WorldWideScience

Sample records for blood cell gene

  1. Diet induced gene expression in rat peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Rodenburg, W.; Keijer, Jaap; Palou, A.

    2009-01-01

    Gene expression of rat peripheral blood mononuclear cells was analyzed by microarray analysis in normoweight and in diet-induced obese rats (cafeteria rats). The aim of this study was to identify genes involved in energy homeostasis that are altered in the obese state.

  2. Aging: a portrait from gene expression profile in blood cells.

    Science.gov (United States)

    Calabria, Elisa; Mazza, Emilia Maria Cristina; Dyar, Kenneth Allen; Pogliaghi, Silvia; Bruseghini, Paolo; Morandi, Carlo; Salvagno, Gian Luca; Gelati, Matteo; Guidi, Gian Cesare; Bicciato, Silvio; Schiaffino, Stefano; Schena, Federico; Capelli, Carlo

    2016-08-01

    The availability of reliable biomarkers of aging is important not only to monitor the effect of interventions and predict the timing of pathologies associated with aging but also to understand the mechanisms and devise appropriate countermeasures. Blood cells provide an easily available tissue and gene expression profiles from whole blood samples appear to mirror disease states and some aspects of the aging process itself. We report here a microarray analysis of whole blood samples from two cohorts of healthy adult and elderly subjects, aged 43±3 and 68±4 years, respectively, to monitor gene expression changes in the initial phase of the senescence process. A number of significant changes were found in the elderly compared to the adult group, including decreased levels of transcripts coding for components of the mitochondrial respiratory chain, which correlate with a parallel decline in the maximum rate of oxygen consumption (VO2max), as monitored in the same subjects. In addition, blood cells show age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress. These findings support the notion that the immune system has a major role in tissue homeostasis and repair, which appears to be impaired since early stages of the aging process.

  3. Blood cell gene expression profiling in rheumatoid arthritis. Discriminative genes and effect of rheumatoid factor

    DEFF Research Database (Denmark)

    Bovin, Lone Frier; Rieneck, Klaus; Workman, Christopher

    2004-01-01

    To study the pathogenic importance of the rheumatoid factor (RF) in rheumatoid arthritis (RA) and to identify genes differentially expressed in patients and healthy individuals, total RNA was isolated from peripheral blood mononuclear cells (PBMC) from eight RF-positive and six RF-negative RA...... patients, and seven healthy controls. Gene expression of about 10,000 genes were examined using oligonucleotide-based DNA chip microarrays. The analyses showed no significant differences in PBMC expression patterns from RF-positive and RF-negative patients. However, comparisons of gene expression patterns...

  4. Identification of Suitable Reference Genes for Peripheral Blood Mononuclear Cell Subset Studies in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Oturai, Ditte Bang; Søndergaard, H B; Börnsen, L

    2016-01-01

    of suitable reference genes for qPCR studies using different peripheral blood cell subsets (whole blood (WB) cells, peripheral blood mononuclear cells (PBMCs) and PBMC subsets (CD4(+) T cells, CD8(+) T cells, NK cells, monocytes, B cells and dendritic cells) from healthy controls (HC), patients with relapsing......Quantitative real-time PCR (qPCR) involves the need of a proper standard for normalizing the gene expression data. Different studies have shown the validity of reference genes to vary greatly depending on tissue, cell subsets and experimental context. This study aimed at the identification......-remitting multiple sclerosis (RRMS) and interferon-β-treated patients with RRMS (RRMS-IFN-β). Eight candidate reference genes (CASC3, EEF1A1, GAPDH, HPRT1, RPLP0, UBC, UBE2D2 and YWHAZ) were analysed using normfinder and genorm algorithms to identify the most stably expressed genes. We found reference gene...

  5. A pilot investigation of visceral fat adiposity and gene expression profile in peripheral blood cells.

    Science.gov (United States)

    Yamaoka, Masaya; Maeda, Norikazu; Nakamura, Seiji; Kashine, Susumu; Nakagawa, Yasuhiko; Hiuge-Shimizu, Aki; Okita, Kohei; Imagawa, Akihisa; Matsuzawa, Yuji; Matsubara, Ken-ichi; Funahashi, Tohru; Shimomura, Iichiro

    2012-01-01

    Evidence suggests that visceral fat accumulation plays a central role in the development of metabolic syndrome. Excess visceral fat causes local chronic low-grade inflammation and dysregulation of adipocytokines, which contribute in the pathogenesis of the metabolic syndrome. These changes may affect the gene expression in peripheral blood cells. This study for the first time examined the association between visceral fat adiposity and gene expression profile in peripheral blood cells. The gene expression profile was analyzed in peripheral blood cells from 28 obese subjects by microarray analysis. Reverse transcription-polymerase chain reaction (RT-PCR) was performed using peripheral blood cells from 57 obese subjects. Obesity was defined as body mass index (BMI) greater than 25 kg/m(2) according to the Japanese criteria, and the estimated visceral fat area (eVFA) was measured by abdominal bioelectrical impedance. Analysis of gene expression profile was carried out with Agilent whole human genome 4 × 44 K oligo-DNA microarray. The expression of several genes related to circadian rhythm, inflammation, and oxidative stress correlated significantly with visceral fat accumulation. Period homolog 1 (PER1) mRNA level in blood cells correlated negatively with visceral fat adiposity. Stepwise multiple regression analysis identified eVFA as a significant determinant of PER1 expression. In conclusion, visceral fat adiposity correlated with the expression of genes related to circadian rhythm and inflammation in peripheral blood cells.

  6. A 588-gene microarray analysis of the peripheral blood mononuclear cells of spondyloarthropathy patients

    NARCIS (Netherlands)

    Gu, J.; Märker-Hermann, E.; Baeten, D.; Tsai, W. C.; Gladman, D.; Xiong, M.; Deister, H.; Kuipers, J. G.; Huang, F.; Song, Y. W.; Maksymowych, W.; Kalsi, J.; Bannai, M.; Seta, N.; Rihl, M.; Crofford, L. J.; Veys, E.; de Keyser, F.; Yu, D. T. Y.

    2002-01-01

    OBJECTIVES: To identify genes which are more highly expressed in the peripheral blood mononuclear cells (PBMC) of patients with spondyloarthropathy (SpA), rheumatoid arthritis (RA) and psoriatic arthritis (PsA), in comparison to normal subjects. METHODS: A 588-gene microarray was used as a screening

  7. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Gao, Shan; Worm, Jesper; Guldberg, Per

    2004-01-01

    Loss of histo-blood group A and B antigen expression is a frequent event in oral carcinomas and is associated with decreased activity of glycosyltransferases encoded by the ABO gene. We examined 30 oral squamous cell carcinomas for expression of A and B antigens and glycosyltransferases. We also...

  8. Reverse-engineering of gene networks for regulating early blood development from single-cell measurements.

    Science.gov (United States)

    Wei, Jiangyong; Hu, Xiaohua; Zou, Xiufen; Tian, Tianhai

    2017-12-28

    Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate

  9. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  10. Impact of visceral fat on gene expression profile in peripheral blood cells in obese Japanese subjects.

    Science.gov (United States)

    Obata, Yoshinari; Maeda, Norikazu; Yamada, Yuya; Yamamoto, Koji; Nakamura, Seiji; Yamaoka, Masaya; Tanaka, Yoshimitsu; Masuda, Shigeki; Nagao, Hirofumi; Fukuda, Shiro; Fujishima, Yuya; Kita, Shunbun; Nishizawa, Hitoshi; Funahashi, Tohru; Matsubara, Ken-Ichi; Matsuzawa, Yuji; Shimomura, Iichiro

    2016-11-29

    Visceral fat plays a central role in the development of metabolic syndrome and atherosclerotic cardiovascular diseases. The association of visceral fat accumulation with cardio-metabolic diseases has been reported, but the impact of visceral fat on the gene expression profile in peripheral blood cells remains to be determined. The aim of this study was to determine the effects of visceral fat area (VFA) and subcutaneous fat area (SFA) on the gene expression profile in peripheral blood cells of obese subjects. All 17 enrolled subjects were hospitalized to receive diet therapy for obesity (defined as body mass index, BMI, greater than 25 kg/m 2 ). VFA and SFA were measured at the umbilical level by computed tomography (CT). Blood samples were subjected to gene expression profile analysis by using SurePrint G3 Human GE Microarray 8 × 60 k ver. 2.0. The correlation between various clinical parameters, including VFA and SFA, and peripheral blood gene expression levels was analyzed. Among the 17 subjects, 12 had normal glucose tolerance or borderline diabetes, and 5 were diagnosed with type 2 diabetes without medications [glycated hemoglobin (HbA1c); 6.3 ± 1.3%]. The mean BMI, VFA, and SFA were 30.0 ± 5.5 kg/m 2 , 177 ± 67 and 245 ± 131 cm 2 , respectively. Interestingly, VFA altered the expression of 1354 genes, including up-regulation of 307 and down-regulation of 1047, under the statistical environment that the parametric false discovery rate (FDR) was less than 0.1. However, no significant effects were noted for SFA or BMI. Gene ontology analysis showed higher prevalence of VFA-associated genes than that of SFA-associated genes, among the genes associated with inflammation, oxidative stress, immune response, lipid metabolism, and glucose metabolism. Accumulation of visceral fat, but not subcutaneous fat, has a significant impact on the gene expression profile in peripheral blood cells in obese Japanese subjects.

  11. LPS-induced modules of co-expressed genes in equine peripheral blood mononuclear cells.

    Science.gov (United States)

    Pacholewska, Alicja; Marti, Eliane; Leeb, Tosso; Jagannathan, Vidhya; Gerber, Vincent

    2017-01-05

    Lipopolysaccharide (endotoxin, LPS) is a strong inducer of the innate immune response. It is widespread in our environment, e.g. in house dust and contributes to asthma. Compared to humans, horses are even more sensitive to LPS. However, data on LPS effects on the equine transcriptome are very limited. Using RNA-seq we analysed LPS-induced differences in the gene expression in equine peripheral blood mononuclear cells at the gene and gene-network level in two half-sib families and one group of unrelated horses. 24 h-LPS challenge of equine immune cells resulted in substantial changes in the transcriptomic profile (1,265 differentially expressed genes) showing partial overlap with human data. One of the half-sib families showed a specific response different from the other two groups of horses. We also identified co-expressed gene modules that clearly differentiated 24 h-LPS- from non-stimulated samples. These modules consisted of 934 highly interconnected genes and included genes involved in the immune response (e.g. IL6, CCL22, CXCL6, CXCL2), however, none of the top ten hub genes of the modules have been annotated as responsive to LPS in gene ontology. Using weighted gene co-expression network analysis we identified ten co-expressed gene modules significantly regulated by in vitro stimulation with LPS. Apart from 47 genes (5%) all other genes highly interconnected within the most up- and down-regulated modules were also significantly differentially expressed (FDR LPS-regulated module hub genes have not yet been described as having a role in the immune response to LPS (e.g. VAT1 and TTC25).

  12. Gene expression signatures in peripheral blood cells from Japanese women exposed to environmental cadmium

    International Nuclear Information System (INIS)

    Dakeshita, Satoru; Kawai, Tomoko; Uemura, Hirokazu; Hiyoshi, Mineyoshi; Oguma, Etsuko; Horiguchi, Hyogo; Kayama, Fujio; Aoshima, Keiko; Shirahama, Satoshi; Rokutan, Kazuhito; Arisawa, Kokichi

    2009-01-01

    The objective of this study was to examine the effects of environmental cadmium (Cd) exposure on the gene expression profile of peripheral blood cells, using an original oligoDNA microarray. The study population consisted of 20 female residents in a Cd-polluted area (Cd-exposed group) and 20 female residents in a non-Cd-polluted area individually matched for age (control group). The mRNA levels in Cd-exposed subjects were compared with those in respective controls, using a microarray containing oligoDNA probes for 1867 genes. Median Cd concentrations in blood (3.55 μg/l) and urine (8.25 μg/g creatinine) from the Cd-exposed group were 2.4- and 1.9-times higher than those of the control group, respectively. Microarray analysis revealed that the Cd-exposed group significantly up-regulated 137 genes and down-regulated 80 genes, compared with the control group. The Ingenuity Pathway Analysis Application (IPA) revealed that differentially expressed genes were likely to modify oxidative stress and mitochondria-dependent apoptosis pathways. Among differentially expressed genes, the expression of five genes was positively correlated with Cd concentrations in blood or urine. Quantitative real-time PCR (RT-PCR) analysis validated the significant up-regulation of CASP9, TNFRSF1B, GPX3, HYOU1, SLC3A2, SLC19A1, SLC35A4 and ITGAL, and down-regulation of BCL2A1 and COX7B. After adjustment for differences in the background characteristics of the two groups, we finally identified seven Cd-responsive genes (CASP9, TNFRSF1B, GPX3, SLC3A2, ITGAL, BCL2A1, and COX7B), all of which constituted a network that controls oxidative stress response by IPA. These seven genes may be marker genes useful for the health risk assessment of chronic low level exposure to Cd

  13. The effect of alpha-thalassemia on cord blood red cell indices and interaction with sickle cell gene

    International Nuclear Information System (INIS)

    Quadri, Mohammad I.; Islam, Sherief I.A.M.; Nasserullah, Z.

    2000-01-01

    Alpha-thalassemia is known to be prevalent in the Eastern region of Saudi Arabia. There are no large scale reports regarding the effect of alpha-thalassemia on red cell indices of cord blood from Saudi Arabia. Similarly, there are reports regarding the interaction of alpha-thalassemia and the sickle-cell gene in relation to red cell indices in cord blood. To address these issues, we undertook a study on neonatal cold blood samples. In a prospective study, cord blood samples from 504 neonates from the Qatif area of the Eastern Province of Saudi Arabia were analyzed for complete blood counts (CBC) and cellulose acetate Hb electrophoresis. Hb S was confirmed by citrate agar Hb electrophoresis. There were 243 case samples with normal Hb electrophoresis (Hb A 27.2+- 7% and Hb F 72.6+-7.7%). Their mean Hb (g/dL), RBC (x10/L), Hct (%), MCV (pg), MCHC (g/dL), RDW-SD (fl) and RDW-CV (%) were 15.05+-1.6, 4.5+-0.5, 47.4+-5.3, 106+-8, 33.6+-2.3, 31.8+-1.7, 69.2+-9.5 and 17.9+-1.7, respectively. There were 136 cases with alpha-thalassemia trait (alphaTT), 57 cases with sickle cell trait (SCT) and 50 cases of sickle cell trait with alplha-thalassemia trait (SCT/ alphaTT). There were ten cases of Hb H disease (6 definite), including one with sickle cell disease (SCD) and two with SCT, Hb Bart's 23.9%-43.6%; four probable with Hb Bart's 10.9%-16.1% and one with SCT. The effect on red cell parameters in Hb H disease were most pronounced. In addition, there seven cases of SCD, four of whom had coexistent alpha-thalassemia trait (SCD/alphaTT). The prevalence of alpha-thalassemia in this cohort of Saudi population was 39.99%. Hb H disease appeared as common as SCD. Sickle cell gene was seen in 23.4% of neonatal samples. Apha-thalassemia gene significantly reduces MCH, MCV, RDW-SD, Hct, Hb and increase RBC count in both normal or sickle cell trait neonates. Generally, the variation of red cell parameters is directly proportional to the amount of Hb Bart's in the cord blood. Sickle cell

  14. Gene expression profiling of circulating tumor cells and peripheral blood mononuclear cells from breast cancer patients

    Czech Academy of Sciences Publication Activity Database

    Hensler, M.; Vancurova, I.; Becht, E.; Palata, O.; Strnad, P.; Tesarova, P.; Cabinakova, M.; Švec, David; Kubista, Mikael; Bartunkova, J.; Spisek, R.; Sojka, L.

    2016-01-01

    Roč. 5, č. 4 (2016), e1102827 ISSN 2162-402X Institutional support: RVO:86652036 Keywords : Breast cancer * gene expression profiling * circulating tumor cells Subject RIV: FD - Oncology ; Hematology Impact factor: 7.719, year: 2016

  15. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  16. Comparing the Gene Expression Profile of Stromal Cells from Human Cord Blood and Bone Marrow: Lack of the Typical “Bone” Signature in Cord Blood Cells

    Directory of Open Access Journals (Sweden)

    Julia Bosch

    2013-01-01

    Full Text Available With regard to the bone-regenerative capacity, bone marrow stromal cells (BMSC can still be termed the “gold standard.” Nevertheless, neonatal stromal cells from cord blood (CB feature advantages concerning availability, immaturity, and proliferation potential. The detailed gene expression analysis and overexpression of genes expressed differentially provide insight into the inherent capacity of stromal cells. Microarray and qRT-PCR analyses revealed closely related gene expression patterns of two stromal cell populations derived from CB. In contrast to the CB-derived cell types, BMSC displayed high expression levels of BSP, OSX, BMP4, OC, and PITX2. Lentiviral overexpression of BSP but not of OSX in CB-cells increased the capacity to form a mineralized matrix. BMP4 induced the secretion of proteoglycans during chondrogenic pellet culture and extended the osteogenic but reduced the adipogenic differentiation potential. BMSC revealed the typical osteogenic gene expression signature. In contrast, the CB-derived cell types exhibited a more immature gene expression profile and no predisposition towards skeletal development. The absence of BSP and BMP4—which were defined as potential key players affecting the differentiation potential—in neonatal stromal cells should be taken into consideration when choosing a cell source for tissue regeneration approaches.

  17. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  18. Microarray Analyses of Peripheral Blood Cells Identifies Unique Gene Expression Signature in Psoriatic Arthritis

    Science.gov (United States)

    Batliwalla, Franak M.; Li, Wentian; Ritchlin, Christopher T.; Xiao, Xiangli; Brenner, Max; Laragione, Teresina; Shao, Tianmeng; Durham, Robert; Kemshetti, Sunil; Schwarz, Edward; Coe, Rodney; Kern, Marlena; Baechler, Emily C.; Behrens, Timothy W.; Gregersen, Peter K.

    2005-01-01

    Psoriatic arthritis (PsA) is a chronic and erosive form of arthritis of unknown cause. We aimed to characterize the PsA phenotype using gene expression profiling and comparing it with healthy control subjects and patients rheumatoid arthritis (RA). Peripheral blood cells (PBCs) of 19 patients with active PsA and 19 age- and sex-matched control subjects were used in the analyses of PsA, with blood samples collected in PaxGene tubes. A significant alteration in the pattern of expression of 313 genes was noted in the PBCs of PsA patients on Affymetrix U133A arrays: 257 genes were expressed at reduced levels in PsA, and 56 genes were expressed at increased levels, compared with controls. Downregulated genes tended to cluster to certain chromosomal regions, including those containing the psoriasis susceptibility loci PSORS1 and PSORS2. Among the genes with the most significantly reduced expression were those involved in downregulation or suppression of innate and acquired immune responses, such as SIGIRR, STAT3, SHP1, IKBKB, IL-11RA, and TCF7, suggesting inappropriate control that favors proin-flammatory responses. Several members of the MAPK signaling pathway and tumor suppressor genes showed reduced expression. Three proinflammatory genes—S100A8, S100A12, and thioredoxin—showed increased expression. Logistic regression and recursive partitioning analysis determined that one gene, nucleoporin 62 kDa, could correctly classify all controls and 94.7% of the PsA patients. Using a dataset of 48 RA samples for comparison, the combination of two genes, MAP3K3 followed by CACNA1S, was enough to correctly classify all RA and PsA patients. Thus, PBC gene expression profiling identified a gene expression signature that differentiated PsA from RA, and PsA from controls. Several novel genes were differentially expressed in PsA and may prove to be diagnostic biomarkers or serve as new targets for the development of therapies. PMID:16622521

  19. Blood mononuclear cell gene expression profiles characterize the oxidant, hemolytic, and inflammatory stress of sickle cell disease

    Science.gov (United States)

    Jison, Maria L.; Munson, Peter J.; Barb, Jennifer J.; Suffredini, Anthony F.; Talwar, Shefali; Logun, Carolea; Raghavachari, Nalini; Beigel, John H.; Shelhamer, James H.; Danner, Robert L.; Gladwin, Mark T.

    2016-01-01

    In sickle cell disease, deoxygenation of intra-erythrocytic hemoglobin S leads to hemoglobin polymerization, erythrocyte rigidity, hemolysis, and microvascular occlusion. Ischemia-reperfusion injury, plasma hemoglobin-mediated nitric oxide consumption, and free radical generation activate systemic inflammatory responses. To characterize the role of circulating leukocytes in sickle cell pathogenesis we performed global transcriptional analysis of blood mononuclear cells from 27 patients in steady-state sickle cell disease (10 patients treated and 17 patients untreated with hydroxyurea) compared with 13 control subjects. We used gender-specific gene expression to validate human microarray experiments. Patients with sickle cell disease demonstrated differential gene expression of 112 genes involved in heme metabolism, cell-cycle regulation, antioxidant and stress responses, inflammation, and angiogenesis. Inducible heme oxygenase-1 and downstream proteins biliverdin reductase and p21, a cyclin-dependent kinase, were up-regulated, potentially contributing to phenotypic heterogeneity and absence of atherosclerosis in patients with sickle cell disease despite endothelial dysfunction and vascular inflammation. Hydroxyurea therapy did not significantly affect leukocyte gene expression, suggesting that such therapy has limited direct anti-inflammatory activity beyond leukoreduction. Global transcriptional analysis of circulating leukocytes highlights the intense oxidant and inflammatory nature of steady-state sickle cell disease and provides insight into the broad compensatory responses to vascular injury. PMID:15031206

  20. Taurine Transporter Gene Expression in Mononuclear Blood Cells of Type 1 Diabetes Patients.

    Science.gov (United States)

    Napoli, Zaleida; Seghieri, Giuseppe; Bianchi, Loria; Anichini, Roberto; De Bellis, Alessandra; Campesi, Ilaria; Carru, Ciriaco; Occhioni, Stefano; Zinellu, Angelo; Franconi, Flavia

    2016-01-01

    Taurine transporter gene expression (RNA-TauT) has a role in retinal cell function and is modulated in vitro and in vivo by hyperglycemia and/or oxidative stress. This study was aimed at testing whether RNA-TauT gene expression is modified in blood mononuclear peripheral cells (MPCs) of type 1 diabetic patients, is related to plasma markers of oxidative stress or endothelial dysfunction, or, finally, is related to presence of retinopathy. RNA-TauT was measured in MPCs by real-time PCR-analysis in 35 type 1 diabetic patients and in 33 age- and sex-matched controls, additionally measuring plasma and cell taurine and markers of oxidative stress and endothelial dysfunction. RNA-TauT, expressed as 2(-ΔΔCt), was significantly higher in MPCs of type 1 diabetic patients than in controls [median (interquartile range): 1.32(0.31) versus 1.00(0.15); P = 0.01]. In diabetic patients RNA-TauT was related to HbA1c (r = 0.42; P = 0.01) and inversely to plasma homocysteine (r = -0.39; P = 0.02) being additionally significantly higher in MPCs of patients without retinopathy [(n = 22); 1.36(0.34)] compared to those with retinopathy [(n = 13); 1.16(0.20)], independently from HbA1c or diabetes duration. RNA-TauT gene expression is significantly upregulated in MPCs of type 1 diabetes patients and is related to HbA1c levels and inversely to plasma homocysteine. Finally, in diabetes patients, RNA-TauT upregulation seems to be blunted in patients with retinopathy independently of their metabolic control or longer diabetes duration.

  1. Genetic variation and epigenetic modification of the prodynorphin gene in peripheral blood cells in alcoholism.

    Science.gov (United States)

    D'Addario, Claudio; Shchetynsky, Klementy; Pucci, Mariangela; Cifani, Carlo; Gunnar, Agneta; Vukojević, Vladana; Padyukov, Leonid; Terenius, Lars

    2017-06-02

    Dynorphins are critically involved in the development, maintenance and relapse of alcoholism. Alcohol-induced changes in the prodynorphin gene expression may be influenced by both gene polymorphisms and epigenetic modifications. The present study of human alcoholics aims to evaluate DNA methylation patterns in the prodynorphin gene (PDYN) promoter and to identify single nucleotide polymorphisms (SNPs) associated with alcohol dependence and with altered DNA methylation. Genomic DNA was isolated from peripheral blood cells of alcoholics and healthy controls, and DNA methylation was studied in the PDYN promoter by bisulfite pyrosequencing. In alcoholics, DNA methylation increased in three of the seven CpG sites investigated, as well as in the average of the seven CpG sites. Data stratification showed lower increase in DNA methylation levels in individuals reporting craving and with higher levels of alcohol consumption. Association with alcoholism was observed for rs2235751 and the presence of the minor allele G was associated with reduced DNA methylation at PDYN promoter in females and younger subjects. Genetic and epigenetic factors within PDYN are related to risk for alcoholism, providing further evidence of its involvement on ethanol effects. These results might be of relevance for developing new biomarkers to predict disease trajectories and therapeutic outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression.

    Science.gov (United States)

    Tsunoda, Fumiyoshi; Lamon-Fava, Stefania; Asztalos, Bela F; Iyer, Lakshmanan K; Richardson, Kris; Schaefer, Ernst J

    2015-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  4. Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight.

    Science.gov (United States)

    San-Cristobal, Rodrigo; Navas-Carretero, Santiago; Milagro, Fermín I; Riezu-Boj, J Ignacio; Guruceaga, Elizabeth; Celis-Morales, Carlos; Livingstone, Katherine M; Brennan, Lorraine; Lovegrove, Julie A; Daniel, Hannelore; Saris, Wim H; Traczyk, Iwonna; Manios, Yannis; Gibney, Eileen R; Gibney, Michael J; Mathers, John C; Martinez, J Alfredo

    2016-08-01

    Epigenetics has an important role in the regulation of metabolic adaptation to environmental modifications. In this sense, the determination of epigenetic changes in non-invasive samples during the development of metabolic diseases could play an important role in the procedures in primary healthcare practice. To help translate the knowledge of epigenetics to public health practice, the present study aims to explore the parallelism of methylation levels between white blood cells and buccal samples in relation to obesity and associated disorders. Blood and buccal swap samples were collected from a subsample of the Spanish cohort of the Food4Me study. Infinium HumanMethylation450 DNA Analysis was carried out for the determination of methylation levels. Standard deviation for β values method and concordance correlation analysis were used to select those CpG which showed best parallelism between samples. A total of 277 CpGs met the criteria and were selected for an enrichment analysis and a correlation analysis with anthropometrical and clinical parameters. From those selected CpGs, four presented high associations with BMI (cg01055691 in GAP43; r = -0.92 and rho = -0.84 for blood; r = -0.89 and rho = -0.83 for buccal sample), HOMA-IR (cg00095677 in ATP2A3; r = 0.82 and rho = -0.84 for blood; r = -0.8 and rho = -0.83 for buccal sample) and leptin (cg14464133 in ADARB2; r = -0.9182 and rho = -0.94 for blood; r = -0.893 and rho = -0.79 for buccal sample). These findings demonstrate the potential application of non-invasive buccal samples in the identification of surrogate epigenetic biomarkers and identify methylation sites in GAP43, ATP2A3 and ADARB2 genes as potential targets in relation to overweight management and insulin sensibility.

  5. Fish-oil supplementation induces antiinflammatory gene expression profiles in human blood mononuclear cells

    NARCIS (Netherlands)

    Bouwens, M.; Rest, van de O.; Dellschaft, N.; Grootte Bromhaar, M.M.; Groot, de C.P.G.M.; Geleijnse, J.M.; Müller, M.R.; Afman, L.A.

    2009-01-01

    Background: Polyunsaturated fatty acids can have beneficial effects on human immune cells, such as peripheral blood mononuclear cells (PBMCs). However, the mechanisms of action of polyunsaturated fatty acids on immune cells are still largely unknown. Objective: The objective was to examine the

  6. Elevated ERCC-1 Gene Expression in blood cells associated with exposure to arsenic from drinking water in Inner Mongolia

    Science.gov (United States)

    Background: Chronic arsenic exposure has been associated with human cancers. The objective of this study was to investigate arsenic effects on a DNA nucleotide excision repair gene, ERCC1, expression in human blood cells. Material and Methods: Water and toe nail samples were coll...

  7. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    KAUST Repository

    Diaz-Rua, Ruben

    2016-11-23

    Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases.

  8. Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Shanaz A Ghandhi

    Full Text Available We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.

  9. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    International Nuclear Information System (INIS)

    Bøhn, Siv K; Blomhoff, Rune; Russnes, Kjell M; Sakhi, Amrit K; Thoresen, Magne; Holden, Marit; Moskaug, JanØ; Myhrstad, Mari C; Olstad, Ole K; Smeland, Sigbjørn

    2012-01-01

    We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC) patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Out of 87 patients (histologically verified), 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791), and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716). Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Raw data are available at ArrayExpress under accession number E-MEXP-2460

  10. Stress associated gene expression in blood cells is related to outcome in radiotherapy treated head and neck cancer patients

    Directory of Open Access Journals (Sweden)

    Bøhn Siv K

    2012-09-01

    Full Text Available Abstract Background We previously observed that a radiotherapy-induced biochemical response in plasma was associated with favourable outcome in head and neck squamous carcinoma cancer (HNSCC patients. The aim of the present study was to compare stress associated blood cell gene expression between two sub-groups of HNSCC patients with different biochemical responses to radiotherapy. Methods Out of 87 patients (histologically verified, 10 biochemical ‘responders’ having a high relative increase in plasma oxidative damage and a concomitant decrease in plasma antioxidants during radiotherapy and 10 ‘poor-responders’ were selected for gene-expression analysis and compared using gene set enrichment analysis. Results There was a significant induction of stress-relevant gene-sets in the responders following radiotherapy compared to the poor-responders. The relevance of the involvement of similar stress associated gene expression for HNSCC cancer and radioresistance was verified using two publicly available data sets of 42 HNSCC cases and 14 controls (GEO GSE6791, and radiation resistant and radiation sensitive HNSCC xenografts (E-GEOD-9716. Conclusions Radiotherapy induces a systemic stress response, as revealed by induction of stress relevant gene expression in blood cells, which is associated to favourable outcome in a cohort of 87 HNSCC patients. Whether these changes in gene expression reflects a systemic effect or are biomarkers of the tumour micro-environmental status needs further study. Trial registration Raw data are available at ArrayExpress under accession number E-MEXP-2460.

  11. Microporation is a valuable transfection method for efficient gene delivery into human umbilical cord blood-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ahn Jae

    2010-05-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP and brain-derived neurotropfic factor (BDNF plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells. Results Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83% and only minimal cell damage than when conventional liposome-based reagent (in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells. Conclusion Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy.

  12. Potential large animal models for gene therapy of human genetic diseases of immune and blood cell systems.

    Science.gov (United States)

    Bauer, Thomas R; Adler, Rima L; Hickstein, Dennis D

    2009-01-01

    Genetic mutations involving the cellular components of the hematopoietic system--red blood cells, white blood cells, and platelets--manifest clinically as anemia, infection, and bleeding. Although gene targeting has recapitulated many of these diseases in mice, these murine homologues are limited as translational models by their small size and brief life span as well as the fact that mutations induced by gene targeting do not always faithfully reflect the clinical manifestations of such mutations in humans. Many of these limitations can be overcome by identifying large animals with genetic diseases of the hematopoietic system corresponding to their human disease counterparts. In this article, we describe human diseases of the cellular components of the hematopoietic system that have counterparts in large animal species, in most cases carrying mutations in the same gene (CD18 in leukocyte adhesion deficiency) or genes in interacting proteins (DNA cross-link repair 1C protein and protein kinase, DNA-activated catalytic polypeptide in radiation-sensitive severe combined immunodeficiency). Furthermore, we describe the potential of these animal models to serve as disease-specific preclinical models for testing the efficacy and safety of clinical interventions such as hematopoietic stem cell transplantation or gene therapy before their use in humans with the corresponding disease.

  13. Genes That Influence Blood Pressure

    Science.gov (United States)

    ... Matters September 26, 2011 Genes that Influence Blood Pressure In one of the largest genomic studies ever, ... consortium identified 29 genetic variations that influence blood pressure. More than half of these variants were previously ...

  14. Microarray profiling of mononuclear peripheral blood cells identifies novel candidate genes related to chemoradiation response in rectal cancer.

    Directory of Open Access Journals (Sweden)

    Pablo Palma

    Full Text Available Preoperative chemoradiation significantly improves oncological outcome in locally advanced rectal cancer. However there is no effective method of predicting tumor response to chemoradiation in these patients. Peripheral blood mononuclear cells have emerged recently as pathology markers of cancer and other diseases, making possible their use as therapy predictors. Furthermore, the importance of the immune response in radiosensivity of solid organs led us to hypothesized that microarray gene expression profiling of peripheral blood mononuclear cells could identify patients with response to chemoradiation in rectal cancer. Thirty five 35 patients with locally advanced rectal cancer were recruited initially to perform the study. Peripheral blood samples were obtained before neaodjuvant treatment. RNA was extracted and purified to obtain cDNA and cRNA for hybridization of microarrays included in Human WG CodeLink bioarrays. Quantitative real time PCR was used to validate microarray experiment data. Results were correlated with pathological response, according to Mandard´s criteria and final UICC Stage (patients with tumor regression grade 1-2 and downstaging being defined as responders and patients with grade 3-5 and no downstaging as non-responders. Twenty seven out of 35 patients were finally included in the study. We performed a multiple t-test using Significance Analysis of Microarrays, to find those genes differing significantly in expression, between responders (n = 11 and non-responders (n = 16 to CRT. The differently expressed genes were: BC 035656.1, CIR, PRDM2, CAPG, FALZ, HLA-DPB2, NUPL2, and ZFP36. The measurement of FALZ (p = 0.029 gene expression level determined by qRT-PCR, showed statistically significant differences between the two groups. Gene expression profiling reveals novel genes in peripheral blood samples of mononuclear cells that could predict responders and non-responders to chemoradiation in patients with

  15. Microarray analysis of gene expression in peripheral blood mononuclear cells from dioxin-exposed human subjects

    International Nuclear Information System (INIS)

    McHale, Cliona M.; Zhang, Luoping; Hubbard, Alan E.; Zhao, Xin; Baccarelli, Andrea; Pesatori, Angela C.; Smith, Martyn T.; Landi, Maria Teresa

    2007-01-01

    Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen and exerts toxic effects on the skin (chloracne). Effects on reproductive, immunological, and endocrine systems have also been observed in animal models. TCDD acts through the aryl hydrocarbon receptor (AhR) pathway influencing largely unknown gene networks. An industrial accident in Seveso, Italy in 1976 exposed thousands of people to substantial quantities of TCDD. Twenty years after the exposure, this study examines global gene expression in the mononuclear cells of 26 Seveso female never smokers, with similar age, alcohol consumption, use of medications, and background plasma levels of 22 dioxin congeners unrelated to the Seveso accident. Plasma dioxin levels were still elevated in the exposed subjects. We performed analyses in two different comparison groups. The first included high-exposed study subjects compared with individuals with background TCDD levels (average plasma levels 99.4 and 6.7 ppt, respectively); the second compared subjects who developed chloracne after the accident, and those who did not develop this disease. Overall, we observed a modest alteration of gene expression based on dioxin levels or on chloracne status. In the comparison between high levels and background levels of TCDD, four histone genes were up-regulated and modified expression of HIST1H3H was confirmed by real-time PCR. In the comparison between chloracne case-control subjects, five hemoglobin genes were up-regulated. Pathway analysis revealed two major networks for each comparison, involving cell proliferation, apoptosis, immunological and hematological disease, and other pathways. Further examination of the role of these genes in dioxin induced-toxicity is warranted

  16. Transcriptional profiling of peripheral blood mononuclear cells in pancreatic cancer patients identifies novel genes with potential diagnostic utility.

    Directory of Open Access Journals (Sweden)

    Michael J Baine

    2011-02-01

    Full Text Available It is well known that many malignancies, including pancreatic cancer (PC, possess the ability to evade the immune system by indirectly downregulating the mononuclear cell machinery necessary to launch an effective immune response. This knowledge, in conjunction with the fact that the trancriptome of peripheral blood mononuclear cells has been shown to be altered in the context of many diseases, including renal cell carcinoma, lead us to study if any such alteration in gene expression exists in PC as it may have diagnostic utility.PBMC samples from 26 PC patients and 33 matched healthy controls were analyzed by whole genome cDNA microarray. Three hundred eighty-three genes were found to be significantly different between PC and healthy controls, with 65 having at least a 1.5 fold change in expression. Pathway analysis revealed that many of these genes fell into pathways responsible for hematopoietic differentiation, cytokine signaling, and natural killer (NK cell and CD8+ T-cell cytotoxic response. Unsupervised hierarchical clustering analysis identified an eight-gene predictor set, consisting of SSBP2, Ube2b-rs1, CA5B, F5, TBC1D8, ANXA3, ARG1, and ADAMTS20, that could distinguish PC patients from healthy controls with an accuracy of 79% in a blinded subset of samples from treatment naïve patients, giving a sensitivity of 83% and a specificity of 75%.In summary, we report the first in-depth comparison of global gene expression profiles of PBMCs between PC patients and healthy controls. We have also identified a gene predictor set that can potentially be developed further for use in diagnostic algorithms in PC. Future directions of this research should include analysis of PBMC expression profiles in patients with chronic pancreatitis as well as increasing the number of early-stage patients to assess the utility of PBMCs in the early diagnosis of PC.

  17. Red blood cell production

    Science.gov (United States)

    ... bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming a cell called a proerythroblast, it will develop into a new red blood cell. The formation of a red blood ...

  18. Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Zahra Tavoosi

    2015-01-01

    Full Text Available ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75% compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P<0.05. Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.

  19. Preventive and therapeutic effects of gene therapy using silica nanoparticles-binding of GM-CSF gene on white blood cell production in dogs with leukopenia.

    Science.gov (United States)

    Choi, Eun Wha; Koo, Hye Cheong; Shin, Il Seob; Chae, Young Jin; Lee, Jong Hwa; Han, Sei Myoung; Lee, Seung Jun; Bhang, Dong Ha; Park, Yong Ho; Lee, Chang Woo; Youn, Hwa Young

    2008-09-01

    Our previous study has shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) gene/silica nanoparticles have a leukocytosis effect in normal dogs. Therefore, this study was conducted to determine whether treatment of canine GM-CSF gene/silica nanoparticles has preventive or therapeutic effects in dogs with leukopenia. To induce leukopenia, vinblastine was administered intravenously at a dose of 2 mg/m(2) of body surface area on day 0. Then 7.5 microg GM-CSF/nanoparticles (1:100, w/w) were administered intravenously to each of four dogs in the prevention group on day 2 and an equivalent amount of GM-CSF/nanoparticles was administered to the post-nadir group on day 4 (other groups were administered phosphate-buffered saline intravenously). Therapeutic GM-CSF gene was expressed in peripheral blood mononuclear cells for 10 days and both the prevention and post-nadir groups showed significant increases in white blood cell counts when compared with the control group, as confirmed by complete blood count, differential count, and flow cytometry. GM-CSF/nanoparticles can be useful for correction of acute leukopenia, such as chemotherapy-induced myelosuppression, without developing neutralizing antibodies.

  20. Quantitative evaluation of interleukin-12 p40 gene expression in peripheral blood mononuclear cells.

    Science.gov (United States)

    Conte, Enrico; Nigro, Luciano; Fagone, Evelina; Drago, Francesco; Cacopardo, Bruno

    2008-01-01

    The heterodimeric cytokine IL-12 (composed of a p35 and a p40 subunit) is produced primarily by monocytes, macrophages and B cells. In vitro and in vivo experiments have demonstrated the crucial role of IL-12 in initiating and establishing both innate immunity and T cell-mediated resistance to intracellular pathogens, including Leishmania donovani, Toxoplasma gondii, Listeria monocytogenes, and Mycobacterium tuberculosis. Assessment of cytokine expression has thus become crucial to understand host responses to infections. In this study, by using the reverse transcriptase-real time PCR we developed a highly specific and sensitive assay to quantitatively evaluate IL-12p40 mRNA transcription levels in peripheral blood mononuclear cells (PBMCs) stimulated with PHA vs. unstimulated cells. We also used the ELISA to evaluate bioactive IL-12 release in culture supernatants. We provide evidence that IL-12 p40 mRNA levels were significantly up-regulated in PHA-activated PBMCs. These results were correlated with data of IL-12 levels obtained by ELISA.

  1. Comparison of whole blood and peripheral blood mononuclear cell gene expression for evaluation of the perioperative inflammatory response in patients with advanced heart failure.

    Directory of Open Access Journals (Sweden)

    Galyna Bondar

    Full Text Available Heart failure (HF prevalence is increasing in the United States. Mechanical Circulatory Support (MCS therapy is an option for Advanced HF (AdHF patients. Perioperatively, multiorgan dysfunction (MOD is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC transcriptomes obtained from patients' blood samples. Whole blood (WB samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined.We collected blood samples from 31 HF patients (57±15 years old undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively (25-75% IQR 7-14 days and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA score was used to characterize the severity of MOD into low (≤ 4 points, intermediate (5-11, and high (≥ 12 risk categories correlating with GEP.Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups.GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MOD.

  2. Gene expression changes in peripheral blood mononuclear cells in occupational exposure to nickel.

    Science.gov (United States)

    Bonin, Serena; Larese, Francesca Filon; Trevisan, Giusto; Avian, Andrea; Rui, Francesca; Stanta, Giorgio; Bovenzi, Massimo

    2011-02-01

    Allergic contact dermatitis is preceded by a clinically silent phase of sensitisation. In this study, we investigated whether the expression levels of six genes were related to nickel exposure and/or nickel sensitisation, and whether they could predict allergic manifestations to nickel. The mRNA expression level of six genes involved in cell growth (PIM1 and ETS2), metabolism/synthesis (HSD11B1 and PRDX4), apoptosis (CASP8) and signal transduction (CISH) was investigated by means of quantitative real-time RT-PCR in a cohort of 110 subjects, including healthy controls (n=51), nickel-exposed workers (n=23) and patients allergic to nickel (n=36). Our findings show that the expression levels of the analysed genes did not differ between allergic patients and healthy controls, while higher expression levels of ETS2 and CASP8 were detected in the nickel-exposed workers. Changes in ETS2 and CASP8 expression are likely to be related to nickel exposure rather than to allergy. © 2011 John Wiley & Sons A/S.

  3. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study

    Directory of Open Access Journals (Sweden)

    Puchau Blanca

    2010-05-01

    Full Text Available Abstract Background Fruits and vegetables are important sources of fiber and nutrients with a recognized antioxidant capacity, which could have beneficial effects on the proinflammatory status as well as some metabolic syndrome and cardiovascular disease features. The current study assessed the potential relationships of fruit and vegetable consumption with the plasma concentrations and mRNA expression values of some proinflammatory markers in young adults. Methods One-hundred and twenty healthy subjects (50 men/70 women; 20.8 ± 2.6 y; 22.3 ± 2.8 kg/m2 were enrolled. Experimental determinations included anthropometry, blood pressure and lifestyle features as well as blood biochemical and inflammatory measurements. The mRNA was isolated from peripheral blood mononuclear cells (PBMC and the gene expression concerning selected inflammatory markers was assessed by quantitative real-time PCR. Nutritional intakes were estimated by a validated semi-quantitative food-frequency questionnaire. Results The highest tertile of energy-adjusted fruit and vegetable consumption (>660 g/d was associated with lower plasma concentrations of C-reactive protein (CRP and homocysteine and with lower ICAM1, IL1R1, IL6, TNFα and NFκB1 gene expression in PBMC (P for trend ICAM1, TNFα and NFκB1 gene expression in PBMC showed a descending trend as increased fiber intake (>19.5 g/d from fruits and vegetables (P for trend 11.8 mmol/d of dietary total antioxidant capacity showed lower plasma CRP and mRNA values of ICAM1, IL1R1, IL6, TNFα and NFκB1 genes (P for trend Conclusion A higher fruit and vegetable consumption was independently associated not only with reduced CRP and homocysteine concentrations but also with a lower mRNA expression in PBMC of some relevant proinflammatory markers in healthy young adults.

  4. Methylation patterns in sentinel genes in peripheral blood cells of heavy smokers: Influence of cruciferous vegetables in an intervention study.

    Science.gov (United States)

    Scoccianti, Chiara; Ricceri, Fulvio; Ferrari, Pietro; Cuenin, Cyrille; Sacerdote, Carlotta; Polidoro, Silvia; Jenab, Mazda; Hainaut, Pierre; Vineis, Paolo; Herceg, Zdenko

    2011-09-01

    Changes in DNA methylation patterns are a hallmark of tobacco-induced carcinogenesis. We have conducted a randomized 4-week intervention trial to investigate the effects of three dietary regimens to modify DNA methylation patterns in peripheral white blood cells of heavy smokers. A group of 88 smokers were randomly assigned to and distributed among three diets, including (1) normal isocaloric diet (balanced in fruits and vegetables), according to international guidelines; (2) a diet enriched in flavonoids and isothiocyanates (particularly cruciferous vegetables); (3) a regimen consisting of diet 1 supplemented with flavonoids (green tea and soy products). Methylation patterns were analyzed by pyrosequencing in LINE1 (Long Interspersed DNA Elements), RASSF1A, ARF and CDKN2a (tumor suppressor genes), MLH1 (mismatch DNA repair) and MTHFR (folate metabolism). Three distinct patterns of methylation were observed. In LINE1, methylation showed a small but reproducible increase with all three regimens. MTHFR was constitutively methylated with no significant modulation by diets. The four other loci showed low basal levels of methylation with no substantial change after intervention. These data suggest that the isocaloric diet may stabilize global epigenetic (LINE1 DNA methylation) patterns in peripheral white blood cells but does not provide evidence for methylation changes in specific genes associated with this short-term dietary intervention.

  5. Global gene expression profile of peripheral blood mononuclear cells challenged with Theileria annulata in crossbred and indigenous cattle.

    Science.gov (United States)

    Kumar, Amod; Gaur, Gyanendra Kumar; Gandham, Ravi Kumar; Panigrahi, Manjit; Ghosh, Shrikant; Saravanan, B C; Bhushan, Bharat; Tiwari, Ashok Kumar; Sulabh, Sourabh; Priya, Bhuvana; V N, Muhasin Asaf; Gupta, Jay Prakash; Wani, Sajad Ahmad; Sahu, Amit Ranjan; Sahoo, Aditya Prasad

    2017-01-01

    Bovine tropical theileriosis is an important haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints of the livestock development programmes in India and Southeast Asia. Indigenous cattle (Bos indicus) are reported to be comparatively less affected than exotic and crossbred cattle. However, genetic basis of resistance to tropical theileriosis in indigenous cattle is not well documented. Recent studies incited an idea that differentially expressed genes in exotic and indigenous cattle play significant role in breed specific resistance to tropical theileriosis. The present study was designed to determine the global gene expression profile in peripheral blood mononuclear cells derived from indigenous (Tharparkar) and cross-bred cattle following in vitro infection of T. annulata (Parbhani strain). Two separate microarray experiments were carried out each for cross-bred and Tharparkar cattle. The cross-bred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were down-regulated and 485 were up-regulated. Their fold change varied from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes including 451 down-regulated and 424 up-regulated. The fold change varied from 94.93 to -19.20. A subset of genes was validated by qRT-PCR and results were correlated well with microarray data indicating that microarray results provided an accurate report of transcript level. Functional annotation study of DEGs confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these DEGs plays an important role to understand the interaction among genes. It is therefore, hypothesized that the different susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle

  6. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes

    International Nuclear Information System (INIS)

    Sherman, M.L.; Datta, R.; Hallahan, D.E.; Weichselbaum, R.R.; Kufe, D.W.

    1991-01-01

    Previous studies have demonstrated that ionizing radiation induces the expression of certain cytokines, such as TNF alpha/cachectin. However, there is presently no available information regarding the molecular mechanisms responsible for the regulation of cytokine gene expression by ionizing radiation. In this report, we describe the regulation of the TNF gene by ionizing radiation in human myeloid leukemia cells. The increase in TNF transcripts by x rays was both time- and dose-dependent as determined by Northern blot analysis. Similar findings were obtained in human peripheral blood monocytes. Transcriptional run-on analyses have demonstrated that ionizing radiation stimulates the rate of TNF gene transcription. Furthermore, induction of TNF mRNA was increased in the absence of protein synthesis. In contrast, ionizing radiation had little effect on the half-life of TNF transcripts. These findings indicate that the increase in TNF mRNA observed after irradiation is regulated by transcriptional mechanisms and suggest that production of this cytokine by myeloid cells may play a role in the pathophysiologic effects of ionizing radiation

  7. Glycosyltransferases as marker genes for the quantitative polymerase chain reaction-based detection of circulating tumour cells from blood samples of patients with breast cancer undergoing adjuvant therapy.

    Science.gov (United States)

    Kölbl, Alexandra C; Hiller, Roman A; Ilmer, Mathias; Liesche, Friederike; Heublein, Sabine; Schröder, Lennard; Hutter, Stefan; Friese, Klaus; Jeschke, Udo; Andergassen, Ulrich

    2015-08-01

    Altered glycosylation is a predominant feature of tumour cells; it serves for cell adhesion and detachment, respectively, and facilitates the immune escape of these cells. Therefore changes in the expression of glycosyltransferase genes could help to identify circulating tumour cells (CTCs) in the blood samples of cancer patients using a quantitative polymerase chain reaction (PCR) approach. Blood samples of healthy donors were inoculated with certain numbers of established breast cancer cell line cells, thus creating a model system. These samples were analysed by quantitative PCR for the expression of six different glycosyltransferase genes. The three genes with the best results in the model system were consecutively applied to samples from adjuvant breast cancer patients and of healthy donors. FUT3 and GALNT6 showed the highest increase in relative expression, while GALNT6 and ST3GAL3 were the first to reach statistically significant different ∆CT-values comparing the sample with and without addition of tumour cells. These three genes were applied to patient samples, but did not show any significant results that may suggest the presence of CTCs in the blood. Although the relative expression of some of the glycosyltransferase genes exhibited reasonable results in the model system, their application to breast cancer patient samples will have to be further improved, e.g. by co-analysis of patient blood samples by gold-standard methods.

  8. Senescence-Related Changes in Gene Expression of Peripheral Blood Mononuclear Cells from Octo/Nonagenarians Compared to Their Offspring

    Directory of Open Access Journals (Sweden)

    Amirah Abdul Rahman

    2013-01-01

    Full Text Available Mechanisms determining both functional rate of decline and the time of onset in aging remain elusive. Studies of the aging process especially those involving the comparison of long-lived individuals and young controls are fairly limited. Therefore, this research aims to determine the differential gene expression profile in related individuals from villages in Pahang, Malaysia. Genome-wide microarray analysis of 18 samples of peripheral blood mononuclear cells (PBMCs from two groups: octo/nonagenarians (80–99 years old and their offspring (50.2 ± 4.0 years old revealed that 477 transcripts were age-induced and 335 transcripts were age-repressed with fold changes ≥1.2 in octo/nonagenarians compared to offspring. Interestingly, changes in gene expression were associated with increased capacity for apoptosis (BAK1, cell cycle regulation (CDKN1B, metabolic process (LRPAP1, insulin action (IGF2R, and increased immune and inflammatory response (IL27RA, whereas response to stress (HSPA8, damage stimulus (XRCC6, and chromatin remodelling (TINF2 pathways were downregulated in octo/nonagenarians. These results suggested that systemic telomere maintenance, metabolism, cell signalling, and redox regulation may be important for individuals to maintain their healthy state with advancing age and that these processes play an important role in the determination of the healthy life-span.

  9. Glucose increases interleukin-12 gene expression and production in stimulated peripheral blood mononuclear cells of type 2 diabetes patients

    Directory of Open Access Journals (Sweden)

    Chien-Ming Chu

    2014-10-01

    Full Text Available Background: Lipopolysaccharide (LPS-stimulated peripheral blood mononuclear cells (PBMCs of type 2 diabetes patients produce more interleukin (IL-12 under glucose treatment. The aim of this study was to determine whether increased IL-12 response in hyperglycemic LPS-stimulated PBMCs is due to increased gene expression or osmolarity. Methods: LPS-stimulated PBMCs of 13 type 2 diabetes patients and 8 healthy controls were used for culture in the presence or absence of glucose or mannitol for 24 h. The IL-12 gene expressions of PBMCs and IL-12 protein levels in supernatants were evaluated. Results: After 24 h, the stimulated PBMCs of diabetes patients expressed more IL-12 mRNA and produced more IL-12 protein following glucose treatment than those without glucose treatment and with mannitol treatment. Stimulated PBMCs of controls did not express more IL-12 mRNA and produce more IL-12 protein following glucose treatment than those without glucose treatment and with mannitol treatment. Conclusions: Glucose increases the IL-12 production in stimulated PBMCs of diabetes patients through increased IL-12 gene expression.

  10. In vitro expression of hard metal dust (WC-Co)--responsive genes in human peripheral blood mononucleated cells.

    Science.gov (United States)

    Lombaert, Noömi; Lison, Dominique; Van Hummelen, Paul; Kirsch-Volders, Micheline

    2008-03-01

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profile of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNFalpha), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.

  11. Blood cell gene expression profiling in subjects with aggressive periodontitis and chronic arthritis

    DEFF Research Database (Denmark)

    Sørensen, Lars K; Poulsen, Anne Havemose; Sønder, Søren U

    2008-01-01

    with untreated localized aggressive periodontitis (LAgP) or generalized aggressive periodontitis (GAgP). Differentially expressed genes were validated in groups of subjects with LAgP, GAgP, juvenile idiopathic arthritis (JIA), or rheumatoid arthritis (RA) and controls. METHODS: Candidate genes were identified...

  12. Red blood cell alloimmunization after blood transfusion

    OpenAIRE

    Schonewille, Henk

    2008-01-01

    Current pretransfusion policy requires the patients’ serum to be tested for the presence of irregular red blood cell antibodies. In case of an antibody, red blood cells lacking the corresponding antigen are transfused after an antiglobulin crossmatch. The aim of the studies in this thesis is primarily to investigate whether this policy should change to improve transfusion safety. This thesis explores the risk on red blood cell alloimmunization after blood transfusion in oncohematologic patien...

  13. Adherence to Mediterranean diet is associated with methylation changes in inflammation-related genes in peripheral blood cells.

    Science.gov (United States)

    Arpón, A; Riezu-Boj, J I; Milagro, F I; Marti, A; Razquin, C; Martínez-González, M A; Corella, D; Estruch, R; Casas, R; Fitó, M; Ros, E; Salas-Salvadó, J; Martínez, J A

    2016-08-01

    Epigenetic processes, including DNA methylation, might be modulated by environmental factors such as the diet, which in turn have been associated with the onset of several diseases such as obesity or cardiovascular events. Meanwhile, Mediterranean diet (MedDiet) has demonstrated favourable effects on cardiovascular risk, blood pressure, inflammation and other complications related to excessive adiposity. Some of these effects could be mediated by epigenetic modifications. Therefore, the objective of this study was to investigate whether the adherence to MedDiet is associated with changes in the methylation status from peripheral blood cells. A subset of 36 individuals was selected within the Prevención con Dieta Mediterránea (PREDIMED)-Navarra study, a randomised, controlled, parallel trial with three groups of intervention in high cardiovascular risk volunteers, two with a MedDiet and one low-fat control group. Changes in methylation between baseline and 5 years were studied. DNA methylation arrays were analysed by several robust statistical tests and functional classifications. Eight genes related to inflammation and immunocompetence (EEF2, COL18A1, IL4I1, LEPR, PLAGL1, IFRD1, MAPKAPK2, PPARGC1B) were finally selected as changes in their methylation levels correlated with adherence to MedDiet and because they presented sensitivity related to a high variability in methylation changes. Additionally, EEF2 methylation levels positively correlated with concentrations of TNF-α and CRP. This report is apparently the first showing that adherence to MedDiet is associated with the methylation of the reported genes related to inflammation with a potential regulatory impact.

  14. Gene expression profiles of cryopreserved CD34{sup +} human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Kazuhiro [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan); Yasuda, Jun, E-mail: yasuda-jun@umin.ac.jp [Omics Science Center, RIKEN, Yokohama (Japan); Department of Cell Biology, The JFCR-Cancer Institute (Japan); Nakamura, Yukio, E-mail: yukionak@brc.riken.jp [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan)

    2010-07-09

    Human umbilical cord blood (UCB) cells are an alternative source of hematopoietic stem cells for treatment of leukemia and other diseases. It is very difficult to assess the quality of UCB cells in the clinical situation. Here, we sought to assess the quality of UCB cells by transplantation to immunodeficient mice. Cryopreserved CD34{sup +} UCB cells from twelve different human donors were transplanted into sublethally irradiated NOD/shi-scid Jic mice. In parallel, the gene expression profiles of the UCB cells were determined from oligonucleotide microarrays. UCB cells from three donors failed to establish an engraftment in the host mice, while the other nine succeeded to various extents. Gene expression profiling indicated that 71 genes, including HOXB4, C/EBP-{beta}, and ETS2, were specifically overexpressed and 23 genes were suppressed more than 2-fold in the successful UCB cells compared to those that failed. Functional annotation revealed that cell growth and cell cycle regulators were more abundant in the successful UCB cells. Our results suggest that hematopoietic ability may vary among cryopreserved UCB cells and that this ability can be distinguished by profiling expression of certain sets of genes.

  15. Effects of a healthy Nordic diet on gene expression changes in peripheral blood mononuclear cells in response to an oral glucose tolerance test in subjects with metabolic syndrome

    DEFF Research Database (Denmark)

    Leder, Lena; Kolehmainen, Marjukka; Narverud, Ingunn

    2016-01-01

    -related genes in peripheral blood mononuclear cells (PBMCs) during a 2-h oral glucose tolerance test (OGTT) in individuals with MetS. METHODS: A Nordic multicenter randomized dietary study included subjects (n = 213) with MetS, randomized to a ND group or a control diet (CD) group applying an isocaloric study...

  16. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    Directory of Open Access Journals (Sweden)

    Rubén Díaz-Rúa

    2016-11-01

    Full Text Available Background: Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC is a promising tool to identify subjects at risk of developing diet-related diseases. Objective: We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF and high-protein (HP diets. Design: We administered HF and HP diets (4 months to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results: The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a. Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions: We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as

  17. Evaluation of genome damage and transcription profile of DNA damage/repair response genes in peripheral blood mononuclear cells exposed to low dose radiation

    International Nuclear Information System (INIS)

    Soren, D.C.; Saini, Divyalakshmi; Das, Birajalaxmi

    2016-01-01

    Humans are exposed to various physical and chemical mutagens in their life time. Physical mutagens, like ionizing radiation (IR), may induce adverse effect at high acute dose exposures in human cells. However, there are inconsistent results on the effect of low dose radiation exposure in human cells. There are a variety of DNA damage endpoints to evaluate the effect of low dose radiation in human cells. DNA damage response (DDR) may lead to changes in expression profile of many genes. In the present study, an attempt has been made to evaluate genome damage at low dose IR exposure in human blood lymphocytes. Cytochalasin blocked micronuclei (CBMN) assay has been used to determine the frequency of micronuclei in binucleated cells in PBMCs exposed to IR. Transcription profile of ATM, P53, GADD45A, CDKN1A, TRF1 and TRF2 genes was studied using real time quantitative PCR. Venous blood samples collected from 10 random healthy donors were irradiated with different doses of γ-radiation ( 137 Cs) along with sham irradiated control. Whole blood culture was set up using microculture technique. Blood samples were stimulated with phytohemagglutinin, and CBMN assay was performed. An average of 2,500 binucleated cells was scored for each dose point. For gene expression analysis, total RNA was isolated, cDNA was prepared, and gene expression analysis for ATM, P53, CDKN1A, GADD45A, TRF1 and TRF2 was done using real time PCR. Our results revealed no significant increase in the frequency of MN up to 100 mGy as compared to control. However, no significant alteration in gene expression profile was observed. In conclusion, no significant dose response was observed at the frequency of MN as well as the expression profile of DDR/repair genes, suggesting low dose radiation did not induce significant DNA damage at these acute dose exposures. (author)

  18. In vitro marker gene expression analyses in human peripheral blood mononuclear cells: A tool to assess safety of influenza vaccines in humans.

    Science.gov (United States)

    Sasaki, Eita; Momose, Haruka; Hiradate, Yuki; Ishii, Ken J; Mizukami, Takuo; Hamaguchi, Isao

    2018-12-01

    Vaccines are inoculated in healthy individuals from children to the elderly, and thus high levels of safety and consistency of vaccine quality in each lot must meet the required specifications by using preclinical and lot release testing. Because vaccines are inoculated into humans, recapitulation of biological reactions in humans should be considered for test methods. We have developed a new method to evaluate the safety of influenza vaccines using biomarker gene expression in mouse and rat models. Some biomarker genes are already known to be expressed in human lymphocytes, macrophages and dendritic cells; therefore, we considered some of these genes might be common biomarkers for human and mice to evaluate influenza vaccine safety. In this study, we used human peripheral blood mononuclear cells (PBMC) as a primary assessment tool to confirm the usefulness of potential marker genes in humans. Analysis of marker gene expression in PBMC revealed biomarker gene expressions were dose-relatedly increased in toxic reference influenza vaccine (RE)-stimulated PBMC. Although some marker genes showed increased expression in hemagglutinin split vaccine-stimulated PBMC, their expression levels were lower than that of RE in PBMC from two different donors. Many marker gene expressions correlated with chemokine production. Marker genes such as IRF7 were associated with other Type 1 interferon (IFN)-associated signals and were highly expressed in the CD304 + plasmacytoid dendritic cell (pDC) population. These results suggest PBMC and their marker genes may be useful for vaccine safety evaluation in humans.

  19. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    ,000 probed. In contrast, the SPIR-related steroids affected 17 or fewer transcripts. Combining SPIR and ALDO resulted in 940 affected transcripts, indicating that SPIR has an early gene-regulatory effect independent of MR. 3 The affected genes encode a large number of signalling proteins and receptors......, including immunoinflammatory response genes and apoptosis and antiapoptosis genes. Apoptosis was evident in CD3-, CD14- and CD19-positive cells, but only after 18 h of exposure to SPIR. 4 The transcriptional network involving the differentially regulated genes was examined and the results indicate that SPIR...

  20. ADAM10 gene expression in the blood cells of Alzheimer's disease patients and mild cognitive impairment subjects

    NARCIS (Netherlands)

    Manzine, Patricia Regina; Marcello, Elena; Borroni, Barbara; Kamphuis, Willem; Hol, Elly; Padovani, Alessandro; Nascimento, Carla Crispim; De Godoy Bueno, Patricia; Assis Carvalho Vale, Francisco; Iost Pavarini, Sofia Cristina; Di Luca, Monica; Cominetti, Márcia Regina

    2015-01-01

    ADAM10 is a potential biomarker for Alzheimer's disease (AD). ADAM10 protein levels are reduced in platelets of AD patients. The aim was to verify the total blood and platelet ADAM10 gene expression in AD patients and to compare with mild cognitive impairment (MCI) and healthy subjects. No

  1. Red blood cell alloimmunization after blood transfusion

    NARCIS (Netherlands)

    Schonewille, Henk

    2008-01-01

    Current pretransfusion policy requires the patients’ serum to be tested for the presence of irregular red blood cell antibodies. In case of an antibody, red blood cells lacking the corresponding antigen are transfused after an antiglobulin crossmatch. The aim of the studies in this thesis is

  2. Modulation of Chemokine Gene Expression in CD133 Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone

    DEFF Research Database (Denmark)

    Holm, Mette; Kvistgaard, Helene; Dahl, Christine

    2006-01-01

    following receptor mediated mast cell activation or following pharmacological activation of specific signal transduction cascades that become activated upon classical FcepsilonRI receptor crosslinking. We demonstrate that chemokine genes encoding IL-8, MCP-1, MIP-1alpha, and MIP-1beta are induced...... 150-fold, which vastly exceeds the yields of conventional protocols using CD34(+) cells as a source of progenitors. Taking advantage of the large quantities of in vitro differentiated mast cells, here we assess at the levels of transcription and translation the kinetics of chemokine gene induction...

  3. Aerobic training increases the expression of adiponectin receptor genes in the peripheral blood mononuclear cells of young men

    Directory of Open Access Journals (Sweden)

    SH Lee

    2015-09-01

    Full Text Available Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs. In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15 or an exercise (n=15 group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001, VO2 max (p<0.001, fasting insulin (p=0.016, homeostasis model assessment for insulin resistance (HOMA-IR (p=0.010, area under the curve (AUC for insulin response during the 75-g oral glucose tolerance test (p=0.002, high-molecular weight (HMW adiponectin (p=0.016, and the PBMC mRNA levels of AdipoR1 (p<0.001 and AdipoR2 (p=0.001. The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2 max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.

  4. Aggressive periodontitis and chronic arthritis: blood mononuclear cell gene expression and plasma protein levels of cytokines and cytokine inhibitors.

    Science.gov (United States)

    Sørensen, Lars K; Havemose-Poulsen, Anne; Bendtzen, Klaus; Holmstrup, Palle

    2009-02-01

    Cytokines and cytokine inhibitors have been associated with many immunoinflammatory diseases. In the present study, we examined whether peripheral blood mononuclear cell (PBMC) gene expression mirrors the corresponding plasma levels of clinically important pro- and anti-inflammatory cytokines and cytokine receptors in patients with periodontitis and patients with arthritis representing two examples of chronic inflammatory diseases, such as periodontitis and arthritis. To identify possible disease-specific characteristics of subjects with periodontitis relative to subjects with chronic inflammation in general, patients with arthritis (juvenile idiopathic arthritis [JIA] and rheumatoid arthritis [RA]) were included. The study population consisted of white adults aggressive periodontitis (LAgP; n = 18), generalized aggressive periodontitis (GAgP; n = 27), JIA (n = 10), and RA (n = 23) and healthy controls (n = 25). PBMC transcripts of interleukin (IL) 1 alpha (IL1A), IL 1 beta (IL1B), IL 1 receptor antagonist (IL1RN), IL6, IL10, tumor necrosis factor alpha (TNFA), TNF alpha receptor I (TNFRI), and TNFRII were measured using real-time reverse transcription-polymerase chain reaction and compared to the corresponding plasma protein levels measured by enzyme-linked immunosorbent assay and a multiplex antibody bead assay. Compared to controls, soluble (s) TNF-RII levels were significantly elevated in patients with GAgP (P = 0.001) or JIA (P = 0.002), and PBMC TNFA transcript levels were lower in patients with JIA (P = 0.001). A negative correlation was found between IL6 expression and IL-6 plasma levels in patients with JIA versus controls, and a positive correlation/association was found between TNFRI expression and sTNF-RI plasma levels in patients with LAgP and RA. The study demonstrated only a few changes in the PBMC expression of various cytokine and cytokine inhibitor genes in aggressive periodontitis and chronic arthritis compared to controls. There were a few

  5. A novel mutation of the GATA site in the erythroid cell-specific regulatory element of the ABO gene in a blood donor with the Am B phenotype.

    Science.gov (United States)

    Oda, A; Isa, K; Ogasawara, K; Kameyama, K; Okuda, K; Hirashima, M; Ishii, H; Kimura, K; Matsukura, H; Hirayama, F; Kawa, K

    2015-05-01

    The Am and Bm phenotypes are characterized by weak expression of the A or B antigens, respectively, by red blood cells with a normal expression by the saliva of secretors. Deletion of the regulatory element in the first intron of the ABO gene and disruption of the GATA motif in the element were found to be responsible. In this study, we identified a novel mutation within the GATA motif (G>C substitution at position c.28 + 5830) in the regulatory element of the A allele that might diminish transcription activity causing the generation of the Am B phenotype. © 2014 International Society of Blood Transfusion.

  6. Hypoxanthine Guanine Phosphoribosyl Transferase Is the Most Stable Reference Gene for Gene Expression Analysis by Quantitative PCR in Peripheral Blood Mononuclear Cells from Women with the Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Milutinović Danijela Vojnović

    2014-09-01

    Full Text Available Background: The polycystic ovary syndrome (PCOS is a frequent endocrine disorder that affects women of reproductive age. As the syndrome is strongly associated with obesity, it is of interest to examine the gene expression diffe rences that accompany its development and the associ a ted metabolic disturbances. Real-time RT PCR is a standard method for studying changes in gene expression. However, to obtain accurate and reliable results, validation of reference genes is obligatory. The aim of this study was to identify a suitable reference for the normalization of gene expression in peripheral blood mononuclear cells (PBMCs from obese and normal-weight women with PCOS.

  7. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells

    Directory of Open Access Journals (Sweden)

    Cremonesi Paola

    2012-10-01

    Full Text Available Abstract Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change play an important role in (i immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3; (ii the regulation of innate resistance to pathogens (PTX3; and (iii the regulation of cell metabolism (CYTH4, SLC2A6, ARG2. The genes with reduced expression (−1.5 to −2.5 fold included genes involved in (i lipid metabolism (ABCG2, FASN, (ii chemokine, cytokine and intracellular signalling (SPPI, and (iii cell cytoskeleton and extracellular matrix (KRT19. Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further

  8. Response of the goat mammary gland to infection with Staphylococcus aureus revealed by gene expression profiling in milk somatic and white blood cells

    Science.gov (United States)

    2012-01-01

    Background S. aureus is one of the main pathogens responsible for the intra-mammary infection in dairy ruminants. Although much work has been carried out to understand the complex physiological and cellular events that occur in the mammary gland in response to S. aureus, the protective mechanisms are still poorly understood. The objectives of the present study were to investigate gene expression during the early response of the goat mammary gland to an experimental challenge with S. aureus, in order to better understand the local and systemic response and to compare them in two divergent lines of goat selected for high and low milk somatic cell scores. Results No differences in gene expression were found between high and low SCS (Somatic Cells Score) selection lines. Analysing the two groups together, an expression of 300 genes were found to change from T0 before infection, and T4 at 24 hours and T5 at 30 hours following challenge. In blood derived white blood cells 8 genes showed increased expression between T0 and T5 and 1 gene has reduced expression. The genes showing the greatest increase in expression following challenge (5.65 to 3.16 fold change) play an important role in (i) immune and inflammatory response (NFKB1, TNFAIP6, BASP1, IRF1, PLEK, BATF3); (ii) the regulation of innate resistance to pathogens (PTX3); and (iii) the regulation of cell metabolism (CYTH4, SLC2A6, ARG2). The genes with reduced expression (−1.5 to −2.5 fold) included genes involved in (i) lipid metabolism (ABCG2, FASN), (ii) chemokine, cytokine and intracellular signalling (SPPI), and (iii) cell cytoskeleton and extracellular matrix (KRT19). Conclusions Analysis of genes with differential expression following infection showed an inverse relationship between immune response and lipid metabolism in the early response of the mammary gland to the S. aureus challenge. PTX3 showed a large change in expression in both milk and blood, and is therefore a candidate for further studies on

  9. Blood Gene Expression Predicts Bronchiolitis Obliterans Syndrome

    Directory of Open Access Journals (Sweden)

    Richard Danger

    2018-01-01

    Full Text Available Bronchiolitis obliterans syndrome (BOS, the main manifestation of chronic lung allograft dysfunction, leads to poor long-term survival after lung transplantation. Identifying predictors of BOS is essential to prevent the progression of dysfunction before irreversible damage occurs. By using a large set of 107 samples from lung recipients, we performed microarray gene expression profiling of whole blood to identify early biomarkers of BOS, including samples from 49 patients with stable function for at least 3 years, 32 samples collected at least 6 months before BOS diagnosis (prediction group, and 26 samples at or after BOS diagnosis (diagnosis group. An independent set from 25 lung recipients was used for validation by quantitative PCR (13 stables, 11 in the prediction group, and 8 in the diagnosis group. We identified 50 transcripts differentially expressed between stable and BOS recipients. Three genes, namely POU class 2 associating factor 1 (POU2AF1, T-cell leukemia/lymphoma protein 1A (TCL1A, and B cell lymphocyte kinase, were validated as predictive biomarkers of BOS more than 6 months before diagnosis, with areas under the curve of 0.83, 0.77, and 0.78 respectively. These genes allow stratification based on BOS risk (log-rank test p < 0.01 and are not associated with time posttransplantation. This is the first published large-scale gene expression analysis of blood after lung transplantation. The three-gene blood signature could provide clinicians with new tools to improve follow-up and adapt treatment of patients likely to develop BOS.

  10. MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood.

    Directory of Open Access Journals (Sweden)

    Mathew B Cox

    Full Text Available It is well established that Multiple Sclerosis (MS is an immune mediated disease. Little is known about what drives the differential control of the immune system in MS patients compared to unaffected individuals. MicroRNAs (miRNAs are small non-coding nucleic acids that are involved in the control of gene expression. Their potential role in T cell activation and neurodegenerative disease has recently been recognised and they are therefore excellent candidates for further studies in MS. We investigated the transcriptome of currently known miRNAs using miRNA microarray analysis in peripheral blood samples of 59 treatment naïve MS patients and 37 controls. Of these 59, 18 had a primary progressive, 17 a secondary progressive and 24 a relapsing remitting disease course. In all MS subtypes miR-17 and miR-20a were significantly under-expressed in MS, confirmed by RT-PCR. We demonstrate that these miRNAs modulate T cell activation genes in a knock-in and knock-down T cell model. The same T cell activation genes are also up-regulated in MS whole blood mRNA, suggesting these miRNAs or their analogues may provide useful targets for new therapeutic approaches.

  11. Expression of selected genes of dendritic and Treg cells in blood and skin of morphea patients treated with UVA1 phototherapy

    Science.gov (United States)

    Osmola-Mańkowska, Agnieszka J.; Kowalczyk, Michał J.; Żaba, Ryszard W.; Adamski, Zygmunt; Dańczak-Pazdrowska, Aleksandra

    2018-01-01

    Introduction Morphea is a chronic autoimmune disease characterized by fibrosis of the skin. Dendritic cells (DC) and regulatory T cells (Tregs) play a significant role in development of autoimmune and tolerance mechanisms. The aim of the study was to establish the expression of selected genes of plasmacytoid and myeloid DC, Treg cells, and the microenvironment of cytokines (interleukin-17A (IL-17A), transforming growth factor β (TGF-β)) in blood and skin of morphea patients. In addition, the effect of UVA1 phototherapy on expression of the aforementioned genes was evaluated. Material and methods The study was performed on 15 blood and 10 skin samples from patients with morphea. The evaluation included expression of CLEC4C (C-type lectin domain family 4, member C receptor), Lymphocyte antigen 75 (LY75), Forkhead box p3 (foxp3) transcription factor, IL-17A and TGF-β genes in peripheral blood mononuclear cells (PBMC) and in skin samples both before and after UVA1 phototherapy using real-time polymerase chain reaction. Results The study revealed lower expression of CLEC4C before (p = 0.010) and after (p = 0.009) phototherapy and lower expression of IL-17A before (p = 0.038) phototherapy in PBMC of patients with morphea vs. the control group. Expression of CLEC4C in PBMC correlated negatively (rho = –0.90; p = 0.001) with activity of disease after phototherapy. No significant differences were found between expression of analysed genes before and after UVA1 therapy in PBMC and skin of morphea patients. Conclusions The results do not confirm the involvement of analysed subsets of DC and Tregs in UVA1 phototherapy in morphea, but point to CLEC4C as a possible biomarker associated with the disease activity. PMID:29593811

  12. Gene expression profiling in peripheral blood mononuclear cells of patients with common variable immunodeficiency: modulation of adaptive immune response following intravenous immunoglobulin therapy.

    Directory of Open Access Journals (Sweden)

    Marzia Dolcino

    Full Text Available BACKGROUND: Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice. METHODS: We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study. RESULTS: A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23⁻CD27⁻IgM⁻IgG⁻ B cells (centrocytes. CONCLUSIONS: Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency.

  13. Expressed sequence tag analysis of blood cells in the vanadium-rich ascidian, Ascidia sydneiensis samea--a survey of genes for metal accumulation.

    Science.gov (United States)

    Yamaguchi, Nobuo; Togi, Akiko; Ueki, Tatsuya; Uyama, Taro; Michibata, Hitoshi

    2002-09-01

    Some species in the family Ascidiidae accumulate vanadium at concentrations in excess of 350 mM, which corresponds to about 10(7) times that found in seawater. The vanadium ions are stored in vacuoles located within vanadium-containing blood cells, vanadocytes. To investigate the phenomenon, an expressed sequence tag analysis (EST) of a cDNA library of Ascidia sydneiensis samea blood cells was carried out. Three hundred clones were obtained and sequenced by EST analysis. A similarity search revealed that 158 of the clones (52.7%) were known genes, and 142 of the clones (47.3%) did not have any similarity to genes registered in the SwissProt database. According to the functions of their genes the identified EST clones were categorized into eight types of clones; these consisted of genes; metal-related proteins (29 clones), signal transduction (22 clones), protein synthesis (17 clones), nuclear proteins (17 clones), cytoskeleton and motility (14 clones), energy conversion (3 clones), hypothetical proteins (11 clones), and others (45 clones). The ferritin homologue has a high degree of similarity to that of mammals; the iron-binding sites of ferritin are well conserved including His-118 which is important for capturing Fe(2+), also works as a ligand for VO(2+).

  14. [Expression of RRM1 and ERCC1 genes in tumor tissues and peripheral blood lymphocytes of advanced non-small cell lung cancer].

    Science.gov (United States)

    Zhang, Guo-bin; Chen, Jian; Wang, Lin-run; Li, Jun; Li, Min-wei; Xu, Nong; Shen-Tu, Jian-zhong

    2012-09-01

    To investigate the expression of RRM1 and ERCC1 genes in tumor tissues and peripheral blood lymphocytes of advanced non-small cell lung cancer (NSCLC). Tissue and peripheral blood samples were collected from 49 advanced NSCLC patients treated with gemcitabine plus carboplatin. The expressions of RRM1 and ERCC1 mRNA in tumor tissue and peripheral lymphocytes were detected by real-time fluorescent quantitative PCR. The relationship of gene expression with clinical characteristics,chemotherapy response and prognosis was analyzed. The RRM1 expression in tumor tissues was positively correlated with that in peripheral blood lymphocytes,while no significant correlation was observed between ERCC1 expression in tumor tissues and that in peripheral blood (rs=0.332 and 0.258; P=0.020 and 0.073, respectively). The expression of RRM1 and ERCC1 in tumor tissues peripheral lymphocytes was synchronous (rs=0.634 and 0.351; P0.05). Significant difference was found in response rate to chemotherapy (Ptissues or low RRM1 expression levels in peripheral blood and those with high RRM1 and ERCC1 expression levels. The patients with low ERCC1 expression levels in tumor tissues gained higher 2-year survival rate (Pblood with the response to chemotherapy and prognosis (P>0.05). The expression of RRMI and ERCC1 genes in tumor tissues and RRM1 in peripheral blood lymphocytes is closely correlated with the response to chemotherapy and prognosis of patients with advanced NSCLC treated with gemcitabine plus carboplatin.

  15. Inflammation Modulates RLIP76/RALBP1 Electrophile-Glutathione Conjugate Transporter and Housekeeping Genes in Human Blood-Brain Barrier Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bennani-Baiti

    Full Text Available Endothelial cells are often present at inflammation sites. This is the case of endothelial cells of the blood-brain barrier (BBB of patients afflicted with neurodegenerative disorders such as Alzheimer's, Parkinson's, or multiple sclerosis, as well as in cases of bacterial meningitis, trauma, or tumor-associated ischemia. Inflammation is a known modulator of gene expression through the activation of transcription factors, mostly NF-κB. RLIP76 (a.k.a. RALBP1, an ATP-dependent transporter of electrophile-glutathione conjugates, modulates BBB permeability through the regulation of tight junction function, cell adhesion, and exocytosis. Genes and pathways regulated by RLIP76 are transcriptional targets of tumor necrosis factor alpha (TNF-α pro-inflammatory molecule, suggesting that RLIP76 may also be an inflammation target. To assess the effects of TNF-α on RLIP76, we faced the problem of choosing reference genes impervious to TNF-α. Since such genes were not known in human BBB endothelial cells, we subjected these to TNF-α, and measured by quantitative RT-PCR the expression of housekeeping genes commonly used as reference genes. We find most to be modulated, and analysis of several inflammation datasets as well as a metaanalysis of more than 5000 human tissue samples encompassing more than 300 cell types and diseases show that no single housekeeping gene may be used as a reference gene. Using three different algorithms, however, we uncovered a reference geneset impervious to TNF-α, and show for the first time that RLIP76 expression is induced by TNF-α and follows the induction kinetics of inflammation markers, suggesting that inflammation can influence RLIP76 expression at the BBB. We also show that MRP1 (a.k.a. ABCC1, another electrophile-glutathione transporter, is not modulated in the same cells and conditions, indicating that RLIP76 regulation by TNF-α is not a general property of glutathione transporters. The reference geneset

  16. Assessment of Cytokeratin-19 Gene Expression in Peripheral Blood of Breast Cancer Patients and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Saeideh Keyvani

    2016-01-01

    Full Text Available Detection of cytokeratin-19 (CK19 expression as an epithelial-specific marker in circulating tumor cells (CTCs of breast cancer patients can be important for diagnostic purposes. Comparison of CK19 expression in breast cancer cell lines can indicate that expression of this marker is different in various breast cancer cell lines based on their category. Thirty-five breast cancer patients were evaluated for detection of CK19 mRNA in their peripheral blood using CK19-specific primers and a nested reverse transcriptase polymerase chain reaction (RT-PCR technique. CK19 expression levels were detected in MCF7, T47D, SK-BR-3, and MDA-MB-231 cell lines by semiquantitative RT-PCR and Western blot analyses. Statistical analysis of our data indicates that there is no significant difference between CK19 expression and histopathological parameters and some molecular markers, including Ki-67, HER-2, and P53, but there are statistically significant correlations between estrogen receptor (P = 0.040 and progesterone receptor ( P = 0.046 with CK19 expression. CK19 expression was detected in MCF7, T47D, and SK-BR-3 cell lines but not in MDA-MB-231 cell line. More studies are needed to determine the relationship between this marker and other markers in the diagnosis and treatment of breast cancer. On the other hand, the study of different markers using breast cancer cell lines as experimental models of breast cancer could have an impact on improving the health outcomes of patients with breast cancer.

  17. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Bruckers, Liesbeth

    2014-01-01

    with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1) gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF) in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms...... samples of 183 newborns to identify associations between arsenic levels and birth anthropometric parameters in an area with very low arsenic exposure. Our core research aim was to screen for transcriptional marks that mechanistically explain these associations. Multiple regression analyses showed...... of fetal development, inhibition of placental angiogenesis leads to impaired nutrition and hence to growth retardation. Various genes related to DNA methylation and oxidative stress showed also changed expression in relation to arsenic exposure but were not related to birth outcome parameters...

  18. Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: evidence for erythropoietin-independent erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Bünyamin Akgül

    2010-12-01

    Full Text Available Garlic (Allium sativum has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotype-driven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietin-independent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic

  19. Expression of Caspase-1 Gene Transcript Variant mRNA in Peripheral Blood Mononuclear Cells of Patients with Primary Gout in Different TCM Syndromes

    Directory of Open Access Journals (Sweden)

    Wan-Tai Dang

    2015-01-01

    Full Text Available A large number of studies have shown that cysteinyl aspartate specific protease-1 (CASP1 played an important role in the inflammatory response of primary gout, but the decreased expression of different CASP1 transcript variant could inhibit the activation of IL-1β. Our study mainly analyzed the expression level and function of CASP1 gene transcript variant mRNA in peripheral blood mononuclear cells of patients with gout in different TCM syndromes. The expression of CASP1 gene transcript variant and IL-1β mRNA in PBMCs were detected in patients with PG [acute phase (AP: 44 cases; nonacute phase (NAP: 52 cases] and healthy controls (HC: 30 cases by reverse transcription-polymerase chain reaction and/or real-time quantitative polymerase chain reaction. The expressions of plasma IL-1β in patients with PG and HC were detected by enzyme-linked immunosorbent assay. Dysregulated expression of the CASP1 gene and its transcript variant, plasma proinflammatory cytokines in all patients with primary gout in different TCM syndromes, correlation analysis showed that there was negative correlation between the expression of CASP1-gamma gene transcript variant mRNA and IL-1β protein in APPG group. The study suggested that CASP1 gene and its transcript variant may play a critical role in the inflammatory response of patients with PG in different phases and TCM syndromes.

  20. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  1. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Directory of Open Access Journals (Sweden)

    Z.H. Wang

    2014-04-01

    Full Text Available SRY-related high-mobility-group box 9 (Sox9 gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs. After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  2. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    International Nuclear Information System (INIS)

    Wang, Z.H.; Li, X.L.; He, X.J.; Wu, B.J.; Xu, M.; Chang, H.M.; Zhang, X.H.; Xing, Z.; Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y.

    2014-01-01

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering

  3. Anticitrullinated Protein Antibodies Induce Inflammatory Gene Expression Profile in Peripheral Blood Cells from CCP-positive Patients with RA.

    Science.gov (United States)

    Gertel, Smadar; Karmon, Gidi; Szarka, Eszter; Shovman, Ora; Houri-Levi, Esther; Mozes, Edna; Shoenfeld, Yehuda; Amital, Howard

    2018-03-01

    Anticitrullinated protein antibodies (ACPA) have major diagnostic significance in rheumatoid arthritis (RA). ACPA are directed against different citrullinated antigens, including filaggrin, fibrinogen, vimentin, and collagen. The presence of ACPA is associated with joint damage and extraarticular manifestations, suggesting that ACPA may have a significant role in the pathogenesis of RA. To verify the effect of ACPA on RA-immune cells, peripheral blood mononuclear cells (PBMC) from cyclic citrullinated peptide (CCP)-positive patients with RA and healthy controls were cocultured in vitro with ACPA. ACPA-positive stained cells were analyzed by flow cytometry and the effect of ACPA on mRNA expression levels was evaluated by real-time PCR. We tested whether the stimulatory effects induced by ACPA could be inhibited by the addition of a new multiepitope citrullinated peptide (Cit-ME). We found that ACPA bind specifically to PBMC from CCP-positive patients with RA through the Fab portion. ACPA induce upregulation of pathogenic cytokine expression (4- to 13-fold increase) in PBMC derived from CCP-positive patients with RA. Moreover, ACPA upregulated IL-1β and IL-6 mRNA expression levels by 10- and 6-fold, respectively, compared to control IgG. Cit-ME, a genuine ligand of ACPA, inhibited the ACPA-induced upregulation of IL-1β and IL-6 by 30%. ACPA bind to a limited percentage of PBMC and upregulate inflammatory cytokine expression, suggesting that ACPA is involved in RA pathogenesis. Targeting ACPA to decrease their pathogenic effects might provide a novel direction in developing therapeutic strategies for RA.

  4. Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach.

    Directory of Open Access Journals (Sweden)

    Michael M Mendelson

    2017-01-01

    Full Text Available The link between DNA methylation, obesity, and adiposity-related diseases in the general population remains uncertain.We conducted an association study of body mass index (BMI and differential methylation for over 400,000 CpGs assayed by microarray in whole-blood-derived DNA from 3,743 participants in the Framingham Heart Study and the Lothian Birth Cohorts, with independent replication in three external cohorts of 4,055 participants. We examined variations in whole blood gene expression and conducted Mendelian randomization analyses to investigate the functional and clinical relevance of the findings. We identified novel and previously reported BMI-related differential methylation at 83 CpGs that replicated across cohorts; BMI-related differential methylation was associated with concurrent changes in the expression of genes in lipid metabolism pathways. Genetic instrumental variable analysis of alterations in methylation at one of the 83 replicated CpGs, cg11024682 (intronic to sterol regulatory element binding transcription factor 1 [SREBF1], demonstrated links to BMI, adiposity-related traits, and coronary artery disease. Independent genetic instruments for expression of SREBF1 supported the findings linking methylation to adiposity and cardiometabolic disease. Methylation at a substantial proportion (16 of 83 of the identified loci was found to be secondary to differences in BMI. However, the cross-sectional nature of the data limits definitive causal determination.We present robust associations of BMI with differential DNA methylation at numerous loci in blood cells. BMI-related DNA methylation and gene expression provide mechanistic insights into the relationship between DNA methylation, obesity, and adiposity-related diseases.

  5. Decreased Expression of Innate Immunity-Related Genes in Peripheral Blood Mononuclear Cells from Patients with IgG4-Related Disease.

    Directory of Open Access Journals (Sweden)

    Akio Nakajima

    Full Text Available IgG4-related disease (IgG4-RD is a new clinical entity of unknown etiology characterized by elevated serum IgG4 and tissue infiltration by IgG4-positive plasma cells. Although aberrancies in acquired immune system functions, including increases in Th2 and Treg cytokines observed in patients with IgG4-RD, its true etiology remains unclear. To investigate the pathogenesis of IgG4-RD, this study compared the expression of genes related to innate immunity in patients with IgG4-RD and healthy controls.Peripheral blood mononuclear cells (PBMCs were obtained from patients with IgG4-RD before and after steroid therapy and from healthy controls. Total RNA was extracted and DNA microarray analysis was performed in two IgG4-RD patients to screen for genes showing changes in expression. Candidate genes were validated by real-time RT-PCR in 27 patients with IgG4-RD and 13 healthy controls.DNA microarray analysis identified 21 genes that showed a greater than 3-fold difference in expression between IgG4-RD patients and healthy controls and 30 genes that showed a greater than 3-fold change in IgG4-RD patients following steroid therapy. Candidate genes related to innate immunity, including those encoding Charcot-Leyden crystal protein (CLC, membrane-spanning 4-domain subfamily A member 3 (MS4A3, defensin alpha (DEFA 3 and 4, and interleukin-8 receptors (IL8R, were validated by real-time RT-PCR. Expression of all genes was significantly lower in IgG4-RD patients than in healthy controls. Steroid therapy significantly increased the expression of DEFA3, DEFA4 and MS4A3, but had no effect on the expression of CLC, IL8RA and IL8RB.The expression of genes related to allergy or innate immunity, including CLC, MS4A3, DEFA3, DEFA4, IL8RA and IL8RB, was lower in PBMCs from patients with IgG4-RD than from healthy controls. Although there is the limitation in the number of patients applied in DNA microarray, impaired expression of genes related to innate immunity may be

  6. Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation.

    Science.gov (United States)

    Soltani, Behrooz; Ghaemi, Nasser; Sadeghizadeh, Majid; Najafi, Farhood

    2016-09-25

    Exposure to ionizing radiation (IR) could be detrimental to health. Oxidative stress, DNA damage, and inflammation are implicated in radiation damage. Curcumin, a natural polyphenol, has remarkable antioxidant, anti-inflammation and anticarcinogenic properties and is reported to protect cells and organisms against gamma-rays. We have recently enhanced solubility of curcumin via a novel dendrosomal nanoformulation (DNC). The objective of this study was to assess the potential efficacy of this nanoformulation in protecting human peripheral blood mononuclear cells (PBMC) against gamma-radiation. IR-induced damage was evident in reactive oxygen species, antioxidant enzymes activities, glutathione, lipid peroxidation, and viability assays. Treatment by DNC, showing superiority to curcumin, effectively counteracted these effects and reduced DNA damage as determined via 8-OHdG levels and lipid peroxidation as measured by the level of TBARS (as well as lipid hydroperoxides and 8-isoprostane). PBMC pretreatment by DNC prior to irradiation proved effective as well. Uptake kinetics revealed enhanced uptake of DNC compared to curcumin, particularly after irradiation. DNC suppressed IR-induced NF-κB activation 18 h post-irradiation. It induced Nrf2 binding activity early after irradiation which was sustained to 18 h. Gene expression analysis of a chosen set of radiation response genes in irradiated PBMC revealed a similar profile for DNA damage response and repair genes including FDXR, XPC, DDB2, and GADD45 in DNC-treated cells compared to IR control. However, in response to radiation, an altered profile of expression was noticed for CDKN1A (p21), MDM2, IFNG, and BBC3 (PUMA) genes after DNC treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Electrophysiological, Morphological, and Ultrastructural Features of the Injured Spinal Cord Tissue after Transplantation of Human Umbilical Cord Blood Mononuclear Cells Genetically Modified with the VEGF and GDNF Genes.

    Science.gov (United States)

    Mukhamedshina, Y O; Gilazieva, Z E; Arkhipova, S S; Galieva, L R; Garanina, E E; Shulman, A A; Yafarova, G G; Chelyshev, Y A; Shamsutdinova, N V; Rizvanov, A A

    2017-01-01

    In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement in H (latency period, LP) and M( A max ) waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement in A max of M wave and LP of both the M and H waves. The ratio between A max of the H and M waves (H max /M max ) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold, P > 0.01) in the main corticospinal tract compared to the nontransduced ones. HNA + cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP + host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs.

  8. Electrophysiological, Morphological, and Ultrastructural Features of the Injured Spinal Cord Tissue after Transplantation of Human Umbilical Cord Blood Mononuclear Cells Genetically Modified with the VEGF and GDNF Genes

    Science.gov (United States)

    Gilazieva, Z. E.; Arkhipova, S. S.; Galieva, L. R.; Garanina, E. E.; Shulman, A. A.; Yafarova, G. G.; Chelyshev, Y. A.; Shamsutdinova, N. V.

    2017-01-01

    In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement in H (latency period, LP) and M(Amax) waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement in Amax of M wave and LP of both the M and H waves. The ratio between Amax of the H and M waves (Hmax/Mmax) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold, P > 0.01) in the main corticospinal tract compared to the nontransduced ones. HNA+ cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP+ host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs. PMID:28421147

  9. Methotrexate-related response on human peripheral blood mononuclear cells may be modulated by the Ala16Val-SOD2 gene polymorphism.

    Directory of Open Access Journals (Sweden)

    Fernanda Barbisan

    Full Text Available Methotrexate (MTX is a folic acid antagonist used in high doses as an anti-cancer treatment and in low doses for the treatment of some autoimmune diseases. MTX use has been linked to oxidative imbalance, which may cause multi-organ toxicities that can be attenuated by antioxidant supplementation. Despite the oxidative effect of MTX, the influence of antioxidant gene polymorphisms on MTX toxicity is not well studied. Therefore, we analyzed here whether a genetic imbalance of the manganese-dependent superoxide dismutase (SOD2 gene could have some impact on the MTX cytotoxic response. An in vitro study using human peripheral blood mononuclear cells (PBMCs obtained from carriers with different Ala16Val-SOD2 genotypes (AA, VV and AV was carried out, and the effect on cell viability and proliferation was analyzed, as well as the effect on oxidative, inflammatory and apoptotic markers. AA-PBMCs that present higher SOD2 efficiencies were more resistance to high MTX doses (10 and 100 µM than were the VV and AV genotypes. Both lipoperoxidation and ROS levels increased significantly in PBMCs exposed to MTX independent of Ala16Val-SOD2 genotypes, whereas increased protein carbonylation was observed only in PBMCs from V allele carriers. The AA-PBMCs exposed to MTX showed decreasing SOD2 activity, but a concomitant up regulation of the SOD2 gene was observed. A significant increase in glutathione peroxidase (GPX levels was observed in all PBMCs exposed to MTX. However, this effect was more intense in AA-PBMCs. Caspase-8 and -3 levels were increased in cells exposed to MTX, but the modulation of these genes, as well as that of the Bax and Bcl-2 genes involved in the apoptosis pathway, presented a modulation that was dependent on the SOD2 genotype. MTX at a concentration of 10 µM also increased inflammatory cytokines (IL-1β, IL-6, TNFα and Igγ and decreased the level of IL-10 anti-inflammatory cytokine, independent of SOD2 genetic background. The results

  10. Transforming growth factor beta-1 and interleukin-17 gene transcription in peripheral blood mononuclear cells and the human response to infection.

    LENUS (Irish Health Repository)

    White, Mary

    2012-02-01

    INTRODUCTION: The occurrence of severe sepsis may be associated with deficient pro-inflammatory cytokine production. Transforming growth factor beta-1 (TGFbeta-1) predominantly inhibits inflammation and may simultaneously promote IL-17 production. Interleukin-17 (IL-17) is a recently described pro-inflammatory cytokine, which may be important in auto-immunity and infection. We investigated the hypothesis that the onset of sepsis is related to differential TGFbeta-1 and IL-17 gene expression. METHODS: A prospective observational study in a mixed intensive care unit (ICU) and hospital wards in a university hospital. Patients (59) with severe sepsis; 15 patients with gram-negative bacteraemia but without critical illness and 10 healthy controls were assayed for TGFbeta-1, IL-17a, IL-17f, IL-6 and IL-1beta mRNA in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR and serum protein levels by ELISA. RESULTS: TGFbeta-1 mRNA levels are reduced in patients with bacteraemia and sepsis compared with controls (p=0.02). IL-6 mRNA levels were reduced in bacteraemic patients compared with septic patients and controls (p=0.008). IL-1beta mRNA levels were similar in all groups, IL-17a and IL-17f mRNA levels are not detectable in peripheral blood mononuclear cells. IL-6 protein levels were greater in patients with sepsis than bacteraemic and control patients (p<0.0001). Activated TGFbeta-1 and IL-17 protein levels were similar in all groups. IL-1beta protein was not detectable in the majority of patients. CONCLUSIONS: Down regulation of TGFbeta-1 gene transcription was related to the occurrence of infection but not the onset of sepsis. Interleukin-17 production in PBMC may not be significant in the human host response to infection.

  11. Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET

    Directory of Open Access Journals (Sweden)

    Matsuyama Shuichi

    2012-03-01

    Full Text Available Abstract Background Interferon tau (IFNT, which is secreted into the uterine cavity during the maternal recognition period (MRP, is a key factor for establishment of pregnancy. The present study aims to clarify the relationship between the ability of a bovine conceptus to produce IFNT during the MRP and the conceptus's ability to establish pregnancy. Methods In the first experiment, IFNT (0, 500, or 1000 micrograms was administered into the uterine horn ipsilateral to the CL 16 or 17 d after standing estrus, and mRNA levels of IFN-stimulated gene 15-kDa protein (ISG15 and Mx2 in peripheral blood mononuclear cells (PBMCs were determined. In the second experiment, we investigated ISG15 mRNA expression in PBMCs during the MRP in cattle after either artificial insemination (AI or embryo transfer (ET. Results Intrauterine administration of IFNT stimulated ISG15 and Mx2 gene expressions in PBMCs in cattle, and there was a positive correlation between the expressions of peripheral markers and the quantity of IFNT administered. In pregnant and normal interestrous interval (ISG15 gene showed similar patterns after AI and ET, and ISG15 mRNA expression was increased in pregnant cattle but unchanged in nIEI cattle. In contrast, ISG15 gene expression in extended interestrous interval (greater than or equal to 25 d cattle (eIEI cattle differed after ET compared with AI. In eIEI cattle after ET, ISG15 gene expression increased, such that the value on day 18 was intermediate between those of pregnant and nIEI cattle. In eIEI cattle after AI, ISG15 gene expression did not increase throughout the observation period. Conclusions The results of the current study indicate that the quantity of conceptus-derived IFNT can be estimated by measuring ISG15 mRNA levels in PBMCs from cattle. Using this approach, we demonstrate that ISG15 gene expression during the MRP in eIEI cattle differed after ET compared with AI. In addition, the modest increase in ISG15 gene

  12. Genetic correction of p67phox deficient chronic granulomatous disease using peripheral blood progenitor cells as a target for retrovirus mediated gene transfer.

    Science.gov (United States)

    Weil, W M; Linton, G F; Whiting-Theobald, N; Vowells, S J; Rafferty, S P; Li, F; Malech, H L

    1997-03-01

    Chronic granulomatous disease (CGD) can result from any of four single gene defects involving the components of the superoxide (O-2) generating phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. We show that transduction of peripheral blood CD34+ hematopoietic progenitors from a p67phox deficient CGD patient with replication defective amphotropic retrovirus encoding p67phox (MFGS-p67phox) significantly corrected the CGD functional defect in phagocyte oxidase activity in vitro. Using a chemiluminescence assay of oxidase activity, we showed that transduced patient CD34+ progenitors differentiating to myeloid cells in culture produced 25% of the total superoxide produced by normal CD34+ progenitors differentiating in culture. A flow cytometric assay of oxidase activity used to assess the oxidase function of individual cells in the cultures indicated that up to 32% of maturing granulocytes derived from transduced CD34+ progenitors from the p67phox CGD patient were oxidase positive with the average level of correction per granulocyte of 85% of that seen with granulocytes in similar cultures of CD34+ progenitors from normal volunteers. Nitroblue tetrazolium dye reduction assays of colonies of transduced progenitors in soft agar indicated that in some studies restoration of oxidase activity occurred in myeloid cells within 44% of granulocyte-erythrocyte-monocyte colonies, and within 28% of the combined group of granulocyte colonies/monocyte colonies/granulocyte monocyte colonies. These high correction rates were achieved without any selective regimen to enrich for transduced cells. This study provides a basis for development of gene therapy for the p67phox deficient form of CGD.

  13. The intake of high-fat diets induces an obesogenic-like gene expression profile in peripheral blood mononuclear cells, which is reverted by dieting.

    Science.gov (United States)

    Reynés, Bàrbara; García-Ruiz, Estefanía; Palou, Andreu; Oliver, Paula

    2016-06-01

    Peripheral blood mononuclear cells (PBMC) are increasingly used for nutrigenomic studies. In this study, we aimed to identify whether these cells could reflect the development of an obesogenic profile associated with the intake of high-fat (HF) diets. We analysed, by real-time RT-PCR, the dietary response of key genes related to lipid metabolism, obesity and inflammation in PBMC of control rats, rats fed a cafeteria or a commercial HF diet and rats fed a control diet after the intake of a cafeteria diet (post-cafeteria model). Cafeteria diet intake, which resulted in important overweight and related complications, altered the expressions of most of the studied genes in PBMC, evidencing the development of an obesogenic profile. Commercial HF diet, which produced metabolic alterations but in the absence of noticeably increased body weight, also altered PBMC gene expression, inducing a similar regulatory pattern as that observed for the cafeteria diet. Regulation of carnitine palmitoyltransferase I (Cpt1a) mRNA expression was of special interest; its expression reflected metabolic alterations related to the intake of both obesogenic diets (independently of increased body weight) even at an early stage as well as metabolic recovery in post-cafeteria animals. Thus, PBMC constitute an important source of biomarkers that reflect the increased adiposity and metabolic deregulation associated with the intake of HF diets. In particular, we propose an analysis of Cpt1a expression as a good biomarker to detect the early metabolic alterations caused by the consumption of hyperlipidic diets, and also as a marker of metabolic recovery associated to weight loss.

  14. Exit of pediatric pre-B acute lymphoblastic leukaemia cells from the bone marrow to the peripheral blood is not associated with cell maturation or alterations in gene expression

    Directory of Open Access Journals (Sweden)

    Wiebe Thomas

    2008-08-01

    Full Text Available Abstract Background Childhood pre-B acute lymphoblastic leukemia (ALL is a bone marrow (BM derived disease, which often disseminates out of the BM cavity, where malignant cells to a variable degree can be found circulating in the peripheral blood (PB. Normal pre-B cells are absolutely dependent on BM stroma for survival and differentiation. It is not known whether transformed pre-B ALL cells retain any of this dependence, which possibly could impact on drug sensitivity or MRD measurements. Results Pre-B ALL cells, highly purified by a novel method using surface expression of CD19 and immunoglobulin light chains, from BM and PB show a very high degree of similarity in gene expression patterns, with differential expression of vascular endothelial growth factor (VEGF as a notable exception. In addition, the cell sorting procedure revealed that in 2 out of five investigated patients, a significant fraction of the malignant cells had matured beyond the pre-B cell stage. Conclusion The transition of ALL cells from the BM into the circulation does not demand, or result in, major changes of gene expression pattern. This might indicate an independence of BM stroma on the part of transformed pre-B cells, which contrasts with that of their normal counterparts.

  15. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function.

    Science.gov (United States)

    Lee, Mei-Chin; Shei, William; Chan, Anita S; Chua, Boon-Tin; Goh, Shuang-Ru; Chong, Yaan-Fun; Hilmy, Maryam H; Nongpiur, Monisha E; Baskaran, Mani; Khor, Chiea-Chuen; Aung, Tin; Hunziker, Walter; Vithana, Eranga N

    2017-10-15

    PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Generation of human induced pluripotent stem cells (EURACi001-A, EURACi002-A, EURACi003-A from peripheral blood mononuclear cells of three patients carrying mutations in the CAV3 gene

    Directory of Open Access Journals (Sweden)

    Viviana Meraviglia

    2018-03-01

    Full Text Available Caveolinopathies are a heterogeneous family of genetic pathologies arising from alterations of the caveolin-3 gene (CAV3, encoding for the isoform specifically constituting muscle caveolae. Here, by reprogramming peripheral blood mononuclear cells, we report the generation of induced pluripotent stem cells (iPSCs from three patients carrying the ΔYTT deletion, T78K and W101C missense mutations in caveolin-3. iPSCs displayed normal karyotypes and all the features of pluripotent stem cells in terms of morphology, specific marker expression and ability to differentiate in vitro into the three germ layers. These lines thus represent a human cellular model to study the molecular basis of caveolinopathies.Resource tableImage 1Unique stem cell lines identifierEURACi001-AEURACi002-AEURACi003-AAlternative names of stem cell linesB2CAV3 (EURACi001-AL1CAV3 (EURACi002-AN1CAV3 (EURACi003-AInstitutionInstitute for Biomedicine, Eurac ResearchContact information of distributorAlessandra Rossini (alessandra.rossini@eurac.eduType of cell linesiPSCsOriginHumanCell sourcePeripheral blood mononuclear cells (PBMCsMethod of reprogrammingElectroporation of episomal vectors (pCXLE hOCT3/4-shp53-F, pCXLE-hSK, and pCXLE-hULMultiline rationaleNon-isogenic cell lines obtained from patients with mutations in the same gene (CAV3Gene modificationNOType of modificationSpontaneous mutationsAssociated diseaseCaveolinopathiesGene/locusHeterozygous CAV3 c.Δ184–192 (EURACi001-AHeterozygous CAV3 c.303 TGG > TGC (EURACi002-AHeterozygous CAV3 c.233 ACG > AAG (EURACi003-AMethod of modificationN/AName of transgene or resistanceN/AInducible/constitutive systemN/ADate archived/stock dateJanuary 2016 (EURACi001-ASeptember 2016 (EURACi002-AMay 2016 (EURACi003-ACell line repository/bankN/AEthical approvalPeripheral blood was collected from patients after signing the informed consent provided by Cell Line and DNA Biobank from Patients Affected by Genetic Diseases, member of the

  17. White Blood Cell Disorders

    Science.gov (United States)

    ... Abbreviations Weights & Measures ENGLISH View Professional English Deutsch Japanese Espaniol Find information on medical topics, symptoms, drugs, ... sample? Analysis of cell surface proteins Chromosomal analysis Cultures for bacteria Determination of the original arrangement of ...

  18. Early indicators of exposure to biological threat agents using host gene profiles in peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    Peel Sheila

    2008-07-01

    Full Text Available Abstract Background Effective prophylaxis and treatment for infections caused by biological threat agents (BTA rely upon early diagnosis and rapid initiation of therapy. Most methods for identifying pathogens in body fluids and tissues require that the pathogen proliferate to detectable and dangerous levels, thereby delaying diagnosis and treatment, especially during the prelatent stages when symptoms for most BTA are indistinguishable flu-like signs. Methods To detect exposures to the various pathogens more rapidly, especially during these early stages, we evaluated a suite of host responses to biological threat agents using global gene expression profiling on complementary DNA arrays. Results We found that certain gene expression patterns were unique to each pathogen and that other gene changes occurred in response to multiple agents, perhaps relating to the eventual course of illness. Nonhuman primates were exposed to some pathogens and the in vitro and in vivo findings were compared. We found major gene expression changes at the earliest times tested post exposure to aerosolized B. anthracis spores and 30 min post exposure to a bacterial toxin. Conclusion Host gene expression patterns have the potential to serve as diagnostic markers or predict the course of impending illness and may lead to new stage-appropriate therapeutic strategies to ameliorate the devastating effects of exposure to biothreat agents.

  19. Expression of the sFLT1 gene in cord blood cells is associated to maternal arsenic exposure and decreased birth weight.

    Directory of Open Access Journals (Sweden)

    Sylvie Remy

    Full Text Available There is increasing epidemiologic evidence that arsenic exposure in utero is associated with adverse pregnancy outcomes and may contribute to long-term health effects. These effects may occur at low environmental exposures but the underlying molecular mechanism is not clear. We collected cord blood samples of 183 newborns to identify associations between arsenic levels and birth anthropometric parameters in an area with very low arsenic exposure. Our core research aim was to screen for transcriptional marks that mechanistically explain these associations. Multiple regression analyses showed that birth weight decreased with 47 g (95% CI: 16-78 g for an interquartile range increase of 0.99 μg/L arsenic. The model was adjusted for child's sex, maternal smoking during pregnancy, gestational age, and parity. Higher arsenic concentrations and reduced birth weight were positively associated with changes in expression of the sFLT1 (soluble fms-like tyrosine kinase-1 gene in cord blood cells in girls. The protein product of sFLT1 is a scavenger of vascular endothelial growth factor (VEGF in the extracellular environment and plays a key role in the inhibition of placental angiogenesis. In terms of fetal development, inhibition of placental angiogenesis leads to impaired nutrition and hence to growth retardation. Various genes related to DNA methylation and oxidative stress showed also changed expression in relation to arsenic exposure but were not related to birth outcome parameters. In conclusion, this study suggests that increased expression of sFLT1 is an intermediate marker that points to placental angiogenesis as a pathway linking prenatal arsenic exposure to reduced birth weight.

  20. Insights into significant pathways and gene interaction networks in peripheral blood mononuclear cells for early diagnosis of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jian Xin Jiang

    2016-01-01

    Conclusions: Using identified DEGs, significantly changed biological processes such as nucleic acid metabolic process and KEGG pathways such as cytokine-cytokine receptor interaction in PBMCs of HCC patients were identified. In addition, several important hub genes, for example, CUL4A, and interleukin (IL 8 were also uncovered.

  1. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Gurvich, Artem; Begemann, Martin; Dahm, Liane

    2014-01-01

    of prostaglandin synthesis-related genes in rapid cycling was first proposed. METHODS: Psychopathological follow-up of the reported case was performed under cessation of celecoxib treatment. In a prospective observational study, patients with bipolar disorder (n = 47; of these, four had rapid cycling...

  2. Expression of cytokine genes and receptors in white blood cells associated with divergent body weight gain in beef steers

    Science.gov (United States)

    Previous work examining the transcriptome of steer tissue samples from animals with divergent gain have shown a relationship with the expression of genes with functions in immune and inflammatory pathways. The process of mounting an immune or inflammatory response is energetically expensive and vari...

  3. Cigarette smoking increases white blood cell aggregation in whole blood.

    OpenAIRE

    Bridges, A B; Hill, A; Belch, J J

    1993-01-01

    We studied the effect of chronic cigarette smoking on white blood cell aggregation, increased aggregation predisposes to microvascular occlusion and damage. Current smokers had significantly increased white blood cell aggregation when compared with non smokers. The presence of chronically activated white blood cells in current smokers may be relevant in the pathogenesis of ischaemic vascular disease.

  4. Promoter Region Hypermethylation and mRNA Expression of MGMT and p16 Genes in Tissue and Blood Samples of Human Premalignant Oral Lesions and Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Vikram Bhatia

    2014-01-01

    Full Text Available Promoter methylation and relative gene expression of O6-methyguanine-DNA-methyltransferase (MGMT and p16 genes were examined in tissue and blood samples of patients with premalignant oral lesions (PMOLs and oral squamous cell carcinoma (OSCC. Methylation-specific PCR and reverse transcriptase PCR were performed in 146 tissue and blood samples from controls and patients with PMOLs and OSCC. In PMOL group, significant promoter methylation of MGMT and p16 genes was observed in 59% (P=0.0010 and 57% (P=0.0016 of tissue samples, respectively, and 39% (P=0.0135 and 33% (P=0.0074 of blood samples, respectively. Promoter methylation of both genes was more frequent in patients with OSCC, that is, 76% (P=0.0001 and 82% (P=0.0001 in tissue and 57% (P=0.0002 and 70% (P=0.0001 in blood, respectively. Significant downregulation of MGMT and p16 mRNA expression was observed in both tissue and blood samples from patients with PMOLs and OSCC. Hypermethylation-induced transcriptional silencing of MGMT and p16 genes in both precancer and cancer suggests important role of these changes in progression of premalignant state to malignancy. Results support use of blood as potential surrogate to tissue samples for screening or diagnosing PMOLs and early OSCC.

  5. Elevated Human telomerase reverse transcriptase gene expression in blood cells associated with chronic and arsenic exposure in Inner Mongolia, China

    Science.gov (United States)

    BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...

  6. Effects of spironolactone on human blood mononuclear cells: mineralocorticoid receptor independent effects on gene expression and late apoptosis induction

    DEFF Research Database (Denmark)

    Sønder, Søren Ulrik Salling; Mikkelsen, Marianne; Rieneck, Klaus

    2006-01-01

    1 Spironolactone (SPIR) binds to cytoplasmic mineralocorticoid receptors (MR) and functions as an aldosterone antagonist. Recently, the drug was shown to have an early suppressive effect on several immunoactive and proinflammatory cytokines. 2 To elucidate the mechanism behind this, the four MR-b...... affects genes controlled by the transcription factors NF-kappaB, CEBPbeta and MYC. 5 These observations provide new insight into the non-MR-mediated effects of SPIR....

  7. Distinct Gene Expression Profiles in Peripheral Blood Mononuclear Cells from Patients Infected with Vaccinia Virus, Yellow Fever 17D Virus, or Upper Respiratory Infections Running Title: PBMC Expression Response to Viral Agents

    Science.gov (United States)

    Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.

    2007-01-01

    Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872

  8. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood.

    Science.gov (United States)

    Stamova, Boryana S; Apperson, Michelle; Walker, Wynn L; Tian, Yingfang; Xu, Huichun; Adamczy, Peter; Zhan, Xinhua; Liu, Da-Zhi; Ander, Bradley P; Liao, Isaac H; Gregg, Jeffrey P; Turner, Renee J; Jickling, Glen; Lit, Lisa; Sharp, Frank R

    2009-08-05

    Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT), 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS) and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder). The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  9. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  10. Peripheral blood mononuclear cells as a model to study the response of energy homeostasis-related genes to acute changes in feeding conditions

    NARCIS (Netherlands)

    Caimari, A.; Oliver, P.; Keijer, J.; Palou, A.

    2010-01-01

    Peripheral blood mononuclear cells (PBMCs) are readily accessible biological material and a potential tissue source to discover novel biomarkers of response to environmental exposures including nutrition. We analyzed whether PBMCs could reflect molecular changes that take place in response to

  11. The validation of housekeeping genes as a reference in quantitative Real Time PCR analysis: application in the milk somatic cells and frozen whole blood of goats infected with caprine arthritis encephalitis virus.

    Science.gov (United States)

    Jarczak, Justyna; Kaba, Jarosław; Bagnicka, Emilia

    2014-10-10

    The validation of housekeeping genes (HKGs) for normalization of RNA expression in Real-Time PCR is crucial to obtain the most reliable results. There is limited information on reference genes used in the study of gene expression in milk somatic cells and the frozen whole blood of goats. Thus, the aim of this study was to propose the most stable housekeeping genes that can be used as a reference in Real-Time PCR analysis of milk somatic cells and whole blood of goats infected with caprine arthritis encephalitis virus (CAEV). Animals were divided into two groups: non-infected (N=13) and infected with CAEV (N=13). Biological material (milk somatic cells and whole blood) was collected 4 times during the lactation period (7, 30, 100 and 240days post-partum). The expression levels of candidate reference genes were analyzed using geNorm and NormFinder software. The stability of candidates for reference gene expression was analyzed for CAEV-free (control) and CAEV-infected groups, and also for both groups together (combined group). The stability of expression of β-actin (ACTB), glyceraldehyde-3P-dehydrogenase (GAPDH), cyclophilin A (PPIA), RNA18S1, ubiquilin (UBQLN1) and ribosomal protein large subunit P0 (RPLP0) was determined in milk somatic cells, while ACTB, PPIA, RPLP0, succinate dehydrogenase complex subunit A (SDHA), zeta polypeptide (YWHAZ), battenin (CLN3), eukaryotic translation initiation factor 3K (EIF3K) and TATA box-binding protein (TBP) were measured in frozen whole blood of goats. PPIA and RPLP0 were considered as the most suitable internal controls as they were stably expressed in milk somatic cells regardless of disease status, according to NormFinder software. Furthermore, geNorm results indicated the expression of PPIA/RPLP0 genes as the best combination under these experimental conditions. The results of frozen whole blood analysis using NormFinder software revealed that the most stable reference gene in control, CAEV-infected and combined groups is

  12. Aggressive Periodontitis and Chronic Arthritis: Blood Mononuclear Cell Gene Expression and Plasma Protein Levels of Cytokines and Cytokine Inhibitors

    DEFF Research Database (Denmark)

    Sørensen, Lars Korsbæk Connor; Poulsen, Anne Havemose; Bendtzen, Klaus

    2009-01-01

    -inflammatory cytokines and cytokine receptors in patients with periodontitis and patients with arthritis representing two examples of chronic inflammatory diseases, such as periodontitis and arthritis. To identify possible disease-specific characteristics of subjects with periodontitis relative to subjects with chronic...... inflammation in general, patients with arthritis (juvenile idiopathic arthritis [JIA] and rheumatoid arthritis [RA]) were included. METHODS: The study population consisted of white adults aggressive periodontitis (LAgP; n = 18), generalized aggressive periodontitis......TNF-RI plasma levels in patients with LAgP and RA. CONCLUSIONS: The study demonstrated only a few changes in the PBMC expression of various cytokine and cytokine inhibitor genes in aggressive periodontitis and chronic arthritis compared to controls. There were a few similarities among disease groups...

  13. Clonal T cell receptor gamma-chain gene rearrangement by PCR-based GeneScan analysis in the skin and blood of patients with parapsoriasis and early-stage mycosis fungoides.

    Science.gov (United States)

    Klemke, Claus-Detlev; Dippel, Edgar; Dembinski, Antje; Pönitz, Nina; Assaf, Chalid; Hummel, Michael; Stein, Harald; Goerdt, Sergij

    2002-07-01

    Cutaneous T cell lymphoma (CTCL) and reactive T cell skin diseases represent opposite ends of a spectrum of diseases ranging from overtly malignant to persistently benign. Within this spectrum, the parapsoriasis group is not clearly defined regarding malignant potential. In contrast to consistent findings in advanced-stage CTCL, clonality analysis of parapsoriasis has produced conflicting results in previous studies. As T cell receptor gamma-chain polymerase chain reaction GeneScan analysis (TCR-gamma-PCR-GSA) stands out by its sensitivity, its accuracy in size determination of PCR products, its capacity to identify false positives by repeated analysis and its easy applicability, this approach was used to analyse the clonality status of 41 patients with borderline T cell lymphoproliferative skin diseases, including parapsoriasis (n=27) and early-stage mycosis fungoides (MF) (n=14). A monoclonal T cell infiltrate was demonstrated by repeated TCR-gamma-PCR-GSA in lesional skin specimens in 19.2% of parapsoriasis patients and in 66.6% of early-stage MF cases (p=0.013). In peripheral blood, a monoclonal T cell population was found in a similar percentage of parapsoriasis and of early-stage MF patients (26.7% versus 12.5%; p=0.611). A detailed analysis of parapsoriasis subentities, namely small and large plaque parapsoriasis, and parapsoriasis lichenoides, revealed monoclonality in 2(6)/2(5), 3(14)/2(8) and 0(6)/0/(3) of the skin and peripheral blood specimens, respectively. The high detection rate of false positive cases by repeated analysis (20-37.5%) provides a corrected perspective for the high rates of dominant T cell clones found by others in the peripheral blood of such patients. From the results obtained, three major conclusions can be drawn: firstly, CTCL is clearly associated with detection of monoclonality, even in its early stages; secondly, monoclonality is not a prerequisite for potential CTCL precursor entities; and thirdly, recirculating malignant T

  14. Increased Genes Expression Levels of Cytokines Related to Th17/Treg Cells in Peripheral Blood Mononuclear Cell Correlate with Clinical Severity in COPD and Mustard Gas-exposed Patients.

    Science.gov (United States)

    Farahani, Parisa; Halabian, Raheleh; Vahedi, Ensieh; Salimian, Jafar

    2017-10-01

    The long lasting inflammation and immune dysregulation is one of the main mechanisms involved in lung complication of veterans exposed to sulfur mustard (SM) gas. Th17/Treg cells have an important role in immunopathogenesis of chronic obstructive pulmonary disease (COPD) and mustard lung disease. In this study, expression of cytokines genes levels related to Th17/Treg cells was determined in peripheral blood mononuclear (PBMC) of mustard lung patients and was compared with COPD patients and healthy controls (HC). Real time-polymerase chain reaction was used to assay genes expression levels of Th17 related cytokines (IL-17, IL-6 and TGF-β) and Treg related cytokines (IL-10, TGF-β). IL-17 gene expression level considerably was higher in SM patients (9.98±0.65, p<0.001), and COPD (4.75±0.71, p<0.001), compare to HC group. Also, gene expression level of IL-6 in the SM group (3.31±0.93, p<0.001) and COPD group (2.93±0.21, p<0.001) were significantly higher than the HC group. The IL-10 gene expression level showed a high increase in SM patients (4.12±0.91, p<0.01), and COPD (2.1±0.45, p<0.01). Finally, the TGF-β gene expression level was increased in SM patients (4.91±0.69, p<0.001) as well as in COPD group (5.41±0.78, p<0.001). In SM patients, IL-17 (R=-0.721, p<0.05), IL-6 (R=-0.621, p<0.05) and TGF-β (R=-0.658, p<0.05) had significant negative association with FEV1 (%). Inversely, Il-10 showed positive correlation (R=0.673) with FEV1 (%). Th17/Treg cells related cytokines genes were highly expressed and imbalanced in peripheral blood mononuclear cells of SM and COPD patients which correlated with pulmonary dysfunction.

  15. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates.

    Science.gov (United States)

    Valmaseda, Aida; Bassat, Quique; Aide, Pedro; Cisteró, Pau; Jiménez, Alfons; Casellas, Aina; Machevo, Sonia; Aguilar, Ruth; Sigaúque, Betuel; Chauhan, Virander S; Langer, Christine; Beeson, James; Chitnis, Chetan; Alonso, Pedro L; Gaur, Deepak; Mayor, Alfredo

    2017-07-05

    Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex®, in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p immune escape when tested in malaria-exposed individuals.

  16. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses.

    Directory of Open Access Journals (Sweden)

    Feng-Yun Xie

    Full Text Available Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR protein database. We also compared the donkey protein sequences with those of the horse (E. caballus and wild horse (E. przewalskii, and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.

  17. A New Synthetic Compound, 2-OH, Enhances Interleukin-2 and Interferon-γ Gene Expression in Human Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Woan-Fang Tzeng

    2009-07-01

    Full Text Available A new synthetic compound, 6-hydroxy-2-tosylisoquinolin-1(2H-one (2-OH, was selected for immunopharmacological activity tests. The effects of 2-OH on human peripheral blood mononuclear cell (PBMC proliferation were determined by tritiated thymidine uptake. Compared to phytohemagglutinin (PHA; 5 μg/mL stimulation, 2-OH significantly enhanced PBMC proliferation in a dose-dependent manner. The 50% enhancement activity (EC50 for 2-OH was 4.4±0.1 μM. In addition, effects of 2-OH on interleukin-2 (IL-2 and interferon-γ (IFN-γ production in PBMC were determined by enzyme immunoassay. Results demonstrated that 2-OH stimulated IL-2 and IFN-γ production in PBMC. Data from reverse transcription-polymerase chain reaction (RT-PCR and real-time PCR indicated that IL-2 and IFN-γ mRNA expression in PBMC could be induced by 2-OH. Therefore, 2-OH enhanced IL-2 and IFN-γ production in PBMC by modulation their gene expression. We suggest that 2-OH may be an immunomodulatory agent.

  18. De Novo Assembly of the Donkey White Blood Cell Transcriptome and a Comparative Analysis of Phenotype-Associated Genes between Donkeys and Horses

    Science.gov (United States)

    Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu

    2015-01-01

    Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement. PMID:26208029

  19. Red blood cells in thrombosis.

    Science.gov (United States)

    Byrnes, James R; Wolberg, Alisa S

    2017-10-19

    Red blood cells (RBCs) have historically been considered passive bystanders in thrombosis. However, clinical and epidemiological studies have associated quantitative and qualitative abnormalities in RBCs, including altered hematocrit, sickle cell disease, thalassemia, hemolytic anemias, and malaria, with both arterial and venous thrombosis. A growing body of mechanistic studies suggests that RBCs can promote thrombus formation and enhance thrombus stability. These findings suggest that RBCs may contribute to thrombosis pathophysiology and reveal potential strategies for therapeutically targeting RBCs to reduce thrombosis. © 2017 by The American Society of Hematology.

  20. Avoiding Anemia: Boost Your Red Blood Cells

    Science.gov (United States)

    ... Issues Subscribe January 2014 Print this issue Avoiding Anemia Boost Your Red Blood Cells En español Send ... Disease When Blood Cells Bend Wise Choices Preventing Anemia To prevent or treat iron-deficiency anemia: Eat ...

  1. Rituximab Downregulates Gene Expression Associated with Cell Proliferation, Survival, and Proteolysis in the Peripheral Blood from Rheumatoid Arthritis Patients: A Link between High Baseline Autophagy-Related ULK1 Expression and Improved Pain Control

    Directory of Open Access Journals (Sweden)

    Elena V. Tchetina

    2016-01-01

    Full Text Available Objective. To clarify molecular mechanisms for the response to rituximab in a longitudinal study. Methods. Peripheral blood from 16 RA patients treated with rituximab for a single treatment course and 26 healthy controls, blood and knee articular cartilages from 18 patients with long-standing RA, and cartilages from 14 healthy subjects were examined. Clinical response was assessed using ESR, ACPA, CRP, RF, DAS28 levels, CD19+ B-cell counts, bone erosion, and joint space narrowing scores. Protein expression in PBMCs was quantified using ELISA. Gene expression was performed with quantitative real-time PCR. Results. A decrease (p<0.05 in DAS28, ESR, and CRP values after rituximab treatment was associated with the downregulation of MTOR, p21, caspase 3, ULK1, TNFα, IL-1β, and cathepsin K gene expression in the peripheral blood to levels found in healthy subjects. MMP-9 expression remained significantly higher compared to controls although decreased (p<0.05 versus baseline. A negative correlation between baseline ULK1 gene expression and the number of tender joints at the end of follow-up was observed. Conclusions. The response to rituximab was associated with decreased MTOR, p21, caspase 3, ULK1, TNFα, IL-1β, and cathepsin K gene expression compared to healthy subjects. Residual increased expression in MMP-9, IFNα, and COX2 might account for remaining inflammation and pain. High baseline ULK1 gene expression indicates a good response in respect to pain.

  2. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  3. Red Blood Cell.pm6

    African Journals Online (AJOL)

    Adele

    ABSTRACT. Introduction: The practice of warming blood for transfusion by immersion into a waterbath has been investigated. Objective: To find the maximum waterbath temperature at which blood can be heated effectively without effecting the red blood cell functional and structural integrity. Method: Blood, three days after ...

  4. Comparison of brain and blood gene expression in an animal model of negative symptoms in schizophrenia

    NARCIS (Netherlands)

    Bosker, Fokko J.; Gladkevich, Anatoliy V.; Pietersen, Charmaine Y.; Kooi, Krista A.; Bakker, Petra L.; Gerbens, Frans; den Boer, Johan A.; Korf, Jakob; te Meerman, Gerard

    2012-01-01

    Objectives: To investigate the potential of white blood cells as probes for central processes we have measured gene expression in both the anterior cingulate cortex and white blood cells using a putative animal model of negative symptoms in schizophrenia. Methods: The model is based on the

  5. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Directory of Open Access Journals (Sweden)

    Marcela Preininger

    Full Text Available We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs, generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  6. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Science.gov (United States)

    Preininger, Marcela; Arafat, Dalia; Kim, Jinhee; Nath, Artika P; Idaghdour, Youssef; Brigham, Kenneth L; Gibson, Greg

    2013-01-01

    We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  7. 21 CFR 640.10 - Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells remaining...

  8. Red Blood Cell Storage Lesion

    Directory of Open Access Journals (Sweden)

    Daryl J. Kor

    2009-10-01

    Full Text Available The past two decades have witnessed increased scrutiny regarding efficacy and risk of the once unquestioned therapy of red blood cell (RBC transfusion. Simultaneously, a variety of changes have been identified within the RBC and storage media during RBC preservation that are correlated with reduced tissue oxygenation and transfusion-associated adverse effects. These alterations are collectively termed the storage lesion and include extensive biochemical, biomechanical, and immunologic changes involving cells of diverse origin. Time-dependent falls is 2,3-diphosphoglycerate, intracellular RBC adenosine triphosphate, and nitric oxide have been shown to impact RBC deformability and delivery of oxygen to the end-organ. The accumulation of biologic response modifiers such as soluble CD40 ligand (sCD40L, lysophosphatidylcholine (lyso-PC, and Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES have been associated with altered recipient immune function as well. This review will address the alterations occurring within the RBC and storage media during RBC preservation and will address the potential clinical consequence thereof.

  9. SMIM1 underlies the Vel blood group and influences red blood cell traits

    DEFF Research Database (Denmark)

    Cvejic, Ana; Haer-Wigman, Lonneke; Stephens, Jonathan C

    2013-01-01

    The blood group Vel was discovered 60 years ago, but the underlying gene is unknown. Individuals negative for the Vel antigen are rare and are required for the safe transfusion of patients with antibodies to Vel. To identify the responsible gene, we sequenced the exomes of five individuals negative...... and expression of the Vel antigen on SMIM1-transfected cells confirm SMIM1 as the gene underlying the Vel blood group. An expression quantitative trait locus (eQTL), the common SNP rs1175550 contributes to variable expression of the Vel antigen (P = 0.003) and influences the mean hemoglobin concentration of red...... blood cells (RBCs; P = 8.6 × 10(-15)). In vivo, zebrafish with smim1 knockdown showed a mild reduction in the number of RBCs, identifying SMIM1 as a new regulator of RBC formation. Our findings are of immediate relevance, as the homozygous presence of the deletion allows the unequivocal identification...

  10. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... Subscribe April 2012 Print this issue When Blood Cells Bend Understanding Sickle Cell Disease Send us your ... Diabetes? Sound Health Wise Choices Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  11. Red Blood Cell Susceptibility to Pneumolysin

    Science.gov (United States)

    Bokori-Brown, Monika; Petrov, Peter G.; Khafaji, Mawya A.; Mughal, Muhammad K.; Naylor, Claire E.; Shore, Angela C.; Gooding, Kim M.; Casanova, Francesco; Mitchell, Tim J.; Titball, Richard W.; Winlove, C. Peter

    2016-01-01

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. PMID:26984406

  12. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  13. Trapping cells in paper for white blood cell count.

    Science.gov (United States)

    Zhang, Yi; Bai, Jianhao; Wu, Hong; Ying, Jackie Y

    2015-07-15

    White blood cell count is an important indicator of each individual's health condition. An abnormal white blood cell count usually results from an infection, cancer, or other conditions that trigger systemic inflammation responses. White blood cell count also provides predictive information on the incidence of cardiovascular diseases and Type 2 diabetes. Therefore, monitoring white blood cell count on a regular basis can potentially help individuals to take preventive measures and improve healthcare outcomes. Currently, white blood cell count is primarily conducted in centralized laboratories, and it requires specialized equipment and dedicated personnel to perform the test and interpret the results. So far there has been no rapid test that allows white blood cell count in low-resource settings. In this study, we have demonstrated a vertical flow platform that quantifies white blood cells by trapping them in the paper. White blood cells were tagged with gold nanoparticles, and flowed through the paper via a small orifice. The white blood cell count was determined by measuring the colorimetric intensity of gold nanoparticles on the surface of white blood cells that were trapped in the paper mesh. Using this platform, we were able to quantify white blood cells in 15 μL of blood, and visually differentiate the abnormal count of white blood cells from the normal count. The proposed platform enabled rapid white blood cell count in low resource settings with a small sample volume requirement. Its low-cost, instrument-free operations would be attractive for point-of-care applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  15. Gene expression profiles are different in venous and capillary blood: Implications for vaccine studies.

    Science.gov (United States)

    Stein, D F; O'Connor, D; Blohmke, C J; Sadarangani, M; Pollard, A J

    2016-10-17

    Detailed analysis of the immunological pathways leading to robust vaccine responses has become possible with the application of systems biology, including transcriptomic analysis. Venous blood is usually obtained for such studies but others have obtained capillary blood (e.g. finger-prick). Capillary samples are practically advantageous, especially in children. The aim of this study was to compare gene expression profiles in venous and capillary blood before, 12h and 24h after vaccination with 23-valent pneumococcal polysaccharide or trivalent inactivated seasonal influenza vaccines. Gene expression at baseline was markedly different between venous and capillary samples, with 4940 genes differentially expressed, and followed a different pattern of changes after vaccination. At baseline, multiple pathways were upregulated in venous compared to capillary blood, including transforming growth factor-beta receptor signalling and toll-like receptor cascades. After vaccination with the influenza vaccine, there was enrichment for T and NK cell related signatures in capillary blood, and monocyte signatures in venous blood. By contrast, after vaccination with the pneumococcal vaccination, there was enrichment of dendritic cells, monocytes and interferon related signatures in capillary blood, whilst at 24h there was enrichment for T and NK cell related signatures in venous blood. These data show differences between venous and capillary gene expression both at baseline, and post vaccination, which may impact on the conclusions regarding immunological mechanisms drawn from studies using these different sampling methodologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Prediction of the gene expression in normal lung tissue by the gene expression in blood.

    Science.gov (United States)

    Halloran, Justin W; Zhu, Dakai; Qian, David C; Byun, Jinyoung; Gorlova, Olga Y; Amos, Christopher I; Gorlov, Ivan P

    2015-11-17

    Comparative analysis of gene expression in human tissues is important for understanding the molecular mechanisms underlying tissue-specific control of gene expression. It can also open an avenue for using gene expression in blood (which is the most easily accessible human tissue) to predict gene expression in other (less accessible) tissues, which would facilitate the development of novel gene expression based models for assessing disease risk and progression. Until recently, direct comparative analysis across different tissues was not possible due to the scarcity of paired tissue samples from the same individuals. In this study we used paired whole blood/lung gene expression data from the Genotype-Tissue Expression (GTEx) project. We built a generalized linear regression model for each gene using gene expression in lung as the outcome and gene expression in blood, age and gender as predictors. For ~18 % of the genes, gene expression in blood was a significant predictor of gene expression in lung. We found that the number of single nucleotide polymorphisms (SNPs) influencing expression of a given gene in either blood or lung, also known as the number of quantitative trait loci (eQTLs), was positively associated with efficacy of blood-based prediction of that gene's expression in lung. This association was strongest for shared eQTLs: those influencing gene expression in both blood and lung. In conclusion, for a considerable number of human genes, their expression levels in lung can be predicted using observable gene expression in blood. An abundance of shared eQTLs may explain the strong blood/lung correlations in the gene expression.

  17. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing.

    Science.gov (United States)

    Wen, Jianguo; Tao, Wenjing; Hao, Suyang; Zu, Youli

    2017-06-13

    Sickle cell disease (SCD) is a disorder of red blood cells (RBCs) expressing abnormal hemoglobin-S (HbS) due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT) carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. This study is an exploration of genome editing of SCD HSPCs.

  18. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Directory of Open Access Journals (Sweden)

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  19. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  20. The Effect of Statins on Blood Gene Expression in COPD.

    Directory of Open Access Journals (Sweden)

    Ma'en Obeidat

    Full Text Available COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown.Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD.Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser.25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington's disease, Parkinson's disease and acute myeloid leukemia gene signatures.The blood gene signature of statins' use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.

  1. Allogeneic Peripheral Blood Stem Cell Harvest

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Allogeneic Peripheral Blood Stem Cell Harvest. Mobilization protocol. G-CSF 10 mcg/Kg / day for 5 days. Pheresis. Cobe Spectra; Haemonetics mcs+. Enumeration. CD34 counts; Cfu-GM assays.

  2. White Blood Cell Counts and Malaria

    National Research Council Canada - National Science Library

    McKenzie, F. E; Prudhomme, Wendy A; Magill, Alan J; Forney, J. R; Permpanich, Barnyen; Lucas, Carmen; Gasser, Jr., Robert A; Wongsrichanalai, Chansuda

    2005-01-01

    White blood cells (WBCs) were counted in 4697 individuals who presented to outpatient malaria clinics in Maesod, Tak Province, Thailand, and Iquitos, Peru, between 28 May and 28 August 1998 and between 17 May and 9 July 1999...

  3. Effects of gender on gene expression in the blood of ischemic stroke patients.

    Science.gov (United States)

    Tian, Yingfang; Stamova, Boryana; Jickling, Glen C; Liu, Dazhi; Ander, Bradley P; Bushnell, Cheryl; Zhan, Xinhua; Davis, Ryan R; Verro, Piero; Pevec, William C; Hedayati, Nasim; Dawson, David L; Khoury, Jane; Jauch, Edward C; Pancioli, Arthur; Broderick, Joseph P; Sharp, Frank R

    2012-05-01

    This study examined the effects of gender on RNA expression after ischemic stroke (IS). RNA obtained from blood of IS patients (n=51; 153 samples at genes for females compared with males. In all, 242, 227, and 338 male-specific genes were regulated at genes were regulated at genes were associated with integrin, integrin-liked kinase, actin, tight junction, Wnt/β-catenin, RhoA, fibroblast growth factors (FGF), granzyme, and tumor necrosis factor receptor (TNFR)2 signaling. Female-specific stroke genes were associated with p53, high-mobility group box-1, hypoxia inducible factor (HIF)1α, interleukin (IL)1, IL6, IL12, IL18, acute-phase response, T-helper, macrophage, and estrogen signaling. Cell death signaling was overrepresented in both genders, although the molecules and pathways differed. Gender affects gene expression in the blood of IS patients, which likely implies gender differences in immune, inflammatory, and cell death responses to stroke.

  4. Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation.

    Directory of Open Access Journals (Sweden)

    Claire C Berthelot

    Full Text Available There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA, which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs.Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA and 1.5 g/d docosahexaenoic acid (DHA. Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR.Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1, prostaglandin-endoperoxide synthase 2 (PTGS2, arachidonate 12-lipoxygenase (ALOX12, and interleukin 8 (IL-8 gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA in the phosphatidylethanolamine (PE lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE/ARA for ALOX12 were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated.The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12 regulation. PBMC gene expression changes in

  5. Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation.

    Science.gov (United States)

    Berthelot, Claire C; Kamita, Shizuo George; Sacchi, Romina; Yang, Jun; Nording, Malin L; Georgi, Katrin; Hegedus Karbowski, Christine; German, J Bruce; Weiss, Robert H; Hogg, Ronald J; Hammock, Bruce D; Zivkovic, Angela M

    2015-01-01

    There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA), which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs). Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA) and 1.5 g/d docosahexaenoic acid (DHA). Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR). Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), and interleukin 8 (IL-8) gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA) in the phosphatidylethanolamine (PE) lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2)/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE)/ARA for ALOX12) were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated. The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12 regulation. PBMC gene expression changes in

  6. Effect of Infla-Kine supplementation on the gene expression of inflammatory markers in peripheral mononuclear cells and on C-reactive protein in blood

    Directory of Open Access Journals (Sweden)

    Nina A. Mikirova

    2017-10-01

    Full Text Available Abstract Background Chronic inflammation is a predisposing factor to numerous degenerative diseases including cancer, heart failure and Alzheimer’s disease. Infla-Kine is a natural supplement comprised of a proprietary blend of Lactobacillus fermentum extract, burdock seed (arctigenin, zinc, alpha lipoic acid, papaya enzyme and an enhanced absorption bio-curcumin complex (BCM-95®. Methods Infla-Kine was administered twice daily to 24 health volunteers for 4 weeks. Quantitative RT-PCR was used to assess mRNA transcripts of IL-1b, IL8, IL-6, NF-κB, and TNF-α from peripheral blood mononuclear cells (PBMC. C reactive protein (CRP was measured from serum. Additionally, quality of life questionnaires were employed to assess general feeling of well-being. Assessments were made before treatment and at conclusion of treatment (4 weeks. Results As compared to pre-treatment, after 4 weeks, a statistically significant reduction of IL8, IL-6, NF-κB, and TNF-α transcripts was observed in PBMC. Furthermore, reduction of IL-1b transcript and serum CRP was observed but did not reach statistical significance. Quality of life improvements were most prevalent in muscle and joint pains. Conclusions Overall, our data demonstrate that twice daily administration of Infla-Kine for 4 weeks reduces inflammatory markers and quality of life in healthy volunteers.

  7. Stem Cell Heterogeneity of Mononucleated Cells from Murine Peripheral Blood: Molecular Analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Dain Yazid

    2011-01-01

    Full Text Available The main purpose of this paper was to determine the heterogeneity of primary isolated mononucleated cells that originated from the peripheral blood system by observing molecular markers. The isolated cells were cultured in complete medium for 4 to 7 days prior to the separation of different cell types, that is, adherent and suspension. Following a total culture time of 14 days, adherent cells activated the Cd105 gene while suspension cells activated the Sca-1 gene. Both progenitor markers, Cbfa-1 and Ostf-1, were inactivated in both suspension and adherent cells after 14-day culture compared to cells cultured 3 days in designated differentiation medium. In conclusion, molecular analyses showed that primary mononucleated cells are heterogeneous, consisting of hematopoietic stem cells (suspension and mesenchymal stem cells (adherent while both cells contained no progenitor cells.

  8. Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Peter R Sinnaeve

    Full Text Available Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall. Patients were selected according to their coronary artery disease index (CADi, a validated angiographical measure of the extent of coronary atherosclerosis that correlates with outcome. RNA was extracted from blood of 120 patients with at least a stenosis greater than 50% (CADi > or = 23 and from 121 controls without evidence of coronary stenosis (CADi = 0. 160 individual genes were found to correlate with CADi (rho > 0.2, P<0.003. Prominent differential expression was observed especially in genes involved in cell growth, apoptosis and inflammation. Using these 160 genes, a partial least squares multivariate regression model resulted in a highly predictive model (r(2 = 0.776, P<0.0001. The expression pattern of these 160 genes in aortic tissue also predicted the severity of atherosclerosis in human aortas, showing that peripheral blood gene expression associated with coronary atherosclerosis mirrors gene expression changes in atherosclerotic arteries. In conclusion, the simultaneous expression pattern of 160 genes in whole blood correlates with the severity of coronary artery disease and mirrors expression changes in the atherosclerotic vascular wall.

  9. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties

    Directory of Open Access Journals (Sweden)

    Duban-Deweer Sophie

    2010-11-01

    Full Text Available Abstract Background Brain capillary endothelial cells (BCECs form the physiological basis of the blood-brain barrier (BBB. The barrier function is (at least in part due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein. Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.

  10. Impact of blood collection and processing on peripheral blood gene expression profiling in type 1 diabetes.

    Science.gov (United States)

    Yip, Linda; Fuhlbrigge, Rebecca; Atkinson, Mark A; Fathman, C Garrison

    2017-08-18

    The natural history of type 1 diabetes (T1D) is challenging to investigate, especially as pre-diabetic individuals are difficult to identify. Numerous T1D consortia have been established to collect whole blood for gene expression analysis from individuals with or at risk to develop T1D. However, with no universally accepted protocol for their collection, differences in sample processing may lead to variances in the results. Here, we examined whether the choice of blood collection tube and RNA extraction kit leads to differences in the expression of genes that are changed during the progression of T1D, and if these differences could be minimized by measuring gene expression directly from the lysate of whole blood. Microarray analysis showed that the expression of 901 genes is highly influenced by sample processing using the PAXgene versus the Tempus system. These included a significant number of lymphocyte-specific genes and genes whose expression has been reported to differ in the peripheral blood of at-risk and T1D patients compared to controls. We showed that artificial changes in gene expression occur when control and T1D samples were processed differently. The sample processing-dependent differences in gene expression were largely due to loss of transcripts during the RNA extraction step using the PAXgene system. The majority of differences were not observed when gene expression was measured in whole blood lysates prepared from blood collected in PAXgene and Tempus tubes. We showed that the gene expression profile of samples processed using the Tempus system is more accurate than that of samples processed using the PAXgene system. Variation in sample processing can result in misleading changes in gene expression. However, these differences can be minimized by measuring gene expression directly in whole blood lysates.

  11. Radionuclide blood cell survival studies

    International Nuclear Information System (INIS)

    Bentley, S.A.; Miller, D.T.

    1986-01-01

    Platelet and red cell survival studies are reviewed. The use of 51 Cr and di-isopropylfluoridate labelled with tritium or 32 P is discussed for red cell survival study and 51 Cr and 111 In-oxine are considered as platelet labels. (UK)

  12. Grape seed extract proanthocyanidins downregulate HIV- 1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells

    Directory of Open Access Journals (Sweden)

    MADHAVAN P NAIR

    2002-01-01

    Full Text Available Flavonoids and related polyphenols, in addition to their cardioprotective, anti-tumor, anti-inflammatory, anti-carcinogenic and anti-allergic activities, also possess promising anti-HIV effects. Recent studies documented that the ß-chemokine receptors, CCR2b, CCR3 and CCR5, and the alpha-chemokine receptors, CXCR1, CXCR2 and CXCR4 serve as entry coreceptors for HIV-1. Although flavonoids and polyphenolic compounds elicit anti-HIV effects such as inhibition of HIV-1 expression and virus replication, the molecular mechanisms underlying these effects remain to be clearly elucidated. We hypothesize that flavonoids exert their anti-HIV effects, possibly by interfering at the HIV co-receptor level. We investigated the effect of flavonoid constituents of a proprietary grape seed extract (GSE on the expression of HIV-1 coentry receptors by immunocompetent mononuclear leukocytes. Our results showed that GSE significantly downregulated the expression of the HIV-1 entry co-receptors, CCR2b , CCR3 and CCR5 in normal PBMC in a dose dependent manner. Further , GSE treated cultures showed significantly lower number of CCR3 positive cells as quantitated by flow cytometry analysis which supports RT-PCR gene expression data.Investigations of the mechanisms underlying the anti-HIV-1 effects of grape seed extracts may help to identify promising natural products useful in the prevention and /or amelioration of HIV-1 infection

  13. Gene frequencies of ABO and rhesus blood groups and ...

    African Journals Online (AJOL)

    The distribution and gene frequencies of ABO and rhesus (Rh) blood groups and haemoglobin variants for samples of the Nigerian population at Ogbomoso was determined. Data consisting of records of blood groups and haemoglobin types of different ages ranging from infants to adults for a period of 4 to 6 years (1995 ...

  14. Differential gene expression profiling in blood from patients with digestive system cancers.

    Science.gov (United States)

    Honda, Masao; Sakai, Yoshio; Yamashita, Taro; Yamashita, Tatsuya; Sakai, Akito; Mizukoshi, Eishiro; Nakamoto, Yasunari; Tatsumi, Isamu; Miyazaki, Yoshitaka; Tanno, Hiroshi; Kaneko, Shuichi

    2010-09-10

    To develop a non-invasive and sensitive diagnostic test for cancer using peripheral blood, we evaluated gene expression profiling of blood obtained from patients with cancer of the digestive system and normal subjects. The expression profiles of blood-derived total RNA obtained from 39 cancer patients (11 colon cancer, 14 gastric cancer, and 14 pancreatic cancer) was clearly different from those obtained from 15 normal subjects. By comparing the gene expression profiles of cancer patients and normal subjects, 25 cancer-differentiating genes (p3) were identified and an "expression index" deduced from the expression values of these genes differentiated the validation cohort (11 colon cancer, 8 gastric cancer, 18 pancreatic cancer, and 15 normal subjects) into cancer patients and normal subjects with 100% (37/37) and 87% (13/15) accuracy, respectively. Although, the expression profiles were not clearly different between the cancer patients, some characteristic genes were identified according to the stage and species of the cancer. Interestingly, many immune-related genes such as antigen presenting, cell cycle accelerating, and apoptosis- and stress-inducing genes were up-regulated in cancer patients, reflecting the active turnover of immune regulatory cells in cancer patients. These results showed the potential relevance of peripheral blood gene expression profiling for the development of new diagnostic examination tools for cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. The origin of blood stem cells

    NARCIS (Netherlands)

    J.C. Boisset

    2012-01-01

    textabstractThe development of cell biology research coincides with the advance of microscopes in the 19th century. It was finally possible to directly observe the various blood cell types and to witness their proliferation and differentiation (Mazzarello, 1999). On the basis of his observations,

  16. Dried blood spots of pooled samples for RHD gene screening in blood donors of mixed ancestry.

    Science.gov (United States)

    Silva-Malta, M C F; Araujo, N C Fidélis; Vieira, O V Neves; Schmidt, L Cayres; Gonçalves, P de Cassia; Martins, M Lobato

    2015-10-01

    In this study, we present a strategy for RHD gene screening based on real-time polymerase chain reaction (PCR) using dried blood spots of pooled samples. Molecular analysis of blood donors may be used to detect RHD variants among the presumed D-negative individuals. RHD genotyping using pooled samples is a strategy to test a large number of samples at a more reasonable cost. RHD gene detection based on real-time PCR using dried blood spots of pooled samples was standardised and used to evaluate 1550 Brazilian blood donors phenotyped as RhD-negative. Positive results were re-evaluated by retesting single samples using real-time PCR and conventional multiplex PCR to amplify five RHD-specific exons. PCR-sequence-specific primers was used to amplify RHDψ allele. We devised a strategy for RHD gene screening using dried blood spots of five pooled samples. Among 1550 serologically D-negative blood donors, 58 (3.74%) had the RHD gene. The non-functional RHDψ allele was detected in 47 samples (3.02%). The present method is a promising strategy to detect the RHD gene among presumed RhD-negative blood donors, particularly for populations with African ancestry. © 2015 British Blood Transfusion Society.

  17. Haemopoietic progenitor cells in human peripheral blood

    International Nuclear Information System (INIS)

    Zwaan, F.E.

    1980-01-01

    The purpose of the investigation reported is to purify haemopoietic progenitor cells from human peripheral blood using density gradient centrifugation in order to isolate a progenitor cell fraction without immunocompetent cells. The purification technique of peripheral blood flow colony forming unit culture (CFU-c) by means of density gradient centrifugation and a combined depletion of various rosettes is described. The results of several 'in vitro' characteristics of purified CFU-c suspensions and of the plasma clot diffusion chamber culture technique are presented. Irradiation studies revealed that for both human bone marrow and peripheral blood the CFU-c were less radioresistant than clusters. Elimination of monocytes (and granulocytes) from the test suspensions induced an alteration in radiosensitivity pararmeters. The results obtained with the different techniques are described by analysing peripheral progenitor cell activity in myeloproliferative disorders. (Auth.)

  18. Peripheral Red Blood Cell Split Chimerism as a Consequence of Intramedullary Selective Apoptosis of Recipient Red Blood Cells in a Case of Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Marco Marziali

    2014-08-01

    Full Text Available Allogeneic cellular gene therapy through hematopoietic stem cell transplantation is the only radical cure for congenital hemoglobinopathies like thalassemia and sickle cell anemia. Persistent mixed hematopoietic chimerism (PMC has been described in thalassemia and sickle cell anemia. Here, we describe the clinical course of a 6-year-old girl who had received bone marrow transplant for sickle cell anemia. After the transplant, the patient showed 36% donor hematopoietic stem cells in the bone marrow, whereas in the peripheral blood there was evidence of 80%  circulating donor red blood cells (RBC. The analysis of apoptosis at the Bone Marrow  level suggests that Fas might contribute to the cell death of host erythroid precursors. The increase in NK cells and the regulatory T cell population observed in this patient suggests that these cells might contribute to the condition of mixed chimerism.

  19. Gene expression profiling in whole blood identifies distinct biological pathways associated with obesity

    Directory of Open Access Journals (Sweden)

    Gorman Shelby A

    2010-12-01

    Full Text Available Abstract Background Obesity is reaching epidemic proportions and represents a significant risk factor for cardiovascular disease, diabetes, and cancer. Methods To explore the relationship between increased body mass and gene expression in blood, we conducted whole-genome expression profiling of whole blood from seventeen obese and seventeen well matched lean subjects. Gene expression data was analyzed at the individual gene and pathway level and a preliminary assessment of the predictive value of blood gene expression profiles in obesity was carried out. Results Principal components analysis of whole-blood gene expression data from obese and lean subjects led to efficient separation of the two cohorts. Pathway analysis by gene-set enrichment demonstrated increased transcript levels for genes belonging to the "ribosome", "apoptosis" and "oxidative phosphorylation" pathways in the obese cohort, consistent with an altered metabolic state including increased protein synthesis, enhanced cell death from proinflammatory or lipotoxic stimuli, and increased energy demands. A subset of pathway-specific genes acted as efficient predictors of obese or lean class membership when used in Naive Bayes or logistic regression based classifiers. Conclusion This study provides a comprehensive characterization of the whole blood transcriptome in obesity and demonstrates that the investigation of gene expression profiles from whole blood can inform and illustrate the biological processes related to regulation of body mass. Additionally, the ability of pathway-related gene expression to predict class membership suggests the feasibility of a similar approach for identifying clinically useful blood-based predictors of weight loss success following dietary or surgical interventions.

  20. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    Lipopolysaccharide (LPS) is a predominant glycolipid in the outer membranes of gam-negative bacteria that stimulates monocytes, macrophages, and neutrophils to produce cytokines. The aim was to study the expression profile of TLRs and cytokines and determine the role of LPS in the peripheral blood lymphocytes.

  1. Erythropoietic Potential of CD34+ Hematopoietic Stem Cells from Human Cord Blood and G-CSF-Mobilized Peripheral Blood

    Directory of Open Access Journals (Sweden)

    Honglian Jin

    2014-01-01

    Full Text Available Red blood cell (RBC supply for transfusion has been severely constrained by the limited availability of donor blood and the emergence of infection and contamination issues. Alternatively, hematopoietic stem cells (HSCs from human organs have been increasingly considered as safe and effective blood source. Several methods have been studied to obtain mature RBCs from CD34+ hematopoietic stem cells via in vitro culture. Among them, human cord blood (CB and granulocyte colony-stimulating factor-mobilized adult peripheral blood (mPB are common adult stem cells used for allogeneic transplantation. Our present study focuses on comparing CB- and mPB-derived stem cells in differentiation from CD34+ cells into mature RBCs. By using CD34+ cells from cord blood and G-CSF mobilized peripheral blood, we showed in vitro RBC generation of artificial red blood cells. Our results demonstrate that CB- and mPB-derived CD34+ hematopoietic stem cells have similar characteristics when cultured under the same conditions, but differ considerably with respect to expression levels of various genes and hemoglobin development. This study is the first to compare the characteristics of CB- and mPB-derived erythrocytes. The results support the idea that CB and mPB, despite some similarities, possess different erythropoietic potentials in in vitro culture systems.

  2. Blood cells radiolabelling achievements, challanges, and prospects

    International Nuclear Information System (INIS)

    Weininger, Jolie; Trumper, Jacob

    1987-01-01

    A study in performed about the different ways of blood cells radiolabelling. The labelling of red blood cells (RBCs), compared with that of other blood cells, is facilitated by several factors such as a) RBCs are the most abundant of all cellular blood elements, b) they are relatively easy to separate and manipulate in vitro, c) in vitro they are less dependent on energy and nutricional requirements, d) they are easy to label due to the presence of a variety of cellular transport mechanism. 99m Tc was reconized and became as the ideal radioisotope for nuclear medicine imaging. After considerations about RBCs radiolabelling, it is presented a new in vitro technique based on the BNL kit, developed by Srivastava and co-workers. The Sorep optimized one-vial labelling method for 2 ml whole blood. In vivo and in vivo/in vitro labelling are presented too, the last method seems to combine the superior binding efficiency of in vitro labelling with the convenience of in vitro labelling. Lipophilic chelates of 111 In with oxine, acetylacetone, tropolone and mercaptopyridine N-oxide have been used successfully for labelling platelets and leukocytes. A very promising aproach is the labelling of cells with monoclonal antibodies and the developing optimized methods for in vitro labelling with various radionuclides such as 123 I, 125 I, 131 I, 111 I and 99m Tc. The advantages of the antibody technique over conventional cell labelling are shown. (M.E.L.) [es

  3. American Society of Gene & Cell Therapy

    Science.gov (United States)

    ... Chicago Learn More Close The American Society of Gene & Cell Therapy ASGCT is the primary membership organization for scientists, ... Therapeutics Official Journal of the American Society of Gene & Cell Therapy Molecular Therapy is the leading journal for gene ...

  4. Preoperative blood transfusions for sickle cell disease

    Science.gov (United States)

    Estcourt, Lise J; Fortin, Patricia M; Trivella, Marialena; Hopewell, Sally

    2016-01-01

    Background Sickle cell disease is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. Sickle cell disease can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Surgical interventions are more common in people with sickle cell disease, and occur at much younger ages than in the general population. Blood transfusions are frequently used prior to surgery and several regimens are used but there is no consensus over the best method or the necessity of transfusion in specific surgical cases. This is an update of a Cochrane review first published in 2001. Objectives To determine whether there is evidence that preoperative blood transfusion in people with sickle cell disease undergoing elective or emergency surgery reduces mortality and perioperative or sickle cell-related serious adverse events. To compare the effectiveness of different transfusion regimens (aggressive or conservative) if preoperative transfusions are indicated in people with sickle cell disease. Search methods We searched for relevant trials in The Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 23 March 2016. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 18 January 2016. Selection criteria All randomised controlled trials and quasi-randomised controlled trials comparing preoperative blood transfusion regimens to different regimens or no transfusion in people with sickle cell disease undergoing elective or emergency surgery. There was no restriction by outcomes examined, language or publication status. Data collection and analysis Two authors independently assessed trial eligibility and the risk of bias and extracted data. Main results Three trials with 990 participants were eligible for inclusion in the review. There were no

  5. Differential gene expresison in umbilical cord blood and maternal peripheral blood

    Czech Academy of Sciences Publication Activity Database

    Merkerová, M.; Vasiková, A.; Bruchová, H.; Líbalová, Helena; Topinka, Jan; Balaščak, I.; Šrám, Radim; Brdička, R.

    2009-01-01

    Roč. 83, č. 3 (2009), s. 183-190 ISSN 0902-4441 R&D Projects: GA MŠk 2B06088 Institutional research plan: CEZ:AV0Z50390512 Keywords : gene expression * umbilical cord blood * peripheral blood Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.345, year: 2009

  6. Recent developments in blood cell labeling research

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-01-01

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs

  7. Recent developments in blood cell labeling research

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-09-07

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs.

  8. Gene expression in blood of subjects with Duchenne muscular dystrophy.

    Science.gov (United States)

    Wong, Brenda; Gilbert, Donald L; Walker, Wynn L; Liao, Isaac H; Lit, Lisa; Stamova, Boryana; Jickling, Glen; Apperson, Michelle; Sharp, Frank R

    2009-04-01

    The objective of this study was to examine RNA expression in blood of subjects with Duchenne muscular dystrophy (DMD). Whole blood was collected into PAX gene tubes and RNA was isolated for 3- to 20-year-old males with DMD (n = 34) and for age- and gender-matched normal healthy controls (n = 21). DMD was confirmed by genetic testing in all subjects. RNA expression was measured on Affymetrix whole-genome human U133 Plus 2.0 GeneChips. Using a Benjamini-Hochberg false discovery rate of 0.05 to correct for multiple comparisons, an unpaired t test for DMD versus controls yielded 10,763 regulated probes with no fold change cutoff, 1,467 probes with >|1.5|-fold change, 191 probes with >|2.0|-fold change, and 59 probes with a >|2.5|-fold change. These genes (probes) separated DMD from controls using cluster analyses. Almost all of the genes regulated in peripheral blood were different from the genes reported to be regulated in diseased muscle of subjects with DMD. It is proposed that the genes regulated in blood of subjects with Duchenne muscular dystrophy are indicative, at least in part, of the immune response to the diseased DMD muscle. The regulated genes might be used to monitor therapy or provide novel targets for immune-directed therapy for DMD.

  9. Red blood cells inhibit tumour cell adhesion to the peritoneum.

    Science.gov (United States)

    van Rossen, M E; Stoop, M P; Hofland, L J; van Koetsveld, P M; Bonthuis, F; Jeekel, J; Marquet, R L; van Eijck, C H

    1999-04-01

    Perioperative blood transfusion has been associated with increased tumour recurrence and poor prognosis in colorectal cancer. Blood loss in the peritoneal cavity might be a tumour-promoting factor for local recurrence. The aim of this study was to investigate whether blood in the peritoneal cavity affects local tumour recurrence. In an established in vivo rat model the effect of 1.5 ml syngeneic whole blood on tumour cell adhesion and tumour growth was investigated. In the same model the effect of 1.5 ml pure red blood cell (RBC) concentrate and 1.5 ml RBC-derived substances on tumour cell adhesion was studied. In an established in vitro model the effect of increasing numbers of RBCs (0-250 bx 10(6)) on tumour cell adhesion and tumour growth was assessed. Both the presence of blood and RBC concentrate in the peritoneal cavity prevented tumour cell adhesion in vivo (overall P effect on tumour cell adhesion. In in vitro studies RBCs inhibited tumour cell adhesion but not tumour growth. RBC-derived factors prevent tumour cell adhesion to the peritoneum, and consequently tumour recurrence.

  10. Leukocyte count affects expression of reference genes in canine whole blood samples

    Directory of Open Access Journals (Sweden)

    Dekker Aldo

    2011-02-01

    Full Text Available Abstract Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263 individual dogs, representing 73 different breeds and a group of 40 mixed breed dogs, categorized into healthy dogs and dogs with internal and hematological diseases, and dogs that underwent a surgical procedure. GeNorm analysis revealed that a combination of 5 to 6 of the most stably expressed genes constituted a stable normalizing factor. Evaluation of the expression revealed different ranking of reference genes in Normfinder and GeNorm. The disease category and the white blood cell count significantly affected reference gene expression. Conclusions The discrepancy between the ranking of reference genes in this study by Normfinder and Genorm can be explained by differences between the experimental groups such as "disease category" and "WBC count". This stresses the importance of assessing the expression stability of potential reference genes for gene experiments in canine whole blood anew for each specific experimental condition.

  11. A practical platform for blood biomarker study by using global gene expression profiling of peripheral whole blood.

    Directory of Open Access Journals (Sweden)

    Ze Tian

    Full Text Available Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study.We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal.We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study.

  12. Red blood cell alloimmunization in sickle cell disease patients in ...

    African Journals Online (AJOL)

    Objective: Alloimmunization is a recognized complication of red blood cell (RBC) transfusion and causes delayed hemolytic transfusion reactions and provides problems sourcing compatible blood for future transfusions. The objective of this study was to determine the frequency of RBC alloimmunization in SCD patients in ...

  13. An Assessment of the Effects of Different Dose Levels of Gamma Rays on HPRT Gene of T-Cells from Human Peripheral Blood

    International Nuclear Information System (INIS)

    Bahreyni, M. T.; Rezaee, M.

    2004-01-01

    Ionizing radiation has been shown to produce a broad range of genetic aberrations in human and other species. Most of the genetic aberrations are deletions. To study genetic alterations, an assessment of somatic ell gene mutations induced by ionizing radiation is proper method. In this study, the intragenic and total gene deletions of 18 HPRT-mutants derived from T-lymphocytes and induced by gamma rays were analyzed. PCR amplification of individual HPRT exons and multiplex PCR. HPRT-mutants were isolated by treatment of irradiated samples with 6-thioguanine. MPCR and PCR of individual exons of HPRT demonstrated that the intragenic and total gene deletions were not significantly different. The samples including more than one deletion had non-random significantly higher frequency. Mapping of all intragenic deleltion exhibited a nonrandom distribution. Middle part of HPRT gene was more sensitive to gamma rays. The sensitivity was increased with radiation dose. This study showed that the size of deletions are dose dependent. Our results suggest that alterations in T- lymphocytes mutant genes, induced deletions, size of deletions and distribution of DNA breakpoints appeared to be dependent on low LET radiation dose. (Author) 11 refs

  14. Sorting white blood cells in microfabricated arrays

    Science.gov (United States)

    Castelino, Judith Andrea Rose

    Fractionating white cells in microfabricated arrays presents the potential for detecting cells with abnormal adhesive or deformation properties. A possible application is separating nucleated fetal red blood cells from maternal blood. Since fetal cells are nucleated, it is possible to extract genetic information about the fetus from them. Separating fetal cells from maternal blood would provide a low cost noninvasive prenatal diagnosis for genetic defects, which is not currently available. We present results showing that fetal cells penetrate further into our microfabricated arrays than adult cells, and that it is possible to enrich the fetal cell fraction using the arrays. We discuss modifications to the array which would result in further enrichment. Fetal cells are less adhesive and more deformable than adult white cells. To determine which properties limit penetration, we compared the penetration of granulocytes and lymphocytes in arrays with different etch depths, constriction size, constriction frequency, and with different amounts of metabolic activity. The penetration of lymphocytes and granulocytes into constrained and unconstrained arrays differed qualitatively. In constrained arrays, the cells were activated by repeated shearing, and the number of cells stuck as a function of distance fell superexponentially. In unconstrained arrays the number of cells stuck fell slower than an exponential. We attribute this result to different subpopulations of cells with different sticking parameters. We determined that penetration in unconstrained arrays was limited by metabolic processes, and that when metabolic activity was reduced penetration was limited by deformability. Fetal cells also contain a different form of hemoglobin with a higher oxygen affinity than adult hemoglobin. Deoxygenated cells are paramagnetic and are attracted to high magnetic field gradients. We describe a device which can separate cells using 10 μm magnetic wires to deflect the paramagnetic

  15. Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair.

    Science.gov (United States)

    Li, Yueying; Liu, Tie; Van Halm-Lutterodt, Nicholas; Chen, JiaYu; Su, Qingjun; Hai, Yong

    2016-02-17

    An attempt was made to reprogram peripheral blood cells into human induced pluripotent stem cell (hiPSCs) as a new cell source for cartilage repair. We generated chondrogenic lineage from human peripheral blood via hiPSCs using an integration-free method. Peripheral blood cells were either obtained from a human blood bank or freshly collected from volunteers. After transforming peripheral blood cells into iPSCs, the newly derived iPSCs were further characterized through karyotype analysis, pluripotency gene expression and cell differentiation ability. iPSCs were differentiated through multiple steps, including embryoid body formation, hiPSC-mesenchymal stem cell (MSC)-like cell expansion, and chondrogenic induction for 21 days. Chondrocyte phenotype was then assessed by morphological, histological and biochemical analysis, as well as the chondrogenic expression. hiPSCs derived from peripheral blood cells were successfully generated, and were characterized by fluorescent immunostaining of pluripotent markers and teratoma formation in vivo. Flow cytometric analysis showed that MSC markers CD73 and CD105 were present in monolayer cultured hiPSC-MSC-like cells. Both alcian blue and toluidine blue staining of hiPSC-MSC-chondrogenic pellets showed as positive. Immunohistochemistry of collagen II and X staining of the pellets were also positive. The sulfated glycosaminoglycan content was significantly increased, and the expression levels of the chondrogenic markers COL2, COL10, COL9 and AGGRECAN were significantly higher in chondrogenic pellets than in undifferentiated cells. These results indicated that peripheral blood cells could be a potential source for differentiation into chondrogenic lineage in vitro via generation of mesenchymal progenitor cells. This study supports the potential applications of utilizing peripheral blood cells in generating seed cells for cartilage regenerative medicine in a patient-specific and cost-effective approach.

  16. Woodchuck hepatitis virus core gene deletions and proliferative responses of peripheral blood mononuclear cells stimulated by an immunodominant epitope: a viral immune escape in the woodchuck model of chronic hepatitis B?

    Science.gov (United States)

    Taffon, Stefania; Kondili, Loreta A; Giuseppetti, Roberto; Ciccaglione, Anna Rita; Pulimanti, Barbara; Attili, Adolfo F; Rapicetta, Maria; D'Ugo, Emilio

    2015-04-01

    Marmota monax and its natural infection by woodchuck hepatitis virus (WHV) could be used as a predictive model for evaluating mechanisms of viral persistence during chronic hepatitis B virus (HBV) infection. The aim of this study was to investigate the presence of viral variants in the core gene of chronically WHV-infected woodchucks that showed two different patterns of peripheral blood mononuclear cells' (PBMCs') responses after stimulation with a specific WHV core peptide. Sequences' analysis of the WHV core region from eight WHV chronically infected woodchucks have been performed after in vitro stimulation with an immunodominant epitope of the WHV core protein (amino acids [aa] 96-110). Following this stimulation, positive PBMC responses at each point of follow-up were observed for four animals (group A), and weak immune responses at one or a few points of follow-up were observed for the remaining four animals (group B). The WHV core gene sequences contained amino acid deletions (aa 84-126, aa 84-113) in three of four group A animals and in none of group B animals. In the group A animals, the same deletions were observed in liver specimens and in two of four tumor specimens. Hepatocellular carcinoma (HCC) was diagnosed in all group A animals and in one group B animal. In conclusion, internal deletions in the core region correlated with a sustained PBMC response to the immunogenic peptide (96-110) of the core protein. A possible role of this relationship in hepatocarcinogenesis could be hypothesized; however, this needs to be investigated in patients with chronic HBV infection. The evaluation of virus-specific T-cell responses and T-cell epitopes that are possibly related to the mechanisms of viral evasion should be further investigated in order to design combined antiviral and immune approaches to control chronic HBV infection.

  17. Blood-gene expression reveals reduced circadian rhythmicity in individuals resistant to sleep deprivation.

    Science.gov (United States)

    Arnardottir, Erna S; Nikonova, Elena V; Shockley, Keith R; Podtelezhnikov, Alexei A; Anafi, Ron C; Tanis, Keith Q; Maislin, Greg; Stone, David J; Renger, John J; Winrow, Christopher J; Pack, Allan I

    2014-10-01

    To address whether changes in gene expression in blood cells with sleep loss are different in individuals resistant and sensitive to sleep deprivation. Blood draws every 4 h during a 3-day study: 24-h normal baseline, 38 h of continuous wakefulness and subsequent recovery sleep, for a total of 19 time-points per subject, with every 2-h psychomotor vigilance task (PVT) assessment when awake. Sleep laboratory. Fourteen subjects who were previously identified as behaviorally resistant (n = 7) or sensitive (n = 7) to sleep deprivation by PVT. Thirty-eight hours of continuous wakefulness. We found 4,481 unique genes with a significant 24-h diurnal rhythm during a normal sleep-wake cycle in blood (false discovery rate [FDR] sleep. After accounting for circadian effects, two genes (SREBF1 and CPT1A, both involved in lipid metabolism) exhibited small, but significant, linear changes in expression with the duration of sleep deprivation (FDR sleep deprivation was a reduction in the amplitude of the diurnal rhythm of expression of normally cycling probe sets. This reduction was noticeably higher in behaviorally resistant subjects than sensitive subjects, at any given P value. Furthermore, blood cell type enrichment analysis showed that the expression pattern difference between sensitive and resistant subjects is mainly found in cells of myeloid origin, such as monocytes. Individual differences in behavioral effects of sleep deprivation are associated with differences in diurnal amplitude of gene expression for genes that show circadian rhythmicity. © 2014 Associated Professional Sleep Societies, LLC.

  18. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  19. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4.

    Science.gov (United States)

    Liu, Zhijing; Lu, Shi-Jiang; Lu, Yan; Tan, Xiaohua; Zhang, Xiaowei; Yang, Minlan; Zhang, Fuming; Li, Yulin; Quan, Chengshi

    2015-01-01

    Shortage of red blood cells (RBCs, erythrocytes) can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs), but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs) by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  20. Photomodification of human immunocompetent blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Krylenkov, V.A.; Ogurtsov, R.P.; Osmanov, M.A.; Kholmogorov, V.E.

    1987-10-01

    In this paper, processes of photomodification of lymphoid cells in human blood, developing immediately after exposure to visible radiation and also in the late stages after irradiation, were investigated by methods of spontaneous and immune rosette formation and the blast transformation test, combined with treatment with the antioxidant alpha-tocopherol and the radioactive assessment of spontaneous and stimulated DNA synthesis by tritium-thymidine-labelled cells.

  1. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... and suppresses the patient’s immune system to prevent rejection of the transplant. Unlike traditional BMT or PBSCT, ... be given an injection of the donor’s white blood cells. This procedure is called a “ donor ... “tandem transplant” is a type of autologous transplant. This method is being studied ...

  2. Colour measurement and white blood cell recognition

    CERN Document Server

    Gelsema, E S

    1972-01-01

    As a part of a collaboration with NEMCH aimed at the automation of the differential white blood cell count, studies have been made of the different possibilities for using colour to help in the recognition process. Results are presented comparing data obtained with a microspectrophotometer and with a simulated three-colour scanner.

  3. Blood Gene Expression Profiling of Breast Cancer Survivors Experiencing Fibrosis

    International Nuclear Information System (INIS)

    Landmark-Hoyvik, Hege; Dumeaux, Vanessa; Reinertsen, Kristin V.; Edvardsen, Hege; Fossa, Sophie D.; Borresen-Dale, Anne-Lise

    2011-01-01

    Purpose: To extend knowledge on the mechanisms and pathways involved in maintenance of radiation-induced fibrosis (RIF) by performing gene expression profiling of whole blood from breast cancer (BC) survivors with and without fibrosis 3-7 years after end of radiotherapy treatment. Methods and Materials: Gene expression profiles from blood were obtained for 254 BC survivors derived from a cohort of survivors, treated with adjuvant radiotherapy for breast cancer 3-7 years earlier. Analyses of transcriptional differences in blood gene expression between BC survivors with fibrosis (n = 31) and BC survivors without fibrosis (n = 223) were performed using R version 2.8.0 and tools from the Bioconductor project. Gene sets extracted through a literature search on fibrosis and breast cancer were subsequently used in gene set enrichment analysis. Results: Substantial differences in blood gene expression between BC survivors with and without fibrosis were observed, and 87 differentially expressed genes were identified through linear analysis. Transforming growth factor-β1 signaling was identified as the most significant gene set, showing a down-regulation of most of the core genes, together with up-regulation of a transcriptional activator of the inhibitor of fibrinolysis, Plasminogen activator inhibitor 1 in the BC survivors with fibrosis. Conclusion: Transforming growth factor-β1 signaling was found down-regulated during the maintenance phase of fibrosis as opposed to the up-regulation reported during the early, initiating phase of fibrosis. Hence, once the fibrotic tissue has developed, the maintenance phase might rather involve a deregulation of fibrinolysis and altered degradation of extracellular matrix components.

  4. Cytokine gene expression of peripheral blood lymphocytes ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Key words: Lipopolysaccharide, lymphocytes, TLRs, cytokines. INTRODUCTION. Lipopolysaccharide (LPS), a predominant glycolipid in the outer membranes of Gam-negative bacteria, stimulates monocyte, macrophages, and neutrophils and increase expression of cell adhesion molecules (Trent et al., ...

  5. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma.

    Directory of Open Access Journals (Sweden)

    Yuchun Luo

    Full Text Available Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgene™ tube and NuGEN Ovation™ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(- and CD45(+ populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(- subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients

  6. Gene expression changes in peripheral blood mononuclear cells from patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    Science.gov (United States)

    Some studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic states, but it remains unclear if the effects attributed to its phenolic fraction are exerted at the transcriptional level in vivo. Gene expression microarray analysis w...

  7. Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation

    Directory of Open Access Journals (Sweden)

    Schmidt Simone

    2012-12-01

    Full Text Available Abstract Background Beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFAs on the lipid levels of dyslipidemic subjects are widely described in the literature. However, the underlying molecular mechanisms are largely unknown. The aim of this study was to investigate the effects of n-3 PUFAs on the expression of lipid metabolism-related genes in normo- and dyslipidemic men to unveil potential genes and pathways affecting lipid metabolism. Methods Ten normo- and ten dyslipidemic men were supplemented for twelve weeks with six fish oil capsules per day, providing 1.14 g docosahexaenoic acid and 1.56 g eicosapentaenoic acid. The gene expression levels were determined by whole genome microarray analysis and quantitative real-time polymerase chain reaction. Results Several transcription factors (peroxisome proliferator-activated receptor α (PPARα, retinoid X receptor (RXR α, RXRγ, hepatic nuclear factor (HNF 6, and HNF1ß as well as other genes related to triacylglycerol (TG synthesis or high-density lipoprotein (HDL-C and cholesterol metabolism (phospholipids transfer protein, ATP-binding cassette sub-family G member 5, 2-acylglycerol O-acyltransferase (MOGAT 3, MOGAT2, diacylglycerol O-acyltransferase 1, sterol O-acyltransferase 1, apolipoprotein CII, and low-density lipoprotein receptor were regulated after n-3 PUFA supplementation, especially in dyslipidemic men. Conclusion Gene expression analyses revealed several possible molecular pathways by which n-3 PUFAs lower the TG level and increase the HDL-C and low-density lipoprotein level, whereupon the regulation of PPARα appear to play a central role. Trial registration ClinicalTrials.gov (ID: NCT01089231

  8. 21 CFR 864.6160 - Manual blood cell counting device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160 Section 864.6160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general...

  9. Blood gene expression profiling of an early acetaminophen response.

    Science.gov (United States)

    Bushel, P R; Fannin, R D; Gerrish, K; Watkins, P B; Paules, R S

    2017-06-01

    Acetaminophen can adversely affect the liver especially when overdosed. We used whole blood as a surrogate to identify genes as potential early indicators of an acetaminophen-induced response. In a clinical study, healthy human subjects were dosed daily with 4 g of either acetaminophen or placebo pills for 7 days and evaluated over the course of 14 days. Alanine aminotransferase (ALT) levels for responders to acetaminophen increased between days 4 and 9 after dosing, and 12 genes were detected with expression profiles significantly altered within 24 h. The early responsive genes separated the subjects by class and dose period. In addition, the genes clustered patients who overdosed on acetaminophen apart from controls and also predicted the exposure classifications with 100% accuracy. The responsive genes serve as early indicators of an acetaminophen exposure, and their gene expression profiles can potentially be evaluated as molecular indicators for further consideration.

  10. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  11. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  12. The antibody approach of labeling blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  13. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated

  14. The antibody approach of labeling blood cells

    International Nuclear Information System (INIS)

    Srivastava, S.C.

    1992-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated

  15. Comparative study on the effect of radiation on whole blood and isolate red blood cells

    International Nuclear Information System (INIS)

    Selim, N.S.

    2009-01-01

    Assessment of the dielectric properties of red blood cells requires several steps for preparation and isolation from whole blood. These steps may results in changes in the cells properties, and they are time consuming . The present study aims to compare the properties of both whole blood and isolated red blood cells and the effect of gamma radiation on these properties. Adult male rats were exposed to 1, 3.5 and 7 Gy as single dose, from Cs-137 source.The studies dielectric properties, in the frequency range 40 k Hz to 5 MHz, and light scattering studies for suspensions of whole blood and isolated red blood cells from the same groups were measured. The obtained results showed that whole blood and red blood cells suspensions followed the same trend in their response to radiation, which suggests the possibility of using whole blood suspension for the evaluation of the red blood cells properties

  16. Correlation of Endocrine Disrupting Chemicals Serum Levels and White Blood Cells Gene Expression of Nuclear Receptors in a Population of Infertile Women

    Directory of Open Access Journals (Sweden)

    Donatella Caserta

    2013-01-01

    Full Text Available Significant evidence supports that many endocrine disrupting chemicals could affect female reproductive health. Aim of this study was to compare the internal exposure to bisphenol A (BPA, perfluorooctane sulphonate (PFOS, perfluorooctanoic acid (PFOA, monoethylhexyl phthalate (MEHP, and di(2-ethylhexyl phthalate (DEHP in serum samples of 111 infertile women and 44 fertile women. Levels of gene expression of nuclear receptors (ERα, ERβ, AR, AhR, PXR, and PPARγ were also analyzed as biomarkers of effective dose. The percentage of women with BPA concentrations above the limit of detection was significantly higher in infertile women than in controls. No statistically significant difference was found with regard to PFOS, PFOA, MEHP and DEHP. Infertile patients showed gene expression levels of ERα, ERβ, AR, and PXR significantly higher than controls. In infertile women, a positive association was found between BPA and MEHP levels and ERα, ERβ, AR, AhR, and PXR expression. PFOS concentration positively correlated with AR and PXR expression. PFOA levels negatively correlated with AhR expression. No correlation was found between DEHP levels and all evaluated nuclear receptors. This study underlines the need to provide special attention to substances that are still widely present in the environment and to integrate exposure measurements with relevant indicators of biological effects.

  17. Gene Delivery for Metastatic Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Pang, Shen

    2001-01-01

    .... Enhanced by the bystander effect, the specific expression of the DTA gene causes significant cell death in prostate cancer cell cultures, with very low background cell eradication in control cell lines...

  18. Gender-dependent correlations of carotid intima-media thickness with gene expression in blood.

    Science.gov (United States)

    Turner, Renée J; Bushnell, Cheryl D; Register, Thomas C; Sharp, Frank R

    2011-06-01

    The mechanisms underlying gender differences in stroke incidence, risk, and outcome are uncertain. We sought to determine whether transcriptional profiles of circulating blood cells of men and women differentially correlated with carotid artery intima-media thickness (CIMT), a predictor of atherosclerosis and stroke risk. Gene expression in whole blood was measured using Affymetrix expression arrays in men (n=17) and women (n=35), aged 45-64 years, with at least one risk factor for stroke. Mean average CIMT was measured using B-mode ultrasound. Expression levels of 746 genes positively and 292 genes negatively correlated with CIMT only in women (pgenes positively and 597 genes negatively correlated with CIMT only in men (pgenes correlated with CIMT in men and women, but in opposite directions. These genes were associated with estrogen, cholesterol and lipid metabolism, inflammation, coagulation, and vasoreactivity. This pilot study provides the first proof of principle that gene expression in blood cells correlates with CIMT. These results point to potential pathophysiological mechanisms underlying sex differences in stroke risk. Since the sample size is small, the findings are preliminary and need to be confirmed in independent, larger studies.

  19. Relative deformability of red blood cells in sickle cell trait and sickle cell anemia by trapping and dragging

    Science.gov (United States)

    Solomon, Rance; Cooper, James; Welker, Gabriel; Aguilar, Elaura; Flanagan, Brooke; Pennycuff, Chelsey; Scott, David; Farone, Anthony; Farone, Mary; Erenso, Daniel; Mushi, Robert; del Pilar Aguinaga, Maria

    2013-06-01

    Genetic mutation of the β-globin gene or inheritance of this mutated gene changes the chemical composition of the oxygen-carrying hemoglobin molecule that could lead to either the heterozygote genotype, resulting in sickle cell trait (SCT), or the homozygote genotype, resulting in sickle cell anemia (SCA). These mutations could affect the reversible elastic deformations of the red blood cells (RBCs) which are vital for biological functions. We have investigated this effect by studying the differences in the deformability of RBCs from blood samples of an individual with SCT and an untreated patient with SCA along with hemoglobin quantitation of each blood sample. Infrared 1064 nm laser trap force along with drag shear force are used to induce deformation in the RBCs. Ultra2-High Performance Liquid Chromatography (UHPLC) is used for the hemoglobin quantitation.

  20. Responder individuality in red blood cell alloimmunization.

    Science.gov (United States)

    Körmöczi, Günther F; Mayr, Wolfgang R

    2014-11-01

    Many different factors influence the propensity of transfusion recipients and pregnant women to form red blood cell alloantibodies (RBCA). RBCA may cause hemolytic transfusion reactions, hemolytic disease of the fetus and newborn and may be a complication in transplantation medicine. Antigenic differences between responder and foreign erythrocytes may lead to such an immune answer, in part with suspected specific HLA class II associations. Biochemical and conformational characteristics of red blood cell (RBC) antigens, their dose (number of transfusions and pregnancies, absolute number of antigens per RBC) and the mode of exposure impact on RBCA rates. In addition, individual circumstances determine the risk to form RBCA. Responder individuality in terms of age, sex, severity of underlying disease, disease- or therapy-induced immunosuppression and inflammation are discussed with respect to influencing RBC alloimmunization. For particular high-risk patients, extended phenotype matching of transfusion and recipient efficiently decreases RBCA induction and associated clinical risks.

  1. Responder Individuality in Red Blood Cell Alloimmunization

    OpenAIRE

    Körmöczi, Günther F.; Mayr, Wolfgang R.

    2014-01-01

    Many different factors influence the propensity of transfusion recipients and pregnant women to form red blood cell alloantibodies (RBCA). RBCA may cause hemolytic transfusion reactions, hemolytic disease of the fetus and newborn and may be a complication in transplantation medicine. Antigenic differences between responder and foreign erythrocytes may lead to such an immune answer, in part with suspected specific HLA class II associations. Biochemical and conformational characteristics of red...

  2. Gene expression profiling of Drosophila tracheal fusion cells.

    Science.gov (United States)

    Chandran, Rachana R; Iordanou, Ekaterini; Ajja, Crystal; Wille, Michael; Jiang, Lan

    2014-07-01

    The Drosophila trachea is a premier genetic system to investigate the fundamental mechanisms of tubular organ formation. Tracheal fusion cells lead the branch fusion process to form an interconnected tubular network. Therefore, fusion cells in the Drosophila trachea will be an excellent model to study branch fusion in mammalian tubular organs, such as kidneys and blood vessels. The fusion process is a dynamic cellular process involving cell migration, adhesion, vesicle trafficking, cytoskeleton rearrangement, and membrane fusion. To understand how these cellular events are coordinated, we initiated the critical step to assemble a gene expression profile of fusion cells. For this study, we analyzed the expression of 234 potential tracheal-expressed genes in fusion cells during fusion cell development. 143 Tracheal genes were found to encode transcription factors, signal proteins, cytoskeleton and matrix proteins, transporters, and proteins with unknown function. These genes were divided into four subgroups based on their levels of expression in fusion cells compared to neighboring non-fusion cells revealed by in situ hybridization: (1) genes that have relative high abundance in fusion cells, (2) genes that are dynamically expressed in fusion cells, (3) genes that have relative low abundance in fusion cells, and (4) genes that are expressed at similar levels in fusion cells and non-fusion tracheal cells. This study identifies the expression profile of fusion cells and hypothetically suggests genes which are necessary for the fusion process and which play roles in distinct stages of fusion, as indicated by the location and timing of expression. These data will provide the basis for a comprehensive understanding of the molecular and cellular mechanisms of branch fusion. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  4. HPRT gene mutation frequency and the factor of influence in adult peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhao Jingyong; Zheng Siying; Cui Fengmei; Wang Liuyi; Lao Qinhua; Wu Hongliang

    2002-01-01

    Objective: To study the HPRT gene loci mutation frequencies and the factor of influence in peripheral blood lymphocytes of adult with ages ranging from 21-50. Methods: HPRT gene mutation frequency (GMf) were examined by the technique of multinuclear cell assay. Relation between GMf and years were fitted with a computer. Results: Relation could be described by the following equation: y = 0.7555 + 0.0440x, r = 0.9829. Smoking has influence on GMf and sex hasn't. Conclusion: HPRT gene mutation frequency increases with increasing of age. Increasing rate is 0.00440% per year

  5. Evaluation of red blood cell stability during immersion blood warming

    African Journals Online (AJOL)

    Method: Blood, three days after donation (fresh blood), with CPD anticoagulant, was warmed at 37°C, 43°C, 45°C, 47°C, 50°C and 55°C for 10, 20, 30 and 60 minutes and analysed for haemolysis. In addition, the biochemical markers were done on the blood after 34 days of storage at 4°C (old blood). Temperature increase ...

  6. Binding Characteristics Of Ivermectin To Blood Cells | Nweke ...

    African Journals Online (AJOL)

    The binding characteristics of Ivermectin were determined using scatchard plots. The percentage binding to platelet rich plasma, white blood cells and red blood cells were 90.00 + 1.00, 96-90 + 1.05 and 46.20 + 1.10 S.D respectively. It was found to bind the highest to white blood cells and the least to red blood cells.

  7. Renal intercalated cells and blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Susan M. Wall

    2017-12-01

    Full Text Available Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  8. The Trojan Horse Liposome Technology for Nonviral Gene Transfer across the Blood-Brain Barrier.

    Science.gov (United States)

    Boado, Ruben J; Pardridge, William M

    2011-01-01

    The application of blood-borne gene therapy protocols to the brain is limited by the presence of the blood-brain barrier (BBB). Viruses have been extensively used as gene delivery systems. However, their efficacy in brain is limited by the lack of transport across the BBB following intravenous (IV) administration. Recent progress in the "Trojan Horse Liposome" (THL) technology applied to transvascular non-viral gene therapy of the brain presents a promising solution to the trans-vascular brain gene delivery problem. THLs are comprised of immunoliposomes carrying nonviral gene expression plasmids. The tissue target specificity of the THL is provided by peptidomimetic monoclonal antibody (MAb) component of the THL, which binds to specific endogenous receptors located on both the BBB and on brain cellular membranes, for example, insulin receptor and transferrin receptor. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The expression of the transgene in brain may be restricted using tissue/cell specific gene promoters. This manuscript presents an overview on the THL transport technology applied to brain disorders, including lysosomal storage disorders and Parkinson's disease.

  9. Correlations between gene expression and mercury levels in blood of boys with and without autism.

    Science.gov (United States)

    Stamova, Boryana; Green, Peter G; Tian, Yingfang; Hertz-Picciotto, Irva; Pessah, Isaac N; Hansen, Robin; Yang, Xiaowei; Teng, Jennifer; Gregg, Jeffrey P; Ashwood, Paul; Van de Water, Judy; Sharp, Frank R

    2011-01-01

    Gene expression in blood was correlated with mercury levels in blood of 2- to 5-year-old boys with autism (AU) compared to age-matched typically developing (TD) control boys. This was done to address the possibility that the two groups might metabolize toxicants, such as mercury, differently. RNA was isolated from blood and gene expression assessed on whole genome Affymetrix Human U133 expression microarrays. Mercury levels were measured using an inductively coupled plasma mass spectrometer. Analysis of covariance (ANCOVA) was performed and partial correlations between gene expression and mercury levels were calculated, after correcting for age and batch effects. To reduce false positives, only genes shared by the ANCOVA models were analyzed. Of the 26 genes that correlated with mercury levels in both AU and TD boys, 11 were significantly different between the groups (P(Diagnosis*Mercury) ≤ 0.05). The expression of a large number of genes (n = 316) correlated with mercury levels in TD but not in AU boys (P ≤ 0.05), the most represented biological functions being cell death and cell morphology. Expression of 189 genes correlated with mercury levels in AU but not in TD boys (P ≤ 0.05), the most represented biological functions being cell morphology, amino acid metabolism, and antigen presentation. These data and those in our companion study on correlation of gene expression and lead levels show that AU and TD children display different correlations between transcript levels and low levels of mercury and lead. These findings might suggest different genetic transcriptional programs associated with mercury in AU compared to TD children.

  10. Radiolabeled blood cells: radiation dosimetry and significance

    International Nuclear Information System (INIS)

    Thakur, M.L.

    1986-01-01

    Over the past few years blood cells labeled with In-111 have become increasingly useful in clinical diagnosis and biomedical research. Indium-111 by the virtue of its physical characteristics and ability to bind to cell cytoplasmic components, provides an excellent cell tracer and thereby, allows investigators to monitor in vivo cell distribution by external imaging and help determine a course of regimen in treating life threatening diseases. Due to natural phenomena such as margination, blood pool, and reticuloendothelial cell activity, in the normal state, depending upon the cell type and the quality of cell preparations, 30%-50% of the administered radioactivity is immediately distributed in the liver, spleen and bone marrow. Over a period of time the radioactivity in these organs slightly increases and decays with a physical half-life of In-111. The resulting radiation dose to these organs ranges between 1-25 rads/mCi In-111 administered. The authors have developed a new In-111 labeling technique which preserves platelet ultrastructure and shown that human lymphocytes labeled with In-111 in mixed leukocytes preparations a) are only 0.003% of the total -body lymphocytes population and b) are killed. The consequence if any may be considered insignificant, particularly because 5.6% metaphases from normal men and 6.5% metaphases from normal women in the US have at least one chromosome aberration. Calculations have shown that the risk of fatal hematological malignancy, over a 30 year period, in recipients of 100 million lymphocytes labeled with 100 μCi In-111 is 1/million patients studied. This risk is less than 0.025% of the 1981 spontaneous cancer patient rate in the country. 32 references, 10 tables

  11. Molecular mechanisms of disease in hereditary red blood cell enzymopathies

    NARCIS (Netherlands)

    Wijk, Henricus Anthonius van

    2004-01-01

    Metabolically defective red blood cells are old before their time, and suffer from metabolic progeria. The focus of this thesis was to identify the molecular mechanisms by which inherited enzymopathies of the red blood cell lead to impaired enzyme function and, consequently, shorten red blood cell

  12. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme defects...

  13. 21 CFR 660.30 - Reagent Red Blood Cells.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be...

  14. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration.

    Science.gov (United States)

    Hei, Wei-Hong; Almansoori, Akram A; Sung, Mi-Ae; Ju, Kyung-Won; Seo, Nari; Lee, Sung-Ho; Kim, Bong-Ju; Kim, Soung-Min; Jahng, Jeong Won; He, Hong; Lee, Jong-Ho

    2017-03-16

    This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×10 6 cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×10 6 cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO: evidence for a regulatory role of autocrine activin and TGF-β.

    Directory of Open Access Journals (Sweden)

    Hendrik Ungefroren

    Full Text Available Previous studies have shown that peripheral blood monocytes can be converted in vitro to a stem cell-like cell termed PCMO as evidenced by the re-expression of pluripotency-associated genes, transient proliferation, and the ability to adopt the phenotype of hepatocytes and insulin-producing cells upon tissue-specific differentiation. However, the regulatory interactions between cultured cells governing pluripotency and mitotic activity have remained elusive. Here we asked whether activin(s and TGF-β(s, are involved in PCMO generation. De novo proliferation of PCMO was higher under adherent vs. suspended culture conditions as revealed by the appearance of a subset of Ki67-positive monocytes and correlated with down-regulation of p21WAF1 beyond day 2 of culture. Realtime-PCR analysis showed that PCMO express ActRIIA, ALK4, TβRII, ALK5 as well as TGF-β1 and the βA subunit of activin. Interestingly, expression of ActRIIA and ALK4, and activin A levels in the culture supernatants increased until day 4 of culture, while levels of total and active TGF-β1 strongly declined. PCMO responded to both growth factors in an autocrine fashion with intracellular signaling as evidenced by a rise in the levels of phospho-Smad2 and a drop in those of phospho-Smad3. Stimulation of PCMO with recombinant activins (A, B, AB and TGF-β1 induced phosphorylation of Smad2 but not Smad3. Inhibition of autocrine activin signaling by either SB431542 or follistatin reduced both Smad2 activation and Oct4A/Nanog upregulation. Inhibition of autocrine TGF-β signaling by either SB431542 or anti-TGF-β antibody reduced Smad3 activation and strongly increased the number of Ki67-positive cells. Furthermore, anti-TGF-β antibody moderately enhanced Oct4A/Nanog expression. Our data show that during PCMO generation pluripotency marker expression is controlled positively by activin/Smad2 and negatively by TGF-β/Smad3 signaling, while relief from growth inhibition is primarily the

  16. Red blood cell in simple shear flow

    Science.gov (United States)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  17. Mechanosensing Dynamics of Red blood Cells

    Science.gov (United States)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  18. Platelet adhesion onto artificial red blood cells.

    Science.gov (United States)

    Muramatsu, N; Kondo, T

    1980-05-01

    Several kinds of polyamide microcapsules containing mammalian hemolysate were prepared by making use of the interfacial polycondensation reaction between diamines and terephthaloyl dichloride and their blood compatibility in terms of platelet adhesion was examined aiming at their ultimate clinical use as artificial red blood cells. It was found that rabbit platelets adhere onto the hemolysate-loaded microcapsules in the presence of the plasma, while no platelet adhesion takes place in the absence of the plasma. This was interpreted as indicating an important role of plasma components in platelet adhesion. Moreover, platelet adhesion was observed to be facilitated by negative charges on the surface of the hemolysate-loaded microcapsules; the more negatively the surface was charge, the more easily the platelets adhered onto the surface. Finally, the present method of assessing platelet adhesion suggested the possibility of its use for kinetic study of platelet adhesion since it allowedus to make numerical evaluation of platelet adhesion as a function of time.

  19. Association between gene expression biomarkers of immunosuppression and blood transfusion in severely injured polytrauma patients.

    Science.gov (United States)

    Torrance, Hew Dt; Brohi, Karim; Pearse, Rupert M; Mein, Charles A; Wozniak, Eva; Prowle, John R; Hinds, Charles J; OʼDwyer, Michael J

    2015-04-01

    To explore the hypothesis that blood transfusion contributes to an immunosuppressed phenotype in severely injured patients. Despite trauma patients using disproportionately large quantities of blood and blood products, the immunomodulatory effects of blood transfusion in this group are inadequately described. A total of 112 ventilated polytrauma patients were recruited. Messenger RNA (mRNA) was extracted from PAXGene tubes collected within 2 hours of the trauma, at 24 hours, and at 72 hours. T-helper cell subtype specific cytokines and transcription factors were quantified using real-time polymerase chain reaction. Median injury severity score was 29. Blood transfusion was administered to 27 (24%) patients before the 2-hour sampling point. Transfusion was associated with a greater immediate rise in IL-10 (P = 0.003) and IL-27 (P = 0.04) mRNA levels. Blood products were transfused in 72 (64%) patients within the first 24 hours. There was an association between transfusion at 24 hours and higher IL-10 (P transfused. Multiple regression models confirmed that the transfusion of blood products was independently associated with altered patterns of gene expression. Blood stream infections occur in 15 (20.8%) of those transfused in the first 24 hours, compared with 1 patient (2.5%) not transfused (OR = 10.3 [1.3-81], P = 0.008). The primarily immunosuppressive inflammatory response to polytrauma may be exacerbated by the transfusion of blood products. Furthermore, transfusion was associated with an increased susceptibility to nosocomial infections.

  20. Cryopreservation of Autologous Blood (Red Blood Cells, Platelets and Plasma)

    Science.gov (United States)

    Ebine, Kunio

    Prevention of post-transfusion hepatitis is still a problem in cardiovascular surgery. We initiated the cryopreservation of autologous blood for the transfusion in elective cardiovascular surgery since 1981. This study includes 152 surgical cases in which autologous frozen, allogeneic frozen, and/or allogeneic non-frozen blood were used. In the 152 surgical cases, there were 69 cases in which autologous blood only (Group I) was used; 12 cases with autologous and allogeneic frozen blood (Group II); 46 cases with autologous and allgeneic frozen plus allogeneic non-frozen blood (Group III); and 25 cases with allogeneic frozen plus allogeneic non-frozen blood (Group IV). No hepatitis developed in Groups I (0%) and II (0%), but there was positive hepatitis in Groups III (4.3%) and IV (8.0%) . In 357 cases of those who underwent surgery with allogeneic non-frozen whole blood during the same period, the incidence rate of hepatitis was 13.7% (49/357). Patients awaiting elective surgery can store their own blood in the frozen state. Patients who undergo surgery with the cryoautotransfusion will not produce any infections or immunologic reactions as opposed to those who undergo surgery with the allogeneic non-frozen blood.

  1. Peripheral blood gene expression as a novel genomic biomarker in complicated sarcoidosis.

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    Full Text Available Sarcoidosis, a systemic granulomatous syndrome invariably affecting the lung, typically spontaneously remits but in ~20% of cases progresses with severe lung dysfunction or cardiac and neurologic involvement (complicated sarcoidosis. Unfortunately, current biomarkers fail to distinguish patients with remitting (uncomplicated sarcoidosis from other fibrotic lung disorders, and fail to identify individuals at risk for complicated sarcoidosis. We utilized genome-wide peripheral blood gene expression analysis to identify a 20-gene sarcoidosis biomarker signature distinguishing sarcoidosis (n = 39 from healthy controls (n = 35, 86% classification accuracy and which served as a molecular signature for complicated sarcoidosis (n = 17. As aberrancies in T cell receptor (TCR signaling, JAK-STAT (JS signaling, and cytokine-cytokine receptor (CCR signaling are implicated in sarcoidosis pathogenesis, a 31-gene signature comprised of T cell signaling pathway genes associated with sarcoidosis (TCR/JS/CCR was compared to the unbiased 20-gene biomarker signature but proved inferior in prediction accuracy in distinguishing complicated from uncomplicated sarcoidosis. Additional validation strategies included significant association of single nucleotide polymorphisms (SNPs in signature genes with sarcoidosis susceptibility and severity (unbiased signature genes - CX3CR1, FKBP1A, NOG, RBM12B, SENS3, TSHZ2; T cell/JAK-STAT pathway genes such as AKT3, CBLB, DLG1, IFNG, IL2RA, IL7R, ITK, JUN, MALT1, NFATC2, PLCG1, SPRED1. In summary, this validated peripheral blood molecular gene signature appears to be a valuable biomarker in identifying cases with sarcoidoisis and predicting risk for complicated sarcoidosis.

  2. Thrombocytopenia responding to red blood cell transfusion

    International Nuclear Information System (INIS)

    Mubarak, Ahmad A.; Awidi, Abdalla; Rasul, Kakil I.; Al-Homsi, Ussama

    2004-01-01

    Three patients with severe symptomatic iron defficiency anemia and thrombocytopenia had a significant rise in the platelet count a few days following packed red blood cell transfusion. Pretransfusion platelet count of of patient one was 17x10/L. 22x10/Lin patient two and 29x10/L in patient three. On the 6th day of post tranfusion, the platelet count rose to 166x10/Lin patient one, 830x10/L in patient two and 136x10/L in patient three. The possible mechcnism behind such an unreported observation are discussed. (author)

  3. Kit for the selective labeling of red blood cells in whole blood with .sup.9 TC

    Science.gov (United States)

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1992-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium.

  4. Gene-gene interaction and functional impact of polymorphisms on innate immune genes in controlling Plasmodium falciparum blood infection level.

    Directory of Open Access Journals (Sweden)

    Madhumita Basu

    Full Text Available Genetic variations in toll-like receptors and cytokine genes of the innate immune pathways have been implicated in controlling parasite growth and the pathogenesis of Plasmodium falciparum mediated malaria. We previously published genetic association of TLR4 non-synonymous and TNF-α promoter polymorphisms with P.falciparum blood infection level and here we extend the study considerably by (i investigating genetic dependence of parasite-load on interleukin-12B polymorphisms, (ii reconstructing gene-gene interactions among candidate TLRs and cytokine loci, (iii exploring genetic and functional impact of epistatic models and (iv providing mechanistic insights into functionality of disease-associated regulatory polymorphisms. Our data revealed that carriage of AA (P = 0.0001 and AC (P = 0.01 genotypes of IL12B 3'UTR polymorphism was associated with a significant increase of mean log-parasitemia relative to rare homozygous genotype CC. Presence of IL12B+1188 polymorphism in five of six multifactor models reinforced its strong genetic impact on malaria phenotype. Elevation of genetic risk in two-component models compared to the corresponding single locus and reduction of IL12B (2.2 fold and lymphotoxin-α (1.7 fold expressions in patients'peripheral-blood-mononuclear-cells under TLR4Thr399Ile risk genotype background substantiated the role of Multifactor Dimensionality Reduction derived models. Marked reduction of promoter activity of TNF-α risk haplotype (C-C-G-G compared to wild-type haplotype (T-C-G-G with (84% and without (78% LPS stimulation and the loss of binding of transcription factors detected in-silico supported a causal role of TNF-1031. Significantly lower expression of IL12B+1188 AA (5 fold and AC (9 fold genotypes compared to CC and under-representation (P = 0.0048 of allele A in transcripts of patients' PBMCs suggested an Allele-Expression-Imbalance. Allele (A+1188C dependent differential stability (2 fold of IL12B-transcripts upon

  5. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    . The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results: Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5o......Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low...

  6. The Radiation Effect on Peripheral Blood Cell

    International Nuclear Information System (INIS)

    Lee, Tae June; Kwon, Hyoung Cheol; Kim, Jung Soo; Im, Sun Kyun; Choi, Ki Chul

    1988-01-01

    To evaluate radiation effect on the hematopoietic system, we analyzed 44 patients who were treated with conventionally fractionated radiation therapy (RT) at Chonbuk National University Hospital. According to the treatment sites, we classified them into three groups: group I as head and neck, group II as thorax, and group III as pelvis. White blood cell, lymphocyte, platelet and hemoglobin were checked before and during RT The results were as follow; 1. White blood cell (WBC) and lymphocyte count were declined from the first week of RT to the third week, and then slightly recovered after the third or fourth week. There was prominent decrease in lymphocyte counts than WBC. 2. Platelet counts were declined until the second week of the RT, showed slight recovery at fourth week in all groups. Hemoglobin values were slightly decreased in the first week and then recovered the level of pretreatment value, gradually. 3. Lymphocyte count were declined significantly on group III(p<0.01), WBC and platelet counts were decreased on group II but statistically not significant

  7. Gene expression patterns in blood leukocytes discriminate patients with acute infections

    Science.gov (United States)

    Allman, Windy; Chung, Wendy; Mejias, Asuncion; Ardura, Monica; Glaser, Casey; Wittkowski, Knut M.; Piqueras, Bernard; Banchereau, Jacques; Palucka, A. Karolina; Chaussabel, Damien

    2007-01-01

    Each infectious agent represents a unique combination of pathogen-associated molecular patterns that interact with specific pattern-recognition receptors expressed on immune cells. Therefore, we surmised that the blood immune cells of individuals with different infections might bear discriminative transcriptional signatures. Gene expression profiles were obtained for 131 peripheral blood samples from pediatric patients with acute infections caused by influenza A virus, Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus and Streptococcus pneumoniae) bacteria. Thirty-five genes were identified that best discriminate patients with influenza A virus infection from patients with either E coli or S pneumoniae infection. These genes classified with 95% accuracy (35 of 37 samples) an independent set of patients with either influenza A, E coli, or S pneumoniae infection. A different signature discriminated patients with E coli versus S aureus infections with 85% accuracy (34 of 40). Furthermore, distinctive gene expression patterns were observed in patients presenting with respiratory infections of different etiologies. Thus, microarray analyses of patient peripheral blood leukocytes might assist in the differential diagnosis of infectious diseases. PMID:17105821

  8. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell

    Science.gov (United States)

    Boullé, Mikaël; Müller, Thorsten G.; Dähling, Sabrina; Jackson, Laurelle; Mahamed, Deeqa; Oom, Lance; Lustig, Gila

    2016-01-01

    Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses. PMID:27812216

  9. Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging

    Science.gov (United States)

    Cacciatore, Chiara; Busnelli, Marta; Rossetti, Raffaella; Bonetti, Silvia; Paffoni, Alessio; Mari, Daniela; Ragni, Guido; Persani, Luca; Arosio, M.; Beck-Peccoz, P.; Biondi, M.; Bione, S.; Bruni, V.; Brigante, C.; Cannavo`, S.; Cavallo, L.; Cisternino, M.; Colombo, I.; Corbetta, S.; Crosignani, P.G.; D'Avanzo, M.G.; Dalpra, L.; Danesino, C.; Di Battista, E.; Di Prospero, F.; Donti, E.; Einaudi, S.; Falorni, A.; Foresta, C.; Fusi, F.; Garofalo, N.; Giotti, I.; Lanzi, R.; Larizza, D.; Locatelli, N.; Loli, P.; Madaschi, S.; Maghnie, M.; Maiore, S.; Mantero, F.; Marozzi, A.; Marzotti, S.; Migone, N.; Nappi, R.; Palli, D.; Patricelli, M.G.; Pisani, C.; Prontera, P.; Petraglia, F.; Radetti, G.; Renieri, A.; Ricca, I.; Ripamonti, A.; Rossetti, R.; Russo, G.; Russo, S.; Tonacchera, M.; Toniolo, D.; Torricelli, F.; Vegetti, W.; Villa, N.; Vineis, P.; Wasniewsk, M.; Zuffardi, O.

    2012-01-01

    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction. PMID:22879975

  10. Resting blood lactate in individuals with sickle cell disease

    Science.gov (United States)

    Petto, Jefferson; de Jesus, Jaqueline Brito; Vasques, Leila Monique Reis; Pinheiro, Renata Leão Silva; Oliveira, Aila Mascarenhas; Spinola, Kelly Aparecida Borges; Silva, Wellington dos Santos

    2011-01-01

    Background The most common hereditary hemoglobin disorder, affecting 20 million individuals worldwide, is sickle cell disease. The vascular obstruction resulting from the sickling of cells in this disease can produce local hypoxemia, pain crises and infarction in several tissues, including the bones, spleen, kidneys and lungs. Objective To determine red blood group genes in a Brazilian populations. Methods The present study is characterized as a case control study, with the aim of identifying the baseline blood lactate concentration in individuals with hemoglobin SS and SC diseases. One-way ANOVA with the Tukey post-test was used to analyze the results and a p-value < 0.05 was considered significant. Calculations were made using the INSTAT statistical program. The graphs were generated using the ORING program. The study sample was composed of 31 men and women residing in the city of Santo Antônio de Jesus, Bahia, Brazil. The individuals were divided into two groups: Group GC of 16 subjects who did not present with any type of structural hemoglobinopathy; and Group GE composed of 15 individuals with ages between 2 and 35 years old, who had the SS and SC genotypes. Sample analyses were performed with 3 mL of blood during fasting. Results The baseline blood lactate concentration of the SS and SC individuals was higher than that of the control group (p<0.001) with means of 4.86 ± 0.95; 3.30 ± 0.33; 1.31 ± 0.08 IU/L for SS, SC and controls, respectively. This corroborates the initial research hypothesis. Conclusion The baseline blood lactate of SS and SC individuals is 3 to 4 times higher than that of healthy subjects, probably due to the fact that these patients have a metabolic deviation to the anaerobic pathway. PMID:23284239

  11. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell

    DEFF Research Database (Denmark)

    Pasini, Erica M; Kirkegaard, Morten; Salerno, Doris

    2008-01-01

    Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much...

  12. Ecto-ATPase activity of vertebrate blood cells.

    Science.gov (United States)

    Bencic, D C; Yates, T J; Ingermann, R L

    1997-01-01

    Ecto-ATPase activity was measured for red blood cells, white blood cells, and whole blood from a variety of vertebrates. A large range of red blood cell ecto-ATPase activity was observed; for example, at 10 degrees C, red blood cells from a catastomid fish (Catostomus macrocheilus) and a newt (Taricha rivularis) had activities of 56 +/- 9 and 25,000,000 +/- 14,000,000 pmol ATP per 10(6) red blood cells per hour, respectively (mean +/- SD). Several control experiments verified that the measured ATPase activity was not the result of intracellular ATPases released due to cell damage or lysis nor due to the release of intracellular nucleoside triphosphate or uptake of extracellular ATP. Red blood cell ecto-ATPase activity was relatively low within the teleosts, was high within the reptiles, and had the greatest range and single highest value within the amphibians. Within the endotherms, avian red blood cell ecto-ATPase activities were greater than mammalian red blood cell ecto-ATPase activities, which were the lowest for all vertebrates examined. The lowest ecto-ATPase activities measured were for human and skunk red blood cells, which had activities of 13 +/- 1 and 11 +/- 2 pmol ATP per 10(6) red blood cells per hour, respectively, at 35 degrees C. Ecto-ATPase activity was measured in white blood cells of several vertebrate species and appeared generally high and less variable than red blood cell ecto-ATPase activity. Measured whole blood ecto-ATPase activity showed a range of three orders of magnitude and correlated positively with red blood cell ecto-ATPase activities. Ecto-ATPase activity was also determined for red blood cells from fetal, 1-3 d old neonatal, and pregnant garter snakes (Thamnophis elegans); these activities were not significantly different from the activity of red blood cells from nonpregnant adult females. Overall, the data from the present study demonstrate a wide range of red blood cell and whole blood ecto-ATPase activities among vertebrates

  13. Blood-based gene-expression predictors of PTSD risk and resilience among deployed marines: a pilot study.

    Science.gov (United States)

    Glatt, Stephen J; Tylee, Daniel S; Chandler, Sharon D; Pazol, Joel; Nievergelt, Caroline M; Woelk, Christopher H; Baker, Dewleen G; Lohr, James B; Kremen, William S; Litz, Brett T; Tsuang, Ming T

    2013-06-01

    Susceptibility to PTSD is determined by both genes and environment. Similarly, gene-expression levels in peripheral blood are influenced by both genes and environment, and expression levels of many genes show good correspondence between peripheral blood and brain. Therefore, our objectives were to test the following hypotheses: (1) pre-trauma expression levels of a gene subset (particularly immune-system genes) in peripheral blood would differ between trauma-exposed Marines who later developed PTSD and those who did not; (2) a predictive biomarker panel of the eventual emergence of PTSD among high-risk individuals could be developed based on gene expression in readily assessable peripheral blood cells; and (3) a predictive panel based on expression of individual exons would surpass the accuracy of a model based on expression of full-length gene transcripts. Gene-expression levels were assayed in peripheral blood samples from 50 U.S. Marines (25 eventual PTSD cases and 25 non-PTSD comparison subjects) prior to their deployment overseas to war-zones in Iraq or Afghanistan. The panel of biomarkers dysregulated in peripheral blood cells of eventual PTSD cases prior to deployment was significantly enriched for immune genes, achieved 70% prediction accuracy in an independent sample based on the expression of 23 full-length transcripts, and attained 80% accuracy in an independent sample based on the expression of one exon from each of five genes. If the observed profiles of pre-deployment mRNA-expression in eventual PTSD cases can be further refined and replicated, they could suggest avenues for early intervention and prevention among individuals at high risk for trauma exposure. Copyright © 2013 Wiley Periodicals, Inc.

  14. Services to Operate a Red Blood Cell Storage Laboratory

    National Research Council Canada - National Science Library

    Lippert, Lloyd

    1999-01-01

    The Bionetics Corporation staffed and maintained laboratories to support red blood cell preservation research for the Blood Research Detachment, Walter Reed Army Institute of Research, initially at 1413 Research Blvd...

  15. Multiple loci are associated with white blood cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Michael A Nalls

    2011-06-01

    Full Text Available White blood cell (WBC count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2, including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across

  16. Multiple Loci Are Associated with White Blood Cell Phenotypes

    Science.gov (United States)

    Yang, Qiong; Greinacher, Andreas; Wood, Andrew R.; Garcia, Melissa; Gasparini, Paolo; Liu, Yongmei; Lumley, Thomas; Folsom, Aaron R.; Reiner, Alex P.; Gieger, Christian; Lagou, Vasiliki; Felix, Janine F.; Völzke, Henry; Gouskova, Natalia A.; Biffi, Alessandro; Döring, Angela; Völker, Uwe; Chong, Sean; Wiggins, Kerri L.; Rendon, Augusto; Dehghan, Abbas; Moore, Matt; Taylor, Kent; Wilson, James G.; Lettre, Guillaume; Hofman, Albert; Bis, Joshua C.; Pirastu, Nicola; Fox, Caroline S.; Meisinger, Christa; Sambrook, Jennifer; Arepalli, Sampath; Nauck, Matthias; Prokisch, Holger; Stephens, Jonathan; Glazer, Nicole L.; Cupples, L. Adrienne; Okada, Yukinori; Takahashi, Atsushi; Kamatani, Yoichiro; Matsuda, Koichi; Tsunoda, Tatsuhiko; Tanaka, Toshihiro; Kubo, Michiaki; Nakamura, Yusuke; Yamamoto, Kazuhiko; Kamatani, Naoyuki; Stumvoll, Michael; Tönjes, Anke; Prokopenko, Inga; Illig, Thomas; Patel, Kushang V.; Garner, Stephen F.; Kuhnel, Brigitte; Mangino, Massimo; Oostra, Ben A.; Thein, Swee Lay; Coresh, Josef; Wichmann, H.-Erich; Menzel, Stephan; Lin, JingPing; Pistis, Giorgio; Uitterlinden, André G.; Spector, Tim D.; Teumer, Alexander; Eiriksdottir, Gudny; Gudnason, Vilmundur; Bandinelli, Stefania; Frayling, Timothy M.; Chakravarti, Aravinda; van Duijn, Cornelia M.; Melzer, David; Ouwehand, Willem H.; Levy, Daniel; Boerwinkle, Eric; Singleton, Andrew B.; Hernandez, Dena G.; Longo, Dan L.; Soranzo, Nicole; Witteman, Jacqueline C. M.; Psaty, Bruce M.; Ferrucci, Luigi; Harris, Tamara B.; O'Donnell, Christopher J.; Ganesh, Santhi K.

    2011-01-01

    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations

  17. Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards 'universal-donor' red blood cells

    International Nuclear Information System (INIS)

    Seifinejad, Ali; Taei, Adeleh; Totonchi, Mehdi; Vazirinasab, Hamed; Hassani, Seideh Nafiseh; Aghdami, Nasser; Shahbazi, Ebrahim; Yazdi, Reza Salman; Salekdeh, Ghasem Hosseini; Baharvand, Hossein

    2010-01-01

    Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, α-globulin, and γ-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.

  18. A composite peripheral blood gene expression measure as a potential diagnostic biomarker in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, L; Vinberg, M

    2015-01-01

    as a diagnostic and state biomarker in bipolar disorder. First, messenger RNA levels of 19 candidate genes were assessed in peripheral blood mononuclear cells of 37 rapid cycling bipolar disorder patients in different affective states (depression, mania and euthymia) during a 6-12-month period and in 40 age......- and gender-matched healthy control subjects. Second, a composite gene expression measure was constructed in the first half study sample and independently validated in the second half of the sample. We found downregulation of POLG and OGG1 expression in bipolar disorder patients compared with healthy control...... subjects. In patients with bipolar disorder, upregulation of NDUFV2 was observed in a depressed state compared with a euthymic state. The composite gene expression measure for discrimination between patients and healthy control subjects on the basis of 19 genes generated an area under the receiver...

  19. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes.

    Directory of Open Access Journals (Sweden)

    Dominik Reinhold

    Full Text Available Chronic obstructive pulmonary disease (COPD occurs typically in current or former smokers, but only a minority of people with smoking history develops the disease. Besides environmental factors, genetics is an important risk factor for COPD. However, the relationship between genetics, environment and phenotypes is not well understood. Sample sizes for genome-wide expression studies based on lung tissue have been small due to the invasive nature of sample collection. Increasing evidence for the systemic nature of the disease makes blood a good alternative source to study the disease, but there have also been few large-scale blood genomic studies in COPD. Due to the complexity and heterogeneity of COPD, examining groups of interacting genes may have more relevance than identifying individual genes. Therefore, we used Weighted Gene Co-expression Network Analysis to find groups of genes (modules that are highly connected. However, module definitions may vary between individual data sets. To alleviate this problem, we used a consensus module definition based on two cohorts, COPDGene and ECLIPSE. We studied the relationship between the consensus modules and COPD phenotypes airflow obstruction and emphysema. We also used these consensus module definitions on an independent cohort (TESRA and performed a meta analysis involving all data sets. We found several modules that are associated with COPD phenotypes, are enriched in functional categories and are overrepresented for cell-type specific genes. Of the 14 consensus modules, three were strongly associated with airflow obstruction (meta p ≤ 0.0002, and two had some association with emphysema (meta p ≤ 0.06; some associations were stronger in the case-control cohorts, and others in the cases-only subcohorts. Gene Ontology terms that were overrepresented included "immune response" and "defense response." The cell types whose type-specific genes were overrepresented in modules (p < 0.05 included

  20. Red blood cell transfusion in septic shock

    DEFF Research Database (Denmark)

    Rosland, Ragnhild G; Hagen, Marte U; Haase, Nicolai

    2014-01-01

    BACKGROUND: Treating anaemia with red blood cell (RBC) transfusion is frequent, but controversial, in patients with septic shock. Therefore we assessed characteristics and outcome associated with RBC transfusion in this group of high risk patients. METHODS: We did a prospective cohort study at 7...... general intensive care units (ICUs) including all adult patients with septic shock in a 5-month period. RESULTS: Ninety-five of the 213 included patients (45%) received median 3 (interquartile range 2-5) RBC units during shock. The median pre-transfusion haemoglobin level was 8.1 (7.4-8.9) g....../dl and independent of shock day and bleeding. Patients with cardiovascular disease were transfused at higher haemoglobin levels. Transfused patients had higher Simplified Acute Physiology Score (SAPS) II (56 (45-69) vs. 48 (37-61), p = 0.0005), more bleeding episodes, lower haemoglobin levels days 1 to 5, higher...

  1. Red blood cell transfusion in septic shock

    DEFF Research Database (Denmark)

    Rosland, Ragnhild G; Hagen, Marte U; Haase, Nicolai

    2014-01-01

    BACKGROUND: Treating anaemia with red blood cell (RBC) transfusion is frequent, but controversial, in patients with septic shock. Therefore we assessed characteristics and outcome associated with RBC transfusion in this group of high risk patients. METHODS: We did a prospective cohort study at 7...... general intensive care units (ICUs) including all adult patients with septic shock in a 5-month period. RESULTS: Ninety-five of the 213 included patients (45%) received median 3 (interquartile range 2-5) RBC units during shock. The median pre-transfusion haemoglobin level was 8.1 (7.4-8.9) g...... and SAPS II and SOFA-score on day 1. CONCLUSIONS: The decision to transfuse patients with septic shock was likely affected by disease severity and bleeding, but haemoglobin level was the only measure that consistently differed between transfused and non-transfused patients....

  2. Numerical analysis on cell-cell interaction of red blood cells during sedimentation

    Science.gov (United States)

    Shi, Xing

    2017-07-01

    The long-range hydrodynamic interaction among red blood cells plays an important role on the macroscopic behaviors, however, the molecular interaction at such scale is much weaker. In this paper, the sedimentations under external body force of two red blood cells are numerical simulated to investigate the hydrodynamic interaction between cells. The flow is solved by lattice Boltzmann method and the membrane of red blood cell is model by the spring model where the fluid-membrane interaction is coupled by fictitious domain method. It is found that the cells have the tendency to aggregate and may be aligned in a line along the sediment direction. Compared to the properties of a single cell under the same conditions, the sediment velocity of red blood cell group is larger; the leading cell deforms less and the following cell endures larger deformation.

  3. Shape-Shifted Red Blood Cells: A Novel Red Blood Cell Stage?

    Science.gov (United States)

    Chico, Verónica; Puente-Marin, Sara; Nombela, Iván; Ciordia, Sergio; Mena, María Carmen; Carracedo, Begoña; Villena, Alberto; Mercado, Luis; Coll, Julio; Ortega-Villaizan, María Del Mar

    2018-04-19

    Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright⁻Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells.

  4. Self-Sorting of White Blood Cells in a Lattice

    Science.gov (United States)

    Carlson, Robert H.; Gabel, Christopher V.; Chan, Shirley S.; Austin, Robert H.; Brody, James P.; James, D. W. Winkelman M.

    1997-09-01

    When a drop of human blood containing red and white blood cells is forced to move via hydrodynamic forces in a lattice of channels designed to mimic the capillary channels, the white cells self-fractionate into the different types of white cells. The pattern of white cells that forms is due to a combination of stretch-activated adhesion of cells with the walls, stochastic sticking probabilities, and heteroavoidance between granulocytes and lymphocytes.

  5. The effects of blood and blood products on the arachnoid cell.

    Science.gov (United States)

    Hansen, Eric A; Romanova, Liudmila; Janson, Christopher; Lam, Cornelius H

    2017-06-01

    After traumatic brain injury (TBI), large amounts of red blood cells and hemolytic products are deposited intracranially creating debris in the cerebrospinal fluid (CSF). This debris, which includes heme and bilirubin, is cleared via the arachnoid granulations and lymphatic systems. However, the mechanisms by which erythrocytes and their breakdown products interfere with normal CSF dynamics remain poorly defined. The purpose of this study was to model in vitro how blood breakdown products affect arachnoid cells at the CSF-blood barrier, and the extent to which the resorption of CSF into the venous drainage system is mechanically impaired following TBI. Arachnoid cells were grown to confluency on permeable membranes. Rates of growth and apoptosis were measured in the presence of blood and lysed blood, changes in transepithelial electrical resistance (TEER) was measured in the presence of blood and hemoglobin, and small molecule permeability was determined in the presence of blood, lysed blood, bilirubin, and biliverdin. These results were directly compared with an established rat brain endothelial cell line (RBEC4) co-cultured with rat brain astrocytes. We found that arachnoid cells grown in the presence of whole or lysed erythrocytes had significantly slower growth rates than controls. Bilirubin and biliverdin, despite their low solubilities, altered the paracellular transport of arachnoid cells more than the acute blood breakdown components of whole and lysed blood. Mannitol permeability was up to four times higher in biliverdin treatments than controls, and arachnoid membranes demonstrated significantly decreased small molecule permeabilities in the presence of whole and lysed blood. We conclude that short-term (5 days) arachnoid cell viability are affected by blood and blood breakdown products, with important consequences for CSF flow and blood clearance after TBI.

  6. Effect on osmotic fragility of red blood cells of whole blood submitted ...

    African Journals Online (AJOL)

    Whole body vibration (WBV) exercises in oscillating platforms (OP) have emerged in sports and in the rehabilitation procedures of clinical disorders. The aim of this work was to verify the effects of vibrations on the osmotic fragility (OF) of red blood cells (RBC) isolated from whole blood submitted to OP. Heparinized blood ...

  7. Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.

    Science.gov (United States)

    Paquette, Alison G; Shynlova, Oksana; Kibschull, Mark; Price, Nathan D; Lye, Stephen J

    2018-03-01

    Preterm birth is the leading cause of newborn death worldwide, and is associated with significant cognitive and physiological challenges in later life. There is a pressing need to define the mechanisms that initiate spontaneous preterm labor, and for development of novel clinical biomarkers to identify high-risk pregnancies. Most preterm birth studies utilize fetal tissues, and there is limited understanding of the transcriptional changes that occur in mothers undergoing spontaneous preterm labor. Earlier work revealed that a specific population of maternal peripheral leukocytes (macrophages/monocytes) play an active role in the initiation of labor. Thus, we hypothesized that there are dynamic gene expression changes in maternal blood leukocytes during preterm labor. Using next-generation sequencing we aim to characterize the transcriptome in whole blood leukocytes and peripheral monocytes of women undergoing spontaneous preterm labor compared to healthy pregnant women who subsequently delivered at full term. RNA sequencing was performed in both whole blood and peripheral monocytes from women who underwent preterm labor (24-34 weeks of gestation, N = 20) matched for gestational age to healthy pregnant controls (N = 30). All participants were a part of the Ontario Birth Study cohort (Toronto, Ontario, Canada). We identified significant differences in expression of 262 genes in peripheral monocytes and 184 genes in whole blood of women who were in active spontaneous preterm labor compared to pregnant women of the same gestational age not undergoing labor, with 43 of these genes differentially expressed in both whole blood and peripheral monocytes. ADAMTS2 expression was significantly increased in women actively undergoing spontaneous preterm labor, which we validated through digital droplet reverse transcriptase polymerase chain reaction. Intriguingly, we have also identified a number of gene sets including signaling by stem cell factor-KIT, nucleotide metabolism

  8. Phenotype and functions of memory Tfh cells in human blood.

    Science.gov (United States)

    Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki

    2014-09-01

    Our understanding of the origin and functions of human blood CXCR5(+) CD4(+) T cells found in human blood has changed dramatically in the past years. These cells are currently considered to represent a circulating memory compartment of T follicular helper (Tfh) lineage cells. Recent studies have shown that blood memory Tfh cells are composed of phenotypically and functionally distinct subsets. Here, we review the current understanding of human blood memory Tfh cells and the subsets within this compartment. We present a strategy to define these subsets based on cell surface profiles. Finally, we discuss how increased understanding of the biology of blood memory Tfh cells may contribute insight into the pathogenesis of autoimmune diseases and the mode of action of vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Gene therapy for sickle cell disease.

    Science.gov (United States)

    Olowoyeye, Abiola; Okwundu, Charles I

    2016-11-14

    Sickle cell disease encompasses a group of genetic disorders characterized by the presence of at least one hemoglobin S (Hb S) allele, and a second abnormal allele that could allow abnormal hemoglobin polymerisation leading to a symptomatic disorder.Autosomal recessive disorders (such as sickle cell disease) are good candidates for gene therapy because a normal phenotype can be restored in diseased cells with only a single normal copy of the mutant gene. This is an update of a previously published Cochrane Review. The objectives of this review are:to determine whether gene therapy can improve survival and prevent symptoms and complications associated with sickle cell disease;to examine the risks of gene therapy against the potential long-term gain for people with sickle cell disease. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises of references identified from comprehensive electronic database searches and searching relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Haemoglobinopathies Trials Register: 15 August 2016. All randomised or quasi-randomised clinical trials (including any relevant phase 1, 2 or 3 trials) of gene therapy for all individuals with sickle cell disease, regardless of age or setting. No trials of gene therapy for sickle cell disease were found. No trials of gene therapy for sickle cell disease were reported. No randomised or quasi-randomised clinical trials of gene therapy for sickle cell disease were reported. Thus, no objective conclusions or recommendations in practice can be made on gene therapy for sickle cell disease. This systematic review has identified the need for well-designed, randomised controlled trials to assess the benefits and risks of gene therapy for sickle cell disease.

  10. Detection of circulating breast tumor cells by differential expression of marker genes

    NARCIS (Netherlands)

    Bosma, Astrid J.; Weigelt, Britta; Lambrechts, A. Caro; Verhagen, Onno J. H. M.; Pruntel, Roelof; Hart, Augustinus A. M.; Rodenhuis, Sjoerd; van 't Veer, Laura J.

    2002-01-01

    Purpose: We undertook a systematic approach to identify breast cancer (BC) marker genes with molecular assays and evaluated these marker genes for the detection of minimal residual disease in peripheral blood mononuclear cells (PBMCs). Experimental Design: We used serial analysis of gene expression

  11. Exercise, training and red blood cell turnover.

    Science.gov (United States)

    Smith, J A

    1995-01-01

    Endurance training can lead to what has been termed 'sports anaemia'. Although under normal conditions, red blood cells (RBCs) have a lifespan of about 120 days, the rate of aging may increase during intensive training. However, RBC deficiency is rare in athletes, and sports anaemia is probably due to an expanded plasma volume. Cycling, running and swimming have been shown to cause RBC damage. While most investigators measure indices of haemolysis (for example, plasma haemoglobin or haptoglobin), RBC removal is normally an extravascular process that does not involve haemolysis. Attention is now turning to cellular indices (such as antioxidant depletion, or protein or lipid damage) that may be more indicative of exercise-induced damage. RBCs are vulnerable to oxidative damage because of their continuous exposure to oxygen and their high concentrations of polyunsaturated fatty acids and haem iron. As oxidative stress may be proportional to oxygen uptake, it is not surprising that antioxidants in muscle, liver and RBCs can be depleted during exercise. Oxidative damage to RBCs can also perturb ionic homeostasis and facilitate cellular dehydration. These changes impair RBC deformability which can, in turn, impede the passage of RBCs through the microcirculation. This may lead to hypoxia in working muscle during single episodes of exercise and possibly an increased rate of RBC destruction with long term exercise. Providing RBC destruction does not exceed the rate of RBC production, no detrimental effect to athletic performance should occur. An increased rate of RBC turnover may be advantageous because young cells are more efficient in transporting oxygen. Because most techniques examine the RBC population as a whole, more sophisticated methods which analyse cells individually are required to determine the mechanisms involved in exercise-induced damage of RBCs.

  12. Global changes in Staphylococcus aureus gene expression in human blood.

    Directory of Open Access Journals (Sweden)

    Natalia Malachowa

    2011-04-01

    Full Text Available Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB, a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC, those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL, and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence.

  13. Blood volume measurements in gopher snakes, using autologous 51Cr-labeled red blood cells.

    Science.gov (United States)

    Smeller, J M; Bush, M; Seal, U S

    1978-02-01

    Blood volume determinations were performed in 5 anesthetized gopher snakes (Pituophis melanoleucus catenifer) by means of a 51Cr-labeled red blood cell (RBC) method. The mean blood volume was 52.8 ml/kg of body weight (+/- 6.21 SE). Previous blood volume measurements have not been reported for this species. The RBC survival rate was estimated to be greater than 660 days. The RBC survival rate is long, but it cannot be determined accurately by this method.

  14. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  15. Red blood cell transfusion in neurosurgery.

    Science.gov (United States)

    Linsler, Stefan; Ketter, Ralf; Eichler, Hermann; Schwerdtfeger, Karsten; Steudel, Wolf-Ingo; Oertel, Joachim

    2012-07-01

    The necessity of red blood cell (RBC) transfusions in neurosurgical procedures is under debate. Although detailed recommendations exist for many other surgical disciplines, there are very limited data on the probability of transfusions during neurosurgical procedures. Three-thousand and twenty-six consecutive adult patients undergoing neurosurgical procedures at Saarland University Hospital from December 2006 to June 2008 were retrospectively analyzed for administration of RBCs. The patients were grouped into 11 main diagnostic categories for analysis. The transfusion probability and cross-match to transfusion ratio (C/T ratio) were calculated. Overall, the transfusion probability for neurosurgical procedures was 1.7 % (52/3,026). The probability was 6.5 % for acute subdural hematoma (7/108), 6.2 % for spinal tumors (5/80), 4.6 % for intracerebral hemorrhage (ICH, 4/98), 2.8 % for abscess (3/108), 2.4 % for traumatic brain injury (4/162), 2.3 % for cerebral ischemia (1/44), 1.9 % for subarachnoid hemorrhage (SAH) /aneurysms (4/206), 1.4 % for brain tumors (10/718), 0.8 % for hydrocephalus (2/196), 0.4 % for degenerative diseases of the spine (5/1290), including 3.6 % (3/82) for posterior lumbar interbody fusion (PLIF) and 0 % for epidural hematoma (0/15). The transfusion probabilities for clipping and coiling of SAH were 2.9 % (2/68) and 1.7 % (2/120) respectively. The probability of blood transfusion during neurosurgical procedures is well below the 10 % level which is generally defined as the limit for preoperative appropriation of RBCs. Patients with spinal tumors, acute subdural hematomas or ICH, i.e., patients undergoing large decompressive procedures of bone or soft tissue, had a higher probability of transfusion.

  16. Identification and red blood cell automated counting from blood smear images using computer-aided system.

    Science.gov (United States)

    Acharya, Vasundhara; Kumar, Preetham

    2018-03-01

    Red blood cell count plays a vital role in identifying the overall health of the patient. Hospitals use the hemocytometer to count the blood cells. Conventional method of placing the smear under microscope and counting the cells manually lead to erroneous results, and medical laboratory technicians are put under stress. A computer-aided system will help to attain precise results in less amount of time. This research work proposes an image-processing technique for counting the number of red blood cells. It aims to examine and process the blood smear image, in order to support the counting of red blood cells and identify the number of normal and abnormal cells in the image automatically. K-medoids algorithm which is robust to external noise is used to extract the WBCs from the image. Granulometric analysis is used to separate the red blood cells from the white blood cells. The red blood cells obtained are counted using the labeling algorithm and circular Hough transform. The radius range for the circle-drawing algorithm is estimated by computing the distance of the pixels from the boundary which automates the entire algorithm. A comparison is done between the counts obtained using the labeling algorithm and circular Hough transform. Results of the work showed that circular Hough transform was more accurate in counting the red blood cells than the labeling algorithm as it was successful in identifying even the overlapping cells. The work also intends to compare the results of cell count done using the proposed methodology and manual approach. The work is designed to address all the drawbacks of the previous research work. The research work can be extended to extract various texture and shape features of abnormal cells identified so that diseases like anemia of inflammation and chronic disease can be detected at the earliest.

  17. Blood lead levels, iron metabolism gene polymorphisms and homocysteine: a gene-environment interaction study.

    Science.gov (United States)

    Kim, Kyoung-Nam; Lee, Mee-Ri; Lim, Youn-Hee; Hong, Yun-Chul

    2017-12-01

    Homocysteine has been causally associated with various adverse health outcomes. Evidence supporting the relationship between lead and homocysteine levels has been accumulating, but most prior studies have not focused on the interaction with genetic polymorphisms. From a community-based prospective cohort, we analysed 386 participants (aged 41-71 years) with information regarding blood lead and plasma homocysteine levels. Blood lead levels were measured between 2001 and 2003, and plasma homocysteine levels were measured in 2007. Interactions of lead levels with 42 genotyped single-nucleotide polymorphisms (SNPs) in five genes ( TF , HFE , CBS , BHMT and MTR ) were assessed via a 2-degree of freedom (df) joint test and a 1-df interaction test. In secondary analyses using imputation, we further assessed 58 imputed SNPs in the TF and MTHFR genes. Blood lead concentrations were positively associated with plasma homocysteine levels (p=0.0276). Six SNPs in the TF and MTR genes were screened using the 2-df joint test, and among them, three SNPs in the TF gene showed interactions with lead with respect to homocysteine levels through the 1-df interaction test (phomocysteine levels at an α-level of 0.05, but the associations did not persist after Bonferroni correction. These SNPs did not show interactions with lead levels. Blood lead levels were positively associated with plasma homocysteine levels measured 4-6 years later, and three SNPs in the TF gene modified the association. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  19. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  20. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    Science.gov (United States)

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  1. Bystander apoptosis in human cells mediated by irradiated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr, E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine (Ukraine); Lloyd, David; Finnon, Paul [Centre for Radiation, Chemical and Environmental Hazards of the Health Protection Agency of the United Kingdom (United Kingdom)

    2012-03-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G{sub 0}-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40 Gy acute {gamma}-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 Degree-Sign C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 {+-} 1.8% in plasma-free cultures, 21.6 {+-} 1.1% in cultures treated with plasma from unirradiated blood, 20.2 {+-} 1.4% in cultures with plasma from blood given 2-4 Gy and 16.7 {+-} 3.2% in cultures with plasma from blood given 6-10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  2. Bystander apoptosis in human cells mediated by irradiated blood plasma

    International Nuclear Information System (INIS)

    Vinnikov, Volodymyr; Lloyd, David; Finnon, Paul

    2012-01-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G 0 -stage lymphocytes. Plasma was collected from healthy donors’ blood irradiated in vitro to 0–40 Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 °C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 ± 1.8% in plasma-free cultures, 21.6 ± 1.1% in cultures treated with plasma from unirradiated blood, 20.2 ± 1.4% in cultures with plasma from blood given 2–4 Gy and 16.7 ± 3.2% in cultures with plasma from blood given 6–10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  3. Red blood cell alloimmunization in pregnancy.

    Science.gov (United States)

    Moise, Kenneth J

    2005-07-01

    Red blood cell (RBC) alloimmunization in pregnancy continues to occur despite the widespread use of both antenatal and postpartum Rhesus immune globulin (RhIG), due mainly to inadvertent omissions in administration as well as antenatal sensitization prior to RhIG given at 28 weeks' gestation. Additional instances are attributable to the lack of immune globulins to other RBC antigens. Evaluation of the alloimmunized pregnancy begins with the maternal titer. Once a critical value [32 for anti-Rh(D) and other irregular antibodies; 8 for anti-K and -k] is reached, fetal surveillance using serial Doppler ultrasound measurements of the peak velocity in the fetal middle cerebral artery (MCA) is standard. In the case of a heterozygous paternal phenotype, amniocentesis can be performed to detect the antigen-negative fetus that requires no further evaluation. MCA velocities greater than 1.5 multiples of the median necessitate cordocentesis, and if fetal anemia is detected, intrauterine transfusion therapy is initiated. A perinatal survival of greater than 85% with normal neurologic outcome is now expected. Future therapies will target specific immune manipulations in the pregnant patient.

  4. Signaling pathways regulating red blood cell aggregation.

    Science.gov (United States)

    Muravyov, Alexei; Tikhomirova, Irina

    2014-01-01

    The exposure of red blood cells (RBC) to some hormones (epinephrine, insulin and glucagon) and agonists of α- and β-adrenergic receptors (phenylephrine, clonidine and isoproterenol) may modify RBC aggregation (RBCA). Prostaglandin E1 (PGE1) significantly decreased RBCA, and PGE2 had a similar but lesser effect. Adenylyl cyclase (AC) stimulator forskolin added to RBC suspension, caused a decrease of RBCA. More marked lowering of RBCA occurred after RBC treatment by dB-cAMP. Phosphodiesterase (PDE) inhibitors markedly reduced RBCA. Ca2+ influx stimulated by A23187 was accompanied by an increase of RBCA. The blocking of Ca2+ entry into the RBC by verapamil or the chelation of Ca2+ by EGTA led to a significant RBCA decrease. Lesser changes of aggregation were found after RBC incubation with protein kinase C stimulator phorbol 12-myristate 13-acetate (PMA). A significant inhibitory effect of tyrosine protein kinase (TPK) activator cisplatin on RBCA was revealed, while selective TPK inhibitor, lavendustin, eliminated the above mentioned effect. Taken together, the data demonstrate that changes in RBCA are connected with activation of different intracellular signaling pathways. We suggest that alterations in RBCA are mainly associated with the crosstalk between the adenylyl cyclase-cAMP system and Ca2+ control mechanisms.

  5. Multifactorial aspects of antibody-mediated blood cell destruction

    NARCIS (Netherlands)

    Kapur, R.

    2014-01-01

    The research described in this thesis focuses on diseases of antibody-mediated blood cell destruction via FcγRs on phagocytes, in particular regarding platelets in fetal or neonatal alloimmune thrombocytopenia (FNAIT) and red blood cells (RBC) in hemolytic disease of the fetus and newborn (HDFN).

  6. Magnetophoretic separation of blood cells at the microscale

    International Nuclear Information System (INIS)

    Furlani, E P

    2007-01-01

    We present a method and model for the direct and continuous separation of red and white blood cells in plasma. The method is implemented at the microscale using a microfluidic system that consists of an array of integrated soft-magnetic elements embedded adjacent to a microfluidic channel. The microsystem is passive and is activated via application of a bias field that magnetizes the elements. Once magnetized, the elements produce a nonuniform magnetic field distribution in the microchannel, which gives rise to a force on blood cells as they pass through the microsystem. In whole blood, white blood cells behave as diamagnetic microparticles while red blood cells exhibit diamagnetic or paramagnetic behaviour depending on the oxygenation of their haemoglobin. We develop a mathematical model for predicting the motion of blood cells in the microsystem that takes into account the dominant magnetic, fluidic and buoyant forces on the cells. We use the model to study red/white blood cell transport, and our analysis indicates that the microsystem is capable of rapid and efficient red/white blood cell separation

  7. Multiple loci are associated with white blood cell phenotypes

    NARCIS (Netherlands)

    M.A. Nalls (Michael); D. Couper (David); T. Tanaka (Toshiko); F.J.A. van Rooij (Frank); M-H. Chen (Ming-Huei); A.V. Smith (Albert Vernon); D. Toniolo (Daniela); N.A. Zakai (Neil); Q. Yang (Qiong Fang); A. Greinacher (Andreas); A.R. Wood (Andrew); M. Garcia (Melissa); P. Gasparini (Paolo); Y. Liu (YongMei); T. Lumley (Thomas); A.R. Folsom (Aaron); A.P. Reiner (Alex); C. Gieger (Christian); V. Lagou (Vasiliki); J.F. Felix (Janine); H. Völzke (Henry); N.A. Gouskova (Natalia); A. Biffi (Alessandro); A. Döring (Angela); U. Völker (Uwe); S. Chong (Sean); K.L. Wiggins (Kerri); A. Rendon (Augusto); A. Dehghan (Abbas); M. Moore (Matt); K.D. Taylor (Kent); J.G. Wilson (James); G. Lettre (Guillaume); A. Hofman (Albert); J.C. Bis (Joshua); N. Pirastu (Nicola); C.S. Fox (Caroline); C. Meisinger (Christa); J.G. Sambrook (Jennifer); S. Arepalli (Sampath); M. Nauck (Matthias); H. Prokisch (Holger); J. Stephens (Jonathan); N.L. Glazer (Nicole); L.A. Cupples (Adrienne); Y. Okada (Yukinori); A. Takahashi (Atsushi); Y. Kamatani (Yoichiro); K. Matsuda (Koichi); T. Tsunoda (Tatsuhiko); M. Kubo (Michiaki); Y. Nakamura (Yusuke); K. Yamamoto (Kazuhiko); M. Stumvoll (Michael); A. Tönjes (Anke); I. Prokopenko (Inga); T. Illig (Thomas); K.V. Patel (Kushang); S.F. Garner (Stephen); B. Kuhnel (Brigitte); M. Mangino (Massimo); B.A. Oostra (Ben); S.L. Thein; J. Coresh (Josef); H.E. Wichmann (Heinz Erich); S. Menzel (Stephan); J. Lin; G. Pistis (Giorgio); A.G. Uitterlinden (André); T.D. Spector (Timothy); A. Teumer (Alexander); G. Eiriksdottir (Gudny); V. Gudnason (Vilmundur); S. Bandinelli (Stefania); T.M. Frayling (Timothy); A. Chakravarti (Aravinda); P. Tikka-Kleemola (Päivi); D. Melzer (David); W.H. Ouwehand (Willem); D. Levy (Daniel); E.A. Boerwinkle (Eric); A. Singleton (Andrew); D.G. Hernandez (Dena); D.L. Longo (Dan); N. Soranzo (Nicole); J.C.M. Witteman (Jacqueline); B.M. Psaty (Bruce); L. Ferrucci (Luigi); T.B. Harris (Tamara); C.J. O'Donnell (Christopher); S.K. Ganesh (Santhi)

    2011-01-01

    textabstractWhite blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types.

  8. HCV RNA in peripheral blood mononuclear cells (PBMCs) as a ...

    African Journals Online (AJOL)

    Background: Hepatitis C virus (HCV) has been found to infect peripheral blood mononuclear cells (PBMCs), using them as a reservoir, which might contribute to the development of resistance to treatment. Objectives: To study hepatitis virus C (HCV) RNA in peripheral blood mononuclear cells (PBMCs) of patients with ...

  9. HCV RNA in peripheral blood mononuclear cells (PBMCs) as a ...

    African Journals Online (AJOL)

    Abdel Fatah Fahmy Hanno

    2013-06-27

    Jun 27, 2013 ... Abstract Background: Hepatitis C virus (HCV) has been found to infect peripheral blood mono- nuclear cells (PBMCs), using them as a reservoir, which might contribute to the development of resistance to treatment. Objectives: To study hepatitis virus C (HCV) RNA in peripheral blood mononuclear cells.

  10. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking

    Science.gov (United States)

    Focosi, Daniele

    2016-01-01

    Summary Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. Significance The aging population in Western countries is causing a progressive reduction of blood donors and a constant increase of blood recipients. Because blood is the main therapeutic option to treat acute hemorrhage, cost-effective alternatives to blood donations are being actively investigated. The enormous replication capability of induced pluripotent stem cells and their promising results in many other fields of medicine could be an apt solution to produce the large numbers of viable cells required in transfusion and usher in a new era in transfusion medicine. The present report describes the potentiality, technological hurdles, and promises of induced pluripotent stem cells to generate red blood cells by redifferentiation. PMID:26819256

  11. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood

    Science.gov (United States)

    Chen, Jingdong; Chen, Di; Yuan, Tao; Xie, Yao; Chen, Xiang

    2013-01-01

    Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs. PMID:24404026

  12. Differentially expressed gene transcripts using RNA sequencing from the blood of immunosuppressed kidney allograft recipients.

    Directory of Open Access Journals (Sweden)

    Casey Dorr

    Full Text Available We performed RNA sequencing (RNAseq on peripheral blood mononuclear cells (PBMCs to identify differentially expressed gene transcripts (DEGs after kidney transplantation and after the start of immunosuppressive drugs. RNAseq is superior to microarray to determine DEGs because it's not limited to available probes, has increased sensitivity, and detects alternative and previously unknown transcripts. DEGs were determined in 32 adult kidney recipients, without clinical acute rejection (AR, treated with antibody induction, calcineurin inhibitor, mycophenolate, with and without steroids. Blood was obtained pre-transplant (baseline, week 1, months 3 and 6 post-transplant. PBMCs were isolated, RNA extracted and gene expression measured using RNAseq. Principal components (PCs were computed using a surrogate variable approach. DEGs post-transplant were identified by controlling false discovery rate (FDR at < 0.01 with at least a 2 fold change in expression from pre-transplant. The top 5 DEGs with higher levels of transcripts in blood at week 1 were TOMM40L, TMEM205, OLFM4, MMP8, and OSBPL9 compared to baseline. The top 5 DEGs with lower levels at week 1 post-transplant were IL7R, KLRC3, CD3E, CD3D, and KLRC2 (Striking Image compared to baseline. The top pathways from genes with lower levels at 1 week post-transplant compared to baseline, were T cell receptor signaling and iCOS-iCOSL signaling while the top pathways from genes with higher levels than baseline were axonal guidance signaling and LXR/RXR activation. Gene expression signatures at month 3 were similar to week 1. DEGs at 6 months post-transplant create a different gene signature than week 1 or month 3 post-transplant. RNAseq analysis identified more DEGs with lower than higher levels in blood compared to baseline at week 1 and month 3. The number of DEGs decreased with time post-transplant. Further investigations to determine the specific lymphocyte(s responsible for differential gene

  13. Specific features of red blood cell morphology in hemolytic disease neonates undergoing intrauterine intravascular blood transfusion

    Directory of Open Access Journals (Sweden)

    A. V. Ivanova

    2016-01-01

    Full Text Available The paper presents data on the characteristics of red blood cell morphology in infants who have undergone intrauterine intravascular blood transfusion for hemolytic disease of the fetus. The infants are shown to have a reduction in the mean volume of red blood cells and in their mean level of hemoglobin, a decrease in the fraction of fetal hemoglobin and an increase in oxygen tension at half saturation. The above morphological characteristics of red blood cells remain decreased during the neonatal period after exchange transfusion or others, as clinically indicated, which seems to suggest that the compensatory-adaptive mechanisms to regulate hematopoiesis are exhausted and a donor’s red blood cells continue to be predominant.

  14. Differential expression of cell adhesion genes

    DEFF Research Database (Denmark)

    Stein, Wilfred D; Litman, Thomas; Fojo, Tito

    2005-01-01

    that compare cells grown in suspension to similar cells grown attached to one another as aggregates have suggested that it is adhesion to the extracellular matrix of the basal membrane that confers resistance to apoptosis and, hence, resistance to cytotoxins. The genes whose expression correlates with poor...... survival might, therefore, act through such a matrix-to-cell suppression of apoptosis. Indeed, correlative mining of gene expression and patient survival databases suggests that poor survival in patients with metastatic cancer correlates highly with tumor expression of a common theme: the genes involved...

  15. From artificial red blood cells, oxygen carriers, and oxygen therapeutics to artificial cells, nanomedicine, and beyond.

    Science.gov (United States)

    Chang, Thomas M S

    2012-06-01

    The first experimental artificial red blood cells have all three major functions of red blood cells (rbc). However, the first practical one is a simple polyhemoglobin (PolyHb) that only has an oxygen-carrying function. This is now in routine clinical use in South Africa and Russia. An oxygen carrier with antioxidant functions, PolyHb-catalase-superoxide dismutase, can fulfill two of the three functions of rbc. Even more complete is one with all three functions of rbc in the form of PolyHb-catalase-superoxide dismutase-carbonic anhydrase. The most advanced ones are nanodimension artificial rbc with either PEG-lipid membrane or PEG-PLA polymer membrane. Extensions into oxygen therapeutics include a PolyHb-tyrosinase that suppresses the growth of melanoma in a mice model. Another is a PolyHb-fibrinogen that is an oxygen carrier with platelet-like function. Research has now extended well beyond the original research on artificial rbc into many areas of artificial cells. These include nanoparticles, nanotubules, lipid vesicles, liposomes, polymer-tethered lipid vesicles, polymersomes, microcapsules, bioencapsulation, nanocapules, macroencapsulation, synthetic cells, and others. These are being used in nanotechnology, nanomedicine, regenerative medicine, enzyme/gene therapy, cell/stem cell therapy, biotechnology, drug delivery, hemoperfusion, nanosensers, and even by some groups in agriculture, industry, aquatic culture, nanocomputers, and nanorobotics.

  16. TCRgamma gene rearrangement analysis in skin samples and peripheral blood of mycosis fungoides patients.

    Science.gov (United States)

    Kandolf Sekulović, L; Cikota, B; Stojadinović, O; Basanović, J; Skiljević, D; Medenica, Lj; Pavlović, M; Magić, Z

    2007-12-01

    Diagnosing mycosis fungoides (MF) can be challenging in the early stage of the disease because histopathological features may simulate a variety of benign inflammatory skin diseases. Assessment of T-cell clonality was found to be useful in diagnosis and follow-up of patients. In this study, PCR-based TCRgamma gene rearrangement analysis was performed in skin and peripheral blood samples of patients with MF treated at the two largest referral centers in Serbia, and the results obtained were correlated with clinical and follow-up data. Skin and peripheral blood samples were obtained with informed consent from 37 patients treated at the Department of Dermatology of the Military Medical Academy and the Medical Center of Serbia from 2001 to 2006. The median time of follow-up was 4 years. Multiplex PCR was used for TCRgamma gene rearrangement analysis in skin and peripheral blood samples. Clonality results were correlated with the clinical data and disease course data. Monoclonality was detected in skin samples of 30/37 patients (81%), in 2/5 patients with large-plaque parapsoriasis (LPP), in 28/32 (88%) patients with histologically proven MF, and in 1/16 (6%) patients with benign inflammatory dermatoses. A monoclonal pattern in both skin and peripheral blood was detected in 7/16 (44%) patients in the late stage of the disease, and in 1/7 (14%) patients in the early stage of the disease. A dominant clone was found in both skin and peripheral blood in 1/4 patients in remission, 2/5 with a stable disease, and 4/9 (44%) with disease progression. TCR-gamma gene rearrangement analysis can be regarded as a useful adjunct to diagnosis of epidermotropic lymphoproliferative disorders. The presence of a dominant clone in both the skin and peripheral blood was more frequently detected in late stages and in patients with disease progression, confirming the usefulness of clonality detection by TCR-gamma gene rearrangement analysis in follow-up of patients with primary cutaneous T-cell

  17. Down-regulation of selected Blood-brain Barrier Specific Genes from Capillaries to Bovine In Vitro Models

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Brodin, Birger

    Cultures of primary bovine brain endothelial cells (BECs) grown, often together with astrocytes, on permeable supports in two-compartment culture systems are commonly used as an in vitro model of the blood-brain barrier (BBB). While trans-endothelial electrical resistance, restriction...... the in vivo gene expression of brain capillary endothelial cells. Primary bovine endothelial cells and rat astrocytes were cultured in different culture configurations and the mRNA expression of selected genes (vWF, Glut-1, P-gp, claudin-1,-5, occludin, JAM-1, LAT-1, SLC16A1, MRP-1,-4, BCRP, ZO-1, AP, TPA...

  18. Blood Gene Signatures of Chagas Cardiomyopathy With or Without Ventricular Dysfunction.

    Science.gov (United States)

    Ferreira, Ludmila Rodrigues Pinto; Ferreira, Frederico Moraes; Nakaya, Helder Imoto; Deng, Xutao; Cândido, Darlan da Silva; de Oliveira, Lea Campos; Billaud, Jean-Noel; Lanteri, Marion C; Rigaud, Vagner Oliveira-Carvalho; Seielstad, Mark; Kalil, Jorge; Fernandes, Fabio; Ribeiro, Antonio Luiz P; Sabino, Ester Cerdeira; Cunha-Neto, Edecio

    2017-02-01

    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects 7 million people in Latin American areas of endemicity. About 30% of infected patients will develop chronic Chagas cardiomyopathy (CCC), an inflammatory cardiomyopathy characterized by hypertrophy, fibrosis, and myocarditis. Further studies are necessary to understand the molecular mechanisms of disease progression. Transcriptome analysis has been increasingly used to identify molecular changes associated with disease outcomes. We thus assessed the whole-blood transcriptome of patients with Chagas disease. Microarray analysis was performed on blood samples from 150 subjects, of whom 30 were uninfected control patients and 120 had Chagas disease (1 group had asymptomatic disease, and 2 groups had CCC with either a preserved or reduced left ventricular ejection fraction [LVEF]). Each Chagas disease group displayed distinct gene expression and functional pathway profiles. The most different expression patterns were between CCC groups with a preserved or reduced LVEF. A more stringent analysis indicated that 27 differentially expressed genes, particularly those related to natural killer (NK)/CD8+ T-cell cytotoxicity, separated the 2 groups. NK/CD8+ T-cell cytotoxicity could play a role in determining Chagas disease progression. Understanding genes associated with disease may lead to improved insight into CCC pathogenesis and the identification of prognostic factors for CCC progression. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  19. In silico mutation analysis of human beta globin gene in sickle cell disease patients

    OpenAIRE

    Hira Mubeen; Rubab Zahra Naqvi; Ammara Masood; Muhammad Waseem Shoaib; Shahid Raza

    2016-01-01

    Background: Sickle cell disease is an inherited blood disorder that affects red blood cells. People with sickle cell conditions make a different form of hemoglobin a called hemoglobin S. Sickle cell conditions are inherited from parents in much the same way as blood type, hair color and texture, eye color and other physical traits. Sickle cell disease occurs due to a single mutation on the b-globin gene, namely, a substitution of glutamic acid for valine at position 6 of the b chain. Several ...

  20. Heterogeneity in white blood cells has potential to confound DNA methylation measurements.

    Directory of Open Access Journals (Sweden)

    Bjorn T Adalsteinsson

    Full Text Available Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50-179 and in two white blood cell fractions (n = 20, isolated using density gradient centrifugation, in four CGIs (CpG Islands located in genes HHEX (10 CpG sites assayed, KCNJ11 (8 CpGs, KCNQ1 (4 CpGs and PM20D1 (7 CpGs. Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter explained up to 40% (p<0.0001 of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4-15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.

  1. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  2. Exercise-induced blood lactate increase does not change red blood cell deformability in cyclists.

    Directory of Open Access Journals (Sweden)

    Michael J Simmonds

    Full Text Available BACKGROUND: The effect of exercise-induced lactate production on red blood cell deformability and other blood rheological changes is controversial, given heavy-exercise induces biochemical processes (e.g., oxidative stress known to perturb haemorheology. The aim of the present study was to examine the haemorheological response to a short-duration cycling protocol designed to increase blood lactate concentration, but of duration insufficient to induce significant oxidative stress. METHODS: Male cyclists and triathletes (n = 6; 27±7 yr; body mass index: 23.7±3.0 kg/m²; peak oxygen uptake 4.02±0.51 L/min performed unloaded (0 W, moderate-intensity, and heavy-intensity cycling. Blood was sampled at rest and during the final minute of each cycling bout. Blood chemistry, blood viscosity, red blood cell aggregation and red blood cell deformability were measured. RESULTS: Blood lactate concentration increased significantly during heavy-intensity cycling, when compared with all other conditions. Methaemoglobin fraction did not change during any exercise bout when compared with rest. Blood viscosity at native haematocrit increased during heavy-intensity cycling at higher-shear rates when compared with rest, unloaded and moderate-intensity cycling. Heavy-intensity exercise increased the amplitude of red blood cell aggregation in native haematocrit samples when compared with all other conditions. Red blood cell deformability was not changed by exercise. CONCLUSION: Acute exercise perturbs haemorheology in an intensity dose-response fashion; however, many of the haemorheological effects appear to be secondary to haemoconcentration, rather than increased lactate concentration.

  3. Red blood cell vesiculation in hereditary hemolytic anemia

    Directory of Open Access Journals (Sweden)

    Amr eAlaarg

    2013-12-01

    Full Text Available Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterised by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely asessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary

  4. Red blood cell vesiculation in hereditary hemolytic anemia

    Science.gov (United States)

    Alaarg, Amr; Schiffelers, Raymond M.; van Solinge, Wouter W.; van Wijk, Richard

    2013-01-01

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias. PMID

  5. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    to determine the density and compressibility of individual cells enables the prediction and alteration of the separation outcome for a given cell mixture. We apply the method on white blood cells (WBCs) and DU145 prostate cancer cells (DUCs) aiming to improve isolation of circulating tumor cells from blood......, an emerging tool in the monitoring and characterizing of metastatic cancer....

  6. HTLV-1 subgroups associated with the risk of HAM/TSP are related to viral and host gene expression in peripheral blood mononuclear cells, independent of the transactivation functions of the viral factors.

    Science.gov (United States)

    Yasuma, Keiko; Matsuzaki, Toshio; Yamano, Yoshihisa; Takashima, Hiroshi; Matsuoka, Masao; Saito, Mineki

    2016-08-01

    Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, the risk of developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) across lifetime differs between ethnic groups. There is an association between HTLV-1 tax gene subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. In this study, we investigated the full-length proviral genome sequences of various HTLV-1-infected cell lines and patient samples. The functional differences in the viral transcriptional regulators Tax and HTLV-1 bZIP factor (HBZ) between each subgroup and the relationships between subgroups and the clinical and laboratory characteristics of HAM/TSP patients were evaluated. The results of these analyses indicated the following: (1) distinct nucleotide substitutions corresponding to each subgroup were associated with nucleotide substitutions in viral structural, regulatory, and accessory genes; (2) the HBZ messenger RNA (mRNA) expression in HTLV-1-infected cells was significantly higher in HAM/TSP patients with subgroup-B than in those with subgroup-A; (3) a positive correlation was observed between the expression of HBZ mRNA and its target Foxp3 mRNA in HAM/TSP patients with subgroup-B, but not in patients with subgroup-A; (4) no clear differences were noted in clinical and laboratory characteristics between HAM/TSP patients with subgroup-A and subgroup-B; and (5) no functional differences were observed in Tax and HBZ between each subgroup based on reporter gene assays. Our results indicate that although different HTLV-1 subgroups are characterized by different patterns of viral and host gene expression in HAM/TSP patients via independent mechanisms of direct transcriptional regulation, these differences do not significantly affect the clinical and laboratory characteristics of HAM/TSP patients.

  7. NMR water-proton spin-lattice relaxation time of human red blood cells and red blood cell suspensions

    International Nuclear Information System (INIS)

    Sullivan, S.G.; Rosenthal, J.S.; Winston, A.; Stern, A.

    1988-01-01

    NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red blood cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells. 9 refs.; 3 figs.; 1 table

  8. Blood

    Science.gov (United States)

    ... production of red blood cells, including: Iron deficiency anemia. Iron deficiency anemia is the most common type of anemia and ... inflammatory bowel disease are especially likely to have iron deficiency anemia. Anemia due to chronic disease. People with chronic ...

  9. Prevalence of irregular red blood cell antibodies among healthy blood donors in Delhi population.

    Science.gov (United States)

    Garg, Neeraj; Sharma, Tanya; Singh, Bharat

    2014-06-01

    To evaluate the prevalence of the anti-red blood cell antibodies among healthy blood donors. Antibody screening of all voluntary blood donor serum was performed as routine immunohematological procedure. Positive sera were further investigated to identify the specificity of irregular erythrocyte antibody by commercially available red cell panel (ID-Dia Panel, Diamed-ID Microtyping System). A total of 47,450 donors were screened for the presence of irregular erythrocyte antibodies. A total of forty-six donors showed presence of alloantibodies in their serum (46/47,450%, 0.09%), yielding a prevalence of 0.09%. Most frequent alloantibodies identified were of MNS blood group system. The results showed statistically a higher prevalence of RBC alloantibodies in females than in males. Screening for presence of alloantibodies in donor blood is important to provide compatible blood products and to avoid transfusion reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of Red Blood Cell Aggregation on the Apparent Viscosity of Blood Flow in Tubes.

    Science.gov (United States)

    Hitt, Darren L.; Lowe, Mary L.

    1996-11-01

    In arterioles and venules (20-200μ diameter), the low shear rates enable red blood cells to form aggregate structures of varying sizes and morphology. The size and distribution of the aggregates affect the flow impedance within a microvascular network; this effect may be characterized by an "apparent viscosity". In this study, we measure the apparent viscosity of blood flow in 50μ glass tubes as a function of shear rate and red blood cell volume fraction (hematocrit); for a fixed tube geometry and an imposed flow rate, the viscosity is determined by measuring the pressure drop across the tube. To correlate the apparent viscosity with the size and spatial distribution of the aggregates in the flow, video images of the flow are recorded and analyzed using power spectral techniques. Pig blood and sheep blood are used as the models for aggregating and non-aggregating blood, respectively. Supported by NSF PFF Award CTS-9253633

  11. Bacterial glycosidases for the production of universal red blood cells

    DEFF Research Database (Denmark)

    Liu, Qiyong P; Sulzenbacher, Gerlind; Yuan, Huaiping

    2007-01-01

    Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating this techno......Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating...

  12. Genes involved in cell division in mycoplasmas

    OpenAIRE

    Alarcón, Frank; Vasconcelos, Ana Tereza Ribeiro de; Yim, Lucia; Zaha, Arnaldo

    2007-01-01

    Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw) cluster, which ...

  13. Nucleated red blood cells in infants of mothers with asthma.

    Science.gov (United States)

    Littner, Yoav; Mandel, Dror; Sheffer-Mimouni, Galit; Mimouni, Francis B; Deutsch, Varda; Dollberg, Shaul

    2003-02-01

    The purpose of this study was to evaluate whether the absolute nucleated red blood cell and lymphocyte count is elevated in term, appropriate-for-gestational-age infants born to women with asthma. We compared absolute nucleated red blood cell counts taken during the first 12 hours of life in two groups of term, vaginally delivered, appropriate-for-gestational-age infants; one group was born to mothers with active asthma during pregnancy (n = 28 infants), and the other group was born to control mothers (n = 29 infants). Asthma severity was classified according to the National Asthma Education and Prevention Program. We excluded infants of women with diabetes mellitus, hypertension, alcohol, and tobacco or drug abuse and infants with fetal heart rate abnormalities, hemolysis, blood loss, or chromosomal anomalies. There were no differences between groups in birth weight, gestational age, maternal age, gravidity, parity, maternal analgesia during labor, 1- and 5-minute Apgar scores, and infant sex. The hematocrit level, red blood cell count, absolute nucleated red blood cell count, and corrected leukocyte and lymphocyte counts were significantly higher in the asthma group than in the control group. The platelet count was not significantly different between groups. The absolute nucleated red blood cell count correlated significantly with the asthma severity score (r (2) = 28%, P cell count with the presence of asthma and its severity (P mothers with asthma have increased circulating absolute nucleated red blood cell and lymphocyte counts compared with control infants.

  14. Allele-specific expression of the IL-1 alpha gene in human CD4+ T cell clones

    NARCIS (Netherlands)

    Bayley, Jean-Pierre; van Rietschoten, Johanna G. I.; Bakker, Aleida M.; van Baarsen, Lisa; Kaijzel, Eric L.; Wierenga, Eddy A.; van der Pouw Kraan, Tineke C. T. M.; Huizinga, Tom W. J.; Verweij, Cornelis L.

    2003-01-01

    A number of reports have described the monoallelic expression of murine cytokine genes. Here we describe the monoallelic expression of the human IL-1alpha gene in CD4+ T cells. Analysis of peripheral blood T cell clones derived from healthy individuals revealed that the IL-1alpha gene shows

  15. Seventy-five genetic loci influencing the human red blood cell

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Leach, Irene Mateo; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S.; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X.; Albers, Cornelis A.; Al-Hussani, Abtehale; Asselbergs, Folkert W.; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M.; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E.; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M.; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M.; O’Reilly, Paul F.; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S.; Shin, So-Youn; Tang, Clara S.; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O.; Cookson, William O.; Das, Debashish; de Bakker, Paul I. W.; de Boer, Rudolf A.; de Geus, Eco J. C.; de Moor, Marleen H.; Dimitriou, Maria; Domingues, Francisco S.; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F.; Genser, Bernd; Gibson, Quince D.; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E.; Hartikainen, Anna-Liisa; Hastie, Claire E.; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P.; Kemp, John P.; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J. F.; Meacham, Stuart; Medland, Sarah E.; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F.; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T.; Parracciani, Debora; Penninx, Brenda W.; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M.; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H. W.; Sladek, Rob; Smit, Johannes H.; Starr, John M.; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H.; van Pelt, L. Joost; van Veldhuisen, Dirk J.; Völker, Uwe; Whitfield, John B.; Willemsen, Gonneke; Winkelmann, Bernhard R.; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d’Adamo, Adamo Pio; Danesh, John; Deary, Ian J.; Dominiczak, Anna F.; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L.; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G.; Metspalu, Andres; Mitchell, Braxton D.; Montgomery, Grant W.; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P.; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R.; Smith, George Davey; Smith, J. Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D.; Stefansson, Kari; Stumvoll, Michael; Wilson Tang, W. H.; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M.; Vollenweider, Peter; Wareham, Nicholas J.; Wolffenbuttel, Bruce H. R.; Boomsma, Dorret I.; Beckmann, Jacques S.; Dedoussis, George V.; Deloukas, Panos; Ferreira, Manuel A.; Sanna, Serena; Uda, Manuela; Hicks, Andrew A.; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S.; Ouwehand, Willem H.; Soranzo, Nicole; Chambers, John C

    2013-01-01

    Anaemia is a chief determinant of globalill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P <10−8, which together explain 4–9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function. PMID:23222517

  16. Seventy-five genetic loci influencing the human red blood cell.

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-12-20

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

  17. All-in-one processing of heterogeneous human cell grafts for gene and cell therapy

    Directory of Open Access Journals (Sweden)

    Ekaterina Y Lukianova-Hleb

    2016-01-01

    Full Text Available Current cell processing technologies for gene and cell therapies are often slow, expensive, labor intensive and are compromised by high cell losses and poor selectivity thus limiting the efficacy and availability of clinical cell therapies. We employ cell-specific on-demand mechanical intracellular impact from laser pulse-activated plasmonic nanobubbles (PNB to process heterogeneous human cell grafts ex vivo with dual simultaneous functionality, the high cell type specificity, efficacy and processing rate for transfection of target CD3+ cells and elimination of subsets of unwanted CD25+ cells. The developed bulk flow PNB system selectively processed human cells at a rate of up to 100 million cell/minute, providing simultaneous transfection of CD3+ cells with the therapeutic gene (FKBP12(V36-p30Caspase9 with the efficacy of 77% and viability 95% (versus 12 and 60%, respectively, for standard electroporation and elimination of CD25+ cells with 99% efficacy. PNB flow technology can unite and replace several methodologies in an all-in-one universal ex vivo simultaneous procedure to precisely and rapidly prepare a cell graft for therapy. PNB's can process various cell systems including cord blood, stem cells, and bone marrow.

  18. A role for activated endothelial cells in red blood cell clearance: implications for vasopathology

    DEFF Research Database (Denmark)

    Fens, Marcel H A M; van Wijk, Richard; Andringa, Grietje

    2012-01-01

    Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells gener...... cells play a role in red blood cell clearance in vivo. Significant erythrophagocytosis can induce endothelial cell loss, which may contribute to vasopathological effects as seen, for instance, in sickle cell disease.......Background Phosphatidylserine exposure by red blood cells is acknowledged as a signal that initiates phagocytic removal of the cells from the circulation. Several disorders and conditions are known to induce phosphatidylserine exposure. Removal of phosphatidylserine-exposing red blood cells...... generally occurs by macrophages in the spleen and liver. Previously, however, we have shown that endothelial cells are also capable of erythrophagocytosis. Key players in the erythrophagocytosis by endothelial cells appeared to be lactadherin and αv-integrin. Phagocytosis via the phosphatidylserine...

  19. Separation of cancer cells from white blood cells by pinched flow fractionation

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Ashley, Neil; Koprowska, Kamila

    2015-01-01

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients...... and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation...

  20. [Clinical evaluation of the application of gene chip for identifying pathogens in blood cultures].

    Science.gov (United States)

    Li, Lin-hai; Cheng, Ying; Chen, Li-dan; Huang, Xiao-yan; Shi, Yu-ling; He, Jie-jing; Wang, Lu-xia

    2009-10-01

    To explore the feasibility of using gene chip method to identify pathogens in blood cultures. Clinical blood samples were obtained and cultured using an automated blood culture system. A gene chip diagnostic kit was used to detect the pathogenic bacteria in these blood cultures following the procedures of target gene extraction and amplification, hybridization and result analysis. The conventional method was also used to isolate and identify the bacteria from the clinical blood cultures, and the results of the two methods were compared. In the 86 clinical blood samples, 74 were positive and 12 negative according to the conventional method, while 48 were positive and 38 negative as found by the gene chip method, showing significant differences in the results (Ppathogens in clinical blood cultures and awaits further improvement.

  1. White blood cell count - series (image)

    Science.gov (United States)

    ... the hand. The puncture site is cleaned with antiseptic, and a tourniquet (an elastic band) or blood ... or young child: The area is cleansed with antiseptic and punctured with a sharp needle or a ...

  2. Profiling of exercise-induced transcripts in the peripheral blood cells of Thoroughbred horses.

    Science.gov (United States)

    Tozaki, Teruaki; Kikuchi, Mio; Kakoi, Hironaga; Hirota, Kei-Ichi; Mukai, Kazutaka; Aida, Hiroko; Nakamura, Seiji; Nagata, Shun-Ichi

    2016-01-01

    Transcriptome analyses based on DNA microarray technology have been used to investigate gene expression profiles in horses. In this study, we aimed to identify exercise-induced changes in the expression profiles of genes in the peripheral blood of Thoroughbred horses using DNA microarray technology (15,429 genes on 43,603 probes). Blood samples from the jugular vein were collected from six horses before and 1 min, 4 hr, and 24 hr after all-out running on a treadmill. After the normalization of microarray data, a total of 26,830 probes were clustered into four groups and 11 subgroups showing similar expression changes based on k-mean clustering. The expression level of inflammation-related genes, including interleukin-1 receptor type II (IL-1R2), matrix metallopeptidase 8 (MMP8), protein S100-A8 (S100-A8), and serum amyloid A (SAA), increased at 4 hr after exercise, whereas that of c-Fos (FOS) increased at 1 min after exercise. These results indicated that the inflammatory response increased in the peripheral blood cells after exercise. Our study also revealed the presence of genes that may not be affected by all-out exercise. In conclusion, transcriptome analysis of peripheral blood cells could be used to monitor physiological changes induced by various external stress factors, including exercise, in Thoroughbred racehorses.

  3. Differentiation analyses of adult suspension mononucleated peripheral blood cells of Mus musculus

    Directory of Open Access Journals (Sweden)

    Yazid Muhammad

    2010-10-01

    Full Text Available Abstract Background The purpose of this study is to determine whether isolated suspension mouse peripheral mononucleated blood cells have the potential to differentiate into two distinct types of cells, i.e., osteoblasts and osteoclasts. Results Differentiation into osteoblast cells was concomitant with the activation of the Opn gene, increment of alkaline phosphatase (ALP activity and the existence of bone nodules, whereas osteoclast cells activated the Catk gene, increment of tartrate resistant acid phosphatase (TRAP activity and showed resorption activities via resorption pits. Morphology analyses showed the morphology of osteoblast and osteoclast cells after von Kossa and May-Grunwald-Giemsa staining respectively. Conclusions In conclusion, suspension mononucleated cells have the potentiality to differentiate into mature osteoblasts and osteoclasts, and hence can be categorized as multipotent stem cells.

  4. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  5. Resistance to malaria through structural variation of red blood cell invasion receptors.

    Science.gov (United States)

    Leffler, Ellen M; Band, Gavin; Busby, George B J; Kivinen, Katja; Le, Quang Si; Clarke, Geraldine M; Bojang, Kalifa A; Conway, David J; Jallow, Muminatou; Sisay-Joof, Fatoumatta; Bougouma, Edith C; Mangano, Valentina D; Modiano, David; Sirima, Sodiomon B; Achidi, Eric; Apinjoh, Tobias O; Marsh, Kevin; Ndila, Carolyne M; Peshu, Norbert; Williams, Thomas N; Drakeley, Chris; Manjurano, Alphaxard; Reyburn, Hugh; Riley, Eleanor; Kachala, David; Molyneux, Malcolm; Nyirongo, Vysaul; Taylor, Terrie; Thornton, Nicole; Tilley, Louise; Grimsley, Shane; Drury, Eleanor; Stalker, Jim; Cornelius, Victoria; Hubbart, Christina; Jeffreys, Anna E; Rowlands, Kate; Rockett, Kirk A; Spencer, Chris C A; Kwiatkowski, Dominic P

    2017-06-16

    The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria. Copyright © 2017, American Association for the Advancement of Science.

  6. The Effect of Shape Memory on Red Blood Cell Motions

    Science.gov (United States)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  7. Comparative transcriptomic analysis of endothelial progenitor cells derived from umbilical cord blood and adult peripheral blood: Implications for the generation of induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Xiugong Gao

    2017-12-01

    Full Text Available Induced pluripotent stem cells (iPSCs offer the potential to generate tissues with ethnic diversity enabling toxicity testing on selected populations. Recently, it has been reported that endothelial progenitor cells (EPCs derived from umbilical cord blood (CB or adult peripheral blood (PB afford a practical and efficient cellular substrate for iPSC generation. However, differences between EPCs from different blood sources have rarely been studied. In the current study, we derived EPCs from blood mononuclear cells (MNCs and reprogrammed EPCs into iPSCs. We also explored differences between CB-EPCs and PB-EPCs at the molecular and cellular levels through a combination of transcriptomic analysis and cell biology techniques. EPC colonies in CB-MNCs emerged 5–7 days earlier, were 3-fold higher in number, and consistently larger in size than in PB-MNCs. Similarly, iPSC colonies generated from CB-EPCs was 2.5-fold higher in number than from PB-EPCs, indicating CB-EPCs have a higher reprogramming efficiency than PB-EPCs. Transcriptomic analysis using microarrays found a total of 1133 genes differentially expressed in CB-EPCs compared with PB-EPCs, with 675 genes upregulated and 458 downregulated. Several canonical pathways were impacted, among which the human embryonic stem cell pluripotency pathway was of particular interest. The differences in the gene expression pattern between CB-EPCs and PB-EPCs provide a molecular basis for the discrepancies seen in their derivation and reprogramming efficiencies, and highlight the advantages of using CB as the cellular source for the generation of iPSCs and their derivative tissues for ethnic-related toxicological applications.

  8. Heat induces gene amplification in cancer cells

    International Nuclear Information System (INIS)

    Yan, Bin; Ouyang, Ruoyun; Huang, Chenghui; Liu, Franklin; Neill, Daniel; Li, Chuanyuan; Dewhirst, Mark

    2012-01-01

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  9. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes.

    NARCIS (Netherlands)

    Rijn, M.J. van; Schut, A.F.; Aulchenko, Y.S.; Deinum, J.; Sayed-Tabatabaei, F.A.; Yazdanpanah, M.; Isaacs, A.; Axenovich, T.I.; Zorkoltseva, I.V.; Zillikens, M.C.; Pols, H.A.; Witteman, J.C.; Oostra, B.A.; Duijn, C.M. van

    2007-01-01

    OBJECTIVE: To study the heritability of four blood pressure traits and the proportion of variance explained by four blood-pressure-related genes. METHODS: All participants are members of an extended pedigree from a Dutch genetically isolated population. Heritability and genetic correlations of

  10. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  11. Image classification of unlabeled malaria parasites in red blood cells.

    Science.gov (United States)

    Zheng Zhang; Ong, L L Sharon; Kong Fang; Matthew, Athul; Dauwels, Justin; Ming Dao; Asada, Harry

    2016-08-01

    This paper presents a method to detect unlabeled malaria parasites in red blood cells. The current "gold standard" for malaria diagnosis is microscopic examination of thick blood smear, a time consuming process requiring extensive training. Our goal is to develop an automate process to identify malaria infected red blood cells. Major issues in automated analysis of microscopy images of unstained blood smears include overlapping cells and oddly shaped cells. Our approach creates robust templates to detect infected and uninfected red cells. Histogram of Oriented Gradients (HOGs) features are extracted from templates and used to train a classifier offline. Next, the ViolaJones object detection framework is applied to detect infected and uninfected red cells and the image background. Results show our approach out-performs classification approaches with PCA features by 50% and cell detection algorithms applying Hough transforms by 24%. Majority of related work are designed to automatically detect stained parasites in blood smears where the cells are fixed. Although it is more challenging to design algorithms for unstained parasites, our methods will allow analysis of parasite progression in live cells under different drug treatments.

  12. Color contrast of red blood cells on solid substrate

    Science.gov (United States)

    Paiziev, Adkham A.

    2013-02-01

    In present study we developed the new method of colour visualization of red blood cells without using any chemical staining. The method based on physical phenomena a white light interference on thin transparent films. It is shown that in the case of thin human blood smears colour interference contrast occurs on solid polished substrates. The best contrast shows substrates with maximal refractive index (Mo, W, Si). These materials have been selected as substrate instead of ordinary microscopic slide in reflected light microscopy. It is shown that reflection of incident white light from blood cell surface and boundary cell-substrate generate two coherent lights. The second one (object signal) after passing through red blood cell gathers additional phase and after interference interaction with reference signal (light reflected from outer cell surface) enables cell image in colour. Number of blood smears of healthy persons (control) and patients who were diagnosed with cancer are presented. It is concluded that the offered method may be used as an effective diagnostic tool to detect early stage blood cells lesion by its interference painting in white light. Offered method may be used in research laboratories, hospitals, diagnostic centres, emergency medicine and other as complementary diagnostic tool to present convenient optical and electron microscopy technique.

  13. GENETIC ARCHITECTURE OF AMBULATORY BLOOD PRESSURE IN THE GENERAL POPULATION – INSIGHTS FROM CARDIOVASCULAR GENE-CENTRIC ARRAY

    Science.gov (United States)

    Tomaszewski, Maciej; Debiec, Radoslaw; Braund, Peter S; Nelson, Christopher P; Hardwick, Robert; Christofidou, Paraskevi; Denniff, Matthew; Codd, Veryan; Rafelt, Suzanne; van der Harst, Pim; Waterworth, Dawn; Song, Kijoung; Vollenweider, Peter; Waeber, Gerard; Zukowska-Szczechowska, Ewa; Burton, Paul R; Mooser, Vincent; Charchar, Fadi J; Thompson, John R; Tobin, Martin D; Samani, Nilesh J

    2010-01-01

    Genetic determinants of blood pressure are poorly defined. We undertook a large-scale gene-centric analysis to identify loci and pathways associated with ambulatory systolic and diastolic blood pressure. We measured 24-hour ambulatory BP in 2020 individuals from 520 white European nuclear families (the GRAPHIC Study) and genotyped their DNA using the Illumina HumanCVD BeadChip array which contains approximately 50000 single nucleotide polymorphisms in >2000 cardiovascular candidate loci. We found a strong association between rs13306560 polymorphism in the promoter region of MTHFR and CLCN6 and mean 24-hour diastolic blood pressure - each minor allele copy of rs13306560 was associated with 2.6 mmHg lower mean 24-hour diastolic blood pressure (P=1.2×10−8). rs13306560 was also associated with clinic diastolic blood pressure in a combined analysis of 8129 subjects from the GRAPHIC Study, the CoLaus Study and the Silesian Cardiovascular Study (P=5.4×10−6). Additional analysis of associations between variants in Gene Ontology-defined pathways and mean 24-hour blood pressure in the GRAPHIC Study showed that cell survival control signalling cascades could play a role in blood pressure regulation. There was also a significant over-representation of rare variants (minor allele frequency architecture of blood pressure. PMID:21060006

  14. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...

  15. Frequency and specificity of red blood cell alloantibodies among ...

    African Journals Online (AJOL)

    Background: Blood transfusion usually results in production of alloantibody against one or more foreign red blood cell antigens which may complicate subsequent transfusions. The probability of alloimmunization depends on number and frequency of transfusion, antigen immunogenicity, recipient immune response and ...

  16. RISK OF RED BLOOD CELL ALLOIMMUNISATION IN RWANDA ...

    African Journals Online (AJOL)

    2013-04-04

    Apr 4, 2013 ... EDTA (ethylenediaminetetraacetic acid) vacutainer test tubes. Within 12 hours, samples underwent centrifugation at 3000 rpm lasting three minutes. Plasma samples were extracted and kept at -30ºC and red blood cell samples at 2 to 6ºC in the Regional. Blood Centre of Rwamagana in Eastern Province.

  17. Risk of red blood cell alloimmunisation in Rwanda: Assessment of ...

    African Journals Online (AJOL)

    Background: Screening of alloantibodies in patients is not yet done in district hospitals of Rwanda. The practice is to transfuse ABO/D compatible blood following an immediate spin crossmatch (IS-XM) or indirect antiglobulin test crossmatch (IAT-XM). Objectives: To assess the risk of red blood cell (RBC) alloimmunisation ...

  18. Certain Red Blood Cell Indices of Maternal and Umbilical Cord ...

    African Journals Online (AJOL)

    Uche

    blood samples were obtained immediately after delivery of the baby. The umbilical blood samples were collected from the umbilical cord of the baby at the end of the second stage of labour. The haemoglobin (Hb) concentration and packed cell volume (PCV) were determined using standard procedures. The mean ...

  19. The Rh complex exports ammonium from human red blood cells

    NARCIS (Netherlands)

    Hemker, Mirte B.; Cheroutre, Goedele; van Zwieten, Rob; Maaskant-van Wijk, Petra A.; Roos, Dirk; Loos, Johannes A.; van der Schoot, C. Ellen; von dem Borne, Albert E. G. Kr

    2003-01-01

    The Rh blood group system represents a major immunodominant protein complex on red blood cells (RBC). Recently, the Rh homologues RhAG and RhCG were shown to promote ammonium ion transport in yeast. In this study, we showed that also in RBC the human Rh complex functions as an exporter of ammonium

  20. DNA damage in peripheral blood mononuclear cells and neutrophils ...

    African Journals Online (AJOL)

    This study was designed to investigate the apoptotic process in peripheral blood mononuclear cells (PBMC) and polymorphonuclear neutrophil leukocytes (PMN) in dairy cattle during the transition period. Blood samples were collected from 4 dairy cattle at 3 weeks before the expected parturition (wk -3), parturition (wk 0) ...

  1. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies.

  2. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Sasivarevic, Damir; Hadi Sohi, Sina

    2016-01-01

    largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our...... previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan–Meier analysis and a hierarchical tree depicting...

  3. Leukocyte count affects expression of reference genes in canine whole blood samples

    NARCIS (Netherlands)

    Piek, C.J.; Brinkhof, B.; Rothuizen, J.; Dekker, A.; Penning, L.C.

    2011-01-01

    Background The dog is frequently used as a model for hematologic human diseases. In this study the suitability of nine potential reference genes for quantitative RT-PCR studies in canine whole blood was investigated. Findings The expression of these genes was measured in whole blood samples of 263

  4. Restrictive versus liberal transfusion strategy for red blood cell transfusion

    DEFF Research Database (Denmark)

    Holst, Lars B; Petersen, Marie W; Haase, Nicolai

    2015-01-01

    OBJECTIVE: To compare the benefit and harm of restrictive versus liberal transfusion strategies to guide red blood cell transfusions. DESIGN: Systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. DATA SOURCES: Cochrane central register of controlled...... differences with 95% confidence intervals. RESULTS: 31 trials totalling 9813 randomised patients were included. The proportion of patients receiving red blood cells (relative risk 0.54, 95% confidence interval 0.47 to 0.63, 8923 patients, 24 trials) and the number of red blood cell units transfused (mean...... were associated with a reduction in the number of red blood cell units transfused and number of patients being transfused, but mortality, overall morbidity, and myocardial infarction seemed to be unaltered. Restrictive transfusion strategies are safe in most clinical settings. Liberal transfusion...

  5. Safety and radiation risks in the labelling of blood cells

    International Nuclear Information System (INIS)

    Gonzalez, B.M.

    1994-01-01

    Risk in the management of radioactive material and biological exposition to infectious agents. Protocols and normative to observe GOOD RADIOPHARMACY Practices. Main infectious agents that may be transmitted during preparation of a blood cell radiopharmaceutical. Problems of contamination

  6. Micronuclei in red blood cells of armored catfish Hypostomus ...

    African Journals Online (AJOL)

    SERVER

    2008-04-03

    n = 30). ... test in red blood cells and lymphocytes can be used as an indicator of toxic effects in determined target populations (Berces et al., 1993). Since DNA repair .... tion in the increase of breaks in DNA strands by.

  7. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    Science.gov (United States)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  8. Novel automated blood separations validate whole cell biomarkers.

    Directory of Open Access Journals (Sweden)

    Douglas E Burger

    Full Text Available Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs. Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs of fresh blood samples.To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes.Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials.

  9. Novel automated blood separations validate whole cell biomarkers.

    Science.gov (United States)

    Burger, Douglas E; Wang, Limei; Ban, Liqin; Okubo, Yoshiaki; Kühtreiber, Willem M; Leichliter, Ashley K; Faustman, Denise L

    2011-01-01

    Progress in clinical trials in infectious disease, autoimmunity, and cancer is stymied by a dearth of successful whole cell biomarkers for peripheral blood lymphocytes (PBLs). Successful biomarkers could help to track drug effects at early time points in clinical trials to prevent costly trial failures late in development. One major obstacle is the inaccuracy of Ficoll density centrifugation, the decades-old method of separating PBLs from the abundant red blood cells (RBCs) of fresh blood samples. To replace the Ficoll method, we developed and studied a novel blood-based magnetic separation method. The magnetic method strikingly surpassed Ficoll in viability, purity and yield of PBLs. To reduce labor, we developed an automated platform and compared two magnet configurations for cell separations. These more accurate and labor-saving magnet configurations allowed the lymphocytes to be tested in bioassays for rare antigen-specific T cells. The automated method succeeded at identifying 79% of patients with the rare PBLs of interest as compared with Ficoll's uniform failure. We validated improved upfront blood processing and show accurate detection of rare antigen-specific lymphocytes. Improving, automating and standardizing lymphocyte detections from whole blood may facilitate development of new cell-based biomarkers for human diseases. Improved upfront blood processes may lead to broad improvements in monitoring early trial outcome measurements in human clinical trials.

  10. Viable Bacteria Associated with Red Blood Cells and Plasma in Freshly Drawn Blood Donations

    DEFF Research Database (Denmark)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian

    2015-01-01

    the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. DESIGN: Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA......), self-reported medically healthy. RESULTS: Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35%) of 60 RBC-fractions and in 32 (53%) of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10......OBJECTIVES: Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from...

  11. FOXP3 gene expression in the blood of iranian multiple sclerosis patients.

    Science.gov (United States)

    Akbari, Zahra; Taheri, Mohammad; Jafari, Abdorreza; Sayad, Arezou

    2018-02-27

    Multiple sclerosis (MS) is a heterogeneous disease with an unknown etiology. Both genetic and environmental factors lead to MS disease. Recent studies have revealed the inhibitory role of T regulatory cells in the MS disease. Forkhead box P3 (FOXP3) gene is a transcript of the CD4+CD25+FOXP3 and T regulatory cells that is recently introduced as a factor in determining the lineage of immune cells. Based on these assumptions we investigate the expression of this gene in the peripheral blood of fifty MS patients in comparison to fifty controls. In this case-control study, we investigate the FOXP3 expression in fifty MS patients (30 females (60%) and 20 males (40%), mean age ± SD: 33.3 ± 5.4 years) in comparing to fifty healthy age and sex matched-controls (30 females (60%) and 20 males (40%), mean age ± SD: 34.2 ± 4.8) using real-time quantitative reverse transcription-PCR (qRT-PCR) in order to explore any association between FOXP3 expression level and MS. The expression level of FOXP3 gene was not significantly different between MS patients and controls (p: 0.79). In addition the expression level of the gene was not significantly different between male and female (p: 0.8, p: 0.79, respectively). Although, the FOXP3 gene is one of the most important genes in the regulation of the immune cells, according to no significant results of this study it may concluded that the expression of the gene is not different between MS patients and healthy controls at least at mRNA level. So it seems that investigating the protein level of FOXP3, related LNCs and microRNAs could be useful to investigate the relation between this gene and the disease. However, the clinical relevance of FOXP3 in patients with regard to their therapy needs to be further explored by evaluation of genetic background in relation to immune responses in MS patients.

  12. Tolerance associated gene expression following allogeneic hematopoietic cell transplantation.

    Directory of Open Access Journals (Sweden)

    Joseph Pidala

    Full Text Available Biologic markers of immune tolerance may facilitate tailoring of immune suppression duration after allogeneic hematopoietic cell transplantation (HCT. In a cross-sectional study, peripheral blood samples were obtained from tolerant (n = 15, median 38.5 months post-HCT and non-tolerant (n = 17, median 39.5 post-HCT HCT recipients and healthy control subjects (n = 10 for analysis of immune cell subsets and differential gene expression. There were no significant differences in immune subsets across groups. We identified 281 probe sets unique to the tolerant (TOL group and 122 for non-tolerant (non-TOL. These were enriched for process networks including NK cell cytotoxicity, antigen presentation, lymphocyte proliferation, and cell cycle and apoptosis. Differential gene expression was enriched for CD56, CD66, and CD14 human lineage-specific gene expression. Differential expression of 20 probe sets between groups was sufficient to develop a classifier with > 90% accuracy, correctly classifying 14/15 TOL cases and 15/17 non-TOL cases. These data suggest that differential gene expression can be utilized to accurately classify tolerant patients following HCT. Prospective investigation of immune tolerance biologic markers is warranted.

  13. Mechanisms Linking Red Blood Cell Disorders and Cardiovascular Diseases

    OpenAIRE

    Mozos, Ioana

    2015-01-01

    The present paper aims to review the main pathophysiological links between red blood cell disorders and cardiovascular diseases, provides a brief description of the latest studies in this area, and considers implications for clinical practice and therapy. Anemia is associated with a special risk in proatherosclerotic conditions and heart disease and became a new therapeutic target. Guidelines must be updated for the management of patients with red blood cell disorders and cardiovascular dise...

  14. Exercise responsive genes measured in peripheral blood of women with Chronic Fatigue Syndrome and matched control subjects

    Science.gov (United States)

    Whistler, Toni; Jones, James F; Unger, Elizabeth R; Vernon, Suzanne D

    2005-01-01

    Background Chronic fatigue syndrome (CFS) is defined by debilitating fatigue that is exacerbated by physical or mental exertion. To search for markers of CFS-associated post-exertional fatigue, we measured peripheral blood gene expression profiles of women with CFS and matched controls before and after exercise challenge. Results Women with CFS and healthy, age-matched, sedentary controls were exercised on a stationary bicycle at 70% of their predicted maximum workload. Blood was obtained before and after the challenge, total RNA was extracted from mononuclear cells, and signal intensity of the labeled cDNA hybridized to a 3800-gene oligonucleotide microarray was measured. We identified differences in gene expression among and between subject groups before and after exercise challenge and evaluated differences in terms of Gene Ontology categories. Exercise-responsive genes differed between CFS patients and controls. These were in genes classified in chromatin and nucleosome assembly, cytoplasmic vesicles, membrane transport, and G protein-coupled receptor ontologies. Differences in ion transport and ion channel activity were evident at baseline and were exaggerated after exercise, as evidenced by greater numbers of differentially expressed genes in these molecular functions. Conclusion These results highlight the potential use of an exercise challenge combined with microarray gene expression analysis in identifying gene ontologies associated with CFS. PMID:15790422

  15. Exercise responsive genes measured in peripheral blood of women with Chronic Fatigue Syndrome and matched control subjects

    Directory of Open Access Journals (Sweden)

    Unger Elizabeth R

    2005-03-01

    Full Text Available Abstract Background Chronic fatigue syndrome (CFS is defined by debilitating fatigue that is exacerbated by physical or mental exertion. To search for markers of CFS-associated post-exertional fatigue, we measured peripheral blood gene expression profiles of women with CFS and matched controls before and after exercise challenge. Results Women with CFS and healthy, age-matched, sedentary controls were exercised on a stationary bicycle at 70% of their predicted maximum workload. Blood was obtained before and after the challenge, total RNA was extracted from mononuclear cells, and signal intensity of the labeled cDNA hybridized to a 3800-gene oligonucleotide microarray was measured. We identified differences in gene expression among and between subject groups before and after exercise challenge and evaluated differences in terms of Gene Ontology categories. Exercise-responsive genes differed between CFS patients and controls. These were in genes classified in chromatin and nucleosome assembly, cytoplasmic vesicles, membrane transport, and G protein-coupled receptor ontologies. Differences in ion transport and ion channel activity were evident at baseline and were exaggerated after exercise, as evidenced by greater numbers of differentially expressed genes in these molecular functions. Conclusion These results highlight the potential use of an exercise challenge combined with microarray gene expression analysis in identifying gene ontologies associated with CFS.

  16. Gene frequencies of ABO and Rh blood groups in Nigeria: A review ...

    African Journals Online (AJOL)

    Background: ABO and Rhesus factor (Rh) blood type are germane in human life in genetics and clinical studies. Aim of the study: The review was undertaken with the objective to provide data on the ABO and Rh(D) blood group distribution and gene frequency across Nigeria which is vital for blood transfusion and ...

  17. Prevalence and gene frequencies of A1A2BO and Rh(D) blood ...

    African Journals Online (AJOL)

    Ruqaiya Hussain

    2012-08-03

    Aug 3, 2012 ... alence and gene frequencies of A1A2BO and Rh(D) blood groups among the Muslim populations of. Uttar Pradesh, North ... Subjects and methods: Blood samples from a total of 724 healthy, unrelated individuals were drawn at .... Both these sys- tems are useful in blood transfusion and organ transplanta-.

  18. Gene frequencies of ABO and Rh blood groups in Nigeria: A review

    African Journals Online (AJOL)

    Abass Toba Anifowoshe

    2016-12-05

    Dec 5, 2016 ... Background: ABO and Rhesus factor (Rh) blood type are germane in human life in genetics and clinical studies. Aim of the study: The review was undertaken with the objective to provide data on the ABO and Rh(D) blood group distribution and gene frequency across Nigeria which is vital for blood ...

  19. Red blood cells inhibit tumour cell adhesion to the peritoneum

    NARCIS (Netherlands)

    M.E.E. van Rossen (Marie Elma); M.P.O. Stoop (M. P O); L.J. Hofland (Leo); P.M. van Koetsveld (Peter); F. Bonthuis (Fred); J. Jeekel (Hans); R.L. Marquet (Richard); C.H.J. van Eijck (Casper)

    1999-01-01

    textabstractBackground: Perioperative blood transfusion has been associated with increased tumour recurrence and poor prognosis in colorectal cancer. Blood loss in the peritoneal cavity might be a tumour-promoting factor for local recurrence. The aim of this study was to investigate whether blood in

  20. Influence of microwaves and electron beam on red blood cells

    International Nuclear Information System (INIS)

    Hategan, A.; Martin, D.; Popescu, A.; Butan, C.

    1999-01-01

    The effects of 6 MeV electron beam and of 2.45 GHz microwaves on the osmotic fragility of frozen cryoprotected human red blood cell membranes are presented. The changes in the properties of the red blood cell membranes were estimated by measuring the radiation induced haemoglobin release from the red blood cells (haemolysis) and the osmotic fragility of the membranes, determined by postirradiation induced osmotic stress. We obtained no haemolysis induced by accelerated electrons in the range 0 - 400 Gy, whereas the microwave irradiated red blood cells showed in the ranges 1 - 2 min and 400 - 500 W values of very small haemolysis, down to 50 % from the control. The osmotic stress experiments indicated a significant increase in the osmotic fragility for 200 - 400 Gy electron doses, whereas the 100 Gy irradiated sample showed a haemolysis down to 35 % from the control. Similarly, the microwave irradiated red blood cells showed values down to 60% from the control for (1 min, 850 W). Both radiations induced at definite parameters values of very small haemolysis, suggesting a stabilisation of the membranes and an increase in the osmotic resistance. Our preliminary results on simultaneous irradiation of the frozen red blood cells seem to indicate a significant contribution of the microwaves in haemolysis evolution, while the successive irradiation procedure did not allow so far a clear interpretation, further studies being necessary to elucidate the physico-chemical mechanisms induced. (authors)

  1. Induction and identification of rabbit peripheral blood derived dendritic cells

    Science.gov (United States)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  2. BGMUT: NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems.

    Science.gov (United States)

    Patnaik, Santosh Kumar; Helmberg, Wolfgang; Blumenfeld, Olga O

    2012-01-01

    Analogous to human leukocyte antigens, blood group antigens are surface markers on the erythrocyte cell membrane whose structures differ among individuals and which can be serologically identified. The Blood Group Antigen Gene Mutation Database (BGMUT) is an online repository of allelic variations in genes that determine the antigens of various human blood group systems. The database is manually curated with allelic information collated from scientific literature and from direct submissions from research laboratories. Currently, the database documents sequence variations of a total of 1251 alleles of all 40 gene loci that together are known to affect antigens of 30 human blood group systems. When available, information on the geographic or ethnic prevalence of an allele is also provided. The BGMUT website also has general information on the human blood group systems and the genes responsible for them. BGMUT is a part of the dbRBC resource of the National Center for Biotechnology Information, USA, and is available online at http://www.ncbi.nlm.nih.gov/projects/gv/rbc/xslcgi.fcgi?cmd=bgmut. The database should be of use to members of the transfusion medicine community, those interested in studies of genetic variation and related topics such as human migrations, and students as well as members of the general public.

  3. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  4. Characterization of smooth muscle-like cells in circulating human peripheral blood.

    Science.gov (United States)

    Sugiyama, Seigo; Kugiyama, Kiyotaka; Nakamura, Shinichi; Kataoka, Keiichiro; Aikawa, Masanori; Shimizu, Koichi; Koide, Shunichi; Mitchell, Richard N; Ogawa, Hisao; Libby, Peter

    2006-08-01

    Smooth muscle cells play an important role in human vascular diseases. Several lines of evidence demonstrate that circulating smooth muscle precursor cells contribute to intimal hyperplasia in animal models. We obtained large spindle cells expressing alpha-smooth muscle actin (alpha-SMA), denoted here as "smooth muscle-like cells" (SMLC), from human peripheral blood mononuclear cells (PBMC). SMLC derived from human PBMC proliferated readily and expressed pro-inflammatory genes during early culture. After long-term culture, SMLC could contract and express characteristic smooth muscle cell markers. We found peripheral blood mononuclear cell expressing alpha-smooth muscle actin in the circulating blood that bore CD14 and CD105. Sorted CD14/CD105 double-positive PBMC could differentiate into SMLC. The number of CD14-CD105-bearing PBMC increased significantly in patients with coronary artery disease compared to patients without coronary artery disease. These results support the novel concept that smooth muscle precursor cells exist in circulating human blood and may contribute to the pathogenesis of vascular diseases.

  5. Is red blood cell rheology preserved during routine blood bank storage?

    NARCIS (Netherlands)

    Henkelman, Sandra; Dijkstra-Tiekstra, Margriet J.; de Wildt-Eggen, Janny; Graaff, Reindert; Rakhorst, Gerhard; van Oeveren, Willem

    BACKGROUND: Red blood cell (RBC) units stored for more than 2 weeks at 4 degrees C are currently considered of impaired quality. This opinion has primarily been based on altered RBC rheologic properties (i.e., enhanced aggregability, reduced deformability, and elevated endothelial cell interaction),

  6. Red blood cell phenotype prevalence in blood donors who self-identify as Hispanic

    DEFF Research Database (Denmark)

    Sheppard, Chelsea A; Bolen, Nicole L; Eades, Beth

    2017-01-01

    CONCLUSIONS: Molecular genotyping platforms provide a quick, high-throughput method for identifying red blood cell units for patients on extended phenotype-matching protocols, such as those with sickle cell disease or thalassemia. Most of the antigen prevalence data reported are for non-Hispanic ...

  7. Brief focal cerebral ischemia that simulates transient ischemic attacks in humans regulates gene expression in rat peripheral blood.

    Science.gov (United States)

    Zhan, Xinhua; Ander, Bradley P; Jickling, Glen; Turner, Renée; Stamova, Boryana; Xu, Huichun; Liu, Dazhi; Davis, Ryan R; Sharp, Frank R

    2010-01-01

    Blood gene expression profiles of very brief (5 and 10 mins) focal ischemia that simulates transient ischemic attacks in humans were compared with ischemic stroke (120 mins focal ischemia), sham, and naïve controls. The number of significantly regulated genes after 5 and 10 mins of cerebral ischemia was 39 and 160, respectively (fold change >/=mid R:1.5mid R: and Pgenes common to brief focal ischemia and ischemic stroke. Ingenuity pathway analysis showed that genes regulated in the 5 mins group were mainly involved in small molecule biochemistry. Genes regulated in the 10 mins group were involved in cell death, development, growth, and proliferation. Such genes were also regulated in the ischemic stroke group. Genes common to ischemia were involved in the inflammatory response, immune response, and cell death-indicating that these pathways are a feature of focal ischemia, regardless of the duration. These results provide evidence that brief focal ischemia differentially regulates gene expression in the peripheral blood in a manner that could distinguish brief focal ischemia from ischemic stroke and controls in rats. We postulate that this will also occur in humans.

  8. Arsenic exposure from drinking water is associated with decreased gene expression and increased DNA methylation in peripheral blood.

    Science.gov (United States)

    Ameer, Syeda Shegufta; Engström, Karin; Hossain, Mohammad Bakhtiar; Concha, Gabriela; Vahter, Marie; Broberg, Karin

    2017-04-15

    Exposure to inorganic arsenic increases the risk of cancer and non-malignant diseases. Inefficient arsenic metabolism is a marker for susceptibility to arsenic toxicity. Arsenic may alter gene expression, possibly by altering DNA methylation. To elucidate the associations between arsenic exposure, gene expression, and DNA methylation in peripheral blood, and the modifying effects of arsenic metabolism. The study participants, women from the Andes, Argentina, were exposed to arsenic via drinking water. Arsenic exposure was assessed as the sum of arsenic metabolites in urine (U-As), using high performance liquid-chromatography hydride-generation inductively-coupled-plasma-mass-spectrometry, and arsenic metabolism efficiency was assessed by the urinary fractions (%) of the individual metabolites. Genome-wide gene expression (N=80 women) and DNA methylation (N=93; 80 overlapping with gene expression) in peripheral blood were measured using Illumina DirectHyb HumanHT-12 v4.0 and Infinium Human-Methylation 450K BeadChip, respectively. U-As concentrations, ranging 10-1251μg/L, was associated with decreased gene expression: 64% of the top 1000 differentially expressed genes were down-regulated with increasing U-As. U-As was also associated with hypermethylation: 87% of the top 1000CpGs were hypermethylated with increasing U-As. The expression of six genes and six individual CpG sites were significantly associated with increased U-As concentration. Pathway analyses revealed enrichment of genes related to cell death and cancer. The pathways differed somewhat depending on arsenic metabolism efficiency. We found no overlap between arsenic-related gene expression and DNA methylation for individual genes. Increased arsenic exposure was associated with lower gene expression and hypermethylation in peripheral blood, but with no evident overlap. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags.

    Science.gov (United States)

    Buckley, K; Atkins, C G; Chen, D; Schulze, H G; Devine, D V; Blades, M W; Turner, R F B

    2016-03-07

    After being separated from (donated) whole blood, red blood cells are suspended in specially formulated additive solutions and stored (at 4 °C) in polyvinyl chloride (PVC) blood-bags until they are needed for transfusion. With time, the prepared red cell concentrate (RCC) is known to undergo biochemical changes that lower effectiveness of the transfusion, and thus regulations are in place that limit the storage period to 42 days. At present, RCC is not subjected to analytical testing prior to transfusion. In this study, we use Spatially Offset Raman Spectroscopy (SORS) to probe, non-invasively, the biochemistry of RCC inside sealed blood-bags. The retrieved spectra compare well with conventional Raman spectra (of sampled aliquots) and are dominated by features associated with hemoglobin. In addition to the analytical demonstration that SORS can be used to retrieve RCC spectra from standard clinical blood-bags without breaking the sterility of the system, the data reveal interesting detail about the oxygenation-state of the stored cells themselves, namely that some blood-bags unexpectedly contain measurable amounts of deoxygenated hemoglobin after weeks of storage. The demonstration that chemical information can be obtained non-invasively using spectroscopy will enable new studies of RCC degeneration, and points the way to a Raman-based instrument for quality-control in a blood-bank or hospital setting.

  10. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...... transcriptase polymerase chain reaction. The effect of glucocorticoid and phorbol ester stimulation on monocyte and dendritic cell CD163 and CD91 expression was investigated in cell culture of mononuclear cells using multicolor flow cytometry. We identified two CD163+ subsets in human blood with dendritic cell...... characteristics, CD163lo and CD163hi, together constituting a substantial fraction of DCs. Both subsets were characterized as [lin]- CD4+ ILT3+ HLA-DR+ CD11c+ by flow cytometry, and CD163 mRNA was readily detectable in MACS purified human DCs. CD163 on DCs was upregulated by glucocorticoid, and treatment...

  11. Evolutionary history of the Rh blood group-related genes in vertebrates.

    Science.gov (United States)

    Kitano, T; Saitou, N

    2000-08-01

    Rh and its homologous Rh50 gene products are considered to form heterotetramers on erythrocyte membranes. Rh protein has Rh blood group antigen sites, while Rh50 protein does not, and is more conserved than Rh protein. We previously determined both Rh and Rh50 gene cDNA coding regions from mouse and rat, and carried out phylogenetic analyses. In this study, we determined Rh50 gene cDNA coding regions from African clawed frog and Japanese medaka fish, and examined the long-term evolution of the Rh blood group and related genes. We constructed the phylogenetic tree from amino acid sequences. Rh50 genes of African clawed frog and Japanese medaka fish formed a cluster with mammalian Rh50 genes. The gene duplication time between Rh and Rh50 genes was estimated to be about 510 million years ago based on this tree. This period roughly corresponds to the Cambrian, before the divergence between jawless fish and jawed vertebrates. We also BLAST-searched an amino acid sequence database, and the Rh blood group and related genes were found to have homology with ammonium transporter genes of many organisms. Ammonium transporter genes can be classified into two major groups (amt alpha and amt beta). Both groups contain genes from three domains (bacteria, archaea, and eukaryota). The Rh blood group and related genes are separated from both amt alpha and beta groups.

  12. Quantitative assessment of limb blood flow using Tc-99m labeled red blood cells

    International Nuclear Information System (INIS)

    Itoh, Kazuo; Shougase, Takashi; Kawamura, Naoyuki; Tsukamoto, Eriko; Nakada, Kunihiro; Sakuma, Makoto; Furudate, Masayori

    1987-01-01

    A quantitative assessment of limb blood flow using a non-diffusible radioindicator, Tc-99m labeled red blood cells, was reported. This was an application of venous occlusion plethysmography using radionuclide which was originally proposed by M. Fukuoka et al. The peripheral blood flow (mean ± s.e.) of 30 legs in a normal control group was 1.87 ± 0.08 ml/100 ml/min. In heart diseases (46 legs), it was 1.49 ± 0.13 ml/100 ml/min. The limb blood flow between a control group and heart diseases was statistically significant (p < 0.01) in the t-test. The peripheral blood flow at rest between diseased legs and normal legs in occlusive arterial disorders was also statistically significant (p < 0.01) in a paired t-test. RAVOP was done after the completion of objective studies such as radionuclide angiography or ventriculography. Technique and calculation of a blood flow were very easy and simple. RAVOP study which was originally proposed by Fukuoka et al. was reappraised to be hopeful for quantitative measurement of limb blood flow as a non-invasive technique using Tc-99m labeled red blood cells. (author)

  13. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Myung Hee [Chonbuk National University Medical School, Chonju (Korea, Republic of)

    2005-02-15

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera.

  14. Drawings of Blood Cells Reveal People's Perception of Their Blood Disorder: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Steven Ramondt

    Full Text Available Sickle cell disease (SCD and thalassemia are rare but chronic blood disorders. Recent literature showed impaired quality of life (QOL in people with these blood disorders. Assessing one of the determinants of QOL (i.e. illness perceptions therefore, is an important next research area.We aimed to explore illness perceptions of people with a blood disorder with drawings in addition to the Brief Illness Perception Questionnaire (Brief IPQ. Drawings are a novel method to assess illness perceptions and the free-range answers drawings offer can add additional insight into how people perceive their illness.We conducted a cross-sectional study including 17 participants with a blood disorder. Participants' illness perceptions were assessed by the Brief IPQ and drawings. Brief IPQ scores were compared with reference groups from the literature (i.e. people with asthma or lupus erythematosus.Participants with SCD or thalassemia perceived their blood disorder as being more chronic and reported more severe symptoms than people with either asthma or lupus erythematosus. In the drawings of these participants with a blood disorder, a greater number of blood cells drawn was negatively correlated with perceived personal control (P<0.05, indicating that a greater quantity in the drawing is associated with more negative or distressing beliefs.Participants with a blood disorder perceive their disease as fairly threatening compared with people with other chronic illnesses. Drawings can add additional insight into how people perceive their illness by offering free-range answers.

  15. Evaluation of hepatic hemangioma by Tc-99 m red blood cell hepatic blood pool scan

    International Nuclear Information System (INIS)

    Sohn, Myung Hee

    2005-01-01

    Hemangioma is the most common benign tumor of the liver, with a prevalence estimated as high as 7%. Tc-99m red blood cell (RBC) hepatic blood pool scan with single photon emission computed tomography (SPECT) imaging is extremely useful for the confirmation or exclusion of hepatic hemangiomas. The classic finding of absent or decreased perfusion and increased blood pooling ('perfusion/blood pool mismatch') is the key diagnostic element in the diagnosis of hemangiomas. The combination of early arterial flow and delayed blood pooling ('perfusion/blood pool match') is shown uncommonly. In giant hemangioma, filling with radioactivity appears first in the periphery, with progressive central fill-in on sequential RBC blood pool scan. However, the reverse filling pattern, which begins first in the center with progressive peripheral filling, is also rarely seen. Studies with false-positive blood pooling have been reported infrequently in nonhemangiomas, including hemangiosarcoma, hepatocellular carcinoma, hepatic adenoma, and metastatic carcinomas (adenocarcinma of the colon, small cell carcinoma of the lung, neruroendocrine carcinoma). False-negative results have been also reported rarely except for small hemagniomas that are below the limits of spatial resolution of gamma camera

  16. Tissue differences in fragile X mosaics: Mosaicism in blood cells may differ greatly from skin

    Energy Technology Data Exchange (ETDEWEB)

    Dobkin, C.S.; Nolin, S.L.; Cohen, I. [NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY (United States)] [and others

    1996-08-09

    The fragile X mutation is diagnosed from the structure of the FMR1 gene in blood cell DNA. An estimated 12 to 41% of affected males are mosaics who carry both a {open_quotes}full mutation{close_quotes} allele from which there is no gene expression and a {open_quotes}premutation{close_quotes} allele which has normal gene expression. We compared the DNA in blood cells and skin fibroblasts from four mosaic fragile X males to see if there was a difference in the relative amounts of premutation and full mutation alleles within the tissues of these individuals. Two of these males showed striking differences in the ratio of premutation to full mutation in different tissues while the other two showed only slight differences. These observations conform with the widely accepted hypothesis that the fragile X CGG repeat is unstable in somatic tissue during early embryogenesis. Accordingly, the mosaicism in brain and skin, which are both ectodermal in origin, may be similar to each other but different from blood which is not ectodermal in origin. Thus, the ratio of full mutation to premutation allele in skin fibroblasts might be a better indicator of psychological impairment than the ratio in blood cells. 24 refs., 4 figs., 1 tab.

  17. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  18. Evaluation of droplet digital PCR for quantification of residual leucocytes in red blood cell concentrates.

    Science.gov (United States)

    Doescher, A; Loges, U; Petershofen, E K; Müller, T H

    2017-11-01

    Enumeration of residual white blood cells in leucoreduced blood components is essential part of quality control. Digital PCR has substantially facilitated quantitative PCR and was thus evaluated for measurements of leucocytes. Target for quantification of leucocytes by digital droplet PCR was the blood group gene RHCE. The SPEF1 gene was added as internal control for the entire assay starting with automated DNA extraction. The sensitivity of the method was determined by serial dilutions of standard samples. Quality control samples were analysed within 24 h, 7 days and 6 months after collection. Routine samples from leucodepleted red blood cell concentrates (n = 150) were evaluated in parallel by flow-cytometry (LeucoCount) and by digital PCR. Digital PCR reliably detected at least 0·4 leucocytes per assay. The mean difference between PCR and flow-cytometric results from 150 units was -0·01 (±1·0). DNA samples were stable for up to at least six months. PCR measurement of leucocytes in samples from plasma and platelet concentrates also provided valid results in a pilot study. Droplet digital PCR to enumerate leucocytes offers an alternative for quality control of leucoreduced blood products. Sensitivity, specificity and reproducibility are comparable to flow-cytometry. The option to collect samples over an extended period of time and the automatization introduce attractive features for routine quality control. © 2017 International Society of Blood Transfusion.

  19. Differentiation of blood T cells: Reprogramming human induced pluripotent stem cells into neuronal cells.

    Science.gov (United States)

    Tsai, Ping-Hsing; Chang, Yun-Ching; Lee, Yi-Yen; Ko, Yu-Ling; Yang, Yu-Hsuan; Lin, Chun-Fu; Chang, Yuh-Lih; Yu, Wen-Chung; Shih, Yang-Hsin; Chen, Ming-Teh

    2015-06-01

    Human induced pluripotent stem cells (iPSCs) morphologically and functionally resemble human embryonic stem cells, which presents the opportunity to use patient-specific somatic cells for disease modeling and drug screening. In order to take one step closer to clinical applications, it is important to generate iPSCs through a less invasive approach and from any accessible tissue, including peripheral blood. Meanwhile, how to differentiate blood cell-derived iPSCs into neuron-like cells is still unclear. We utilized Epstein-Barr nuclear antigen-1-based episomal vectors, a nonviral system that can reprogram somatic cells into iPSCs in both feeder-dependent and feeder-free conditions, to generate iPSCs from T cells via electroporation and then induce them into neuronal cells. We successfully isolated sufficient T cells from 20 mL peripheral blood of the donors and reprogrammed these T cells into iPSCs within 4 weeks. These iPSCs could be stably passaged to at least 50 passages, and exhibited the abilities of pluripotency and multiple-lineage differentiation. Notably, under the medium induction for 21 days, these T-cell-derived iPSCs could be differentiated into Nestin (neural progenitor marker)-, GFAP (glial cell marker)-, and MAP2 (neuron cell marker)-positive cells detected by immunofluorescence methods. We have developed a safer method to generate integration-free and nonviral human iPSCs from adult somatic cells. This induction method will be useful for the derivation of human integration-free iPSCs and will also be applicable to the generation of iPSCs-derived neuronal cells for drug screening or therapeutics in the near future. Copyright © 2015. Published by Elsevier Taiwan.

  20. Laser-photophoretic migration and fractionation of human blood cells.

    Science.gov (United States)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. White Blood Cell Counts and Malaria

    National Research Council Canada - National Science Library

    McKenzie, F. E; Prudhomme, Wendy A; Magill, Alan J; Forney, J. R; Permpanich, Barnyen; Lucas, Carmen; Gasser, Jr., Robert A; Wongsrichanalai, Chansuda

    2005-01-01

    .... In Thailand, one-sixth of the P. falciparum infected patients had WBC counts of !4000 cells/mL. Leukopenia may confound population studies that estimate parasite densities on the basis of an assumed WBC count of 8000 cells/mL...

  2. Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns.

    Science.gov (United States)

    de Goede, Olivia M; Lavoie, Pascal M; Robinson, Wendy P

    2017-01-01

    Premature infants are highly vulnerable to infection. This is partly attributable to the preterm immune system, which differs from that of the term neonate in cell composition and function. Multiple studies have found differential DNA methylation (DNAm) between preterm and term infants' cord blood; however, interpretation of these studies is limited by the confounding factor of blood cell composition. This study evaluates the epigenetic impact of preterm birth in isolated hematopoietic cell populations, reducing the concern of cell composition differences. Genome-wide DNAm was measured using the Illumina 450K array in T cells, monocytes, granulocytes, and nucleated red blood cells (nRBCs) isolated from cord blood of 5 term and 5 preterm (blood cells (nRBCs) showed the most extensive changes in DNAm, with 9258 differentially methylated (DM) sites (FDR  0.10) discovered between preterm and term infants compared to the blood cell populations. The direction of DNAm change with gestational age at these prematurity-DM sites followed known patterns of hematopoietic differentiation, suggesting that term hematopoietic cell populations are more epigenetically mature than their preterm counterparts. Consistent shifts in DNAm between preterm and term cells were observed at 25 CpG sites, with many of these sites located in genes involved in growth and proliferation, hematopoietic lineage commitment, and the cytoskeleton. DNAm in preterm and term hematopoietic cells conformed to previously identified DNAm signatures of fetal liver and bone marrow, respectively. This study presents the first genome-wide mapping of epigenetic differences in hematopoietic cells across the late gestational period. DNAm differences in hematopoietic cells between term and <31 weeks were consistent with the hematopoietic origin of these cells during ontogeny, reflecting an important role of DNAm in their regulation. Due to the limited sample size and the high coincidence of prematurity and

  3. Filter characteristics influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available A variety of filters assays have been described to enrich circulating tumor cells (CTC based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of whole blood spiked with cells from tumor cell lines were passed through silicon nitride microsieves, polymer track-etched filters and metal TEM grids with various pore sizes. The recovery and size of 9 different culture cell lines was determined and compared to the size of EpCAM+CK+CD45-DNA+ CTC from patients with metastatic breast, colorectal and prostate cancer. The 8 µm track-etched filter and the 5 µm microsieve had the best performance on MDA-231, PC3-9 and SKBR-3 cells, enriching >80% of cells from whole blood. TEM grids had poor recovery of ∼25%. Median diameter of cell lines ranged from 10.9-19.0 µm, compared to 13.1, 10.7, and 11.0 µm for breast, prostate and colorectal CTC, respectively. The 11.4 µm COLO-320 cell line had the lowest recovery of 17%. The ideal filter for CTC enrichment is constructed of a stiff, flat material, is inert to blood cells, has at least 100,000 regularly spaced 5 µm pores for 1 ml of blood with a ≤10% porosity. While cell size is an important factor in determining recovery, other factors must be involved as well. To evaluate a filtration procedure, cell lines with a median size of 11-13 µm should be used to challenge the system.

  4. Shape memory of human red blood cells.

    Science.gov (United States)

    Fischer, Thomas M

    2004-05-01

    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spheres. Shape excursions were induced by shear flow. In virtually all red cells, a shape memory was found. After stop of flow and during the return of the latex spheres to the original location, the red cell shape was biconcave. The return occurred by a tank-tread motion of the membrane. The memory could not be eliminated by deforming the red cells in shear flow up to 4 h at room temperature as well as at 37 degrees C. It is suggested that 1). the characteristic time of stress relaxation is >80 min and 2). red cells in vivo also have a shape memory.

  5. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    Science.gov (United States)

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  6. Net haemoglobin increase from reinfusion of refrigerated vs. frozen red blood cells after autologous blood transfusions

    DEFF Research Database (Denmark)

    Ashenden, M; Mørkeberg, Jakob Sehested

    2011-01-01

    BACKGROUND AND OBJECTIVES  Two main blood storage procedures can be used for storing red blood cells: refrigeration and freezing. Nevertheless, the efficiency of these procedures measured as the increase in haemoglobin after reinfusion compared with baseline has never been examined. The main...... objective was to examine which storage procedure yielded the largest increase in circulating haemoglobin after reinfusion compared to baseline. MATERIALS AND METHODS  Equal volumes of blood from 15 men were withdrawn and stored either frozen or refrigerated as packed red blood cells. Serial measures...... of circulating haemoglobin by carbon monoxide rebreathing provided an opportunity to monitor recovery from anaemia, as well as the net increase in circulating haemoglobin after transfusion. RESULTS  The post-thaw yield of haemoglobin in the bags was 72% after refrigerated storage compared with only 52% after...

  7. Shape Memory of Human Red Blood Cells

    OpenAIRE

    Fischer, Thomas M.

    2004-01-01

    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spher...

  8. Mechanisms of red blood cell transfusion-related immunomodulation

    NARCIS (Netherlands)

    Remy, Kenneth E.; Hall, Mark W.; Cholette, Jill; Juffermans, Nicole P.; Nicol, Kathleen; Doctor, Allan; Blumberg, Neil; Spinella, Philip C.; Norris, Philip J.; Dahmer, Mary K.; Muszynski, Jennifer A.

    2018-01-01

    Red blood cell (RBC) transfusion is common in critically ill, postsurgical, and posttrauma patients in whom both systemic inflammation and immune suppression are associated with adverse outcomes. RBC products contain a multitude of immunomodulatory mediators that interact with and alter immune cell

  9. Filter characteristics influencing circulating tumor cell enrichment from whole blood.

    NARCIS (Netherlands)

    Coumans, F.A.W.; van Dalum, Guus; Beck, Markus; Terstappen, Leonardus Wendelinus Mathias Marie

    2013-01-01

    A variety of filters assays have been described to enrich circulating tumor cells (CTC) based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of

  10. Filter Characteristics Influencing Circulating Tumor Cell Enrichment from Whole Blood

    NARCIS (Netherlands)

    Coumans, Frank A. W.; van Dalum, Guus; Beck, Markus; Terstappen, Leon W. M. M.

    2013-01-01

    A variety of filters assays have been described to enrich circulating tumor cells (CTC) based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of

  11. HIV-1 isolation from infected peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Dispinseri, Stefania; Saba, Elisa; Vicenzi, Elisa; Kootstra, Neeltje A.; Schuitemaker, Hanneke; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus 1 (HIV-1) isolation from peripheral blood mononuclear cells (PBMCs) allows retrieval of replication-competent viral variants. In order to impose the smallest possible selective pressure on the viral isolates, isolation must be carried out in primary cultures of cells and

  12. Challenges for red blood cell biomarker discovery through proteomics

    NARCIS (Netherlands)

    Barasa, B.A.|info:eu-repo/dai/nl/341538353; Slijper, M.|info:eu-repo/dai/nl/146303989

    2014-01-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill.

  13. Determinants of resting cerebral blood flow in sickle cell disease

    NARCIS (Netherlands)

    Bush, Adam M.; Borzage, Matthew T.; Choi, Soyoung; Václavů, Lena; Tamrazi, Benita; Nederveen, Aart J.; Coates, Thomas D.; Wood, John C.

    2016-01-01

    Stroke is common in children with sickle cell disease and results from an imbalance in oxygen supply and demand. Cerebral blood flow (CBF) is increased in patients with sickle cell disease to compensate for their anemia, but adequacy of their oxygen delivery has not been systematically demonstrated.

  14. Effects of Septrin Administration on Blood Cells Parameters in Humans

    African Journals Online (AJOL)

    The results showed that the packed cell volume (PCV), total white blood cell count (WBC), neutrophils and platelets were significantly decreased (p<0.05), especially after 7-10 days of septrin administration, compared to the control values. On the other hand, the reticulocytes, lymphocytes, eosinophils and prothrombin time ...

  15. Blood thixotropy in patients with sickle cell anaemia: role of haematocrit and red blood cell rheological properties.

    Directory of Open Access Journals (Sweden)

    Jens Vent-Schmidt

    Full Text Available We compared the blood thixotropic/shear-thinning properties and the red blood cells' (RBC rheological properties between a group of patients with sickle cell anaemia (SS and healthy individuals (AA. Blood thixotropy was determined by measuring blood viscosity with a capillary viscometer using a "loop" protocol: the shear rate started at 1 s-1 and increased progressively to 922 s-1 and then re-decreased to the initial shear rate. Measurements were performed at native haematocrit for the two groups and at 25% and 40% haematocrit for the AA and SS individuals, respectively. RBC deformability was determined by ektacytometry and RBC aggregation properties by laser backscatter versus time. AA at native haematocrit had higher blood thixotropic index than SS at native haematocrit and AA at 25% haematocrit. At 40% haematocrit, SS had higher blood thixotropic index than AA. While RBC deformability and aggregation were lower in SS than in AA, the strength of RBC aggregates was higher in the former population. Our results showed that 1 anaemia is the main modulator of blood thixtropy and 2 the low RBC deformability and high RBC aggregates strength cause higher blood thixotropy in SS patients than in AA individuals at 40% haematocrit, which could impact blood flow in certain vascular compartments.

  16. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  17. IL2rg Cytokines Enhance Umbilical Cord Blood CD34+ Cells Differentiation to T Cells

    Science.gov (United States)

    Aliyari, Zeynab; Soleimanirad, Sara; Sayyah Melli, Manizheh; Tayefi Nasrabadi, Hamid; Nozad Charoudeh, Hojjatollah

    2015-01-01

    Purpose: Umbilical cord blood (UCB) is an alternative source of hematopoietic stem cell (HSC) transplantation for the treatment of patients with leukemia if matched donor is not available. CD34+ is a pan marker for human hematopoietic stem cells, including umbilical cord blood stem cell. In comparison to other sources, cord blood CD34+ cells proliferate more rapidly and produce large number of progeny cells. For ex vivo expansion of Umbilical Cord Blood- HSCs/HPCs, different combinations of cytokines have been used in many laboratories. IL2rg cytokines, including IL2, IL7 and IL15, are key cytokines in the regulation of differentiation, proliferation and survival of immune cells. IL2 is important cytokine for T cell survival and proliferation, IL7 involve in B cell development and IL15 is a key cytokine for NK cell development. In this study we evaluated the generation of T cells derived from CD34+ and CD34- cord blood mononuclear cells by using combination of cytokines including IL2, IL7 and IL15. Methods: Cultured cord blood mononuclear cells were evaluated at distinct time points during 21 days by using flow cytometry. Results: Present study showed that differentiation of T cells derived from CD34+ cord blood mononuclear cells increased by using IL2 and IL7 at different time points. In the other hand IL15 did not show any significant role in generation of T cells from CD34+ cord blood mononuclear cells. Conclusion: Taken together, our data illustrated that either IL2 or IL7 versus other cytokine combinations, generate more T cell from cord blood CD34 cells, probably this cytokines can be the best condition for ex vivo expansion of UCB HSCs. PMID:26793606

  18. Effects of bone marrow stromal cells and umbilical cord blood-derived stromal cells on daunorubicin-resistant residual Jurkat cells.

    Science.gov (United States)

    Liang, X; Hao, L; Chen, X; Zhang, X; Kong, P; Peng, X; Gao, L; Zhang, C; Wang, Q

    2010-11-01

    To observe the effects of the hematopoietic inductive microenvironment (HIM) simulated by stromal cells of different origins on daunorubicin-resistant residual Jurkat cells (Jurkat/DNR cells). Jurkat/DNR cells were cultured and identified. Human umbilical cord blood-derived stromal cells (UCBDSCs) and normal human bone marrow stromal cells (BMSCs) were isolated and cocultured with Jurkat/DNR cells. Jurkat/DNR cells were collected after 14 days of coculture and analyzed with regard to cell proliferation and differentiation abilities, apoptosis, drug sensitivity, and MRD1 multidrug resistance gene mRNA expression. UCBDSC-simulated HIM suppressed proliferation and promoted apoptosis, differentiation, and drug sensitivity of Jurkat/DNR cells more significantly than BMSC-simulated HIM. Both BMSCs and UCBDSCs reconstruct the leukemic HIM and reverse drug resistance in Jurkat/DNR cells. UCBDSCs reconstruct the leukemic HIM and reverse drug resistance more significantly than BMSCs. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Effect of Induced Pluripotent Stem Cell Technology in Blood Banking.

    Science.gov (United States)

    Focosi, Daniele; Pistello, Mauro

    2016-03-01

    Population aging has imposed cost-effective alternatives to blood donations. Artificial blood is still at the preliminary stages of development, and the need for viable cells seems unsurmountable. Because large numbers of viable cells must be promptly available for clinical use, stem cell technologies, expansion, and banking represent ideal tools to ensure a regular supply. Provided key donors can be identified, induced pluripotent stem cell (iPSC) technology could pave the way to a new era in transfusion medicine, just as it is already doing in many other fields of medicine. The present review summarizes the current state of research on iPSC technology in the field of blood banking, highlighting hurdles, and promises. ©AlphaMed Press.

  20. Spatial-spectral blood cell classification with microscopic hyperspectral imagery

    Science.gov (United States)

    Ran, Qiong; Chang, Lan; Li, Wei; Xu, Xiaofeng

    2017-10-01

    Microscopic hyperspectral images provide a new way for blood cell examination. The hyperspectral imagery can greatly facilitate the classification of different blood cells. In this paper, the microscopic hyperspectral images are acquired by connecting the microscope and the hyperspectral imager, and then tested for blood cell classification. For combined use of the spectral and spatial information provided by hyperspectral images, a spatial-spectral classification method is improved from the classical extreme learning machine (ELM) by integrating spatial context into the image classification task with Markov random field (MRF) model. Comparisons are done among ELM, ELM-MRF, support vector machines(SVM) and SVMMRF methods. Results show the spatial-spectral classification methods(ELM-MRF, SVM-MRF) perform better than pixel-based methods(ELM, SVM), and the proposed ELM-MRF has higher precision and show more accurate location of cells.

  1. An Immunofluorescence-Assisted Microfluidic Single Cell Quantitative Reverse Transcription Polymerase Chain Reaction Analysis of Tumour Cells Separated from Blood

    Directory of Open Access Journals (Sweden)

    Kazunori Hoshino

    2015-11-01

    Full Text Available Circulating tumour cells (CTCs are important indicators of metastatic cancer and may provide critical information for individualized treatment. As CTCs are usually very rare, the techniques to obtain information from very small numbers of cells are crucial. Here, we propose a method to perform a single cell quantitative reverse transcription polymerase chain reaction (qPCR analysis of rare tumour cells. We utilized a microfluidic immunomagnetic assay to separate cancer cells from blood. A combination of detailed immunofluorescence and laser microdissection enabled the precise selection of individual cells. Cancer cells that were spiked into blood were successfully separated and picked up for a single cell PCR analysis. The breast cancer cell lines MCF7, SKBR3 and MDAMB231 were tested with 10 different genes. The result of the single cell analysis matched the results from a few thousand cells. Some markers (e.g., ER, HER2 that are commonly used for cancer identification showed relatively large deviations in expression levels. However, others (e.g., GRB7 showed deviations that are small enough to supplement single cell disease profiling.

  2. Blood cell oxidative stress precedes hemolysis in whole blood-liver slice co-cultures of rat, dog, and human tissues

    International Nuclear Information System (INIS)

    Vickers, Alison E.M.; Sinclair, John R.; Fisher, Robyn L.; Morris, Stephen R.; Way, William

    2010-01-01

    A novel in vitro model to investigate time-dependent and concentration-dependent responses in blood cells and hemolytic events is studied for rat, dog, and human tissues. Whole blood is co-cultured with a precision-cut liver slice. Methimazole (MMI) was selected as a reference compound, since metabolism of its imidazole thione moiety is linked with hematologic disorders and hepatotoxicity. An oxidative stress response occurred in all three species, marked by a decline in blood GSH levels by 24 h that progressed, and preceded hemolysis, which occurred at high MMI concentrations in the presence of a liver slice with rat (≥ 1000 μM at 48 h) and human tissues (≥ 1000 μM at 48 h, ≥ 750 μM at 72 h) but not dog. Human blood-only cultures exhibited a decline of GSH levels but minimal to no hemolysis. The up-regulation of liver genes for heme degradation (Hmox1 and Prdx1), iron cellular transport (Slc40a1), and GSH synthesis and utilization (mGST1 and Gclc) were early markers of the oxidative stress response. The up-regulation of the Kupffer cell lectin Lgals3 gene expression indicated a response to damaged red blood cells, and Hp (haptoglobin) up-regulation is indicative of increased hemoglobin uptake. Up-regulation of liver IL-6 and IL-8 gene expression suggested an activation of an inflammatory response by liver endothelial cells. In summary, MMI exposure led to an oxidative stress response in blood cells, and an up-regulation of liver genes involved with oxidative stress and heme homeostasis, which was clearly separate and preceded frank hemolysis.

  3. Effect of red blood cell aggregation and sedimentation on optical coherence tomography signals from blood samples

    International Nuclear Information System (INIS)

    Kirillin, M Yu; Priezzhev, A V; Tuchin, V V; Wang, R K; Myllylae, R

    2005-01-01

    In this work, Monte Carlo simulation is used to obtain model optical coherence tomography (OCT) signals from a horizontally orientated blood layer at different stages of red blood cell (RBC) aggregation and sedimentation processes. The parameters for aggregating and sedimenting blood cells were chosen based on the data available from the literature and our earlier experimental studies. We consider two different cases: a suspension of washed RBCs in physiological solution (where aggregation does not take place) and RBCs in blood plasma (which provides necessary conditions for aggregation). Good agreement of the simulation results with the available experimental data shows that the chosen optical parameters are reasonable. The dependence of the numbers of photons contributing to the OCT signal on the number of experienced scattering events was analysed for each simulated signal. It was shown that the maxima of these dependences correspond to the peaks in the OCT signals related to the interfaces between the layers of blood plasma and blood cells. Their positions can be calculated from the optical thicknesses of the layers, and the absorption and scattering coefficients of the media

  4. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  5. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  6. Filtration Parameters Influencing Circulating Tumor Cell Enrichment from Whole Blood

    Science.gov (United States)

    Beck, Markus; Terstappen, Leon W. M. M.

    2013-01-01

    Filtration can achieve circulating tumor cell (CTC) enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·104∶102∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC. PMID:23658615

  7. Filtration parameters influencing circulating tumor cell enrichment from whole blood.

    Directory of Open Access Journals (Sweden)

    Frank A W Coumans

    Full Text Available Filtration can achieve circulating tumor cell (CTC enrichment from blood. Key parameters such as flow-rate, applied pressure, and fixation, vary largely between assays and their influence is not well understood. Here, we used a filtration system, to monitor these parameters and determine their relationships. Whole blood, or its components, with and without spiked tumor cells were filtered through track-etched filters. We characterize cells passing through filter pores by their apparent viscosity; the viscosity of a fluid that would pass with the same flow. We measured a ratio of 5·10(4∶10(2∶1 for the apparent viscosities of 15 µm diameter MDA-231 cells, 10 µm white cells and 90 fl red cells passing through a 5 µm pore. Fixation increases the pressure needed to pass cells through 8 µm pores 25-fold and halves the recovery of spiked tumor cells. Filtration should be performed on unfixed samples at a pressure of ∼10 mbar for a 1 cm(2 track-etched filter with 5 µm pores. At this pressure MDA-231 cells move through the filter in 1 hour. If fixation is needed for sample preservation, a gentle fixative should be selected. The difference in apparent viscosity between CTC and blood cells is key in optimizing recovery of CTC.

  8. Red blood cell image enhancement techniques for cells with ...

    African Journals Online (AJOL)

    quality or challenging conditions of the images such as poor illumination of blood smear and most importantly overlapping RBC. The algorithm comprises of two RBC segmentation that can be selected based on the image quality, circle mask technique and grayscale blood smear image processing. Detail explanations ...

  9. Early appearance of germinal center–derived memory B cells and plasma cells in blood after primary immunization

    Science.gov (United States)

    Blink, Elizabeth J.; Light, Amanda; Kallies, Axel; Nutt, Stephen L.; Hodgkin, Philip D.; Tarlinton, David M.

    2005-01-01

    Immunization with a T cell–dependent antigen elicits production of specific memory B cells and antibody-secreting cells (ASCs). The kinetic and developmental relationships between these populations and the phenotypic forms they and their precursors may take remain unclear. Therefore, we examined the early stages of a primary immune response, focusing on the appearance of antigen-specific B cells in blood. Within 1 wk, antigen-specific B cells appear in the blood with either a memory phenotype or as immunoglobulin (Ig)G1 ASCs expressing blimp-1. The memory cells have mutated VH genes; respond to the chemokine CXCL13 but not CXCL12, suggesting recirculation to secondary lymphoid organs; uniformly express B220; show limited differentiation potential unless stimulated by antigen; and develop independently of blimp-1 expression. The antigen-specific IgG1 ASCs in blood show affinity maturation paralleling that of bone marrow ASCs, raising the possibility that this compartment is established directly by blood-borne ASCs. We find no evidence for a blimp-1–expressing preplasma memory compartment, suggesting germinal center output is restricted to ASCs and B220+ memory B cells, and this is sufficient to account for the process of affinity maturation. PMID:15710653

  10. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  11. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  12. Renal Operational Tolerance Is Associated With a Defect of Blood Tfh Cells That Exhibit Impaired B Cell Help.

    Science.gov (United States)

    Chenouard, A; Chesneau, M; Bui Nguyen, L; Le Bot, S; Cadoux, M; Dugast, E; Paul, C; Malard-Castagnet, S; Ville, S; Guérif, P; Soulillou, J-P; Degauque, N; Danger, R; Giral, M; Brouard, S

    2017-06-01

    Renal operationally tolerant patients (TOL) display a defect in B cell differentiation, with a deficiency in plasma cells. Recently described, T follicular helper (Tfh) cells play a critical role in B cell differentiation. We analyzed blood Tfh subsets in TOL and transplanted patients with stable graft function under immunosuppression (STA). We observed a reduced proportion of blood activated and highly functional Tfh subsets in TOL, without affecting Tfh absolute numbers. Functionally, Tfh cells from TOL displayed a modified gene expression profile, failed to produce interleukin-21, and were unable to induce IgG production by naive B cells. This Tfh defect is linked to a low incidence of postgraft de novo donor-specific antibody (dnDSA) immunization, suggesting that the lack of Tfh cells in TOL may induce a protolerogenic environment with reduced risk of developing dnDSA. Finally, we showed that elevated Tfh in STA precedes the occurrence of dnDSA during an alloresponse. These data provide new insights into the mechanisms of antibody response in operational tolerance. Disrupted homeostasis and impaired Tfh function in TOL could lead to a reduced risk of developing dnDSA and suggest a predictive role of blood Tfh cells on the occurrence of dnDSA in transplant recipients. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Peripheral blood mammaglobin gene expression for diagnosis and prediction of metastasis in breast cancer patients.

    Science.gov (United States)

    Radwan, Wafaa M; Moussa, Heba S; Essa, Enas S; Kandil, Samia H; Kamel, Azza M

    2013-03-01

    To evaluate the value of peripheral blood mammaglobin (MG) gene expression for diagnosis and prediction of metastasis in breast cancer patients. MG expression was detected by nested reverse-transcription polymerase chain reaction in the peripheral blood of 46 females (32 breast cancer, 12 benign breast lesions, 2 no breast abnormalities). In total 28 breast cancer patients were followed up through a period of 34 months for the development of metastasis. MG expression was detected in 16/32 (50%) breast cancer patients but not in patients with benign lesions or healthy participants. Five patients had metastasis at diagnosis. During the 34 months of follow up, five more MG-positive patients showed metastatic lesions and none of the MG negative patients who were followed up developed metastasis. The study suggests blood MG expression is a specific molecular marker for detection of occult mammary carcinoma cells of patients with operable breast cancer. It might be of value as a predictor of subsequent metastasis. Large-scale studies and longer follow-up periods are needed. © 2012 Wiley Publishing Asia Pty Ltd.

  14. Hypermethylation of gene promoters in peripheral blood leukocytes in humans long term after radiation exposure

    International Nuclear Information System (INIS)

    Kuzmina, Nina S.; Lapteva, Nellya Sh.; Rubanovich, Alexander V.

    2016-01-01

    the development of age-associated cancer and non-cancer diseases. - Highlights: • Hypermethylation of genes was found in blood leukocytes in irradiated humans. • Hypermethylation of genes was revealed long term after radiation exposure. • Age- and radiation-related methylation changes were identified. • Revealed methylation changes resemble those described in malignant cells.

  15. Systematic Analysis of Blood Cell Transcriptome in End-Stage Chronic Respiratory Diseases

    Science.gov (United States)

    Botturi, Karine; Reynaud-Gaubert, Martine; Mussot, Sacha; Stern, Marc; Danner-Boucher, Isabelle; Mornex, Jean-François; Pison, Christophe; Dromer, Claire; Kessler, Romain; Dahan, Marcel; Brugière, Olivier; Le Pavec, Jérôme; Perros, Frédéric; Humbert, Marc; Gomez, Carine; Brouard, Sophie; Magnan, Antoine

    2014-01-01

    Background End-stage chronic respiratory diseases (CRD) have systemic consequences, such as weight loss and susceptibility to infection. However the mechanisms of such dysfunctions are as yet poorly explained. We hypothesized that the genes putatively involved in these mechanisms would emerge from a systematic analysis of blood mRNA profiles from pre-transplant patients with cystic fibrosis (CF), pulmonary hypertension (PAH), and chronic obstructive pulmonary disease (COPD). Methods Whole blood was first collected from 13 patients with PAH, 23 patients with CF, and 28 Healthy Controls (HC). Microarray results were validated by quantitative PCR on a second and independent group (7PAH, 9CF, and 11HC). Twelve pre-transplant COPD patients were added to validate the common signature shared by patients with CRD for all causes. To further clarify a role for hypoxia in the candidate gene dysregulation, peripheral blood mononuclear cells from HC were analysed for their mRNA profile under hypoxia. Results Unsupervised hierarchical clustering allowed the identification of 3 gene signatures related to CRD. One was common to CF and PAH, another specific to CF, and the final one was specific to PAH. With the common signature, we validated T-Cell Factor 7 (TCF-7) and Interleukin 7 Receptor (IL-7R), two genes related to T lymphocyte activation, as being under-expressed. We showed a strong impact of the hypoxia on modulation of TCF-7 and IL-7R expression in PBMCs from HC under hypoxia or PBMCs from CRD. In addition, we identified and validated genes upregulated in PAH or CF, including Lectin Galactoside-binding Soluble 3 and Toll Like Receptor 4, respectively. Conclusions Systematic analysis of blood cell transcriptome in CRD patients identified common and specific signatures relevant to the systemic pathologies. TCF-7 and IL-7R were downregulated whatever the cause of CRD and this could play a role in the higher susceptibility to infection of these patients. PMID:25329529

  16. Measuring osmosis and hemolysis of red blood cells.

    Science.gov (United States)

    Goodhead, Lauren K; MacMillan, Frances M

    2017-06-01

    Since the discovery of the composition and structure of the mammalian cell membrane, biologists have had a clearer understanding of how substances enter and exit the cell's interior. The selectively permeable nature of the cell membrane allows the movement of some solutes and prevents the movement of others. This has important consequences for cell volume and the integrity of the cell and, as a result, is of utmost clinical importance, for example in the administration of isotonic intravenous infusions. The concepts of osmolarity and tonicity are often confused by students as impermeant isosmotic solutes such as NaCl are also isotonic; however, isosmotic solutes such as urea are actually hypotonic due to the permeant nature of the membrane. By placing red blood cells in solutions of differing osmolarities and tonicities, this experiment demonstrates the effects of osmosis and the resultant changes in cell volume. Using hemoglobin standard solutions, where known concentrations of hemoglobin are produced, the proportion of hemolysis and the effect of this on resultant hematocrit can be estimated. No change in cell volume occurs in isotonic NaCl, and, by placing blood cells in hypotonic NaCl, incomplete hemolysis occurs. By changing the bathing solution to either distilled water or isosmotic urea, complete hemolysis occurs due to their hypotonic effects. With the use of animal blood in this practical, students gain useful experience in handling tissue fluids and calculating dilutions and can appreciate the science behind clinical scenarios. Copyright © 2017 the American Physiological Society.

  17. Allogeneic red blood cell transfusions: efficacy, risks, alternatives and indications

    OpenAIRE

    Madjdpour, C.; Spahn, D. R.

    2017-01-01

    Careful assessment of risks and benefits has to precede each decision on allogeneic red blood cell (RBC) transfusion. Currently, a number of key issues in transfusion medicine are highly controversial, most importantly the influence of different transfusion thresholds on clinical outcome. The aim of this article is to review current evidence on blood transfusions, to highlight ‘hot topics' with respect to efficacy, outcome and risks, and to provide the reader with transfusion guidelines. In a...

  18. [The role of miR-492 in the regulation of OK blood group antigen expression on red blood cells].

    Science.gov (United States)

    Ye, Luyi; Wang, Chen; Yang, Qixiu; Zhu, Ziyan

    2017-10-10

    To investigate whether miR-492 is involved in the post-transcriptional regulation of OK blood group antigen expression on red blood cells. Two 3'-UTR fragments of the BSG gene were synthesized with a chemical method, which respectively encompassed the BSG rs8259 TT or BSG rs8259 AA sites. The fragments were added with Xho I and Not I restriction enzyme cutting sites at both ends and cloned into a pUC57 vector, which in turn was constructed into a psiCHECK-2 vector and verified by sequencing. K562 cells were transfected with various combinations of miR-492 mimic and constructed psiCHECK2-BSG-T or psiCHECK2-BSG-A recombinant plasmid. A blank control group was set up. Each transfection experiment was repeated three times. The activity of Renilla reniformis luciferase was determined and normalized with that of firefly luciferase, and detected with a dual-luciferase reporter assay system. The data were subjected to statistical analysis. The sequencing results confirmed that the recombinant psiCHECK2 plasmids containing the BSG rs8259 TT or rs8259 AA sites were constructed successfully. The results of dual-luciferase report gene detection showed that the miR-492 mimic could significantly inhibit psiCHECK2-BSG-T at a concentration over 100 nmol/L. However, it could not inhibit psiCHECK-BSG-A. miR-492 may be involved in the regulation of OK antigen expression on red blood cells with the BSG rs8259 TT genotype.

  19. In vivo red blood cell compatibility testing using indium-113m tropolone-labeled red blood cells

    International Nuclear Information System (INIS)

    Morrissey, G.J.; Gravelle, D.; Dietz, G.; Driedger, A.A.; King, M.; Cradduck, T.D.

    1988-01-01

    In vivo radionuclide crossmatch is a method for identifying compatible blood for transfusion when allo- or autoantibodies preclude the use of conventional crossmatching techniques. A technique for labeling small volumes of donor red blood cells with [/sup 113m/In]tropolone is reported. The use of /sup 113m/In minimizes the accumulation of background radioactivity and the radiation dose especially so when multiple crossmatches are performed. Labeling red cells with [/sup 113m/In]tropolone is faster and easier to perform than with other radionuclides. Consistently high labeling efficiencies are obtained and minimal /sup 113m/In activity elutes from the labeled red blood cells. A case study involving 22 crossmatches is presented to demonstrate the technique. The radiation dose equivalent from /sup 113m/In is significantly less than with other radionuclides that may be used to label red cells

  20. Potential uses for cord blood mesenchymal stem cells.

    Science.gov (United States)

    Zarrabi, Morteza; Mousavi, Seyed Hadi; Abroun, Saeid; Sadeghi, Bahareh

    2014-01-01

    Stem cell therapy is a powerful technique for the treatment of a number of diseases. Stem cells are derived from different tissue sources, the most important of which are the bone marrow (BM), umbilical cord (UC) blood and liver. Human UC mesenchymal stem cells (hUC-MSCs) are multipotent, non-hematopoietic stem cells that have the ability to self-renew and differentiate into other cells and tissues such as osteoblasts, adipocytes and chondroblasts. In a number of reports, human and mouse models of disease have hUC-MSCs treatments. In this article, we review studies that pertain to the use of hUC-MSCs as treatment for diseases.

  1. Chaotic Dynamics of Red Blood Cells in a Sinusoidal Flow

    Science.gov (United States)

    Dupire, Jules; Abkarian, Manouk; Viallat, Annie

    2010-04-01

    We show that the motion of individual red blood cells in an oscillating moderate shear flow is described by a nonlinear system of three coupled oscillators. Our experiments reveal that the cell tank treads and tumbles either in a stable way with synchronized cell inclination, membrane rotation and hydrodynamic oscillations, or in an irregular way, very sensitively to initial conditions. By adapting our model described previously, we determine the theoretical diagram for the red cell motion in a sinusoidal flow close to physiological shear stresses and flow variation frequencies and reveal large domains of chaotic motions. Finally, fitting our observations allows a characterization of cell viscosity and membrane elasticity.

  2. On-chip Extraction of Intracellular Molecules in White Blood Cells from Whole Blood

    Science.gov (United States)

    Choi, Jongchan; Hyun, Ji-Chul; Yang, Sung

    2015-10-01

    The extraction of virological markers in white blood cells (WBCs) from whole blood—without reagents, electricity, or instruments—is the most important first step for diagnostic testing of infectious diseases in resource-limited settings. Here we develop an integrated microfluidic chip that continuously separates WBCs from whole blood and mechanically ruptures them to extract intracellular proteins and nucleic acids for diagnostic purposes. The integrated chip is assembled with a device that separates WBCs by using differences in blood cell size and a mechanical cell lysis chip with ultra-sharp nanoblade arrays. We demonstrate the performance of the integrated device by quantitatively analyzing the levels of extracted intracellular proteins and genomic DNAs. Our results show that compared with a conventional method, the device yields 120% higher level of total protein amount and similar levels of gDNA (90.3%). To demonstrate its clinical application to human immunodeficiency virus (HIV) diagnostics, the developed chip was used to process blood samples containing HIV-infected cells. Based on PCR results, we demonstrate that the chip can extract HIV proviral DNAs from infected cells with a population as low as 102/μl. These findings suggest that the developed device has potential application in point-of-care testing for infectious diseases in developing countries.

  3. Self-sustained circadian rhythm in cultured human mononuclear cells isolated from peripheral blood.

    Science.gov (United States)

    Ebisawa, Takashi; Numazawa, Kahori; Shimada, Hiroko; Izutsu, Hiroyuki; Sasaki, Tsukasa; Kato, Nobumasa; Tokunaga, Katsushi; Mori, Akio; Honma, Ken-ichi; Honma, Sato; Shibata, Shigenobu

    2010-02-01

    Disturbed circadian rhythmicity is associated with human diseases such as sleep and mood disorders. However, study of human endogenous circadian rhythm is laborious and time-consuming, which hampers the elucidation of diseases. It has been reported that peripheral tissues exhibit circadian rhythmicity as the suprachiasmatic nucleus-the center of the biological clock. We tried to study human circadian rhythm using cultured peripheral blood mononuclear cells (PBMCs) obtained from a single collection of venous blood. Activated human PBMCs showed self-sustained circadian rhythm of clock gene expression, which indicates that they are useful for investigating human endogenous circadian rhythm.

  4. Use of cryopreserved peripheral mononuclear blood cells in biomonitoring

    DEFF Research Database (Denmark)

    Risom, Lotte; Knudsen, Lisbeth E.

    1999-01-01

    This study was performed to investigate the effect of storing blood samples by freezing on selected biomarkers and possible implications for biomonitoring. Comparative measurements were performed in order to investigate the use of cryopreserved vs. freshly separated peripheral mononuclear blood...... cells (PMBC) obtained from donor blood. Measurements of DNA-repair, mutant frequency, and subcell content were included. Samples for large biomonitoring studies are usually taken from study groups within a short time period of days/weeks and storing of study material for later analysis can be necessary...

  5. Changing practice: red blood cell typing by molecular methods for patients with sickle cell disease.

    Science.gov (United States)

    Casas, Jessica; Friedman, David F; Jackson, Tannoa; Vege, Sunitha; Westhoff, Connie M; Chou, Stella T

    2015-06-01

    Extended red blood cell (RBC) antigen matching is recommended to limit alloimmunization in patients with sickle cell disease (SCD). DNA-based testing to predict blood group phenotypes has enhanced availability of antigen-negative donor units and improved typing of transfused patients, but replacement of routine serologic typing for non-ABO antigens with molecular typing for patients has not been reported. This study compared the historical RBC antigen phenotypes obtained by hemagglutination methods with genotype predictions in 494 patients with SCD. For discrepant results, repeat serologic testing was performed and/or investigated by gene sequencing for silent or variant alleles. Seventy-one typing discrepancies were identified among 6360 antigen comparisons (1.1%). New specimens for repeat serologic testing were obtained for 66 discrepancies and retyping agreed with the genotype in 64 cases. One repeat Jk(b-) serologic phenotype, predicted Jk(b+) by genotype, was found by direct sequencing of JK to be a silenced allele, and one N typing discrepancy remains under investigation. Fifteen false-negative serologic results were associated with alleles encoding weak antigens or single-dose Fy(b) expression. DNA-based RBC typing provided improved accuracy and expanded information on RBC antigens compared to hemagglutination methods, leading to its implementation as the primary method for extended RBC typing for patients with SCD at our institution. © 2015 AABB.

  6. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  7. White blood cell subtypes and risk of type 2 diabetes.

    Science.gov (United States)

    Zhang, Hongmei; Yang, Zhen; Zhang, Weiwei; Niu, Yixin; Li, Xiaoyong; Qin, Li; Su, Qing

    2017-01-01

    It is reported that total white blood cell is associated with risk of diabetes mellitus. The present study is to investigate the relationship of white blood cell subsets with incidence of type 2 diabetes at baseline and 3year follow-up. We chose individuals without diabetes history as our study population; 8991 individuals were included at baseline. All of the participants underwent a 75-g OGTT at baseline. White blood cell count including all the subsets were measured along with all the other laboratory indices. The participants who were not diagnosed with type 2 diabetes according to the WHO 1999 diagnostic criteria underwent another 75-g OGTT at 3year follow-up. The total WBC count, neutrophil count, and lymphocyte count were significantly increased in subjects newly diagnosed with diabetes mellitus compared to non-DM subjects at baseline (all ptype 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases

    NARCIS (Netherlands)

    Tajuddin, S.M. (Salman M.); U.M. Schick (Ursula); Eicher, J.D. (John D.); Chami, N. (Nathalie); Giri, A. (Ayush); J. Brody (Jennifer); W.D. Hill (W. David); T. Kacprowski (Tim); Li, J. (Jin); L.-P. Lyytikäinen (Leo-Pekka); A. Manichaikul (Ani); E. Mihailov (Evelin); M.L. O'Donoghue (Michelle L.); V.S. Pankratz (Shane); R. Pazoki (Raha); Polfus, L.M. (Linda M.); A.V. Smith (Albert Vernon); C. Schurmann (Claudia); Vacchi-Suzzi, C. (Caterina); D. Waterworth (Dawn); E. Evangelou (Evangelos); L.R. Yanek (Lisa); A.D. Burt (Alastair); M.-H. Chen (Ming-Huei); F.J.A. van Rooij (Frank); J. Floyd (James); A. Greinacher (Andreas); T.B. Harris (Tamara); H. Highland (Heather); L.A. Lange (Leslie); Y. Liu (YongMei); R. Mägi (Reedik); M.A. Nalls (Michael); J. Mathias (Jasmine); D.A. Nickerson (Deborah); K. Nikus (Kjell); J.M. Starr (John); J.-C. Tardif (Jean-Claude); I. Tzoulaki; Velez Edwards, D.R. (Digna R.); L.C. Wallentin (Lars); T.M. Bartz (Traci M.); L.C. Becker (Lewis); Denny, J.C. (Joshua C.); Raffield, L.M. (Laura M.); J.D. Rioux (John); N. Friedrich (Nele); M. Fornage (Myriam); Gao, H. (He); J.N. Hirschhorn (Joel); D.C. Liewald (David C.); S.S. Rich (Stephen); A.G. Uitterlinden (André); Bastarache, L. (Lisa); D.M. Becker (Diane); E.A. Boerwinkle (Eric); de Denus, S. (Simon); E.P. Bottinger (Erwin); C. Hayward (Caroline); Hofman, A. (Albert); G. Homuth (Georg); E.M. Lange (Ethan); Launer, L.J. (Lenore J.); T. Lehtimäki (Terho); Y. Lu (Yingchang); A. Metspalu (Andres); C.J. O'Donnell (Christopher); Quarells, R.C. (Rakale C.); Richard, M. (Melissa); Torstenson, E.S. (Eric S.); K.D. Taylor (Kent); Vergnaud, A.-C. (Anne-Claire); A.B. Zonderman; D.R. Crosslin (David); I.J. Deary (Ian J.); M. Dörr (Marcus); P. Elliott (Paul); M. Evans (Michele); V. Gudnason (Vilmundur); M. Kähönen (Mika); B.M. Psaty (Bruce); Rotter, J.I. (Jerome I.); Slater, A.J. (Andrew J.); A. Dehghan (Abbas); White, H.D. (Harvey D.); S.K. Ganesh (Santhi); R.J.F. Loos (Ruth); T. Esko (Tõnu); Faraday, N. (Nauder); J.F. Wilson (James); M. Cushman (Mary Ann); A.D. Johnson (Andrew); T.L. Edwards (Todd L.); N.A. Zakai (Neil); G. Lettre (Guillaume); A. Reiner (Alexander); P. Auer (Paul)

    2016-01-01

    textabstractWhite blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in

  9. State of the science of blood cell labeling

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs

  10. Phagocytotic labelling of migratory blood cells and it clinical applications

    International Nuclear Information System (INIS)

    Oberhausen, E.; Schroth, H.J.

    1984-01-01

    A method for the labelling of monocytes and granulocytes with 99m-Tc-Sn-colloid in whole blood is described. The basis of the method is the phagocytosis of the Sn-colloid by the monocytes and granulocytes. There is the disadvantage that more than half of the activity is accumulated in the liver and spleen after the reinjection of labelled cells. Experiments in rats have revealed that about 90% of the administered cell bound activity were removed from the circulation and were taken up in the liver and spleen. By venipuncture of such a rat it was possible to remove circulating labelled cells of which, on reinjection into a second rat, about one half remiained in the circulation. This evidence indicated that phagocytotic tagging of white blood cells with 99m-Tc-Sn-colloid yielded viable, labelled cells. (Auth.)

  11. EVALUATION OF CYTOKINE GENE POLYMORPHISM IN B CELL LYMPHOID MALIGNANCIES

    Directory of Open Access Journals (Sweden)

    E. L. Nazarova

    2014-01-01

    Full Text Available Previous studies with some solid tumors has shown that polymorphisms of certain cytokine genes may be used as predictors of clinical outcome in the patients. It seemed important to evaluate potential correlations between production of certain pro- and anti-inflammatory cytokines and co-receptor molecules, and promoter polymorphism of the cytokine genes involved into regulation of cell proliferation, differentiation, apoptosis, lipid metabolism and blood clotting in the patients with hematological malignancies. The article contains our results concerning associations between of IL-1β, -2, -4, -10, -17, TNFα, and allelic polymorphisms of their genes in 62 patients with B cell lymphoid malignancies in an ethnically homogenous group (self-identified as Russians. We have shown that the GА and AA genotypes of the G-308A polymorphism in TNFα gene are significantly associated with increased production of this cytokine, being more common in aggressive non-Hodgkin lymphomas, more rare in multiple myeloma and in indolent non-Hodgkin lymphomas.

  12. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression

    International Nuclear Information System (INIS)

    Hakelien, Anne-Mari; Gaustad, Kristine G.; Taranger, Christel K.; Skalhegg, Bjorn S.; Kuentziger, Thomas; Collas, Philippe

    2005-01-01

    We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes. Microarray analyses indicate that on any given week after extract treatment, ∼2500 genes are upregulated >3-fold, of which ∼900 are also expressed in Jurkat cells. Concomitantly, ∼1500 genes are downregulated or repressed, of which ∼500 are also downregulated in Jurkat cells. Gene expression changes persist for over 30 passages (∼80 population doublings) in culture. Target cell-type specificity of these changes is shown by the lack of activation or repression of Jurkat-specific genes by extracts of 293T cells or carcinoma cells. Quantitative RT-PCR analysis confirms the long-term transcriptional activation of genes involved in key T cell functions. Additionally, growth of cells in suspended aggregates, expression of CD3 and CD28 T cell surface markers, and interleukin-2 secretion by 293T cells treated with extract of adult peripheral blood T cells illustrate a functional nuclear reprogramming. Therefore, target cell-type-specific and heritable changes in gene expression, and alterations in cell function, can be promoted by extracts derived from transformed cells as well as from adult primary cells

  13. Cytomegalovirus in Australian blood donors: seroepidemiology and seronegative red blood cell component inventories.

    Science.gov (United States)

    Lancini, Daniel V; Faddy, Helen M; Ismay, Sue; Chesneau, Stuart; Hogan, Chris; Flower, Robert L

    2016-06-01

    Cytomegalovirus (CMV) can lead to severe disease in high-risk subpopulations. To prevent transfusion-transmitted CMV in these patient groups, the Australian Red Cross Blood Service maintains inventories of CMV-seronegative fresh blood components. Donor demographic data and CMV seroscreening results for all blood donations and blood components issued in Australia between financial years (FYs) 2008/09 to 2012/13 inclusive were obtained. Population estimates were also extracted for the calculation of age-weighted seroprevalence estimates. Linear regression was used to model trends in red blood cell (RBC) component acquisition and demand. The estimated age-weighted seroprevalence of CMV in 20- to 69-year old Australians was 76.12 ± 0.13%, with higher seroprevalence in females and older age groups. Seroprevalence decreased over the study period, while the demand for CMV-seronegative RBC components increased. It was predicted that component acquisition may be insufficient by FY 2017/18 if current trends persist. These findings represent an evaluation of CMV seroepidemiology in Australia and form a basis to predict the future status of CMV-seronegative RBC component inventories. The results will serve to guide Blood Service operations and inform current international debate on CMV-safe blood components. © 2016 AABB.

  14. Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis

    DEFF Research Database (Denmark)

    Skov, Vibe; Riley, Caroline Hasselbalch; Thomassen, Mads

    2013-01-01

    be down-regulation of major histocompatibility (MHC) class I and II genes, which are used by tumor cells to escape antitumor T-cell-mediated immune responses. We have performed whole blood transcriptional profiling of genes encoding human leukocyte antigen (HLA) class I and II molecules, β2-microglobulin...... and members of the antigen processing machinery of HLA class I molecules (LMP2, LMP7, TAP1, TAP2 and tapasin). The findings of significant down-regulation of several of these genes may possibly be of major importance for defective tumor immune surveillance. Since up-regulation of HLA genes is recorded during...

  15. The DNA methylome of human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Li, Yingrui; Zhu, Jingde; Tian, Geng

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per...... strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found...

  16. Expression of Mitochondrial-Encoded Genes in Blood Differentiate Acute Renal Allograft Rejection

    Directory of Open Access Journals (Sweden)

    Silke Roedder

    2017-11-01

    Full Text Available Despite potent immunosuppression, clinical and biopsy confirmed acute renal allograft rejection (AR still occurs in 10–15% of recipients, ~30% of patients demonstrate subclinical rejection on biopsy, and ~50% of them can show molecular inflammation, all which increase the risk of chronic dysfunction and worsened allograft outcomes. Mitochondria represent intracellular endogenous triggers of inflammation, which can regulate immune cell differentiation, and expansion and cause antigen-independent graft injury, potentially enhancing the development of acute rejection. In the present study, we investigated the role of mitochondrial DNA encoded gene expression in biopsy matched peripheral blood (PB samples from kidney transplant recipients. Quantitative PCR was performed in 155 PB samples from 115 unique pediatric (<21 years and adult (>21 years renal allograft recipients at the point of AR (n = 61 and absence of rejection (n = 94 for the expression of 11 mitochondrial DNA encoded genes. We observed increased expression of all genes in adult recipients compared to pediatric recipients; separate analyses in both cohorts demonstrated increased expression during rejection, which also differentiated borderline rejection and showed an increasing pattern in serially collected samples (0–3 months prior to and post rejection. Our results provide new insights on the role of mitochondria during rejection and potentially indicate mitochondria as targets for novel immunosuppression.

  17. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    g/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V-mean) in the middle cerebral artery (MCA), as well as the heart......Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... of migraine attacks. It is therefore important to investigate its mechanism of action in patients with migraine. We here investigate the effects of intravenous human alpha-CGRP (h alpha CGRP) on intracranial hemodynamics. In a double-blind, cross-over study, the effect of intravenous infusion of haCGRP (2 mu...

  18. Daily variation in radiosensitivity of circulating blood cells and bone marrow cell density in mice

    International Nuclear Information System (INIS)

    Tabatabai, R.N.

    1984-01-01

    Mice on a 12/12 light/dark cycle were bled during a twenty-four hour period each week for eight weeks to establish daily values of circulating blood cells. No significant daily variation was found in total red blood cells, hematocrit, or percentage of reticulocytes. A significant (P < 0.001) daily variation was found in total white blood cells, with the minimum occurring at 8 PM and the maximum occurring during the daylight hours from 8 a.m. to 2 p.m. Mice were then exposed to 0 R, 20 R, 50 R, or 100 R of x-radiation to determine what dose significantly reduces the total white cell count in circulating blood. It was found that 100 R significantly (P < .05) reduces the total white cell count over a four week period post-exposure. To determine if circulating blood cells and bone marrow cells show a diurnal radiosensitivity, mice were exposed to 100 R or 200 R of x-radiation at noon or midnight. Hematocrits, reticulocyte and white blood cell counts, daily white blood cell rhythm, and bone marrow cell density indicate that these mice were more radiosensitive at night

  19. Stem Cells and Blood: Where have we come from... and where are we going?

    International Nuclear Information System (INIS)

    Bueren, J. A.

    2011-01-01

    Since 1961, they year when the first trial that characterized the behaviour of a stem cell in mice exposed to high doses of radiation was described, research in this field has proceeded at an unpredictable place. Knowledge of the function of hematopoietic stem cells which are responsible for forming blood cells facilitated the development of therapies based on the transplant of bone marrow and other cell source, e. g. blood from the umbilical cord. These breakthroughs, together with the progress of molecular biology and virology, made it possible to manipulate the genome of hematopoietic stem cells so effectively and safely that the transplant of genetically modified cells has become a variable therapeutic alternative for the treatment of certain genetic diseases and also cancer. This brief article describes some of the contributions that our Hematopoiesis and Gene Therapy Division of the CIEMAT and the CIBER for Rare Diseases has been developing in this fascinating field of stem cells and gene therapy, in the context of the international research being carried out in this area. (Author) 34 refs.

  20. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images.

    Science.gov (United States)

    Arslan, Salim; Ozyurek, Emel; Gunduz-Demir, Cigdem

    2014-06-01

    Computer-based imaging systems are becoming important tools for quantitative assessment of peripheral blood and bone marrow samples to help experts diagnose blood disorders such as acute leukemia. These systems generally initiate a segmentation stage where white blood cells are separated from the background and other nonsalient objects. As the success of such imaging systems mainly depends on the accuracy of this stage, studies attach great importance for developing accurate segmentation algorithms. Although previous studies give promising results for segmentation of sparsely distributed normal white blood cells, only a few of them focus on segmenting touching and overlapping cell clusters, which is usually the case when leukemic cells are present. In this article, we present a new algorithm for segmentation of both normal and leukemic cells in peripheral blood and bone marrow images. In this algorithm, we propose to model color and shape characteristics of white blood cells by defining two transformations and introduce an efficient use of these transformations in a marker-controlled watershed algorithm. Particularly, these domain specific characteristics are used to identify markers and define the marking function of the watershed algorithm as well as to eliminate false white blood cells in a postprocessing step. Working on 650 white blood cells in peripheral blood and bone marrow images, our experiments reveal that the proposed algorithm improves the segmentation performance compared with its counterparts, leading to high accuracies for both sparsely distributed normal white blood cells and dense leukemic cell clusters. © 2014 International Society for Advancement of Cytometry.

  1. Gene expression of circulating tumour cells in breast cancer patients

    Directory of Open Access Journals (Sweden)

    Bölke E

    2009-09-01

    Full Text Available Abstract Background The diagnostic tools to predict the prognosis in patients suffering from breast cancer (BC need further improvements. New technological achievements like the gene profiling of circulating tumour cells (CTC could help identify new prognostic markers in the clinical setting. Furthermore, gene expression patterns of CTC might provide important informations on the mechanisms of tumour cell metastasation. Materials and methods We performed realtime-PCR and multiplex-PCR analyses following immunomagnetic separation of CTC. Peripheral blood (PB samples of 63 patients with breast cancer of various stages were analyzed and compared to a control group of 14 healthy individuals. After reverse-transcription, we performed multiplex PCR using primers for the genes ga733.3, muc-1 and c-erbB2. Mammaglobin1, spdef and c-erbB2 were analyzed applying realtime-PCR. Results ga733.2 overexpression was found in 12.7% of breast cancer cases, muc-1 in 15.9%, mgb1 in 9.1% and spdef in 12.1%. In this study, c-erbB2 did not show any significant correlation to BC, possibly due to a highly ambient expression. Besides single gene analyses, gene profiles were additionally evaluated. Highly significant correlations to BC were found in single gene analyses of ga733.2 and muc-1 and in gene profile analyses of ga733.3*muc-1 and GA7 ga733.3*muc-1*mgb1*spdef. Conclusion Our study reveals that the single genes ga733.3, muc-1 and the gene profiles ga733.3*muc-1 and ga733.3*3muc-1*mgb1*spdef can serve as markers for the detection of CTC in BC. The multigene analyses found highly positive levels in BC patients. Our study indicates that not single gene analyses but subtle patterns of multiple genes lead to rising accuracy and low loss of specificity in detection of breast cancer cases.

  2. Structural Changes in the Surface of Red Blood Cell Membranes during Long-Term Donor Blood Storage

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2012-01-01

    Full Text Available Objective: to study changes in the surface of red blood cell membranes of donor blood at the macro- and ultrastructural level during its storage for 30 days and to evaluate the functional state of the red blood cell membrane during the whole storage period. Material and methods. The investigation was conducted on human whole blood and packed red blood cells placed in the specialized packs containing the preservative CPDA-1, by using calibrated electroporation and atomic force microscopy and measuring plasma pH. Conclusion. The long-term, up to 30-day, storage of whole blood and packed red blood cells at 4°C was attended by lower plasma pH and increased hemolysis rate constant during calibrated electroporation and by the development of oxidative processes. The hemolysis rate constant was also higher in the packed red blood cells than that in the whole blood. On days 5—6, the membrane structure showed defects that developed, as the blood was stored, and caused irreversible cell membrane damage by day 30. Key words: donor blood, red blood cell membranes, atomic force microscopy.

  3. Suitability of small diagnostic peripheral-blood samples for cell-therapy studies.

    Science.gov (United States)

    Stephanou, Coralea; Papasavva, Panayiota; Zachariou, Myria; Patsali, Petros; Epitropou, Marilena; Ladas, Petros; Al-Abdulla, Ruba; Christou, Soteroulla; Antoniou, Michael N; Lederer, Carsten W; Kleanthous, Marina

    2017-02-01

    Primary hematopoietic stem and progenitor cells (HSPCs) are key components of cell-based therapies for blood disorders and are thus the authentic substrate for related research. We propose that ubiquitous small-volume diagnostic samples represent a readily available and as yet untapped resource of primary patient-derived cells for cell- and gene-therapy studies. In the present study we compare isolation and storage methods for HSPCs from normal and thalassemic small-volume blood samples, considering genotype, density-gradient versus lysis-based cell isolation and cryostorage media with different serum contents. Downstream analyses include viability, recovery, differentiation in semi-solid media and performance in liquid cultures and viral transductions. We demonstrate that HSPCs isolated either by ammonium-chloride potassium (ACK)-based lysis or by gradient isolation are suitable for functional analyses in clonogenic assays, high-level HSPC expansion and efficient lentiviral transduction. For cryostorage of cells, gradient isolation is superior to ACK lysis, and cryostorage in freezing media containing 50% fetal bovine serum demonstrated good results across all tested criteria. For assays on freshly isolated cells, ACK lysis performed similar to, and for thalassemic samples better than, gradient isolation, at a fraction of the cost and hands-on time. All isolation and storage methods show considerable variation within sample groups, but this is particularly acute for density gradient isolation of thalassemic samples. This study demonstrates the suitability of small-volume blood samples for storage and preclinical studies, opening up the research field of HSPC and gene therapy to any blood diagnostic laboratory with corresponding bioethics approval for experimental use of surplus material. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  4. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease.

    Science.gov (United States)

    Astle, William J; Elding, Heather; Jiang, Tao; Allen, Dave; Ruklisa, Dace; Mann, Alice L; Mead, Daniel; Bouman, Heleen; Riveros-Mckay, Fernando; Kostadima, Myrto A; Lambourne, John J; Sivapalaratnam, Suthesh; Downes, Kate; Kundu, Kousik; Bomba, Lorenzo; Berentsen, Kim; Bradley, John R; Daugherty, Louise C; Delaneau, Olivier; Freson, Kathleen; Garner, Stephen F; Grassi, Luigi; Guerrero, Jose; Haimel, Matthias; Janssen-Megens, Eva M; Kaan, Anita; Kamat, Mihir; Kim, Bowon; Mandoli, Amit; Marchini, Jonathan; Martens, Joost H A; Meacham, Stuart; Megy, Karyn; O'Connell, Jared; Petersen, Romina; Sharifi, Nilofar; Sheard, Simon M; Staley, James R; Tuna, Salih; van der Ent, Martijn; Walter, Klaudia; Wang, Shuang-Yin; Wheeler, Eleanor; Wilder, Steven P; Iotchkova, Valentina; Moore, Carmel; Sambrook, Jennifer; Stunnenberg, Hendrik G; Di Angelantonio, Emanuele; Kaptoge, Stephen; Kuijpers, Taco W; Carrillo-de-Santa-Pau, Enrique; Juan, David; Rico, Daniel; Valencia, Alfonso; Chen, Lu; Ge, Bing; Vasquez, Louella; Kwan, Tony; Garrido-Martín, Diego; Watt, Stephen; Yang, Ying; Guigo, Roderic; Beck, Stephan; Paul, Dirk S; Pastinen, Tomi; Bujold, David; Bourque, Guillaume; Frontini, Mattia; Danesh, John; Roberts, David J; Ouwehand, Willem H; Butterworth, Adam S; Soranzo, Nicole

    2016-11-17

    Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Differential gene expression by integrin β7+ and β7- memory T helper cells

    Directory of Open Access Journals (Sweden)

    Yang Yee

    2004-07-01

    Full Text Available Abstract Background The cell adhesion molecule integrin α4β7 helps direct the migration of blood lymphocytes to the intestine and associated lymphoid tissues. We hypothesized that β7+ and β7- blood memory T helper cells differ in their expression of genes that play a role in the adhesion or migration of T cells. Results RNA was prepared from β7+ and β7- CD4+ CD45RA- blood T cells from nine normal human subjects and analyzed using oligonucleotide microarrays. Of 21357 genes represented on the arrays, 16 were more highly expressed in β7+ cells and 18 were more highly expressed in β7- cells (≥1.5 fold difference and adjusted P + memory/effector T cells than on β7- cells. Conclusions Memory/effector T cells that express integrin β7 have a distinct pattern of expression of a set of gene transcripts. Several of these molecules can affect cell adhesion or chemotaxis and are therefore likely to modulate the complex multistep process that regulates trafficking of CD4+ memory T cell subsets with different homing behaviors.

  6. Partitioning of red blood cell aggregates in bifurcating microscale flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-03-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.

  7. Generation of human induced pluripotent stem cells from a Bombay individual: Moving towards 'universal-donor' red blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Seifinejad, Ali; Taei, Adeleh [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Totonchi, Mehdi; Vazirinasab, Hamed [Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Hassani, Seideh Nafiseh [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Aghdami, Nasser [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Department of Regenerative Biomedicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Shahbazi, Ebrahim [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Yazdi, Reza Salman [Department of Genetics, Royan Institute for Reproductive Biomedicine, ACECR, Tehran (Iran, Islamic Republic of); Salekdeh, Ghasem Hosseini, E-mail: Salekdeh@royaninstitute.org [Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj (Iran, Islamic Republic of); Baharvand, Hossein, E-mail: Baharvand@royaninstitute.org [Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, P.O. Box 19395-4644, ACECR, Tehran (Iran, Islamic Republic of); Department of Regenerative Biomedicine, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran (Iran, Islamic Republic of); Department of Developmental Biology, University of Science and Culture, ACECR, Tehran (Iran, Islamic Republic of)

    2010-01-01

    Bombay phenotype is one of the rare phenotypes in the ABO blood group system that fails to express ABH antigens on red blood cells. Nonsense or missense mutations in fucosyltransfrase1 (FUT1) and fucosyltransfrase2 (FUT2) genes are known to create this phenotype. This blood group is compatible with all other blood groups as a donor, as it does not express the H antigen on the red blood cells. In this study, we describe the establishment of human induced pluripotent stem cells (iPSCs) from the dermal fibroblasts of a Bombay blood-type individual by the ectopic expression of established transcription factors Klf4, Oct4, Sox2, and c-Myc. Sequence analyses of fibroblasts and iPSCs revealed a nonsense mutation 826C to T (276 Gln to Ter) in the FUT1 gene and a missense mutation 739G to A (247 Gly to Ser) in the FUT2 gene in the Bombay phenotype under study. The established iPSCs resemble human embryonic stem cells in morphology, passaging, surface and pluripotency markers, normal karyotype, gene expression, DNA methylation of critical pluripotency genes, and in-vitro differentiation. The directed differentiation of the iPSCs into hematopoietic lineage cells displayed increased expression of the hematopoietic lineage markers such as CD34, CD133, RUNX1, KDR, {alpha}-globulin, and {gamma}-globulin. Such specific stem cells provide an unprecedented opportunity to produce a universal blood group donor, in-vitro, thus enabling cellular replacement therapies, once the safety issue is resolved.

  8. Remarkable stability in patterns of blood-stage gene expression during episodes of non-lethal Plasmodium yoelii malaria.

    Science.gov (United States)

    Cernetich-Ott, Amy; Daly, Thomas M; Vaidya, Akhil B; Bergman, Lawrence W; Burns, James M

    2012-08-06

    Microarray studies using in vitro cultures of synchronized, blood-stage Plasmodium falciparum malaria parasites have revealed a 'just-in-time' cascade of gene expression with some indication that these transcriptional patterns remain stable even in the presence of external stressors. However, direct analysis of transcription in P. falciparum blood-stage parasites obtained from the blood of infected patients suggests that parasite gene expression may be modulated by factors present in the in vivo environment of the host. The aim of this study was to examine changes in gene expression of the rodent malaria parasite, Plasmodium yoelii 17X, while varying the in vivo setting of replication. Using P. yoelii 17X parasites replicating in vivo, differential gene expression in parasites isolated from individual mice, from independent infections, during ascending, peak and descending parasitaemia and in the presence and absence of host antibody responses was examined using P. yoelii DNA microarrays. A genome-wide analysis to identify coordinated changes in groups of genes associated with specific biological pathways was a primary focus, although an analysis of the expression patterns of two multi-gene families in P. yoelii, the yir and pyst-a families, was also completed. Across experimental conditions, transcription was surprisingly stable with little evidence for distinct transcriptional states or for consistent changes in specific pathways. Differential gene expression was greatest when comparing differences due to parasite load and/or host cell availability. However, the number of differentially expressed genes was generally low. Of genes that were differentially expressed, many involved biologically diverse pathways. There was little to no differential expression of members of the yir and pyst-a multigene families that encode polymorphic proteins associated with the membrane of infected erythrocytes. However, a relatively large number of these genes were expressed during

  9. No Distinction of Orthology/Paralogy between Human and Chimpanzee Rh Blood Group Genes.

    Science.gov (United States)

    Kitano, Takashi; Kim, Choong-Gon; Blancher, Antoine; Saitou, Naruya

    2016-02-12

    On human (Homo sapiens) chromosome 1, there is a tandem duplication encompassing Rh blood group genes (Hosa_RHD and Hosa_RHCE). This duplication occurred in the common ancestor of humans, chimpanzees (Pan troglodytes), and gorillas, after splitting from their common ancestor with orangutans. Although several studies have been conducted on ape Rh blood group genes, the clear genome structures of the gene clusters remain unknown. Here, we determined the genome structure of the gene cluster of chimpanzee Rh genes by sequencing five BAC (Bacterial Artificial Chromosome) clones derived from chimpanzees. We characterized three complete loci (Patr_RHα, Patr_RHβ, and Patr_RHγ). In the Patr_RHβ locus, a short version of the gene, which lacked the middle part containing exons 4-8, was observed. The Patr_RHα and Patr_RHβ genes were located on the locations corresponding to Hosa_RHD and Hosa_RHCE, respectively, and Patr_RHγ was in the immediate vicinity of Patr_RHβ. Sequence comparisons revealed high sequence similarity between Patr_RHβ and Hosa_RHCE, while the chimpanzee Rh gene closest to Hosa_RHD was not Patr_RHα but rather Patr_RHγ. The results suggest that rearrangements and gene conversions frequently occurred between these genes and that the classic orthology/paralogy dichotomy no longer holds between human and chimpanzee Rh blood group genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Alaullah Sheikh

    2011-12-01

    Full Text Available Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans.We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS, and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR.We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate

  11. Aberrant allele-specific replication, independent of parental origin, in blood cells of cancer patients

    International Nuclear Information System (INIS)

    Dotan, Zohar A; Dotan, Aviva; Ramon, Jacob; Avivi, Lydia

    2008-01-01

    Allelic counterparts of biallelically expressed genes display an epigenetic symmetry normally manifested by synchronous replication, different from genes subjected to monoallelic expression, which normally are characterized by an asynchronous mode of replication (well exemplified by the SNRPN imprinted locus). Malignancy was documented to be associated with gross modifications in the inherent replication-timing coordination between allelic counterparts of imprinted genes as well as of biallelically expressed loci. The cancer-related allelic replication timing aberrations are non-disease specific and appear in peripheral blood cells of cancer patients, including those with solid tumors. As such they offer potential blood markers for non-invasive cancer test. The present study was aimed to gain some insight into the mechanism leading to the replication timing alterations of genes in blood lymphocytes of cancer patients. Peripheral blood samples derived from patients with prostate cancer were chosen to represent the cancerous status, and samples taken from patients with no cancer but with benign prostate hyperplasia were used to portray the normal status. Fluorescence In Situ Hybridization (FISH) replication assay, applied to phytohemagglutinin (PHA)-stimulated blood lymphocytes, was used to evaluate the temporal order (either synchronous or asynchronous) of genes in the patients' cells. We demonstrated that: (i) the aberrant epigenetic profile, as delineated by the cancer status, is a reversible modification, evidenced by our ability to restore the normal patterns of replication in three unrelated loci (CEN15, SNRPN and RB1) by introducing an archetypical demethylating agent, 5-azacytidine; (ii) following the rehabilitating effect of demethylation, an imprinted gene (SNRPN) retains its original parental imprint; and (iii) the choice of an allele between early or late replication in the aberrant asynchronous replication, delineated by the cancer status, is not

  12. Stimulated Gene Expression Profiles as a Blood Marker of Major Depressive Disorder

    NARCIS (Netherlands)

    Spijker, Sabine; Van Zanten, Jeroen S.; De Jong, Simone; Penninx, Brenda; van Dyck, Richard; Zitman, Frans G.; Smit, Jan H.; Ylstra, Bauke; Smit, August B.; Hoogendijk, Witte J. G.

    2010-01-01

    Background: Major depressive disorder (MDD) is a moderately heritable disorder with a high lifetime prevalence. At present, laboratory blood tests to support MDD diagnosis are not available. Methods: We used a classifier approach on blood gene expression profiles of a unique set of unmedicated

  13. Laser-photophoretic migration and fractionation of human blood cells

    International Nuclear Information System (INIS)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-01-01

    Graphical abstract: -- Highlights: •RBCs were migrated faster than WBCs and blood pellets by laser photophoresis. •Photophoretic efficiency of RBC and WBC was simulated by the Mie scattering theory. •Spontaneous orientation of RBC parallel to the migration direction was elucidated. •Laser photophoretic separation of RBC and WBC was possible in a tip flow system. -- Abstract: Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis

  14. Laser-photophoretic migration and fractionation of human blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi, E-mail: watarai@chem.sci.osaka-u.ac.jp

    2013-05-13

    Graphical abstract: -- Highlights: •RBCs were migrated faster than WBCs and blood pellets by laser photophoresis. •Photophoretic efficiency of RBC and WBC was simulated by the Mie scattering theory. •Spontaneous orientation of RBC parallel to the migration direction was elucidated. •Laser photophoretic separation of RBC and WBC was possible in a tip flow system. -- Abstract: Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis.

  15. Determination of blood cell subtype concentrations from frozen whole blood samples using TruCount beads.

    Science.gov (United States)

    Langenskiöld, Cecilia; Mellgren, Karin; Abrahamsson, Jonas; Bemark, Mats

    2016-06-24

    In many studies it would be advantageous if blood samples could be collected and analyzed using flow cytometry at a later stage. Ideally, sample collection should involve little hands-on time, allow for long-term storage, and minimally influence the samples. Here we establish a flow cytometry antibody panel that can be used to determine granulocytes, monocytes, and lymphocyte subset concentrations in fresh and frozen whole blood using TruCount technology. The panel can be used on fresh whole-blood samples as well as whole-blood samples that have been frozen after mixing with 10% DMSO. Concentrations in frozen and fresh sample is highly correlated both when frozen within 4 h and the day after collection (r ≥ 0.98), and the estimated concentration in frozen samples was between 91 and 94% of that in fresh samples for all cell types. Using this method whole-blood samples can be frozen using a simple preparation method, and stored long-term before accurate determination of cell concentration. This allows for standardized analysis of the samples at a reference laboratory in multi-center studies. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  16. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  17. Induced Pluripotent Stem Cell Generation from Blood Cells Using Sendai Virus and Centrifugation.

    Science.gov (United States)

    Rim, Yeri Alice; Nam, Yoojun; Ju, Ji Hyeon

    2016-12-21

    The recent development of human induced pluripotent stem cells (hiPSCs) proved that mature somatic cells can return to an undifferentiated, pluripotent state. Now, reprogramming is done with various types of adult somatic cells: keratinocytes, urine cells, fibroblasts, etc. Early experiments were usually done with dermal fibroblasts. However, this required an invasive surgical procedure to obtain fibroblasts from the patients. Therefore, suspension cells, such as blood and urine cells, were considered ideal for reprogramming because of the convenience of obtaining the primary cells. Here, we report an efficient protocol for iPSC generation from peripheral blood mononuclear cells (PBMCs). By plating the transduced PBMCs serially to a new, matrix-coated plate using centrifugation, this protocol can easily provide iPSC colonies. This method is also applicable to umbilical cord blood mononuclear cells (CBMCs). This study presents a simple and efficient protocol for the reprogramming of PBMCs and CBMCs.

  18. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    Science.gov (United States)

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. © 2015 International Society for Advancement of Cytometry.

  19. Epigenotyping in peripheral blood cell DNA and breast cancer risk: a proof of principle study.

    Directory of Open Access Journals (Sweden)

    Martin Widschwendter

    Full Text Available BACKGROUND: Epigenetic changes are emerging as one of the most important events in carcinogenesis. Two alterations in the pattern of DNA methylation in breast cancer (BC have been previously reported; active estrogen receptor-alpha (ER-alpha is associated with decreased methylation of ER-alpha target (ERT genes, and polycomb group target (PCGT genes are more likely than other genes to have promoter DNA hypermethylation in cancer. However, whether DNA methylation in normal unrelated cells is associated with BC risk and whether these imprints can be related to factors which can be modified by the environment, is unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative methylation analysis in a case-control study (n = 1,083 we found that DNA methylation of peripheral blood cell DNA provides good prediction of BC risk. We also report that invasive ductal and invasive lobular BC is characterized by two different sets of genes, the latter particular by genes involved in the differentiation of the mesenchyme (PITX2, TITF1, GDNF and MYOD1. Finally we demonstrate that only ERT genes predict ER positive BC; lack of peripheral blood cell DNA methylation of ZNF217 predicted BC independent of age and family history (odds ratio 1.49; 95% confidence interval 1.12-1.97; P = 0.006 and was associated with ER-alpha bioactivity in the corresponding serum. CONCLUSION/SIGNIFICANCE: This first large-scale epigenotyping study demonstrates that DNA methylation may serve as a link between the environment and the genome. Factors that can be modulated by the environment (like estrogens leave an imprint in the DNA of cells that are unrelated to the target organ and indicate the predisposition to develop a cancer. Further research will need to demonstrate whether DNA methylation profiles will be able to serve as a new tool to predict the risk of developing chronic diseases with sufficient accuracy to guide preventive measures.

  20. In vivo mutations in human blood cells: Biomarkers for molecular epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, R.J.; Branda, R.F.; O' Neill, J.P. (Univ. of Vermont, Burlington (United States)); Nicklas, J.A.; Fuscoe, J.C. (Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)); Skopek, T.R. (Univ. of North Carolina, Chapel Hill (United States))

    1993-03-01

    Mutations arising in vivo in recorder genes of human blood cells provide biomarkers for molecular epidemiology by serving as surrogates for cancer-causing genetic changes. Current markers include mutations of the glycophorin-A (GPA) or hemoglobin (Hb) genes, measured in red blood cells, or mutations of the hypoxanthine-guanine phosphoribosyltransferase (hprt) or HLA genes, measured in T-lymphocytes. Mean mutant frequencies (variant frequencies) for normal young adults are approximately: Hb (4 [times] 10[sup [minus]8]) < hprt (5 [times] 10[sup [minus]6]) = GPA (10 [times] 10[sup [minus]6]) < HLA (30 [times] 10[sup [minus]6]). Mutagen-exposed individuals show decided elevations. Molecular mutational spectra are also being defined. For the hprt marker system, about 15% of background mutations are gross structural alterations of the hprt gene (e.g., deletions); the remainder are point mutations (e.g., base substitutions or frameshifts). Ionizing radiations result in dose-related increases in total gene deletions. Large deletions may encompass several megabases as shown by co-deletions of linked markers. Possible hprt spectra for defining radiation and chemical exposures are being sought. In addition to their responsiveness to environmental mutagens/carcinogens, three additional findings suggest that the in vivo recorder mutations are relevant in vivo surrogates for cancer mutations. First, a large fraction of GPA and HLA mutations show exchanges due to homologous recombination, an important mutational event in cancer. Second, hprt mutations arise preferentially in dividing T-cells, which can accumulate additional mutations in the same clone, reminiscent of the multiple hits required in the evolution of malignancy. Finally, fetal hprt mutations frequently have characteristic deletions of hprt exons 2 and 3, which appear to be mediated by the VDJ recombinase that rearranges the T-cell receptor genes during thymic ontogeny. 60 refs., 3 tabs.

  1. Effects of Transport and Storage Conditions on Gene Expression in Blood Samples.

    Science.gov (United States)

    Malentacchi, Francesca; Pizzamiglio, Sara; Wyrich, Ralf; Verderio, Paolo; Ciniselli, Chiara; Pazzagli, Mario; Gelmini, Stefania

    2016-04-01

    Inappropriate handling of blood samples might induce or repress gene expression and/or lead to RNA degradation affecting downstream analysis. In particular, sample transport is a critical step for biobanking or multicenter studies because of uncontrolled variables (i.e., unstable temperature). We report the results of a pilot study implemented within the EC funded SPIDIA project, aimed to investigate the role of transport and storage of blood samples containing and not containing an RNA stabilizer. Blood was collected from a single donor both in EDTA and in PAXgene Blood RNA tubes. Half of the samples were sent to a second laboratory both at room temperature and at 4°C, whereas the remaining samples were stored at room temperature and at 4°C. Gene expression of selected genes (c-FOS, IL-1β, IL-8, and GAPDH) known to be induced or repressed by ex vivo blood handling and of blood-mRNA quality biomarkers identified and validated within the SPIDIA project, which allow for monitoring changes in unstabilized blood samples after collection and during transport and storage, were analyzed by RT-qPCR. If the shipment of blood in tubes not containing RNA stabilizer is not performed under a stable condition, gene profile studies can be affected by the effects of transport. Moreover, also controlled temperature shipment (4°C) can influence the expression of specific genes if blood is collected in tubes not containing a stabilizer. The use of dedicated biomarkers or time course experiments should be performed in order to verify potential bias on gene expression analysis due to sample shipment and storage conditions. Alternatively, the use of RNA stabilizer containing tubes can represent a reliable option to avoid ex vivo RNA changes.

  2. Dissecting interferon-induced transcriptional programs in human peripheral blood cells.

    Directory of Open Access Journals (Sweden)

    Simon J Waddell

    2010-03-01

    Full Text Available Interferons are key modulators of the immune system, and are central to the control of many diseases. The response of immune cells to stimuli in complex populations is the product of direct and indirect effects, and of homotypic and heterotypic cell interactions. Dissecting the global transcriptional profiles of immune cell populations may provide insights into this regulatory interplay. The host transcriptional response may also be useful in discriminating between disease states, and in understanding pathophysiology. The transcriptional programs of cell populations in health therefore provide a paradigm for deconvoluting disease-associated gene expression profiles.We used human cDNA microarrays to (1 compare the gene expression programs in human peripheral blood mononuclear cells (PBMCs elicited by 6 major mediators of the immune response: interferons alpha, beta, omega and gamma, IL12 and TNFalpha; and (2 characterize the transcriptional responses of purified immune cell populations (CD4+ and CD8+ T cells, B cells, NK cells and monocytes to IFNgamma stimulation. We defined a highly stereotyped response to type I interferons, while responses to IFNgamma and IL12 were largely restricted to a subset of type I interferon-inducible genes. TNFalpha stimulation resulted in a distinct pattern of gene expression. Cell type-specific transcriptional programs were identified, highlighting the pronounced response of monocytes to IFNgamma, and emergent properties associated with IFN-mediated activation of mixed cell populations. This information provides a detailed view of cellular activation by immune mediators, and contributes an interpretive framework for the definition of host immune responses in a variety of disease settings.

  3. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    Science.gov (United States)

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.

  4. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection

    International Nuclear Information System (INIS)

    Rahmer, J; Gleich, B; Borgert, J; Antonelli, A; Sfara, C; Magnani, M; Tiemann, B; Weizenecker, J

    2013-01-01

    Magnetic particle imaging (MPI) is a new medical imaging approach that is based on the nonlinear magnetization response of super-paramagnetic iron oxide nanoparticles (SPIOs) injected into the blood stream. To date, real-time MPI of the bolus passage of an approved MRI SPIO contrast agent injected into the tail vein of living mice has been demonstrated. However, nanoparticles are rapidly removed from the blood stream by the mononuclear phagocyte system. Therefore, imaging applications for long-term monitoring require the repeated administration of bolus injections, which complicates quantitative comparisons due to the temporal variations in concentration. Encapsulation of SPIOs into red blood cells (RBCs) has been suggested to increase the blood circulation time of nanoparticles. This work presents first evidence that SPIO-loaded RBCs can be imaged in the blood pool of mice several hours after injection using MPI. This finding is supported by magnetic particle spectroscopy performed to quantify the iron concentration in blood samples extracted from the mice 3 and 24 h after injection of SPIO-loaded RBCs. Based on these results, new MPI applications can be envisioned, such as permanent 3D real-time visualization of the vessel tree during interventional procedures, bleeding monitoring after stroke, or long-term monitoring and treatment control of cardiovascular diseases. (paper)

  5. White blood cell counting analysis of blood smear images using various segmentation strategies

    Science.gov (United States)

    Safuan, Syadia Nabilah Mohd; Tomari, Razali; Zakaria, Wan Nurshazwani Wan; Othman, Nurmiza

    2017-09-01

    In white blood cell (WBC) diagnosis, the most crucial measurement parameter is the WBC counting. Such information is widely used to evaluate the effectiveness of cancer therapy and to diagnose several hidden infection within human body. The current practice of manual WBC counting is laborious and a very subjective assessment which leads to the invention of computer aided system (CAS) with rigorous image processing solution. In the CAS counting work, segmentation is the crucial step to ensure the accuracy of the counted cell. The optimal segmentation strategy that can work under various blood smeared image acquisition conditions is remain a great challenge. In this paper, a comparison between different segmentation methods based on color space analysis to get the best counting outcome is elaborated. Initially, color space correction is applied to the original blood smeared image to standardize the image color intensity level. Next, white blood cell segmentation is performed by using combination of several color analysis subtraction which are RGB, CMYK and HSV, and Otsu thresholding. Noises and unwanted regions that present after the segmentation process is eliminated by applying a combination of morphological and Connected Component Labelling (CCL) filter. Eventually, Circle Hough Transform (CHT) method is applied to the segmented image to estimate the number of WBC including the one under the clump region. From the experiment, it is found that G-S yields the best performance.

  6. Red Blood Cell Parameters as Indices of Susceptibility to ...

    African Journals Online (AJOL)

    The anaemia recorded in infected cattle by 38 days post-infection (pi) was mildest in WF and most severe in SG. It was concluded that low red blood cell values (PCV, Hb and RBC) are some of the markers that are consistently associated with susceptibility of cattle to trypanosomosis. Of the three cattle breeds studied, the ...

  7. Automated counting of white blood cells in synovial fluid.

    NARCIS (Netherlands)

    R. de Jonge (Robert); R.W. Brouwer (Reinoud); M. Smit (Marij); M. de Frankrijker-Merkestijn; R.J. Dolhain; J.M.W. Hazes (Mieke); A.W. van Toorenenbergen (Albert); J. Lindemans (Jan)

    2004-01-01

    textabstractOBJECTIVES: To evaluate the performance of automated leucocyte (white blood cell; WBC) counting by comparison with manual counting. METHODS: The number of WBC was determined in heparinized synovial fluid samples by the use of (i) a standard urine cytometer (Kova) and a

  8. effects of septrin administration on blood cells parameters in humans

    African Journals Online (AJOL)

    honey

    2014-03-31

    Mar 31, 2014 ... RESEARCH PAPER. EFFECTS OF SEPTRIN ADMINISTRATION ON BLOOD CELLS PARAMETERS IN. HUMANS. *1Onyebuagu P.C., 2Kiridi K. and 1Pughikumo D.T.. 1Department of Human Physiology, Niger Delta University, Bayelsa, Nigeria. 2Department of Radiology, Niger. Delta University, Bayelsa ...

  9. Red blood cell transfusion during septic shock in the ICU

    DEFF Research Database (Denmark)

    Perner, A; Smith, S H; Carlsen, S

    2012-01-01

    Transfusion of red blood cells (RBCs) remains controversial in patients with septic shock, but current practice is unknown. Our aim was to evaluate RBC transfusion practice in septic shock in the intensive care unit (ICU), and patient characteristics and outcome associated with RBC transfusion....

  10. Sorting of White Blood Cells in a Lattice

    Science.gov (United States)

    Carlson, Robert; Chan, Shirley; Gabel, Chris; Austin, Robert

    1997-03-01

    White blood cells represent a heterogenous population of differentially sticky and deformable objects. We examine here experiemnts where the hydrodynamic flow of such a population in a lattice of obstacles results in the fractionation of the objects, and will present modeling of the observed fractionation of the objects.

  11. Manipulation of microparticles and red blood cells using ...

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 2. Manipulation of microparticles and red blood cells using optoelectronic tweezers ... We report the development of an optoelectronic tweezers set-up which works by lightinduced dielectrophoresis mechanism to manipulate microparticles.

  12. Correlation between Malaria and the Red Blood Cell Indices of ...

    African Journals Online (AJOL)

    This study was designed to determine the level of malaria endemicity and correlate between malaria parasitaemia and the red blood cell indices of the pregnant women in the Buea and Tiko health districts of the south west region of Cameroon. Samples were drawn from: The CDC Central Clinic Tiko, the Mutengene Baptist ...

  13. Red blood cells intended for transfusion : quality criteria revisited

    NARCIS (Netherlands)

    Hogman, CF; Meryman, HT

    Great variation exists with respect to viability and function of fresh and stored red blood cells (RBCs) as well as of the contents of RBC hemoglobin (Hb) in individual units. Improved technology is available for the preparation as well as the storage of RBCs. The authors raise the question whether

  14. Prolonged storage of red blood cells affects aminophospholipid translocase activity

    NARCIS (Netherlands)

    Verhoeven, A. J.; Hilarius, P. M.; Dekkers, D. W. C.; Lagerberg, J. W. M.; de Korte, D.

    2006-01-01

    BACKGROUND AND OBJECTIVES: Loss of phospholipid asymmetry in the membrane of red blood cells (RBC) results in exposure of phosphatidylserine (PS) and to subsequent removal from the circulation. In this study, we investigated the effect of long-term storage of RBCs on two activities affecting

  15. Assessment of Red Blood Cell Parameters and Peripheral Smear at ...

    African Journals Online (AJOL)

    Cold agglutination disease (CAD) is characterized by an auto‑antibody which is able to agglutinate red blood cells (RBCs) at temperatures lower than that of the body, and subsequently to activate the complement system responsible for lysis of RBCs. Patients show hemolytic anemia of varying degrees of severity, which ...

  16. Use of hydroxyethyl starch for inducing red blood cell aggregation

    NARCIS (Netherlands)

    Henkelman, Sandra; Rakhorst, Gerhard; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Aggregation of human red blood cells (RBC) remains of biological and clinical interest. Replacement of plasma proteins by polymers to induce RBC aggregation may help to unravel the fundamentals of the aggregation process. Two theories exist to explain RBC aggregation mechanisms: a depletion and a

  17. Micronuclei in red blood cells of armored catfish Hypostomus ...

    African Journals Online (AJOL)

    The present work aims to evaluate the impact of potassium dichromate in armored catfishes' (Hypostomus plecotomus) erythropoiesis, using piscine micronucleus test. Armored catfishes (n = 30) were subjected to 12 mg/L of potassium dichromate, with an equal control group (n = 30). For each 2,000 red blood cells of ...

  18. Vascular Cell Senescence Contributes to Blood-Brain Barrier Breakdown

    NARCIS (Netherlands)

    Yamazaki, Y.; Baker, D.J.; Tachibana, M.; Liu, C.C.; Deursen, J.M.A. van; Brott, T.G.; Bu, G.; Kanekiyo, T.

    2016-01-01

    BACKGROUND AND PURPOSE: Age-related changes in the cerebrovasculature, including blood-brain barrier (BBB) disruption, are emerging as potential risks for diverse neurological conditions. Because the accumulation of senescent cells in tissues is increasingly recognized as a critical step leading to

  19. Shape of red blood cells in contact with artificial surfaces.

    Science.gov (United States)

    Grzhibovskis, Richards; Krämer, Elisabeth; Bernhardt, Ingolf; Kemper, Björn; Zanden, Carl; Repin, Nikolay V; Tkachuk, Bogdan V; Voinova, Marina V

    2017-03-01

    The phenomenon of physical contact between red blood cells and artificial surfaces is considered. A fully three-dimensional mathematical model of a bilayer membrane in contact with an artificial surface is presented. Numerical results for the different geometries and adhesion intensities are found to be in agreement with experimentally observed geometries obtained by means of digital holographic microscopy.

  20. Characteristic point algorithm in laser ektacytometry of red blood cells

    Science.gov (United States)

    Nikitin, S. Yu.; Ustinov, V. D.

    2018-01-01

    We consider the problem of measuring red blood cell deformability by laser diffractometry in shear flow (ektacytometry). A new equation is derived that relates the parameters of the diffraction pattern to the width of the erythrocyte deformability distribution. The numerical simulation method shows that this equation provides a higher accuracy of measurements in comparison with the analogous equation obtained by us earlier.

  1. Differences in the composition of the human antibody repertoire by B cell subsets in the blood

    Directory of Open Access Journals (Sweden)

    Eva Szymanska eMroczek

    2014-03-01

    Full Text Available The vast initial diversity of the antibody repertoire is generated centrally by means of a complex series of V (D J gene rearrangement events, variation in the site of gene segment joining, and TdT catalyzed N- region addition. Although the diversity is great, close inspection has revealed distinct and unique characteristics in the antibody repertoires expressed by different B cell developmental subsets. In order to illustrate our approach to repertoire analysis, we present an in-depth comparison of V (D J gene usage, hydrophobicity, length, DH reading frame, and amino acid usage between heavy chain repertoires expressed by immature, transitional, mature, memory IgD+, memory IgD-, and plasmacytes isolated from the blood of a single individual. Our results support the view that in both human and mouse the H chain repertoires expressed by individual, developmental B cell subsets appear to differ in sequence content. Sequencing of unsorted B cells from the blood is thus likely to yield an incomplete or compressed view of what is actually happening in the immune response of the individual. Our findings support the view that studies designed to correlate repertoire expression with diseases of immune function will likely require deep sequencing of B cells sorted by subset.

  2. Transcriptomic profiling of peripheral blood nucleated cells in dogs with and without clinical signs of chronic mitral valve disease

    Directory of Open Access Journals (Sweden)

    Garncarz Magdalena

    2014-03-01

    Full Text Available The aim of the study was to demonstrate differences in the gene expression of signalling pathways between healthy dogs and dogs with chronic mitral valve disease in different heart failure groups. Blood samples were collected from 49 dogs of various breeds between 1.4 and 15.2 years of age. Isolated RNA samples were analysed for quality and integrity and the gene expression profile was determined. The study demonstrated that nucleated cells from peripheral blood can be used to assess the status of heart failure in dogs. Furthermore, significant differences in the expression of the genes were noticed between healthy dogs and dogs with clinical signs of chronic mitral valve disease. This is a preliminary non-invasive study showing the feasibility of genetic testing from peripheral blood nucleated cells, which at the same time has made it possible to set the future directions of genetic studies in clinical cases of canine chronic mitral valve disease.

  3. Association between antimicrobial resistance and virulence genes in Escherichia coli obtained from blood and faeces

    DEFF Research Database (Denmark)

    Bagger-Skjøt, Line; Sandvang, Dorthe; Frimodt-Møller, Niels

    2007-01-01

    Escherichia coli isolates obtained from faeces (n = 85) and blood (n = 123) were susceptibility tested against 17 antimicrobial agents and the presence of 9 virulence genes was determined by PCR. Positive associations between several antimicrobial resistances and 2 VF genes (iutA and traT) were...

  4. Whole-blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes.

    Science.gov (United States)

    Néron, Sonia; Dussault, Nathalie; Racine, Claudia

    2006-04-01

    Leukoreduction of blood is now widely performed by blood banks, and the possibility of recovering 10(8) to 10(9) white blood cells (WBCs) from leukoreduction filters, which are usually discarded, represents a promising source for normal human cells. Previous studies with these filters to prepare WBCs have performed their experimentation with fresh cells only. Whether these filter-derived cells could also be used to prepare frozen cell banks to facilitate work organization and open new avenues for their utilization as references in physiological studies and clinical investigations was investigated. Blood samples or whole-blood leukoreduction filters were obtained, after informed consent, from volunteers or blood donors, respectively. The proportions of CD3+, CD14+, CD16+, CD19+, and CD45+ cells within peripheral blood mononuclear cells (PBMNCs) were determined by flow cytometry from all samples. B cells were isolated and their functional responses were evaluated in vitro. The yield of PBMNCs recovered from whole-blood leukoreduction filters was lower (50%) than the one with fresh blood samples but still provided 2 x 10(8) to 4 x 10(8) PBMNCs per unit. After one cycle of freezing-thawing, the proportions of B- and T-cell populations were similar to normal blood values. Purified B cells issued from whole-blood leukoreduction filters displayed normal phenotypes and functions. Leukoreduction filters represent a valuable source of PBMNCs. These cells could be easily recovered to prepare frozen cell banks useful in basic phenotypic and functional analyses involving the main subsets of B cells and the global T-cell population.

  5. Photoacoustic measurements of red blood cell oxygen saturation in blood bags in situ

    Science.gov (United States)

    Pinto, Ruben N.; Bagga, Karan; Douplik, Alexandre; Acker, Jason P.; Kolios, Michael C.

    2017-03-01

    Red blood cell (RBC) transfusion is a critical component of the health care services. RBCs are stored in blood bags in hypothermic temperatures for a maximum of 6 weeks post donation. During this in vitro storage period, RBCs have been documented to undergo changes in structure and function due to mechanical and biochemical stress. Currently, there are no assessment methods that monitor the quality of RBCs within blood bags stored for transfusion. Conventional assessment