Lima, Rui

    2013-10-01

    The present study aims to developan automatic method able to track red blood cells (RBCs) trajectories flowing through a microchannel using the Open Source Computer Vision (OpenCV). The developed method is based on optical flux calculation assisted by the maximization of the template-matching product. The experimental results show a good functional performance of this method.

  11. Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking.

    Directory of Open Access Journals (Sweden)

    Anita Posevitz-Fejfár

    Full Text Available Human biospecimen collection, processing and preservation are rapidly emerging subjects providing essential support to clinical as well as basic researchers. Unlike collection of other biospecimens (e.g. DNA and serum, biobanking of viable immune cells, such as peripheral blood mononuclear cells (PBMC and/or isolated immune cell subsets is still in its infancy. While certain aspects of processing and freezing conditions have been studied in the past years, little is known about the effect of blood transportation on immune cell survival, phenotype and specific functions. However, especially for multicentric and cooperative projects it is vital to precisely know those effects. In this study we investigated the effect of blood shipping and pre-processing delay on immune cell phenotype and function both on cellular and subcellular levels. Peripheral blood was collected from healthy volunteers (n = 9: at a distal location (shipped overnight and in the central laboratory (processed immediately. PBMC were processed in the central laboratory and analyzed post-cryopreservation. We analyzed yield, major immune subset distribution, proliferative capacity of T cells, cytokine pattern and T-cell receptor signal transduction. Results show that overnight transportation of blood samples does not globally compromise T- cell subsets as they largely retain their phenotype and proliferative capacity. However, NK and B cell frequencies, the production of certain PBMC-derived cytokines and IL-6 mediated cytokine signaling pathway are altered due to transportation. Various control experiments have been carried out to compare issues related to shipping versus pre-processing delay on site. Our results suggest the implementation of appropriate controls when using multicenter logistics for blood transportation aiming at subsequent isolation of viable immune cells, e.g. in multicenter clinical trials or studies analyzing immune cells/subsets. One important conclusion might

  12. Length of Storage of Red Blood Cells and Patient Survival After Blood Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Rostgaard, Klaus; Lee, Brian K

    2017-01-01

    Background: Possible negative effects, including increased mortality, among persons who receive stored red blood cells (RBCs) have recently garnered considerable attention. Despite many studies, including 4 randomized trials, no consensus exists. Objective: To study the association between...... received transfusions from 2003 to 2012. Measurements: Patients were followed from first blood transfusion. Relative and absolute risks for death in 30 days or 1 year in relation to length of RBC storage were assessed by using 3 independent analytic approaches. All analyses were conducted by using Cox...... proportional hazards regression. Results: Regardless of the analytic approach, no association was found between the length of RBC storage and mortality. The difference in 30-day cumulative mortality between patients receiving blood stored for 30 to 42 days and those receiving blood stored for 10 to 19 days...

  13. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... is challenged by the size overlap between cancer cells and the 106 times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells....... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  14. In-vitro red blood cell partitioning of doxycycline

    OpenAIRE

    P.V. Deshmukh; Badgujar, P.C.; Gatne, M.M.

    2009-01-01

    Objective: In-vitro red blood cell (RBC) partitioning of doxycycline was studied to determine whether doxycycline penetrates RBC and its concentration was assayed keeping in view its high lipophilicity. Materials and Methods: Standardization of doxycycline was performed in whole blood and plasma of cattle by microbiological assay using Bacillus subtillis ATCC 6633 as indicator organizm. Actual concentration of the drug was obtained by comparing zone inhibition with standard graph and the exte...

  15. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34(+ )cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  16. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell.

    Science.gov (United States)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris; Mortensen, Peter; Mann, Matthias; Thomas, Alan W

    2008-07-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membrane-bound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.

  17. 78 FR 32668 - Draft Guidance for Industry: Changes to an Approved Application: Biological Products: Human Blood...

    Science.gov (United States)

    2013-05-31

    ...The Food and Drug Administration (FDA) is announcing the availability of a draft document entitled ``Guidance for Industry: Changes to an Approved Application: Biological Products: Human Blood and Blood Components Intended for Transfusion or for Further Manufacture'' dated June 2013. The draft guidance document provides manufacturers of licensed Whole Blood and blood components intended for......

  18. The average unit production cost of blood in Zimbabwe from a provider's perspective

    NARCIS (Netherlands)

    Mafirakureva, N.; Nyoni, H.; Chikwereti, R.; Khoza, S.; Mvere, D.A.; Emmanuel, J.C.; Postma, M.J.; Van Hulst, M.

    2014-01-01

    Background/Case Studies: Blood utilization and blood transfusion costs are generally perceived to be increasing at a time when healthcare budgets continue being constricted. There is a paucity of published data on the production costs of blood and the costs of blood transfusion in sub-Saharan Africa

  19. Generation of iPS Cells from Human Peripheral Blood Mononuclear Cells Using Episomal Vectors.

    Science.gov (United States)

    Su, Ruijun Jeanna; Neises, Amanda; Zhang, Xiao-Bing

    2016-01-01

    Peripheral blood is the easy-to-access, minimally invasive, and the most abundant cell source to use for cell reprogramming. The episomal vector is among the best approaches for generating integration-free induced pluripotent stem (iPS) cells due to its simplicity and affordability. Here we describe the detailed protocol for the efficient generation of integration-free iPS cells from peripheral blood mononuclear cells. With this optimized protocol, one can readily generate hundreds of iPS cell colonies from 1 ml of peripheral blood.

  20. Apheresis techniques for collection of peripheral blood progenitor cells.

    Science.gov (United States)

    Moog, Rainer

    2004-12-01

    The combination of effective mobilisation protocols and efficient use of apheresis machines has caused peripheral blood progenitor cells (PBPC) transplantation to grow rapidly. The development of apheresis technology has improved over the years. Today PBSC procedures have changed towards systems to minimise operator interaction and to reduce the collection of undesired cells such as polymorphonuclear cells and platelets using functionally closed, sterile environments for PBSC collection in keeping with Good Manufacturing Practice guidelines. Blood cell separators with continuous flow technique allow the processing of more blood than intermittent flow devices resulting in higher PBSC yields. Large volume leukapheresis with the processing of 3-4-fold donor's/patient's blood volume can increase the number of collected progenitor cells. Therefore, intermittent flow cell separators are indicated if only single vein access is available. Anticoagulant induced hypocalcaemia is an often observed side effect in long lasting PBPC harvesting and monitoring of electrolytes should be performed especially at the end of the apheresis procedure to supplement low levels of potassium, calcium or magnesium. Refinement and improvement of collection techniques continue to add to the armamentarium of current approaches for cancer and non-malignant conditions and will enable future strategies.

  1. State of the science of blood cell labeling

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs.

  2. Histomorphometric study on blood cells in male adult ostrich

    Directory of Open Access Journals (Sweden)

    Mina Tadjalli

    2013-09-01

    Full Text Available In order to perform a histomorphometric study of blood cells in male adult ostrich, blood samples were obtained from jugular vein of 10 clinically healthy male adult ostriches (2 - 3 years old. The slides were stained with the Giemsa methods and the smears were evaluated for cellular morphology, with cellular size being determined by micrometry. The findings of this study revealed that the shape of the cell, cytoplasm and nucleus of erythrocytes in male adult ostriches were similar to those in other birds such as quails, chickens, Iranian green-head ducks.

  3. Nanostructured Substrates for Capturing Circulating Tumor Cells in Whole Blood

    Science.gov (United States)

    Tseng, Hsian-Rong

    2009-03-01

    Over the past decade, circulating tumor cells (CTCs) has become an emerging ``biomarker'' for detecting early-stage cancer metastasis, predicting patient prognosis, as well as monitoring disease progression and therapeutic outcomes. However, isolation of CTCs has been technically challenging due to the extremely low abundance (a few to hundreds per ml) of CTCs among a high number of hematologic cells (109 per mL) in the blood. Our joint research team at UCLA has developed a new cell capture technology for quantification of CTCs in whole blood samples. Similar to most of the existing approaches, epithelial cell adhesion molecule antibody (anti-EpCAM) was grafted onto the surfaces to distinguish CTCs from the surrounding hematologic cells. The uniqueness of our technology is the use of nanostructured surfaces, which facilitates local topographical interactions between CTCs and substrates at the very first cell/substrate contacting time point. We demonstrated the ability of these nanostructured substrates to capture CTCs in whole blood samples with significantly improved efficiency and selectivity. The successful demonstration of this cell capture technology using brain, breast and prostate cancer cell lines encouraged us to test this approach in clinical setting. We have been able to bond our first validation study with a commercialized technology based on the use of immunomagnetic nanoparticles. A group of clinically well-characterized prostate cancer patients at UCLA hospital have been recruited and tested in parallel by these two technologies.

  4. [Verification of complete blood cell count (CBC) data from heparinized blood gas samples].

    Science.gov (United States)

    Sakoguchi, Takafumi; Fujii, Seiji; Inuzumi, Koji; Kaminoh, Yoshiroh; Hirose, Munetaka; Masaki, Mitsuru; Koshiba, Masahiro

    2014-02-01

    Complete blood cell count (CBC) data from heparinized blood gas (H-Gas) samples were verified with primary focus on the platelet count (PLT). When a part of H-Gas sample was taken to a separation tube from the blood collection syringe and CBC of the sample in the separation tube was repeatedly measured (Procedure 1), the PLT from 5 samples relative to that obtained immediately after the separation was gradually reduced to 72.6-94.2% during serial measurements (every 5 minutes, up to 30 minutes). The change in the scattergram pattern suggested that this PLT decrease was due to the formation of platelet clumps. The white blood cell count (WBC), red blood cell count (RBC), hemoglobin (Hb) and hematocrit (Ht) values did not significantly change during the repeated measurements. On the other hand, PLT was significantly improved to 96.8-99.8% when the H-Gas sample was kept in the blood collection syringe so as to minimizing the exposure to the air, and the sample for the measurement from H-Gas was taken every time to separation tube from the syringe, followed by CBC measurement without delay (Procedure 2). In addition, while there were significant variations (CV: 11.8-18.2%) in PLT reproducibility among H-Gas samples by Procedure 1, measurements utilizing the Procedure 2 resulted in much smaller variations (CV: 2.2-3.7%). Thus the CBC data obtained from H-Gas samples were equivalent to those from EDTA samples when the Procedure 2 was applied. These data suggest that H-Gas samples can be used for the accurate CBC measurement, including PLT, by applying the Procedure 2.

  5. Cytochemical characteristics of blood cells from Brazilian tortoises (Testudines: Testudinidae).

    Science.gov (United States)

    Martins, G S; Alevi, K C C; Azeredo-Oliveira, M T V; Bonini-Domingos, C R

    2016-03-18

    The hematology of wild and captive animals is essential for obtaining details about species and represents a simple method of diagnosing disease and determining prognosis. Few studies have described the morphology of chelonian blood cells, which are more common in sea and freshwater turtle species. Thus, in order to further our understanding and recognition of different chelonian cells types, the present study aimed to describe blood cells from the two species of Brazilian tortoises, Chelonoidis carbonarius and C. denticulatus. Cytochemical analysis of tortoise blood tissue with Panótico®, made it possible to describe all the of the chelonian cell types (with the exception of thrombocytes): erythrocytes, agranular leukocytes (monocytes and lymphocytes), and granular leukocytes (eosinophils, heterophils, basophils, and azurophils). These data are of high importance for establishing hematological profiles of Brazilian tortoises and reptiles. Therefore, based on our results and on comparative analyses with data from the literature for other reptile species, we can conclude that the blood cells described for Brazilian tortoises are found in all species of reptiles that have been analyzed thus far, and may be characterized and used as a comparative parameter between different groups to evaluate the health status of these animals.

  6. Membranotropic photobiomodulation on red blood cell deformability

    Science.gov (United States)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  7. Related Hematopoietic Stem Cell Transplantation (HSCT) for Genetic Diseases of Blood Cells

    Science.gov (United States)

    2016-05-11

    Stem Cell Transplantation; Bone Marrow Transplantation; Peripheral Blood Stem Cell Transplantation; Allogeneic Transplantation,; Genetic Diseases; Thalassemia; Pediatrics; Diamond-Blackfan Anemia; Combined Immune Deficiency; Wiskott-Aldrich Syndrome; Chronic Granulomatous Disease; X-linked Lymphoproliferative Disease; Metabolic Diseases

  8. Characterization at the individual cell level and in whole blood samples of shear stress preventing red blood cells aggregation.

    Science.gov (United States)

    Lee, K; Kinnunen, M; Danilina, A V; Ustinov, V D; Shin, S; Meglinski, I; Priezzhev, A V

    2016-05-03

    The aggregation of red blood cells (RBC) is an intrinsic feature of blood that has a strong impact on its microcirculation. For a number of years it has been attracting a great attention in basic research and clinical studies. Here, we study a relationship between the RBC aggregation parameters measured at the individual cell level and in a whole blood sample. The home made optical tweezers were used to measure the aggregating and disaggregating forces for a pair of interacting RBCs, at the individual cell level, in order to evaluate the corresponding shear stresses. The RheoScan aggregometer was used for the measurements of critical shear stress (CSS) in whole blood samples. The correlation between CSS and the shear stress required to stop an RBC pair from aggregating was found. The shear stress required to disaggregate a pair of RBCs using the double channel optical tweezers appeared to be about 10 times higher than CSS. The correlation between shear stresses required to prevent RBCs from aggregation at the individual cell level and in whole blood samples was estimated and assessed quantitatively. The experimental approach developed has a high potential for advancing hemorheological studies.

  9. Magnetic nanoparticle effects on the red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Creanga, D E; Nadejde, C; Curecheriu, L [' Al. I. Cuza' University, Faculty of Physics, 11A Blvd. Carol I, Iasi (Romania)], E-mail: dorinacreanga@yahoo.com; Culea, M [' Babes Bolyai' University, Cluj-Napoca (Romania); Oancea, S [University of Veterinary Medicine ' I. Ionescu de la Brad' , Iasi (Romania); Racuciu, M [' Lucian Blaga' University, Sibiu (Romania)

    2009-05-01

    In vitro tests on magnetite colloidal nanoparticles effects upon animal red blood cells were carried out. Magnetite cores were stabilized with citric acid in the form of biocompatible magnetic fluid administrated in different dilutions in the whole blood samples. The hemolysis extent was found increased up to 2.75 in horse blood and respectively up to 2.81 in the dog blood. The electronic transitions assigned to the heme group were found shifted with about 500 cm{sup -1} or, respectively, affected by supplementary vibronic structures. The Raman vibrations assigned to oxyhemoglobin were much diminished in intensity probably due to the bonding of OH group from citrate shell to the heme iron ion.

  10. Lattice Boltzmann Simulation of Healthy and Defective Red Blood Cell Settling in Blood Plasma.

    Science.gov (United States)

    Hashemi, Z; Rahnama, M; Jafari, S

    2016-05-01

    In this paper, an attempt has been made to study sedimentation of a red blood cell (RBC) in a plasma-filled tube numerically. Such behaviors are studied for a healthy and a defective cell which might be created due to human diseases, such as diabetes, sickle-cell anemia, and hereditary spherocytosis. Flow-induced deformation of RBC is obtained using finite-element method (FEM), while flow and fluid-membrane interaction are handled using lattice Boltzmann (LB) and immersed boundary methods (IBMs), respectively. The effects of RBC properties as well as its geometry and orientation on its sedimentation rate are investigated and discussed. The results show that decreasing frontal area of an RBC and/or increasing tube diameter results in a faster settling. Comparison of healthy and diabetic cells reveals that less cell deformability leads to slower settling. The simulation results show that the sicklelike and spherelike RBCs have lower settling velocity as compared with a biconcave discoid cell.

  11. Cord Blood as a Source of Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Rohtesh S Mehta

    2016-01-01

    Full Text Available Cord blood (CB offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT. The risk of relapse and graft-versus-host disease (GVHD after cord blood transplantation (CBT are lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen (HLA mismatch. Natural killer (NK cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors (KIR-ligand mismatch and outcomes after CBT. Finally, we will touch on current strategiesfor the use of CB NK cells in cellular immunotherapy.

  12. Infectivity of blood products from donors with occult hepatitis B virus infection

    DEFF Research Database (Denmark)

    Allain, Jean-Pierre; Mihaljevic, Ivanka; Gonzalez-Fraile, Maria Isabel

    2013-01-01

    Occult hepatitis B virus (HBV) infection (OBI) is identified in 1:1000 to 1:50,000 European blood donations. This study intended to determine the infectivity of blood products from OBI donors.......Occult hepatitis B virus (HBV) infection (OBI) is identified in 1:1000 to 1:50,000 European blood donations. This study intended to determine the infectivity of blood products from OBI donors....

  13. Biomarker Analysis of Stored Blood Products: Emphasis on Pre-Analytical Issues

    Directory of Open Access Journals (Sweden)

    Niels Lion

    2010-11-01

    Full Text Available Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking.

  14. Mechanopathology of red blood cell diseases—Why mechanics matters

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    During the onset of a disease a cell may experience alterations in both the composition and organization of its cellular and molecular structures.These alterations may eventually lead to changes in its geometrical and mechanical properties such as cell size and shape,deformability and adhesion.As such,knowing how diseased cells respond to mechanical forces can reveal ways by which they differ from healthy ones.Here,we will present biomechanistic insights into red blood cell related diseases that manifest...

  15. Macromolecular Dynamics in Red Blood Cells Investigated Using Neutron Spectroscopy

    CERN Document Server

    Stadler, Andreas Maximilian; Demmel, Franz; Artmann, Gerhard; 10.1098/rsif.2010.0306

    2011-01-01

    We present neutron scattering measurements on the dynamics of hemoglobin (Hb) in human red blood cells in vivo. Global and internal Hb dynamics were measured in the ps to ns time- and {\\AA} length-scale using quasielastic neutron backscattering spectroscopy. We observed the cross-over from global Hb short-time to long-time self-diffusion. Both short- and long-time diffusion coefficients agree quantitatively with predicted values from hydrodynamic theory of non-charged hard-sphere suspensions when a bound water fraction of around 0.23g H2O/ g Hb is taken into account. The higher amount of water in the cells facilitates internal protein fluctuations in the ps time-scale when compared to fully hydrated Hb powder. Slower internal dynamics of Hb in red blood cells in the ns time-range were found to be rather similar to results obtained with fully hydrated protein powders, solutions and E. coli cells.

  16. Aggregation of Red Blood Cells: From Rouleaux to Clot Formation

    CERN Document Server

    Wagner, C; Svetina, S

    2013-01-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the binding mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the binding strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life saving in the case of wound healing but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  17. RBCs and Parasites Segmentation from Thin Smear Blood Cell Images

    Directory of Open Access Journals (Sweden)

    Vishal V. Panchbhai

    2012-09-01

    Full Text Available Manually examine the blood smear for the detection of malaria parasite consumes lot of time for trend pathologists. As the computational power increases, the role of automatic visual inspection becomes more important. An automated system is therefore needed to complete as much work as possible for the identification of malaria parasites. The given scheme based on used of RGB color space, G layer processing, and segmentation of Red Blood Cells (RBC as well as cell parasites by auto-thresholding with offset value and use of morphological processing. The work compare with the manual results obtained from the pathology lab, based on total RBC count and cells parasite count. The designed system successfully detects malaria parasites and RBC cells in thin smear image.

  18. Use of cryopreserved peripheral mononuclear blood cells in biomonitoring

    DEFF Research Database (Denmark)

    Risom, Lotte; Knudsen, Lisbeth E.

    1999-01-01

    cells (PMBC) obtained from donor blood. Measurements of DNA-repair, mutant frequency, and subcell content were included. Samples for large biomonitoring studies are usually taken from study groups within a short time period of days/weeks and storing of study material for later analysis can be necessary......This study was performed to investigate the effect of storing blood samples by freezing on selected biomarkers and possible implications for biomonitoring. Comparative measurements were performed in order to investigate the use of cryopreserved vs. freshly separated peripheral mononuclear blood....... We measured the DNA repair activity as dimethylsulfate induced unscheduled DNA synthesis (UDS) in PMBC incubated with either autologous plasma or fetal bovine serum (FBS). Comparison of the hprt mutant frequency by the T cell cloning assay was made in parallel. Finally the content of B...

  19. A spectral and morphologic method for white blood cell classification

    Science.gov (United States)

    Wang, Qian; Chang, Li; Zhou, Mei; Li, Qingli; Liu, Hongying; Guo, Fangmin

    2016-10-01

    The identification of white blood cells is important as it provides an assay for diagnosis of various diseases. To overcome the complexity and inaccuracy of traditional methods based on light microscopy, we proposed a spectral and morphologic method based on hyperspectral blood images. We applied mathematical morphology-based methods to extract spatial information and supervised method is employed for spectral analysis. Experimental results show that white blood cells could be segmented and classified into five types with an overall accuracy of more than 90%. Moreover, the experiments including spectral features reached higher accuracy than the spatial-only cases, with a maximum improvement of nearly 20%. By combing both spatial and spectral features, the proposed method provides higher classification accuracy than traditional methods.

  20. Net haemoglobin increase from reinfusion of refrigerated vs. frozen red blood cells after autologous blood transfusions

    DEFF Research Database (Denmark)

    Ashenden, M; Mørkeberg, Jakob Sehested

    2011-01-01

    objective was to examine which storage procedure yielded the largest increase in circulating haemoglobin after reinfusion compared to baseline. MATERIALS AND METHODS  Equal volumes of blood from 15 men were withdrawn and stored either frozen or refrigerated as packed red blood cells. Serial measures...... freezing. Nevertheless, frozen storage allowed haemoglobin to fully recover before reinfusion, while the haemoglobin was 10% lower in the refrigerated group compared with baseline. After reinfusion, the haemoglobin levels were 11·5% higher than the baseline values in the group reinfused with frozen blood......, while for the refrigerated group, haemoglobin levels were only 5·2% higher than baseline. CONCLUSION  The relatively larger recovery from anaemia in the frozen group during storage more than compensated for the larger loss of haemoglobin during freezing and resulted in a larger net gain in haemoglobin...

  1. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  2. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  3. Red blood cell transfusion during septic shock in the ICU

    DEFF Research Database (Denmark)

    Perner, A; Smith, S H; Carlsen, S

    2012-01-01

    Transfusion of red blood cells (RBCs) remains controversial in patients with septic shock, but current practice is unknown. Our aim was to evaluate RBC transfusion practice in septic shock in the intensive care unit (ICU), and patient characteristics and outcome associated with RBC transfusion....

  4. Automated counting of white blood cells in synovial fluid.

    NARCIS (Netherlands)

    R. de Jonge (Robert); R.W. Brouwer (Reinoud); M. Smit (Marij); M. de Frankrijker-Merkestijn; R.J. Dolhain; J.M.W. Hazes (Mieke); A.W. van Toorenenbergen (Albert); J. Lindemans (Jan)

    2004-01-01

    textabstractOBJECTIVES: To evaluate the performance of automated leucocyte (white blood cell; WBC) counting by comparison with manual counting. METHODS: The number of WBC was determined in heparinized synovial fluid samples by the use of (i) a standard urine cytometer (Kova) and a

  5. Hypoxia, hormones, and red blood cell function in chick embryos.

    Science.gov (United States)

    Dragon, Stefanie; Baumann, Rosemarie

    2003-04-01

    The red blood cell function of avian embryos is regulated by cAMP. Adenosine A(2A) and beta-adrenergic receptor activation during hypoxic conditions cause changes in the hemoglobin oxygen affinity and CO(2) transport. Furthermore, experimental evidence suggests a general involvement of cAMP in terminal differentiation of avian erythroblasts.

  6. Red blood cells intended for transfusion : quality criteria revisited

    NARCIS (Netherlands)

    Hogman, CF; Meryman, HT

    2006-01-01

    Great variation exists with respect to viability and function of fresh and stored red blood cells (RBCs) as well as of the contents of RBC hemoglobin (Hb) in individual units. Improved technology is available for the preparation as well as the storage of RBCs. The authors raise the question whether

  7. The effects of cryopreservation on red blood cell rheologic properties

    NARCIS (Netherlands)

    Henkelman, Sandra; Lagerberg, Johan W. M.; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    2010-01-01

    BACKGROUND: In transfusion medicine, frozen red blood cells (RBCs) are an alternative for liquid-stored RBCs. Little is known about the rheologic properties (i.e., aggregability and deformability) of thawed RBCs. In this study the rheologic properties of high-glycerol frozen RBCs and postthaw stored

  8. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  9. Red blood cell antibodies in pregnancy and their clinical consequences

    DEFF Research Database (Denmark)

    Nordvall, Maria; Dziegiel, Morten Hanefeld; Hegaard, Hanne Kristine;

    2009-01-01

    The objective was to determine clinical consequences of various specificities for the infant/fetus. The population was patients referred between 1998 and 2005 to the tertiary center because of detected red blood cell (RBC) alloimmunization. Altogether 455 infants were delivered by 390 alloimmunized...

  10. Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60.

    Directory of Open Access Journals (Sweden)

    Joost A Aalberse

    Full Text Available BACKGROUND: To prevent harmful autoimmunity most immune responses to self proteins are controlled by central and peripheral tolerance. T cells specific for a limited set of self-proteins such as human heat shock protein 60 (HSP60 may contribute to peripheral tolerance. It is not known whether HSP60-specific T cells are present at birth and thus may play a role in neonatal tolerance. We studied whether self-HSP60 reactive T cells are present in cord blood, and if so, what phenotype these cells have. METHODOLOGY/PRINCIPAL FINDINGS: Cord blood mononuclear cells (CBMC of healthy, full term neonates (n = 21, were cultured with HSP60 and Tetanus Toxoid (TT to study antigen specific proliferation, cytokine secretion and up-regulation of surface markers. The functional capacity of HSP60-induced T cells was determined with in vitro suppression assays. Stimulation of CBMC with HSP60 led to CD4(+ T cell proliferation and the production of various cytokines, most notably IL-10, Interferon-gamma, and IL-6. HSP60-induced T cells expressed FOXP3 and suppressed effector T cell responses in vitro. CONCLUSION: Self-reactive HSP60 specific T cells are already present at birth. Upon stimulation with self-HSP60 these cells proliferate, produce cytokines and express FOXP3. These cells function as suppressor cells in vitro and thus they may be involved in the regulation of neonatal immune responses.

  11. Ekstrak Air Tapak Dara Menurunkan Kadar Gula dan Meningkatkan Jumlah Sel Beta Pankreas Kelinci Hiperglikemia (THE WATER EXTRACT OF TAPAK DARA DECREASES BLOOD GLUCOSE CONCENTRATION AND INCREASES INSULIN PRODUCTION BY PANCREATIC BETA-CELLS ON HYPERGLYCEMIC

    Directory of Open Access Journals (Sweden)

    Srikayati Widyastuti

    2012-03-01

    Full Text Available The present study was carried out to investigate the effects of tapak dara (Catharanthus roseus onblood glucose level and insulin profile in hyperglicemic rabbits. Fifeteen local male rabbits were used forthis study. The rabbits were randomly divided into five groups. Group 1 (K-, a control negative group;group 2 (K+, a control positive hipergliccemia; group 3 (KT1 and group 4 (KT2, were groups hiperglicemiaand treated with water extract of tapak dara doses 1 and 2 g/kg bw, respectively; and group 5 (KO, a grouphiperglicemia that treated with glibenclamide 2 mg/kg bw. The result showed water extract of tapak daradose 1 g/kgbw could not decrease the blood glucose level in hyperglycemic rabbits, while dose 2 g/kg bwcould decline blood glucose level in rabbits. This decline had no significantly difference compared withglibenclamide treatment (P> 0.05. Immunohistchemistry result indicated that water extract of tapakdara could stimulate beta cells pancreas to produce insulin.

  12. 78 FR 47714 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2013-08-06

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Health Service Act, as amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises... Advancing Hematopoietic Stem Cell Transplantation for Hemoglobinopathies. The Council also will...

  13. 78 FR 23571 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2013-04-19

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises the Secretary of the... Hematopoietic Stem Cell Transplantation for Hemoglobinopathies. The Council will also hear presentations...

  14. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......We present a novel method for the determination of density and compressibility of individual particles and cells undergoing microchannel acoustophoresis in an arbitrary 2D acoustic field. Our method is a critical advancement within acoustophoretic separation of biological cells, as the ability......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  15. Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE Study.

    NARCIS (Netherlands)

    Pfefferle, P.I.; Buchele, G.; Blumer, N.; Roponen, M.; Ege, M.J.; Krauss-Etschmann, S.; Genuneit, J.; Hyvarinen, A.; Hirvonen, M.R.; Lauener, R.; Pekkanen, J.; Riedler, J.; Dalphin, J.C.; Brunekreef, B.; Braun-Fahrlander, C.; von Mutius, E.

    2010-01-01

    BACKGROUND: Traditional farming represents a unique model situation to investigate the relationship of early-life farm-related exposure and allergy protection. OBJECTIVES: To investigate associations between maternal farm exposures and cytokine production in cord blood (CB) mononuclear cells in a pr

  16. Acetylsalicylic acid and morphology of red blood cells

    Directory of Open Access Journals (Sweden)

    Jacques Natan Grinapel Frydman

    2010-06-01

    Full Text Available This work evaluated the effect of in vitro and in vivo treatment with ASA on the morphology of the red blood cells. Blood samples or Wistar rats were treated with ASA for one hour. Blood samples or animals treated with saline were used as control group. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphology of red blood cells were evaluated under optical microscopy. Data showed that the in vitro treatment for one hour with ASA at higher dose used significantly (pEste trabalho avaliou o efeito do tratamento in vitro e in vivo com AAS na morfologia dos eritrócitos. Amostras de sangue ou ratos Wistar foram tratadas com AAS por uma hora. Amostras sangüíneas ou animais tratados com salina foram utilizados como grupos controle. Distensões de sangue foram preparadas, fixadas, coradas e a análise morfológica qualitativa e quantitativa dos eritrócitos foi realizada em microscópio óptico. Os dados mostraram que o tratamento in vitro por uma hora com AAS na maior dose utilizada modificou significativamente (p<0.05 a relação perímetro/área dos eritrócitos. Não foram obtidas alterações morfológicas com o tratamento in vivo. O uso do AAS em doses altas poderia interferir na forma dos eritrócitos.

  17. Ventricular Assist Devices and Increased Blood Product Utilization for Cardiac Transplantation

    Science.gov (United States)

    Stone, Matthew L.; LaPar, Damien J.; Benrashid, Ehsan; Scalzo, David C.; Ailawadi, Gorav; Kron, Irving L.; Bergin, James D.; Blank, Randal S.; Kern, John A.

    2016-01-01

    Background and Aim of Study The purpose of this study was to examine whether blood product utilization, one-year cell-mediated rejection rates, and mid-term survival significantly differ for ventricular assist device (VAD patients compared to non-VAD (NVAD) patients following cardiac transplantation. Methods From July 2004 to August 2011, 79 patients underwent cardiac transplantation at a single institution. Following exclusion of patients bridged to transplantation with VADs other than the HeartMate II® LVAD (n = 10), patients were stratified by VAD presence at transplantation: VAD patients (n = 35, age: 54.0 [48.0–59.0] years) vs. NVAD patients (n = 34, age: 52.5 [42.8–59.3] years). The primary outcomes of interest were blood product transfusion requirements, one-year cell-mediated rejection rates, and mid-term survival post-transplantation. Results Preoperative patient characteristics were similar for VAD and NVAD patients. NVAD patients presented with higher median preoperative creatinine levels compared to VAD patients (1.3 [1.1–1.6] vs. 1.1 [0.9–1.4], p = 0.004). VAD patients accrued higher intraoperative transfusion of all blood products (all p ≤ 0.001) compared to NVAD patients. The incidence of clinically significant cell-mediated rejection within the first posttransplant year was higher in VAD compared to NVAD patients (66.7% vs. 33.3%, p = 0.02). During a median follow-up period of 3.2 (2.0, 6.3) years, VAD patients demonstrated an increased postoperative mortality that did not reach statistical significance (20.0% vs. 8.8%, p = 0.20). Conclusions During the initial era as a bridge to transplantation, the HeartMate II® LVAD significantly increased blood product utilization and one-year cell-mediated rejection rates for cardiac transplantation. Further study is warranted to optimize anticoagulation strategies and to define causal relationships between these factors for the current era of cardiac transplantation. PMID:25529999

  18. Brazilian propolis: a natural product that improved the fungicidal activity by blood phagocytes.

    Science.gov (United States)

    Possamai, Muryllo Mendes; Honorio-França, Adenilda Cristina; Reinaque, Ana Paula Barcelos; França, Eduardo Luzia; Souto, Paula Cristina de Souza

    2013-01-01

    Natural product incorporation into microcarriers increases the bioavailability of these compounds, consequently improving their therapeutic properties. Natural products, particularly those from bees such as propolis, are widely used in popular medicine. Propolis is a powerful treatment for several diseases. In this context, the present study evaluated the effect of propolis Scaptotrigona sp. and its fractions, alone or adsorbed to polyethylene glycol (PEG) microspheres, on the activity of human phagocytes against Candida albicans. The results show that propolis exerts a stimulatory effect on these cells to assist in combating the fungus, especially as the crude extract is compared with the fractions. However, when incorporated into microspheres, these properties were significantly potentiated. These results suggest that propolis adsorbed onto PEG microspheres has immunostimulatory effects on phagocytes in human blood. Therefore, propolis may potentially be an additional natural product that can be used for a variety of therapies.

  19. Brazilian Propolis: A Natural Product That Improved the Fungicidal Activity by Blood Phagocytes

    Directory of Open Access Journals (Sweden)

    Muryllo Mendes Possamai

    2013-01-01

    Full Text Available Natural product incorporation into microcarriers increases the bioavailability of these compounds, consequently improving their therapeutic properties. Natural products, particularly those from bees such as propolis, are widely used in popular medicine. Propolis is a powerful treatment for several diseases. In this context, the present study evaluated the effect of propolis Scaptotrigona sp. and its fractions, alone or adsorbed to polyethylene glycol (PEG microspheres, on the activity of human phagocytes against Candida albicans. The results show that propolis exerts a stimulatory effect on these cells to assist in combating the fungus, especially as the crude extract is compared with the fractions. However, when incorporated into microspheres, these properties were significantly potentiated. These results suggest that propolis adsorbed onto PEG microspheres has immunostimulatory effects on phagocytes in human blood. Therefore, propolis may potentially be an additional natural product that can be used for a variety of therapies.

  20. Differentiation of Human Cord Blood and Stromal Derived Stem Cells into Neuron Cells

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2007-01-01

    Full Text Available The most basic properties of stem cells are the capacities to self-renew indefinitely and to differentiate into multiple cell or tissue types. Umbilical cord blood has been utilized for human hematopoietic stem cell transplantation as an alternative source to bone marrow.The experiments show that Wharton’s jelly cells are easily attainable and can be expanded in vitro, maintained in culture, and induced to differentiate into neural cells. Almost recent studies it has been discovered that the cord blood-derived cells can differantiate not only to blood cells but also to various somatic cells like neuron or muscle cell with the signals taken from the envoirenment.Interestingly, neural cells obtained from umbilical cord blood show a relatively high spontaneous differentiation into oligodendrocytes, Embryonic stem cells proliferate indefinitely and can differentiate spontaneously into all tissue types.It has been shown that embryonic stem cells can be induced to differentiate into neurons and glia by treatment with retinoic acid or basic fibroblast growth factor. It has been studied that the diseases as Motor Neuron Disease, Parkinson, Alzheimer and degeneration of medulla spinalis and also paralysises could be treated with transplantation of cord blood-dericed stem cells.

  1. Transfusion audit of blood products using the World Health Organization Basic Information Sheet in Qazvin, Islamic Republic of Iran.

    Science.gov (United States)

    Sheikholeslami, H; Kani, C; Fallah-Abed, P; Lalooha, F; Mohammadi, N

    2012-12-04

    We assessed the practicality of using the transfusion Basic Information Sheet (BIS) for data collection, to determine the overall adequacy of physician documentation of blood product transfusion, and to make an audit of the appropriateness of blood product transfusion. The transfusion process and clinical indications for transfusions administered to adult hospitalized patients in 3 tertiary care teaching hospitals in Qazvin were prospectively reviewed. Adequate documentation was achieved in 62.6% of all transfusion episodes, range 41%-73%, depending on the medical specialty; 15.7% of red blood cells and whole blood requests, 40.8% of platelet requests and 34.1% of fresh frozen plasma requests were inappropriate. BIS-based information along with data collection can be used to provide feedback regarding the effectiveness of and compliance with local and national transfusion guidelines.

  2. Conversion of mononuclear cells from human umbilical cord blood into hepatocyte-like cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fang-ting; FANG Jia-zhi; YU Jie; WAN Hui-juan; YE Jing; LONG Xia; YIN Mei-jun; HUANG Chun-qiao

    2006-01-01

    Objective:To evaluate the differentiation of human umbilical cord blood cells into hepatocyte-like cells. Methods: Mononuclear cells (MNCs) derived from human umbilical cord blood were isolated using Ficoll. The experiment was derived into 3 categories: (1) MNCs co-cultured with 50 mg minced liver tissue separated by a trans-well membrane and then collected at 0 h,24 h,48 h and 72 h; (2) MNCs cultured along supplemented with 100 ml/L FBS, 100 μ/ml penicillin, 100 μg/ml streptomycin, 4. 7 μg/ml linoleic acid, 1×ITS, 10-4 mol/L L-Ascorbic acid 2-P and a combination of FGF4 (100 ng/ml) and HGF (20 ng/Ml). Cells were then collected at 0 d and 16 d to examine the expression profile of hepatocyte correlating markers; (3) 0.2-0.3 ml of MNCs with a cell density of 2×107/ml were transplanted into prepared recipient mice [n= 12, injected with 0.4 ml/kg (20%) CCl4 and 150 ng/kg 5-fluorouracil (5-Fu) prior the transplant 24 h and 48 h, respectively] via injection through tail vein. Mice were sacrificed 4 weeks after transplantation. The hepatocyte correlating mRNAs and proteins were determined by RTPCR, immunohistochemical analysis and immunoflurence technique. Results: (1) After 72 h, a number of glycogen positive stained cells were observed with MNCs co-cultured with damaged mouse liver tissues.The expression of hepatocyte markers, human albumin (ALB), α-fetal protein (AFP) and human GATA4 Mrna and proteins were detected by RT-PCR and immunohistochemistry as well. For the confirmation,the DNA sequencing of PCR products was performed. In control groups, MNCs co-cultured with normal mouse hepatocytes or MNCs cultured alone, all markers remained negative. (2) In growth factor supplemented culture system, MNCs developed into larger volume with richer cytoplasm and binucleation after 16 d. Positive expression of ALB, AFP, CK18 and CK19 Mrna were detected with RT-PCR, and ALB positive staining was observed by immunocytochemistry as well. In contrast, MNCs cultured without

  3. Blood cell counting and classification by nonflowing laser light scattering method

    Science.gov (United States)

    Yang, Ye; Zhang, Zhenxi; Yang, Xinhui; Jiang, Dazong; Yeo, Joon Hock

    1999-11-01

    A new non-flowing laser light scattering method for counting and classifying blood cells is presented. A linear charge- coupled device with 1024 elements is used to detect the scattered light intensity distribution of the blood cells. A pinhole plate is combined with the CCD to compete the focusing of the measurement system. An isotropic sphere is used to simulate the blood cell. Mie theory is used to describe the scattering of blood cells. In order to inverse the size distribution of blood cells from their scattered light intensity distribution, Powell method combined with precision punishment method is used as a dependent model method for measurement red blood cells and blood plates. Non-negative constraint least square method combined with Powell method and precision punishment method is used as an independent model for measuring white blood cells. The size distributions of white blood cells and red blood cells, and the mean diameter of red blood cells are measured by this method. White blood cells can be divided into three classes: lymphocytes, middle-sized cells and neutrocytes according to their sizes. And the number of blood cells in unit volume can also be measured by the linear dependence of blood cells concentration on scattered light intensity.

  4. Hemoglobin Aggregation in Single Red Blood Cells of Sickle Cell Anemia

    Science.gov (United States)

    Nishio, Izumi; Tanaka, Toyoichi; Sun, Shao-Tang; Imanishi, Yuri; Tsuyoshi Ohnishi, S.

    1983-06-01

    A laser light scattering technique was used to observe the extent of hemoglobin aggregation in solitary red blood cells of sickle cell anemia. Hemoglobin aggregation was confirmed in deoxygenated cells. The light scattering technique can also be applied to cytoplasmic studies of any biological cell.

  5. Flow of Red Blood Cells in Stenosed Microvessels

    Science.gov (United States)

    Vahidkhah, Koohyar; Balogh, Peter; Bagchi, Prosenjit

    2016-06-01

    A computational study is presented on the flow of deformable red blood cells in stenosed microvessels. It is observed that the Fahraeus-Lindqvist effect is significantly enhanced due to the presence of a stenosis. The apparent viscosity of blood is observed to increase by several folds when compared to non-stenosed vessels. An asymmetric distribution of the red blood cells, caused by geometric focusing in stenosed vessels, is observed to play a major role in the enhancement. The asymmetry in cell distribution also results in an asymmetry in average velocity and wall shear stress along the length of the stenosis. The discrete motion of the cells causes large time-dependent fluctuations in flow properties. The root-mean-square of flow rate fluctuations could be an order of magnitude higher than that in non-stenosed vessels. Several folds increase in Eulerian velocity fluctuation is also observed in the vicinity of the stenosis. Surprisingly, a transient flow reversal is observed upstream a stenosis but not downstream. The asymmetry and fluctuations in flow quantities and the flow reversal would not occur in absence of the cells. It is concluded that the flow physics and its physiological consequences are significantly different in micro- versus macrovascular stenosis.

  6. Umbilical Cord Blood Stem Cells. Who has the right word?

    Directory of Open Access Journals (Sweden)

    Gisela Laporta

    2014-12-01

    Full Text Available In this article we analyze bioethical and legal aspects related to the cryopreservation of cord blood stem cells in Argentina. To unify definitions, the concept and variety of stem cells, together with the understanding of the means to obtain and store umbilical cord blood stem cells, are provided.  Options that arise in our country, mainly analyzing the conceptual differences underlying legal body and parts by public and private biobanks, are described. Additionally, the current Argentinean legislation and circumstances arising from a resolution which INCUCAI sought to regulate private biobanks, is analyzed. This analysis leads to thoughts on the way conflicts are solved when the health and life of people are judicialized. In this particular case, the appearance of a complex new topic which gives rise to new social and healthcare scenarios, must be further understood.

  7. Knowledge of appropriate blood product use in perioperative patients among clinicians at a tertiary hospital

    Directory of Open Access Journals (Sweden)

    Bradley Yudelowitz

    2016-12-01

    Conclusion: Clinician's knowledge of risks, resources, costs and ordering of blood products for perioperative patients is poor. Transfusion triggers and administration protocols had an acceptable correct response rate.

  8. Structural analysis of red blood cell aggregates under shear flow.

    Science.gov (United States)

    Chesnutt, J K W; Marshall, J S

    2010-03-01

    A set of measures of red blood cell (RBC) aggregates are developed and applied to examine the aggregate structure under plane shear and channel flows. Some of these measures are based on averages over the set of red blood cells which are in contact with each other at a given time. Other measures are developed by first fitting an ellipse to the planar projection of the aggregate, and then examining the area and aspect ratio of the fit ellipse as well as the orientations of constituent RBCs with respect to the fit ellipse axes. The aggregate structural measures are illustrated using a new mesoscale computational model for blood cell transport, collision and adhesion. The sensitivity of this model to change in adhesive surface energy density and shear rate on the aggregate structure is examined. It is found that the mesoscale model predictions exhibit reasonable agreement with experimental and theoretical data for blood flow in plane shear and channel flows. The new structural measures are used to examine the differences between predictions of two- and three-dimensional computations of the aggregate formation, showing that two-dimensional computations retain some of the important aspects of three-dimensional computations.

  9. Plasma and Plasma Protein Product Transfusion: A Canadian Blood Services Centre for Innovation Symposium.

    Science.gov (United States)

    Zeller, Michelle P; Al-Habsi, Khalid S; Golder, Mia; Walsh, Geraldine M; Sheffield, William P

    2015-07-01

    Plasma obtained via whole blood donation processing or via apheresis technology can either be transfused directly to patients or pooled and fractionated into plasma protein products that are concentrates of 1 or more purified plasma protein. The evidence base supporting clinical efficacy in most of the indications for which plasma is transfused is weak, whereas high-quality evidence supports the efficacy of plasma protein products in at least some of the clinical settings in which they are used. Transfusable plasma utilization remains composed in part of applications that fall outside of clinical practice guidelines. Plasma contains all of the soluble coagulation factors and is frequently transfused in efforts to restore or reinforce patient hemostasis. The biochemical complexities of coagulation have in recent years been rationalized in newer cell-based models that supplement the cascade hypothesis. Efforts to normalize widely used clinical hemostasis screening test values by plasma transfusion are thought to be misplaced, but superior rapid tests have been slow to emerge. The advent of non-vitamin K-dependent oral anticoagulants has brought new challenges to clinical laboratories in plasma testing and to clinicians needing to reverse non-vitamin K-dependent oral anticoagulants urgently. Current plasma-related controversies include prophylactic plasma transfusion before invasive procedures, plasma vs prothrombin complex concentrates for urgent warfarin reversal, and the utility of increased ratios of plasma to red blood cell units transfused in massive transfusion protocols. The first recombinant plasma protein products to reach the clinic were recombinant hemophilia treatment products, and these donor-free equivalents to factors VIII and IX are now being supplemented with novel products whose circulatory half-lives have been increased by chemical modification or genetic fusion. Achieving optimal plasma utilization is an ongoing challenge in the interconnected

  10. Biomechanics and biorheology of red blood cells in sickle cell anemia

    Science.gov (United States)

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-01

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis. PMID:27876368

  11. Biomechanics and biorheology of red blood cells in sickle cell anemia.

    Science.gov (United States)

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-04

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.

  12. Erythropoietic Potential of CD34+ Hematopoietic Stem Cells from Human Cord Blood and G-CSF-Mobilized Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Honglian Jin

    2014-01-01

    Full Text Available Red blood cell (RBC supply for transfusion has been severely constrained by the limited availability of donor blood and the emergence of infection and contamination issues. Alternatively, hematopoietic stem cells (HSCs from human organs have been increasingly considered as safe and effective blood source. Several methods have been studied to obtain mature RBCs from CD34+ hematopoietic stem cells via in vitro culture. Among them, human cord blood (CB and granulocyte colony-stimulating factor-mobilized adult peripheral blood (mPB are common adult stem cells used for allogeneic transplantation. Our present study focuses on comparing CB- and mPB-derived stem cells in differentiation from CD34+ cells into mature RBCs. By using CD34+ cells from cord blood and G-CSF mobilized peripheral blood, we showed in vitro RBC generation of artificial red blood cells. Our results demonstrate that CB- and mPB-derived CD34+ hematopoietic stem cells have similar characteristics when cultured under the same conditions, but differ considerably with respect to expression levels of various genes and hemoglobin development. This study is the first to compare the characteristics of CB- and mPB-derived erythrocytes. The results support the idea that CB and mPB, despite some similarities, possess different erythropoietic potentials in in vitro culture systems.

  13. Multiscale Modeling of Red Blood Cells Squeezing through Submicron Slits

    Science.gov (United States)

    Peng, Zhangli; Lu, Huijie

    2016-11-01

    A multiscale model is applied to study the dynamics of healthy red blood cells (RBCs), RBCs in hereditary spherocytosis, and sickle cell disease squeezing through submicron slits. This study is motivated by the mechanical filtration of RBCs by inter-endothelial slits in the spleen. First, the model is validated by comparing the simulation results with experiments. Secondly, the deformation of the cytoskeleton in healthy RBCs is investigated. Thirdly, the mechanisms of damage in hereditary spherocytosis are investigated. Finally, the effects of cytoplasm and membrane viscosities, especially in sickle cell disease, are examined. The simulations results provided guidance for future experiments to explore the dynamics of RBCs under extreme deformation.

  14. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  15. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Science.gov (United States)

    Luevano, Martha; Domogala, Anna; Blundell, Michael; Jackson, Nicola; Pedroza-Pacheco, Isabela; Derniame, Sophie; Escobedo-Cousin, Michelle; Querol, Sergio; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2014-01-01

    Adoptive natural killer (NK) cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC) has become an alluring option for NK cell therapy, with umbilical cord blood (UCB) and mobilized peripheral blood (PBCD34(+)) being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+)) and frozen PBCD34(+) to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+) cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+) cultures. NK cells generated from CBCD34(+) and PBCD34(+) expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+)-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+)-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+) for the production of NK cells in vitro results in higher cell numbers than PBCD34(+), without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  16. Blood smear

    Science.gov (United States)

    ... some red blood cells shaped like spheres ( hereditary spherocytosis ) Increased breakdown of RBCs Presence of RBCs with ... normal Red blood cells, elliptocytosis Red blood cells, spherocytosis Acute lymphocytic leukemia - photomicrograph Red blood cells, multiple ...

  17. Phenotypic differences of CD4(+) T cells in response to red blood cell immunization in transfused sickle cell disease patients.

    Science.gov (United States)

    Vingert, Benoît; Tamagne, Marie; Habibi, Anoosha; Pakdaman, Sadaf; Ripa, Julie; Elayeb, Rahma; Galacteros, Frédéric; Bierling, Philippe; Ansart-Pirenne, Hélène; Bartolucci, Pablo; Noizat-Pirenne, France

    2015-06-01

    Alloimmunization against red blood cells (RBCs) is the main immunological risk associated with transfusion in patients with sickle cell disease (SCD). However, about 50-70% of SCD patients never get immunized despite frequent transfusion. In murine models, CD4(+) T cells play a key role in RBC alloimmunization. We therefore explored and compared the CD4(+) T-cell phenotypes and functions between a group of SCD patients (n = 11) who never became immunized despite a high transfusion regimen and a group of SCD patients (n = 10) who had become immunized (at least against Kidd antigen b) after a low transfusion regimen. We studied markers of CD4(+) T-cell function, including TLR, that directly control lymphocyte function, and their spontaneous cytokine production. We also tested responders for the cytokine profile in response to Kidd antigen b peptides. Low TLR2/TLR3 expression and, unexpectedly, strong expression of CD40 on CD4(+) T cells were associated with the nonresponder status, whereas spontaneous expression of IL-10 by CD4(+) T cells and weak Tbet expression were associated with the responder status. A Th17 profile was predominant in responders when stimulated by Jb(k) . These findings implicate CD4(+) T cells in alloimmunization in humans and suggest that they may be exploited to differentiate responders from nonresponders.

  18. [Morphometry and electrophoretic mobility of red blood cells from patients with asthma in the intravenous blood laser irradiation].

    Science.gov (United States)

    Sarycheva, T G; Tsybzhitova, E B; Popova, O V; Aleksandrov, O V

    2009-03-01

    The morphometry and electrophoretic mobility of red blood cells from patients with infection-dependent asthma were comparatively studied prior to and following treatment. The patients who had underwent intravenous laser irradiation of blood (ILIB) in addition to conventional therapy had better morphofunctional parameters of red blood cells, by restoring their normal forms, decreasing their transitional ones, and increasing their electrophoretic mobility to normal values. Those who received traditional drug therapy showed no considerable morphofunctional changes of erythrocytes. Thus, in asthmatic patients, the changes in the morphology and function of red blood cells may suggest their membranous structural changes for whose correction ILIB should used.

  19. Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)

    Science.gov (United States)

    Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.

    2007-02-01

    Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.

  20. Kinetics of virus production from single cells.

    Science.gov (United States)

    Timm, Andrea; Yin, John

    2012-03-01

    The production of virus by infected cells is an essential process for the spread and persistence of viral diseases, the effectiveness of live-viral vaccines, and the manufacture of viruses for diverse applications. Yet despite its importance, methods to precisely measure virus production from cells are lacking. Most methods test infected-cell populations, masking how individual cells behave. Here we measured the kinetics of virus production from single cells. We combined simple steps of liquid-phase infection, serial dilution, centrifugation, and harvesting, without specialized equipment, to track the production of virus particles from BHK cells infected with vesicular stomatitis virus. Remarkably, cell-to-cell differences in latent times to virus release were within a factor of two, while production rates and virus yields spanned over 300-fold, highlighting an extreme diversity in virus production for cells from the same population. These findings have fundamental and technological implications for health and disease.

  1. Characterization of red blood cells (RBCs) using dual Brillouin/Raman micro-spectroscopy

    Science.gov (United States)

    Meng, Zhaokai; Bustamante-Lopez, Sandra C.; Yakovlev, Vladislav V.; Meissner, Kenith E.

    2016-04-01

    Erythrocytes, or red blood cells, transport oxygen to and carbon dioxide from the body's tissues and organs. Red blood cell mechanical properties are altered in a number of diseases such as sickle cell anaemia and malaria. Additionally, mechanically modified red blood cell ghosts are being considered as a long-term, biocompatible carrier for drug delivery and for blood analyte sensing. Brillouin spectroscopy enables viscoelastic characterization of samples at the microscale. In this report, Brillouin spectroscopy is applied to characterize the mechanical properties of red blood cells and red blood cell ghosts.

  2. Saving the leftovers: models for banking cord blood stem cells.

    Science.gov (United States)

    Cogdell, Kimberly J

    2009-01-01

    Each year there are over four million live births in the United States. Each birth produces umbilical cord blood stem cells, which are usually discarded. The author argues that rather than discarding the umbilical cord, this valuable resource of cord blood should be banked and used for research and therapeutic purposes. Umbilical cord blood could provide a solution to the critical need to find matching donors for hematopoietic transplants in patients who have no matching bone marrow donors. Creating a system of universal donation to a public bank will greatlyincrease the number of donors and therefore, the number of matches for patients. Such a system will facilitate the development and use of new technologies and transplant procedures, while providing an opportunity for treatment to individuals who would otherwise not be able to find suitable donors.

  3. Mobility Enhancement of Red Blood Cells with Biopolymers

    Science.gov (United States)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  4. Generation of red blood cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Dias, Jessica; Gumenyuk, Marina; Kang, HyunJun; Vodyanik, Maxim; Yu, Junying; Thomson, James A; Slukvin, Igor I

    2011-09-01

    Differentiation of human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) into the erythroid lineage of cells offers a novel opportunity to study erythroid development, regulation of globin switching, drug testing, and modeling of red blood cell (RBC) diseases in vitro. Here we describe an approach for the efficient generation of RBCs from hiPSC/hESCs using an OP9 coculture system to induce hematopoietic differentiation followed by selective expansion of erythroid cells in serum-free media with erythropoiesis-supporting cytokines. We showed that fibroblast-derived transgenic hiPSCs generated using lentivirus-based vectors and transgene-free hiPSCs generated using episomal vectors can be differentiated into RBCs with an efficiency similar to that of H1 hESCs. Erythroid cultures established with this approach consisted of an essentially pure population of CD235a(+)CD45(-) leukocyte-free RBCs with robust expansion potential and long life span (up to 90 days). Similar to hESCs, hiPSC-derived RBCs expressed predominately fetal γ and embryonic ɛ globins, indicating complete reprogramming of β-globin locus following transition of fibroblasts to the pluripotent state. Although β-globin expression was detected in hiPSC/hESC-derived erythroid cells, its expression was substantially lower than the embryonic and fetal globins. Overall, these results demonstrate the feasibility of large-scale production of erythroid cells from fibroblast-derived hiPSCs, as has been described for hESCs. Since RBCs generated from transgene-free hiPSCs lack genomic integration and background expression of reprogramming genes, they would be a preferable cell source for modeling of diseases and for gene function studies.

  5. Ghost Cell Suspensions as Blood Analogue Fluid for Macroscopic Particle Image Velocimetry Measurements.

    Science.gov (United States)

    Jansen, Sebastian V; Müller, Indra; Nachtsheim, Max; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2016-02-01

    Spatially resolved measurement of blood flow is of great interest in the development of artificial blood-carrying devices such as blood pumps, heart valve prostheses, and oxygenators. Particle image velocimetry (PIV) is able to measure instantaneous velocity fields in a plane with high accuracy and is being used more frequently for the development of such devices. However, as this measurement technique is based on optical access, blood flow at physiological hematocrit values is difficult to measure due to its low transparency and multiscattering properties. So far, only very small dimensions (in the range of 400 μm) can be measured using PIV. A suspension of ghost cells (GCs) offers a higher optical transparency than blood while having a similar rheological behavior. In this study, a procedure for the production of GC suspensions containing a very low intracellular hemoglobin concentration is presented. With the help of multiple rounds of controlled cell lysis, the intracellular hemoglobin concentration could be decreased to a point where a standard macroscopic PIV measurement was possible. A velocity profile of a 44% GC suspension in a circular channel with a diameter of 9.5 mm was measured with high spatial resolution. Meanwhile, the rheological behavior was found to be comparable with blood.

  6. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    Science.gov (United States)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  7. Axial dispersion in flowing red blood cell suspensions

    Science.gov (United States)

    Podgorski, Thomas; Losserand, Sylvain; Coupier, Gwennou

    2016-11-01

    A key parameter in blood microcirculation is the transit time of red blood cells (RBCs) through an organ, which can influence the efficiency of gas exchange and oxygen availability. A large dispersion of this transit time is observed in vivo and is partly due to the axial dispersion in the flowing suspension. In the classic Taylor-Aris example of a solute flowing in a tube, the combination of molecular diffusion and parabolic velocity profile leads to enhanced axial dispersion. In suspensions of non-Brownian deformable bodies such as RBCs, axial dispersion is governed by a combination of shear induced migration and shear-induced diffusion arising from hydrodynamic interactions. We revisit this problem in the case of RBC pulses flowing in a microchannel and show that the axial dispersion of the pulse eventually saturates with a final extension that depends directly on RBC mechanical properties. The result is especially interesting in the dilute limit since the final pulse length depends only on the channel width, exponent of the migration law and dimensionless migration velocity. In continuous flow, the dispersion of transit times is the result of complex cell-cell and cell-wall interactions and is strongy influenced by the polydispersity of the blood sample. The authors acknowledge support from LabEx TEC21 and CNES.

  8. Effects of chronic kidney disease on blood cells membrane properties.

    Science.gov (United States)

    Kaderjakova, Z; Lajdova, I; Horvathova, M; Morvova, M; Sikurova, L

    2012-10-01

    Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.

  9. Effect of Korean red ginseng on blood pressure and nitric oxide production

    Institute of Scientific and Technical Information of China (English)

    JEON Byeong Hwa; KIM Cuk Seong; KIM Hoe-Suk; PARK Jin-Bong; NAM Ki Yeul; CHANG Seok Jong

    2000-01-01

    AIM: To investigate the effect of crude saponin and nonsaponin fraction of Korean red ginseng (KRG) on the blood pressure and nitric oxide (NO) production in the conscious rats and cultured endothelial cell line, FCV 304 cells. METHODS: Systolic blood pressure and heart rate were monitored in the conscious rats. Nitric oxide levels and the expression of nitric oxide synthase were measured by a spectrophotometric assay using Griess reagents and Western blotting, respectively. Nitric-oxide synthase activity was measured based on the conversion rate of [3H]arginine to [3H]citmlline. RESUITS: Systolic blood pressure was decreased by crude saponin (100 mg/kg, iv) of KRG in the conscious control and one-kidney, one-clip Goldblatt hypertensive (1K, 1C-GBH) rats. The hypotensive effect induced by crude saponin of KRG reached maximum at 2 - 4 min and slowly recovered after 20 min to the initial level in both groups. Crude saponin of KRG induced tacliycardia in the conscious rats but induced bradycardia in the anesthetized rats. In contrast to crude saponin of KRG, hypotensive effect induced by saponin-free fraction was minimal. Nitric oxide concentrations were increased by the treaunent of crude saponin in conscious rats as well as in the cultured FCV 304 cells. The protein expression level of endothelial constitutive nitric-oxide synthase (eNOS) in the aorta of rats was not increased by crude saponin (100 mg/kg, ip for 3 d). However, nitric-oxide synthase activity was increased by crude saponin of KRG in the aortic homogenate of rats. CONCLUSION: The hypotensive effect of red ginseng is mainly due to saponin fraction of KRG in the conscious rats, and this effect may be due to an increase in the nitric-oxide production by KRG.

  10. Quantification of Cell-Free DNA in Red Blood Cell Units in Different Whole Blood Processing Methods

    Directory of Open Access Journals (Sweden)

    Andrew W. Shih

    2016-01-01

    Full Text Available Background. Whole blood donations in Canada are processed by either the red cell filtration (RCF or whole blood filtration (WBF methods, where leukoreduction is potentially delayed in WBF. Fresh WBF red blood cells (RBCs have been associated with increased in-hospital mortality after transfusion. Cell-free DNA (cfDNA is released by neutrophils prior to leukoreduction, degraded during RBC storage, and is associated with adverse patient outcomes. We explored cfDNA levels in RBCs prepared by RCF and WBF and different storage durations. Methods. Equal numbers of fresh (stored ≤14 days and older RBCs were sampled. cfDNA was quantified by spectrophotometry and PicoGreen. Separate regression models determined the association with processing method and storage duration and their interaction on cfDNA. Results. cfDNA in 120 RBC units (73 RCF, 47 WBF were measured. Using PicoGreen, WBF units overall had higher cfDNA than RCF units (p=0.0010; fresh WBF units had higher cfDNA than fresh RCF units (p=0.0093. Using spectrophotometry, fresh RBC units overall had higher cfDNA than older units (p=0.0031; fresh WBF RBCs had higher cfDNA than older RCF RBCs (p=0.024. Conclusion. Higher cfDNA in fresh WBF was observed compared to older RCF blood. Further study is required for association with patient outcomes.

  11. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria

    Science.gov (United States)

    Mitchell, Adam J.; Gray, Warren D.; Schroeder, Max; Yi, Hong; Taylor, Jeannette V.; Dillard, Rebecca S.; Ke, Zunlong; Wright, Elizabeth R.; Stephens, David; Roback, John D.; Searles, Charles D.

    2016-01-01

    Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators. PMID:27760197

  12. Red cell properties after different modes of blood transportation

    Directory of Open Access Journals (Sweden)

    Asya Makhro

    2016-07-01

    Full Text Available Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extend has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 hours of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin and citrate-based CPDA for two temperatures (4oC and room temperature were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination, red blood cell (RBC volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations and formation of micro vesicles, Ca2+ handling, RBC metabolism, activity of numerous enzymes and O2 transport capacity. Our findings indicate that individual sets of parameter may require different shipment settings (anticoagulants, temperature. Most of the parameters except for ion (Na+, K+, Ca2+ handling and, possibly, reticulocytes counts, tend to favor transportation at 4oC. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using optimized shipment protocol the majority of parameters were stable within 24 hours, the condition that may not hold for the samples of patients with rare anemias. This implies for the as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the

  13. Current state of methodological and decisions for radiation treatment of blood, its components and products

    Directory of Open Access Journals (Sweden)

    Gordeev A.V.

    2014-12-01

    Full Text Available This article presents currently used blood transfusion media — components and blood products, therapeutic effects, reactions and complications of blood transfusion, use of radiation treatment for blood transfusion fluids. There had been discussed in detail the practice of radiation processing of blood components and for the prevention of reaction "graft versus host" and studies of plasma radiation treatment for its infectious safety. There was presented the current state of techniques and technical solutions of radiation treatment of transfusion-transmissible environments. There were also considered an alternative to radiation treatment of blood.

  14. Blood cell telomere length is a dynamic feature.

    Directory of Open Access Journals (Sweden)

    Ulrika Svenson

    Full Text Available There is a considerable heterogeneity in blood cell telomere length (TL for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g. life style and/or environmental factors can affect TL during life. Collectively, these studies imply that blood cell TL might fluctuate during a life time and that the actual TL at a defined time point is the result of potential regulatory mechanism(s and environmental factors. We analyzed relative TL (RTL in subsequent blood samples taken six months apart from 50 individuals and found significant associations between RTL changes and RTL at baseline. Individual RTL changes per month were more pronounced than the changes recorded in a previously studied population analyzed after 10 years' follow up. The data argues for an oscillating TL pattern which levels out at longer follow up times. In a separate group of five blood donors, a marked telomere loss was demonstrated within a six month period for one donor where after TL was stabilized. PCR determined RTL changes were verified by Southern blotting and STELA (single telomere elongation length analysis. The STELA demonstrated that for the donor with a marked telomere loss, the heterogeneity of the telomere distribution decreased considerably, with a noteworthy loss of the largest telomeres. In summary, the collected data support the concept that individual blood cell telomere length is a dynamic feature and this will be important to recognize in future studies of human telomere biology.

  15. Quantification of mast cells and blood vessels in the skin of patients with cutaneous mucinosis.

    Science.gov (United States)

    Martins, Clarice; Nascimento, Adriana Paulino; Monte-Alto-Costa, Andréa; Alves, Maria de Fátima Scotelaro; Carneiro, Sueli Coelho; Porto, Luís Cristóvão de Moraes Sobrino

    2010-07-01

    Recent studies have suggested that mast cell numbers are increased in the skin of patients with cutaneous mucinosis and that these cells may have an important role in angiogenesis and production of mucin. Then, skin biopsies from 30 patients with cutaneous mucinosis (papular mucinosis, focal mucinosis, and mucinosis associated with lupus erythematosus) and from 10 healthy subjects were analyzed. Mast cells and blood vessels were immunolabeled with anti-tryptase and anti-CD34 antibodies, respectively, and then quantified stereologically. Counting was performed in papillary and reticular dermis. An increase in the number of mast cells was observed in the skin of patients with cutaneous mucinosis compared with the control group. Only minimal differences were observed in vessel stereology. There was no correlation between the increase in the number of mast cells and the number of blood vessels in the patients studied. There was no significant difference in the numbers of mast cells or blood vessels between the 3 subgroups of cutaneous mucinosis. Although many clinical forms of mucinosis have been described, neither mast cell number nor vessel distribution seems to distinguish the 3 different forms studied here.

  16. Computer-Aided Diagnosis Of Leukemic Blood Cells

    Science.gov (United States)

    Gunter, U.; Harms, H.; Haucke, M.; Aus, H. M.; ter Meulen, V.

    1982-11-01

    In a first clinical test, computer programs are being used to diagnose leukemias. The data collected include blood samples from patients suffering from acute myelomonocytic-, acute monocytic- and acute promyelocytic, myeloblastic, prolymphocytic, chronic lymphocytic leukemias and leukemic transformed immunocytoma. The proper differentiation of the leukemic cells is essential because the therapy depends on the type of leukemia. The algorithms analyse the fine chromatin texture and distribution in the nuclei as well as size and shape parameters from the cells and nuclei. Cells with similar nuclei from different leukemias can be distinguished from each other by analyzing the cell cytoplasm images. Recognition of these subtle differences in the cells require an image sampling rate of 15-30 pixel/micron. The results for the entire data set correlate directly to established hematological parameters and support the previously published initial training set .

  17. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells.

    Science.gov (United States)

    Spéder, Pauline; Brand, Andrea H

    2014-08-11

    Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion.

  18. Effect of malaria components on blood mononuclear cells involved in immune response

    Institute of Scientific and Technical Information of China (English)

    Chuchard Punsawad

    2013-01-01

    During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.

  19. Effect of malaria components on blood mononuclear cells involved in immune response.

    Science.gov (United States)

    Punsawad, Chuchard

    2013-09-01

    During malaria infection, elevated levels of pro-inflammatory mediators and nitric oxide production have been associated with pathogenesis and disease severity. Previous in vitro and in vivo studies have proposed that both Plasmodium falciparum hemozoin and glycosylphosphatidylinositols are able to modulate blood mononuclear cells, contributing to stimulation of signal transduction and downstream regulation of the NF-κB signaling pathway, and subsequently leading to the production of pro-inflammatory cytokines, chemokines, and nitric oxide. The present review summarizes the published in vitro and in vivo studies that have investigated the mechanism of intracellular signal transduction and activation of the NF-κB signaling pathway in blood mononuclear cells after being inducted by Plasmodium falciparum malaria components. Particular attention is paid to hemozoin and glycosylphosphatidylinositols which reflect the important mechanism of signaling pathways involved in immune response.

  20. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.

    Science.gov (United States)

    Li, Xiang; Chen, Weiqiang; Liu, Guangyu; Lu, Wei; Fu, Jianping

    2014-07-21

    White blood cells (WBCs) constitute about 0.1% of the blood cells, yet they play a critical role in innate and adaptive immune responses against pathogenic infections, allergic conditions, and malignancies and thus contain rich information about the immune status of the body. Rapid isolation of WBCs directly from whole blood is a prerequisite for any integrated immunoassay platform designed for examining WBC phenotypes and functions; however, such functionality is still challenging for blood-on-a-chip systems, as existing microfluidic cell sorting techniques are inadequate for efficiently processing unprocessed whole blood on chip with concurrent high throughput and cell purity. Herein we report a microfluidic chip for continuous-flow isolation and sorting of WBCs from whole blood with high throughput and separation efficiency. The microfluidic cell sorting chip leveraged the crossflow filtration scheme in conjunction with a surface-micromachined poly(dimethylsiloxane) (PDMS) microfiltration membrane (PMM) with high porosity. With a sample throughput of 1 mL h(-1), the microfluidic cell sorting chip could recover 27.4 ± 4.9% WBCs with a purity of 93.5 ± 0.5%. By virtue of its separation efficiency, ease of sample recovery, and high throughput enabled by its continuous-flow operation, the microfluidic cell sorting chip holds promise as an upstream component for blood sample preparation and analysis in integrated blood-on-a-chip systems.

  1. Decreased PD-1 positive blood follicular helper T cells in patients with psoriasis.

    Science.gov (United States)

    Shin, Dongyun; Kim, Dae Suk; Kim, Sung Hee; Je, Jung Hwan; Kim, Hee Ju; Young Kim, Do; Kim, Soo Min; Lee, Min-Geol

    2016-10-01

    Follicular helper T (Tfh) cells are recently characterized subset of helper T cells, which are initially found in the germinal centers of B cell follicles. The major role of Tfh cells is helping B cell activation and antibody production during humoral immunity. Recently, blood Tfh cells were shown to be associated with autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, bullous pemphigoid and psoriasis. There is only one study which investigated Tfh cells in psoriasis patients. Therefore, in this study, we evaluated and analyzed blood Tfh cells in Korean patients with psoriasis. A total of 28 psoriasis patients and 16 healthy controls were enrolled. The frequency and absolute number of CXCR5(+)PD-1(+) Tfh cells were decreased in patients with psoriasis compared to healthy controls. CD4(+)CXCR5(+) T cells and CXCR5(+)ICOS(+) Tfh cells did not show differences. The frequency and absolute number of CXCR5(+)PD-1(+) Tfh cells in psoriasis patients negatively correlated with erythrocyte sedimentation rate and positively correlated with disease duration. The absolute number of CXCR5(+)ICOS(+) Tfh cells also showed positive correlation with disease duration. However, the subpopulations of Tfh cells did not correlate with Psoriasis Area and Severity Index. Serum interleukin-21 level was significantly increased in psoriasis patients compared to healthy controls, however, its level did not correlate with clinical and experimental parameters of psoriasis patients. These findings suggest the decreased function of Tfh cells in psoriasis, which could result in attenuated B cell immune responses in the pathogenesis of psoriasis. However, further investigations are necessary to confirm the function of Tfh cells in psoriasis vulgaris.

  2. Cinnamomum zeylanicum extract on the radiolabelling of blood constituents and the morphometry of red blood cells: In vitro assay

    Energy Technology Data Exchange (ETDEWEB)

    Benarroz, M.O. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180 Natal, RN (Brazil); Fonseca, A.S. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil)], E-mail: adenilso@uerj.br; Rocha, G.S. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Frydman, J.N.G. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010-180 Natal, RN (Brazil); Rocha, V.C.; Pereira, M.O. [Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Universidade do Estado do Rio de Janeiro, Avenida 28 de Setembro, 87, 4o Andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ (Brazil)] (and others)

    2008-02-15

    Effects of Cinnamomum zeylanicum (cinnamon) on the labelling of blood constituents with technetium-99 m({sup 99m}Tc) and on the morphology of red blood cells were studied. Blood samples from Wistar rats were incubated with cinnamon extract for 1hour or with 0.9% NaCl, as control. Labelling of blood constituents with {sup 99m}Tc was performed. Plasma (P) and blood cells (BC), soluble (SF-P and SF-BC) and insoluble (IF-P and IF-BC) fractions were separated. The radioactivity in each fraction was counted and the percentage of radioactivity incorporated (%ATI) was calculated. Blood smears were prepared, fixed, stained and the qualitative and quantitative morphological analysis of the red blood cells was evaluated. The data showed that the cinnamon extract decreased significantly (p<0.05) the %ATI on BC, IF-P and IF-BC. No modifications were verified on shape of red blood cells. Cinnamon extracts could alter the labelling of blood constituents with {sup 99m}Tc, and although our results were obtained with animals, precaution is suggested in interpretations of nuclear medicine examinations involving the labelling of blood constituents in patients who are using cinnamon.

  3. Peripheral red blood cell split chimerism as a consequence of intramedullary selective apoptosis of recipient red blood cells in a case of sickle cell disease.

    Science.gov (United States)

    Marziali, Marco; Isgrò, Antonella; Sodani, Pietro; Gaziev, Javid; Fraboni, Daniela; Paciaroni, Katia; Gallucci, Cristiano; Alfieri, Cecilia; Roveda, Andrea; De Angelis, Gioia; Cardarelli, Luisa; Ribersani, Michela; Andreani, Marco; Lucarelli, Guido

    2014-01-01

    Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC) has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80% circulating donor red blood cells (RBC). The analysis of apoptosis at the Bone Marrow level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.

  4. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie;

    2014-01-01

    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation...... in newborns. The objective of the study was to profile innate and adaptive immune cell subsets in cord blood of children born by cesarean section or natural birth....

  5. Design of a sedimentation hole in a microfluidic channel to remove blood cells from diluted whole blood

    Science.gov (United States)

    Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto

    2017-03-01

    With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.

  6. Inhibitory Effect of Human Umbilical Cord-derived Mesenchymal Stem Cells on Interleukin-17 Production in Peripheral Blood T Cells from Spondyloarthritis Patients%人脐带间充质干细胞对脊柱关节炎患者外周血T细胞产生IL-17的抑制作用

    Institute of Scientific and Technical Information of China (English)

    黄志芳; 朱剑; 吕双红; 张江林; 陈显达; 杜丽欣; 杨志岗; 宋亚昆; 吴东颖

    2013-01-01

    本研究通过观察人脐带间充质干细胞(hUCMSC)对脊柱关节炎(SpA)患者外周血T细胞产生IL-17的抑制作用,初步探索hUCMSC在SpA治疗领域的应用前景.体外分离SpA患者及健康志愿者外周血单个核细胞(PBMNC),PBMNC单独培养或与hUCMSC共培养,应用流式细胞仪检测T细胞中CD3+ CD4+ IL-17+(Th17)及CD3+ γδTCR+ IL-17+细胞比例;应用ELISA检测细胞培养上清中IL-17的浓度.结果表明,SpA患者外周血T细胞中Th17细胞占(3.42±0.82)%,CD3+ γδTCR+ IL-17+细胞占(0.30±0.10)%,分别是健康对照组(0.75±0.25)%和(0.06±0.02)%的4.5倍及5倍(P<0.01);SpA患者PBMNC与hUCMSC共培养后,T细胞中Th17细胞下降为(1.81±0.59)%,CD3+ γδTCR+ IL-17+细胞下降为(0.16±0.06)%(P<0.01);ELISA检测结果表明,SpA患者PBMNC培养上清IL-17的浓度显著高于健康对照组[(573.95±171.68) pg/ml vs(115.53±40.41) pg/ml (P<0.01)];SPA患者PBMNC与hUCMSC共培养后,细胞上清IL-17的浓度下降至(443.20±147.94) pg/ml(P<0.01).结论:hUCMSC能够抑制SpA患者外周血T细胞产生IL-17,在SpA临床治疗中具有应用前景.%In this study, the inhibitory effect of human umbilical cord-derived mesenchymal stem cells (hUCMSC) on interleukin-17(IL-17) production in peripheral blood T cells from patients with spondyloarthritis (SpA) were investigated, in order to explore the therapeutic potential of hUCMSC in the SpA. Peripheral blood mononuclear cells (PBMNC) were isolated from patients with SpA(n = 12) and healthy subjects(n =6). PBMNC were cultured in vitro with hUCMSC or alone. The expression of IL-17 in CD4+ T cells or γ/δ T cells were determined in each subject group by flow cytometry. IL-17 concentrations in PBMNC culture supernatantes were measured by ELISA. The results indicated that the proportion of IL-17-producing CD4+ T cells and IL-17-producing γ/δ T cells of SpA patients were 4.5 folds and 5 folds of healthy controls[CD3 +CD4+ IL-17+ cells (3.42 ±0

  7. Cocaine induces a reversible stomatocytosis of red blood cells and increases blood viscosity.

    Science.gov (United States)

    Cagienard, F; Schulzki, T; Furlong, P; Reinhart, W H

    2013-01-01

    Severe side effects of cocaine consumption are vasoocclusive events such as myocardial infarction and stroke. We have hypothesized that cocaine could affect red blood cells (RBCs) and alter the rheological behaviour of blood. Heparinized blood from healthy volunteers was incubated with a final hematocrit of 45% with increasing cocaine concentrations: 0, 10, 100, 1000, and 10'000 μmol/L plasma. Time dependence of the shape change was tested in phosphate buffered saline containing cocaine. RBCs were fixed in 1% glutaraldehyde for morphological analysis. Blood viscosity was measured with a Couette Viscometer (Contraves LS 30) at 37°C and a shear rate of 69.5 s⁻¹. RBC aggregation was assessed with a Myrenne aggregometer. Cocaine induced a dose-dependent stomatocytic shape transformation of RBCs, which was more pronounced in buffer than in plasma (plasma protein binding of the drug). Stomatocytosis occurs when a drug intercalates preferentially in the inner half of the membrane lipid bilayer. It was a time-dependent process with two components, an almost instant shape change occurring within 1 s, followed by a gradual further shape change during 10 min. Stomatocytosis was reversible by resuspension of the RBCs in cocaine-free buffer. This stomatocytic shape change increased whole blood viscosity at high shear rate from 5.69±0.31 mPa.s to 6.39±0.34 mPa.s for control and 10'000 μmol/L cocaine, respectively (p<0.01). RBC aggregation was not affected by the shape change. These effects occurred at a cocaine concentration, which is several-fold above those measured in vivo. Therefore, it is unlikely that hemorheological factors are involved in vascular events after cocaine consumption.

  8. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging

    Science.gov (United States)

    Park, Hyunjoo; Lee, Sangyun; Ji, Misuk; Kim, Kyoohyun; Son, Yonghak; Jang, Seongsoo; Park, Yongkeun

    2016-10-01

    The functionality and viability of stored human red blood cells (RBCs) is an important clinical issue in transfusions. To systematically investigate changes in stored whole blood, the hematological properties of individual RBCs were quantified in blood samples stored for various periods with and without a preservation solution called citrate phosphate dextrose adenine-1 (CPDA-1). With 3-D quantitative phase imaging techniques, the optical measurements for 3-D refractive index (RI) distributions and membrane fluctuations were done at the individual cell level. From the optical measurements, the morphological (volume, surface area and sphericity), biochemical (hemoglobin content and concentration), and mechanical parameters (dynamic membrane fluctuation) were simultaneously quantified to investigate the functionalities and progressive alterations of stored RBCs. Our results show that stored RBCs without CPDA-1 had a dramatic morphological transformation from discocytes to spherocytes within two weeks which was accompanied by significant decreases in cell deformability and cell surface area, and increases in sphericity. However, the stored RBCs with CPDA-1 maintained their morphology and deformability for up to 6 weeks.

  9. RED BLOOD CELL ABNORMALITIES IN DECOMPENSATED CHRONIC LIVER DISEASE (DCLD

    Directory of Open Access Journals (Sweden)

    Anbazhagan

    2015-02-01

    Full Text Available BACKGROUND: Liver plays an important role in normal erythropoiesis, especially in formation and destruction of RBC’s. Chronic liver diseases are frequently associated with hematological abnormalities. Anemia of diverge etiology occurs in about 75% patients with DCLD ( 36. This can ultimately culminate in grave complications. AIM OF THE STUDY: To detect various abnormalities in Red Blood Cells and to assess the type of anemia in DCLD. METHODS: The study was conducted in 50 patients of DCLD, in Meenakshi Medical College. A detailed History, clinical examination and also Ultrasound Abdomen, GI endoscopy to establish DCLD and complete Red Blood Cell assessment was done. RESULTS AND OBSERVATION : Among the 50 patients, 40 patients (80% had anemia and only 10 pts had normal h emoglobin above 13 gms%. About 15 patients (30% had severe Anemia of less than 6 gm%. Among the 40 patients, 25 patients had normocytic normochronic anemia, 10 patients had microcytic anemia, and 4 patients had macrocytosis and only one had dimorphic anem ia. CONCLUSION : Most common Red Blood Cell abnormality in DCLD is anemia (80% and most common anemia is normochronic normocytic anemia (62.5%, while microcytic anemia and macrocytosis were common among females and Alcoholics, respectively

  10. Tissue engineering of blood vessels with endothelial cells differentiated from mouse embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHEN XU; MIN XIONG SHEN; DONG ZHU MA; LI YING WANG; XI LIANG ZHA

    2003-01-01

    Endothelial cells (TEC3 cells) derived from mouse embryonic stem (ES) cells were used as seed cells to construct blood vessels. Tissue engineered blood vessels were made by seeding 8 × l06 smooth muscle cells (SMCs) obtained from rabbit arteries onto a sheet of nonwoven polyglycolic acid (PGA) fibers, which was used as a biodegradable polymer scaffold. After being cultured in DMEM medium for 7 days in vitro, SMCs grew well on the PGA fibers, and the cell-PGA sheet was then wrapped around a silicon tube, and implanted subcutaneously into nude mice. After 6~8 weeks, the silicon tube was replaced with another silicon tube in smaller diameter, and then the TEC3 cells (endothelial cells differentiated from mouse ES cells) were injected inside the engineered vessel tube as the test group. In the control group only culture medium was injected. Five days later, the engineered vessels were harvested for gross observation, histological and immunohistochemical analysis. The preliminary results demonstrated that the SMC-PGA construct could form a tubular structure in 6~8 weeks and PGA fibers were completely degraded. Histological and immunohistochemical analysis of the newly formed tissue revealed a typical blood vessel structure, including a lining of endothelial cells (ECs) on the lumimal surface and the presence of SMC and collagen in the wall. No EC lining was found in the tubes of control group. Therefore, the ECs differentiated from mouse ES cells can serve as seed cells for endothelium lining in tissue engineered blood vessels.

  11. 77 FR 22791 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2012-04-17

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Health Service Act, as amended), the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises... Thawing and Washing, (4) Access to Transplantation, and (5) Advancing Hematopoietic Stem...

  12. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    Science.gov (United States)

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  13. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  14. Process Improvement by Eliminating Mixing of Whole Blood Units after an Overnight Hold Prior to Component Production Using the Buffy Coat Method

    OpenAIRE

    Cherie Mastronardi; Peter Schubert; Elena Levin; Varsha Bhakta; Qi-Long Yi; Adele Hansen; Tamiko Stewart; Craig Jenkins; Wanda Lefresne; William Sheffield; Acker, Jason P.

    2013-01-01

    The elimination of a thorough manual mixing of whole blood (WB) which takes place following the overnight hold, but before the first centrifugation step, during buffy coat component production at Canadian Blood Services (CBS) was investigated. WB was pooled after donation and split. Pairs of platelet, red blood cell (RBC), and plasma components were produced, with half using the standard method and half using a method in which the mixing step was eliminated. Quality assessments included yiel...

  15. Peripheral blood TIM-3 positive NK and CD8+ T cells throughout pregnancy

    DEFF Research Database (Denmark)

    Meggyes, Matyas; Miko, Eva; Polgar, Beata;

    2014-01-01

    of TIM-3+ peripheral blood mononuclear cells during healthy human pregnancy. METHODS OF STUDY: 57 healthy pregnant women [first trimester (n = 16); second trimester (n = 19); third trimester (n = 22)] and 30 non-pregnant controls were enrolled in the study. We measured the surface expression of TIM-3...... negative regulator of Th1 immunity and tolerance induction. Data about the TIM-3/Gal-9 pathway in the pathogenesis of human diseases is emerging, but their possible role during human pregnancy is not precisely known. The aim of our study was to investigate the number, phenotype and functional activity...... by cytotoxic T cells, NK cells and NK cell subsets as well as Galectin-9 expression by regulatory T cells by flow cytometry. We analyzed the cytokine production and cytotoxicity of TIM3+ and TIM3- CD8 T and NK cells obtained from non-pregnant and healthy pregnant women at different stages of pregnancy by flow...

  16. Comparison of the Fenwal Amicus and Fresenius Com.Tec cell separators for autologous peripheral blood progenitor cell collection.

    Science.gov (United States)

    Altuntas, Fevzi; Kocyigit, Ismail; Ozturk, Ahmet; Kaynar, Leylagul; Sari, Ismail; Oztekin, Mehmet; Solmaz, Musa; Eser, Bulent; Cetin, Mustafa; Unal, Ali

    2007-04-01

    Peripheral blood progenitor cells (PBPC) are commonly used as a stem cell source for autologous transplantation. This study was undertaken to evaluate blood cell separators with respect to separation results and content of the harvest. Forty autologous PBPC collections in patients with hematological malignancies were performed with either the Amicus or the COM.TEC cell separators. The median product volume was lower with the Amicus compared to the COM.TEC (125 mL vs. 300 mL; p COM.TEC (3.0 x 10(6) vs. 4.1 x 10(6); p = 0.129). There was a statistically higher mean volume of ACD used in collections on the Amicus compared to the COM.TEC (1040 +/- 241 mL vs. 868 +/- 176 mL; p = 0.019). There was a statistical difference in platelet (PLT) contamination of the products between the Amicus and the COM.TEC (0.3 x 10(11) vs. 1.1 x 10(11); p COM.TEC compared to the Amicus instruments (18.5% vs. 9.5%; p = 0.028). In conclusion, both instruments collected PBPCs efficiently. However, Amicus has the advantage of lower PLT contamination in the product, and less decrease in PB platelet count with lower product volume in autologous setting.

  17. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  18. Interleukin-15 Promotes the Commitment of Cord Blood CD34+ Stem Cells into NK Cells

    Institute of Scientific and Technical Information of China (English)

    张建; 夏青; 孙汭; 田志刚

    2004-01-01

    To explore the effect of rhlL-15 on CB-CD34+ stem cells committing to NK cells, CD34+ stem cells were obtained from cord blood (CB) by magnetic-assisted cell sorting (MACS) method. CD3, CD16 and CD56 molecules expressed on cell surface were detected by flow cytometer. MTF method was used to test the cytotoxicity of NK cells. The results were that stem cell factor (SCF) alone has no effect on CD34+ stem cells. IL-15 stimulated CD34+ stem cells commit to NK cells, and SCF showed strong synergistic effect with IL-15. It was concluded that IL-15 and SCF played different roles during NK cell development, llr15 promoted CD34+ stem cells differentiate to NK cell precursor and SCF improved the effectsof IL-15 on NK cell differentiation.

  19. THE EFFECT OF BLOOD AND MILK SERUM ZINC CONCENTRATION ON MILK SOMATIC CELL COUNT IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Ivana Davidov

    2016-11-01

    Full Text Available The objective of this study was to evaluate the effect of blood and milk zinc concentration on somatic cell count and occurrence of subclinical mastitis cases. The study was performed on thirty Holstein cows approximate same body weight, ages 3 to 5 years, with equally milk production. Blood samples were taken after the morning milking from the caudal vein and milk from all four quarters was taken before morning milking. All samples of blood and milk were taken to determined zinc, using inductively coupled plasma mass spectrometry. 37.67% (11/30 cows have blood serum zinc concentration below 7µmol/l, and 63.33% or 19/30 cows have blood serum zinc concentration higher then 13µmol/l. Also 30% (9/30 cows have somatic cell count lower then 400.000/ml which indicate absence of subclinical mastitis, but 70% (21/30 cows have somatic cell count higher then 400.000/ml which indicate subclinical mastitis. Results indicate that cows with level of zinc in blood serum higher then 13 µmol/l have lower somatic cell count. Cows with lower zinc blood serum concentration then 7 µmol/l have high somatic cell count and high incidence of subclinical mastitis. According to results in this research there is no significant effect of milk serum zinc concentration on somatic cell count in dairy cows.

  20. Blood Flow through an Open-Celled Foam

    Science.gov (United States)

    Ortega, Jason; Maitland, Duncan

    2011-11-01

    The Hazen-Dupuit-Darcy (HDD) equation is commonly used in engineering applications to model the pressure gradient of flow through a porous media. One major advantage of this equation is that it simplifies the complex geometric details of the porous media into two coefficients: the permeability, K, and form factor, C. However through this simplification, the flow details within the porous media are no longer accessible, making it difficult to study the phenomena that contribute to changes in K and C due to clotting of blood flow. To obtain a more detailed understanding of blood flow through a porous media, a direct assessment of the complex interstitial geometry and flow is required. In this study, we solve the Navier-Stokes equations for Newtonian and non-Newtonian blood flow through an open-celled foam geometry obtained from a micro-CT scan. The nominal strut size of the foam sample is of O(10e-5) m and the corresponding Reynolds number based upon this length ranges up to O(10). Fitting the pressure gradient vs. Darcy velocity data with the HDD equation demonstrates that both viscous and inertial forces play an important role in the flow through the foam at these Reynolds numbers. Recirculation zones are observed to form in the wake of the pore struts, producing regions of flow characterized by both low shear rates and long fluid residence times, factors of which have been shown in previous studies to promote blood clotting.

  1. Some technetium complexes for labelling red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Emery, M.F.

    1988-01-01

    A new approach to produce technetium labelled red blood cells, used routinely in diagnostic nuclear medicine, is reported. The enzyme Carbonic Anhydrase (CA), present in erythrocytes, is strongly inhibited by primary aromatic sulphonamides, which bind at the enzyme active site. Three types of ligand able to coordinate to technetium and suitable for modification to include a primary aromatic sulphonamide group were studied; bis(thiosemicarbazones), Schiff bases and some propylene amine oximes. The experimental conditions needed to label the ligands were determined. Both the thiosemicarbazone and propyleneamine oxime derivatives were labelled, but under no conditions attempted were the Schiff bases complexed by Technetium. The two major isozymes of Human Carbonic Anhydrase, HCA I and HCA II, were isolated from blood. The strength of binding of the free ligands SET, PN130 and PN135 with each of the isozymes was measured and expressed as the Dissociation Constant K{sub d}. The rate of uptake of the technetium complexes into washed RBCs and whole blood was measured and found to be much slower in whole blood. The biodistribution of both TcPN130 and TcPN135 in rats was determined and scintigraphic images for the TcPN130 complex were recorded. Attempts to synthesise the Tc-99 analogues on the milligram scale to allow chemical characterisation of these complexes were unsuccessful. (author).

  2. CD1c+ blood dendritic cells have Langerhans cell potential.

    Science.gov (United States)

    Milne, Paul; Bigley, Venetia; Gunawan, Merry; Haniffa, Muzlifah; Collin, Matthew

    2015-01-15

    Langerhans cells (LCs) are self-renewing in the steady state but repopulated by myeloid precursors after injury. Human monocytes give rise to langerin-positive cells in vitro, suggesting a potential precursor role. However, differentiation experiments with human lineage-negative cells and CD34(+) progenitors suggest that there is an alternative monocyte-independent pathway of LC differentiation. Recent data in mice also show long-term repopulation of the LC compartment with alternative myeloid precursors. Here we show that, although monocytes are able to express langerin, when cultured with soluble ligands granulocyte macrophage colony-stimulating factor (GM-CSF), transforming growth factor β (TGFβ), and bone morphogenetic protein 7 (BMP7), CD1c(+) dendritic cells (DCs) become much more LC-like with high langerin, Birbeck granules, EpCAM, and E-cadherin expression under the same conditions. These data highlight a new potential precursor function of CD1c(+) DCs and demonstrate an alternative pathway of LC differentiation that may have relevance in vivo.

  3. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  4. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    Science.gov (United States)

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  5. Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study.

    NARCIS (Netherlands)

    Evers, D.; Middelburg, R.A.; Haas, M. de; Zalpuri, S.; Vooght, K.M. De; Kerkhof, D. van de; Visser, O; Pequeriaux, N.C.V.; Hudig, F.; Schonewille, H.; Zwaginga, J.J.; Bom, J.G. Van Der

    2016-01-01

    BACKGROUND: Matching donor red blood cells based on recipient antigens prevents alloimmunisation. Knowledge about the immunogenicity of red-blood-cell antigens can help optimise risk-adapted matching strategies. We set out to assess the immunogenicity of red-blood-cell antigens. METHODS: In an incid

  6. Utilization and quality of cryopreserved red blood cells in transfusion medicine

    NARCIS (Netherlands)

    Henkelman, S.; Noorman, F.; Badloe, J. F.; Lagerberg, J. W. M.

    2015-01-01

    Cryopreserved (frozen) red blood cells have been used in transfusion medicine since the Vietnam war. The main method to freeze the red blood cells is by usage of glycerol. Although the usage of cryopreserved red blood cells was promising due to the prolonged storage time and the limited cellular det

  7. Development and testing of a new disposable sterile device for labelling white blood cells

    NARCIS (Netherlands)

    Signore, A.; Glaudemans, A. W. J. M.; Malviya, G.; Lazzeri, E.; Prandini, N.; Viglietti, A. L.; De Vries, E. F. J.; Dierckx, R. A. J. O.

    2012-01-01

    Aim. White blood cell (WBC) labelling requires isolation of cells from patient's blood under sterile conditions using sterile materials, buffers and disposables under good manufacturing practice (GMP) conditions. Till now, this limited the use of white blood cell scintigraphy (WBC-S) only to well eq

  8. MEASUREMENT OF REGIONAL BONE BLOOD FLOW IN THE CANINE MANDIBULAR RAMUS USING RADIOLABELLED TOAD RED BLOOD CELLS

    Institute of Scientific and Technical Information of China (English)

    毛驰; 王翰章

    1994-01-01

    Toad red blood cells were used to measure regional bone blood flow in the canine mandibular ramus.The blood cells were labelled with sodium pertechnetate and fixed in 10% formalin;they were 22×15 μm in size and had a specific gravity close to that of dog red blood cells.These cells had no discernible effect on systemic hemody-namics after injection,did not agglutinate,were well mixed and evenly distributed throughout the body,and were completely extracted in one circulation through the mandible.The mandibular ramus was divided into six regions,and the blood flow rates in each were found to be similar to those reported in previous studies with radiolabelled carbonized,microspheres.Furthermore,the blood flow distribution pattern of the mandibular ramus determined in this study was identical to that of our previous study using the bone-seeking radionuclide method.We suggest that radiolabelled toad red blood cells are an ideal marker for measuring regional blood flow in the canine mandible.

  9. Isolation of rare tumor cells from blood cells with buoyant immuno-microbubbles.

    Directory of Open Access Journals (Sweden)

    Guixin Shi

    Full Text Available Circulating tumor cells (CTCs are exfoliated at various stages of cancer, and could provide invaluable information for the diagnosis and prognosis of cancers. There is an urgent need for the development of cost-efficient and scalable technologies for rare CTC enrichment from blood. Here we report a novel method for isolation of rare tumor cells from excess of blood cells using gas-filled buoyant immuno-microbubbles (MBs. MBs were prepared by emulsification of perfluorocarbon gas in phospholipids and decorated with anti-epithelial cell adhesion molecule (EpCAM antibody. EpCAM-targeted MBs efficiently (85% and rapidly (within 15 minutes bound to various epithelial tumor cells suspended in cell medium. EpCAM-targeted MBs efficiently (88% isolated frequent tumor cells that were spiked at 100,000 cells/ml into plasma-depleted blood. Anti-EpCAM MBs efficiently (>77% isolated rare mouse breast 4T1, human prostate PC-3 and pancreatic cancer BxPC-3 cells spiked into 1, 3 and 7 ml (respectively of plasma-depleted blood. Using EpCAM targeted MBs CTCs from metastatic cancer patients were isolated, suggesting that this technique could be developed into a valuable clinical tool for isolation, enumeration and analysis of rare cells.

  10. Blood

    Science.gov (United States)

    ... Also, blood is either Rh-positive or Rh-negative. So if you have type A blood, it's either A positive or A negative. Which type you are is important if you need a blood transfusion. And your Rh factor could be important ...

  11. Experimental erythrocyte autoantibodies. V. Induction and suppression of red blood cell autoantibodies in mice injected with rat bromelain-treated red blood cells.

    Science.gov (United States)

    Cox, K O; McAuliffe, A

    1983-10-01

    Mice injected with rat red blood cells (RBC), or rat bromelain-treated (brom) RBC, produce RBC autoantibodies and suppressor cells that specifically inhibit the autoimmune response without inhibiting the net production of antibodies against rat RBC. It has been investigated whether suppressor cells induced by injections of rat RBC are effective in preventing autoantibody production induced by rat brom RBC and vice versa. Autoantibodies were induced in C3H mice by weekly ip injections, each 0.2 ml, of a 6% suspension of rat RBC or rat brom RBC. Autoantibody production was assayed using Coombs' test. Suppressor cells were present in the spleens of mice positive in Coombs' tests and were shown by intravenous injections of 40 X 10(6) viable cells per mouse into untreated syngeneic mice 18 hr before the first injection of rat RBC or rat brom RBC. Autoantibodies eluted from mice positive in Coombs' tests after injections of rat RBC or brom RBC were absorbed by either type of rat RBC but not by RBC from sheep. This suggests that rat RBC and rat brom RBC display antigens that are similar, if not identical, to autoantigens on the mouse RBC. Spleen cells from mice injected with rat RBC suppressed autoantibodies induced by both rat RBC and rat brom RBC. In contrast, spleen cells from mice injected with rat brom RBC suppressed autoantibodies induced by rat brom RBC but not those induced by unmodified rat RBC. This differential suppression may be due to the removal from rat RBC, by bromelain, of a suppressor site and/or autoantigens of some specificities. Thus rat brom RBC may not induce the total range of specificities of autoantibodies, and of suppressor cells, induced by rat RBC.

  12. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  13. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones.

    Science.gov (United States)

    Lodish, Harvey; Flygare, Johan; Chou, Song

    2010-07-01

    This article reviews the regulation of production of red blood cells at several levels: (1) the ability of erythropoietin and adhesion to a fibronectin matrix to stimulate the rapid production of red cells by inducing terminal proliferation and differentiation of committed erythroid CFU-E progenitors; (2) the regulated expansion of the pool of earlier BFU-E erythroid progenitors by glucocorticoids and other factors that occurs during chronic anemia or inflammation; and (3) the expansion of thehematopoietic cell pool to produce more progenitors of all hematopoietic lineages.

  14. Simulation of red blood cell aggregation in shear flow.

    Science.gov (United States)

    Lim, B; Bascom, P A; Cobbold, R S

    1997-01-01

    A simulation model has been developed for red blood cell (RBC) aggregation in shear flow. It is based on a description of the collision rates of RBC, the probability of particles sticking together, and the breakage of aggregates by shear forces. The influence of shear rate, hematocrit, aggregate fractal dimension, and binding strength on aggregation kinetics were investigated and compared to other theoretical and experimental results. The model was used to simulate blood flow in a long large diameter tube under steady flow conditions at low Reynolds numbers. The time and spatial distribution of the state of aggregation are shown to be in qualitative agreement with previous B-mode ultrasound studies in which a central region of low echogenicity was noted. It is suggested that the model can provide a basis for interpreting prior measurements of ultrasound echogenicity and may help relate them to the local state of aggregation.

  15. Analysis of White Blood Cell Dynamics in Nailfold Capillaries

    Science.gov (United States)

    Bourquard, Aurélien; Butterworth, Ian; Sánchez-Ferro, Alvaro; Giancardo, Luca; Soenksen, Luis; Cerrato, Carolina; Flores, Rafael; Castro-González, Carlos

    2016-01-01

    Based on video data acquired with low-cost, portable microscopy equipment, we introduce a semi-automatic method to count visual gaps in the blood flow as a proxy for white blood cells (WBC) passing through nailfold capillaries. Following minimal user interaction and a pre-processing stage, our method consists in the spatio-temporal segmentation and analysis of capillary profiles. Besides the mere count information, it also estimates the speed associated with every WBC event. The accuracy of our algorithm is validated through the analysis of two capillaries acquired from one healthy subject. Results are compared with manual counts from four human raters and confronted with related physiological data reported in literature. PMID:26738019

  16. Changes in the permeability of blood brain barrier and endothelial cell damage after cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Ke Liu; Jiansheng Li

    2006-01-01

    OBJECTIVE: To investigate the effect of endothelial cells on the permeability of blood brain barrier (BBB) after brain injury and its effect mechanism.DATA SOURCES: We searched for the articles of permeability of BBB and endothelial cell injury after brain ischemia, which were published between January 1982 and December 2005, with the key words of "cerebral ischemia damage,blood brain barrier ( BBB),permeability,effect of endothelial cell (EC) and its variation mechanism"in English.STUDY SELECTION: The materials were primarily selected. The articles related to the changes in the permeability of BBB and the effect of endothelial cells as well as the change mechanism after cerebral ischemia damage were chosen. Repetitive studies or review articles were excluded.DATA EXTRACTION: Totally 55 related articles were collected, and 35 were excluded due to repetitive or review articles, finally 20 articles were involved.DATA SYNTHESIS: The content or viewpoints of involved literatures were analyzed. Cerebral ischemia had damage for endothelial cells, such as the inflow of a lot of Ca2+, the production of nitrogen monoxide and oxygen free radical, and aggravated destruction of BBB. After acceptors of inflammatory mediators on cerebrovascular endothelial cell membrane, such as histamine, bradykinin , 5-hydroxytryptamine and so on are activated, endothelial cells shrink and the permeability of BBB increases. Its mechanism involves in the inflow of extracellular Ca2+and the release of intracellular Ca2+ in the cells. Glycocalyx molecule on the surface of endothelial cell, having structural polytropy, is the determinative factor of the permeability of BBB. VEGF, intensively increasing the vasopermeability and mainly effecting on postcapillary vein and veinlet, is the strongest known blood vessel permeation reagent. Its chronic overexpression in the brain can lead the destruction of BBB.CONCLUSION: The injury of endothelial cell participants in the pathological mechanism of BBB

  17. Straw blood cell count, growth, inhibition and comparison to apoptotic bodies

    Directory of Open Access Journals (Sweden)

    Tomkins Jeffrey P

    2008-05-01

    Full Text Available Abstract Background Mammalian cells transform into individual tubular straw cells naturally in tissues and in response to desiccation related stress in vitro. The transformation event is characterized by a dramatic cellular deformation process which includes: condensation of certain cellular materials into a much smaller tubular structure, synthesis of a tubular wall and growth of filamentous extensions. This study continues the characterization of straw cells in blood, as well as the mechanisms of tubular transformation in response to stress; with specific emphasis placed on investigating whether tubular transformation shares the same signaling pathway as apoptosis. Results There are approximately 100 billion, unconventional, tubular straw cells in human blood at any given time. The straw blood cell count (SBC is 45 million/ml, which accounts for 6.9% of the bloods dry weight. Straw cells originating from the lungs, liver and lymphocytes have varying nodules, hairiness and dimensions. Lipid profiling reveals severe disruption of the plasma membrane in CACO cells during transformation. The growth rates for the elongation of filaments and enlargement of rabbit straw cells is 0.6~1.1 (μm/hr and 3.8 (μm3/hr, respectively. Studies using apoptosis inhibitors and a tubular transformation inhibitor in CACO2 cells and in mice suggested apoptosis produced apoptotic bodies are mediated differently than tubular transformation produced straw cells. A single dose of 0.01 mg/kg/day of p38 MAPK inhibitor in wild type mice results in a 30% reduction in the SBC. In 9 domestic animals SBC appears to correlate inversely with an animal's average lifespan (R2 = 0.7. Conclusion Straw cells are observed residing in the mammalian blood with large quantities. Production of SBC appears to be constant for a given animal and may involve a stress-inducible protein kinase (P38 MAPK. Tubular transformation is a programmed cell survival process that diverges from apoptosis

  18. Closed system generation of dendritic cells from a single blood volume for clinical application in immunotherapy.

    Science.gov (United States)

    Elias, M; van Zanten, J; Hospers, G A P; Setroikromo, A; de Jong, M A; de Leij, L F M H; Mulder, N H

    2005-12-01

    Dendritic cells (DC) used for clinical trials should be processed on a large scale conforming to current good manufacturing practice (cGMP) guidelines. The aim of this study was to develop a protocol for clinical grade generation of immature DC in a closed-system. Aphereses were performed with the Cobe Spectra continuous flow cell separator and material was derived from one volume of blood processed. Optimisation of a 3-phase collection autoPBSC technique significantly improved the quality of the initial mononuclear cell (MNC) product. Monocytes were then enriched from MNC by immunomagnetic depletion of CD19+ B cells and CD2+ T cells and partial depletion of NK cells using the Isolex 300I Magnetic cell selector. The quality of the initial mononuclear cell product was found to determine the outcome of monocyte enrichment. Enriched monocytes were cultured in Opticyte gas-permeable containers using CellGro serum-free medium supplemented with GM-CSF and IL-4 to generate immature DC. A seeding concentration of 1 x 10(6) was found optimal in terms of DC phenotype expression, monocyte percentage in culture, and cell viability. The differentiation pattern favours day 7 for harvest of immature DC. DC recovery, viability, as well as phenotype expression after cryopreservation of immature DC was considered in this study. DC were induced to maturation and evaluated in FACS analysis for phenotype expression and proliferation assays. Mature DC were able to generate an allogeneic T-cell response as well as an anti-CMV response as detected by proliferation assays. These data indicate that the described large-scale GMP-compatible system results in the generation of stable DC derived from one volume of blood processed, which are qualitatively and quantitatively sufficient for clinical application in immunotherapeutic protocols.

  19. Why and how does collective red blood cells motion occur in the blood microcirculation?

    Science.gov (United States)

    Ghigliotti, Giovanni; Selmi, Hassib; Asmi, Lassaad El; Misbah, Chaouqi

    2012-10-01

    The behaviour of red blood cells (RBCs), modelled as vesicles, in Poiseuille flow, mimicking the microvasculature, is studied with numerical simulations in two dimensions. RBCs moving in the centre of the Poiseuille flow (as in blood capillaries) are shown to attract each other and form clusters only due to hydrodynamic interactions, provided that their distance at a given time is below a certain critical value. This distance depends on physical parameters, such as the flow strength. Our simulations reveal that clusters are unstable above a threshold value in the number of forming RBCs, beyond which one or few cells escape the pack by a self-regulating mechanism that select the marginally stable size. This size selection depends on the flow strength as well as on the RBC swelling ratio. The results are interpreted via the analysis of the perturbation of the flow field induced by the vesicles and the interplay with bending and tension forces. This sheds a novel light on the process of collective motion of RBCs observed in vivo.

  20. The involvement of cation leaks in the storage lesion of red blood cells.

    Directory of Open Access Journals (Sweden)

    Joanna F Flatt

    2014-06-01

    Full Text Available Stored blood components are a critical life-saving tool provided to patients by health services worldwide. Red cells may be stored for up to 42 days, allowing for efficient blood bank inventory management, but with prolonged storage comes an unwanted side-effect known as the ‘storage lesion’, which has been implicated in poorer patient outcomes. This lesion is comprised of a number of processes that are inter-dependent. Metabolic changes include a reduction in glycolysis and ATP production after the first week of storage. This leads to an accumulation of lactate and drop in pH. Longer term damage may be done by the consequent reduction in anti-oxidant enzymes, which contributes to protein and lipid oxidation via reactive oxygen species. The oxidative damage to the cytoskeleton and membrane is involved in increased vesiculation and loss of cation gradients across the membrane. The irreversible damage caused by extensive membrane loss via vesiculation alongside dehydration is likely to result in immediate splenic sequestration of these dense, spherocytic cells. Although often overlooked in the literature, the loss of the cation gradient in stored cells will be considered in more depth in this review as well as the possible effects it may have on other elements of the storage lesion. It has now become clear that blood donors can exhibit quite large variations in the properties of their red cells, including microvesicle production and the rate of cation leak. Further study of stored red blood cells from donors known to have a high or low-rate of cation leak will shed more light on the relationship between cation gradients and the manifestation of the various elements of the storage lesion.

  1. Manipulation on human red blood cells with femtosecond optical tweezers

    Institute of Scientific and Technical Information of China (English)

    Ming Zhou; Haifeng Yang; Jianke Di; Enlan Zhao

    2008-01-01

    Different types of femtosecond optical tweezers have become a powerful tool in the modern biological field. However, how to control the irregular targets, including biological cells, using femtosecond optical tweezers remains to be explored. In this study, human red blood cells (hRBCs) are manipulated with femtosecond optical tweezers, and their states under different laser powers are investigated. The results indicate that optical potential traps only can capture the edge of hRBCs under the laser power from 1.4 to 2.8 mW, while it can make hRBCs turn over with the laser power more than 2.8 roW. It is suggested that femtosecond optical tweezers could not only manipulate biological cells, but also subtly control its states by adjusting the laser power.

  2. A dendritic cell-based assay for measuring memory T cells specific to dengue envelope proteins in human peripheral blood.

    Science.gov (United States)

    Sun, Peifang; Beckett, Charmagne; Danko, Janine; Burgess, Timothy; Liang, Zhaodong; Kochel, Tadeusz; Porter, Kevin

    2011-05-01

    Dengue envelope (E) protein is a dominant immune inducer and E protein-based vaccines elicited partial to complete protection in non-human primates. To study the immunogenicity of these vaccines in humans, an enzyme linked immunospot (ELISPOT) assay for measuring interferon gamma (IFN-γ) production was developed. Cells from two subject groups, based on dengue-exposure, were selected for assay development. The unique feature of the IFN-γ ELISPOT assay is the utilization of dendritic cells pulsed with E proteins as antigen presenting cells. IFN-γ production, ranging from 53-513 spot forming units per million peripheral blood mononuclear cells (PBMCs), was observed in dengue-exposed subjects as compared to 0-45 IFN-γ spot forming units in dengue-unexposed subjects. Further, both CD4(+) and CD8(+) T cells, and cells bearing CD45RO memory marker, were the major sources of IFN-γ production. The assay allowed quantification of E-specific IFN-γ-secreting memory T cells in subjects 9 years after exposure to a live-attenuated virus vaccine and live-virus challenge. Results suggested that the dendritic cell-based IFN-γ assay is a useful tool for assessing immunological memory for clinical research.

  3. Dextrose in the banked blood products does not seem to affect the blood glucose levels in patients undergoing liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Kwok-Wai Cheng; King-Wah Chiu; Shih-Hor Wang; Chih-Che Lin; Tsan-Shiun Lin; Yueh-Wei Liu; Bruno Jawan; Chao-Long Chen; Yu-Fan Cheng; Chia-chih Tseng; Chih-Hsien Wang; Yaw-Sen Chen; Chih-Chi Wang; Tung Liang Huang; Hock-Liew Eng

    2005-01-01

    AIM: Hyperglycemia commonly seen in liver transplantation (LT) has often been attributed to the dextrose in the storage solution of blood transfusion products. The purpose of the study is to compare the changes of the blood glucose levels in transfused and non-transfused patients during LT. METHODS: A retrospective study on 60 biliary pediatric patients and 16 adult patients undergoing LT was carried out. Transfused pediatric patients were included in Group Ⅰ (GI), those not transfused in Group Ⅱ (GⅡ). Twelve adult patients were not given transfusion and assigned to Group Ⅲ (GⅢ); whereas, four adult patients who received massive transfusion were assigned to Group Ⅳ (GⅣ). The blood glucose levels, volume of blood transfused, and the volume of crystalloid infused were recorded, compared and analyzed. RESULTS: Results showed that the changes in bloodglucose levels during LT for both non-transfused and minimally transfused pediatric groups and non-transfused and massively-transfused adult groups were almost the same. CONCLUSION: We conclude that blood transfusion does not cause significant changes in the blood glucose levels inthis study.

  4. Optimal Fluxes, Reaction Replaceability, and Response to Enzymopathies in the Human Red Blood Cell

    Directory of Open Access Journals (Sweden)

    A. De Martino

    2010-01-01

    most harmful reaction knockouts. The integration of combinatorial methods with sampling techniques to explore the space of viable flux states may provide crucial insights on this issue. We assess the replaceability of every metabolic conversion in the human red blood cell by enumerating the alternative paths from substrate to product, obtaining a complete map of he potential damage of single enzymopathies. Sampling the space of optimal steady state fluxes in the healthy and in the mutated cell reveals both correlations and complementarity between topologic and dynamical aspects.

  5. [Recent circumstances in the supply and demand of various blood products in Japan, and appropriate use of blood components or plasma protein derivatives].

    Science.gov (United States)

    Tohyama, H

    1986-10-01

    In Japan, as in the United States and several other advanced countries, the use of fresh frozen plasma (FFP) and albumin has increased dramatically over the past 10 years. Especially in Japan the increase has been at least tenfold, and half of this usage has been for surgery. Most reviews of albumin usage acknowledge that there is a high ratio of wastage, or use in clinical circumstances without a firm scientific basis. Recently Japan has imported an enormous volume of various plasma fraction products such as albumin, Factor VIII etc., or plasma as raw material from foreign countries, especially the United States. As a result, Japan has come to monopolized a quarter of the albumin manufactured in the world, and has therefore received much internal and external criticism from or ethical standpoint. As countermeasures against shortage of these blood products, it will be necessary for doctors to use these blood products more sparingly and to increase the yield of volunteer donor's blood, especially plasma. More red blood cell concentrate should be utilized for hemorrhage in routine surgical operations. Because whole blood transfusion is rarely used except in cases of massive bleeding that cannot be stopped immediately, exchange transfusion has been performed in the United States and European countries recently. Transfusion of FFP is appropriately used only for replacement of coagulation factor deficiencies, massive transfusion etc. in the United States. It should be particularly noted that these carry the risk of transmission of diseases such as hepatitis and possibly AIDS. Albumin is an effective oncotic agent in the treatment of acute shock and in the maintenance of intravascular volume and cardiac output. However, albumin and FFP have no demonstrable effect in the general supportive management of chronic hypoproteinemia and undernutrition.

  6. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  7. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Samad Ibitokou

    Full Text Available Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM is scarce. We conducted a longitudinal, prospective study, both in Benin and Tanzania, including ∼1000 pregnant women in each site with systematic follow-up at scheduled antenatal visits until delivery. We used ex vivo flow cytometry to identify peripheral blood mononuclear cell (PBMC profiles that are associated with PAM and anaemia, determining the phenotypic composition and activation status of PBMC in selected sub-groups with and without PAM both at inclusion and at delivery in a total of 302 women. Both at inclusion and at delivery PAM was associated with significantly increased frequencies both of B cells overall and of activated B cells. Infection-related profiles were otherwise quite distinct at the two different time-points. At inclusion, PAM was associated with anaemia, with an increased frequency of immature monocytes and with a decreased frequency of regulatory T cells (Treg. At delivery, infected women presented with significantly fewer plasmacytoid dendritic cells (DC, more myeloid DC expressing low levels of HLA-DR, and more effector T cells (Teff compared to uninfected women. Independent associations with an increased risk of anaemia were found for altered antigen-presenting cell frequencies at inclusion, but for an increased frequency of Teff at delivery. Our findings emphasize the prominent role played by B cells during PAM whenever it arises during pregnancy, whilst also revealing signature changes in other circulating cell types that, we conclude, primarily reflect the relative duration of the infections. Thus, the acute, recently-acquired infections present at delivery were marked by changes in DC and Teff frequencies, contrasting with infections at inclusion, considered chronic in

  8. Endothelial Progenitor Cells in Peripheral Blood of Cardiac Catheterization Personnel

    Directory of Open Access Journals (Sweden)

    Soheir Korraa1, Tawfik M.S.1, Mohamed Maher 2 and Amr Zaher

    2014-07-01

    Full Text Available Background: The aim of the present study was to evaluate the rejuvenation capacity among cardiac catheterization technicians occupationally exposed to ionizing radiation. Subjects and methods: The individual annual collective dose information was measured by thermoluminscent personal dosimeters (TLD for those technicians and found to be ranging between 2.16 and 8.44 mSv/y. Venous blood samples were obtained from 30 cardiac catheterization technicians exposed to X-ray during fluoroscopy procedures at the National Heart Institute in Embaba. The control group involved 25 persons not exposed to ionizing radiation and not working in hospitals in addition to 20 persons not exposed to ionizing radiation and working in hospitals. Blood samples were assayed for total and differential blood counts, micronucleus formation (FMN plasma stromal derived growth factor-1α (SDF-1 α and cell phenotype of circulating endothelial progenitor cells (EPCs, whose surface markers were identified as the CD34, CD133 and kinase domain receptors (KDR. Results: SDF-1α (2650± 270 vs. 2170 ± 430 pg/ml and FMN (19.9 ± 5.5 vs. 2.8 ± 1.4/1000 cells were significantly higher among cardiac catheterization staff compared to those of the controls respectively. Similarly, EPCs: CD34 (53 ± 3.9 vs. 48 ± 8.5/105 mononuclear cells, CD133 (62.4 ± 4.8 vs. 54.2 ± 10.6 /105 mononuclear cells KDR (52.7 ± 10.6 vs.43.5± 8.2 /105 mononuclear cells were also significantly higher among cardiac catheterization staff compared to the values of controls respectively. Smoking seemed to have a positive effect on the FMN and SDF-1 but had a negative effect on EPCs. It was found that among cardiac catheterization staff, the numbers of circulating progenitor cells had increased and accordingly there was an increased capacity for tissue repair. Conclusion: In conclusion, the present work shows that occupational exposure to radiation, well within permissible levels, leaves a genetic mark on the

  9. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members

    DEFF Research Database (Denmark)

    Närhi, M; Natri, O; Desbois, I;

    2013-01-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB...

  10. Effects of Cinnamomum zeylanicum treatment on radiolabeling of blood constituents and morphology of red blood cells in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Benarroz, Monica Oliveira; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. de Biofisica e Biometria]. E-mail: adenilso@uerj.br; Rocha, Gabrielle de Souza; Pereira, Marcia Oliveira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Geller, Mauro [Centro Universitario Serra dos Orgaos, Teresopolis, RJ (Brazil). Centro de Ciencias da Saude; Presta, Giuseppe Antonio [Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ (Brazil). Inst. Biomedico. Dept. de Fisiologia Humana

    2008-12-15

    The aim of this study was to evaluate the effect of in vivo treatment with an aqueous cinnamon extract on the labeling of blood constituents with {sup 99m}Tc and on the morphology of red blood cells from Wistar rats. Animals were treated with cinnamon extract at different doses and for different periods of time. As controls, animals treated with 0.9% NaCl. Labeling of blood constituents with {sup 99}mTc was performed. Plasma, blood cells and insoluble fractions were isolated. Radioactivity in each fraction was counted and the percentage of radioactivity (%ATI) was calculated. Also, blood smears were prepared to morphological analysis of red blood cells from. Data showed that in vivo cinnamon extract did not significantly (p>0.05) modify the %ATI of blood constituents and morphology of red blood cells. The results suggest that in vivo aqueous cinnamon could not affect the membrane structures involved in transport of ions or the oxidation state of stannous and pertechnetate ions. (author)

  11. Lipopolysaccharide induces IFN-γ production in human NK cells

    Directory of Open Access Journals (Sweden)

    Leonid M Kanevskiy

    2013-01-01

    Full Text Available NK cells have been shown to play a regulatory role in sepsis. According to the current view, NK cells become activated via macrophages or dendritic cells primed by lipopolysaccharide (LPS. Recently TLR4 gene expression was detected in human NK cells suggesting the possibility of a direct action of LPS on NK cells. In this study, effects of LPS on NK cell cytokine production and cytotoxicity were studied using highly purified human NK cells. LPS induced IFN-γ production in the presence of IL-2 in cell populations containing >98% CD56+ cells. Surprisingly, in the same experiments LPS decreased NK cell degranulation. No significant expression of markers related to blood dendritic cells, monocytes or T or B lymphocytes in the NK cell preparations was observed; the portions of HLA-DRbright, CD14+, CD3+ and CD20+ cells amounted to less than 0.1% within the cell populations. No more than 0.2% of NK cells were shown to be slightly positive for surface TLR4 in our experimental system, although intracellular staining revealed moderate amounts of TLR4 inside the NK cell population. These cells were negative for surface CD14, the receptor participating in LPS recognition by TLR4. Incubation of NK cells with IL-2 or/and LPS did not lead to an increase in TLR4 surface expression. TLR4–CD56+ NK cells isolated by cell sorting secreted IFN-γ in response to LPS. Antibody to TLR4 did not block the LPS-induced increase in IFN-γ production. We have also shown that Re-form of LPS lacking outer core oligosaccharide and O-antigen induces less cytokine production in NK cells than full length LPS. We speculate that the polysaccharide fragments of LPS molecule may take part in LPS-induced IFN-γ production by NK cells. Collectively our data suggest the existence of a mechanism of LPS direct action on NK cells distinct from established TLR4-mediated signaling.

  12. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  13. Growth and differentiation of eosinophils from human peripheral blood CD 34+ cells.

    Science.gov (United States)

    Shalit, M

    1997-01-01

    Small numbers of CD34+ primitive hematopoietic progenitors are found in normal human peripheral blood. These cells differentiate to myeloid or lymphoid lineage under the influence of growth factors. We investigated the effects of IL5 and other growth factors on the production of eosinophils from peripheral blood CD34+ cells. CD34+ cells were plated in agarose with different combinations of cytokines. At 14 days of growth a triple stain technique was used to identify eosinophil, monocyte and neutrophil colonies. IL5 alone did not support colony growth. In contrast GM-CSF and IL3 alone or together supported the generation of more than 50% eosinophil colonies. Addition of IL5 increased the fraction of eosinophil colonies to over 70%. Under the best conditions (IL3 + GM-CSF + IL5), the addition of interferon-a or LPS inhibited colony growth by 51% and 58%, respectively. Since IL5 alone did not support colony growth from CD34+ cells, we determined when IL5 responsive cells appeared in culture. Cells were grown initially with IL3 + GM-CSF, washed, and plated with IL5 alone. Only when progenitors were grown at least 3 days, could IL5 serve as the single growth factor supporting pure eosinophil colony growth (47 colonies/104 cells plated at day 3 and 134 colonies/104 cells at day 7). Growth of CD34+ in liquid culture for 28 days in the presence of IL3, GM-CSF and IL5 resulted in almost 250 fold increase in cell number, yielding a population of 83% maturing eosinophils. We used our culture system and the sensitive technique of RT-PCR to analyze the kinetics of production of mRNA transcripts encoding several eosinophil proteins. Freshly isolated CD34+ cells contained no eosinophil granule protein transcripts and barely detectable amounts of some oxidase protein transcripts. At day 3 of culture no cells recognizable by histochemical staining as eosinophils could be detected, but transcripts for all five eosinophil granule proteins were present. These transcripts increased

  14. Measuring skewness of red blood cell deformability distribution by laser ektacytometry

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S Yu; Priezzhev, A V; Lugovtsov, A E [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Ustinov, V D [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)

    2014-08-31

    An algorithm is proposed for measuring the parameters of red blood cell deformability distribution based on laser diffractometry of red blood cells in shear flow (ektacytometry). The algorithm is tested on specially prepared samples of rat blood. In these experiments we succeeded in measuring the mean deformability, deformability variance and skewness of red blood cell deformability distribution with errors of 10%, 15% and 35%, respectively. (laser biophotonics)

  15. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

  16. The effects of aprotinin on blood product transfusion associated with thoracic aortic surgery requiring deep hypothermic circulatory arrest.

    LENUS (Irish Health Repository)

    Seigne, P W

    2012-02-03

    OBJECTIVE: To compare the effects of aprotinin on blood product use and postoperative complications in patients undergoing thoracic aortic surgery requiring deep hypothermic circulatory arrest. DESIGN: A retrospective study. SETTING: A university hospital. PARTICIPANTS: Nineteen patients who underwent elective or urgent thoracic aortic surgery. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The total number of units of packed red blood cells, fresh frozen plasma, and platelets was significantly less in the group that received aprotinin (p = 0.01, 0.04, and 0.01). The intraoperative transfusion of packed red blood cells and platelets, collection and retransfusion of cell saver, and postoperative transfusion of fresh frozen plasma were also significantly less in the aprotinin group (p = 0.01, 0.02, 0.01, and 0.05). No patient in either group sustained renal dysfunction or a myocardial infarction. Two patients who had not received aprotinin suffered from chronic postoperative seizures, and one patient who had received aprotinin sustained a perioperative stroke. CONCLUSIONS: Low-dose aprotinin administration significantly decreases blood product transfusion requirements in the setting of thoracic aortic surgery requiring deep hypothermic circulatory arrest, and it does not appear to be associated with renal or myocardial dysfunction.

  17. Ex vivo measurement of calpain activation in human peripheral blood lymphocytes by detection of immunoreactive products of calpastatin degradation.

    Directory of Open Access Journals (Sweden)

    Jacek M Witkowski

    2008-01-01

    Full Text Available Limited proteolysis of multiple intracellular proteins by endogenous Ca-dependent cysteine proteases--calpains--is an important regulatory mechanism for cell proliferation, apoptosis etc. Its importance for cellular functions is stressed by existence of endogenous calpain inhibitors--calpastatins. The calpain-calpastatin system within living cells is in a fragile balance, which depends on both partners. The interdependence of calpain--a protease--and calpastatin--an endogenous inhibitor and at the same time a substrate for this enzyme makes any assessment of actual activity of this enzyme in the cells very difficult. In this work we made an attempt to estimate and compare the activity of calpain in human peripheral blood lymphocytes by assessing the levels of limited proteolysis of calpastatin in these cells by western blot, while at the same time the levels of calpain protein inside these cells was measured by flow cytometry. Our results indicate that it is possible to compare (semi-quantitatively the activities of calpain in peripheral blood CD4+ and CD19+ lymphocytes from various donors that way. Preliminary results showed that calpain activity is increased in the CD4+ T cells isolated from peripheral blood of rheumatoid arthritis patients as compared to control lymphocytes. Extremely high intrinsic activity of calpain was detected in chronic lymphocytic leukemia (CD19+ cells. All this confirms the detection of immunoreactive products of calpastatin as a good maker of endogenous calpain activity.

  18. The effect of cromoglycate on time-dependent histamine and serotonin concentrations in stored blood products.

    Science.gov (United States)

    Konca, Kamuran; Tiftik, E Naci; Aslan, Gönül; Kanik, Arzu; Yalçin, Atilla

    2006-04-01

    Biogenic amines, having vascular and inflammatory effects, are accepted as a potential threat for some non-hemolytic transfusion reactions. The aim of this study was to investigate time-dependent histamine/serotonin levels in stored blood products and to see whether cromoglycate has any effect on these mediators. Either for platelet or whole blood, 10-fold concentrations of cromoglycate (1 microg ml(-1), 10 microg ml(-1), 100 microg ml(-1)) with controls prepared as pairs of replicate bags collected from two healthy subjects, separately. By using enzyme immunoassay, histamine and serotonin levels were determined in platelet or blood replicates. Histamine levels increased significantly with time but serotonin remained unchanged during the storage of platelet or blood specimens. Cromoglycate had no effect on these biogenic amines except an increase of serotonin in whole blood specimens containing 100 microg ml(-1) of it. So, cromoglycate cannot protect blood products against rising levels of histamine or serotonin.

  19. General coarse-grained red blood cell models: I. Mechanics

    OpenAIRE

    FEDOSOV, DMITRY A.; Caswell, Bruce; Karniadakis, George E.

    2009-01-01

    We present a rigorous procedure to derive coarse-grained red blood cell (RBC) models, which lead to accurate mechanical properties of realistic RBCs. Based on a semi-analytic theory linear and non-linear elastic properties of the RBC membrane can be matched with those obtained in optical tweezers stretching experiments. In addition, we develop a nearly stress-free model which avoids a number of pitfalls of existing RBC models, such as non-biconcave equilibrium shape and dependence of RBC mech...

  20. Manipulation of microparticles and red blood cells using optoelectronic tweezers

    Indian Academy of Sciences (India)

    R S Verma; R Dasgupta; N Kumar; S Ahlawat; A Uppal; P K Gupta

    2014-02-01

    We report the development of an optoelectronic tweezers set-up which works by lightinduced dielectrophoresis mechanism to manipulate microparticles. We used thermal evaporation technique for coating the organic polymer, titanium oxide phthalocyanine (TiOPc), as a photoconductive layer on ITO-coated glass slide. Compare to the conventional optical tweezers, the technique requires optical power in W range and provides a manipulation area of a few mm2. The set-up was used to manipulate the polystyrene microspheres and red blood cells (RBCs). The RBCs could be attracted or repelled by varying the frequency of the applied AC bias.

  1. Swinging of red blood cells under shear flow

    CERN Document Server

    Abkarian, M; Viallat, A; Abkarian, Manouk; Faivre, Magalie; Viallat, Annie

    2007-01-01

    We reveal that under moderate shear stress (of the order of 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tanktreading (TT) motion. A model based on a fluid ellipsoid surrounded by a visco-elastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both swinging amplitude and period (1/2 the TT period) upon decreasing the shear stress, a shear stress-triggered transition towards a narrow shear stress-range intermittent regime of successive swinging and tumbling, and a pure tumbling motion at lower shear stress-values.

  2. The nature of multiphoton fluorescence from red blood cells

    Science.gov (United States)

    Saytashev, Ilyas; Murphy, Michael; Osseiran, Sam; Spence, Dana M.; Evans, Conor L.; Dantus, Marcos

    2016-03-01

    We report on the nature of multiphoton excited fluorescence observed from human erythrocytes (red blood cells RBC's) and their "ghosts" following 800nm sub-15 fs excitation. The detected optical signal is assigned as two-photon excited fluorescence from hemoglobin. Our findings are supported by wavelength-resolved fluorescence lifetime decay measurements using time-correlated single photon counting system from RBC's, their ghosts as well as in vitro samples of various fluorophores including riboflavin, NADH, NAD(P)H, hemoglobin. We find that low-energy and short-duration pulses allow two-photon imaging of RBC's, but longer more intense pulses lead to their destruction.

  3. THE PURE RED BLOOD CELL APLASIA IN RENAL TRANSPLANT RECIPIENT

    Directory of Open Access Journals (Sweden)

    B. T. Dzumabaeva

    2011-01-01

    Full Text Available The pure red blood cell aplasia of renal transplant recipients caused by parvovirus B19 (PB19 is characterized by persistent anemia which resistant to erythropoietin therapy, lack of reticulocytes, bone marrow hypoplasia, and clinically accompanied by severe recurrent bacterial, fungal and viral infection. In case of reactivation PB19 it is necessarv, first of all, eliminate the causes activation of this virus and to cancel or reduce the dose of drugs which depressed the normal hematopoiesis germs, thus to reduce the pancytopenia associating complications in this population. 

  4. DETERMINANTS OF RED-BLOOD-CELL DEFORMABILITY IN RELATION TO CELL AGE

    NARCIS (Netherlands)

    BOSCH, FH; WERRE, JM; ROERDINKHOLDERSTOELWINDER, B; HULS, T; WILLEKENS, FLA; WICHERS, G; HALIE, MR

    1994-01-01

    Red blood cell (RBC) deformability was determined with an ektacytometer in fractions separated on the basis of differences in cell volume or density. Deformability was measured with ektacytometry (rpm-scan and osmo-scan). We studied three groups of RBC fractions:l. By counterflow centrifugation we o

  5. Homeostatic 'bystander' proliferation of human peripheral blood B cells in response to polyclonal T-cell stimulation in vitro.

    Science.gov (United States)

    Jasiulewicz, Aleksandra; Lisowska, Katarzyna A; Pietruczuk, Krzysztof; Frąckowiak, Joanna; Fulop, Tamas; Witkowski, Jacek M

    2015-11-01

    The mechanisms of maintenance of adequate numbers of B lymphocytes and of protective levels of immunoglobulins in the absence of antigenic (re)stimulation remain not fully understood. Meanwhile, our results presented here show that both peripheral blood naive and memory B cells can be activated strongly and non-specifically (in a mitogen-like fashion) in 5-day in vitro cultures of anti-CD3- or concanavalin A (Con A)-stimulated peripheral blood mononuclear cells of healthy people. This polyclonal, bystander activation of the B cells includes multiple divisions of most of them (assessed here by the flow cytometric technique of dividing cell tracking) and significant antibody [immunoglobulin M (IgM) and IgG] secretion. Observed proliferation of the CD19(+) B cells depends on contact with stimulated T helper (Th) cells (via CD40-CD40L interaction) and on the response of B cells to secreted interleukins IL-5, IL-10 and IL-4, and is correlated with the levels of these Th-derived molecules, while it does not involve the ligation of the BCR/CD19 complex. We suggest that the effect might reflect the situation occurring in vivo as the homeostatic proliferation of otherwise non-stimulated, peripheral B lymphocytes, providing an always ready pool for efficient antibody production to any new (or cognate) antigen challenge.

  6. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels

    CERN Document Server

    Wang, Tong; Xing, Zhongwen

    2016-01-01

    Blood exhibits a heterogeneous nature of hematocrit, velocity, and effective viscosity in microcapillaries. Microvascular bifurcations have a significant influence on the distribution of the blood cells and blood flow behavior. This paper presents a simulation study performed on the two-dimensionalmotions and deformation of multiple red blood cells in microvessels with diverging and converging bifurcations. Fluid dynamics and membrane mechanics were incorporated. Effects of cell shape, hematocrit, and deformability of the cell membrane on rheological behavior of the red blood cells and the hemodynamics have been investigated. It was shown that the blood entering the daughter branch with a higher flow rate tended to receive disproportionally more cells. The results also demonstrate that red blood cells in microvessels experienced lateral migration in the parent channel and blunted velocity profiles in both straight section and daughter branches, and this effect was influenced by the shape and the initial posit...

  7. Successful implementation of a packed red blood cell and fresh frozen plasma transfusion protocol in the surgical intensive care unit.

    Directory of Open Access Journals (Sweden)

    Benjamin E Szpila

    Full Text Available Blood product transfusions are associated with increased morbidity and mortality. The purpose of this study was to determine if implementation of a restrictive protocol for packed red blood cell (PRBC and fresh frozen plasma (FFP transfusion safely reduces blood product utilization and costs in a surgical intensive care unit (SICU.We performed a retrospective, historical control analysis comparing before (PRE and after (POST implementation of a restrictive PRBC/FFP transfusion protocol for SICU patients. Univariate analysis was utilized to compare patient demographics and blood product transfusion totals between the PRE and POST cohorts. Multivariate logistic regression models were developed to determine if implementation of the restrictive transfusion protocol is an independent predictor of adverse outcomes after controlling for age, illness severity, and total blood products received.829 total patients were included in the analysis (PRE, n=372; POST, n=457. Despite higher mean age (56 vs. 52 years, p=0.01 and APACHE II scores (12.5 vs. 11.2, p=0.006, mean units transfused per patient were lower for both packed red blood cells (0.7 vs. 1.2, p=0.03 and fresh frozen plasma (0.3 vs. 1.2, p=0.007 in the POST compared to the PRE cohort, respectively. There was no difference in inpatient mortality between the PRE and POST cohorts (7.5% vs. 9.2%, p=0.39. There was a decreased risk of urinary tract infections (OR 0.47, 95%CI 0.28-0.80 in the POST cohort after controlling for age, illness severity and amount of blood products transfused.Implementation of a restrictive transfusion protocol can effectively reduce blood product utilization in critically ill surgical patients with no increase in morbidity or mortality.

  8. A native whole blood test for the evaluation of blood-surface interaction: determination of thromboxane production.

    Science.gov (United States)

    Mantovani, E; Marconi, W; Cebo, B; Togna, A R; Togna, G; Caprino, L

    1984-05-01

    The method developed to evaluate the hemocompatibility of artificial materials involves the determination of thromboxane production during the clotting of rabbit blood, in test tubes of different materials. The concentration of serum TXB2 obtained after incubation of whole blood in glass test tubes, for 40 min at 37 degrees C, averaged 416.8 +/- 23.3 ng/ml (mean +/- SE). Polymethylpentene, recognised as having a relatively poor blood compatibility, elicited 309.5 +/- 17.2 ng/ml of serum TXB2, while silicone and Avcothane, considered of better hemocompatibility, showed thromboxane levels of 276.2 +/- 28.2 and 222.9 +/- 31.5 ng/ml, respectively. These values validate the usefulness of the proposed method as a preliminary in vitro screening test of artificial materials intended for biomedical application.

  9. Biological effects of the electrostatic field: red blood cell-related alterations of oxidative processes in blood

    Science.gov (United States)

    Harutyunyan, Hayk A.; Sahakyan, Gohar V.

    2016-01-01

    The aim of this study was to determine activities of pro-/antioxidant enzymes, reactive oxygen species (ROS) content, and oxidative modification of proteins and lipids in red blood cells (RBCs) and blood plasma of rats exposed to electrostatic field (200 kV/m) during the short (1 h) and the long periods (6 day, 6 h daily). Short-term exposure was characterized by the increase of oxidatively damaged proteins in blood of rats. This was strongly expressed in RBC membranes. After long-term action, RBC content in peripheral blood was higher than in control ( P < 0.01) and the attenuation of prooxidant processes was shown.

  10. Cell differentiation mediated by co-culture of human umbilical cord blood stem cells with murine hepatic cells.

    Science.gov (United States)

    Stecklum, Maria; Wulf-Goldenberg, Annika; Purfürst, Bettina; Siegert, Antje; Keil, Marlen; Eckert, Klaus; Fichtner, Iduna

    2015-02-01

    In the present study, purified human cord blood stem cells were co-cultivated with murine hepatic alpha mouse liver 12 (AML12) cells to compare the effect on endodermal stem cell differentiation by either direct cell-cell interaction or by soluble factors in conditioned hepatic cell medium. With that approach, we want to mimic in vitro the situation of preclinical transplantation experiments using human cells in mice. Cord blood stem cells, cultivated with hepatic conditioned medium, showed a low endodermal differentiation but an increased connexin 32 (Cx32) and Cx43, and cytokeratin 8 (CK8) and CK19 expression was monitored by reverse transcription polymerase chain reaction (RT-PCR). Microarray profiling indicated that in cultivated cord blood cells, 604 genes were upregulated 2-fold, with the highest expression for epithelial CK19 and epithelial cadherin (E-cadherin). On ultrastructural level, there were no major changes in the cellular morphology, except a higher presence of phago(ly)some-like structures observed. Direct co-culture of AML12 cells with cord blood cells led to less incisive differentiation with increased sex-determining region Y-box 17 (SOX17), Cx32 and Cx43, as well as epithelial CK8 and CK19 expressions. On ultrastructural level, tight cell contacts along the plasma membranes were revealed. FACS analysis in co-cultivated cells quantified dye exchange on low level, as also proved by time relapse video-imaging of labelled cells. Modulators of gap junction formation influenced dye transfer between the co-cultured cells, whereby retinoic acid increased and 3-heptanol reduced the dye transfer. The study indicated that the cell-co-cultured model of human umbilical cord blood cells and murine AML12 cells may be a suitable approach to study some aspects of endodermal/hepatic cell differentiation induction.

  11. Increased ability of peripheral blood B cells from patients with rheumatoid arthritis to produce interleukin 1 in vitro.

    Directory of Open Access Journals (Sweden)

    Yamamura,Masahiro

    1990-12-01

    Full Text Available Twenty-four patients with rheumatoid arthritis (RA and 20 normal controls were examined for the ability of their peripheral blood B cells to produce interleukin 1 (IL-1 with or without lipopolysaccharide (LPS. B cells were purified from peripheral blood by negative selection methods (i.e., removal of adherent cells and sheep red blood cell rosette-forming cells, followed by treatment with monoclonal antibodies (OKT3 and OKM1 and complement. The amount of IL-1 in B cell culture supernatants (SN was measured by thymocyte and fibroblast proliferation assays and an enzyme-linked immunosorbent assay for IL-1 alpha and beta. As a group, cultured B cells from patients with RA, both spontaneously and when stimulated with LPS, produced higher levels of IL-1 than those from normal controls. IL-1 production by RA B cells with LPS had a weak but positive correlation with disease activity. Moreover, RA B cell culture SN with elevated levels of IL-1 had a synergistic effect on the growth of anti-human IgM (anti-mu stimulated B cells. In separate experiments, the growth of RA B cells was significantly promoted by IL-1 beta both with and without anti-mu stimulation. These results suggest that B cell-derived IL-1 may be involved in the B cell clonal expansion of RA through its own activity as a B cell stimulatory factor.

  12. Effect of Titanium Dioxide Nanoparticles on The Amount of Blood Cells and Liver Enzymes in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Rezaei Zarchi

    2011-11-01

    Full Text Available Introduction: Considering the development of nanotechnology and extensive use of nano-materials are in different fields of industry, it is necessary to investigate their destructive effects on biological systems. Titanium dioxide(TiO2 is used in the production of different dyes, cosmetics, ceramics, photocatalysts, water and sewage treatment and a lot of other products. In the present study, the effect of TiO2 on the number of blood cells and the activity of liver enzymes of rat was assessed. Methods: Concentrations of 50, 100 and 500 mg/Kg TiO2 nanoparticles (25 nm size in distilled water were administered orally to Wistar rats for 14 days and some blood factors were studied on the blood samples collected. Results: Results showed that TiO2 nanoparticles cause different changes in blood cells, and the changes were significant for some of them such as white blood cells (lymphocytes, monocytes, eosinophils and basophils. Decreased number of red blood cells and increased level of liver enzymes was also observed after the administration of different concentrations of TiO2, which proves the toxic effects of TiO2 on the body. Conclusion: Results of the present study proved the toxicity of TiO2 nanoparticles on the living organisms. So, further studies are recommended to predict TiO2 toxicity.

  13. Raising the standard: changes to the Australian Code of Good Manufacturing Practice (cGMP) for human blood and blood components, human tissues and human cellular therapy products.

    Science.gov (United States)

    Wright, Craig; Velickovic, Zlatibor; Brown, Ross; Larsen, Stephen; Macpherson, Janet L; Gibson, John; Rasko, John E J

    2014-04-01

    In Australia, manufacture of blood, tissues and biologicals must comply with the federal laws and meet the requirements of the Therapeutic Goods Administration (TGA) Manufacturing Principles as outlined in the current Code of Good Manufacturing Practice (cGMP). The Therapeutic Goods Order (TGO) No. 88 was announced concurrently with the new cGMP, as a new standard for therapeutic goods. This order constitutes a minimum standard for human blood, tissues and cellular therapeutic goods aimed at minimising the risk of infectious disease transmission. The order sets out specific requirements relating to donor selection, donor testing and minimisation of infectious disease transmission from collection and manufacture of these products. The Therapeutic Goods Manufacturing Principles Determination No. 1 of 2013 references the human blood and blood components, human tissues and human cellular therapy products 2013 (2013 cGMP). The name change for the 2013 cGMP has allowed a broadening of the scope of products to include human cellular therapy products. It is difficult to directly compare versions of the code as deletion of some clauses has not changed the requirements to be met, as they are found elsewhere amongst the various guidelines provided. Many sections that were specific for blood and blood components are now less prescriptive and apply to a wider range of cellular therapies, but the general overall intent remains the same. Use of 'should' throughout the document instead of 'must' allows flexibility for alternative processes, but these systems will still require justification by relevant logical argument and validation data to be acceptable to TGA. The cGMP has seemingly evolved so that specific issues identified at audit over the last decade have now been formalised in the new version. There is a notable risk management approach applied to most areas that refer to process justification and decision making. These requirements commenced on 31 May 2013 and a 12 month

  14. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration

    Science.gov (United States)

    O'Doherty, Jim; McNamara, Paul; Clancy, Neil T.; Enfield, Joey G.; Leahy, Martin J.

    2009-05-01

    The use of laser Doppler perfusion imaging (LDPI) and laser speckle perfusion imaging (LSPI) is well known in the noninvasive investigation of microcirculatory blood flow. This work compares the two techniques with the recently developed tissue viability (TiVi) imaging system, which is proposed as a useful tool to quantify red blood cell concentration in microcirculation. Three systems are evaluated with common skin tests such as the use of vasodilating and vasoconstricting drugs (methlynicotinate and clobetasol, respectively) and a reactive hyperaemia maneuver (using a sphygmomanometer). The devices investigated are the laser Doppler line scanner (LDLS), the laser speckle perfusion imager (FLPI)-both from Moor Instruments (Axminster, United Kingdom)-and the TiVi imaging system (WheelsBridge AB, Linköping, Sweden). Both imaging and point scanning by the devices are used to quantify the provoked reactions. Perfusion images of vasodilatation and vasoconstriction are acquired with both LDLS and FLPI, while TiVi images are acquired with the TiVi imager. Time acquisitions of an averaged region of interest are acquired for temporal studies such as the reactive hyperaemia. In contrast to the change in perfusion over time with pressure, the TiVi imager shows a different response due its measurement of blood concentration rather than perfusion. The responses can be explained by physiological understanding. Although the three devices sample different compartments of tissue, and output essentially different variables, comparisons can be seen between the three systems. The LDLS system proves to be suited to measurement of perfusion in deeper vessels, while FLPI and TiVi showed sensitivity to more superficial nutritional supply. LDLS and FLPI are insensitive to the action of the vasoconstrictor, while TiVi shows the clear boundaries of the reaction. Assessment of the resolution, penetration depth, and acquisition rate of each instrument show complimentary features that should

  15. Blood analyte sensing using fluorescent dye-loaded red blood cells

    Science.gov (United States)

    Ritter, Sarah C.; Shao, Xiaole; Cooley, Nicholas; Milanick, Mark A.; Glass, Timothy E.; Meissner, Kenith E.

    2014-02-01

    Measurement of blood analytes provides crucial information about a patient's health. Some such analytes, such as glucose in the case of diabetes, require long-term or near-continuous monitoring for proper disease management. However, current monitoring techniques are far from ideal: multiple-per-day finger stick tests are inconvenient and painful for the patient; implantable sensors have short functional life spans (i.e., 3-7 days). Due to analyte transporters on red blood cell (RBC) membranes that equilibrate intracellular and extracellular analyte levels, RBCs serve as an attractive alternative for encapsulating analyte sensors. Once reintroduced to the blood stream, the functionalized RBCs may continue to live for the remainder of their life span (120 days for humans). They are biodegradable and biocompatible, thereby eliminating the immune system response common for many implanted devices. The proposed sensing system utilizes the ability of the RBCs to swell in response to a decrease in the osmolarity of the extracellular solution. Just before lysis, they develop small pores on the scale of tens of nanometers. While at low temperature, analyte-sensitive dyes in the extracellular solution diffuse into the perforated RBCs and become entrapped upon restoration of temperature and osmolarity. Since the fluorescent signal from the entrapped dye reports on changes in the analyte level of the extracellular solution via the RBC transporters, interactions between the RBCs and the dye are critical to the efficacy of this technique. In this work, we study the use of a near infrared pH sensitive dye encapsulated within RBCs and assess the ability to measure dye fluorescence in vivo.

  16. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer

    Science.gov (United States)

    Veluchamy, John P.; Lopez-Lastra, Silvia; Spanholtz, Jan; Bohme, Fenna; Kok, Nina; Heideman, Daniëlle A. M.; Verheul, Henk M. W.; Di Santo, James P.; de Gruijl, Tanja D.; van der Vliet, Hans J.

    2017-01-01

    Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG1 mAb cetuximab has been used for treatment of RASwt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR− RASwt, EGFR+ RASmut, and EGFR+ BRAFmut cells, A-PBNK were able to initiate lysis of EGFR+ colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR+ colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR−RASwt (42 ± 8 versus 67 ± 7%), EGFR+ RASmut (20 ± 2 versus 37 ± 6%), and EGFR+ BRAFmut (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR+ RASmut colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered. PMID:28220124

  17. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not

    Institute of Scientific and Technical Information of China (English)

    MinjunYu; ZhifengXiao; LiShen; LingsongLi

    2005-01-01

    Stem cell transplantation is a promising treatment for many conditions.Although stem cells can be isolated from many tissues, blood is the ideal source of these cells due to the ease of collection. Mesenchymal stem cells (MSCs) have been paid increased attention because of their powerful proliferation and pluripotent differentiating ability. But whether MSCs reside in blood (newborn umbilical cord blood and fetal or adult peripheral blood) is also debatable. The present study showed that MSC-like cells could be isolated and expanded from 16-26 weeks fetal blood but were not acquired efficiently from full-term infants' umbilical cord blood (UCB). Adherent cells separated from postnatal UCB were heterogeneous in cell morphology. Their proliferation capacity was limited and they were mainly CD45+, which indicated their haematopoietic derivation. On the contrary, MSC-like cells shared a similar phenotype to bone marrow MSCs. They were CD34- CD45- CD44+ CD71+ CD90+ CD105+. They could be induced to differentiate into osteogenic, adipogenic and neural lineage cells. Single cell clones also showed similar phenotype and differentiation ability. Our results suggest that early fetal blood is rich in MSCs but term UCB is not.

  18. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  19. Stretching and relaxation of malaria-infected red blood cells.

    Science.gov (United States)

    Ye, Ting; Phan-Thien, Nhan; Khoo, Boo Cheong; Lim, Chwee Teck

    2013-09-03

    The invasion of red blood cells (RBCs) by malaria parasites is a complex dynamic process, in which the infected RBCs gradually lose their deformability and their ability to recover their original shape is greatly reduced with the maturation of the parasites. In this work, we developed two types of cell model, one with an included parasite, and the other without an included parasite. The former is a representation of real malaria-infected RBCs, in which the parasite is treated as a rigid body. In the latter, where the parasite is absent, the membrane modulus and viscosity are elevated so as to produce the same features present in the parasite model. In both cases, the cell membrane is modeled as a viscoelastic triangular network connected by wormlike chains. We studied the transient behaviors of stretching deformation and shape relaxation of malaria-infected RBCs based on these two models and found that both models can generate results in agreement with those of previously published studies. With the parasite maturation, the shape deformation becomes smaller and smaller due to increasing cell rigidity, whereas the shape relaxation time becomes longer and longer due to the cell's reduced ability to recover its original shape.

  20. Red blood cell cluster separation from digital images for use in sickle cell disease.

    Science.gov (United States)

    González-Hidalgo, Manuel; Guerrero-Peña, F A; Herold-García, S; Jaume-I-Capó, Antoni; Marrero-Fernández, P D

    2015-07-01

    The study of cell morphology is an important aspect of the diagnosis of some diseases, such as sickle cell disease, because red blood cell deformation is caused by these diseases. Due to the elongated shape of the erythrocyte, ellipse adjustment and concave point detection are applied widely to images of peripheral blood samples, including during the detection of cells that are partially occluded in the clusters generated by the sample preparation process. In the present study, we propose a method for the analysis of the shape of erythrocytes in peripheral blood smear samples of sickle cell disease, which uses ellipse adjustments and a new algorithm for detecting notable points. Furthermore, we apply a set of constraints that allow the elimination of significant image preprocessing steps proposed in previous studies. We used three types of images to validate our method: artificial images, which were automatically generated in a random manner using a computer code; real images from peripheral blood smear sample images that contained normal and elongated erythrocytes; and synthetic images generated from real isolated cells. Using the proposed method, the efficiency of detecting the two types of objects in the three image types exceeded 99.00%, 98.00%, and 99.35%, respectively. These efficiency levels were superior to the results obtained with previously proposed methods using the same database, which is available at http://erythrocytesidb.uib.es/. This method can be extended to clusters of several cells and it requires no user inputs.

  1. Geometric localization of thermal fluctuations in red blood cells

    Science.gov (United States)

    Evans, Arthur A.; Bhaduri, Basanta; Popescu, Gabriel; Levine, Alex J.

    2017-01-01

    The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, “singular lines,” leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes. PMID:28242681

  2. Geometric localization of thermal fluctuations in red blood cells.

    Science.gov (United States)

    Evans, Arthur A; Bhaduri, Basanta; Popescu, Gabriel; Levine, Alex J

    2017-02-27

    The thermal fluctuations of membranes and nanoscale shells affect their mechanical characteristics. Whereas these fluctuations are well understood for flat membranes, curved shells show anomalous behavior due to the geometric coupling between in-plane elasticity and out-of-plane bending. Using conventional shallow shell theory in combination with equilibrium statistical physics we theoretically demonstrate that thermalized shells containing regions of negative Gaussian curvature naturally develop anomalously large fluctuations. Moreover, the existence of special curves, "singular lines," leads to a breakdown of linear membrane theory. As a result, these geometric curves effectively partition the cell into regions whose fluctuations are only weakly coupled. We validate these predictions using high-resolution microscopy of human red blood cells (RBCs) as a case study. Our observations show geometry-dependent localization of thermal fluctuations consistent with our theoretical modeling, demonstrating the efficacy in combining shell theory with equilibrium statistical physics for describing the thermalized morphology of cellular membranes.

  3. [Production of interleukin-2 by peripheral blood lymphocytes from patients with soft tissue sarcomas].

    Science.gov (United States)

    Berezhnaia, N M; Goretskiĭ, B A; Konovalenko, V F; Palivets, A Iu; Tolstopiatov, B A

    1987-01-01

    Interleukin-2 (IL-2) production of phytohemagglutinin-stimulated peripheral blood lymphocytes (PBL) was studied in 9 healthy subjects and 19 patients with soft tissue sarcomas. Mean IL-2 production by PBL in 19 patients was significantly diminished as compared with the control. Surgery leads to an increase of IL-2 production, however, the levels observed in the control do not restore completely.

  4. The DNA methylome of human peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Yingrui Li

    Full Text Available DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand, we report a comprehensive (92.62% methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and 80% displayed allele-specific expression (ASE. These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies.

  5. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Giovanni Nardo

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a fatal progressive motor neuron disease, for which there are still no diagnostic/prognostic test and therapy. Specific molecular biomarkers are urgently needed to facilitate clinical studies and speed up the development of effective treatments. METHODOLOGY/PRINCIPAL FINDINGS: We used a two-dimensional difference in gel electrophoresis approach to identify in easily accessible clinical samples, peripheral blood mononuclear cells (PBMC, a panel of protein biomarkers that are closely associated with ALS. Validations and a longitudinal study were performed by immunoassays on a selected number of proteins. The same proteins were also measured in PBMC and spinal cord of a G93A SOD1 transgenic rat model. We identified combinations of protein biomarkers that can distinguish, with high discriminatory power, ALS patients from healthy controls (98%, and from patients with neurological disorders that may resemble ALS (91%, between two levels of disease severity (90%, and a number of translational biomarkers, that link responses between human and animal model. We demonstrated that TDP-43, cyclophilin A and ERp57 associate with disease progression in a longitudinal study. Moreover, the protein profile changes detected in peripheral blood mononuclear cells of ALS patients are suggestive of possible intracellular pathogenic mechanisms such as endoplasmic reticulum stress, nitrative stress, disturbances in redox regulation and RNA processing. CONCLUSIONS/SIGNIFICANCE: Our results indicate that PBMC multiprotein biomarkers could contribute to determine amyotrophic lateral sclerosis diagnosis, differential diagnosis, disease severity and progression, and may help to elucidate pathogenic mechanisms.

  6. 75 FR 62843 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2010-10-13

    ... HUMAN SERVICES Health Resources and Services Administration Advisory Council on Blood Stem Cell... Act, as amended) the Advisory Council on Blood Stem Cell Transplantation (ACBSCT) advises the.... L. 92-463), notice is hereby given of the following meeting: Name: Advisory Council on Blood...

  7. Quantification of the fraction poorly deformable red blood cells using ektacytometry

    NARCIS (Netherlands)

    Streekstra, G.J.; Dobbe, J.G.G.; Hoekstra, A.G.

    2010-01-01

    We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a la

  8. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    Science.gov (United States)

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  9. Hepatitis B Virus Replication in CD34+ Hematopoietic Stem Cells From Umbilical Cord Blood.

    Science.gov (United States)

    Huang, Yanxin; Yan, Qin; Fan, Rongshan; Song, Shupeng; Ren, Hong; Li, Yongguo; Lan, Yinghua

    2016-05-18

    BACKGROUND Hepatitis B virus (HBV) is a hepatotropic virus that can infect extrahepatic tissue. Whether hematopoietic stem cells (HSCs) can be infected by HBV and serve as a potential virus reservoir is still unknown. In this study, the susceptibility of CD34+ HSCs to HBV was investigated. MATERIAL AND METHODS Cord blood-derived CD34+ HSCs were exposed to HBV in vitro, and immunocytochemistry, transmission electron microscopy, and RT-PCR were used to identify viral-related proteins and specific viral genomic sequences. Then, CD34+ HSCs were challenged by different titers of HBV, and intracellular and supernatant HBV DNA, and hepatitis B surface antigen (HBsAg) levels, were examined. In addition, CD34+ peripheral blood stem cells (PBSCs) from chronic HBV carriers were isolated and cultured, and HBV DNA levels were measured. RESULTS HBV-infected CD34+ cells showed positive signals for HBsAg by DAB staining and TRITC staining, and HBV particles were identified. RT-PCR results showed that the 403 bp PCR products corresponding to the amplified hepatitis B S gene fragment were observed in CD34+ HSCs infected by HBV. In addition, supernatant and intracellular HBV DNA increased with the proliferation of CD34+ HSCs. Similar results were obtained from intracellular HBsAg quantification tests. In addition, HBV DNA levels both in cells and in supernatants of CD34+ PBSCs increased proportionally, and the increments of HBV DNA in the supernatants paralleled those found in cells. CONCLUSIONS HBV can replicate in CD34+ HSCs in cord blood or peripheral blood of chronic HBV carriers.

  10. Bacterial reduction of alcohol-based liquid and gel products on hands soiled with blood.

    Science.gov (United States)

    Kawagoe, Julia Y; Graziano, Kazuko Uchikawa; Martino, Marines Dalla Valle; Siqueira, Itacy; Correa, Luci

    2011-11-01

    The antibacterial efficacy of three alcohol-based products (liquid and gel) were tested on the hands with blood and contaminated with Serratia marcescens (ATCC 14756), using EN 1500 procedures in 14 healthy volunteers. The alcohol-based products tested, either gel or liquid-based, reached bacterial reduction levels higher than 99.9% in the presence of blood and did not differ significantly (ANOVA test; P = 0.614).

  11. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  12. Development of a diagnostic sensor for measuring blood cell concentrations during haemoconcentration

    Science.gov (United States)

    Robertson, Craig A.; Gourlay, Terence

    2016-01-01

    Background: HemoSep® is a commercial ultrafiltration and haemoconcentration device for the concentration of residual bypass blood following surgery. This technology is capable of reducing blood loss in cardiac and other types of “clean site” procedures, including paediatric surgery. Clinical feedback suggested that the device would be enhanced by including a sensor technology capable of discerning the concentration level of the processed blood product. We sought to develop a novel sensor that can, using light absorption, give an accurate estimate of packed cell volume (PCV). Materials and methods: A sensor-housing unit was 3D printed and the factors influencing the sensor’s effectiveness – supply voltage, sensitivity and emitter intensity - were optimised. We developed a smart system, using comparator circuitry capable of visually informing the user when adequate PCV levels (⩾35%) are attained by HemoSep® blood processing, which ultimately indicates that the blood is ready for autotransfusion. Results: Our data demonstrated that the device was capable of identifying blood concentration at and beyond the 35% PCV level. The device was found to be 100% accurate at identifying concentration levels of 35% from a starting level of 20%. Discussion: The sensory capability was integrated into HemoSep’s® current device and is designed to enhance the user’s clinical experience and to optimise the benefits of HemoSep® therapy. The present study focused on laboratory studies using bovine blood. Further studies are now planned in the clinical setting to confirm the efficacy of the device. PMID:27591743

  13. Cerebral blood flow in sickle cell cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Huttenlocher, P.R.; Moohr, J.W.; Johns, L.; Brown, F.D.

    1984-05-01

    Cerebral blood flow (CBF) has been studied by the xenon-133 (/sup 133/Xe) inhalation method in 16 children with suspected sickle cell cerebrovascular disease. Abnormalities consisting of decreases in total, hemispheral, or regional CBF were found in 17 of 26 studies. Eleven studies performed immediately after stroke, transient ischemic attack, or depression of state of alertness showed abnormalities. In addition to confirming regional cerebrovascular insufficiency in children with stroke due to major cerebral artery occlusion, the method detected diffuse decrease in CBF in children with stupor, coma, and seizures who had normal angiographic findings. In contrast, six of seven studies obtained after exchange transfusion or during maintenance on hypertransfusion therapy showed normal findings. The difference between results in patients with acute neurologic disturbances and those receiving transfusion therapy was statistically significant (P less than .005). The data indicate that the /sup 133/Xe method reliably demonstrates cerebrovascular impairment in sickle cell disease. They also suggest that CBF changes in patients with sickle cell disease can be reversed by exchange transfusion and by hypertransfusion therapy. The /sup 133/Xe CBF method may be useful for following up children with sickle cell disease who are at high risk for recurrent stroke.

  14. 76 FR 19101 - Advisory Council on Blood Stem Cell Transplantation; Notice of Meeting

    Science.gov (United States)

    2011-04-06

    .... Bill Young Cell Transplantation Program (Program) and the National Cord Blood Inventory (NCBI) Program...; National Marrow Donor Program (NMDP) Analysis of National Cord Blood Inventory (NCBI) and Non-NCBI...

  15. 76 FR 39405 - Blood Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-06

    .... Location: Hilton Hotel, Washington, DC North Gaithersburg, 620 Perry Pkwy., Gaithersburg, MD 20877, 301-977... procoagulant activity in immune globulin products; and summary of the August 1-2, 2011,...

  16. Red blood cells serve as intravascular carriers of myeloperoxidase.

    Science.gov (United States)

    Adam, Matti; Gajdova, Silvie; Kolarova, Hana; Kubala, Lukas; Lau, Denise; Geisler, Anne; Ravekes, Thorben; Rudolph, Volker; Tsao, Philip S; Blankenberg, Stefan; Baldus, Stephan; Klinke, Anna

    2014-09-01

    Myeloperoxidase (MPO) is a heme enzyme abundantly expressed in polymorphonuclear neutrophils. MPO is enzymatically capable of catalyzing the generation of reactive oxygen species (ROS) and the consumption of nitric oxide (NO). Thus MPO has both potent microbicidal and, upon binding to the vessel wall, pro-inflammatory properties. Interestingly, MPO - a highly cationic protein - has been shown to bind to both endothelial cells and leukocyte membranes. Given the anionic surface charge of red blood cells, we investigated binding of MPO to erythrocytes. Red blood cells (RBCs) derived from patients with elevated MPO plasma levels showed significantly higher amounts of MPO by flow cytometry and ELISA than healthy controls. Heparin-induced MPO-release from patient-derived RBCs was significantly increased compared to controls. Ex vivo experiments revealed dose and time dependency for MPO-RBC binding, and immunofluorescence staining as well as confocal microscopy localized MPO-RBC interaction to the erythrocyte plasma membrane. NO-consumption by RBC-membrane fragments (erythrocyte "ghosts") increased with incrementally greater concentrations of MPO during incubation, indicating preserved catalytic MPO activity. In vivo infusion of MPO-loaded RBCs into C57BL/6J mice increased local MPO tissue concentrations in liver, spleen, lung, and heart tissue as well as within the cardiac vasculature. Further, NO-dependent relaxation of aortic rings was altered by RBC bound-MPO and systemic vascular resistance significantly increased after infusion of MPO-loaded RBCs into mice. In summary, we find that MPO binds to RBC membranes in vitro and in vivo, is transported by RBCs to remote sites in mice, and affects endothelial function as well as systemic vascular resistance. RBCs may avidly bind circulating MPO, and act as carriers of this leukocyte-derived enzyme.

  17. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  18. What Happens to Donated Blood?

    Science.gov (United States)

    ... week. Learn About Blood Blood Facts and Statistics Blood Components Whole Blood and Red Blood Cells Platelets Plasma ... About Blood Blood Facts and Statistics Blood Types Blood Components What Happens to Donated Blood Blood and Diversity ...

  19. Identification of Suitable Reference Genes for Peripheral Blood Mononuclear Cell Subset Studies in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Oturai, D B; Søndergaard, H B; Börnsen, L;

    2016-01-01

    Quantitative real-time PCR (qPCR) involves the need of a proper standard for normalizing the gene expression data. Different studies have shown the validity of reference genes to vary greatly depending on tissue, cell subsets and experimental context. This study aimed at the identification...... of suitable reference genes for qPCR studies using different peripheral blood cell subsets (whole blood (WB) cells, peripheral blood mononuclear cells (PBMCs) and PBMC subsets (CD4(+) T cells, CD8(+) T cells, NK cells, monocytes, B cells and dendritic cells) from healthy controls (HC), patients with relapsing...... stable combination for analyses of cell subsets between HC and RRMS patients, while the combination of UBC and YWHAZ was superior for analysis of cell subsets between HC, RRMS and RRMS-IFN-β groups. GAPDH was generally unsuitable for blood cell subset studies in multiple sclerosis. In conclusion, we...

  20. Photovoltaic cell and production thereof

    Science.gov (United States)

    Narayanan, Srinivasamohan; Kumar, Bikash

    2008-07-22

    An efficient photovoltaic cell, and its process of manufacture, is disclosed wherein the back surface p-n junction is removed from a doped substrate having an oppositely doped emitter layer. A front surface and edges and optionally the back surface periphery are masked and a back surface etch is performed. The mask is not removed and acts as an anti-reflective coating, a passivating agent, or both. The photovoltaic cell retains an untextured back surface whether or not the front is textured and the dopant layer on the back surface is removed to enhance the cell efficiency. Optionally, a back surface field is formed.

  1. Chemokine production and pattern recognition receptor (PRR) expression in whole blood stimulated with pathogen-associated molecular patterns (PAMPs).

    Science.gov (United States)

    Møller, Anne-Sophie W; Ovstebø, Reidun; Haug, Kari Bente F; Joø, Gun Britt; Westvik, Ase-Brit; Kierulf, Peter

    2005-12-21

    Recognition of conserved bacterial structures called pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), may lead to induction of a variety of "early immediate genes" such as chemokines. In the current study, we have in an ex vivo whole blood model studied the induction of the chemokines MIP-1alpha, MCP-1 and IL-8 by various PAMPs. The rate of appearance of Escherichia coli-Lipopolysaccharide (LPS) induced chemokines differed. The production of MIP-1alpha and IL-8 was after 1 h of stimulation significantly higher when compared to unstimulated whole blood, whereas MCP-1 was not significantly elevated until after 3 h. At peak levels the MIP-1alpha concentration induced by E. coli-LPS was 3-5-fold higher than MCP-1 and IL-8. By specific cell depletion, we demonstrated that all three chemokines were mainly produced by monocytes. However, the mRNA results showed that IL-8 was induced in both monocytes and granulocytes. The production of all three chemokines, induced by the E. coli-LPS and Neisseria meningitidis-LPS, was significantly inhibited by antibodies against CD14 and TLR4, implying these receptors to be of importance for the effects of LPS in whole blood. The chemokine production induced by lipoteichoic acid (LTA) and non-mannose-capped lipoarabinomannan (AraLAM) was, however, less efficiently blocked by antibodies against CD14 and TLR2. E. coli-LPS and LTA induced a dose-dependent increase of CD14, TLR2 and TLR4 expression on monocytes in whole blood. These data show that PAMPs may induce chemokine production in whole blood and that antibodies against PRRs inhibit the production to different extent.

  2. Clinical-scale expansion of CD34(+) cord blood cells amplifies committed progenitors and rapid scid repopulation cells.

    Science.gov (United States)

    Casamayor-Genescà, Alba; Pla, Arnau; Oliver-Vila, Irene; Pujals-Fonts, Noèlia; Marín-Gallén, Sílvia; Caminal, Marta; Pujol-Autonell, Irma; Carrascal, Jorge; Vives-Pi, Marta; Garcia, Joan; Vives, Joaquim

    2017-03-25

    Umbilical cord blood (UCB) transplantation is associated with long periods of aplastic anaemia. This undesirable situation is due to the low cell dose available per unit of UCB and the immaturity of its progenitors. To overcome this, we present a cell culture strategy aimed at the expansion of the CD34(+) population and the generation of granulocyte lineage-committed progenitors. Two culture products were produced after either 6 or 14days of in vitro expansion, and their characteristics compared to non-expanded UCB CD34(+) controls in terms of phenotype, colony-forming activity and multilineage repopulation potential in NOD-scid IL2Rγ(null) mice. Both expanded cell products maintained rapid SCID repopulation activity similar to the non-expanded control, but 14-day cultured cells showed impaired long term SCID repopulation activity. The process was successfully scaled up to clinically relevant doses of 89×10(6) CD34(+) cells committed to the granulocytic lineage and 3.9×10(9) neutrophil precursors in different maturation stages. Cell yields and biological properties presented by the cell product obtained after 14days in culture were superior and therefore this is proposed as the preferred production setup in a new type of dual transplant strategy to reduce aplastic periods, producing a transient repopulation before the definitive engraftment of the non-cultured UCB unit. Importantly, human telomerase reverse transcriptase activity was undetectable, c-myc expression levels were low and no genetic abnormalities were found, as determined by G-banding karyotype, further confirming the safety of the expanded product.

  3. Multiple loci are associated with white blood cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael A Nalls

    2011-06-01

    Full Text Available White blood cell (WBC count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2, including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across

  4. The relationship between stroke mortality and red blood cell parameters.

    Directory of Open Access Journals (Sweden)

    Hamidreza Hatamian

    2014-12-01

    Full Text Available Several factors influence on the outcome of ischemic stroke. The aim of this study was determination the relationship between stroke mortality and red blood cell parameters.This cross-sectional study was conducted from 2011 July to June 2012. For all patients with ischemic stroke in middle cerebral artery (MCA territory, the cell blood count test was performed. We recorded their mortality on the 1(st week and the 1(st month after ischemic stroke. Data analysis was performed using t-test, χ(2, Mann-Whitney U-test, logistic regression and receiver operating characteristic curve in SPSS for Windows 19.0.A total of 98 subjects (45.9% men and 54.1% women with the mean age of 71.0 ± 13.9 years were assessed, while 67.3% of them were anemic. The prevalence of 1(st week mortality among anemic and non-anemic patients was 40.9% and 34.4% (P = 0.534. The prevalence of mortality after 1(st week till 1(st month was 19.6% and 21.0% respectively (P = 0.636. In univariant analysis, only 1(st month mortality had a significant relationship with red blood cell (RBC count (P = 0.022. However, the result of logistic regression model showed that RBC (P = 0.012 and mean corpuscular volume (MCV (P = 0.021 remained as predictors of the 1(st week and the 1(st month mortality (P = 0.011 and P = 0.090 respectively. The best cutoff point of RBC for the prediction of the 1(st week mortality with 44.7% specificity and 69.5% sensitivity was estimated 4.07 million/μl and for the 1(st month mortality with 46.6% specificity and 72.2% sensitivity was estimated 4.16 million/μl.The RBC count and MCV are independent predictors of ischemic stroke short-term mortality.

  5. An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells.

    Science.gov (United States)

    Wang, Xue-Ying; Pei, Ying; Xie, Min; Jin, Zi-He; Xiao, Ya-Shi; Wang, Yang; Zhang, Li-Na; Li, Yan; Huang, Wei-Hua

    2015-02-21

    Reproducing a tumor microenvironment consisting of blood vessels and tumor cells for modeling tumor invasion in vitro is particularly challenging. Here, we report an artificial blood vessel implanted 3D microfluidic system for reproducing transvascular migration of tumor cells. The transparent, porous and elastic artificial blood vessels are obtained by constructing polysaccharide cellulose-based microtubes using a chitosan sacrificial template, and possess excellent cytocompatibility, permeability, and mechanical characteristics. The artificial blood vessels are then fully implanted into the collagen matrix to reconstruct the 3D microsystem for modeling transvascular migration of tumor cells. Well-defined simulated vascular lumens were obtained by proliferation of the human umbilical vein endothelial cells (HUVECs) lining the artificial blood vessels, which enables us to reproduce structures and functions of blood vessels and replicate various hemodynamic parameters. Based on this model, the adhesion and transvascular migration of tumor cells across the artificial blood vessel have been well reproduced.

  6. Modifying the red cell surface: towards an ABO-universal blood supply

    DEFF Research Database (Denmark)

    Olsson, Martin L; Clausen, Henrik

    2007-01-01

    Eliminating the risk for ABO-incompatible transfusion errors and simplifying logistics by creating a universal blood inventory is a challenging idea. Goldstein and co-workers pioneered the field of enzymatic conversion of blood group A and B red blood cells (RBCs) to O (ECO). Using alpha-galactos......Eliminating the risk for ABO-incompatible transfusion errors and simplifying logistics by creating a universal blood inventory is a challenging idea. Goldstein and co-workers pioneered the field of enzymatic conversion of blood group A and B red blood cells (RBCs) to O (ECO). Using alpha...

  7. Simulation-optimization model for production planning in the blood supply chain.

    Science.gov (United States)

    Osorio, Andres F; Brailsford, Sally C; Smith, Honora K; Forero-Matiz, Sonia P; Camacho-Rodríguez, Bernardo A

    2016-06-04

    Production planning in the blood supply chain is a challenging task. Many complex factors such as uncertain supply and demand, blood group proportions, shelf life constraints and different collection and production methods have to be taken into account, and thus advanced methodologies are required for decision making. This paper presents an integrated simulation-optimization model to support both strategic and operational decisions in production planning. Discrete-event simulation is used to represent the flows through the supply chain, incorporating collection, production, storing and distribution. On the other hand, an integer linear optimization model running over a rolling planning horizon is used to support daily decisions, such as the required number of donors, collection methods and production planning. This approach is evaluated using real data from a blood center in Colombia. The results show that, using the proposed model, key indicators such as shortages, outdated units, donors required and cost are improved.

  8. [Allogenic hematopoietic stem cell transplantation with unrelated cord blood: report of three cases from the Chilean cord blood bank].

    Science.gov (United States)

    Barriga, Francisco; Wietstruck, Angélica; Rojas, Nicolás; Bertin, Pablo; Pizarro, Isabel; Carmona, Amanda; Guilof, Alejandro; Rojas, Iván; Oyarzún, Enrique

    2013-08-01

    Public cord blood banks are a source of hematopoietic stem cells for patients with hematological diseases who lack a family donor and need allogeneic transplantation. In June 2007 we started a cord blood bank with units donated in three maternity wards in Santiago, Chile. We report the first three transplants done with cord blood units form this bank. Cord blood units were obtained by intrauterine collection at delivery. They were depleted of plasma and red cells and frozen in liquid nitrogen. Tests for total nucleated cells, CD34 cell content, viral serology, bacterial cultures and HLA A, B and DRB1 were done. Six hundred cord blood units were stored by March 2012. Three patients received allogeneic transplant with cord blood from our bank, two with high risk lymphoblastic leukemia and one with severe congenital anemia. They received conditioning regimens according to their disease and usual supportive care for unrelated donor transplantation until full hematopoietic and immune reconstitution was achieved. The three patients had early engraftment of neutrophils and platelets. The child corrected his anemia and the leukemia patients remain in complete remission. The post-transplant course was complicated with Epstein Barr virus, cytomegalovirus and BK virus infection. Two patients are fully functional 24 and 33 months after transplant, the third is still receiving immunosuppression.

  9. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells.

    Science.gov (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie

    2016-11-01

    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  10. Red Blood Cell Antigen Genotyping for Sickle Cell Disease, Thalassemia, and Other Transfusion Complications.

    Science.gov (United States)

    Fasano, Ross M; Chou, Stella T

    2016-10-01

    Since the discovery of the ABO blood group in the early 20th century, more than 300 blood group antigens have been categorized among 35 blood group systems. The molecular basis for most blood group antigens has been determined and demonstrates tremendous genetic diversity, particularly in the ABO and Rh systems. Several blood group genotyping assays have been developed, and 1 platform has been approved by the Food and Drug Administration as a "test of record," such that no phenotype confirmation with antisera is required. DNA-based red blood cell (RBC) phenotyping can overcome certain limitations of hemagglutination assays and is beneficial in many transfusion settings. Genotyping can be used to determine RBC antigen phenotypes in patients recently transfused or with interfering allo- or autoantibodies, to resolve discrepant serologic typing, and/or when typing antisera are not readily available. Molecular RBC antigen typing can facilitate complex antibody evaluations and guide RBC selection for patients with sickle cell disease (SCD), thalassemia, and autoimmune hemolytic anemia. High-resolution RH genotyping can identify variant RHD and RHCE in patients with SCD, which have been associated with alloimmunization. In the future, broader access to cost-efficient, high-resolution RBC genotyping technology for both patient and donor populations may be transformative for the field of transfusion medicine.

  11. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation

    DEFF Research Database (Denmark)

    Martínez, José L; Liu, Lifang; Petranovic, Dina;

    2012-01-01

    Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis...... techniques (the so-called—omics approaches) and integrative approaches (systems biology) allow the development of novel microbial cell factories as valuable platforms for large scale production of therapeutic proteins. This review summarizes the main achievements and the current situation in the field...

  12. Perioperative Red Blood Cell Transfusion: What We Do Not Know

    Institute of Scientific and Technical Information of China (English)

    Chong Lei; Li-Ze Xiong

    2015-01-01

    Objective:Blood transfusion saves lives but may also increase the risk of injury.The objective of this review was to evaluate the possible adverse effects related to transfusion of red blood cell (RBC) concentrates stored for prolonged periods.Data Sources:The data used in this review were mainly from PubMed articles published in English up to February 2015.Study Selection:Clinical and basic research articles were selected according to their relevance to this topic.Results:The ex vivo changes to RBC that occur during storage are collectively called storage lesion.It is still inconclusive if transfusion of RBC with storage lesion has clinical relevance.Multiple ongoing prospective randomized controlled trials are aimed to clarify this clinical issue.It was observed that the adverse events related to stored RBC transfusion were prominent in certain patient populations,including trauma,critical care,pediatric,and cardiac surgery patients,which leads to the investigation of underlying mechanisms.It is demonstrated that free hemoglobin toxicity,decreasing of nitric oxide bioavailability,and free iron-induced increasing of inflammation may play an important role in this process.Conclusion:It is still unclear whether transfusion of older RBC has adverse effects,and if so,which factors determine such clinical effects.However,considering the magnitude of transfusion and the widespread medical significance,potential preventive strategies should be considered,especially for the susceptible recipients.

  13. EFFECT OF ELECTROACUPUNCTURE ON RED BLOOD CELL IMMUNE AND T-CELL SUBGROUP IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    高巍; 黄裕新; 陈洪; 孙大勇; 张洪新

    2000-01-01

    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluorescence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythrocytic immune function. Resuits showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CDs+ had no any considerable changes and a positive correlation between CD~ and RBC-C3bRR was found. In immtttaosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EAgroup and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.

  14. EFFECT OF ELECTROACUPUNCTURE ON RED BLOOD CELL IMMUNE AND T-CELL SUBGROUP IN THE RAT

    Institute of Scientific and Technical Information of China (English)

    GaoWei; HuangYuxin; ChenHong; SunDayong; ZhangHongxin

    2000-01-01

    In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluoreseence Staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythroeytic immune function. Results showed that after EA of “Zusanli” (ST 36), CD4+, RBC-C3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CD8+ had no any considerable changes and a positive correlation between CD4+ and RBC-C3bRR was found. In immuoosuppression model rats, the values of CD4+ and RBC-C3bRR were obviously lower than those of the normal control group while CD8+ had no any striking changes; but after EA treatment, there were no evident differences between EA group and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli” (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.

  15. Fragmented red cells reference range (Sysmex XN(®) automated blood cell counter).

    Science.gov (United States)

    Lesesve, Jean-François; Daigney, Amandine; Henry, Sylvain; Speyer, Elodie

    2015-01-01

    Fragmented red cells (FRCs) is a new parameter automatedly determined by recent blood cell counters. Their count might be of interest because FRCs are supposed to reflect schistocytes counts measured on a stained peripheral blood smear observed under the microscope. But FRCs depend from the technical procedure used to detect them and thus reference ranges are device-dependent. The XN-9000(®) is one of the last model from Sysmex series. We aimed to establish reference range for FRCs, from 2389 controls. The mean ± SD was 0.32% ± 0.81, the median 0.02% (95% confidence interval ot the mean: 0.29-0.35%). We observed that the percentage of red blood cells with less than 17 pg of hemoglobin content (Hypo-He) was correlated to FRC increase, Hypo-He increase resulting in spurious FRCs majoration. FRCs reference range should be useful for: 1) laboratory staff in order to select which blood smears to check optically; 2) Sysmex company to set-up more optimal rules proposed with the counter (automated making of blood smear).

  16. Complexes between nuclear factor-κB p65 and signal transducer and activator of transcription 3 are key actors in inducing activation-induced cytidine deaminase expression and immunoglobulin A production in CD40L plus interleukin-10-treated human blood B cells.

    Science.gov (United States)

    Lafarge, S; Hamzeh-Cognasse, H; Richard, Y; Pozzetto, B; Cogné, M; Cognasse, F; Garraud, O

    2011-11-01

    The signal transducer and activator of transcription 3 (STAT3) transcription factor pathway plays an important role in many biological phenomena. STAT3 transcription is triggered by cytokine-associated signals. Here, we use isolated human B cells to analyse the role of STAT3 in interleukin (IL)-10 induced terminal B cell differentiation and in immunoglobulin (Ig)A production as a characteristic readout of IL-10 signalling. We identified optimal conditions for inducing in-vitro IgA production by purified blood naive B cells using IL-10 and soluble CD40L. We show that soluble CD40L consistently induces the phosphorylation of nuclear factor (NF)-κB p65 but not of STAT3, while IL-10 induces the phosphorylation of STAT3 but not of NF-κB p65. Interestingly, while soluble CD40L and IL-10 were synergistic in driving the terminal maturation of B cells into IgA-producing plasma cells, they did not co-operate earlier in the pathway with regard to the transcription factors NF-κB p65 or STAT3. Blocking either NF-κB p65 or STAT3 profoundly altered the production of IgA and mRNA for activation-induced cytidine deaminase (AID), an enzyme strictly necessary for Ig heavy chain recombination. Finally, the STAT3 pathway was directly activated by IL-10, while IL-6, the main cytokine otherwise known for activating the STAT3 pathway, did not appear to be involved in IL-10-induced-STAT3 activation. Our results suggest that STAT3 and NF-κB pathways co-operate in IgA production, with soluble CD40L rapidly activating the NF-κB pathway, probably rendering STAT3 probably more reactive to IL-10 signalling. This novel role for STAT3 in B cell development reveals a potential therapeutic or vaccine target for eliciting IgA humoral responses at mucosal interfaces.

  17. Cobalt uptake and binding in human red blood cells.

    Science.gov (United States)

    Simonsen, Lars Ole; Brown, Anthony M; Harbak, Henrik; Kristensen, Berit I; Bennekou, Poul

    2011-04-15

    is not observed in the case of (54)Mn. Tightly bound and the major part of reversibly bound (57)Co co-migrate with hemoglobin in Sephadex column chromatography of a lysate of (57)Co-loaded cells. (57)Co also co-migrates with hemoglobin when added to a lysate of unlabeled cells or to a solution of purified hemoglobin, in both cases with a time-dependent development of tight binding. Cobalt is known to bind to the globin moiety of hemoglobin. The results imply that during long-term cobalt exposure in vivo cobalt will be taken up practically irreversibly in the red cells during their 120 days life span. Thus, for biomonitoring of cobalt exposure, it could be appropriate to measure the cobalt content in red cells to give, compared with timed or in-competition whole-blood and serum analysis, an average value for the exposure over the last couple of months.

  18. A multiscale model for red blood cell mechanics.

    Science.gov (United States)

    Hartmann, Dirk

    2010-02-01

    The objective of this article is the derivation of a continuum model for mechanics of red blood cells via multiscale analysis. On the microscopic level, we consider realistic discrete models in terms of energy functionals defined on networks/lattices. Using concepts of Gamma-convergence, convergence results as well as explicit homogenisation formulae are derived. Based on a characterisation via energy functionals, appropriate macroscopic stress-strain relationships (constitutive equations) can be determined. Further, mechanical moduli of the derived macroscopic continuum model are directly related to microscopic moduli. As a test case we consider optical tweezers experiments, one of the most common experiments to study mechanical properties of cells. Our simulations of the derived continuum model are based on finite element methods and account explicitly for membrane mechanics and its coupling with bulk mechanics. Since the discretisation of the continuum model can be chosen freely, rather than it is given by the topology of the microscopic cytoskeletal network, the approach allows a significant reduction of computational efforts. Our approach is highly flexible and can be generalised to many other cell models, also including biochemical control.

  19. Sucralose sweetener in vivo effects on blood constituents radiolabeling, red blood cell morphology and radiopharmaceutical biodistribution in rats

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, G.S.; Pereira, M.O. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Benarroz, M.O.; Frydman, J.N.G.; Rocha, V.C. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Pereira, M.J. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Fisiologia, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Fonseca, A.S., E-mail: adnfonseca@ig.com.b [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Universidade Federal do Estado do Rio de Janeiro, Instituto Biomedico, Departamento de Ciencias Fisiologicas, Rua Frei Caneca, 94, Rio de Janeiro 20211040 (Brazil); Medeiros, A.C. [Universidade Federal do Rio Grande do Norte, Programa de Pos-Graduacao em Ciencias da Saude, Avenida General Gustavo Cordeiro de Farias, s/n, 59010180 Natal, Rio Grande do Norte (Brazil); Bernardo-Filho, M. [Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Departamento de Biofisica e Biometria, Avenida 28 de Setembro, 87, Vila Isabel, 20551030 Rio de Janeiro (Brazil); Instituto Nacional do Cancer, Coordenadoria de Pesquisa Basica, Praca Cruz Vermelha, 23, 20230130 Rio de Janeiro (Brazil)

    2011-01-15

    Effects of sucralose sweetener on blood constituents labelled with technetium-99m ({sup 99m}Tc) on red blood cell (RBC) morphology, sodium pertechnetate (Na{sup 99m}TcO{sub 4}) and diethylenetriaminepentaacetic acid labeled with {sup 99m}Tc ({sup 99m}Tc-DTPA) biodistribution in rats were evaluated. Radiolabeling on blood constituents from Wistar rats was undertaken for determining the activity percentage (%ATI) on blood constituents. RBC morphology was also evaluated. Na{sup 99m}TcO{sub 4} and {sup 99m}Tc-DTPA biodistribution was used to determine %ATI/g in organs. There was no alteration on RBC blood constituents and morphology %ATI. Sucralose sweetener was capable of altering %ATI/g of the radiopharmaceuticals in different organs. These findings are associated to the sucralose sweetener in specific organs.

  20. Restrictive versus liberal transfusion strategy for red blood cell transfusion

    DEFF Research Database (Denmark)

    Holst, Lars B; Petersen, Marie W; Haase, Nicolai;

    2015-01-01

    OBJECTIVE: To compare the benefit and harm of restrictive versus liberal transfusion strategies to guide red blood cell transfusions. DESIGN: Systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. DATA SOURCES: Cochrane central register of controlled...... trials, SilverPlatter Med