WorldWideScience

Sample records for blocks kras-dependent reprogramming

  1. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells.

    Science.gov (United States)

    Scholl, Claudia; Fröhling, Stefan; Dunn, Ian F; Schinzel, Anna C; Barbie, David A; Kim, So Young; Silver, Serena J; Tamayo, Pablo; Wadlow, Raymond C; Ramaswamy, Sridhar; Döhner, Konstanze; Bullinger, Lars; Sandy, Peter; Boehm, Jesse S; Root, David E; Jacks, Tyler; Hahn, William C; Gilliland, D Gary

    2009-05-29

    An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with "undruggable" genetic alterations. PMID:19490892

  2. Nuclear reprogramming

    OpenAIRE

    Halley-Stott, Richard P; Pasque, Vincent; Gurdon, J. B.

    2013-01-01

    There is currently particular interest in the field of nuclear reprogramming, a process by which the identity of specialised cells may be changed, typically to an embryonic-like state. Reprogramming procedures provide insight into many mechanisms of fundamental cell biology and have several promising applications, most notably in healthcare through the development of human disease models and patient-specific tissue-replacement therapies. Here, we introduce the field of nuclear reprogramming a...

  3. [Reprogramming equals gambling?].

    Science.gov (United States)

    David, Laurent; De Vos, John

    2013-04-01

    While somatic cell reprogramming is now part of our text books, we ignore most of the mechanisms governing this cellular transformation. The most enigmatic question is why only rare cells undergo reprogramming, and whether this is governed by stochastc or deterministic events. In the late 2012, several major studies have addressed this question through a clonal analysis of the reprogramming process in murine MEF. In this mini-review, we describe these results and discuss future perspectives based on these date to optimize and secure the derivation of iPSC. PMID:23621936

  4. Reprogramming wireless sensor nodes

    OpenAIRE

    Helen C. Leligou, Christos Massouros, Eleftherios Tsampasis, Theodore Zahariadis, Dimitrios Bargiotas, Konstantinos Papadopoulos, Stamatis Vo

    2011-01-01

    As the applications of Wireless Sensor Networks increase rapidly, the number of deployed sensor devices proliferates, which prompts the research community to work towards their integration in the so-called “Internet of Things” to gather real time information and make the maximum out of their use towards enhancing the user experience. The capability to reconfigure/reprogram them remotely not only enables easy maintenance and code updates, which is mandatory in large sensor network deployments,...

  5. Reprogramming anti-tumor immunity

    OpenAIRE

    Crompton, Joseph G.; Clever, David; Vizcardo, Raul; Rao, Mahendra; Restifo, Nicholas P

    2014-01-01

    Regenerative medicine holds great promise in replacing tissues and organs lost to degenerative disease and injury. Applying principles of cellular reprogramming for the treatment of cancer, however, are not well established. Here we present an overview of cell-based reprogramming techniques (i.e. lineage reprogramming and stimulus-triggered acquisition of pluripotency) used in regenerative medicine, and within this context, envision how the scope of regenerative medicine may be expanded to tr...

  6. Reprogramming anti-tumor immunity

    Science.gov (United States)

    Crompton, Joseph G.; Clever, David; Vizcardo, Raul; Rao, Mahendra; Restifo, Nicholas P.

    2014-01-01

    Regenerative medicine holds great promise in replacing tissues and organs lost to degenerative disease and injury. Applying principles of cellular reprogramming for the treatment of cancer, however, are not well established. Here we present an overview of cell-based reprogramming techniques (i.e. lineage reprogramming and stimulus-triggered acquisition of pluripotency) used in regenerative medicine, and within this context, envision how the scope of regenerative medicine may be expanded to treat metastatic cancer by revitalizing an exhausted and senescent immune system. PMID:24661777

  7. Advances in reprogramming to pluripotency.

    Science.gov (United States)

    Alateeq, Suad; Fortuna, Patrick R J; Wolvetang, Ernst

    2015-01-01

    Pluripotent stem cells (PSCs) derived from somatic cells represent a powerful experimental tool for investigating the molecular mechanisms underlying the disease phenotype; with prospects to advance medical therapies. They also have significant potential as a renewable source of autologous cells for cellular therapy. Various approaches for PSC derivation from somatic cells have been reported in the literature. The method used for reprogramming is particularly relevant as it may affect the characteristics and quality of PSCs. This review will present an overview of the basic strategies and methods for reprogramming to pluripotency. These strategies will be briefly discussed in the context of how the mechanism of reprogramming could influence PSC characteristics with respect to safety and quality. Aspects of the reprogramming approach that can influence PSC properties, such as culture conditions and donor cell source, are also discussed. PMID:25697500

  8. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    OpenAIRE

    Page Grier P; Kasinathan Poothappillai; Wang Zhongde; Rodriguez-Osorio Nelida; Robl James M; Memili Erdogan

    2009-01-01

    Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clo...

  9. Transcriptional Reprogramming of Gene Expression in Bovine Somatic Cell Chromatin Transfer Embryos

    OpenAIRE

    Rodriguez-Osorio, N.; Wang, Zhongde; Page, G. P.; Robl, J M; Memili, E.

    2009-01-01

    Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT) is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from ...

  10. Reprogramming cells with synthetic proteins.

    Science.gov (United States)

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  11. Reprogramming cells with synthetic proteins

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  12. Bmil puSHHes reprogramming

    Institute of Scientific and Technical Information of China (English)

    Han Li; Manuel Serrano

    2011-01-01

    In 2006,the group of Shinya Yamanaka demonstrated that somatic cells could be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of four transcription factors associated to stemness:Oct4,Sox2,Klf4 and c-Myc [1].This groundbreaking discovery opened the possibility of generating patient-specific cells for research,drug development and regenerative medicine.Due to the tremendous potential of its clinical applications,understanding the process of reprogramming has become a priority and one of the most fascinating biomedical research topics.

  13. Epigenetic reprogramming in plant sexual reproduction.

    Science.gov (United States)

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation. PMID:25048170

  14. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  15. microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xudong Guo; Qidong Liu; Guiying Wang; Songcheng Zhu; Longfei Gao; Wujun Hong; Yafang Chen

    2013-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM),but the mechanisms underlying this reprogramming remain poorly understood.Here,we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during iPSC generation and that miR-29b expression is required for OSKM-and OSK-mediated reprogramming.Mechanistic studies show that Dnmt3a and Dnmt3b are in vivo targets of miR-29b and that Dnmt3a and Dnmt3b expression is inversely correlated with miR-29b expression during reprogramming.Moreover,the effect of miR-29b on reprogramming can be blocked by Dnmt3a or Dnmt3b overexpression.Further experiments indicate that miR-29b-DNMT signaling is significantly involved in the regulation of DNA methylation-related reprogramming events,such as mesenchymal-to-epithelial transition (MET)and Dlk1-Dio3 region transcription.Thus,our studies not only reveal that miR-29b is a novel mediator of reprogramming factor Sox2 but also provide evidence for a muitistep mechanism in which Sox2 drives a miR-29b-DNMT signaling axis that regulates DNA methylation-related events during reprogramming.

  16. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.;

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  17. Stem cell reprogramming: A 3D boost

    Science.gov (United States)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  18. Direct reprogramming of somatic cells: an update

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-03-01

    Full Text Available Direct epigenetic reprogramming is a technique that converts a differentiated adult cell into another differentiated cell and mdash;such fibroblasts to cardiomyocytes and mdash;without passage through an undifferentiated pluripotent stage. This novel technology is opening doors in biological research and regenerative medicine. Some preliminary studies about direct reprogramming started in the 1980s when differentiated adult cells could be converted into other differentiated cells by overexpressing transcription-factor genes. These studies also showed that differentiated cells have plasticity. Direct reprogramming can be a powerful tool in biological research and regenerative medicine, especially the new frontier of personalized medicine. This review aims to summarize all direct reprogramming studies of somatic cells by master control genes as well as potential applications of these techniques in research and treatment of selected human diseases. [Biomed Res Ther 2015; 2(3.000: 231-240

  19. Molecular features of cellular reprogramming and development.

    Science.gov (United States)

    Smith, Zachary D; Sindhu, Camille; Meissner, Alexander

    2016-03-01

    Differentiating somatic cells are progressively restricted to specialized functions during ontogeny, but they can be experimentally directed to form other cell types, including those with complete embryonic potential. Early nuclear reprogramming methods, such as somatic cell nuclear transfer (SCNT) and cell fusion, posed significant technical hurdles to precise dissection of the regulatory programmes governing cell identity. However, the discovery of reprogramming by ectopic expression of a defined set of transcription factors, known as direct reprogramming, provided a tractable platform to uncover molecular characteristics of cellular specification and differentiation, cell type stability and pluripotency. We discuss the control and maintenance of cellular identity during developmental transitions as they have been studied using direct reprogramming, with an emphasis on transcriptional and epigenetic regulation. PMID:26883001

  20. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  1. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  2. Oncometabolic Nuclear Reprogramming of Cancer Stemness

    Science.gov (United States)

    Menendez, Javier A.; Corominas-Faja, Bruna; Cuyàs, Elisabet; García, María G.; Fernández-Arroyo, Salvador; Fernández, Agustín F.; Joven, Jorge; Fraga, Mario F.; Alarcón, Tomás

    2016-01-01

    Summary By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells. PMID:26876667

  3. Oncometabolic Nuclear Reprogramming of Cancer Stemness

    Directory of Open Access Journals (Sweden)

    Javier A. Menendez

    2016-03-01

    Full Text Available By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells.

  4. Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes

    Directory of Open Access Journals (Sweden)

    Wenqiang Liu

    2014-03-01

    Full Text Available It has been demonstrated that reprogramming factors are sequestered in the pronuclei of zygotes after fertilization, because zygotes enucleated at the M phase instead of interphase of the first mitosis can support the development of cloned embryos. However, the contribution of the parental pronucleus derived from either the sperm or the oocyte in reprogramming remains elusive. Here, we demonstrate that the parental pronuclei have asymmetric reprogramming capacities and that the reprogramming factors reside predominantly in the male pronucleus. As a result, only female pronucleus-depleted (FPD mouse zygotes can reprogram somatic cells to a pluripotent state and support the full-term development of cloned embryos; male pronucleus-depleted (MPD zygotes fail to support somatic cell reprogramming. We further demonstrate that fusion of an additional male pronucleus into a zygote greatly enhances reprogramming efficiency. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.

  5. EasiLIR: Lightweight Incremental Reprogramming for Sensor Networks

    OpenAIRE

    Jiefan Qiu; Dong Li; Hailong Shi; Li Cui

    2014-01-01

    Energy-efficient wireless reprogramming is key issues for long-lived sensor network. Most of wireless reprogramming approaches focus on the energy efficiency of the data transmission phase. However, the program rebuilding phase on target node is possibly as another significant part of the total reprogramming energy consumption, due to the high energy overhead of reading or writing operation on the energy-hungry nonvolatile memory. In this paper, we propose an energy-efficient reprogramming sy...

  6. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  7. Epigenetic reprogramming in mammalian nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LI Shijie; DU Weihua; LI Ning

    2004-01-01

    Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.

  8. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  9. The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    Directory of Open Access Journals (Sweden)

    Juli J. Unternaehrer

    2014-11-01

    Full Text Available Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs entails a mesenchymal to epithelial transition (MET. While attempting to dissect the mechanism of MET during reprogramming, we observed that knockdown (KD of the epithelial-to-mesenchymal transition (EMT factor SNAI1 (SNAIL paradoxically reduced, while overexpression enhanced, reprogramming efficiency in human cells and in mouse cells, depending on strain. We observed nuclear localization of SNAI1 at an early stage of fibroblast reprogramming and using mouse fibroblasts expressing a knockin SNAI1-YFP reporter found cells expressing SNAI1 reprogrammed at higher efficiency. We further demonstrated that SNAI1 binds the let-7 promoter, which may play a role in reduced expression of let-7 microRNAs, enforced expression of which, early in the reprogramming process, compromises efficiency. Our data reveal an unexpected role for the EMT factor SNAI1 in reprogramming somatic cells to pluripotency.

  10. Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch.

    Science.gov (United States)

    Sun, Hao; Liang, Lining; Li, Yuan; Feng, Chengqian; Li, Lingyu; Zhang, Yixin; He, Songwei; Pei, Duanqing; Guo, Yunqian; Zheng, Hui

    2016-01-01

    Lysine-specific histone demethylase 1 (LSD1) regulates histone methylation and influences the epigenetic state of cells during the generation of induced pluripotent stem cells (iPSCs). Here we reported that LSD1 inhibition via shRNA or specific inhibitor, tranylcypromine, promoted reprogramming at early stage via two mechanisms. At early stage of reprogramming, LSD1 inhibition increased the retrovirus-mediated exogenous expression of Oct4, Klf4, and Sox2 by blocking related H3K4 demethylation. Since LSD1 inhibition still promoted reprogramming even when iPSCs were induced with small-molecule compounds in a virus-free system, additional mechanisms should be involved. When RNA-seq was used for analysis, it was found that LSD1 inhibition reversed some gene expression changes induced by OKS, which subsequently promoted reprogramming. For example, by partially rescuing the decreased expression of Hif1α, LSD1 inhibition reversed the up-regulation of genes in oxidative phosphorylation pathway and the down-regulation of genes in glycolysis pathway. Such effects facilitated the metabolic switch from oxidative phosphorylation to glycolysis and subsequently promoted iPSCs induction. In addition, LSD1 inhibition also promoted the conversion from pre-iPSCs to iPSCs by facilitating the similar metabolic switch. Therefore, LSD1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. PMID:27481483

  11. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  12. Reprogramming for cardiac regeneration: strategies for innovation

    OpenAIRE

    Sanchís-Gomar, Fabián; Galera, Teresa; Lucía Mulas, Alejandro; Gallardo, María Esther

    2016-01-01

    It is well-known that the human myocardium has a low capacity for self-regeneration. This fact is especially important after acute myocardial infarction with subsequent heart failure and adverse tissue remodeling. New potential strategies have recently emerged for treating heart diseases, such as the possibility of generating large quantities of cardiomyocytes through genetic iPSC reprogramming, transdifferentiation for in vitro disease modeling, in vivo therapies or telomerase gene reactivat...

  13. Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos.

    Science.gov (United States)

    Sepulveda-Rincon, Lessly P; Solanas, Edgar Del Llano; Serrano-Revuelta, Elisa; Ruddick, Lydia; Maalouf, Walid E; Beaujean, Nathalie

    2016-07-01

    Despite ongoing research in a number of species, the efficiency of embryo production by nuclear transfer remains low. Incomplete epigenetic reprogramming of the nucleus introduced in the recipient oocyte is one factor proposed to limit the success of this technique. Nonetheless, knowledge of reprogramming factors has increased-thanks to comparative studies on reprogramming of the paternal genome brought by sperm on fertilization-and will be reviewed here. Another valuable model of reprogramming is the one obtained in the absence of sperm fertilization through artificial activation-the parthenote-and will also be introduced. Altogether the objective of this review is to have a better understanding on the mechanisms responsible for the resistance to reprogramming, not only because it could improve embryonic development but also as it could benefit therapeutic reprogramming research. PMID:27156679

  14. Somatic Cell Dedifferentiation/Reprogramming for Regenerative Medicine

    OpenAIRE

    Ramesh, Thiyagarajan; Lee, Sun-Hee; Lee, Choon-Soo; Kwon, Yoo-Wook; Cho, Hyun-Jai

    2009-01-01

    The concept of dedifferentiation or reprogramming of a somatic cell into a pluripotent embryonic stem cell-like cell (ES-like cell), which give rise to three germ layers and differentiate various cell types, opens a new era in stem cell biology and provides potential therapeutic modality in regenerative medicine. Here, we outline current dedifferentiation/reprogramming methods and their technical hurdles, and the safety and therapeutic applications of reprogrammed pluripotent stem cells in re...

  15. Nuclear reprogramming by nuclear transplantation and defined transcription factors

    Institute of Scientific and Technical Information of China (English)

    WANG YiXuan; LIU Sheng; LAI LiangXue; GAO ShaoRong

    2009-01-01

    In the past ten years,great breakthroughs have been achieved in the nuclear reprogramming area.It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state,which indicates that differentiated cell fate is not irreversible.Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing repro-gramming of differentiated somatic cell genome.In the present review,we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose.

  16. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming.

    Science.gov (United States)

    Quintanilla, Rene H; Asprer, Joanna; Sylakowski, Kyle; Lakshmipathy, Uma

    2016-01-01

    Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming. PMID:27500543

  17. Reprogramming stem cells is a microenvironmental task

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Inman, Jamie

    2008-10-14

    That tumor cells for all practical purposes are unstable and plastic could be expected. However, the astonishing ability of the nuclei from cells of normal adult tissues to be reprogrammed - given the right embryonic context - found its final truth even for mammals in the experiments that allowed engineering Dolly (1). The landmark experiments showed that nuclei originating from cells of frozen mammary tissues were capable of being reprogrammed by the embryonic cytoplasm and its microenvironment to produce a normal sheep. The rest is history. However, whether microenvironments other than those of the embryos can also reprogram adult cells of different tissue origins still containing their cytoplasm is of obvious interest. In this issue of PNAS, the laboratory of Gilbert Smith (2) reports on how the mammary gland microenvironment can reprogram both embryonic and adult stem neuronal cells. The work is a follow-up to their previous report on testis stem cells that were reprogrammed by the mammary microenvironment (3). They demonstrated that cells isolated from the seminiferous tubules of the mature testis, mixed with normal mammary epithelial cells, contributed a sizable number of epithelial progeny to normal mammary outgrowths in transplanted mammary fat pads. However, in those experiments they were unable to distinguish which subpopulation of the testis cells contributed progeny to the mammary epithelial tree. The current work adds new, compelling, and provocative information to our understanding of stem cell plasticity. Booth et al. (2) use neuronal stem cells (NSCs) isolated from WAP-cre/R26R mice combined with unlabeled mammary epithelial cells that subsequently are implanted in cleared mammary fat pads. In this new microenvironment, the NSCs that are incorporated into the branching mammary tree make chimeric glands (Fig. 1) that remarkably can also express the milk protein {beta}-casein, progesterone receptor, and estrogen receptor {alpha}. Remarkably, the

  18. Optimal ROS Signaling Is Critical for Nuclear Reprogramming.

    Science.gov (United States)

    Zhou, Gang; Meng, Shu; Li, Yanhui; Ghebre, Yohannes T; Cooke, John P

    2016-05-01

    Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS) signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox)-inducible mouse embryonic fibroblasts (MEFs) carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM]) into induced pluripotent stem cells (iPSCs). ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22(phox)-a critical subunit of the Nox (1-4) complex-decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency. PMID:27117405

  19. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  20. Molecular barriers to processes of genetic reprogramming and cell transformation.

    Science.gov (United States)

    Chestkov, I V; Khomyakova, E A; Vasilieva, E A; Lagarkova, M A; Kiselev, S L

    2014-12-01

    Genetic reprogramming by ectopic expression of transcription factor genes induces the pluripotent state in somatic cells. This technology provides an opportunity to establish pluripotent stem cells for each person, as well as to get better understanding of epigenetic mechanisms controlling cell state. Interestingly, some of the molecular processes that accompany somatic cell reprogramming in vitro are also characteristic for tumor manifestation. Thus, similar "molecular barriers" that control the stability of epigenetic state exist for both processes of pluripotency induction and malignant transformation. The reprogramming of tumor cells is interesting in two aspects: first, it will determine the contribution of epigenetic changes in carcinogenesis; second, it gives an approach to evaluate tumor stem cells that are supposed to form the entire cell mass of the tumor. This review discusses the key stages of genetic reprogramming, the similarity and difference between the reprogramming process and malignant transformation. PMID:25716723

  1. Direct neuronal reprogramming: learning from and for development.

    Science.gov (United States)

    Masserdotti, Giacomo; Gascón, Sergio; Götz, Magdalena

    2016-07-15

    The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the 'Cook Islands' model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field. PMID:27436039

  2. Wound signaling of regenerative cell reprogramming.

    Science.gov (United States)

    Lup, Samuel Daniel; Tian, Xin; Xu, Jian; Pérez-Pérez, José Manuel

    2016-09-01

    Plants are sessile organisms that must deal with various threats resulting in tissue damage, such as herbivore feeding, and physical wounding by wind, snow or crushing by animals. During wound healing, phytohormone crosstalk orchestrates cellular regeneration through the establishment of tissue-specific asymmetries. In turn, hormone-regulated transcription factors and their downstream targets coordinate cellular responses, including dedifferentiation, cell cycle reactivation and vascular regeneration. By comparing different examples of wound-induced tissue regeneration in the model plant Arabidopsis thaliana, a number of key regulators of developmental plasticity of plant cells have been identified. We present the relevance of these findings and of the dynamic establishment of differential auxin gradients for cell reprogramming after wounding. PMID:27457994

  3. In Vivo Reprogramming for Brain and Spinal Cord Repair.

    Science.gov (United States)

    Chen, Gong; Wernig, Marius; Berninger, Benedikt; Nakafuku, Masato; Parmar, Malin; Zhang, Chun-Li

    2015-01-01

    Cell reprogramming technologies have enabled the generation of various specific cell types including neurons from readily accessible patient cells, such as skin fibroblasts, providing an intriguing novel cell source for autologous cell transplantation. However, cell transplantation faces several difficult hurdles such as cell production and purification, long-term survival, and functional integration after transplantation. Recently, in vivo reprogramming, which makes use of endogenous cells for regeneration purpose, emerged as a new approach to circumvent cell transplantation. There has been evidence for in vivo reprogramming in the mouse pancreas, heart, and brain and spinal cord with various degrees of success. This mini review summarizes the latest developments presented in the first symposium on in vivo reprogramming glial cells into functional neurons in the brain and spinal cord, held at the 2014 annual meeting of the Society for Neuroscience in Washington, DC. PMID:26730402

  4. Differential Reprogramming Based on Constructive Interference for Wireless Sensor Network

    OpenAIRE

    Hu, Bing

    2016-01-01

    To improve the performance of reprogramming in wireless sensor network, we present a novel reprogramming structure and constructive interference-based dissemination protocol (CIDP) to transmit the patch through out the network fast and reliability. CIDP disseminates the patch, which is divided into several packets, to the network exploiting constructive interference. We evaluate our implementation of CIDP using simulation under different number of nodes. Our results show that CIDP disseminate...

  5. Preparation of materials for flexizyme reactions and genetic code reprogramming

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yuki Goto, Takayuki Katoh & Hiroaki Suga ### Abstract Genetic code reprogramming is a method for the reassignment of arbitrary codons from proteinogenic amino acids to non-proteinogenic ones, and thus specific sequences of non-standard peptides can be ribosomally expressed according to their mRNA templates. We have developed a protocol that facilitates the genetic code reprogramming using flexizymes integrated with a custom-made in-vitro translation apparatus, referred to...

  6. Signaling involved in stem cell reprogramming and differentiation

    Institute of Scientific and Technical Information of China (English)

    Shihori; Tanabe

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have reve-aled that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell pro-gramming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review,the molecular interactions and signaling pathways related to stem cell differentiation are discussed.

  7. Signaling involved in stem cell reprogramming and differentiation

    OpenAIRE

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to s...

  8. Reprogramming of Xist against the pluripotent state in fusion hybrids.

    Science.gov (United States)

    Do, Jeong Tae; Han, Dong Wook; Gentile, Luca; Sobek-Klocke, Ingeborg; Wutz, Anton; Schöler, Hans R

    2009-11-15

    The fusion of somatic cells with pluripotent cells results in the generation of pluripotent hybrid cells. Because the ;memory' of somatic cells seems to be erased during fusion-induced reprogramming, genetic reprogramming is thought to be a largely unidirectional process. Here we show that fusion-induced reprogramming, which brings about the formation of pluripotent hybrids, does not always follow a unidirectional route. Xist is a unique gene in that it is reprogrammed to the state of somatic cells in fusion-induced pluripotent hybrids. In hybrids formed from the cell fusion of embryonal carcinoma cells (ECCs) with male neural stem cells (mNSCs), the Xist gene was found to be reprogrammed to the somatic cell state, whereas the pluripotency-related and tissue-specific marker genes were reprogrammed to the pluripotent cell state. Specifically, Xist is not expressed in hybrids, because the ;memory' of the somatic cell has been retained (i.e. mNSCs do not exhibit Xist expression) and that of the pluripotent cell erased (i.e. inactivation of the partially active Xist gene of ECCs, complete methylation of the Xist region). The latter phenomenon is induced by male, but not by female, NSCs. PMID:19843582

  9. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  10. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming.

    Science.gov (United States)

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Björkhem, Ingemar; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R; Wright, Samuel D; Espevik, Terje; Schultze, Joachim L; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-04-01

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol concentrations. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Because cholesterol accumulation and deposition of cholesterol crystals (CCs) trigger a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility in preventing and reversing atherosclerosis. We showed that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the antiatherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Because CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis. PMID:27053774

  11. Heart Block

    Science.gov (United States)

    ... the signal causes the heart to contract and pump blood. Heart block occurs if the electrical signal is ... degree heart block limits the heart's ability to pump blood to the rest of the body. This type ...

  12. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  13. Reprogramming tumor-infiltrating dendritic cells for CD103+CD8+ mucosal T cell differentiation and breast cancer rejection

    Science.gov (United States)

    Wu, Te-Chia; Xu, Kangling; Banchereau, Romain; Marches, Florentina; Yu, Chun I; Martinek, Jan; Anguiano, Esperanza; Pedroza-Gonzalez, Alexander; Snipes, G. Jackson; O’Shaughnessy, Joyce; Nishimura, Stephen; Liu, Yong-Jun; Pascual, Virginia; Banchereau, Jacques; Oh, Sangkon; Palucka, Karolina

    2014-01-01

    Our studies showed that tumor-infiltrating dendritic cells (DC) in breast cancer drive inflammatory T helper 2 (iTh2) cells and protumor inflammation. Here we show that intratumoral delivery of the β-glucan curdlan, a ligand of dectin-1, blocks the generation of iTh2 cells, and prevents breast cancer progression in vivo. Curdlan reprograms tumor-infiltrating DC via the ligation of dectin-1, enabling the DC to become resistant to cancer-derived thymic stromal lymphopoietin (TSLP), to produce IL12p70, and to favor the generation of T helper 1 (Th1) cells. DC activated via dectin-1, but not those activated with TLR-7/8 ligand or poly IC, induce CD8+ T cells to express CD103 (αE integrin), a ligand for cancer cells E-cadherin. Generation of these mucosal CD8+ T cells is regulated by DC-derived integrin αvβ8 and TGF-β activation in a dectin-1-dependent fashion. These CD103+CD8+ mucosal T cells accumulate in the tumors thereby increasing cancer necrosis and inhibiting cancer progression in vivo in a humanized mouse model of breast cancer. Importantly, CD103+CD8+ mucosal T cells elicited by reprogrammed DC can reject established cancer. Thus, reprogramming tumor-infiltrating DC represents a new strategy for cancer rejection. PMID:24795361

  14. Epigenetic reprogramming in mammalian species after SCNT-based cloning.

    Science.gov (United States)

    Niemann, Heiner

    2016-07-01

    The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development. PMID:27160443

  15. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  16. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis.

    Science.gov (United States)

    Muraoka, Naoto; Ieda, Masaki

    2014-01-01

    Heart disease is a major cause of morbidity and mortality worldwide. The low regenerative capacity of adult human hearts has thus far limited the available therapeutic approaches for heart failure. Therefore, new therapies that can regenerate damaged myocardium and improve heart function are urgently needed. Although cell transplantation-based therapies may hold great potential, direct reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the heart, into functional cardiomyocytes in situ may be an alternative strategy by which to regenerate the heart. We and others demonstrated that functional cardiomyocytes can be directly generated from fibroblasts by using several combinations of cardiac-enriched factors in mouse and human. In vivo gene delivery of cardiac reprogramming factors generates new cardiac muscle and improved heart function after myocardial infarction in mouse. This article reviews recent progress in cardiac reprogramming research and discusses the perspectives and challenges of this new technology for future regenerative therapy. PMID:24079415

  17. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration.

  18. The HIST1 Locus Escapes Reprogramming in Cloned Bovine Embryos

    Science.gov (United States)

    Min, Byungkuk; Cho, Sunwha; Park, Jung Sun; Jeon, Kyuheum; Kang, Yong-Kook

    2016-01-01

    Epigenetic reprogramming is necessary in somatic cell nuclear transfer (SCNT) embryos in order to erase the differentiation-associated epigenetic marks of donor cells. However, such epigenetic memories often persist throughout the course of clonal development, thus decreasing cloning efficiency. Here, we explored reprogramming-refractory regions in bovine SCNT blastocyst transcriptomes. We observed that histone genes residing in the 1.5 Mb spanning the cow HIST1 cluster were coordinately downregulated in SCNT blastocysts. In contrast, both the nonhistone genes of this cluster, and histone genes elsewhere remained unaffected. This indicated that the downregulation was specific to HIST1 histone genes. We found that, after trichostatin A treatment, HIST1 histone genes were derepressed, and DNA methylation at their promoters was decreased to the level of in vitro fertilization embryos. Therefore, our results indicate that the reduced expression of HIST1 histone genes is a consequence of poor epigenetic reprogramming in SCNT blastocysts. PMID:26976441

  19. The HIST1 Locus Escapes Reprogramming in Cloned Bovine Embryos

    Directory of Open Access Journals (Sweden)

    Byungkuk Min

    2016-05-01

    Full Text Available Epigenetic reprogramming is necessary in somatic cell nuclear transfer (SCNT embryos in order to erase the differentiation-associated epigenetic marks of donor cells. However, such epigenetic memories often persist throughout the course of clonal development, thus decreasing cloning efficiency. Here, we explored reprogramming-refractory regions in bovine SCNT blastocyst transcriptomes. We observed that histone genes residing in the 1.5 Mb spanning the cow HIST1 cluster were coordinately downregulated in SCNT blastocysts. In contrast, both the nonhistone genes of this cluster, and histone genes elsewhere remained unaffected. This indicated that the downregulation was specific to HIST1 histone genes. We found that, after trichostatin A treatment, HIST1 histone genes were derepressed, and DNA methylation at their promoters was decreased to the level of in vitro fertilization embryos. Therefore, our results indicate that the reduced expression of HIST1 histone genes is a consequence of poor epigenetic reprogramming in SCNT blastocysts.

  20. DMPD: Cellular reprogramming by gram-positive bacterial components: a review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16885502 Cellular reprogramming by gram-positive bacterial components: a review. Bu...(.csml) Show Cellular reprogramming by gram-positive bacterial components: a review. PubmedID 16885502 Title Cellular reprogramming...ckley JM, Wang JH, Redmond HP. J Leukoc Biol. 2006 Oct;80(4):731-41. Epub 2006 Aug 2. (.png) (.svg) (.html)

  1. LET-418/Mi2 and SPR-5/LSD1 Cooperatively Prevent Somatic Reprogramming of C. elegans Germline Stem Cells

    Directory of Open Access Journals (Sweden)

    Stéphanie Käser-Pébernard

    2014-04-01

    Full Text Available Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, “sensitization” of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.

  2. Advances in MicroRNA-Mediated Reprogramming Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Kuo

    2012-01-01

    Full Text Available The use of somatic cells to generate induced-pluripotent stem cells (iPSCs, which have gene characteristic resembling those of human embryonic stem cells (hESCs, has opened up a new avenue to produce patient-specific stem cells for regenerative medicine. MicroRNAs (miRNAs have gained much attention over the past few years due to their pivotal role in many biological activites, including metabolism, host immunity, and cancer. Soon after the discovery of embryonic-stem-cell- (ESC- specific miRNAs, researchers began to investigate their functions in embryonic development and differentiation, as well as their potential roles in somatic cell reprogramming (SCR. Several approaches for ESC-specific miRNA-mediated reprogramming have been developed using cancer and somatic cells to generate ESC-like cells with similarity to iPSCs and/or hESCs. However, the use of virus-integration to introduce reprogramming factors limits future clinical applications. This paper discusses the possible underlying mechanism for miRNA-mediated somatic cell reprogramming and the approaches used by different groups to induce iPSCs with miRNAs.

  3. Renal stem cell reprogramming: Prospects in regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Elvin; E; Morales; Rebecca; A; Wingert

    2014-01-01

    Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of geneactivity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease.

  4. Reprogramming : A Preventive Strategy in Hypertension Focusing on the Kidney

    NARCIS (Netherlands)

    Tain, You-Lin; Joles, JA

    2015-01-01

    Adulthood hypertension can be programmed in response to a suboptimal environment in early life. However, developmental plasticity also implies that one can prevent hypertension in adult life by administrating appropriate compounds during early development. We have termed this reprogramming. While th

  5. Cellular Reprogramming Using Defined Factors and MicroRNAs

    Directory of Open Access Journals (Sweden)

    Takanori Eguchi

    2016-01-01

    Full Text Available Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1, Sox2, and Myc. This outstanding innovation is largely changing life science and medicine. Methods of direct reprogramming of cells into myocytes, neurons, chondrocytes, and osteoblasts have been further developed using modified combination of factors such as N-myc, L-myc, Sox9, and microRNAs in defined cell/tissue culture conditions. Mesenchymal stem cells (MSCs and dental pulp stem cells (DPSCs are also emerging multipotent stem cells with particular microRNA expression signatures. It was shown that miRNA-720 had a role in cellular reprogramming through targeting the pluripotency factor Nanog and induction of DNA methyltransferases (DNMTs. This review reports histories, topics, and idea of cellular reprogramming.

  6. Cellular Reprogramming Using Defined Factors and MicroRNAs.

    Science.gov (United States)

    Eguchi, Takanori; Kuboki, Takuo

    2016-01-01

    Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES) cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS) cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1), Sox2, and Myc. This outstanding innovation is largely changing life science and medicine. Methods of direct reprogramming of cells into myocytes, neurons, chondrocytes, and osteoblasts have been further developed using modified combination of factors such as N-myc, L-myc, Sox9, and microRNAs in defined cell/tissue culture conditions. Mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) are also emerging multipotent stem cells with particular microRNA expression signatures. It was shown that miRNA-720 had a role in cellular reprogramming through targeting the pluripotency factor Nanog and induction of DNA methyltransferases (DNMTs). This review reports histories, topics, and idea of cellular reprogramming. PMID:27382371

  7. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  8. Telomere reprogramming and maintenance in porcine iPS cells.

    Directory of Open Access Journals (Sweden)

    Guangzhen Ji

    Full Text Available Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells. Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  9. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.

    Science.gov (United States)

    Seisenberger, Stefanie; Peat, Julian R; Hore, Timothy A; Santos, Fátima; Dean, Wendy; Reik, Wolf

    2013-01-01

    In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine. PMID:23166394

  10. Ghost Block

    OpenAIRE

    Webb, Neil

    2011-01-01

    Filmed on the English south coast 'Ghost Block' depicts the uncanny and eerie atmosphere at the site of a WW2 coastal defence line. The concrete cubes were used as an anti-invasion blockade against potential landing forces. This protection line now slowly decaying and becoming enmeshed into the environment still acts as a defence to repel unwanted visitors. The area is a natural reserve to nesting birds that often lay eggs directly onto the beach surface. The blocks act as a final barrier ...

  11. Niche adaptation by expansion and reprogramming of general transcription factors

    OpenAIRE

    Turkarslan, Serdar; Reiss, David J; Gibbins, Goodwin; Su, Wan Lin; Pan, Min; Bare, J Christopher; Plaisier, Christopher L.; Baliga, Nitin S

    2011-01-01

    The evolutionary success of an organism depends on its ability to continually adapt to changes in the patterns of constant, periodic, and transient challenges within its environment. This process of ‘niche adaptation' requires reprogramming of the organism's environmental response networks by reorganizing interactions among diverse parts including environmental sensors, signal transducers, and transcriptional and post-transcriptional regulators. Gene duplications have been discovered to be on...

  12. Implications and limitations of cellular reprogramming for psychiatric drug development

    OpenAIRE

    Tobe, Brian T. D.; Brandel, Michael G.; Nye, Jeffrey S; Snyder, Evan Y.

    2013-01-01

    Human-induced pluripotent stem cells (hiPSCs) derived from somatic cells of patients have opened possibilities for in vitro modeling of the physiology of neural (and other) cells in psychiatric disease states. Issues in early stages of technology development include (1) establishing a library of cells from adequately phenotyped patients, (2) streamlining laborious, costly hiPSC derivation and characterization, (3) assessing whether mutations or other alterations introduced by reprogramming co...

  13. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    OpenAIRE

    Gaskon Ibarretxe; Antonia Alvarez; Maria-Luz Cañavate; Enrique Hilario; Maitane Aurrekoetxea; Fernando Unda

    2012-01-01

    The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current stat...

  14. Structure-guided reprogramming of serine recombinase DNA sequence specificity

    OpenAIRE

    Gaj, Thomas; Mercer, Andrew C.; Gersbach, Charles A; Gordley, Russell M.; Barbas III, Carlos F.

    2010-01-01

    Routine manipulation of cellular genomes is contingent upon the development of proteins and enzymes with programmable DNA sequence specificity. Here we describe the structure-guided reprogramming of the DNA sequence specificity of the invertase Gin from bacteriophage Mu and Tn3 resolvase from Escherichia coli. Structure-guided and comparative sequence analyses were used to predict a network of amino acid residues that mediate resolvase and invertase DNA sequence specificity. Using saturation ...

  15. Reprogramming therapeutics: iPS cell prospects for neurodegenerative disease

    OpenAIRE

    Abeliovich, Asa; Doege, Claudia A.

    2009-01-01

    The recent description of somatic cell reprogramming to an embryonic stem (ES) cell-like phenotype, termed induced pluripotent stem (iPS) cell technology, presents an exciting potential venue towards cell-based therapeutics and disease models for neurodegenerative disorders Two recent studies from Dimos et al. (Dimos et al., 2008) and Ebert et al. (Ebert et al., 2008) describe the initial characterization of neurodegenerative disease patient-derived iPS cell cultures as proof-of-concept for t...

  16. ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Katherine M. Aird

    2015-05-01

    Full Text Available Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.

  17. Stress Response and Perinatal Reprogramming: Unraveling (Mal)adaptive Strategies.

    Science.gov (United States)

    Musazzi, Laura; Marrocco, Jordan

    2016-01-01

    Environmental stressors induce coping strategies in the majority of individuals. The stress response, involving the activation of the hypothalamic-pituitary-adrenocortical axis and the consequent release of corticosteroid hormones, is indeed aimed at promoting metabolic, functional, and behavioral adaptations. However, behavioral stress is also associated with fast and long-lasting neurochemical, structural, and behavioral changes, leading to long-term remodeling of glutamate transmission, and increased susceptibility to neuropsychiatric disorders. Of note, early-life events, both in utero and during the early postnatal life, trigger reprogramming of the stress response, which is often associated with loss of stress resilience and ensuing neurobehavioral (mal)adaptations. Indeed, adverse experiences in early life are known to induce long-term stress-related neuropsychiatric disorders in vulnerable individuals. Here, we discuss recent findings about stress remodeling of excitatory neurotransmission and brain morphology in animal models of behavioral stress. These changes are likely driven by epigenetic factors that lie at the core of the stress-response reprogramming in individuals with a history of perinatal stress. We propose that reprogramming mechanisms may underlie the reorganization of excitatory neurotransmission in the short- and long-term response to stressful stimuli. PMID:27057367

  18. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  19. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    OpenAIRE

    Ana Belen Alvarez Palomo; Michaela Lucas; Dilley, Rodney J.; Samuel McLenachan; Fred Kuanfu Chen; Jordi Requena; Marti Farrera Sal; Andrew Lucas; Inaki Alvarez; Dolores Jaraquemada; Michael J. Edel

    2014-01-01

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and rege...

  20. Epidural block

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools Español You Are Here: Home ... It numbs or causes a loss of feeling in the lower half your body. This lessens the pain of contractions during childbirth. An epidural block may also be used to ...

  1. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation...... capacity. Here we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules...... influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations....

  2. Directed Dedifferentiation Using Partial Reprogramming Induces Invasive Phenotype in Melanoma Cells.

    Science.gov (United States)

    Knappe, Nathalie; Novak, Daniel; Weina, Kasia; Bernhardt, Mathias; Reith, Maike; Larribere, Lionel; Hölzel, Michael; Tüting, Thomas; Gebhardt, Christoffer; Umansky, Viktor; Utikal, Jochen

    2016-04-01

    The combination of cancer-focused studies and research related to nuclear reprogramming has gained increasing importance since both processes-reprogramming towards pluripotency and malignant transformation-share essential features. Studies have revealed that incomplete reprogramming of somatic cells leads to malignant transformation indicating that epigenetic regulation associated with iPSC generation can drive cancer development [J Mol Cell Biol 2011;341-350; Cell 2012;151:1617-1632; Cell 2014;156:663-677]. However, so far it is unclear whether incomplete reprogramming also affects cancer cells and their function. In the context of melanoma, dedifferentiation correlates to therapy resistance in mouse studies and has been documented in melanoma patients [Nature 2012;490:412-416; Clin Cancer Res 2014;20:2498-2499]. Therefore, we sought to investigate directed dedifferentiation using incomplete reprogramming of melanoma cells. Using a murine model we investigated the effects of partial reprogramming on the cellular plasticity of melanoma cells. We demonstrate for the first time that induced partial reprogramming results in a reversible phenotype switch in melanoma cells. Partially reprogrammed cells at day 12 after transgene induction display elevated invasive potential in vitro and increased lung colonization in vivo. Additionally, using global gene expression analysis of partially reprogrammed cells, we identified SNAI3 as a novel invasion-related marker in human melanoma. SNAI3 expression correlates with tumor thickness in primary melanomas and thus, may be of prognostic value. In summary, we show that investigating intermediate states during the process of reprogramming melanoma cells can reveal novel insights into the pathogenesis of melanoma progression. We propose that deeper analysis of partially reprogrammed melanoma cells may contribute to identification of yet unknown signaling pathways that can drive melanoma progression. Stem Cells 2016;34:832-846. PMID

  3. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming

    DEFF Research Database (Denmark)

    Swales, Nathalie; Martens, Geert A; Bonné, Stefan;

    2012-01-01

    Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it....

  4. SCL/TAL1 in Hematopoiesis and Cellular Reprogramming.

    Science.gov (United States)

    Hoang, T; Lambert, J A; Martin, R

    2016-01-01

    SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment. PMID:27137657

  5. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  6. Reprogramming for Cardiac Regeneration-Strategies for Innovation.

    Science.gov (United States)

    Sanchis-Gomar, Fabian; Galera, Teresa; Lucia, Alejandro; Gallardo, María Esther

    2016-09-01

    It is well-known that the human myocardium has a low capacity for self-regeneration. This fact is especially important after acute myocardial infarction with subsequent heart failure and adverse tissue remodeling. New potential strategies have recently emerged for treating heart diseases, such as the possibility of generating large quantities of cardiomyocytes through genetic iPSC reprogramming, transdifferentiation for in vitro disease modeling, in vivo therapies or telomerase gene reactivation. Approaches based on these techniques may represent the new horizon in cardiology with an appropriate 180-degree turn perspective. J. Cell. Physiol. 231: 1849-1851, 2016. © 2016 Wiley Periodicals, Inc. PMID:27128961

  7. Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development.

    Science.gov (United States)

    Perera, P I P; Ordoñez, C A; Dedicova, B; Ortega, P E M

    2014-01-01

    Gametes have the unique potential to enter the sporophytic pathway, called androgenesis. The plants produced are usually haploid and recombinant due to the preceding meiosis and they can double their chromosome number to form doubled haploids, which are completely homozygous. Availability of the doubled haploids facilitates mapping the genes of agronomically important traits, shortening the time of the breeding process required to produce new hybrids and homozygous varieties, and saving the time and cost for inbreeding. This study aimed to test the feasibility of using isolated and in vitro cultured immature cassava (Manihot esculenta) microspores to reprogramme and initiate sporophytic development. Different culture media and different concentrations of two ion components (Cu(2+) and Fe(2+)) were tested in two genotypes of cassava. External structural changes, nuclear divisions and cellular changes during reprogramming were analysed by scanning electron microscopy, by staining with 4',6-diamidino-2-phenylindole, and through classical histology and transmission electron microscopy. In two cassava genotypes, different developmental stages of microspores were found to initiate sporophytic cell divisions, that is, with tetrads of TMS 60444 and with mid or late uni-nucleate microspores of SM 1219-9. In the modified NLN medium (NLNS), microspore enlargements were observed. The medium supplemented with either sodium ferrous ethylene-diamine-tetraacetic acid (NaFeEDTA) or CuSO4·5H2O induced sporophytic cell division in both genotypes. A low frequency of the reprogramming and the presence of non-responsive microspores among the responsive ones in tetrads were found to be related to the viability and exine formation of the microspores. The present study clearly demonstrated that reprogramming occurs much faster in isolated microspore culture than in anther culture. This paves the way for the development of an efficient technique for the production of homozygous lines in

  8. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  9. The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    OpenAIRE

    Juli J. Unternaehrer; Rui Zhao; Kitai Kim; Marcella Cesana; John T. Powers; Sutheera Ratanasirintrawoot; Tamer Onder; Tsukasa Shibue; Robert A. Weinberg; George Q. Daley

    2014-01-01

    Stem Cell Reports Report The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming Juli J. Unternaehrer,1,2,3,7,* Rui Zhao,1,2,3,8 Kitai Kim,1,2,3,9 Marcella Cesana,1,2,3 John T. Powers,1,2,3 Sutheera Ratanasirintrawoot,1,2,3 Tamer Onder,1,2,3,10 Tsukasa Shibue,4,5 Robert A. Weinberg,4,5,6 and George Q. Daley1,2,3 1Division of Pediatric Hematology/Oncology, Stem Cell Transplantation Program, Manton Center for Orphan Disease Research, Howard H...

  10. Quantitative Proteomics of Intracellular Campylobacter jejuni Reveals Metabolic Reprogramming.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Liu

    Full Text Available Campylobacter jejuni is the major cause of bacterial food-borne illness in the USA and Europe. An important virulence attribute of this bacterial pathogen is its ability to enter and survive within host cells. Here we show through a quantitative proteomic analysis that upon entry into host cells, C. jejuni undergoes a significant metabolic downshift. Furthermore, our results indicate that intracellular C. jejuni reprograms its respiration, favoring the respiration of fumarate. These results explain the poor ability of C. jejuni obtained from infected cells to grow under standard laboratory conditions and provide the bases for the development of novel anti microbial strategies that would target relevant metabolic pathways.

  11. Telomere Length Reprogramming in Embryos and Stem Cells

    Directory of Open Access Journals (Sweden)

    Keri Kalmbach

    2014-01-01

    Full Text Available Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism’s lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg’s capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly responsible for restoring telomere DNA, recent studies have elucidated the role of alternative telomeres lengthening mechanisms in the reprogramming of early embryos and stem cells, which we review here.

  12. Hacker within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy.

    Science.gov (United States)

    Lina, Taslima T; Farris, Tierra; Luo, Tian; Mitra, Shubhajit; Zhu, Bing; McBride, Jere W

    2016-01-01

    Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival. PMID:27303657

  13. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  14. Blocked strainers

    International Nuclear Information System (INIS)

    Thermal insulation was the cause of the blockages that shut down five BWRs in Sweden. The main culprit was mineral wool installed when the plants started up. Physical degradation of the wool over the lifetime of the plant meant it could easily be washed out of place during a loss of coolant accident and could quickly block strainers in the emergency core cooling systems. The five BWRs are almost all back on line, equipped with larger strainers and faster backwashing capability. But the incident prompted more detailed investigation into how materials in the containment would behave during an accident. One material that caused particular concern is Caposil, a material often used to insulate the reactor vessel. Composed of natural calcium, aluminium silicates and cellulose fibres, in the event of a LOCA Caposil becomes particularly hazardous. Under high pressure, or when brought into contact with high pressure water and steam, Caposil fragments into 1 cm clumps, free fibres, and ''fines''. It is these fines which cause major problems and can block a strainer extremely quickly. The successful testing of a high performance water filter which can handle Caposil is described. (4 figures) (Author)

  15. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts

    Directory of Open Access Journals (Sweden)

    Sara E. Howden

    2015-12-01

    Full Text Available The derivation of genetically modified induced pluripotent stem (iPS cells typically involves multiple steps, requiring lengthy cell culture periods, drug selection, and several clonal events. We report the generation of gene-targeted iPS cell lines following a single electroporation of patient-specific fibroblasts using episomal-based reprogramming vectors and the Cas9/CRISPR system. Simultaneous reprogramming and gene targeting was tested and achieved in two independent fibroblast lines with targeting efficiencies of up to 8% of the total iPS cell population. We have successfully targeted the DNMT3B and OCT4 genes with a fluorescent reporter and corrected the disease-causing mutation in both patient fibroblast lines: one derived from an adult with retinitis pigmentosa, the other from an infant with severe combined immunodeficiency. This procedure allows the generation of gene-targeted iPS cell lines with only a single clonal event in as little as 2 weeks and without the need for drug selection, thereby facilitating “seamless” single base-pair changes.

  16. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  17. Clinical significance of T cell metabolic reprogramming in cancer.

    Science.gov (United States)

    Herbel, Christoph; Patsoukis, Nikolaos; Bardhan, Kankana; Seth, Pankaj; Weaver, Jessica D; Boussiotis, Vassiliki A

    2016-12-01

    Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy. PMID:27510264

  18. Roles of small molecules in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Jian-bin SU; Duan-qing PEI; Bao-ming QIN

    2013-01-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent.This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine.Indeed,reprogramming technology has developed at a dazzling speed within the past 6 years,yet we are still at the early stages of understanding the mechanisms of cell fate identity.This is particularly true in the case of human induced pluripotent stem ceils (iPSCs),which lack reliable standards in the evaluation of their fidelity and safety prior to their application.Along with the genetic approaches,small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes,including the mesenchymal-to-epithelial transition,metabolism,signal transduction and epigenetics.Moreover,small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells.With increasing availability of such chemicals,we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  19. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration.

    Science.gov (United States)

    Li, Chen-Shuang; Yang, Pu; Ting, Kang; Aghaloo, Tara; Lee, Soonchul; Zhang, Yulong; Khalilinejad, Kambiz; Murphy, Maxwell C; Pan, Hsin Chuan; Zhang, Xinli; Wu, Benjamin; Zhou, Yan-Heng; Zhao, Zhihe; Zheng, Zhong; Soo, Chia

    2016-03-01

    Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration. PMID:26774565

  20. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming

    Directory of Open Access Journals (Sweden)

    Kyung Tae Lim

    2016-04-01

    Full Text Available Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps. However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.

  1. Oocyte Factors Suppress Mitochondrial Polynucleotide Phosphorylase to Remodel the Metabolome and Enhance Reprogramming

    Directory of Open Access Journals (Sweden)

    Swea-Ling Khaw

    2015-08-01

    Full Text Available Oocyte factors not only drive somatic cell nuclear transfer reprogramming but also augment the efficiency and quality of induced pluripotent stem cell (iPSC reprogramming. Here, we show that the oocyte-enriched factors Tcl1 and Tcl1b1 significantly enhance reprogramming efficiency. Clonal analysis of pluripotency biomarkers further show that the Tcl1 oocyte factors improve the quality of reprogramming. Mechanistically, we find that the enhancement effect of Tcl1b1 depends on Akt, one of its putative targets. In contrast, Tcl1 suppresses the mitochondrial polynucleotide phosphorylase (PnPase to promote reprogramming. Knockdown of PnPase rescues the inhibitory effect from Tcl1 knockdown during reprogramming, whereas PnPase overexpression abrogates the enhancement from Tcl1 overexpression. We further demonstrate that Tcl1 suppresses PnPase’s mitochondrial localization to inhibit mitochondrial biogenesis and oxidation phosphorylation, thus remodeling the metabolome. Hence, we identified the Tcl1-PnPase pathway as a critical mitochondrial switch during reprogramming.

  2. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming.

    Science.gov (United States)

    Prieto, Javier; León, Marian; Ponsoda, Xavier; Sendra, Ramón; Bort, Roque; Ferrer-Lorente, Raquel; Raya, Angel; López-García, Carlos; Torres, Josema

    2016-01-01

    During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors. Reprogramming-induced mitochondrial fission is associated with a minor decrease in mitochondrial mass but not with mitophagy. The pro-fission factor Drp1 is phosphorylated early in reprogramming, and its knockdown and inhibition impairs both mitochondrial fragmentation and generation of iPS cell colonies. Drp1 phosphorylation depends on Erk activation in early reprogramming, which occurs, at least in part, due to downregulation of the MAP kinase phosphatase Dusp6. Taken together, our data indicate that mitochondrial fission controlled by an Erk-Drp1 axis constitutes an early and necessary step in the reprogramming process to pluripotency. PMID:27030341

  3. Temporal Requirements of cMyc Protein for Reprogramming Mouse Fibroblasts

    Directory of Open Access Journals (Sweden)

    Corey Heffernan

    2012-01-01

    Full Text Available Exogenous expression of Oct4, Sox2, Klf4, and cMyc forces mammalian somatic cells to adopt molecular and phenotypic characteristics of embryonic stem cells, commencing with the required suppression of lineage-associated genes (e.g., Thy1 in mouse. Although omitting cMyc from the reprogramming cocktail minimizes risks of uncontrolled proliferation, its exclusion results in fold reductions in reprogramming efficiency. Thus, the feasibility of substituting cMyc transgene with (non-integrative recombinant “pTAT-mcMyc” protein delivery was assessed, without compromising reprogramming efficiency or the pluripotent phenotype. Purification and delivery of semisoluble/particulate pTAT-mcMyc maintained Oct4-GFP+ colony formation (i.e., reprogramming efficiency whilst supporting pluripotency by various criteria. Differential repression of Thy1 by pTAT-mcMyc ± Oct4, Sox2, and Klf4 (OSK suggested differential (and non-additive mechanisms of repression. Extending these findings, attempts to enhance reprogramming efficiency through a staggered approach (prerepression of Thy1 failed to improve reprogramming efficiency. We consider protein delivery a useful tool to decipher temporal/molecular events characterizing somatic cell reprogramming.

  4. Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Wrana

    2011-01-01

    Full Text Available The dramatic discovery that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs, by the expression of just four factors, has opened new opportunities for regenerative medicine and novel ways of modeling human diseases. Extensive research over the short time since the first iPSCs were generated has yielded the ability to reprogram various cell types using a diverse range of methods. However the duration, efficiency, and safety of induced reprogramming have remained a persistent limitation to achieving a robust experimental and therapeutic system. The field has worked to resolve these issues through technological advances using non-integrative approaches, factor replacement or complementation with microRNA, shRNA and drugs. Despite these advances, the molecular mechanisms underlying the reprogramming process remain poorly understood. Recently, through the use of inducible secondary reprogramming systems, researchers have now accessed more rigorous mechanistic experiments to decipher this complex process. In this review we will discuss some of the major recent findings in reprogramming, pertaining to proliferation and cellular senescence, epigenetic and chromatin remodeling, and other complex cellular processes such as morphological changes and mesenchymal-to-epithelial transition. We will focus on the implications of this work in the construction of a mechanistic understanding of reprogramming and discuss unexplored areas in this rapidly expanding field.

  5. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    Science.gov (United States)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  6. Energy-efficient network reprogramming scheme with Raptor code by using transmission power control in WSNs

    Directory of Open Access Journals (Sweden)

    Dongwan Kim

    2014-04-01

    Full Text Available In wireless sensor networks, the necessity of reprogramming becomes more and more important for variety of purposes. However, the reprogramming produces a large amount of data and causes large energy consumption and interference. In this Letter, we propose an energy-efficient reprogramming scheme with Raptor code by using transmission power control. By selecting proper relay nodes, relay nodes’ transmission power and Raptor code overhead, the proposed scheme minimises energy consumption while guaranteeing reliable transmission. This is verified by comparing it with conventional schemes.

  7. Role of the reprogramming factor KLF4 in blood formation.

    Science.gov (United States)

    Park, Chun Shik; Shen, Ye; Lewis, Andrew; Lacorazza, H Daniel

    2016-05-01

    Krüppel-like factor 4 is a zinc finger protein with dual functions that can act as a transcriptional activator and repressor of genes involved in cell proliferation, differentiation, and apoptosis. Although most studies have focused on terminally differentiated epithelial cells, evidence suggests that Krüppel-like factor 4 regulates the development and function of the myeloid and lymphoid blood lineages. The ability of Krüppel-like factor 4 to dedifferentiate from somatic cells into pluripotent stem cells in cooperation with other reprogramming factors suggests its potential function in the preservation of tissue-specific stem cells. Additionally, emerging interest in the redifferentiation of induced pluripotent stem cells into blood cells to correct hematologic deficiencies and malignancies warrants further studies on the role of Krüppel-like factor 4 in steady-state blood formation. PMID:26908828

  8. Evolutionary rewiring and reprogramming of bacterial transcription regulation

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Fang-Fang Wang; Wei Qian

    2011-01-01

    Rewiring and reprogramming of transcriptional regulation took place during bacterial speciation. The mechanistic alterations among transcription factors, cis-regulatory elements and target genes confer bacteria novel ability to adapt to stochastic environmental changes. This process is critical to their survival, especially for bacterial pathogens subjected to accelerated evolution. In the past two decades, the investigators not only completed the sequences of numerous bacterial genomes, but also made great progress in understanding the molecular basis of evolution. Here we briefly reviewed the current knowledge on the mechanistic changes among orthologous, paralogous and xenogenic regulatory circuits, which were caused by genetic recombinations such as gene duplication, horizontal gene transfer, transposable elements and different genetic contexts. We also discussed the potential impact of this area on theoretical and applied studies of microbes.

  9. Quantitative proteomics suggests metabolic reprogramming during ETHE1 deficiency

    DEFF Research Database (Denmark)

    Sahebekhtiari, Navid; Thomsen, Michelle M.; Sloth, Jens Jørgen;

    2016-01-01

    Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early-onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences...... of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1-deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1-deficient mice. Our results demonstrated a clear link between ETHE1-deficiency...... and redox active proteins, as reflected by down-regulation of several proteins related to oxidation-reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1-deficiency on metabolic reprogramming through up...

  10. Reprogramming of energy metabolism as a driver of aging.

    Science.gov (United States)

    Feng, Zhaoyang; Hanson, Richard W; Berger, Nathan A; Trubitsyn, Alexander

    2016-03-29

    Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis. PMID:26919253

  11. Transcriptional reprogramming in nonhuman primate (rhesus macaque tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Smriti Mehra

    Full Text Available BACKGROUND: In response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the granuloma. Profiling granuloma transcriptome will identify key immune signaling pathways active during TB infection. Such studies are not possible in human granulomas, due to various confounding factors. Nonhuman Primates (NHPs infected with Mtb accurately reflect human TB in clinical and pathological contexts. METHODOLOGY/PRINCIPAL FINDINGS: We studied transcriptomics of granuloma lesions in the lungs of NHPs exhibiting active TB, during early and late stages of infection. Early TB lesions were characterized by a highly pro-inflammatory environment, expressing high levels of immune signaling pathways involving IFNgamma, TNFalpha, JAK, STAT and C-C/C-X-C chemokines. Late TB lesions, while morphologically similar to the early ones, exhibited an overwhelming silencing of the inflammatory response. Reprogramming of the granuloma transcriptome was highly significant. The expression of approximately two-thirds of all genes induced in early lesions was later repressed. CONCLUSIONS/SIGNIFICANCE: The transcriptional characteristics of TB granulomas undergo drastic changes during the course of infection. The overwhelming reprogramming of the initial pro-inflammatory surge in late lesions may be a host strategy to limit immunopathology. We propose that these host profiles can predict changes in bacterial replication and physiology, perhaps serving as markers for latency and reactivation.

  12. From Stealing Fire to Cellular Reprogramming: A Scientific History Leading to the 2012 Nobel Prize

    Science.gov (United States)

    Lensch, M. William; Mummery, Christine L.

    2013-01-01

    Cellular reprogramming was recently “crowned” with the award of the Nobel Prize to two of its groundbreaking researchers, Sir John Gurdon and Shinya Yamanaka. The recent link between reprogramming and stem cells makes this appear almost a new field of research, but its historical roots have actually spanned more than a century. Here, the Nobel Prize in Physiology or Medicine 2012 is placed in its historical context. PMID:24052937

  13. Genomic imprinting is variably lost during reprogramming of mouse iPS cells

    OpenAIRE

    Takikawa, Sachiko; Ray, Chelsea; Wang, Xin; Shamis, Yulia; Wu, Tien-Yuan; Li, Xiajun

    2013-01-01

    Derivation of induced pluripotent stem (iPS) cells is mainly an epigenetic reprogramming process. It is still quite controversial how genomic imprinting is reprogrammed in iPS cells. Thus, we derived multiple iPS clones from genetically identical mouse somatic cells. We found that parentally inherited imprint was variably lost among these iPS clones. Concurrent with the loss of DNA methylation imprint at the corresponding Snrpn and Peg3 imprinted regions, parental origin-specific expression o...

  14. Analysis of nucleolar morphology and protein localization as an indicator of nuclear reprogramming

    DEFF Research Database (Denmark)

    Østrup, Olga; Pedersen, Hanne Skovsgaard; Holm, Hanne M.;

    2015-01-01

    the nucleolus are summarized in this developmental context, but also as they occur in assisted reproductive technologies such as in vitro fertilization and somatic cell nuclear transfer. Moreover, detailed protocols for monitoring the nucleolar changes by transmission electron microscopy and...... cloning by somatic cell nuclear transfer. However, when cells are reprogrammed by less fundamental means, as for example treatment by Xenopus extract or expression of pluripotency genes, more subtle nucleolar modulations can also be noted. The monitoring and understanding of the reprogramming...

  15. Robust Distributed Reprogramming Protocol of Wireless Sensor Networks for Healthcare Systems

    OpenAIRE

    Kuo-Yu Tsai

    2015-01-01

    With the development of the wireless communication technologies, the wireless sensor networks (WSNs for short) are considered as one of the key research areas in healthcare systems. However, there is sometimes a need for removing bugs or adding new functionalities after WSNs are deployed. Wireless reprogramming is a process for propagating a new code image or relevant commands to sensor nodes in WSNs. In this paper, we propose a robust distributed reprogramming protocol of WSNs for healthcare...

  16. Brains in metamorphosis: reprogramming cell identity within the central nervous system

    OpenAIRE

    Arlotta, Paola; Berninger, Benedikt

    2014-01-01

    During embryonic development, uncommitted pluripotent cells undergo progressive epigenetic changes that lock them into a final differentiated state. Can mammalian cells change identity within the living organism? Direct lineage reprogramming of cells has attracted attention as a means to achieve organ regeneration. However, it is unclear whether cells in the CNS are endowed with the plasticity to reprogram. Neurons in particular are considered among the most immutable cell types, able to reta...

  17. A molecular roadmap of cellular reprogramming into iPS cells

    OpenAIRE

    Polo, Jose M.; Anderssen, Endre; Walsh, Ryan M.; Schwarz, Benjamin A.; Nefzger, Christian M.; Lim, Sue Mei; Borkent, Marti; Apostolou, Effie; Alaei, Sara; Cloutier, Jennifer; Bar-Nur, Ori; Cheloufi, Sihem; Stadtfeld, Matthias; Figueroa, Maria Eugenia; Robinton, Daisy

    2012-01-01

    Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we studied defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcri...

  18. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    Science.gov (United States)

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting. PMID:22371436

  19. Metabolic Reprogramming by Hexosamine Biosynthetic and Golgi N-Glycan Branching Pathways.

    Science.gov (United States)

    Ryczko, Michael C; Pawling, Judy; Chen, Rui; Abdel Rahman, Anas M; Yau, Kevin; Copeland, Julia K; Zhang, Cunjie; Surendra, Anu; Guttman, David S; Figeys, Daniel; Dennis, James W

    2016-01-01

    De novo uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) biosynthesis requires glucose, glutamine, acetyl-CoA and uridine, however GlcNAc salvaged from glycoconjugate turnover and dietary sources also makes a significant contribution to the intracellular pool. Herein we ask whether dietary GlcNAc regulates nutrient transport and intermediate metabolism in C57BL/6 mice by increasing UDP-GlcNAc and in turn Golgi N-glycan branching. GlcNAc added to the drinking water showed a dose-dependent increase in growth of young mice, while in mature adult mice fat and body-weight increased without affecting calorie-intake, activity, energy expenditure, or the microbiome. Oral GlcNAc increased hepatic UDP-GlcNAc and N-glycan branching on hepatic glycoproteins. Glucose homeostasis, hepatic glycogen, lipid metabolism and response to fasting were altered with GlcNAc treatment. In cultured cells GlcNAc enhanced uptake of glucose, glutamine and fatty-acids, and enhanced lipid synthesis, while inhibition of Golgi N-glycan branching blocked GlcNAc-dependent lipid accumulation. The N-acetylglucosaminyltransferase enzymes of the N-glycan branching pathway (Mgat1,2,4,5) display multistep ultrasensitivity to UDP-GlcNAc, as well as branching-dependent compensation. Indeed, oral GlcNAc rescued fat accumulation in lean Mgat5(-/-) mice and in cultured Mgat5(-/-) hepatocytes, consistent with N-glycan branching compensation. Our results suggest GlcNAc reprograms cellular metabolism by enhancing nutrient uptake and lipid storage through the UDP-GlcNAc supply to N-glycan branching pathway. PMID:26972830

  20. Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy.

    Science.gov (United States)

    Ren, Yu; Zhou, Xuan; Liu, Xia; Jia, Huan-Huan; Zhao, Xiao-Hui; Wang, Qi-Xue; Han, Lei; Song, Xin; Zhu, Zhi-Yan; Sun, Ting; Jiao, Hong-Xiao; Tian, Wei-Ping; Yang, Yu-Qi; Zhao, Xiu-Lan; Zhang, Lun; Mei, Mei; Kang, Chun-Sheng

    2016-04-28

    Carcinoma associated fibroblasts (CAFs) produce a nutrient-rich microenvironment to fuel tumor progression and metastasis. Reactive oxygen species (ROS) levels and the inflammation pathway co-operate to transform CAFs. Therefore, elucidating the mechanism mediating the activity of CAFs might identify novel therapies. Abnormal miR-21 expression was reported to be involved in the conversion of resident fibroblasts to CAFs, yet the factor that drives transformation was poorly understood. Here, we reported that high miR-21 expression was strongly associated with lymph node metastasis in breast cancer, and the activation of the miR-21/NF-кB was required for the metastatic promoting effect of CAFs. AC1MMYR2, a small molecule inhibitor of miR-21, attenuated NF-кB activity by directly targeting VHL, thereby blocking the co-precipitation of NF-кB and ß-catenin and nuclear translocation. Taxol failed to constrain the aggressive behavior of cancer cells stimulated by CAFs, whereas AC1MMYR2 plus taxol significantly suppressed tumor migration and invasion ability. Remodeling and depolarization of F-actin, decreased levels of β-catenin and vimentin, and increased E-cadherin were also detected in the combination therapy. Furthermore, reduced levels of FAP-α and α-SMA were observed, suggesting that AC1MMYR2 was competent to reprogram CAFs via the NF-кB/miR-21/VHL axis. Strikingly, a significant reduction of tumor growth and lung metastasis was observed in the combination treated mice. Taken together, our findings identified miR-21 as a critical mediator of metastasis in breast cancer through the tumor environment. AC1MMYR2 may be translated into the clinic and developed as a more personalized and effective neoadjuvant treatment for patients to reduce metastasis and improve the chemotherapy response. PMID:26872723

  1. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  2. Temporal Perturbation of the Wnt Signaling Pathway in the Control of Cell Reprogramming Is Modulated by TCF1

    Directory of Open Access Journals (Sweden)

    Francesco Aulicino

    2014-05-01

    Full Text Available Cyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/β-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/β-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the “Wnt-off” state can be considered an early reprogramming marker.

  3. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming.

    Science.gov (United States)

    Aksoy, Irene; Jauch, Ralf; Eras, Volker; Chng, Wen-Bin Alfred; Chen, Jiaxuan; Divakar, Ushashree; Ng, Calista Keow Leng; Kolatkar, Prasanna R; Stanton, Lawrence W

    2013-12-01

    The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs, but Sox4, Sox5, Sox6, Sox8, Sox9, Sox11, Sox12, Sox13, and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover, the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming, albeit at low efficiency. By molecular dissection of the C-terminus of Sox17, we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK, we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2. PMID:23963638

  4. Reprogramming of round spermatids by the germinal vesicle cytoplasm in mice.

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Kong

    Full Text Available The birthrate following round spermatid injection (ROSI remains low in current and evidence suggests that factors in the germinal vesicle (GV cytoplasm and certain substances in the GV such as the nucleolus might be responsible for genomic reprogramming and embryonic development. However, little is known whether the reprogramming factors in GV oocyte cytoplasm and/or nucleolus in GV are beneficial to the reprogramming of round spermatids and development of ROSI embryos. Here, round spermatids were treated with GV cytolysates and injected this round spermatid alone or co-injected with GV oocyte nucleolus into mature metaphase II oocytes. Subsequent embryonic development was assessed morphologically and by Oct4 expression in blastocysts. There was no significant difference between experimental groups at the zygote to four-cell development stages. Blastocysts derived from oocytes which were injected with cytolysate treated-round spermatid alone or co-injected with nucleoli injection yielded 63.6% and 70.3% high quality embryos, respectively; comparable to blastocysts derived by intracytoplasmic sperm injection (ICSI, but higher than these oocytes which were co-injected with lysis buffer-treated round spermatids and nucleoli or injected with the lysis buffer-treated round spermatids alone. Furthermore, the proportion of live offspring resulting from oocytes which were co-injected with cytolysate treated-round spermatids and nucleoli or injected with cytolysate treated-round spermatids alone was higher than those were injected with lysis buffer treated-round spermaids, but comparable with the ICSI group. Our results demonstrate that factors from the GV cytoplasm improve round spermatid reprogramming, and while injection of the extra nucleolus does not obviously improve reprogramming its potential contribution, although which cannot be definitively excluded. Thus, some reprogramming factors are evidently present in GV oocyte cytoplasm and could

  5. Niche adaptation by expansion and reprogramming of general transcription factors.

    Science.gov (United States)

    Turkarslan, Serdar; Reiss, David J; Gibbins, Goodwin; Su, Wan Lin; Pan, Min; Bare, J Christopher; Plaisier, Christopher L; Baliga, Nitin S

    2011-01-01

    Numerous lineage-specific expansions of the transcription factor B (TFB) family in archaea suggests an important role for expanded TFBs in encoding environment-specific gene regulatory programs. Given the characteristics of hypersaline lakes, the unusually large numbers of TFBs in halophilic archaea further suggests that they might be especially important in rapid adaptation to the challenges of a dynamically changing environment. Motivated by these observations, we have investigated the implications of TFB expansions by correlating sequence variations, regulation, and physical interactions of all seven TFBs in Halobacterium salinarum NRC-1 to their fitness landscapes, functional hierarchies, and genetic interactions across 2488 experiments covering combinatorial variations in salt, pH, temperature, and Cu stress. This systems analysis has revealed an elegant scheme in which completely novel fitness landscapes are generated by gene conversion events that introduce subtle changes to the regulation or physical interactions of duplicated TFBs. Based on these insights, we have introduced a synthetically redesigned TFB and altered the regulation of existing TFBs to illustrate how archaea can rapidly generate novel phenotypes by simply reprogramming their TFB regulatory network. PMID:22108796

  6. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  7. Reprogramming the assembly of unmodified DNA with a small molecule

    Science.gov (United States)

    Avakyan, Nicole; Greschner, Andrea A.; Aldaye, Faisal; Serpell, Christopher J.; Toader, Violeta; Petitjean, Anne; Sleiman, Hanadi F.

    2016-04-01

    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces, reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid (PNA) all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials.

  8. The four reprogramming factors and embryonic development in mice.

    Science.gov (United States)

    Yan, Xingrong; Yu, Shumin; Lei, Anmin; Hua, Jinlian; Chen, Fulin; Li, Liwen; Xie, Xin; Yang, Xueyi; Geng, Wenxin; Dou, Zhongying

    2010-10-01

    The transcription factors (Oct4, Sox2, c-Myc, and Klf4) play an important role in the generation of induced pluripotent stem cells. These factors are expressed in metaphase II oocytes and embryonic stem cells (ESCs). The mechanisms responsible for the reprogramming of ooplasm during nuclear transfer are expected to be associated with the four factors. Here, we show that different paternal genetic backgrounds are able to influence the in vitro development of parthenogenetic and cloned embryos. Using real- time polymerase chain reaction (PCR) we found that the expression level of Oct4 in oocytes was less than that of ESCs, whereas oocytes from KM x C3H females showed the highest expression level of Sox2 than the other strains tested or in G1 ESCs. c-Myc mRNA levels in oocytes from KM mice were greater than those found in ESCs or oocytes of KM x C3H mice. These data demonstrate that the expression of the four transcription factors was different among the oocytes, which may be a contributing factor for the different efficiencies of parthenogenesis and the development of cloned embryos in vitro. PMID:20936906

  9. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  10. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.

    Science.gov (United States)

    Millership, C; Phillips, J J; Main, E R G

    2016-05-01

    Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch. PMID:26947150

  11. Oligodendrocyte progenitor programming and reprogramming: Toward myelin regeneration.

    Science.gov (United States)

    Lopez Juarez, Alejandro; He, Danyang; Richard Lu, Q

    2016-05-01

    Demyelinating diseases such as multiple sclerosis (MS) are among the most disabling and cost-intensive neurological disorders. The loss of myelin in the central nervous system, produced by oligodendrocytes (OLs), impairs saltatory nerve conduction, leading to motor and cognitive deficits. Immunosuppression therapy has a limited efficacy in MS patients, arguing for a paradigm shift to strategies that target OL lineage cells to achieve myelin repair. The inhibitory microenvironment in MS lesions abrogates the expansion and differentiation of resident OL precursor cells (OPCs) into mature myelin-forming OLs. Recent studies indicate that OPCs display a highly plastic ability to differentiate into alternative cell lineages under certain circumstances. Thus, understanding the mechanisms that maintain and control OPC fate and differentiation into mature OLs in a hostile, non-permissive lesion environment may open new opportunities for regenerative therapies. In this review, we will focus on 1) the plasticity of OPCs in terms of their developmental origins, distribution, and differentiation potentials in the normal and injured brain; 2) recent discoveries of extrinsic and intrinsic factors and small molecule compounds that control OPC specification and differentiation; and 3) therapeutic potential for motivation of neural progenitor cells and reprogramming of differentiated cells into OPCs and their likely impacts on remyelination. OL-based therapies through activating regenerative potentials of OPCs or cell replacement offer exciting opportunities for innovative strategies to promote remyelination and neuroprotection in devastating demyelinating diseases like MS. This article is part of a Special Issue entitled SI:NG2-glia(Invited only). PMID:26546966

  12. Cold Temperature Induces the Reprogramming of Proteolytic Pathways in Yeast.

    Science.gov (United States)

    Isasa, Marta; Suñer, Clara; Díaz, Miguel; Puig-Sàrries, Pilar; Zuin, Alice; Bichman, Anne; Gygi, Steven P; Rebollo, Elena; Crosas, Bernat

    2016-01-22

    Despite much evidence of the involvement of the proteasome-ubiquitin signaling system in temperature stress response, the dynamics of the ubiquitylome during cold response has not yet been studied. Here, we have compared quantitative ubiquitylomes from a strain deficient in proteasome substrate recruitment and a reference strain during cold response. We have observed that a large group of proteins showing increased ubiquitylation in the proteasome mutant at low temperature is comprised by reverses suppressor of Ty-phenotype 5 (Rsp5)-regulated plasma membrane proteins. Analysis of internalization and degradation of plasma membrane proteins at low temperature showed that the proteasome becomes determinant for this process, whereas, at 30 °C, the proteasome is dispensable. Moreover, our observations indicate that proteasomes have increased capacity to interact with lysine 63-polyubiquitylated proteins during low temperature in vivo. These unanticipated observations indicate that, during cold response, there is a proteolytic cellular reprogramming in which the proteasome acquires a role in the endocytic-vacuolar pathway. PMID:26601941

  13. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome.

    Science.gov (United States)

    Wood, Lauren W; Cox, Nicole I; Phelps, Cody A; Lai, Shao-Chiang; Poddar, Arjun; Talbot, Conover; Mu, David

    2016-01-01

    Through both gain- and loss-of-TTF-1 expression strategies, we show that TTF-1 positively regulates vascular endothelial growth factor (VEGF) and that the VEGF promoter element contains multiple TTF-1-responsive sequences. The major signaling receptor for VEGF, i.e VEGFR2, also appears to be under a direct and positive regulation of TTF-1. The TTF-1-dependent upregulation of VEGF was moderately sensitive to rapamycin, implicating a partial involvement of mammalian target of rapamycin (mTOR). However, hypoxia did not further increase the secreted VEGF level of the TTF-1(+) lung cancer cells. The TTF-1-induced VEGF upregulation occurs in both compartments (exosomes and exosome-depleted media (EDM)) of the conditioned media. Surprisingly, the EDM of TTF-1(+) lung cancer cells (designated EDM-TTF-1(+)) displayed an anti-angiogenic activity in the endothelial cell tube formation assay. Mechanistic studies suggest that the increased granulocyte-macrophage colony-stimulating factor (GM-CSF) level in the EDM-TTF-1(+) conferred the antiangiogenic activities. In human lung cancer, the expression of TTF-1 and GM-CSF exhibits a statistically significant and positive correlation. In summary, this study provides evidence that TTF-1 may reprogram lung cancer secreted proteome into an antiangiogenic state, offering a novel basis to account for the long-standing observation of favorable prognosis associated with TTF-1(+) lung adenocarcinomas. PMID:26912193

  14. Block clustering with collapsed latent block models

    OpenAIRE

    Wyse, Jason; Friel, Nial

    2010-01-01

    We introduce a Bayesian extension of the latent block model for model-based block clustering of data matrices. Our approach considers a block model where block parameters may be integrated out. The result is a posterior defined over the number of clusters in rows and columns and cluster memberships. The number of row and column clusters need not be known in advance as these are sampled along with cluster memberhips using Markov chain Monte Carlo. This differs from existing work on latent bloc...

  15. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  16. Effects of Collective Histone State Dynamics on Epigenetic Landscape and Kinetics of Cell Reprogramming

    Science.gov (United States)

    Ashwin, S. S.; Sasai, Masaki

    2015-11-01

    Cell reprogramming is a process of transitions from differentiated to pluripotent cell states via transient intermediate states. Within the epigenetic landscape framework, such a process is regarded as a sequence of transitions among basins on the landscape; therefore, theoretical construction of a model landscape which exhibits experimentally consistent dynamics can provide clues to understanding epigenetic mechanism of reprogramming. We propose a minimal gene-network model of the landscape, in which each gene is regulated by an integrated mechanism of transcription-factor binding/unbinding and the collective chemical modification of histones. We show that the slow collective variation of many histones around each gene locus alters topology of the landscape and significantly affects transition dynamics between basins. Differentiation and reprogramming follow different transition pathways on the calculated landscape, which should be verified experimentally via single-cell pursuit of the reprogramming process. Effects of modulation in collective histone state kinetics on transition dynamics and pathway are examined in search for an efficient protocol of reprogramming.

  17. A New Avenue to Cure Cancer by Turning Adaptive Immune T Cells to Innate Immune NK Cells via Reprogramming

    Institute of Scientific and Technical Information of China (English)

    Dong-Ming Su; Ramakrishna Vankayalapati

    2010-01-01

    Thymocytes after T-lineage commitment develop in the T-cell pathway. However, in a recent study, Li et al. (2010) demonstrated that inducing to delete Bcl11b gene in these thymocytes, even in mature T cells turns these cells into natural killer (NK) cells during the culture. They called this conversion 'reprogramming', and the reprogrammed killer cells 'ITNK cells'.

  18. Incomplete block designs

    CERN Document Server

    Dey, Aloke

    2010-01-01

    This book presents a systematic, rigorous and comprehensive account of the theory and applications of incomplete block designs. All major aspects of incomplete block designs are considered by consolidating vast amounts of material from the literature - the classical incomplete block designs, like the balanced incomplete block (BIB) and partially balanced incomplete block (PBIB) designs. Other developments like efficiency-balanced designs, nested designs, robust designs, C-designs and alpha designs are also discussed, along with more recent developments in incomplete block designs for special t

  19. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells.

    Science.gov (United States)

    Li, Hedong; Chen, Gong

    2016-08-17

    Neuroregeneration in the CNS has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this Perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart, and liver and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient's own internal cells for tissue repair. PMID:27537482

  20. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming.

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-05-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  1. Reprogramming within hours following nuclear transfer into mouse but not human zygotes.

    Science.gov (United States)

    Egli, Dieter; Chen, Alice E; Saphier, Genevieve; Ichida, Justin; Fitzgerald, Claire; Go, Kathryn J; Acevedo, Nicole; Patel, Jay; Baetscher, Manfred; Kearns, William G; Goland, Robin; Leibel, Rudolph L; Melton, Douglas A; Eggan, Kevin

    2011-01-01

    Fertilized mouse zygotes can reprogram somatic cells to a pluripotent state. Human zygotes might therefore be useful for producing patient-derived pluripotent stem cells. However, logistical, legal and social considerations have limited the availability of human eggs for research. Here we show that a significant number of normal fertilized eggs (zygotes) can be obtained for reprogramming studies. Using these zygotes, we found that when the zygotic genome was replaced with that of a somatic cell, development progressed normally throughout the cleavage stages, but then arrested before the morula stage. This arrest was associated with a failure to activate transcription in the transferred somatic genome. In contrast to human zygotes, mouse zygotes reprogrammed the somatic cell genome to a pluripotent state within hours after transfer. Our results suggest that there may be a previously unappreciated barrier to successful human nuclear transfer, and that future studies could focus on the requirements for genome activation. PMID:21971503

  2. Physiological, pathological, and engineered cell identity reprogramming in the central nervous system.

    Science.gov (United States)

    Smith, Derek K; Wang, Lei-Lei; Zhang, Chun-Li

    2016-07-01

    Multipotent neural stem cells persist in restricted regions of the adult mammalian central nervous system. These proliferative cells differentiate into diverse neuron subtypes to maintain neural homeostasis. This endogenous process can be reprogrammed as a compensatory response to physiological cues, traumatic injury, and neurodegeneration. In addition to innate neurogenesis, recent research has demonstrated that new neurons can be engineered via cell identity reprogramming in non-neurogenic regions of the adult central nervous system. A comprehensive understanding of these reprogramming mechanisms will be essential to the development of therapeutic neural regeneration strategies that aim to improve functional recovery after injury and neurodegeneration. WIREs Dev Biol 2016, 5:499-517. doi: 10.1002/wdev.234 For further resources related to this article, please visit the WIREs website. PMID:27258392

  3. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  4. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Science.gov (United States)

    Ogawa, Hisataka; Wu, Xin; Kawamoto, Koichi; Nishida, Naohiro; Konno, Masamitsu; Koseki, Jun; Matsui, Hidetoshi; Noguchi, Kozou; Gotoh, Noriko; Yamamoto, Tsuyoshi; Miyata, Kanjiro; Nishiyama, Nobuhiro; Nagano, Hiroaki; Yamamoto, Hirofumi; Obika, Satoshi; Kataoka, Kazunori; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-01-01

    Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR) 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors. PMID:25970424

  5. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    Science.gov (United States)

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies. PMID:26500142

  6. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    Science.gov (United States)

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated. PMID:26895068

  7. Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency.

    Science.gov (United States)

    Studer, Lorenz; Vera, Elsa; Cornacchia, Daniela

    2015-06-01

    The ability to reprogram adult somatic cells back to pluripotency presents a powerful tool for studying cell-fate identity and modeling human disease. However, the reversal of cellular age during reprogramming results in an embryonic-like state of induced pluripotent stem cells (iPSCs) and their derivatives, which presents specific challenges for modeling late onset disease. This age reset requires novel methods to mimic age-related changes but also offers opportunities for studying cellular rejuvenation in real time. Here, we discuss how iPSC research may transform studies of aging and enable the precise programming of cellular age in parallel to cell-fate specification. PMID:26046759

  8. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis

    Science.gov (United States)

    Tomasetti, Marco; Amati, Monica; Santarelli, Lory; Neuzil, Jiri

    2016-01-01

    The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs). The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance. PMID:27213336

  9. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Marco Tomasetti

    2016-05-01

    Full Text Available The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs. The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance.

  10. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis.

    Science.gov (United States)

    Tomasetti, Marco; Amati, Monica; Santarelli, Lory; Neuzil, Jiri

    2016-01-01

    The process of metabolic re-programing is linked to the activation of oncogenes and/or suppression of tumour suppressor genes, which are regulated by microRNAs (miRNAs). The interplay between oncogenic transformation-driven metabolic re-programming and modulation of aberrant miRNAs further established their critical role in the initiation, promotion and progression of cancer by creating a tumorigenesis-prone microenvironment, thus orchestrating processes of evasion to apoptosis, angiogenesis and invasion/migration, as well metastasis. Given the involvement of miRNAs in tumour development and their global deregulation, they may be perceived as biomarkers in cancer of therapeutic relevance. PMID:27213336

  11. A hit and run approach to inducible direct reprogramming of astrocytes to neural stem cells

    Directory of Open Access Journals (Sweden)

    Maria ePoulou

    2016-04-01

    Full Text Available Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel hit and run inducible direct reprogramming approach. In a single step, two days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2 triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine.

  12. JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells

    Science.gov (United States)

    Neganova, Irina; Shmeleva, Evgenija; Munkley, Jennifer; Chichagova, Valeria; Anyfantis, George; Anderson, Rhys; Passos, Joao; Elliott, David J.; Armstrong, Lyle

    2016-01-01

    Abstract Reprogramming of somatic cells to the phenotypic state termed “induced pluripotency” is thought to occur through three consecutive stages: initiation, maturation, and stabilisation. The initiation phase is stochastic but nevertheless very important as it sets the gene expression pattern that permits completion of reprogramming; hence a better understanding of this phase and how this is regulated may provide the molecular cues for improving the reprogramming process. c‐Jun N‐terminal kinase (JNK)/stress‐activated protein kinase (SAPKs) are stress activated MAPK kinases that play an essential role in several processes known to be important for successful completion of the initiation phase such as cellular proliferation, mesenchymal to epithelial transition (MET) and cell cycle regulation. In view of this, we postulated that manipulation of this pathway would have significant impacts on reprogramming of human fibroblasts to induced pluripotent stem cells. Accordingly, we found that key components of the JNK/SAPK signaling pathway increase expression as early as day 3 of the reprogramming process and continue to rise in reprogrammed cells throughout the initiation and maturation stages. Using both chemical inhibitors and RNA interference of MKK4, MKK7 and JNK1, we tested the role of JNK/SAPK signaling during the initiation stage of neonatal and adult fibroblast reprogramming. These resulted in complete abrogation of fully reprogrammed colonies and the emergence of partially reprogrammed colonies which disaggregated and were lost from culture during the maturation stage. Inhibition of JNK/SAPK signaling resulted in reduced cell proliferation, disruption of MET and loss of the pluripotent phenotype, which either singly or in combination prevented establishment of pluripotent colonies. Together these data provide new evidence for an indispensable role for JNK/SAPK signaling to overcome the well‐established molecular barriers in human somatic cell

  13. Postural heart block.

    OpenAIRE

    Seda, P E; McAnulty, J H; Anderson, C J

    1980-01-01

    A patient presented with orthostatic dizziness and syncope caused by postural heart block. When the patient was supine, atrioventricular conduction was normal and he was asymptomatic; when he was standing he developed second degree type II block and symptoms. The left bundle-branch block on his electrocardiogram and intracardiac electrophysiological study findings suggest that this heart block occurred distal to the His bundle. Orthostatic symptoms are usually presumed to be secondary to an i...

  14. Generalized Block Failure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2015-01-01

    shows that no readily available tests with a well-defined substantial eccentricity have been performed. This paper presents theoretical and experimental work leading towards generalized block failure capacity methods. Simple combination of normal force, shear force and moment stress distributions along......Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...... yield lines around the block leads to simple interaction formulas similar to other interaction formulas in the codes....

  15. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    Science.gov (United States)

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  16. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chunli Zhao

    Full Text Available A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

  17. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Science.gov (United States)

    Zhao, Chunli; Farruggio, Alfonso P; Bjornson, Christopher R R; Chavez, Christopher L; Geisinger, Jonathan M; Neal, Tawny L; Karow, Marisa; Calos, Michele P

    2014-01-01

    A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies. PMID:24781921

  18. Genome-wide analysis of transcriptional reprogramming in mouse models of acute myeloid leukaemia.

    Directory of Open Access Journals (Sweden)

    Nicolas Bonadies

    Full Text Available Acute leukaemias are commonly caused by mutations that corrupt the transcriptional circuitry of haematopoietic stem/progenitor cells. However, the mechanisms underlying large-scale transcriptional reprogramming remain largely unknown. Here we investigated transcriptional reprogramming at genome-scale in mouse retroviral transplant models of acute myeloid leukaemia (AML using both gene-expression profiling and ChIP-sequencing. We identified several thousand candidate regulatory regions with altered levels of histone acetylation that were characterised by differential distribution of consensus motifs for key haematopoietic transcription factors including Gata2, Gfi1 and Sfpi1/Pu.1. In particular, downregulation of Gata2 expression was mirrored by abundant GATA motifs in regions of reduced histone acetylation suggesting an important role in leukaemogenic transcriptional reprogramming. Forced re-expression of Gata2 was not compatible with sustained growth of leukaemic cells thus suggesting a previously unrecognised role for Gata2 in downregulation during the development of AML. Additionally, large scale human AML datasets revealed significantly higher expression of GATA2 in CD34+ cells from healthy controls compared with AML blast cells. The integrated genome-scale analysis applied in this study represents a valuable and widely applicable approach to study the transcriptional control of both normal and aberrant haematopoiesis and to identify critical factors responsible for transcriptional reprogramming in human cancer.

  19. A molecular roadmap of cellular reprogramming into iPS cells

    Science.gov (United States)

    Polo, Jose M.; Anderssen, Endre; Walsh, Ryan M.; Schwarz, Benjamin A.; Nefzger, Christian M.; Lim, Sue Mei; Borkent, Marti; Apostolou, Effie; Alaei, Sara; Cloutier, Jennifer; Bar-Nur, Ori; Cheloufi, Sihem; Stadtfeld, Matthias; Figueroa, Maria Eugenia; Robinton, Daisy; Natesan, Sridaran; Melnick, Ari; Zhu, Jinfang; Ramaswamy, Sridhar; Hochedlinger, Konrad

    2013-01-01

    Summary Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we studied defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, while changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming. PMID:23260147

  20. A molecular roadmap of reprogramming somatic cells into iPS cells.

    Science.gov (United States)

    Polo, Jose M; Anderssen, Endre; Walsh, Ryan M; Schwarz, Benjamin A; Nefzger, Christian M; Lim, Sue Mei; Borkent, Marti; Apostolou, Effie; Alaei, Sara; Cloutier, Jennifer; Bar-Nur, Ori; Cheloufi, Sihem; Stadtfeld, Matthias; Figueroa, Maria Eugenia; Robinton, Daisy; Natesan, Sridaran; Melnick, Ari; Zhu, Jinfang; Ramaswamy, Sridhar; Hochedlinger, Konrad

    2012-12-21

    Factor-induced reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) is inefficient, complicating mechanistic studies. Here, we examined defined intermediate cell populations poised to becoming iPSCs by genome-wide analyses. We show that induced pluripotency elicits two transcriptional waves, which are driven by c-Myc/Klf4 (first wave) and Oct4/Sox2/Klf4 (second wave). Cells that become refractory to reprogramming activate the first but fail to initiate the second transcriptional wave and can be rescued by elevated expression of all four factors. The establishment of bivalent domains occurs gradually after the first wave, whereas changes in DNA methylation take place after the second wave when cells acquire stable pluripotency. This integrative analysis allowed us to identify genes that act as roadblocks during reprogramming and surface markers that further enrich for cells prone to forming iPSCs. Collectively, our data offer new mechanistic insights into the nature and sequence of molecular events inherent to cellular reprogramming. PMID:23260147

  1. Ordered chromatin changes and human X chromosome reactivation by cell fusion-mediated pluripotent reprogramming

    Science.gov (United States)

    Cantone, Irene; Bagci, Hakan; Dormann, Dirk; Dharmalingam, Gopuraja; Nesterova, Tatyana; Brockdorff, Neil; Rougeulle, Claire; Vallot, Celine; Heard, Edith; Chaligne, Ronan; Merkenschlager, Matthias; Fisher, Amanda G.

    2016-01-01

    Erasure of epigenetic memory is required to convert somatic cells towards pluripotency. Reactivation of the inactive X chromosome (Xi) has been used to model epigenetic reprogramming in mouse, but human studies are hampered by Xi epigenetic instability and difficulties in tracking partially reprogrammed iPSCs. Here we use cell fusion to examine the earliest events in the reprogramming-induced Xi reactivation of human female fibroblasts. We show that a rapid and widespread loss of Xi-associated H3K27me3 and XIST occurs in fused cells and precedes the bi-allelic expression of selected Xi-genes by many heterokaryons (30–50%). After cell division, RNA-FISH and RNA-seq analyses confirm that Xi reactivation remains partial and that induction of human pluripotency-specific XACT transcripts is rare (1%). These data effectively separate pre- and post-mitotic events in reprogramming-induced Xi reactivation and reveal a complex hierarchy of epigenetic changes that are required to reactivate the genes on the human Xi chromosome. PMID:27507283

  2. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    International Nuclear Information System (INIS)

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming

  3. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  4. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells

    Science.gov (United States)

    Tian, Zuojun; Guo, Fuzheng; Biswas, Sangita; Deng, Wenbin

    2016-01-01

    Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs. PMID:27104529

  5. Blocked randomization with randomly selected block sizes.

    Science.gov (United States)

    Efird, Jimmy

    2011-01-01

    When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes. PMID:21318011

  6. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  7. BLOCK H-MATRICES AND SPECTRUM OF BLOCK MATRICES

    Institute of Scientific and Technical Information of China (English)

    黄廷祝; 黎稳

    2002-01-01

    The block H-matrices are studied by the concept of G-functions, several concepts of block matrices are introduced. Equivalent characters of block H-matrices are obtained. Spectrum localizations claracterized by Gfunctions for block matrices are got.

  8. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  9. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  10. Biological computational approaches: new hopes to improve (re)programming robustness, regenerative medicine and cancer therapeutics.

    Science.gov (United States)

    Ebrahimi, Behnam

    2016-01-01

    Hundreds of transcription factors (TFs) are expressed and work in each cell type, but the identity of the cells is defined and maintained through the activity of a small number of core TFs. Existing reprogramming strategies predominantly focus on the ectopic expression of core TFs of an intended fate in a given cell type regardless of the state of native/somatic gene regulatory networks (GRNs) of the starting cells. Interestingly, an important point is that how much products of the reprogramming, transdifferentiation and differentiation (programming) are identical to their in vivo counterparts. There is evidence that shows that direct fate conversions of somatic cells are not complete, with target cell identity not fully achieved. Manipulation of core TFs provides a powerful tool for engineering cell fate in terms of extinguishment of native GRNs, the establishment of a new GRN, and preventing installation of aberrant GRNs. Conventionally, core TFs are selected to convert one cell type into another mostly based on literature and the experimental identification of genes that are differentially expressed in one cell type compared to the specific cell types. Currently, there is not a universal standard strategy for identifying candidate core TFs. Remarkably, several biological computational platforms are developed, which are capable of evaluating the fidelity of reprogramming methods and refining existing protocols. The current review discusses some deficiencies of reprogramming technologies in the production of a pure population of authentic target cells. Furthermore, it reviews the role of computational approaches (e.g. CellNet, KeyGenes, Mogrify, etc.) in improving (re)programming methods and consequently in regenerative medicine and cancer therapeutics. PMID:27056282

  11. Lesson Thirteen Trifascicular Block

    Institute of Scientific and Technical Information of China (English)

    鲁端; 王劲

    2005-01-01

    @@ A complete trifascicular block would result in complete AV block. The idio ventricular rhythm has a slower rate and a wide QRS complex because the pacemaker is located at the peripheral part of the conduction system distal to the sites of the block1. Such a rhythm may be difficult to differentiate from bifascicular or bundle branch block combined with complete block at a higher level such as the AV node or His bundle2. Besides a slower ventricular rate, a change in the morphology of the QRS complex from a previous known bifascicular pattern would be strongly suggestive of a trifascicular origin of the complete AV block3. A His bundle recording is required for a definitive diagnosis, however.

  12. Block Advertisement Protocol

    OpenAIRE

    Nemirovsky, Danil

    2015-01-01

    Bitcoin, a decentralized cryptocurrency, has attracted a lot of attention from academia, financial service industry and enthusiasts. The trade-off between transaction confirmation throughput and centralization of hash power do not allow Bitcoin to perform at the same level as modern payment systems. Block Advertisement Protocol is proposed as a step to resolve this issue. The protocol allows block mining and block relaying to happen in parallel. The protocol dictates a miner to advertise the ...

  13. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  14. Reprogramming resistant genes: in-depth comparison of gene expressions among iPS, ES and somatic cells.

    Directory of Open Access Journals (Sweden)

    Natalia ePolouliakh

    2013-01-01

    Full Text Available Transcription factor based reprogramming reverts adult cells to an embryonic state, yielding potential for generating different tissue types. However, recent reports indicated the substantial differences in pattern of gene expression between induced pluripotent stem (iPS cells and embryonic stem (ES cells. In this study we compare gene expression signatures of different iPS and ES cell lines and relate expression profiles of differently expressed genes to their expression status in somatic cells. As a result, we discovered that genes resistant to reprogramming comprise two major clusters, which are reprogramming dependent ‘Induced Genes’ and somatic origin ‘Inherited Genes’, both exhibiting preferences in methylation marks. Closer look into the Induced Genes by means of the transcription regulation analysis predicted several groups of genes with various roles in reprogramming and transgene DNA binding model. We believe that our results are a helpful source for biologists for further improvement of iPS cell technology.

  15. Block Scheduling Revisited.

    Science.gov (United States)

    Queen, J. Allen

    2000-01-01

    Successful block scheduling depends on provision of initial and ongoing instructional training. Teaching strategies should vary and include cooperative learning, the case method, the socratic seminar, synectics, concept attainment, the inquiry method, and simulations. Recommendations for maximizing block scheduling are outlined. (Contains 52…

  16. SCL, LMO1 and Notch1 Reprogram Thymocytes into Self-Renewing Cells

    Science.gov (United States)

    Rojas-Sutterlin, Shanti; Herblot, Sabine; Hébert, Josée; Sauvageau, Guy; Lemieux, Sébastien; Lécuyer, Eric; Veiga, Diogo F. T.; Hoang, Trang

    2014-01-01

    The molecular determinants that render specific populations of normal cells susceptible to oncogenic reprogramming into self-renewing cancer stem cells are poorly understood. Here, we exploit T-cell acute lymphoblastic leukemia (T-ALL) as a model to define the critical initiating events in this disease. First, thymocytes that are reprogrammed by the SCL and LMO1 oncogenic transcription factors into self-renewing pre-leukemic stem cells (pre-LSCs) remain non-malignant, as evidenced by their capacities to generate functional T cells. Second, we provide strong genetic evidence that SCL directly interacts with LMO1 to activate the transcription of a self-renewal program coordinated by LYL1. Moreover, LYL1 can substitute for SCL to reprogram thymocytes in concert with LMO1. In contrast, inhibition of E2A was not sufficient to substitute for SCL, indicating that thymocyte reprogramming requires transcription activation by SCL-LMO1. Third, only a specific subset of normal thymic cells, known as DN3 thymocytes, is susceptible to reprogramming. This is because physiological NOTCH1 signals are highest in DN3 cells compared to other thymocyte subsets. Consistent with this, overexpression of a ligand-independent hyperactive NOTCH1 allele in all immature thymocytes is sufficient to sensitize them to SCL-LMO1, thereby increasing the pool of self-renewing cells. Surprisingly, hyperactive NOTCH1 cannot reprogram thymocytes on its own, despite the fact that NOTCH1 is activated by gain of function mutations in more than 55% of T-ALL cases. Rather, elevating NOTCH1 triggers a parallel pathway involving Hes1 and Myc that dramatically enhances the activity of SCL-LMO1 We conclude that the acquisition of self-renewal and the genesis of pre-LSCs from thymocytes with a finite lifespan represent a critical first event in T-ALL. Finally, LYL1 and LMO1 or LMO2 are co-expressed in most human T-ALL samples, except the cortical T subtype. We therefore anticipate that the self-renewal network

  17. Plant Hormones Increase Efficiency of Reprogramming Mouse Somatic Cells to Induced Pluripotent Stem Cells and Reduce Tumorigenicity

    OpenAIRE

    Alvarez Palomo, Ana Belén; McLenachan, Samuel; Requena Osete, Jordi; Menchón, Cristina; Barrot, Carme; Chen, Fred; Munné-Bosch, Sergi; Michael J. Edel

    2013-01-01

    Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for ov...

  18. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  19. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions

    OpenAIRE

    Hess, Samuel; Rambukkana, Anura

    2014-01-01

    Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage ...

  20. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ras Trokovic

    2015-07-01

    Full Text Available Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  1. Local Genome Topology Can Exhibit an Incompletely Rewired 3D-Folding State during Somatic Cell Reprogramming.

    Science.gov (United States)

    Beagan, Jonathan A; Gilgenast, Thomas G; Kim, Jesi; Plona, Zachary; Norton, Heidi K; Hu, Gui; Hsu, Sarah C; Shields, Emily J; Lyu, Xiaowen; Apostolou, Effie; Hochedlinger, Konrad; Corces, Victor G; Dekker, Job; Phillips-Cremins, Jennifer E

    2016-05-01

    Pluripotent genomes are folded in a topological hierarchy that reorganizes during differentiation. The extent to which chromatin architecture is reconfigured during somatic cell reprogramming is poorly understood. Here we integrate fine-resolution architecture maps with epigenetic marks and gene expression in embryonic stem cells (ESCs), neural progenitor cells (NPCs), and NPC-derived induced pluripotent stem cells (iPSCs). We find that most pluripotency genes reconnect to target enhancers during reprogramming. Unexpectedly, some NPC interactions around pluripotency genes persist in our iPSC clone. Pluripotency genes engaged in both "fully-reprogrammed" and "persistent-NPC" interactions exhibit over/undershooting of target expression levels in iPSCs. Additionally, we identify a subset of "poorly reprogrammed" interactions that do not reconnect in iPSCs and display only partially recovered, ESC-specific CTCF occupancy. 2i/LIF can abrogate persistent-NPC interactions, recover poorly reprogrammed interactions, reinstate CTCF occupancy, and restore expression levels. Our results demonstrate that iPSC genomes can exhibit imperfectly rewired 3D-folding linked to inaccurately reprogrammed gene expression. PMID:27152443

  2. Predictability of blocking

    International Nuclear Information System (INIS)

    Tibaldi and Molteni (1990, hereafter referred to as TM) had previously investigated operational blocking predictability by the ECMWF model and the possible relationships between model systematic error and blocking in the winter season of the Northern Hemisphere, using seven years of ECMWF operational archives of analyses and day 1 to 10 forecasts. They showed that fewer blocking episodes than in the real atmosphere were generally simulated by the model, and that this deficiency increased with increasing forecast time. As a consequence of this, a major contribution to the systematic error in the winter season was shown to derive from the inability of the model to properly forecast blocking. In this study, the analysis performed in TM for the first seven winter seasons of the ECMWF operational model is extended to the subsequent five winters, during which model development, reflecting both resolution increases and parametrisation modifications, continued unabated. In addition the objective blocking index developed by TM has been applied to the observed data to study the natural low frequency variability of blocking. The ability to simulate blocking of some climate models has also been tested

  3. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep;

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led to...... genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis and...... DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  4. microRNAs and cancer metabolism reprogramming: the paradigm of metformin.

    Science.gov (United States)

    Pulito, Claudio; Donzelli, Sara; Muti, Paola; Puzzo, Luisa; Strano, Sabrina; Blandino, Giovanni

    2014-06-01

    Increasing evidence witnesses that cancer metabolism alterations represent a critical hallmark for many types of human tumors. There is a strong need to understand and dissect the molecular mechanisms underlying cancer metabolism to envisage specific biomarkers and underpin critical molecular components that might represent novel therapeutic targets. One challenge, that is the focus of this review, is the reprogramming of the altered metabolism of a cancer cell toward that of un-transformed cell. The anti-hyperglicemic agent, metformin has proven to be effective in reprogramming the metabolism of cancer cells even from those subpopulations endowed with cancer stem like features and very high chemoresistenace to conventional anticancer treatments. A functional interplay involving selective modulation of microRNAs (miRNAs) takes place along the anticancer metabolic effects exerted by metformin. The implications of this interplay will be also discussed in this review. PMID:25333033

  5. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification

    Directory of Open Access Journals (Sweden)

    Syandan Chakraborty

    2014-12-01

    Full Text Available Gene activation by the CRISPR/Cas9 system has the potential to enable new approaches to science and medicine, but the technology must be enhanced to robustly control cell behavior. We show that the fusion of two transactivation domains to Cas9 dramatically enhances gene activation to a level that is necessary to reprogram cell phenotype. Targeted activation of the endogenous Myod1 gene locus with this system led to stable and sustained reprogramming of mouse embryonic fibroblasts into skeletal myocytes. The levels of myogenic marker expression obtained by the activation of endogenous Myod1 gene were comparable to that achieved by overexpression of lentivirally delivered MYOD1 transcription factor.

  6. Implantable cardioverter defibrillator clinic casualties: inadvertent reprogramming during routine implantable cardioverter defibrillator follow-up.

    Science.gov (United States)

    Ozahowski, T P; Greenberg, M L; Mock, P; Holzberger, P T; Gerling, B; Zalinger, C; Perry, C

    1996-10-01

    On one occasion during a busy ICD follow-up clinic, the preceding patient's parameters for rate, PDF, and delay were inadvertently programmed into the subsequent patient's generator using the CPI Programmer Model 2035. This occurred after capacitor reformation, without pressing the "Program" button. The source of this reprogramming error was failure to clear the programmer memory of the previous patient's data, usually achieved by turning the programmer off between patients (or selecting "New Patient" from the menu). At our next ICD follow-up clinic, we purposely did not turn off the programmer between two sets of patients. On both occasions the above finding was repeated and confirmed. These observations indicate the potential for serious reprogramming errors that can occur simply by not clearing the programmer's memory between clinic patients. PMID:8904549

  7. Using Robot Skills for Flexible Reprogramming of Pick Operations in Industrial Scenarios

    DEFF Research Database (Denmark)

    Andersen, Rasmus S.; Nalpantidis, Lazaros; Krüger, Volker;

    2014-01-01

    Traditional robots used in manufacturing are very efficient for solving specific tasks that are repeated many times. The robots are, however, difficult to (re-)configure and (re-)program. This can often only be done by expert robotic programmers, computer vision experts, etc., and it requires...... additionally lots of time. In this paper we present and use a skill based framework for robotic programming. In this framework, we develop a flexible pick skill, that can easily be reprogrammed to solve new specific tasks, even by non-experts. Using the pick skill, a robot can detect rotational symmetric...... objects on tabletops and pick them up in a user-specified manner. The programming itself is primarily done through kinesthetic teaching. We show that the skill has robustness towards the location and shape of the object to pick, and that objects from a real industrial production line can be handled. Also...

  8. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Catherine D McCusker

    Full Text Available The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP, to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  9. Block Cipher Analysis

    DEFF Research Database (Denmark)

    Miolane, Charlotte Vikkelsø

    ensurethat no attack violatesthe securitybounds specifiedbygeneric attack namely exhaustivekey search and table lookup attacks. This thesis contains a general introduction to cryptography with focus on block ciphers and important block cipher designs, in particular the Advanced Encryption Standard......(AES).Wedescribe the mostgeneraltypes ofblock cipher cryptanalysis but concentrate on the algebraic attacks. While the algebraic techniques have been successful oncertainstreamcipherstheirapplicationtoblock ciphershasnot shown any significant results so far. This thesis contributes to the field of algebraic attacks on...... algebraic results on small scale variants of AES. In the final part of the thesis we present a new block cipher proposal Present and examine its security against algebraic and differential cryptanalysis in particular....

  10. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming.

    Science.gov (United States)

    Yamaguchi, Shinpei; Hong, Kwonho; Liu, Rui; Inoue, Azusa; Shen, Li; Zhang, Kun; Zhang, Yi

    2013-03-01

    Previous studies have revealed that mouse primordial germ cells (PGCs) undergo genome-wide DNA methylation reprogramming to reset the epigenome for totipotency. However, the precise 5-methylcytosine (5mC) dynamics and its relationship with the generation of 5-hydroxymethylcytosine (5hmC) are not clear. Here we analyzed the dynamics of 5mC and 5hmC during PGC reprograming and germ cell development. Unexpectedly, we found a specific period (E8.5-9.5) during which both 5mC and 5hmC levels are low. Subsequently, 5hmC levels increase reaching its peak at E11.5 and gradually decrease until E13.5 likely by replication-dependent dilution. Interestingly, 5hmC is enriched in chromocenters during this period. While this germ cell-specific 5hmC subnuclear localization pattern is maintained in female germ cells even in mature oocytes, such pattern is gradually lost in male germ cells as mitotic proliferation resumes during the neonatal stage. Pericentric 5hmC plays an important role in silencing major satellite repeat, especially in female PGCs. Global transcriptome analysis by RNA-seq revealed that the great majority of differentially expressed genes from E9.5 to 13.5 are upregulated in both male and female PGCs. Although only female PGCs enter meiosis during the prenatal stage, meiosis-related and a subset of imprinted genes are significantly upregulated in both male and female PGCs at E13.5. Thus, our study not only reveals the dynamics of 5mC and 5hmC during PGC reprogramming and germ cell development, but also their potential role in epigenetic reprogramming and transcriptional regulation of meiotic and imprinted genes. PMID:23399596

  11. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  12. Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia

    OpenAIRE

    Berninger, Benedikt; Costa, Marcos R.; Koch, Ursula; Schroeder, Timm; Sutor, Bernd; Grothe, Benedikt; Götz, Magdalena

    2007-01-01

    With the exception of astroglia-like cells in the neurogenic niches of the telencephalic subependymal or hippocampal subgranular zone, astroglia in all other regions of the adult mouse brain do not normally generate neurons. Previous studies have shown, however, that early postnatal cortical astroglia in culture can be reprogrammed to adopt a neuronal fate after forced expression of Pax6, a transcription factor (TF) required for proper neuronal specification during embryonic corticogenesis. H...

  13. Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells

    OpenAIRE

    Ruiz, Sergio; Lopez Contreras, Andres J.; Gabut, Mathieu; Marion, Rosa M.; Guti??rrez Mart??nez, Paula; Bua, Sabela; Ram??rez, Oscar; Olalde, I??igo; Rodrigo Perez, Sara; Li, Han; Marqu??s i Bonet, Tom??s, 1975-; Serrano, Manuel; Blasco, Maria A; Batada, Nizar N; Fern??ndez Capetillo, Oscar

    2015-01-01

    The generation of induced pluripotent stem cells (iPSC) from adult somatic cells is one of the most remarkable discoveries in recent decades. However, several works have reported evidence of genomic instability in iPSC, raising concerns on their biomedical use. The reasons behind the genomic instability observed in iPSC remain mostly unknown. Here we show that, similar to the phenomenon of oncogene-induced replication stress, the expression of reprogramming factors induces replication stress....

  14. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer

    OpenAIRE

    Jan, Chia-Ing; Tsai, Ming-Hsui; Chiu, Chang-Fang; Huang, Yi-Ping; Liu, Chia Jen; Chang, Nai Wen

    2016-01-01

    One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied wi...

  15. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  16. Secure Reprogramming of a Network Connected Device : Securing programmable logic controllers

    OpenAIRE

    Tesfaye, Mussie

    2012-01-01

    This is a master’s thesis project entitled “Secure reprogramming of network connected devices”. The thesis begins by providing some background information to enable the reader to understand the current vulnerabilities of network-connected devices, specifically with regard to cyber security and data integrity. Today supervisory control and data acquisition systems utilizing network connected programmable logic controllers are widely used in many industries and critical infrastructures. These n...

  17. A hit and run approach to inducible direct reprogramming of astrocytes to neural stem cells

    OpenAIRE

    Maria ePoulou; Nikolaos eMandalos; Theodoros eKarnavas; Marannia eSaridaki; Ronald G. McKay; Eumorphia eRemboutsika

    2016-01-01

    Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel hit and run inducible direct reprogramming approach. In a single step, two days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2) triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nest...

  18. In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts

    OpenAIRE

    Hyun Woo Choi; Jong Soo Kim; Yean Ju Hong; Hyuk Song; Han Geuk Seo; Jeong Tae Do

    2015-01-01

    Recently, induced pluripotent stem cells (iPSCs) have been generated in vivo from reprogrammable mice. These in vivo iPSCs display features of totipotency, i.e., they differentiate into the trophoblast lineage, as well as all 3 germ layers. Here, we developed a new reprogrammable mouse model carrying an Oct4-GFP reporter gene to facilitate the detection of reprogrammed pluripotent stem cells. Without doxycycline administration, some of the reprogrammable mice developed aggressively growing te...

  19. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology

    OpenAIRE

    Nabity, Paul D.; Haus, Miranda J.; Berenbaum, May R.; DeLucia, Evan H.

    2013-01-01

    Some herbivorous insects induce galls, abnormal structures, in their host plants, benefiting the gall-forming parasite by providing nutritive tissue. The gall-forming insect phylloxera induces stomata, openings through which plants regulate water and CO2, on the upper surface of grape leaves where they typically do not occur. Carbon uptake and transpiration by induced stomata facilitate nutrient acquisition by gall tissue and phylloxera. Moreover, gall formation reprograms the host-leaf trans...

  20. Bmi1 reprograms CML B-lymphoid progenitors to become B-ALL–initiating cells

    OpenAIRE

    Sengupta, Amitava; Ficker, Ashley M.; Dunn, Susan K.; Madhu, Malav; Cancelas, Jose A.

    2012-01-01

    The characterization and targeting of Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL)–initiating cells remains unresolved. Expression of the polycomb protein Bmi1 is up-regulated in patients with advanced stages of chronic myelogenous leukemia (CML). We report that Bmi1 transforms and reprograms CML B-lymphoid progenitors into stem cell leukemia (Scl) promoter-driven, self-renewing, leukemia-initiating cells to result in B-lymphoid leukemia (B-ALL) in vivo. In vitro,...

  1. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine

    OpenAIRE

    Iqbal, Khursheed; Jin, Seung-Gi; Pfeifer, Gerd P; Szabó, Piroska E.

    2011-01-01

    Genome-wide erasure of DNA cytosine-5 methylation has been reported to occur along the paternal pronucleus in fertilized oocytes in an apparently replication-independent manner, but the mechanism of this reprogramming process has remained enigmatic. Recently, considerable amounts of 5-hydroxymethylcytosine (5hmC), most likely derived from enzymatic oxidation of 5-methylcytosine (5mC) by TET proteins, have been detected in certain mammalian tissues. 5hmC has been proposed as a potential interm...

  2. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family

    OpenAIRE

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sug...

  3. bFGF signaling-mediated reprogramming of porcine primordial germ cells.

    Science.gov (United States)

    Zhang, Yu; Ma, Jing; Li, Hai; Lv, Jiawei; Wei, Renyue; Cong, Yimei; Liu, Zhonghua

    2016-05-01

    Primordial germ cells (PGCs) have the ability to be reprogrammed into embryonic germ cells (EGCs) in vitro and are an alternative source of embryonic stem cells. Other than for the mouse, the systematic characterization of mammalian PGCs is still lacking, especially the process by which PGCs convert to pluripotency. This hampers the understanding of germ cell development and the derivation of authenticated EGCs from other species. We observed the morphological development of the genital ridge from Bama miniature pigs and found primary sexual differentiation in the E28 porcine embryo, coinciding with Blimp1 nuclear exclusion in PGCs. To explore molecular events involved in porcine PGC reprogramming, transcriptome data of porcine EGCs and fetal fibroblasts (FFs) were assembled and 1169 differentially expressed genes were used for Gene Ontology analysis. These genes were significantly enriched in cell-surface receptor-linked signal transduction, in agreement with the activation of LIF/Stat3 signaling and FGF signaling during the derivation of porcine EG-like cells. Using a growth-factor-defined culture system, we explored the effects of bFGF on the process and found that bFGF not only functioned at the very beginning of PGC dedifferentiation by impeding Blimp1 nuclear expression via a PI3K/AKT-dependent pathway but also maintained the viability of cultured PGCs thereafter. These results provide further insights into the development of germ cells from livestock and the mechanism of porcine PGC reprogramming. PMID:26613602

  4. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H.

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors1,2. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation3–6. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced transdifferentiation pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by different methods. PMID:26098448

  5. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    International Nuclear Information System (INIS)

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. (author)

  6. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  7. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  8. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    International Nuclear Information System (INIS)

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  9. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming.

    Science.gov (United States)

    Kazantseva, Jekaterina; Sadam, Helle; Neuman, Toomas; Palm, Kaia

    2016-01-01

    Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression. PMID:27499390

  10. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2

    Directory of Open Access Journals (Sweden)

    Marti Borkent

    2016-05-01

    Full Text Available The generation of induced pluripotent stem cells (iPSCs from differentiated cells following forced expression of OCT4, KLF4, SOX2, and C-MYC (OKSM is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an unbiased serial shRNA enrichment screen to identify potent repressors of somatic cell reprogramming into iPSCs. This effort uncovered the protein modifier SUMO2 as one of the strongest roadblocks to iPSC formation. Depletion of SUMO2 both enhances and accelerates reprogramming, yielding transgene-independent, chimera-competent iPSCs after as little as 38 hr of OKSM expression. We further show that the SUMO2 pathway acts independently of exogenous C-MYC expression and in parallel with small-molecule enhancers of reprogramming. Importantly, suppression of SUMO2 also promotes the generation of human iPSCs. Together, our results reveal sumoylation as a crucial post-transcriptional mechanism that resists the acquisition of pluripotency from fibroblasts using defined factors.

  11. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2.

    Science.gov (United States)

    Borkent, Marti; Bennett, Brian D; Lackford, Brad; Bar-Nur, Ori; Brumbaugh, Justin; Wang, Li; Du, Ying; Fargo, David C; Apostolou, Effie; Cheloufi, Sihem; Maherali, Nimet; Elledge, Stephen J; Hu, Guang; Hochedlinger, Konrad

    2016-05-10

    The generation of induced pluripotent stem cells (iPSCs) from differentiated cells following forced expression of OCT4, KLF4, SOX2, and C-MYC (OKSM) is slow and inefficient, suggesting that transcription factors have to overcome somatic barriers that resist cell fate change. Here, we performed an unbiased serial shRNA enrichment screen to identify potent repressors of somatic cell reprogramming into iPSCs. This effort uncovered the protein modifier SUMO2 as one of the strongest roadblocks to iPSC formation. Depletion of SUMO2 both enhances and accelerates reprogramming, yielding transgene-independent, chimera-competent iPSCs after as little as 38 hr of OKSM expression. We further show that the SUMO2 pathway acts independently of exogenous C-MYC expression and in parallel with small-molecule enhancers of reprogramming. Importantly, suppression of SUMO2 also promotes the generation of human iPSCs. Together, our results reveal sumoylation as a crucial post-transcriptional mechanism that resists the acquisition of pluripotency from fibroblasts using defined factors. PMID:26947976

  12. Block copolymer battery separator

    Energy Technology Data Exchange (ETDEWEB)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  13. Blocking in Category Learning

    OpenAIRE

    Bott, Lewis; Hoffman, Aaron B.; Murphy, Gregory L.

    2007-01-01

    Many theories of category learning assume that learning is driven by a need to minimize classification error. When there is no classification error, therefore, learning of individual features should be negligible. We tested this hypothesis by conducting three category learning experiments adapted from an associative learning blocking paradigm. Contrary to an error-driven account of learning, participants learned a wide range of information when they learned about categories, and blocking effe...

  14. Concord Housing Blocks

    OpenAIRE

    Kumaraswamy, Mohan

    2002-01-01

    One element of the CIVCAL project Web-based resources containing images, tables, texts and associated data on the construction of Concord type Housing Blocks. A high rise public housing project using prefabriction and advanced formwork systems. Both Harmony and Concord Blocks are designed on the basis of standard modular flats which permit the use of factory produced components and a construction sequence which makes extensive use of advanced formwork systems.

  15. Efficient Block Truncation Coding

    Directory of Open Access Journals (Sweden)

    K.Somasundaram,

    2010-09-01

    Full Text Available Block Truncation Coding (BTC is one of the lossy image compression techniques. The computational complexity involved in this method is very simple. In the proposed method, the feature of inter-pixel correlation is exploited to further reduce the requirement of bits to store a block. The proposed method gives very good performance in terms of bit-rate and PSNR values when compared to the conventional BTC.

  16. Impression block with orientator

    International Nuclear Information System (INIS)

    Tool review, namely the impression block, applied to check the shape and size of the top of fish as well as to determine the appropriate tool for fishing operation was realized. For multiple application and obtaining of the impress depth of 3 cm and more, the standard volumetric impression blocks with fix rods are used. However, the registered impress of fish is not oriented in space and the rods during fishing are in the extended position. This leads to rods deformation and sinking due to accidental impacts of impression block over the borehole irregularity and finally results in faulty detection of the top end of fishing object in hole. The impression blocks with copy rods and fixed magnetic needle allow estimating the object configuration and fix the position of magnetic needle determining the position of the top end of object in hole. However, the magnetic needle fixation is realized in staged and the rods are in extended position during fishing operations as well as it is in standard design. The most efficient tool is the impression block with copy rods which directs the examined object in the borehole during readings of magnetic needles data from azimuth plate and averaging of readings. This significantly increases the accuracy of fishing toll direction. The rods during fishing are located in the body and extended only when they reach the top of fishing object

  17. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  18. Block diagonal and schur complement preconditioners for block-toeplitz systems with small size blocks

    OpenAIRE

    Ching, WK; Ng, MK; Wen, YW

    2007-01-01

    In this paper we consider the solution of Hermitian positive definite block-Toeplitz systems with small size blocks. We propose and study block diagonal and Schur complement preconditioners for such block-Toeplitz matrices. We show that for some block-Toeplitz matrices, the spectra of the preconditioned matrices are uniformly bounded except for a fixed number of outliers where this fixed number depends only on the size of the block. Hence, conjugate gradient type methods, when applied to solv...

  19. Evaluating the potential of poly(beta-amino ester nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bhise NS

    2013-12-01

    Full Text Available Nupura S Bhise,1,* Karl J Wahlin,2,* Donald J Zack,2–4 Jordan J Green1,21Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, 2Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 3Solomon H Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, and Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 4Institut de la Vision, Paris, France*These authors contributed equally to this workBackground: Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs from human fibroblasts.Methods: A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling.Results: 1-(3-aminopropyl-4-methylpiperazine end-terminated poly(1,4-butanediol diacrylate-co-4-amino-1-butanol polymer (B4S4E7 self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available

  20. Nymble Blocking System

    Directory of Open Access Journals (Sweden)

    Anand Joshi

    2012-05-01

    Full Text Available In order to allow users to access Internet services privately, anonymizing networks like Tor uses a series of routers to hide the client’s IP address from the server. These networks, however, have been marred by users employing this anonymity for abusive purposes such as defacing popular web sites. Usually, web site administrators rely on IP-address blocking in order to disable access to misbehaving users, but it is impractical if the abuser routes through an anonymizing network. In order to avoid this, administrators bar all known exit nodes of the anonymizing network, thereby denying anonymous access to all the users(whether misbehaving or not. To solve this issue, we introduce Nymble, a system where servers blacklist misbehaving users, thereby blocking users without affecting their anonymity. Nymble is thus agnostic to varied definitions of misbehavior. Servers can block users for any reason, and the privacy of blacklisted users is not affected in any case.

  1. 重编程细胞的命运%Fate of reprogramming cells

    Institute of Scientific and Technical Information of China (English)

    阮光萍; 姚翔; 刘菊芬; 胡媛媛; 王金祥; 何洁; 赵晶; 潘兴华

    2015-01-01

    背景:体细胞重新编程技术也称细胞重组技术,使已经完成分化的体细胞回到原始的全能性或多能性状态,并可以重新分化成与原来不一样的细胞。通过重编程技术可以获得患者特异性诱导多能干细胞和疾病特异性诱导多能干细胞,显著减少了免疫排斥反应。目的:探讨关于直接重编程到特定系的方法,总结参与重编程的分子机制。方法:以“重编程”为中文检索词,“reprogramming”为英文检索词,应用计算机检索维普(VIP)期刊全文数据库、万方全文数据库、中国知网全文数据库、PubMed 数据库、Springer 数据库1958年1月至2015年4月有关细胞重编程技术的文献,排除与研究目的无关及重复性研究,保留40篇文献进一步分析。结果与结论:当前重编程的步骤效率很低,在特定群只有相对少量的细胞能进行重编程,重编程的完整性和程度也有待证实。直接重编程成体、定系的细胞从一种细胞到另一种细胞一直是发育生物学很难达到的目标。最近的研究证明分化的细胞强制表达特异转录因子能促进细胞分化。这些发现使再生医学领域有了重大进展,可以提供替代细胞治疗各种再生紊乱。目前,基本的分子机制需要进一步阐明,在直接重编程被应用于临床之前还有许多问题需要解决。%BACKGROUND:Somatic cel reprogramming technology, also known as recombinant technology, has completed differentiated somatic cels back to the original totipotent or pluripotent state, and can be re-differentiated into cels different from original ones. Re-programming techniques are able to harvest specificaly induced pluripotent stem cels and disease-specific induced pluripotent stem cels from patients, which can significantly reduce the immune rejection. OBJECTIVE: To explore the method from direct reprogramming to specific cel lines and to conclude the

  2. CEND1 and NEUROGENIN2 Reprogram Mouse Astrocytes and Embryonic Fibroblasts to Induced Neural Precursors and Differentiated Neurons

    Directory of Open Access Journals (Sweden)

    Katerina Aravantinou-Fatorou

    2015-09-01

    Full Text Available Recent studies demonstrate that astroglia from non-neurogenic brain regions can be reprogrammed into functional neurons through forced expression of neurogenic factors. Here we explored the effect of CEND1 and NEUROG2 on reprogramming of mouse cortical astrocytes and embryonic fibroblasts. Forced expression of CEND1, NEUROG2, or both resulted in acquisition of induced neuronal cells expressing subtype-specific markers, while long-term live-cell imaging highlighted the existence of two different modes of neuronal trans-differentiation. Of note, a subpopulation of CEND1 and NEUROG2 double-transduced astrocytes formed spheres exhibiting neural stem cell properties. mRNA and protein expression studies revealed a reciprocal feedback loop existing between the two molecules, while knockdown of endogenous CEND1 demonstrated that it is a key mediator of NEUROG2-driven neuronal reprogramming. Our data suggest that common reprogramming mechanisms exist driving the conversion of lineage-distant somatic cell types to neurons and reveal a critical role for CEND1 in NEUROG2-driven astrocytic reprogramming.

  3. Reprogramming of various cell types to a beta-like state by Pdx1, Ngn3 and MafA.

    Directory of Open Access Journals (Sweden)

    Ersin Akinci

    Full Text Available The three transcription factors, PDX1, NGN3 and MAFA, are very important in pancreatic development. Overexpression of these three factors can reprogram both pancreatic exocrine cells and SOX9-positive cells of the liver into cells resembling pancreatic beta cells. In this study we investigate whether other cell types can be reprogrammed. Eight cell types are compared and the results are consistent with the idea that reprogramming occurs to a greater degree for developmentally related cells (pancreas, liver than for other types, such as fibroblasts. Using a line of mouse hepatocyte-derived cells we screened 13 compounds for the ability to increase the yield of reprogrammed cells. Three are active and when used in combination they can increase the yield of insulin-immunopositive cells by a factor of six. These results should contribute to the eventual ability to develop a new cure for diabetes based on the ability to reprogram other cells in the body to a beta cell phenotype.

  4. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells

    Science.gov (United States)

    Grabundzija, Ivana; Wang, Jichang; Sebe, Attila; Erdei, Zsuzsanna; Kajdi, Robert; Devaraj, Anantharam; Steinemann, Doris; Szuhai, Károly; Stein, Ulrike; Cantz, Tobias; Schambach, Axel; Baum, Christopher; Izsvák, Zsuzsanna; Sarkadi, Balázs; Ivics, Zoltán

    2013-01-01

    The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibroblasts by transposition of OSKM (Oct4, Sox2, Klf4 and c-Myc) and OSKML (OSKM + Lin28) expression cassettes mobilized by the SB100X hyperactive transposase. The efficiency of iPS cell derivation with SB transposon system was in the range of that obtained with retroviral vectors. Co-expression of the miRNA302/367 cluster together with OSKM significantly improved reprogramming efficiency and accelerated the temporal kinetics of reprogramming. The iPS cells displayed a stable karyotype, and hallmarks of pluripotency including expression of stem cell markers and the ability to differentiate into embryoid bodies in vitro. We demonstrate Cre recombinase-mediated exchange allowing simultaneous removal of the reprogramming cassette and targeted knock-in of an expression cassette of interest into the transposon-tagged locus in mouse iPS cells. This strategy would allow correction of a genetic defect by site-specific insertion of a therapeutic gene construct into ‘safe harbor’ sites in the genomes of autologous, patient-derived iPS cells. PMID:23275558

  5. Bactericidal block copolymer micelles.

    Science.gov (United States)

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo

    2011-05-12

    Block copolymer micelles with bactericidal properties were designed to deactivate pathogens such as E. coli bacteria. The micelles of PS-b-PAA and PS-b-P4VP block copolymers were loaded with biocides TCMTB or TCN up to 20 or 30 wt.-%, depending on the type of antibacterial agent. Bacteria were exposed to loaded micelles and bacterial deactivation was evaluated. The micelles loaded with TCN are bactericidal; bacteria are killed in less than two minutes of exposure. The most likely interpretation of the data is that the biocide is transferred to the bacteria by repeated micelle/bacteria contacts, and not via the solution. PMID:21275041

  6. E-Block: A Tangible Programming Tool with Graphical Blocks

    OpenAIRE

    Danli Wang; Yang Zhang; Shengyong Chen

    2013-01-01

    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  7. Effects of Block Scheduling

    Directory of Open Access Journals (Sweden)

    William R. Veal

    1999-09-01

    Full Text Available This study examined the effects of a tri-schedule on the academic achievement of students in a high school. The tri-schedule consists of traditional, 4x4 block, and hybrid schedules running at the same time in the same high school. Effectiveness of the schedules was determined from the state mandated test of basic skills in reading, language, and mathematics. Students who were in a particular schedule their freshman year were tested at the beginning of their sophomore year. A statistical ANCOVA test was performed using the schedule types as independent variables and cognitive skill index and GPA as covariates. For reading and language, there was no statistically significant difference in test results. There was a statistical difference mathematics-computation. Block mathematics is an ideal format for obtaining more credits in mathematics, but the block format does little for mathematics achievement and conceptual understanding. The results have content specific implications for schools, administrations, and school boards who are considering block scheduling adoption.

  8. Spice Blocks Melanoma Growth

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Curcumin, the pungent yellow spice found in both turmeric and curry powders, blocks a key biological pathway needed for development of melanoma and other cancers, according to a study that appears in the journal Cancer. Researchers from The University of Texas M. D. Anderson Cancer Center demonstrate how curcumin stops laboratory strains of…

  9. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  10. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina;

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  11. Nuclear reprogramming: the zygotic transcription program is established through an "erase-and-rebuild" strategy.

    Science.gov (United States)

    Sun, Feng; Fang, Haiyan; Li, Ruizhen; Gao, Tianlong; Zheng, Junke; Chen, Xuejin; Ying, Wenqin; Sheng, Hui Z

    2007-02-01

    Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naïve chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17: 135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition. PMID:17287829

  12. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. PMID:26604326

  13. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells.

    Directory of Open Access Journals (Sweden)

    Kyra Oswald-Richter

    2004-07-01

    Full Text Available A T-cell subset, defined as CD4(+CD25(hi (regulatory T-cells [Treg cells], was recently shown to suppress T-cell activation. We demonstrate that human Treg cells isolated from healthy donors express the HIV-coreceptor CCR5 and are highly susceptible to HIV infection and replication. Because Treg cells are present in very few numbers and are difficult to expand in vitro, we genetically modified conventional human T-cells to generate Treg cells in vitro by ectopic expression of FoxP3, a transcription factor associated with reprogramming T-cells into a Treg subset. Overexpression of FoxP3 in naïve human CD4(+ T-cells recapitulated the hyporesponsiveness and suppressive function of naturally occurring Treg cells. However, FoxP3 was less efficient in reprogramming memory T-cell subset into regulatory cells. In addition, FoxP3-transduced T-cells also became more susceptible to HIV infection. Remarkably, a portion of HIV-positive individuals with a low percentage of CD4(+ and higher levels of activated T-cells have greatly reduced levels of FoxP3(+CD4(+CD25(hi T-cells, suggesting disruption of the Treg cells during HIV infection. Targeting and disruption of the T-cell regulatory system by HIV may contribute to hyperactivation of conventional T-cells, a characteristic of HIV disease progression. Moreover, the ability to reprogram human T-cells into Treg cells in vitro will greatly aid in decoding their mechanism of suppression, their enhanced susceptibility to HIV infection, and the unique markers expressed by this subset.

  14. Edit Distance with Block Deletions

    OpenAIRE

    Dana Shapira; Storer, James A.

    2011-01-01

    Several variants of the edit distance problem with block deletions are considered. Polynomial time optimal algorithms are presented for the edit distance with block deletions allowing character insertions and character moves, but without block moves. We show that the edit distance with block moves and block deletions is NP-complete (Nondeterministic Polynomial time problems in which any given solution to such problem can be verified in polynomial time, and any NP problem can be converted into...

  15. Fermion-Scalar Conformal Blocks

    CERN Document Server

    Iliesiu, Luca; Poland, David; Pufu, Silviu S; Simmons-Duffin, David; Yacoby, Ran

    2015-01-01

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called `seed blocks' in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  16. Characterization of common marmoset dysgerminoma-like tumor induced by the lentiviral expression of reprogramming factors

    OpenAIRE

    Yamaguchi, Saori; Marumoto, Tomotoshi; Nii, Takenobu; Kawano, Hirotaka; Liao, Jiyuan; Nagai, Yoko; Okada, Michiyo; Takahashi, Atsushi; Inoue, Hiroyuki; Sasaki, Erika; Fujii, Hiroshi; Okano, Shinji; Ebise, Hayao; Sato, Tetsuya; Suyama, Mikita

    2014-01-01

    Recent generation of induced pluripotent stem (iPSCs) has made a significant impact on the field of human regenerative medicine. Prior to the clinical application of iPSCs, testing of their safety and usefulness must be carried out using reliable animal models of various diseases. In order to generate iPSCs from common marmoset (CM; Callithrix jacchus), one of the most useful experimental animals, we have lentivirally transduced reprogramming factors, including POU5F1 (also known as OCT3/4), ...

  17. Loss of Fbw7 Reprograms Adult Pancreatic Ductal Cells into α, δ, and β Cells

    OpenAIRE

    Sancho, Rocio; Gruber, Ralph; Gu, Guoqiang; Behrens, Axel

    2014-01-01

    Summary The adult pancreas is capable of limited regeneration after injury but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here, we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into α, δ, and β cells. Loss of Fbw7 stabilized the transcription factor Ngn3, a key regulator of endocrine cell diff...

  18. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech;

    2012-01-01

    transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous....... Despite the ability for some endogenous genes to be expressed in these lines, the piPSC-like cells still cannot be maintained without doxycycline, indicating that the culture system of piPSCs may not be optimal or that the reprogramming factor combination used may not currently be optimal for maintaining...

  19. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  20. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses.

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided. PMID:26618522

  1. NCCN Evidence Blocks.

    Science.gov (United States)

    Carlson, Robert W; Jonasch, Eric

    2016-05-01

    NCCN has developed a series of Evidence Blocks: graphics that provide ratings for each recommended treatment regimen in terms of efficacy, toxicity, quality and consistency of the supporting data, and affordability. The NCCN Evidence Blocks are currently available in 10 tumor types within the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines). At a glance, patients and providers can understand how a given treatment was assessed by the NCCN Guidelines Panel and get a sense of how a given treatment may match individual needs and preferences. Robert W. Carlson, MD, CEO of NCCN, described the reasoning behind this new feature and how the tool is used, and Eric Jonasch, MD, Professor of Genitourinary Medical Oncology at The University of Texas MD Anderson Cancer Center, and Vice Chair of the NCCN Kidney Cancer Panel, described its applicability in the management of metastatic renal cell carcinoma. PMID:27226499

  2. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse;

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included in...... men vs. 0.5%/2.3% in women, P <0.001). Significant predictors of newly acquired RBBB were male gender, increasing age, high systolic blood pressure, and presence of IRBBB, whereas predictors of newly acquired IRBBB were male gender, increasing age, and low BMI. Right bundle branch block was associated...... with significantly increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch...

  3. SNUPPS power block modelling

    International Nuclear Information System (INIS)

    A series of models is being built and used as tools in the design of the SNUPPS Standard Power Block. The modelling programme includes both preliminary and final design models, a construction sequence mode, and additional models used to study various features of the design. The design of a standard power block unit has necessitated design definition which is more detailed than that customarily used in the design of nuclear power stations. One innovation is the use of engineering models as a primary design tool in the layout of process piping, preparation of isometric drawings, design of small components which are customarily designed in the field during construction. Development of a standard construction sequence and construction work plan is another innovation. (author)

  4. SUPERFICIAL CERVICAL PLEXUS BLOCK

    Directory of Open Access Journals (Sweden)

    Komang Mega Puspadisari

    2014-01-01

    Full Text Available Superficial cervical plexus block is one of the regional anesthesia in  neck were limited to thesuperficial fascia. Anesthesia is used to relieve pain caused either during or after the surgery iscompleted. This technique can be done by landmark or with ultrasound guiding. The midpointof posterior border of the Sternocleidomastoid was identified and the prosedure done on thatplace or on the level of cartilage cricoid.

  5. Growth, Endlessness, Blocks

    OpenAIRE

    Nabata, Avery Misuzu

    2014-01-01

    Growth, Endlessness, Blocks is a sculptural installation comprised of a series of wood structures of various scales. Large sections of drywall function as extensions of the gallery walls. Each structure balances a number of different physical characteristics that are tied to the act of making. Balance and presence combine in a disconcerting way giving the viewer a sense of uneasiness and a moment finely tuned by the artist. The artist seeks to embody the role of the factory fabricator as a me...

  6. E-Block: A Tangible Programming Tool with Graphical Blocks

    Directory of Open Access Journals (Sweden)

    Danli Wang

    2013-01-01

    Full Text Available This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transferred to computer by microcomputers and then translated into semantic information. The system applies wireless and infrared technologies and provides user with feedbacks on both screen and programming blocks. Preliminary user studies using observation and user interview methods are shown for E-Block's prototype. The test results prove that E-Block is attractive to children and easy to learn and use. The project also highlights potential advantages of using single chip microcomputer (SCM technology to develop tangible programming tools for children.

  7. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  8. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer

    Science.gov (United States)

    Jan, Chia-Ing; Tsai, Ming-Hsui; Chiu, Chang-Fang; Huang, Yi-Ping; Liu, Chia Jen; Chang, Nai Wen

    2016-01-01

    One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied with increasing extracellular acidification rate (ECAR) and reducing ATP content. Moreover, fenofibrate caused changes in the protein expressions of hexokinase II (HK II), pyruvate kinase, pyruvate dehydrogenase, and voltage-dependent anion channel (VDAC), which are associated with the Warburg effect. In addition, fenofibrate reprogrammed the metabolic pathway by interrupting the binding of HK II to VDAC. In an oral cancer mouse model, fenofibrate exhibited both preventive and therapeutic efficacy on oral tumorigenesis. Fenofibrate administration suppressed the incidence rate of tongue lesions, reduced the tumor sizes, decreased the tumor multiplicity, and decreased the immunoreactivities of VDAC and mTOR. The molecular mechanisms involved in fenofibrate's ability to delay tumor development included the down-regulation of mTOR activity via TSC1/2-dependent signaling through activation of AMPK and inactivation of Akt, or via a TSC1/2-independent pathway through direct suppression of raptor. Our findings provide a molecular rationale whereby fenofibrate exerts anticancer and additional beneficial effects for the treatment of oral cancer patients.

  9. Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine.

    Science.gov (United States)

    Bhutia, Yangzom D; Babu, Ellappan; Ganapathy, Vadivel

    2016-06-01

    Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H(+)-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function. PMID:27234586

  10. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures

    Science.gov (United States)

    Fernandes, Maria Cecilia; Dillon, Laura A. L.; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M.

    2016-01-01

    ABSTRACT Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. PMID:27165796

  11. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer.

    Science.gov (United States)

    Jan, Chia-Ing; Tsai, Ming-Hsui; Chiu, Chang-Fang; Huang, Yi-Ping; Liu, Chia Jen; Chang, Nai Wen

    2016-01-01

    One anticancer strategy suggests targeting mitochondrial metabolism to trigger cell death through slowing down energy production from the Warburg effect. Fenofibrate is a clinical lipid-lowering agent and an effective anticancer drug. In the present study, we demonstrate that fenofibrate provided novel mechanisms for delaying oral tumor development via the reprogramming of metabolic processes. Fenofibrate induced cytotoxicity by decreasing oxygen consumption rate (OCR) that was accompanied with increasing extracellular acidification rate (ECAR) and reducing ATP content. Moreover, fenofibrate caused changes in the protein expressions of hexokinase II (HK II), pyruvate kinase, pyruvate dehydrogenase, and voltage-dependent anion channel (VDAC), which are associated with the Warburg effect. In addition, fenofibrate reprogrammed the metabolic pathway by interrupting the binding of HK II to VDAC. In an oral cancer mouse model, fenofibrate exhibited both preventive and therapeutic efficacy on oral tumorigenesis. Fenofibrate administration suppressed the incidence rate of tongue lesions, reduced the tumor sizes, decreased the tumor multiplicity, and decreased the immunoreactivities of VDAC and mTOR. The molecular mechanisms involved in fenofibrate's ability to delay tumor development included the down-regulation of mTOR activity via TSC1/2-dependent signaling through activation of AMPK and inactivation of Akt, or via a TSC1/2-independent pathway through direct suppression of raptor. Our findings provide a molecular rationale whereby fenofibrate exerts anticancer and additional beneficial effects for the treatment of oral cancer patients. PMID:27313493

  12. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program.

    Science.gov (United States)

    Pataskar, Abhijeet; Jung, Johannes; Smialowski, Pawel; Noack, Florian; Calegari, Federico; Straub, Tobias; Tiwari, Vijay K

    2016-01-01

    Cell fate specification relies on the action of critical transcription factors that become available at distinct stages of embryonic development. One such factor is NeuroD1, which is essential for eliciting the neuronal development program and possesses the ability to reprogram other cell types into neurons. Given this capacity, it is important to understand its targets and the mechanism underlying neuronal specification. Here, we show that NeuroD1 directly binds regulatory elements of neuronal genes that are developmentally silenced by epigenetic mechanisms. This targeting is sufficient to initiate events that confer transcriptional competence, including reprogramming of transcription factor landscape, conversion of heterochromatin to euchromatin, and increased chromatin accessibility, indicating potential pioneer factor ability of NeuroD1. The transcriptional induction of neuronal fate genes is maintained via epigenetic memory despite a transient NeuroD1 induction during neurogenesis. NeuroD1 also induces genes involved in the epithelial-to-mesenchymal transition, thereby promoting neuronal migration. Our study not only reveals the NeuroD1-dependent gene regulatory program driving neurogenesis but also increases our understanding of how cell fate specification during development involves a concerted action of transcription factors and epigenetic mechanisms. PMID:26516211

  13. Chromatin remodeling system, cancer stem-like attractors, and cellular reprogramming.

    Science.gov (United States)

    Zhang, Yue; Moriguchi, Hisashi

    2011-11-01

    The cancer cell attractors theory provides a next-generation understanding of carcinogenesis and natural explanation of punctuated clonal expansions of tumor progression. The impressive notion of atavism of cancer is now updated but more evidence is awaited. Besides, the mechanisms that the ectopic expression of some germline genes result in somatic tumors such as melanoma and brain tumors are emerging but are not well understood. Cancer could be triggered by cells undergoing abnormal cell attractor transitions, and may be reversible with "cyto-education". From mammals to model organisms like Caenorhabditis elegans and Drosophila melanogaster, the versatile Mi-2β/nucleosome remodeling and histone deacetylation complexes along with their functionally related chromatin remodeling complexes (CRCs), i.e., the dREAM/Myb-MuvB complex and Polycomb group complex are likely master regulators of cell attractors. The trajectory that benign cells switch to cancerous could be the reverse of navigation of embryonic cells converging from a series of intermediate transcriptional states to a final adult state, which is supported by gene expression dynamics inspector assays and some cross-species genetic evidence. The involvement of CRCs in locking cancer attractors may help find the recipes of perturbing genes to achieve successful reprogramming such that the reprogrammed cancer cell function in the same way as the normal cells. PMID:21909785

  14. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  15. Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Carmen Chak-Lui Wong

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2 was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.

  16. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    Science.gov (United States)

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-01

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. PMID:27207834

  17. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.

    Science.gov (United States)

    Zheng, Jie; Choi, Kyung-Ah; Kang, Phil Jun; Hyeon, Solji; Kwon, Suhyun; Moon, Jai-Hee; Hwang, Insik; Kim, Yang In; Kim, Yoon Sik; Yoon, Byung Sun; Park, Gyuman; Lee, JangBo; Hong, SungHoi; You, Seungkwon

    2016-07-15

    The generation of induced neural stem cells (iNSCs) from somatic cells using defined factors provides new avenues for basic research and cell therapies for various neurological diseases, such as Parkinson's disease, Huntington's disease, and spinal cord injuries. However, the transcription factors used for direct reprogramming have the potential to cause unexpected genetic modifications, which limits their potential application in cell therapies. Here, we show that a combination of four chemical compounds resulted in cells directly acquiring a NSC identity; we termed these cells chemically-induced NSCs (ciNSCs). ciNSCs expressed NSC markers (Pax6, PLZF, Nestin, Sox2, and Sox1) and resembled NSCs in terms of their morphology, self-renewal, gene expression profile, and electrophysiological function when differentiated into the neuronal lineage. Moreover, ciNSCs could differentiate into several types of mature neurons (dopaminergic, GABAergic, and cholinergic) as well as astrocytes and oligodendrocytes in vitro. Taken together, our results suggest that stably expandable and functional ciNSCs can be directly reprogrammed from mouse fibroblasts using a combination of small molecules without any genetic manipulation, and will provide a new source of cells for cellular replacement therapy of neurodegenerative diseases. PMID:27207831

  18. Demographic Data - MDC_Block

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A polygon feature class of Miami-Dade Census 2000 Blocks. Census blocks are areas bounded on all sides by visible and/or invisible features shown on a map prepared...

  19. Ear - blocked at high altitudes

    Science.gov (United States)

    High altitudes and blocked ears; Flying and blocked ears; Eustachian tube dysfunction - high altitude ... you are going up or coming down from high altitudes. Chewing gum the entire time you are changing ...

  20. Porous block nanofiber composite filters

    Energy Technology Data Exchange (ETDEWEB)

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  1. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    Directory of Open Access Journals (Sweden)

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  2. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  3. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    International Nuclear Information System (INIS)

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level

  4. Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1.

    Science.gov (United States)

    Ursu, Andrei; Illich, Damir J; Takemoto, Yasushi; Porfetye, Arthur T; Zhang, Miao; Brockmeyer, Andreas; Janning, Petra; Watanabe, Nobumoto; Osada, Hiroyuki; Vetter, Ingrid R; Ziegler, Slava; Schöler, Hans R; Waldmann, Herbert

    2016-04-21

    The discovery of novel small molecules that induce stem cell reprogramming and give efficient access to pluripotent stem cells is of major importance for potential therapeutic applications and may reveal novel insights into the factors controlling pluripotency. Chemical reprogramming of mouse epiblast stem cells (EpiSCs) into cells corresponding to embryonic stem cells (cESCs) is an inefficient process. In order to identify small molecules that promote this cellular transition, we analyzed the LOPAC library in a phenotypic screen monitoring Oct4-GFP expression and identified triamterene (TR) as initial hit. Synthesis of a TR-derived compound collection and investigation for reprogramming of EpiSCs into cESCs identified casein kinases 1 (CK1) α/δ/ɛ as responsible cellular targets of TR and unraveled the structural parameters that determine reprogramming. Delineation of a structure-activity relationship led to the development of Epiblastin A, which engages CK1 isoenzymes in cell lysate and induces efficient conversion of EpiSCs into cESCs. PMID:27049670

  5. Pivotal Role of Pervasive Neoplastic and Stromal Cells Reprogramming in Circulating Tumor Cells Dissemination and Metastatic Colonization

    OpenAIRE

    Meseure, Didier; Drak Alsibai, Kinan; Nicolas, Andre

    2014-01-01

    Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of canc...

  6. Reversibility of cellular aging by reprogramming through an embryonic-like state : a new paradigm for human cell rejuvenation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lemaitre

    2014-01-01

    Full Text Available Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs provides a unique opportunity to derive patient-specific stem cells with potential application in autologous tissue replacement therapies and without the ethical concerns of Embryonic Stem Cells (hESC. However, this strategy still suffers from several hurdles that need to be overcome before clinical applications. Among them, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. This suggests that aging might be an important limitation for therapeutic purposes for elderly individuals. Senescence is characterized by an irreversible cell cycle arrest in response to various forms of stress, including activation of oncogenes, shortened telomeres, DNA damage, oxidative stress, and mitochondrial dysfunction. To overcome this barrier, we developed an optimized 6-factor-based reprogramming protocol that is able to cause efficient reversing of cellular senescence and reprogramming into iPSCs. We demonstrated that iPSCs derived from senescent and centenarian fibroblasts have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESC. Finally, we demonstrate that re-differentiation led to rejuvenated cells with a reset cellular physiology, defining a new paradigm for human cell rejuvenation. We discuss the molecular mechanisms involved in cell reprogramming of senescent cells. 

  7. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Directory of Open Access Journals (Sweden)

    Evangelia Papadimou

    2015-04-01

    Full Text Available The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs, also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  8. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming.

    Directory of Open Access Journals (Sweden)

    Telma C Esteves

    Full Text Available While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT, the enucleated oocyte (ooplasm must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene. We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.

  9. A standard graphite block

    International Nuclear Information System (INIS)

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm3; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  10. One-Block CYRCA: an automated procedure for identifying multiple-block alignments from single block queries

    OpenAIRE

    Frenkel-Morgenstern, Milana; Singer, Alice; Bronfeld, Hagit; Pietrokovski, Shmuel

    2005-01-01

    One-Block CYRCA is an automated procedure for identifying multiple-block alignments from single block queries (). It is based on the LAMA and CYRCA block-to-block alignment methods. The procedure identifies whether the query blocks can form new multiple-block alignments (block sets) with blocks from a database or join pre-existing database block sets. Using pre-computed LAMA block alignments and CYRCA sets from the Blocks database reduces the computation time. LAMA and CYRCA are highly sensit...

  11. Reprogramming of adult human neural stem cells into induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    XIE Li-qian; SUN Hua-ping; WANG Tian; TANG Hai-liang; WANG Pu; ZHU Jian-hong; YAO Zheng-wei

    2013-01-01

    Background Since an effective method for generating induced pluripotent stem cells (iPSCs) from human neural stem cells (hNSCs) can offer us a promising tool for studying brain diseases,here we reported direct reprogramming of adult hNSCs into iPSCs by retroviral transduction of four defined factors.Methods NSCs were successfully isolated and cultured from the hippocampus tissue of epilepsy patients.When combined with four factors (OCT3/4,SOX2,KLF4,and c-MYC),iPSCs colonies were successfully obtained.Results Morphological characterization and specific genetic expression confirmed that these hNSCs-derived iPSCs showed embryonic stem cells-like properties,which include the ability to differentiate into all three germ layers both in vitro and in vivo.Conclusion Our method would be useful for generating human iPSCs from NSCs and provide an important tool for studying neurological diseases.

  12. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Science.gov (United States)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  13. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism.

    Science.gov (United States)

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-06-01

    Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host. PMID:27089382

  14. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. PMID:23828660

  15. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek;

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  16. A blueprint for engineering cell fate: current technologies to reprogram cell identity

    Institute of Scientific and Technical Information of China (English)

    Samantha A Morris; George Q Daley

    2013-01-01

    Human diseases such as heart failure,diabetes,neurodegenerative disorders,and many others result from the deficiency or dysfunction of critical cell types.Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types.In addition to transplantation therapy,the generation of otherwise inaccessible cells also permits disease modeling,toxicology testing and drug discovery in vitro.In this review,we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states.We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching,and discuss the mechanisms underlying the engineering of cell fate.Finally,we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.

  17. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  18. Blocking the Hawking radiation

    DEFF Research Database (Denmark)

    Autzen, M.; Kouvaris, C.

    2014-01-01

    grows after its formation (and eventually destroys the star) instead of evaporating. The fate of the black hole is dictated by the two opposite mechanics, i.e., accretion of nuclear matter from the center of the star and Hawking radiation that tends to decrease the mass of the black hole. We study how......Some severe constraints on asymmetric dark matter are based on the scenario that certain types of weakly interacting massive particles can form mini-black holes inside neutron stars that can lead to their destruction. A crucial element for the realization of this scenario is that the black hole...... the assumptions for the accretion rate can in fact affect the critical mass beyond which a black hole always grows. We also study to what extent degenerate nuclear matter can impede Hawking radiation due to the fact that emitted particles can be Pauli blocked at the core of the star....

  19. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film...... coating tools to depositand develop anti-reflection filters by means of sputtering or e-beam evaporation. To reduce the area taken up by metallic contacts transparent conducting oxides like Aluminium doped ZincOxide (AZO) and Indium Tin Oxide (ITO) can be deposited. We also support research...... and development of new 2D materials like graphene that is a promising candidate for cheap highly transparent contacts. Another way to increase efficiency is to structure the active layers indevice so that more light is absorbed. This can be done in one of our advanced dry etching machines either mask-less to form...

  20. Block Voter Model

    CERN Document Server

    Sampaio, C I N

    2011-01-01

    We introduce and study the block voter model with noise on two-dimensional square lattices using Monte Carlo simulations and finite-size scaling techniques. The model is defined by an outflow dynamics where a central set of $N_{PCS}$ spins, here denoted by persuasive cluster spins (PCS), tries to influence the opinion of their neighbouring counterparts. We consider the collective behaviour of the entire system with varying PCS size. When $N_{PCS}>2$, the system exhibits an order-disorder phase transition at a critical noise parameter $q_{c}$ which is a monotonically increasing function of the size of the persuasive cluster. We conclude that how large the PCS is more power of persuasion it has. It also seems that the resulting critical behaviour is Ising-like independent of the range of the interactions.

  1. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension.

    Science.gov (United States)

    Stenmark, Kurt R; Tuder, Rubin M; El Kasmi, Karim C

    2015-11-15

    Pulmonary hypertension (PH) is a complex, multifactorial syndrome that remains poorly understood despite decades of research. PH is characterized by profound pulmonary artery (PA) remodeling that includes significant fibro-proliferative and inflammatory changes of the PA adventitia. In line with the emerging concept that PH shares key features with cancer, recent work centers on the idea that PH results from a multistep process driven by reprogramming of gene-expression patterns that govern changes in cell metabolism, inflammation, and proliferation. Data demonstrate that in addition to PA endothelial cells and smooth muscle cells, adventitial fibroblasts from animals with experimental hypoxic PH and from humans with PH (hereafter, termed PH-Fibs) exhibit proinflammatory activation, increased proliferation, and apoptosis resistance, all in the context of metabolic reprogramming to aerobic glycolysis. PH-Fibs can also recruit, retain, and activate naïve macrophages (Mϕ) toward a proinflammatory/proremodeling phenotype through secretion of chemokines, cytokines, and glycolytic metabolites, among which IL-6 and lactate play key roles. Furthermore, these fibroblast-activated Mϕ (hereafter, termed FAMϕ) exhibit aerobic glycolysis together with high expression of arginase 1, Vegfa, and I1lb, all of which require hypoxia-inducible factor 1α and STAT3 signaling. Strikingly, in situ, the adventitial Mϕ phenotype in the remodeled PA closely resembles the Mϕ phenotype induced by fibroblasts in vitro (FAMϕ), suggesting that FAMϕ crosstalk involving metabolic and inflammatory signals is a critical, pathogenetic component of vascular remodeling. This review discusses metabolic and inflammatory changes in fibroblasts and Mϕ in PH with the goal of raising ideas about new interventions to abrogate remodeling in hypoxic forms of PH. PMID:25930027

  2. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  3. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.

    Science.gov (United States)

    Borges, Gisely T; Vêncio, Eneida F; Quek, Sue-Ing; Chen, Adeline; Salvanha, Diego M; Vêncio, Ricardo Z N; Nguyen, Holly M; Vessella, Robert L; Cavanaugh, Christopher; Ware, Carol B; Troisch, Pamela; Liu, Alvin Y

    2016-09-01

    The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc. PMID:26773436

  4. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  5. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells.

    Science.gov (United States)

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Yuan, Ziao; Hu, Pengfei; Wang, Hui; Liu, Changqing; Guan, Weijun; Ma, Yuehui

    2016-09-01

    Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers. PMID:27090494

  6. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection

    Directory of Open Access Journals (Sweden)

    Mukherjee Krishnendu

    2012-10-01

    Full Text Available Abstract Background Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs and histone deacetylases (HDACs whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessibility and promotes gene expression, whereas the removal of acetyl groups by HDACs has the opposite effect. Results We explored the role of HDACs and HATs in epigenetic reprogramming during metamorphosis, wounding and infection in the lepidopteran model host Galleria mellonella. We measured the expression of genes encoding components of HATs and HDACs to monitor the transcriptional activity of each enzyme complex and found that both enzymes were upregulated during pupation. Specific HAT inhibitors were able to postpone pupation and to reduce insect survival following wounding, whereas HDAC inhibitors accelerated pupation and increased survival. The administration of HDAC inhibitors modulated the expression of effector genes with key roles in tissue remodeling (matrix metalloproteinase, the regulation of sepsis (inhibitor of metalloproteinases from insects and host defense (antimicrobial peptides, and simultaneously induced HAT activity, suggesting that histone acetylation is regulated by a feedback mechanism. We also discovered that both the entomopathogenic fungus Metarhizium anisopliae and the human bacterial pathogen Listeria monocytogenes can delay metamorphosis in G. mellonella by skewing the HDAC/HAT balance. Conclusions Our study provides for the first evidence that pathogenic bacteria can interfere with the regulation of HDACs and HATs in insects which appear to manipulate host immunity and development. We conclude that histone acetylation/deacetylation in insects mediates transcriptional reprogramming during metamorphosis and in response to wounding and infection.

  7. The Block-block Bootstrap: Improved Asymptotic Refinements

    OpenAIRE

    Donald W.K. Andrews

    2002-01-01

    The asymptotic refinements attributable to the block bootstrap for time series are not as large as those of the nonparametric iid bootstrap or the parametric bootstrap. One reason is that the independence between the blocks in the block bootstrap sample does not mimic the dependence structure of the original sample. This is the join-point problem. In this paper, we propose a method of solving this problem. The idea is not to alter the block bootstrap. Instead, we alter the original sample sta...

  8. Convergence rates of empirical block length selectors for block bootstrap

    OpenAIRE

    Nordman, Daniel J.; Lahiri, Soumendra N.

    2014-01-01

    We investigate the accuracy of two general non-parametric methods for estimating optimal block lengths for block bootstraps with time series – the first proposed in the seminal paper of Hall, Horowitz and Jing (Biometrika 82 (1995) 561–574) and the second from Lahiri et al. (Stat. Methodol. 4 (2007) 292–321). The relative performances of these general methods have been unknown and, to provide a comparison, we focus on rates of convergence for these block length selectors for the moving block ...

  9. Large Block Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W

    2001-12-01

    This report documents the Large-Block Test (LBT) conducted at Fran Ridge near Yucca Mountain, Nevada. The LBT was a thermal test conducted on an exposed block of middle non-lithophysal Topopah Spring tuff (Tptpmn) and was designed to assist in understanding the thermal-hydrological-mechanical-chemical (THMC) processes associated with heating and then cooling a partially saturated fractured rock mass. The LBT was unique in that it was a large (3 x 3 x 4.5 m) block with top and sides exposed. Because the block was exposed at the surface, boundary conditions on five of the six sides of the block were relatively well known and controlled, making this test both easier to model and easier to monitor. This report presents a detailed description of the test as well as analyses of the data and conclusions drawn from the test. The rock block that was tested during the LBT was exposed by excavation and removal of the surrounding rock. The block was characterized and instrumented, and the sides were sealed and insulated to inhibit moisture and heat loss. Temperature on the top of the block was also controlled. The block was heated for 13 months, during which time temperature, moisture distribution, and deformation were monitored. After the test was completed and the block cooled down, a series of boreholes were drilled, and one of the heater holes was over-cored to collect samples for post-test characterization of mineralogy and mechanical properties. Section 2 provides background on the test. Section 3 lists the test objectives and describes the block site, the site configuration, and measurements made during the test. Section 3 also presents a chronology of events associated with the LBT, characterization of the block, and the pre-heat analyses of the test. Section 4 describes the fracture network contained in the block. Section 5 describes the heating/cooling system used to control the temperature in the block and presents the thermal history of the block during the test

  10. Dimensional Reduction for Conformal Blocks

    CERN Document Server

    Hogervorst, Matthijs

    2016-01-01

    We consider the dimensional reduction of a CFT, breaking multiplets of the d-dimensional conformal group SO(d+1,1) up into multiplets of SO(d,1). This leads to an expansion of d-dimensional conformal blocks in terms of blocks in d-1 dimensions. In particular, we obtain a formula for 3d conformal blocks as an infinite sum over 2F1 hypergeometric functions with closed-form coefficients.

  11. Covariant Approaches to Superconformal Blocks

    CERN Document Server

    Fitzpatrick, A Liam; Khandker, Zuhair U; Li, Daliang; Poland, David; Simmons-Duffin, David

    2014-01-01

    We develop techniques for computing superconformal blocks in 4d superconformal field theories. First we study the super-Casimir differential equation, deriving simple new expressions for superconformal blocks for 4-point functions containing chiral operators in theories with N-extended supersymmetry. We also reproduce these results by extending the "shadow formalism" of Ferrara, Gatto, Grillo, and Parisi to supersymmetric theories, where superconformal blocks can be represented as superspace integrals of three-point functions multiplied by shadow three-point functions.

  12. Suv4-20h abrogation enhances telomere elongation during reprogramming and confers a higher tumorigenic potential to iPS cells

    OpenAIRE

    Rosa M Marión; Gunnar Schotta; Sagrario Ortega; Blasco, Maria A.

    2011-01-01

    Reprogramming of adult differentiated cells to induced pluripotent stem cells (iPS) cells has been achieved by over-expression of specific transcription factors. Nuclear reprogramming induces a series of profound changes at the telomeres of the parental differentiated cells, including a telomerase-dependent telomere elongation and the remodeling of telomeric chromatin. In particular, iPS cells show a decreased density of H4K20me3 heterochromatic mark at telomeres compared to the parental cell...

  13. Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors.

    Science.gov (United States)

    Koblas, Tomas; Leontovyc, Ivan; Loukotova, Sarka; Kosinova, Lucie; Saudek, Frantisek

    2016-01-01

    Direct reprogramming of pancreatic nonendocrine cells into insulin-producing β-cells represents a promising approach for the treatment of insulin-dependent diabetes. However, its clinical application is limited by the potential for insertional mutagenesis associated with the viral vectors currently used for cell reprogramming. With the aim of developing a nonintegrative reprogramming strategy for derivation of insulin-producing cells, here, we evaluated a new approach utilizing synthetic messenger RNAs encoding reprogramming transcription factors. Administration of synthetic mRNAs encoding three key transcription regulators of β-cell differentiation-Pdx1, Neurogenin3, and MafA-efficiently reprogrammed the pancreatic exocrine cells into insulin-producing cells. In addition to the insulin genes expression, the synthetic mRNAs also induced the expressions of genes important for proper pancreatic β-cell function, including Sur1, Kir6.2, Pcsk1, and Pcsk2. Pretreating cells with the chromatin-modifying agent 5-Aza-2'-deoxycytidine further enhanced reprogramming efficiency, increasing the proportion of insulin-producing cells from 3.5 ± 0.9 to 14.3 ± 1.9% (n = 4). Moreover, 5-Aza-2'-deoxycytidine pretreatment enabled the reprogrammed cells to respond to glucose challenge with increased insulin secretion. In conclusion, our results support that the reprogramming of pancreatic exocrine cells into insulin-producing cells, induced by synthetic mRNAs encoding pancreatic transcription factors, represents a promising approach for cell-based diabetes therapy. PMID:27187823

  14. Control rod blocking device

    International Nuclear Information System (INIS)

    Purpose: To increase the degree of freedom for the reactor operation by control rod blocking by monitoring the critical power ratio (CPR) with real time. Constitution: There has been a problem that the withdrawal of control rods may occasionally be inhibited with all the margin in view of CPR. The present invention dissolves this problem. That is, the control rod withdrawal device periodically calculates CPR, and calculated CPR upon generation of a control rod withdrawing signal by conpensating the result of calculation with a LPRM signal and a reactor core flow rate signal. The CPR at real time is compared with a predetermined setting value to output a control rod withdrawing inhibition signal depending on the result of the comparison. In the device as described above, since CPR is monitored at real time, the control rod can be withdrawn without causing fuel damages, as well as the inhibition of withdrawal irrespective of the presence of margin in view of CPR can be avoided. Accordingly, degree of freedom in the reactor operation can be increased. (Kamimura, M.)

  15. Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells

    Science.gov (United States)

    Payne, Kyle K; Zoon, Christine K; Wan, Wen; Marlar, Khin; Keim, Rebecca C; Kenari, Mehrab Nasiri; Kazim, A Latif; Bear, Harry D; Manjili, Masoud H

    2016-01-01

    Two major barriers in the immunotherapy of breast cancer include tumor-induced immune suppression and the establishment of long-lasting immune responses against the tumor. Recently, we demonstrated in an animal model of breast carcinoma that expanding and reprogramming tumor-sensitized lymphocytes, ex vivo, yielded T memory (Tm) cells as well as activated CD25+ NKT cells and NK cells. The presence of activated CD25+ NKT and NK cells rendered reprogrammed T cells resistant to MDSC-mediated suppression, and adoptive cellular therapy (ACT) of reprogrammed lymphocytes protected the host from tumor development and relapse. Here, we performed a pilot study to determine the clinical applicability of our protocol using peripheral blood mononuclear cells (PBMCs) of breast cancer patients, ex vivo. We show that bryostatin 1 and ionomycin (B/I) combined with IL-2, IL-7 and IL-15 can expand and reprogram tumor-sensitized PBMCs. Reprogrammed lymphocytes contained activated CD25+ NKT and NK cells as well as Tm cells and displayed enhanced reactivity against HER-2/neu in the presence of MDSCs. The presence of activated NKT cells was highly correlated with the rescue of anti-HER-2/neu immune responses from MDSC suppression. Ex vivo blockade experiments suggest that the NKG2D pathway may play an important role in overcoming MDSC suppression. Our results show the feasibility of reprogramming tumor-sensitized immune cells, ex vivo, and provide rationale for ACT of breast cancer patients. PMID:24197563

  16. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation

    OpenAIRE

    Diego Balboa; Jere Weltner; Solja Eurola; Ras Trokovic; Kirmo Wartiovaara; Timo Otonkoski

    2015-01-01

    Summary CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable ...

  17. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival

    OpenAIRE

    Kloepper, Jonas; Riedemann, Lars; Amoozgar, Zohreh; Seano, Giorgio; Susek, Katharina; Yu, Veronica; Dalvie, Nisha; Amelung, Robin L.; Datta, Meenal; Song, Jonathan W.; Askoxylakis, Vasileios; Taylor, Jennie W.; Lu-Emerson, Christine; Batista, Ana; Kirkpatrick, Nathaniel D.

    2016-01-01

    Improving survival of patients with glioblastoma (GBM) using antiangiogenic therapy remains a challenge. In this study we show that dual blockade of angiopoietin-2 and vascular endothelial growth factor delays tumor growth and enhances survival benefits through reprogramming of tumor-associated macrophages toward an antitumor phenotype as well as by pruning immature tumor vessels. The antitumor immunomodulatory potential of this dual blockade supports clinical testing of this approach for GBM...

  18. Reprogramming of Fibroblasts From Older Women With Pelvic Floor Disorders Alters Cellular Behavior Associated With Donor Age

    OpenAIRE

    Wen, Yan; Wani, Prachi; Zhou, Lu; Baer, Tom; Phadnis, Smruti Madan; Reijo Pera, Renee A.; Chen, Bertha

    2013-01-01

    The effect of donor age on induced pluripotent stem cell (iPSC) lines and on the cells redifferentiated from these iPSCs was examined. iPSCs were derived from vaginal fibroblasts from women with pelvic organ prolapse. Donor age did not appear to affect reprogramming and cell mitotic activity in fibroblasts redifferentiated from iPSCs, and donor age differences were not observed in the iPSCs using standard senescence markers.

  19. Efficient Non-Viral Reprogramming of Myoblasts to Stemness with a Single Small Molecule to Generate Cardiac Progenitor Cells

    OpenAIRE

    Pasha, Zeeshan; Haider, Husnain Kh; Ashraf, Muhammad

    2011-01-01

    The current protocols for generation of induced pluripotent stem (iPS) cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs) using small molecules. Methods and Results SMs from young male Oct3/4-GFP+ transgenic mouse were treated with DNA methyltransferase (DNMT) inhibitor, RG108. Two weeks later, GFP+ colonies of SM derived iP...

  20. Four-block beam collimator

    CERN Multimedia

    1977-01-01

    The photo shows a four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with the secondary beams, the collimators operated in vacuum conditions. The blocks were made of steel and had a standard length of 1 m. The maximum aperture had a square coss-section of 144 cm2. (See Annual Report 1976.)

  1. Classical Virasoro irregular conformal block

    CERN Document Server

    Rim, Chaiho

    2015-01-01

    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  2. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  3. The Shamrock lumbar plexus block

    DEFF Research Database (Denmark)

    Sauter, Axel R; Ullensvang, Kyrre; Niemi, Geir;

    2015-01-01

    BACKGROUND: The Shamrock technique is a new method for ultrasound-guided lumbar plexus blockade. Data on the optimal local anaesthetic dose are not available. OBJECTIVE: The objective of this study is to estimate the effective dose of ropivacaine 0.5% for a Shamrock lumbar plexus block. DESIGN: A...... prospective dose-finding study using Dixon's up-and-down sequential method. SETTING: University Hospital Orthopaedic Anaesthesia Unit. INTERVENTION: Shamrock lumbar plexus block performance and block assessment were scheduled preoperatively. Ropivacaine 0.5% was titrated with the Dixon and Massey up......-and-down method using a stepwise change of 5 ml in each consecutive patient. Combined blocks of the femoral, the lateral femoral cutaneous and the obturator nerve were prerequisite for a successful lumbar plexus block. PATIENTS: Thirty patients scheduled for lower limb orthopaedic surgery completed the study...

  4. On Approximability of Block Sorting

    CERN Document Server

    Narayanaswamy, N S

    2011-01-01

    Block Sorting is a well studied problem, motivated by its applications in Optical Character Recognition (OCR), and Computational Biology. Block Sorting has been shown to be NP-Hard, and two separate polynomial time 2-approximation algorithms have been designed for the problem. But questions like whether a better approximation algorithm can be designed, and whether the problem is APX-Hard have been open for quite a while now. In this work we answer the latter question by proving Block Sorting to be Max-SNP-Hard (APX-Hard). The APX-Hardness result is based on a linear reduction of Max-3SAT to Block Sorting. We also provide a new lower bound for the problem via a new parametrized problem k-Block Merging.

  5. Expression of Two Classes of Pax6 Transcripts in Reprogramming Retinal Pigment Epithelium Cells of the Adult Newt.

    Science.gov (United States)

    Inami, Wataru; Islam, Md Rafiqul; Nakamura, Kenta; Yoshikawa, Taro; Yasumuro, Hirofumi; Casco-Robles, Martin Miguel; Toyama, Fubito; Maruo, Fumiaki; Chiba, Chikafumi

    2016-02-01

    The adult newt has the remarkable ability to regenerate a functional retina from retinal pigment epithelium (RPE) cells, even when the neural retina (NR) is completely lost from the eye. In this system, RPE cells are reprogrammed into a unique state of multipotent cells, named RPESCs, in an early phase of retinal regeneration. However, the signals that trigger reprogramming remain unknown. Here, to approach this issue we focused on Pax6, a transcription factor known to be expressed in RPESCs. We first identified four classes (v1, v2, v3 and v4) of Pax6 variants in the eye of adult newt, Cynops pyrrhogaster. These variants were expressed in most tissues of the intact eye in different combinations but not in the RPE, choroid or sclera. On the basis of this information, we investigated the expression of Pax6 in RPE cells after the NR was removed from the eye by surgery (retinectomy), and found that two classes (v1 and v2) of Pax6 variants were newly expressed in RPE cells 10 days after retinectomy, both in vivo and in vitro (RLEC system). In the RLEC system, we found that Pax6 expression is mediated through a pathway separate from the MEK-ERK pathway, which is required for cell cycle re-entry of RPE cells. These results predict the existence of a pathway that may be of fundamental importance to a better understanding of the reprogramming of RPE cells in vivo. PMID:26853865

  6. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. PMID:27341268

  7. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors

    Directory of Open Access Journals (Sweden)

    Lough John W

    2010-08-01

    Full Text Available Abstract Background The use of lentiviruses to reprogram human somatic cells into induced pluripotent stem (iPS cells could limit their therapeutic usefulness due to the integration of viral DNA sequences into the genome of the recipient cell. Recent work has demonstrated that human iPS cells can be generated using episomal plasmids, excisable transposons, adeno or sendai viruses, mRNA, or recombinant proteins. While these approaches offer an advance, the protocols have some drawbacks. Commonly the procedures require either subcloning to identify human iPS cells that are free of exogenous DNA, a knowledge of virology and safe handling procedures, or a detailed understanding of protein biochemistry. Results Here we report a simple approach that facilitates the reprogramming of human somatic cells using standard techniques to transfect expression plasmids that encode OCT4, NANOG, SOX2, and LIN28 without the need for episomal stability or selection. The resulting human iPS cells are free of DNA integration, express pluripotent markers, and form teratomas in immunodeficient animals. These iPS cells were also able to undergo directed differentiation into hepatocyte-like and cardiac myocyte-like cells in culture. Conclusions Simple transient transfection of plasmid DNA encoding reprogramming factors is sufficient to generate human iPS cells from primary fibroblasts that are free of exogenous DNA integrations. This approach is highly accessible and could expand the use of iPS cells in the study of human disease and development.

  8. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  9. Novel HDAd/EBV Reprogramming Vector and Highly Efficient Ad/CRISPR-Cas Sickle Cell Disease Gene Correction.

    Science.gov (United States)

    Li, Chao; Ding, Lei; Sun, Chiao-Wang; Wu, Li-Chen; Zhou, Dewang; Pawlik, Kevin M; Khodadadi-Jamayran, Alireza; Westin, Erik; Goldman, Frederick D; Townes, Tim M

    2016-01-01

    CRISPR/Cas enhanced correction of the sickle cell disease (SCD) genetic defect in patient-specific induced Pluripotent Stem Cells (iPSCs) provides a potential gene therapy for this debilitating disease. An advantage of this approach is that corrected iPSCs that are free of off-target modifications can be identified before differentiating the cells into hematopoietic progenitors for transplantation. In order for this approach to be practical, iPSC generation must be rapid and efficient. Therefore, we developed a novel helper-dependent adenovirus/Epstein-Barr virus (HDAd/EBV) hybrid reprogramming vector, rCLAE-R6, that delivers six reprogramming factors episomally. HDAd/EBV transduction of keratinocytes from SCD patients resulted in footprint-free iPSCs with high efficiency. Subsequently, the sickle mutation was corrected by delivering CRISPR/Cas9 with adenovirus followed by nucleoporation with a 70 nt single-stranded oligodeoxynucleotide (ssODN) correction template. Correction efficiencies of up to 67.9% (β(A)/[β(S)+β(A)]) were obtained. Whole-genome sequencing (WGS) of corrected iPSC lines demonstrated no CRISPR/Cas modifications in 1467 potential off-target sites and no modifications in tumor suppressor genes or other genes associated with pathologies. These results demonstrate that adenoviral delivery of reprogramming factors and CRISPR/Cas provides a rapid and efficient method of deriving gene-corrected, patient-specific iPSCs for therapeutic applications. PMID:27460639

  10. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy.

    Science.gov (United States)

    Noval Rivas, Magali; Burton, Oliver T; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C; Rachid, Rima; Chatila, Talal A

    2015-03-17

    Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible (Il4ra(F709)) mice with enhanced interleukin-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of a T helper 2 (Th2)-cell-like phenotype, also found in peripheral-blood allergen-specific Treg cells of food-allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg-cell-lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Th2 cell reprogramming of Treg cells. Interruption of Th2 cell reprogramming of Treg cells might thus provide candidate therapeutic strategies in food allergy. PMID:25769611

  11. Novel HDAd/EBV Reprogramming Vector and Highly Efficient Ad/CRISPR-Cas Sickle Cell Disease Gene Correction

    Science.gov (United States)

    Li, Chao; Ding, Lei; Sun, Chiao-Wang; Wu, Li-Chen; Zhou, Dewang; Pawlik, Kevin M.; Khodadadi-Jamayran, Alireza; Westin, Erik; Goldman, Frederick D.; Townes, Tim M.

    2016-01-01

    CRISPR/Cas enhanced correction of the sickle cell disease (SCD) genetic defect in patient-specific induced Pluripotent Stem Cells (iPSCs) provides a potential gene therapy for this debilitating disease. An advantage of this approach is that corrected iPSCs that are free of off-target modifications can be identified before differentiating the cells into hematopoietic progenitors for transplantation. In order for this approach to be practical, iPSC generation must be rapid and efficient. Therefore, we developed a novel helper-dependent adenovirus/Epstein-Barr virus (HDAd/EBV) hybrid reprogramming vector, rCLAE-R6, that delivers six reprogramming factors episomally. HDAd/EBV transduction of keratinocytes from SCD patients resulted in footprint-free iPSCs with high efficiency. Subsequently, the sickle mutation was corrected by delivering CRISPR/Cas9 with adenovirus followed by nucleoporation with a 70 nt single-stranded oligodeoxynucleotide (ssODN) correction template. Correction efficiencies of up to 67.9% (βA/[βS+βA]) were obtained. Whole-genome sequencing (WGS) of corrected iPSC lines demonstrated no CRISPR/Cas modifications in 1467 potential off-target sites and no modifications in tumor suppressor genes or other genes associated with pathologies. These results demonstrate that adenoviral delivery of reprogramming factors and CRISPR/Cas provides a rapid and efficient method of deriving gene-corrected, patient-specific iPSCs for therapeutic applications. PMID:27460639

  12. The effect of a Lucia jig for 30 minutes on neuromuscular re-programming, in normal subjects

    Directory of Open Access Journals (Sweden)

    Mariangela Salles Pereira Nassar

    2012-12-01

    Full Text Available The Lucia jig is a technique that promotes neuromuscular reprogramming of the masticatory system and allows the stabilization of the mandible without the interference of dental contacts, maintaining the mandible position in harmonic condition with the musculature in normal subjects or in patients with temporomandibular dysfunction (TMD. This study aimed to electromyographically analyze the activity (RMS of the masseter and temporal muscles in normal subjects (control group during the use of an anterior programming device, the Lucia jig, in place for 0, 5, 10, 20 and 30 minutes to demonstrate its effect on the stomatognathic system. Forty-two healthy dentate individuals (aged 21 to 40 years with normal occlusion and without parafunctional habits or temporomandibular dysfunction (RDC/TMD were evaluated on the basis of the electromyographic activity of the masseter and temporal muscles before placement of a neuromuscular re-programming device, the Lucia jig, on the upper central incisors. There were no statistically significant differences (p < 0.05 in the electromyographic activity of the masticatory muscles in the different time periods. The Lucia jig changed the electromyographic activity by promoting a neuromuscular reprogramming. In most of the time periods, it decreased the activation of the masticatory muscles, showing that this device has wide applicability in dentistry. The use of a Lucia jig over 0, 5, 10, 15, 20 and 30 minutes did not promote any statistically significant increase in muscle activity despite differences in the data, thus showing that this intra-oral device can be used in dentistry.

  13. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  14. Criminal Justice Systems. Block I: Law Enforcement. Block II: The Courts. Block III: Corrections. Block IV: Community Relations. Block V: Proficiency Skills. Block VI: Criminalistics. Instructor Guide.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    This instructor guide together with a student guide comprise a set of curriculum materials on the criminal justice system. The instructor guide is a resource for planning and managing individualized, competency-based instruction in six major subject areas or blocks, which are further broken down into several units with some units having several…

  15. Criminal Justice Systems. Block I: Law Enforcement. Block II: The Courts. Block III: Corrections. Block IV: Community Relations. Block V: Proficiency Skills. Block VI: Criminalistics. Student Guide.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    This student guide together with an instructor guide comprise a set of curriculum materials on the criminal justice system. The student guide contains self-contained instructional material that students can study at their own pace most of the time. Six major subject areas or blocks, which are further broken down into several units, with some units…

  16. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  17. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells.

    Science.gov (United States)

    Seisenberger, Stefanie; Peat, Julian R; Reik, Wolf

    2013-06-01

    DNA methylation is a carrier of important regulatory information that undergoes global reprogramming in the mammalian germ line, including pre-implantation embryos and primordial germ cells (PGCs). A flurry of recent studies have employed technical advances to generate global profiles of methylation and hydroxymethylation in these cells, unravelling the dynamics of methylation erasure at single locus resolution. Active demethylation in the zygote, involving extensive oxidation, is followed by passive loss over early cell divisions. Certain gamete-contributed methylation marks appear to have evolved non-canonical mechanisms for targeted maintenance of methylation in the face of these processes. These protected sequences include the imprinting control regions (ICRs) required for parental imprinting but also a surprising number of other regions. Such targeted maintenance mechanisms may also operate at certain sequences during early PGC migration when global passive demethylation occurs. In later gonadal PGCs, imprints must be reset and this may be achieved through the targeting of active mechanisms including oxidation. Thus, emerging evidence paints a complex picture whereby active and passive demethylation pathways operate synergistically and in parallel to ensure robust erasure in the early embryo and PGCs. PMID:23510682

  18. Transcriptional Reprogramming of the Mycoparasitic Fungus Ampelomyces quisqualis During the Powdery Mildew Host-Induced Germination.

    Science.gov (United States)

    Siozios, Stefanos; Tosi, Lorenzo; Ferrarini, Alberto; Ferrari, Alessandro; Tononi, Paola; Bellin, Diana; Maurhofer, Monika; Gessler, Cesare; Delledonne, Massimo; Pertot, Ilaria

    2015-02-01

    Ampelomyces quisqualis is a mycoparasite of a diverse range of phytopathogenic fungi associated with the powdery mildew disease. Among them are several Erysiphaceae species with great economic impact on high-value crops such as grape. Due to its ability to parasitize and prevent the spread of powdery mildews, A. quisqualis has received considerable attention for its biocontrol potential. However, and in sharp contrast to the extensively studied biocontrol species belonging to the genus Trichoderma, little is known about the biology of A. quisqualis at the molecular and genetic levels. We present the first genome-wide transcription profiling in A. quisqualis during host-induced germination. A total of 1,536 putative genes showed significant changes in transcription during the germination of A. quisqualis. This finding denotes an extensive transcriptional reprogramming of A. quisqualis induced by the presence of the host. Several upregulated genes were predicted to encode for putative mycoparasitism-related proteins such as secreted proteases, virulence factors, and proteins related to toxin biosynthesis. Our data provide the most comprehensive sequence resource currently available for A. quisqualis in addition to offering valuable insights into the biology of A. quisqualis and its mycoparasitic lifestyle. Eventually, this may improve the biocontrol capacity of this mycoparasite. PMID:25185010

  19. Exploiting the hypoxia sensitive non-coding genome for organ-specific physiologic reprogramming.

    Science.gov (United States)

    Bischof, Corinne; Krishnan, Jaya

    2016-07-01

    In this review we highlight the role of non-coding RNAs in the development and progression of cardiac pathology and explore the possibility of disease-associated RNAs serving as targets for cardiac-directed therapeutics. Contextually, we focus on the role of stress-induced hypoxia as a driver of disease development and progression through activation of hypoxia inducible factor 1α (HIF1α) and explore mechanisms underlying HIFα function as an enforcer of cardiac pathology through direct transcriptional coupling with the non-coding transcriptome. In the interest of clarity, we will confine our analysis to cardiac pathology and focus on three defining features of the diseased state, namely metabolic, growth and functional reprogramming. It is the aim of this review to explore possible mechanisms through which HIF1α regulation of the non-coding transcriptome connects to spatiotemporal control of gene expression to drive establishment of the diseased state, and to propose strategies for the exploitation of these unique RNAs as targets for clinical therapy. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. PMID:26851074

  20. Farnesoid X receptor activation promotes cell proliferation via PDK4-controlled metabolic reprogramming

    Science.gov (United States)

    Xie, Yang; Wang, Hong; Cheng, Xuefang; Wu, Yuzheng; Cao, Lijuan; Wu, Mengqiu; Xie, Wen; Wang, Guangji; Hao, Haiping

    2016-01-01

    Farnesoid X receptor (FXR) plays a pivotal role in the regulation of various metabolic pathways as well as liver regeneration. However, the casual link between cell proliferative effects during liver regeneration and metabolic regulation of FXR was elusive. In this study, we found that FXR activation significantly promotes HepG2 cell proliferation accompanied with metabolic switch towards the excessive accumulation of aerobic glycolytic intermediates including lactic acid, pyruvate and the subsequently increased biosynthesis of glycine. This FXR-induced metabolic switch was found dependent on an up-regulation of pyruvate dehydrogenate kinase 4 (PDK4), a FXR target gene. FXR agonists were found to promote liver regeneration in the murine model of APAP induced liver injury, which was associated with a metabolic switch favoring the accumulation of glycolytic intermediates as precursors for generation of biomass. However, FXR activation has little effect on the glycolytic metabolism in healthy primary hepatocytes in vitro and the liver of healthy mice in vivo. Therefore, we conclude that FXR may promote the proliferation of tumor cells and the hepatocytes in the process of liver regeneration by activating the PDK4-mediated metabolic reprogramming to generate glycolytic intermediates essential for rapid biomass generation, establishing a mechanistic link between cell proliferation and metabolic switch. PMID:26728993

  1. Reconstructed Metabolic Network Models Predict Flux-Level Metabolic Reprogramming in Glioblastoma

    Science.gov (United States)

    Özcan, Emrah; Çakır, Tunahan

    2016-01-01

    Developments in genome scale metabolic modeling techniques and omics technologies have enabled the reconstruction of context-specific metabolic models. In this study, glioblastoma multiforme (GBM), one of the most common and aggressive malignant brain tumors, is investigated by mapping GBM gene expression data on the growth-implemented brain specific genome-scale metabolic network, and GBM-specific models are generated. The models are used to calculate metabolic flux distributions in the tumor cells. Metabolic phenotypes predicted by the GBM-specific metabolic models reconstructed in this work reflect the general metabolic reprogramming of GBM, reported both in in-vitro and in-vivo experiments. The computed flux profiles quantitatively predict that major sources of the acetyl-CoA and oxaloacetic acid pool used in TCA cycle are pyruvate dehydrogenase from glycolysis and anaplerotic flux from glutaminolysis, respectively. Also, our results, in accordance with recent studies, predict a contribution of oxidative phosphorylation to ATP pool via a slightly active TCA cycle in addition to the major contributor aerobic glycolysis. We verified our results by using different computational methods that incorporate transcriptome data with genome-scale models and by using different transcriptome datasets. Correct predictions of flux distributions in glycolysis, glutaminolysis, TCA cycle and lipid precursor metabolism validate the reconstructed models for further use in future to simulate more specific metabolic patterns for GBM.

  2. SATB1 tethers multiple gene loci to reprogram expression profiledriving breast cancer metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye-Jung; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi

    2006-07-13

    Global changes in gene expression occur during tumor progression, as indicated by expression profiling of metastatic tumors. How this occurs is poorly understood. SATB1 functions as a genome organizer by folding chromatin via tethering multiple genomic loci and recruiting chromatin remodeling enzymes to regulate chromatin structure and expression of a large number of genes. Here we show that SATB1 is expressed at high levels in aggressive breast cancer cells, and is undetectable in non-malignant breast epithelial cells. Importantly, RNAi-mediated removal of SATB1 from highly-aggressive MDA-MB-231 cells altered the expression levels of over 1200 genes, restored breast-like acinar polarity in three-dimensional cultures, and prevented the metastastic phenotype in vivo. Conversely, overexpression of SATB1 in the less-aggressive breast cancer cell line Hs578T altered the gene expression profile and increased metastasis dramatically in vivo. Thus, SATB1 is a global regulator of gene expression in breast cancer cells, directly regulating crucial metastasis-associated genes, including ERRB2 (HER2/NEU), TGF-{beta}1, matrix metalloproteinase 3, and metastasin. The identification of SATB1 as a protein that re-programs chromatin organization and transcription profiles to promote breast cancer metastasis suggests a new model for metastasis and may provide means of therapeutic intervention.

  3. Make no bones about it: cells could soon be reprogrammed to grow replacement bones?

    Science.gov (United States)

    de Peppo, Giuseppe Maria; Marolt, Darja

    2014-01-01

    Recent developments in nuclear reprogramming allow the generation of patient-matched stem cells with broad potential for applications in cell therapies, disease modeling and drug discovery. An increasing body of work is reporting the derivation of lineage-specific progenitors from human-induced pluripotent stem cells (hiPSCs), which could in the near future be used to engineer personalized tissue substitutes, including those for reconstructive therapies of bone. Although the potential clinical impact of such technology is not arguable, significant challenges remain to be addressed before hiPSC-derived progenitors can be employed to engineer bone substitutes of clinical relevance. The most important challenge is indeed the construction of personalized multicellular bone substitutes for the treatment of complex skeletal defects that integrate fast, are immune tolerated and display biofunctionality and long-term safety. As recent studies suggest, the merging of iPSC technology with advanced biomaterials and bioreactor technologies offers a way to generate bone substitutes in a controllable, automated manner with potential to meet the needs for scale-up and requirements for translation into clinical practice. It is only via the use of state-of-the-art cell culture technologies, process automation under GMP-compliant conditions, application of appropriate engineering strategies and compliance with regulatory policies that personalized lab-made bone grafts can start being used to treat human patients. PMID:24053578

  4. Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells.

    Science.gov (United States)

    Cioce, Mario; Valerio, MariaCristina; Casadei, Luca; Pulito, Claudio; Sacconi, Andrea; Mori, Federica; Biagioni, Francesca; Manetti, Cesare; Muti, Paola; Strano, Sabrina; Blandino, Giovanni

    2014-06-30

    Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by 1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance. PMID:24980829

  5. Loss of Fbw7 Reprograms Adult Pancreatic Ductal Cells into α, δ, and β Cells

    Science.gov (United States)

    Sancho, Rocio; Gruber, Ralph; Gu, Guoqiang; Behrens, Axel

    2014-01-01

    Summary The adult pancreas is capable of limited regeneration after injury but has no defined stem cell population. The cell types and molecular signals that govern the production of new pancreatic tissue are not well understood. Here, we show that inactivation of the SCF-type E3 ubiquitin ligase substrate recognition component Fbw7 induces pancreatic ductal cells to reprogram into α, δ, and β cells. Loss of Fbw7 stabilized the transcription factor Ngn3, a key regulator of endocrine cell differentiation. The induced β cells resemble islet β cells in morphology and histology, express genes essential for β cell function, and release insulin after glucose challenge. Thus, loss of Fbw7 appears to reawaken an endocrine developmental differentiation program in adult pancreatic ductal cells. Our study highlights the plasticity of seemingly differentiated adult cells, identifies Fbw7 as a master regulator of cell fate decisions in the pancreas, and reveals adult pancreatic duct cells as a latent multipotent cell type. PMID:25105579

  6. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320.

    Science.gov (United States)

    Bronisz, A; Godlewski, J; Wallace, J A; Merchant, A S; Nowicki, M O; Mathsyaraja, H; Srinivasan, R; Trimboli, A J; Martin, C K; Li, F; Yu, L; Fernandez, S A; Pécot, T; Rosol, T J; Cory, S; Hallett, M; Park, M; Piper, M G; Marsh, C B; Yee, L D; Jimenez, R E; Nuovo, G; Lawler, S E; Chiocca, E A; Leone, G; Ostrowski, M C

    2012-02-01

    PTEN (Phosphatase and tensin homolog deleted on chromosome 10) expression in stromal fibroblasts suppresses epithelial mammary tumours, but the underlying molecular mechanisms remain unknown. Using proteomic and expression profiling, we show that Pten loss from mammary stromal fibroblasts activates an oncogenic secretome that orchestrates the transcriptional reprogramming of other cell types in the microenvironment. Downregulation of miR-320 and upregulation of one of its direct targets, ETS2 (v-ets erythroblastosis virus E26 oncogene homolog 2) are critical events in Pten-deleted stromal fibroblasts responsible for inducing this oncogenic secretome, which in turn promotes tumour angiogenesis and tumour-cell invasion. Expression of the Pten-miR-320-Ets2-regulated secretome distinguished human normal breast stroma from tumour stroma and robustly correlated with recurrence in breast cancer patients. This work reveals miR-320 as a critical component of the Pten tumour-suppressor axis that acts in stromal fibroblasts to reprogramme the tumour microenvironment and curtail tumour progression. PMID:22179046

  7. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    Directory of Open Access Journals (Sweden)

    Arnaud T Djami-Tchatchou

    Full Text Available Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.

  8. Embryonic hybrid cells: a powerful tool for studying pluripotency and reprogramming of the differentiated cell chromosomes

    Directory of Open Access Journals (Sweden)

    SEROV OLEG

    2001-01-01

    Full Text Available The properties of embryonic hybrid cells obtained by fusion of embryonic stem (ES or teratocarcinoma (TC cells with differentiated cells are reviewed. Usually, ES-somatic or TC-somatic hybrids retain pluripotent capacity at high levels quite comparable or nearly identical with those of the pluripotent partner. When cultured in vitro, ES-somatic- and TC-somatic hybrid cell clones, as a rule, lose the chromosomes derived from the somatic partner; however, in some clones the autosomes from the ES cell partner were also eliminated, i.e. the parental chromosomes segregated bilaterally in the ES-somatic cell hybrids. This opens up ways for searching correlation between the pluripotent status of the hybrid cells and chromosome segregation patterns and therefore for identifying the particular chromosomes involved in the maintenance of pluripotency. Use of selective medium allows to isolate in vitro the clones of ES-somatic hybrid cells in which "the pluripotent" chromosome can be replaced by "the somatic" counterpart carrying the selectable gene. Unlike the TC-somatic cell hybrids, the ES-somatic hybrids with a near-diploid complement of chromosomes are able to contribute to various tissues of chimeric animals after injection into the blastocoel cavity. Analysis of the chimeric animals showed that the "somatic" chromosome undergoes reprogramming during development. The prospects for the identification of the chromosomes that are involved in the maintenance of pluripotency and its cis- and trans-regulation in the hybrid cell genome are discussed.

  9. Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors.

    Science.gov (United States)

    Dulmovits, Brian M; Appiah-Kubi, Abena O; Papoin, Julien; Hale, John; He, Mingzhu; Al-Abed, Yousef; Didier, Sebastien; Gould, Michael; Husain-Krautter, Sehba; Singh, Sharon A; Chan, Kyle W H; Vlachos, Adrianna; Allen, Steven L; Taylor, Naomi; Marambaud, Philippe; An, Xiuli; Gallagher, Patrick G; Mohandas, Narla; Lipton, Jeffrey M; Liu, Johnson M; Blanc, Lionel

    2016-03-17

    Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with β-hemoglobinopathies. PMID:26679864

  10. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Hidehito Saito

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs that express programmed cell death protein-1 (PD-1 are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.

  11. Reprogramming an ATP-driven protein machine into a light-gated nanocage.

    Science.gov (United States)

    Hoersch, Daniel; Roh, Soung-Hun; Chiu, Wah; Kortemme, Tanja

    2013-12-01

    Natural protein assemblies have many sophisticated architectures and functions, creating nanoscale storage containers, motors and pumps. Inspired by these systems, protein monomers have been engineered to self-assemble into supramolecular architectures including symmetrical, metal-templated and cage-like structures. The complexity of protein machines, however, has made it difficult to create assemblies with both defined structures and controllable functions. Here we report protein assemblies that have been engineered to function as light-controlled nanocontainers. We show that an adenosine-5'-triphosphate-driven group II chaperonin, which resembles a barrel with a built-in lid, can be reprogrammed to open and close on illumination with different wavelengths of light. By engineering photoswitchable azobenzene-based molecules into the structure, light-triggered changes in interatomic distances in the azobenzene moiety are able to drive large-scale conformational changes of the protein assembly. The different states of the assembly can be visualized with single-particle cryo-electron microscopy, and the nanocages can be used to capture and release non-native cargos. Similar strategies that switch atomic distances with light could be used to build other controllable nanoscale machines. PMID:24270642

  12. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Chao Sheng; Ziwei Wang; Changlong Guo; Hua-Jun Wu; Zhonghua Liu; Liu Wang; Shigang He; Xiu-Jie Wang; Zhiguo Chen; Qi Zhou; Qinyuan Zheng; Jianyu Wu; Zhen Xu; Libin Wang; Wei Li; Haijiang Zhang; Xiao-YangZhao; Lei Liu

    2012-01-01

    Multipotent neural stem/progenitor cells hold great promise for cell therapy.The reprogramming of fibroblasts to induced pluripotent stem cells as well as mature neurons suggests a possibility to convert a terminally differentiated somatic cell into a muitipotent state without first establishing pluripotency.Here,we demonstrate that sertoli cells derived from mesoderm can be directly converted into a multipotent state that possesses neural stem/progenitor cell properties.The induced neural stem/progenitor cells (iNSCs) express multiple NSC-specific markers,exhibit a global gene-expression profile similar to normal NSCs,and are capable of self-renewal and differentiating into glia and electrophysiologically functional neurons,iNSC-derived neurons stain positive for tyrosine hydroxylase (TH),γ-aminobutyric acid,and choline acetyltransferase.In addition,iNSCs can survive and generate synapses following transplantation into the dentate gyrus.Generation of iNSCs may have important implications for disease modeling and regenerative medicine.

  13. GRIM-19 opposes reprogramming of glioblastoma cell metabolism via HIF1α destabilization.

    Science.gov (United States)

    Liu, Qian; Wang, Lulu; Wang, Zhaojuan; Yang, Yang; Tian, Jingxia; Liu, Guoliang; Guan, Dongshi; Cao, Xinmin; Zhang, Yanmin; Hao, Aijun

    2013-08-01

    The metabolism that sustains cancer cells is adapted preferentially to glycolysis, even under aerobic conditions (Warburg effect). This effect was one of the first alterations in cancer cells recognized as conferring a survival advantage. In this study, we show that gene associated with retinoid-interferon-induced mortality-19 (GRIM-19), which was previously identified as a tumor suppressor protein associated with growth inhibition and cell apoptosis, contributes to the switch between oxidative and glycolytic pathways. In parallel to this, vascular endothelial growth factor, which promotes neovascularization, is also regulated. We have identified hypoxia-inducible factor 1α (HIF1α) as the downstream factor of GRIM-19 in human glioblastoma cell lines. Downregulation of GRIM-19 promotes HIF1α synthesis in a STAT3-dependent manner, which acts as a potential competitive inhibitor for von Hippel-Lindau (pVHL)-HIF1α interaction, and thereby prevents HIF1α from pVHL-mediated ubiquitination and proteasomal degradation. Taken together, it is concluded that GRIM-19, a potential tumor suppressor gene, performs its function in part via regulating glioblastoma metabolic reprogramming through STAT3-HIF1α signaling axis, and this has added new perspective to its role in tumorigenesis, thus providing potential strategies for tumor metabolic therapy. PMID:23580587

  14. Genome-wide chromatin interactions of the Nanog locus in pluripotency, differentiation, and reprogramming.

    Science.gov (United States)

    Apostolou, Effie; Ferrari, Francesco; Walsh, Ryan M; Bar-Nur, Ori; Stadtfeld, Matthias; Cheloufi, Sihem; Stuart, Hannah T; Polo, Jose M; Ohsumi, Toshiro K; Borowsky, Mark L; Kharchenko, Peter V; Park, Peter J; Hochedlinger, Konrad

    2013-06-01

    The chromatin state of pluripotency genes has been studied extensively in embryonic stem cells (ESCs) and differentiated cells, but their potential interactions with other parts of the genome remain largely unexplored. Here, we identified a genome-wide, pluripotency-specific interaction network around the Nanog promoter by adapting circular chromosome conformation capture sequencing. This network was rearranged during differentiation and restored in induced pluripotent stem cells. A large fraction of Nanog-interacting loci were bound by Mediator or cohesin in pluripotent cells. Depletion of these proteins from ESCs resulted in a disruption of contacts and the acquisition of a differentiation-specific interaction pattern prior to obvious transcriptional and phenotypic changes. Similarly, the establishment of Nanog interactions during reprogramming often preceded transcriptional upregulation of associated genes, suggesting a causative link. Our results document a complex, pluripotency-specific chromatin "interactome" for Nanog and suggest a functional role for long-range genomic interactions in the maintenance and induction of pluripotency. PMID:23665121

  15. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation.

    Science.gov (United States)

    Nguyen, Hung D; Chatterjee, Shilpak; Haarberg, Kelley M K; Wu, Yongxia; Bastian, David; Heinrichs, Jessica; Fu, Jianing; Daenthanasanmak, Anusara; Schutt, Steven; Shrestha, Sharad; Liu, Chen; Wang, Honglin; Chi, Hongbo; Mehrotra, Shikhar; Yu, Xue-Zhong

    2016-04-01

    Alloreactive donor T cells are the driving force in the induction of graft-versus-host disease (GVHD), yet little is known about T cell metabolism in response to alloantigens after hematopoietic cell transplantation (HCT). Here, we have demonstrated that donor T cells undergo metabolic reprograming after allogeneic HCT. Specifically, we employed a murine allogeneic BM transplant model and determined that T cells switch from fatty acid β-oxidation (FAO) and pyruvate oxidation via the tricarboxylic (TCA) cycle to aerobic glycolysis, thereby increasing dependence upon glutaminolysis and the pentose phosphate pathway. Glycolysis was required for optimal function of alloantigen-activated T cells and induction of GVHD, as inhibition of glycolysis by targeting mTORC1 or 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) ameliorated GVHD mortality and morbidity. Together, our results indicate that donor T cells use glycolysis as the predominant metabolic process after allogeneic HCT and suggest that glycolysis has potential as a therapeutic target for the control of GVHD. PMID:26950421

  16. Hybrid modeling of cell signaling and transcriptional reprogramming and its application in C. elegans development

    Directory of Open Access Journals (Sweden)

    Elana J Fertig

    2011-11-01

    Full Text Available Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multi-scale, organism level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extra-cellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1 the effects of varying scaffold protein concentration on signal strength, (2 amplification of signals in expression, (3 the relative external ligand concentration in a known geometry, and (4 feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.

  17. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter;

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  18. Learning Potentials in Number Blocks

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob

    2012-01-01

    This paper describes an initial exploration of how an interactive cubic user-configurable modular robotic system can be used to support learning about numbers and how they are pronounced. The development is done in collaboration with a class of 7-8 year old children and their mathematics teacher....... The tool is called Number Blocks and it combines physical interaction, learning, and immediate feedback. Number Blocks supports the children's understanding of place value in the sense that it allows them to experiment with creating large numbers. We found the blocks contributed to the learning...... process in several ways. The blocks combined mathematics and play, and they included and supported children at different academic levels. The auditory representation, especially the enhanced rhythmic effects due to using speech synthesis, and the rhythm helped the children to pronounce large numbers. This...

  19. Linear characters and block algebra

    CERN Document Server

    Zeng, Jiwen

    2011-01-01

    This paper will prove that: 1. $G$ has a block only having linear ordinary characters if and only if $G$ is a $p$-nilpotent group with an abelian Sylow $p$-subgroup; 2. $G$ has a block only having linear Brauer characters if and only if $O_{p'}(G)\\leq O_{p'p}(G)=HO_{p'}(G)= \\textrm{Ker}(B_{0}^{*}) \\leq O_{p'pp'}=G$, where $H=G^{'}O^{p'}(G), \\textrm{Ker}(B_{0}^{*})=\\bigcap_{\\lambda \\in \\textrm{IBr}(B_{0})} \\textrm{Ker}(V_{\\lambda}), B_{0}$ is the principal block of $G$ and $V_{\\lambda}$ is the $F[G]$-module affording the Brauer character $\\lambda$; 3. if $G$ satisfies the conditions above, then for any block algebra $B$ of $G$, we have

  20. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2015-01-01

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  1. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block......-of-the-art block-based method in terms of asymptotic accuracy of variance estimation and distribution approximation. For stationary time series, the asymptotic validity, and the favorable bias properties of the new bootstrap method are shown in two important cases: smooth functions of means, and M-estimators. The...... estimator for the sample mean is shown to be robust against heteroskedasticity of the wild tapered block bootstrap. This easy to implement alternative bootstrap method works very well even for moderate sample sizes....

  2. MarineMineralsProgramBlocks

    Data.gov (United States)

    Bureau of Ocean Energy Management, Department of the Interior — This data set contains OCS block outlines and delineated polygons in ESRI ArcGIS shape file format for the BOEM Gulf of Mexico Region that contain sediment...

  3. Statistical cryptanalysis of block ciphers

    OpenAIRE

    Junod, Pascal

    2005-01-01

    Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved securi...

  4. A Novel Tetrathiafulvalene Building Block

    DEFF Research Database (Denmark)

    Jeppesen, Jan Oskar; Takimiya, Kazuo; Thorup, Niels;

    1999-01-01

    Efficient synthesis of a novel tetrathiafulvalene building block. 2,3-bis(2-cyanoethylthio)-6,7-bis(thiocyanato-methyl)tetrathiafulv alene (7) useful for stepwise and asymmetrical bis-function-alization is reported.......Efficient synthesis of a novel tetrathiafulvalene building block. 2,3-bis(2-cyanoethylthio)-6,7-bis(thiocyanato-methyl)tetrathiafulv alene (7) useful for stepwise and asymmetrical bis-function-alization is reported....

  5. Risking Aggression: Reply to Block

    Directory of Open Access Journals (Sweden)

    Kris Borer

    2010-05-01

    Full Text Available In his paper, “Is There an ‘Anomalous’ Section of the Laffer Curve?”, Walter Block describes some situations in which it appears that a libertarian should violate the non-aggression principle. To rectify this, Block proposes a different perspective on libertarianism which he calls punishment theory. This paper argues that no new theory is needed, as the non-aggression principle can be used to resolve theapparent conundrums.

  6. Risking Aggression: Reply to Block

    OpenAIRE

    Kris Borer

    2010-01-01

    In his paper, “Is There an ‘Anomalous’ Section of the Laffer Curve?”, Walter Block describes some situations in which it appears that a libertarian should violate the non-aggression principle. To rectify this, Block proposes a different perspective on libertarianism which he calls punishment theory. This paper argues that no new theory is needed, as the non-aggression principle can be used to resolve theapparent conundrums.

  7. Statistical cryptanalysis of block ciphers

    OpenAIRE

    Junod, Pascal; Vaudenay, Serge

    2007-01-01

    Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have been published in the field of public-key cryptography, being in the understanding of involved securi...

  8. Techniques of facial nerve block.

    OpenAIRE

    Schimek, F; Fahle, M

    1995-01-01

    The efficacy of different techniques of facial nerve block for cataract surgery was investigated. Forty four patients underwent either modified O'Brien, Atkinson, van Lint, or lid blocks. Intentional muscle activity of the orbicularis oculi muscle was recorded and the area under the EMG curve calculated for quantitative comparison of muscle activity between the groups before and after injection of lignocaine with the vasoconstrictor naphazoline nitrate. In addition, the force of lid closure w...

  9. NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Guojun Liu

    2000-01-01

    Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, selfassembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films with nanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisopreneblock-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass fraction of 20% relative to the triblock or the total PtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrix of PCEMA and PI. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannels were formed by extracting out hPtBA with solvent. Alternatively, larger channels were obtained from extracting out hPtBA and hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeability constants ~6 orders of magnitude higher than that of low-density polyethylene films.

  10. Opposing Regulation of PROX1 by Interleukin-3 Receptor and NOTCH Directs Differential Host Cell Fate Reprogramming by Kaposi Sarcoma Herpes Virus

    Science.gov (United States)

    Choi, Inho; Choi, Dongwon; Chung, Hee Kyoung; Kim, Kyu Eui; Lee, Sunju; Aguilar, Berenice; Kang, Jinjoo; Park, Eunkyung; Lee, Yong Suk; Maeng, Yong-Sun; Kim, Nam Yoon; Koh, Chester J.; Hong, Young-Kwon

    2012-01-01

    Lymphatic endothelial cells (LECs) are differentiated from blood vascular endothelial cells (BECs) during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV) infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming), but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming). Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα) and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV. PMID:22719258

  11. Interaction between nonviral reprogrammed fibroblast stem cells and trophic factors for brain repair.

    Science.gov (United States)

    Liu, G; Anisman, H; Bobyn, J; Hayley, S

    2014-10-01

    There are currently no known treatment options that actually halt or permanently reverse the pathology evident in any neurodegenerative condition. Arguably, one of the most promising avenues for creating viable neuronal treatments could involve the combined use of cell replacement and gene therapy. Given the complexity of the neurodegenerative process, it stands to reason that adequate therapy should involve not only the replacement of loss neurons/synapses but also the interruption of multiple pro-death pathways. Thus, we propose the use of stem cells that are tailored to express specific trophic factors, thereby potentially encouraging synergistic effects between the stem cell properties and those of the trophic factors. The trophic factors, brain-derived neurotropic factor (BDNF), glial cell-derived neurotropic factor (GDNF), fibroblast growth factor (FGF) 2, and insulin-like growth factor (IGF) 1, in particular, have demonstrated neuroprotective actions in a number of animal models. Importantly, we use a nonviral approach, thereby minimizing the potential risk for DNA integration and tumor formation. The present study involved the development of a nonviral reprogramming system to transform adult mature mouse fibroblasts into progressive stages of cell development. We also tailored these stem cells to individually express each of the trophic factors, including BDNF, GDNF, FGF2, and IGF1. Significantly, central infusion of BDNF-expressing stem cells prevented the in vivo loss of neurons associated with infusion of the endotoxin, lipopolysaccharide (LPS). This is particularly important in light of the role of inflammatory processes that are posited to play in virtually all neurodegenerative states. Hence, the present results support the utility of using combined gene and cell-targeting approaches for neuronal pathology. PMID:24677069

  12. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta.

    Directory of Open Access Journals (Sweden)

    Liliana M Cano

    Full Text Available Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments and terpenoid biosynthesis (major floral volatile compounds were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

  13. Intracellular reprogramming of expression, glycosylation, and function of a plant-derived antiviral therapeutic monoclonal antibody.

    Directory of Open Access Journals (Sweden)

    Jeong-Hwan Lee

    Full Text Available Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAb(Ps, provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAb(P SO57 with or without an endoplasmic reticulum (ER-retention peptide signal (Lys-Asp-Glu-Leu; KDEL in transgenic tobacco plants (Nicotiana tabacum were analyzed. The expression levels of mAb(P SO57 with KDEL (mAb(PK were significantly higher than those of mAb(P SO57 without KDEL (mAb(P regardless of the transcription level. The Fc domains of both purified mAb(P and mAb(PK and hybridoma-derived mAb (mAb(H had similar levels of binding activity to the FcγRI receptor (CD64. The mAb(PK had glycan profiles of both oligomannose (OM type (91.7% and Golgi type (8.3%, whereas the mAb(P had mainly Golgi type glycans (96.8% similar to those seen with mAb(H. Confocal analysis showed that the mAb(PK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAb(P with KDEL in the ER. Both mAb(P and mAb(PK disappeared with similar trends to mAb(H in BALB/c mice. In addition, mAb(PK was as effective as mAb(H at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAb(P by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant.

  14. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C., E-mail: susan.tilton@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Lee, K. Monica [Battelle Toxicology Northwest, Richland, WA 99352 (United States); Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  15. Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Waters, Katrina M.; Karin, Norman J.; Webb-Robertson, Bobbie-Jo M.; Zangar, Richard C.; Lee, Monika K.; Bigelow, Diana J.; Pounds, Joel G.; Corley, Richard A.

    2013-03-01

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures.

  16. Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin

    International Nuclear Information System (INIS)

    The co-occurrence of environmental factors is common in complex human diseases and, as such, understanding the molecular responses involved is essential to determine risk and susceptibility to disease. We have investigated the key biological pathways that define susceptibility for pulmonary infection during obesity in diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice exposed to inhaled lipopolysaccharide (LPS). LPS induced a strong inflammatory response in all mice as indicated by elevated cell counts of macrophages and neutrophils and levels of proinflammatory cytokines (MDC, MIP-1γ, IL-12, RANTES) in the bronchoalveolar lavage fluid. Additionally, DIO mice exhibited 50% greater macrophage cell counts, but decreased levels of the cytokines, IL-6, TARC, TNF-α, and VEGF relative to RW mice. Microarray analysis of lung tissue showed over half of the LPS-induced expression in DIO mice consisted of genes unique for obese mice, suggesting that obesity reprograms how the lung responds to subsequent insult. In particular, we found that obese animals exposed to LPS have gene signatures showing increased inflammatory and oxidative stress response and decreased antioxidant capacity compared with RW. Because signaling pathways for these responses can be common to various sources of environmentally induced lung damage, we further identified biomarkers that are indicative of specific toxicant exposure by comparing gene signatures after LPS exposure to those from a parallel study with cigarette smoke. These data show obesity may increase sensitivity to further insult and that co-occurrence of environmental stressors result in complex biosignatures that are not predicted from analysis of individual exposures. - Highlights: ► Obesity modulates inflammatory markers in BAL fluid after LPS exposure. ► Obese animals have a unique transcriptional signature in lung after LPS exposure. ► Obesity elevates inflammatory stress and reduces antioxidant capacity in the lung

  17. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers

    Directory of Open Access Journals (Sweden)

    Sujatha eMuralidharan

    2015-10-01

    Full Text Available Exposure of individuals to ionizing radiation (IR, as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM, the site in the body where hematopoietic stem cell (HSC self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low dose IR, including irradiation by high-charge and high-energy particles (HZE. Low dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long term damage to hematopoietic cells in the BM niche. We report here that low dose 1H- and 56Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively cell numbers in mouse BM over a period of up to 10 months after exposure. Both 1H- and 56Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog and Oct-4 in Late-MPPs 2 and 10 months post-IR exposure. We postulate that low doses of 1H- and 56Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype; IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders and these findings warrant further mechanistic studies into the effects of low dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency.

  18. Ionizing Particle Radiation as a Modulator of Endogenous Bone Marrow Cell Reprogramming: Implications for Hematological Cancers.

    Science.gov (United States)

    Muralidharan, Sujatha; Sasi, Sharath P; Zuriaga, Maria A; Hirschi, Karen K; Porada, Christopher D; Coleman, Matthew A; Walsh, Kenneth X; Yan, Xinhua; Goukassian, David A

    2015-01-01

    Exposure of individuals to ionizing radiation (IR), as in the case of astronauts exploring space or radiotherapy cancer patients, increases their risk of developing secondary cancers and other health-related problems. Bone marrow (BM), the site in the body where hematopoietic stem cell (HSC) self-renewal and differentiation to mature blood cells occurs, is extremely sensitive to low-dose IR, including irradiation by high-charge and high-energy particles. Low-dose IR induces DNA damage and persistent oxidative stress in the BM hematopoietic cells. Inefficient DNA repair processes in HSC and early hematopoietic progenitors can lead to an accumulation of mutations whereas long-lasting oxidative stress can impair hematopoiesis itself, thereby causing long-term damage to hematopoietic cells in the BM niche. We report here that low-dose (1)H- and (56)Fe-IR significantly decreased the hematopoietic early and late multipotent progenitor (E- and L-MPP, respectively) cell numbers in mouse BM over a period of up to 10 months after exposure. Both (1)H- and (56)Fe-IR increased the expression of pluripotent stem cell markers Sox2, Nanog, and Oct4 in L-MPPs and 10 months post-IR exposure. We postulate that low doses of (1)H- and (56)Fe-IR may induce endogenous cellular reprogramming of BM hematopoietic progenitor cells to assume a more primitive pluripotent phenotype and that IR-induced oxidative DNA damage may lead to mutations in these BM progenitors. This could then be propagated to successive cell lineages. Persistent impairment of BM progenitor cell populations can disrupt hematopoietic homeostasis and lead to hematologic disorders, and these findings warrant further mechanistic studies into the effects of low-dose IR on the functional capacity of BM-derived hematopoietic cells including their self-renewal and pluripotency. PMID:26528440

  19. Leaf-galling phylloxera on grapes reprograms host metabolism and morphology.

    Science.gov (United States)

    Nabity, Paul D; Haus, Miranda J; Berenbaum, May R; DeLucia, Evan H

    2013-10-01

    Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit. PMID:24067657

  20. Metabolic Reprogramming During Purine Stress in the Protozoan Pathogen Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jessica L.; Yates, Phillip A.; Soysa, Radika; Alfaro, Joshua F.; Yang, Feng; Burnum-Johnson, Kristin E.; Petyuk, Vladislav A.; Weitz, Karl K.; Camp, David G.; Smith, Richard D.; Wilmarth, Phillip A.; David, Larry L.; Ramasamy, Gowthaman; Myler, Peter J.; Carter, Nicola S.

    2014-02-27

    The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over 3 months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6-48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.

  1. Cellular reprogramming and its application in infertility by deficiency of female gametes*

    Directory of Open Access Journals (Sweden)

    Anaya-Pico Katy

    2012-12-01

    Full Text Available Introduction: The infertility affects 10 to 15% of the couples. An important cause inboth members of the couple is the disruption or absence of germinal cells. Models of invitro experiments have been carried out to study the molecular or genetic mechanismsinvolved and for the development of future treatments for this condition.Objective: To specify about the advances that have followed in cellular reprogrammingand to infer about its potential application in infertility by absence of female gametes.Methods: Thematic review. A computer research was done in Pubmed, Cochrane, CoreJournals, Clinical trials, Ovid, SciELO and LILACS. Also manual search in the newspapersor scientific websites: Cell, Cold Spring Harbor Laboratory Press (CSHL, The HadassahHuman Embrionic Stem Cell Research Center, American Journal of Clinical Patology,Center for iPS Cell Research and Applications (CIRA. There were included those withoutlimit of age or gender and in Spanish and English that were published since 1950 to2012. Studies in humans and animals were included. 98 summaries of articles weregotten and 52 were considered pertinent. All of these were reviewed in complete text.Results: There were found important publications in the last fifty years that documentthe advances and the technological development got with the Stem Cell until the cellularreprogramming. Studies in experimentation models, in animals of different species andin human cells have proved that cellular specialization can become reversible, allowingthe creation of therapeutics tools for different pathologies, included the infertility byabsence of gametes, above everything by premature ovarian failure. New terminologyhas been proposed to identify to the cells that were created after the reprogramming asof gene factors of transcription every time better known.Conclusion: Cellular reprogramming is a field in development, that have become thekey to tackle pathologies in a future that today don´t have

  2. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation.

    Science.gov (United States)

    Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H; Yang, Li-Jun

    2013-08-15

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes. PMID:23750005

  3. Roles of p53 and ASF1A in the Reprogramming of Sheep Kidney Cells to Pluripotent Cells.

    Science.gov (United States)

    Shi, Huijun; Fu, Qiang; Li, Guozhong; Ren, Yan; Hu, Shengwei; Ni, Wei; Guo, Fei; Shi, Mengting; Meng, Luping; Zhang, Hui; Qiao, Jun; Guo, Zhiru; Chen, Chuangfu

    2015-12-01

    Since the first report of induced pluripotent stem cells (iPSCs) by Takahashi and Yamanaka, numerous attempts have been made to derive iPSCs from other species via the ectopic expression of defined factors. Sheep iPSCs (siPSCs) have significant potential for biotechnology and agriculture. Although several groups have described siPSCs, the reprogramming efficiency was extremely low. The exogenous transgenes could be not silenced in the iPSCs, which hampered their development and application. Here, we report that p53 knockdown and antisilencing function 1A (ASF1A) overexpression promoted iPSC generation from sheep kidney cells (SKCs). Compared with transduction with eight human defined transcription factors (Oct4, Sox2, Klf4, c-Myc, Nanog, Lin28, hTERT, and SV40LT), the additional introduction of p53 RNA interference (RNAi) and/or ASF1A in the presence of small-molecule compounds [vitamin C (Vc) and valproic acid (VPA)] greatly improved the efficiency of sheep iPSC generation. The siPSCs exhibited morphological features similar to mouse embryonic stem cells (ESCs) and were positive for alkaline phosphatase and, pluripotent marker genes (Oct4, Nanog, Sox2, Rex1, TRA-1-60, TRA-1-81, and E-cadherin). Furthermore, these cells exhibited a normal karyotype of 54 chromosomes and were able to differentiate into all three germ layers both in vitro and in vivo. Moreover, the exogenous genes were silenced in siPSCs when p53 small hairpin RNA (shRNA) and ASF1A were added. Our results may help to reveal the role of p53 and ASF1A in sheep somatic cell reprogramming and provide an efficient approach to reprogramming sheep somatic cells. PMID:26580119

  4. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC.

    Science.gov (United States)

    Kim, Bu-Yeo; Jeong, SangKyun; Lee, Seo-Young; Lee, So Min; Gweon, Eun Jeong; Ahn, Hyunjun; Kim, Janghwan; Chung, Sun-Ku

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G>A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs. PMID:27256111

  5. Transgenic expression of Telomerase reverse transcriptase (Tert) improves cell proliferation of primary cells and enhances reprogramming efficiency into the induced pluripotent stem cell.

    Science.gov (United States)

    Hidema, Shizu; Fukuda, Tomokazu; Date, Shiori; Tokitake, Yuko; Matsui, Yasuhisa; Sasaki, Hiroki; Nishimori, Katsuhiko

    2016-10-01

    The enzymatic activity of telomerase is important for the extension of the telomere repeat sequence and overcoming cellular senescence. We generated a conditional transgenic mouse line, carrying the telomerase reverse transcriptase (Tert) expression cassette, controlled by the Cre-loxP-mediated recombination. In our study, Cre recombinase expression efficiently activated Tert expression, resulting in its increased enzymatic activity, which extended the period of cellular proliferation until the keratinocytes entered senescence. This suggests that transgenic Tert expression is effective in enhancing primary cell proliferation. Notably, Tert expression increased colony formation of induced pluripotent stem (iPS) cells after the introduction of four reprogramming factors, Oct-4, klf4, SOX-2, and c-Myc into the transgenic fibroblasts. To the best of our knowledge, this is the first study to show that the transgenic Tert expression enhances reprogramming efficiency of iPS cells, which indicates a critical role for Tert in the reprogramming process. PMID:27297181

  6. Bright/Arid3A Acts as a Barrier to Somatic Cell Reprogramming through Direct Regulation of Oct4, Sox2, and Nanog

    Directory of Open Access Journals (Sweden)

    Melissa Popowski

    2014-01-01

    Full Text Available We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs and enhancement of standard four-factor (4F reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.

  7. A “Hit and Run” Approach to Inducible Direct Reprogramming of Astrocytes to Neural Stem Cells

    OpenAIRE

    Poulou, Maria; Mandalos, Nikolaos P.; Karnavas, Theodoros; Saridaki, Marannia; Ronald D G McKay; Remboutsika, Eumorphia

    2016-01-01

    Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel “hit and run” inducible direct reprogramming approach. In a single step, 2 days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2) triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nesti...

  8. Projectors, Shadows, and Conformal Blocks

    CERN Document Server

    Simmons-Duffin, David

    2012-01-01

    We introduce a method for computing conformal blocks of operators in arbitrary Lorentz representations in any spacetime dimension, making it possible to apply bootstrap techniques to operators with spin. The key idea is to implement the "shadow formalism" of Ferrara, Gatto, Grillo, and Parisi in a setting where conformal invariance is manifest. Conformal blocks in d-dimensions can be expressed as integrals over the projective null-cone in the "embedding space" R^{d+1,1}. Taking care with their analytic structure, these integrals can be evaluated in great generality, reducing the computation of conformal blocks to a bookkeeping exercise. To facilitate calculations in four-dimensional CFTs, we introduce techniques for writing down conformally-invariant correlators using auxiliary twistor variables, and demonstrate their use in some simple examples.

  9. Climatological features of blocking anticyclones

    International Nuclear Information System (INIS)

    Several climatological studies have been previously performed using large observational data sets (i.e., 10 years or longer) in order to determine the predominant characteristics of blocking anticyclones, including favored development regions, duration, preferred seasonal occurrence, and frequency of occurrence. These studies have shown that blocking anticyclones occur most frequently from October to April over the eastern Atlantic and Pacific oceans downstream from both the North American and Asian continental regions and the storm track regions to the east of these continents. Some studies have also revealed the presence of a third region block formation in western Russia near 40 degrees E which is associated with another storm track region over the Mediterranean and western Asia

  10. Tharsis block tectonics on Mars

    Science.gov (United States)

    Raitala, Jouko T.

    1988-01-01

    The concept of block tectonics provides a framework for understanding many aspects of Tharsis and adjoining structures. This Tharsis block tectonics on Mars is manifested partly by mantle-related doming and partly by response to loading by subsequent volcanic construction. Although the origin of the volcanism from beneath Tharsis is a subject of controversy explanations have to include inhomogeneities in Martian internal structure, energy distribution, magma accumulation and motion below the lithosphere. Thermal convection can be seen as a necessary consequence for transient initial phase of Martian cooling. This produced part of the elevated topography with tensional stresses and graben systems radial to the main bulge. The linear grabens, radial to the Tharsis center, can be interpreted to indicate rift zones that define the crustal block boundaries. The load-induced stresses may then have contributed on further graben and ridge formation over an extended period of time.

  11. Block ground interaction of rockfalls

    Science.gov (United States)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  12. OPAL 96 Blocks Lead Glass

    CERN Multimedia

    This array of 96 lead glass bricks formed part of the OPAL electromagnetic calorimeter. One half of the complete calorimeter is shown in the picture above. There were 9440 lead glass counters in the OPAL electromagnetic calorimeter. These are made of Schott type SF57 glass and each block weighs about 25 kg and consists of 76% PbO by weight. Each block has a Hamamatsu R2238 photomultiplier glued on to it. The complete detector was in the form of a cylinder 7m long and 6m in diameter. It was used to measure the energy of electrons and photons produced in LEP interactions.

  13. Cryptanalysis of Selected Block Ciphers

    DEFF Research Database (Denmark)

    Alkhzaimi, Hoda A.

    architectures and frameworks. For a long time they were known as the main building block that will provide confidentiality in an information system. They would also be able to represent a full spectrum of cryptographic services as many block ciphers can be used to construct stream ciphers, hash functions...... PRINTcipher for a significant fraction of its keys. This new attack also gives us new insights into other, more well-established attacks. In addition, we also show that for weak keys, strongly biased linear approximations exists for any number of rounds. Furthermore, we provide variety of attacks...

  14. Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton's Jelly into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Miere, Cristian; Devito, Liani; Ilic, Dusko

    2016-01-01

    In an attempt to bring pluripotent stem cell biology closer to reaching its full potential, many groups have focused on improving reprogramming protocols over the past several years. The episomal modified Sendai virus-based vector has emerged as one of the most practical ones. Here we describe reprogramming of mesenchymal stromal/stem cells (MSC) derived from umbilical cord Wharton's Jelly into induced pluripotent stem cells (iPSC) using genome non-integrating Sendai virus-based vectors. The detailed protocols of iPSC colony cryopreservation (vitrification) and adaption to feeder-free culture conditions are also included. PMID:26246353

  15. Building Blocks for Personal Brands

    Science.gov (United States)

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  16. Scintigraphic visualization of 'Blocking' thyroid

    International Nuclear Information System (INIS)

    Full text: An important problem in nuclear endocrinology is 'blocking' of thyroid gland, which necessitates postpone of the investigation, adverse clinical effect of stopping medications and a delay of making diagnosis. The aim of the study was to introduce and to determine the clinical value of the scintigraphy with 99mTc-MIBI in patients (Pts) with 'blocked thyroid'. In 365 Pts (aged 38-75 years), indicated for a thyroid scintigraphy after proper preparation, an investigation was performed with 74 MBq 99mTc-pertechnetate, 20 min. p.i. In 14 of them (3.8%), the thyroid was 'blocked' and additional scintigraphy was done with 370-555 MBq 99mTc-MIBI, 15 and 120 min.p.i. It was estimated that in all Pts there was a visualization of thyroid. In 1 of them, a large 'hot' nodule was visualized in the early and late image. Later on a differentiated thyroid carcinoma was proved histologically. In the rest of the patients 'cold' nodules with different size were visualized, eventually as a result of cysts. As a conclusion we consider, that a scintigraphy with 99mTc-MIBI is a useful tool in Pts with 'blocked' thyroid. In addition an evaluation of the thyroid nodule could be done and therefore- a recommendation for therapy

  17. Building block filtering and mixing

    NARCIS (Netherlands)

    Kemenade, C.H.M. van

    1998-01-01

    A three-stage evolutionary method, the BBF-GA is introduced. BBF-GA is an acronym for building block filtering genetic algorithm. During the first stage, an ensemble of fast evolutionary algorithms is used to explore the search space. The best individual found by each of these evolutionary algorithm

  18. Reprogrammed Functional Brown Adipocytes Ameliorate Insulin Resistance and Dyslipidemia in Diet-Induced Obesity and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Tsunao Kishida

    2015-10-01

    Full Text Available Brown adipocytes (BAs play important roles in body temperature regulation, energy balance, and carbohydrate and lipid metabolism. Activities of BAs are remarkably diminished in obese and diabetic patients, providing possibilities of transplanting functional BAs resulting in therapeutic benefit. Here, we show generation of functional BAs by cellular reprogramming procedures. Transduction of the PRDM16 gene into iPSC-derived embryoid bodies induced BA phenotypes (iBAs. Moreover, normal human fibroblasts were directly converted into BAs (dBAs by C/EBP-β and C-MYC gene transduction. Approximately 90% of the fibroblasts were successfully converted within 12 days. The dBAs were highly active in mitochondrial biogenesis and oxidative metabolism. Mouse dBAs were induced by Prdm16, C/ebp-β, and L-myc genes, and after transplantation, they significantly reduced diet-induced obesity and insulin resistance in an UCP1-dependent manner. Thus, highly functional BAs can be generated by cellular reprogramming, suggesting a promising tailor-made cell therapy against metabolic disorders including type 2 diabetes mellitus.

  19. Addressing the Role of microRNAs in Reprogramming Leaf Growth during Drought Stress in Brachypodium distachyon

    Institute of Scientific and Technical Information of China (English)

    Edoardo Bertolini; Wim Verelst; David Stephen Horner; Luca Gianfranceschi; Viviana Piccolo; Dirk Inzé; Mario Enrico Pè

    2013-01-01

    Plant responses to drought are regulated by complex genetic and epigenetic networks leading to rapid reprogramming of plant growth,miRNAs have been widely indicated as key players in the regulation of growth and development.The role of miRNAs in drought response was investigated in young leaves of Brachypodium distachyon,a drought-tolerant monocot model species.Adopting an in vivo drought assay,shown to cause a dramatic reduction in leaf size,mostly due to reduced cell expansion,small RNA libraries were produced from proliferating and expanding leaf cells.Next-generation sequencing data were analyzed using an in-house bioinformatics pipeline allowing the identification of 66 annotated miRNA genes and 122 new high confidence predictions greatly expanding the number of known Brachypodium miRNAs.In addition,we identified four TAS3 loci and a large number of siRNA-producing loci that show characteristics suggesting that they may represent young miRNA genes.Most miRNAs showed a high expression level,consistent with their involvement in early leaf development and cell identity.Proliferating and expanding leaf cells respond differently to drought treatment and differential expression analyses suggest novel evidence for an miRNA regulatory network controlling cell division in both normal and stressed conditions and demonstrate that drought triggers a genetic reprogramming of leaf growth in which miRNAs are deeply involved.

  20. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival.

    Science.gov (United States)

    Kloepper, Jonas; Riedemann, Lars; Amoozgar, Zohreh; Seano, Giorgio; Susek, Katharina; Yu, Veronica; Dalvie, Nisha; Amelung, Robin L; Datta, Meenal; Song, Jonathan W; Askoxylakis, Vasileios; Taylor, Jennie W; Lu-Emerson, Christine; Batista, Ana; Kirkpatrick, Nathaniel D; Jung, Keehoon; Snuderl, Matija; Muzikansky, Alona; Stubenrauch, Kay G; Krieter, Oliver; Wakimoto, Hiroaki; Xu, Lei; Munn, Lance L; Duda, Dan G; Fukumura, Dai; Batchelor, Tracy T; Jain, Rakesh K

    2016-04-19

    Inhibition of the vascular endothelial growth factor (VEGF) pathway has failed to improve overall survival of patients with glioblastoma (GBM). We previously showed that angiopoietin-2 (Ang-2) overexpression compromised the benefit from anti-VEGF therapy in a preclinical GBM model. Here we investigated whether dual Ang-2/VEGF inhibition could overcome resistance to anti-VEGF treatment. We treated mice bearing orthotopic syngeneic (Gl261) GBMs or human (MGG8) GBM xenografts with antibodies inhibiting VEGF (B20), or Ang-2/VEGF (CrossMab, A2V). We examined the effects of treatment on the tumor vasculature, immune cell populations, tumor growth, and survival in both the Gl261 and MGG8 tumor models. We found that in the Gl261 model, which displays a highly abnormal tumor vasculature, A2V decreased vessel density, delayed tumor growth, and prolonged survival compared with B20. In the MGG8 model, which displays a low degree of vessel abnormality, A2V induced no significant changes in the tumor vasculature but still prolonged survival. In both the Gl261 and MGG8 models A2V reprogrammed protumor M2 macrophages toward the antitumor M1 phenotype. Our findings indicate that A2V may prolong survival in mice with GBM by reprogramming the tumor immune microenvironment and delaying tumor growth. PMID:27044098

  1. Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration.

    Science.gov (United States)

    Barrionuevo, Francisco J; Hurtado, Alicia; Kim, Gwang-Jin; Real, Francisca M; Bakkali, Mohammed; Kopp, Janel L; Sander, Maike; Scherer, Gerd; Burgos, Miguel; Jiménez, Rafael

    2016-01-01

    The new concept of mammalian sex maintenance establishes that particular key genes must remain active in the differentiated gonads to avoid genetic sex reprogramming, as described in adult ovaries after Foxl2 ablation. Dmrt1 plays a similar role in postnatal testes, but the mechanism of adult testis maintenance remains mostly unknown. Sox9 and Sox8 are required for postnatal male fertility, but their role in the adult testis has not been investigated. Here we show that after ablation of Sox9 in Sertoli cells of adult, fertile Sox8(-/-) mice, testis-to-ovary genetic reprogramming occurs and Sertoli cells transdifferentiate into granulosa-like cells. The process of testis regression culminates in complete degeneration of the seminiferous tubules, which become acellular, empty spaces among the extant Leydig cells. DMRT1 protein only remains in non-mutant cells, showing that SOX9/8 maintain Dmrt1 expression in the adult testis. Also, Sox9/8 warrant testis integrity by controlling the expression of structural proteins and protecting Sertoli cells from early apoptosis. Concluding, this study shows that, in addition to its crucial role in testis development, Sox9, together with Sox8 and coordinately with Dmrt1, also controls adult testis maintenance. PMID:27328324

  2. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  3. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  4. Pivotal role of pervasive neoplastic and stromal cells reprogramming in circulating tumor cells dissemination and metastatic colonization.

    Science.gov (United States)

    Meseure, Didier; Drak Alsibai, Kinan; Nicolas, Andre

    2014-12-01

    Reciprocal interactions between neoplastic cells and their microenvironment are crucial events in carcinogenesis and tumor progression. Pervasive stromal reprogramming and remodeling that transform a normal to a tumorigenic microenvironment modify numerous stromal cells functions, status redox, oxidative stress, pH, ECM stiffness and energy metabolism. These environmental factors allow selection of more aggressive cancer cells that develop important adaptive strategies. Subpopulations of cancer cells acquire new properties associating plasticity, stem-like phenotype, unfolded protein response, metabolic reprogramming and autophagy, production of exosomes, survival to anoikis, invasion, immunosuppression and therapeutic resistance. Moreover, by inducing vascular transdifferentiation of cancer cells and recruiting endothelial cells and pericytes, the tumorigenic microenvironment induces development of tumor-associated vessels that allow invasive cells to gain access to the tumor vessels and to intravasate. Circulating cancer cells can survive in the blood stream by interacting with the intravascular microenvironment, extravasate through the microvasculature and interact with the metastatic microenvironment of target organs. In this review, we will focus on many recent paradigms involved in the field of tumor progression. PMID:25523234

  5. Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

    Science.gov (United States)

    Yun, Maximina H.; Gates, Phillip B.; Brockes, Jeremy P.

    2014-01-01

    Summary In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species. PMID:25068118

  6. Innovative masonry blocks for partition walls

    OpenAIRE

    Vasconcelos, Graça; Poletti, Elisa; Medeiros, Pedro; Mendonça, Paulo; Carvalho, Pedro; Cunha, Sandra Raquel Leite; Camões, Aires; Lourenço, Paulo B.

    2010-01-01

    This paper intends to propose a non structural system of partition walls with monolithic blocks based on a composite material resulting from an admixture of cork and textile fibers combined with a non cement binder, gypsum. These blocks consist of two half blocks which have to be connected during laying process. The developed blocks were first tested under compressive and flexural loading in order to derive their mechanical behaviour. Different curing conditions were applied to the blocks dur...

  7. Endoscopic sphenopalatine ganglion block for pain relief

    OpenAIRE

    Murty, P. S. N.; Prasanna, Atma

    1998-01-01

    The anaesthetic effect of the sphenopalatine (SPG) block has been well utilized for intranasal topical anaesthesia but the analgesic efficacy of (SPG) block, though well documented in literature, has not been put into practice. The methods available for SPG block till date were blind as they do not visualize the foramen. Nasal endoscopies have been used to visualize the foramen for an effective block. The authors present their experience with the endoscopic sphenopalatine ganglion block for p...

  8. Block Algorithms for Quark Propagator Calculation

    OpenAIRE

    Pickles, Stephen M.; Collaboration, UKQCD

    1997-01-01

    Computing quark propagators in lattice QCD is equivalent to solving large, sparse linear systems with multiple right-hand sides. Block algorithms attempt to accelerate the convergence of iterative Krylov-subspace methods by solving the multiple systems simultaneously. This paper compares a block generalisation of the quasi-minimal residual method (QMR), Block Conjugate Gradient on the normal equation, Block Lanczos and ($\\gamma_5$-symmetric) Block BiConjugate Gradient.

  9. Telomeres and Telomerase in the Radiation Response: implications for instability, reprogramming, and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Brock James Sishc

    2015-11-01

    Full Text Available Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks; DSBs and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles telomeres and telomerase play in the response of human cells to ionizing radiations of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET gamma(γ-rays or high LET high charge, high energy (HZE particles, delivered either acutely or at low dose rates (LDR. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprogramming. Taken together, the results reported here establish the critical importance of

  10. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  11. Cancer: A Problem of Developmental Biology; Scientific Evidence for Reprogramming and Differentiation Therapy.

    Science.gov (United States)

    Sell, Stewart; Nicolini, Andrea; Ferrari, Paola; Biava, Pier M

    2016-01-01

    Current medical literature acknowledges that embryonic micro-environment is able to suppress tumor development. Administering carcinogenic substances during organogenesis in fact leads to embryonic malformations, but not to offspring tumor growth. Once organogenesis has ended, administration of carcinogenic substances causes a rise in offspring tumor development. These data indicate that cancer can be considered a deviation in normal development, which can be regulated by factors of the embryonic microenvironment. Furthermore, it has been demonstrated that teratoma differentiates into normal tissues once it is implanted in the embryo. Recently, it has been shown that implanting a melanoma in Zebrafish embryo did not result in a tumor development; however, it did in the adult specimen. This demonstrates that cancer cells can differentiate into normal tissues when implanted in the embryo. In addition, it was demonstrated that other tumors can revert into a normal phenotype and/or differentiate into normal tissue when implanted in the embryo. These studies led some authors to define cancer as a problem of developmental biology and to predict the present concept of "cancer stem cells theory". In this review, we record the most important researches about the reprogramming and differentiation treatments of cancer cells to better clarify how the substances taken from developing embryo or other biological substances can induce differentiation of malignant cells. Lastly, a model of cancer has been proposed here, conceived by one of us, which is consistent with the reality, as demonstrated by a great number of researches. This model integrates the theory of the "maturation arrest" of cancer cells as conceived by B. Pierce with the theory which describes cancer as a process of deterministic chaos determined by genetic and/or epigenetic alterations in differentiated cells, which leads a normal cell to become cancerous. All the researches here described demonstrated that cancer

  12. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family

    Science.gov (United States)

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  13. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    International Nuclear Information System (INIS)

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming

  14. Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family.

    Science.gov (United States)

    Manck-Götzenberger, Jasmin; Requena, Natalia

    2016-01-01

    Biotrophic microbes feeding on plants must obtain carbon from their hosts without killing the cells. The symbiotic Arbuscular mycorrhizal (AM) fungi colonizing plant roots do so by inducing major transcriptional changes in the host that ultimately also reprogram the whole carbon partitioning of the plant. AM fungi obtain carbohydrates from the root cortex apoplast, in particular from the periarbuscular space that surrounds arbuscules. However, the mechanisms by which cortical cells export sugars into the apoplast for fungal nutrition are unknown. Recently a novel type of sugar transporter, the SWEET, able to perform not only uptake but also efflux from cells was identified. Plant SWEETs have been shown to be involved in the feeding of pathogenic microbes and are, therefore, good candidates to play a similar role in symbiotic associations. Here we have carried out the first phylogenetic and expression analyses of the potato SWEET family and investigated its role during mycorrhiza symbiosis. The potato genome contains 35 SWEETs that cluster into the same four clades defined in Arabidopsis. Colonization of potato roots by the AM fungus Rhizophagus irregularis imposes major transcriptional rewiring of the SWEET family involving, only in roots, changes in 22 of the 35 members. None of the SWEETs showed mycorrhiza-exclusive induction and most of the 12 induced genes belong to the putative hexose transporters of clade I and II, while only two are putative sucrose transporters from clade III. In contrast, most of the repressed transcripts (10) corresponded to clade III SWEETs. Promoter-reporter assays for three of the induced genes, each from one cluster, showed re-localization of expression to arbuscule-containing cells, supporting a role for SWEETs in the supply of sugars at biotrophic interfaces. The complex transcriptional regulation of SWEETs in roots in response to AM fungal colonization supports a model in which symplastic sucrose in cortical cells could be cleaved

  15. Cutaneous Sensory Block Area, Muscle-Relaxing Effect, and Block Duration of the Transversus Abdominis Plane Block

    DEFF Research Database (Denmark)

    Støving, Kion; Rothe, Christian; Rosenstock, Charlotte V;

    2015-01-01

    BACKGROUND AND OBJECTIVES: The transversus abdominis plane (TAP) block is a widely used nerve block. However, basic block characteristics are poorly described. The purpose of this study was to assess the cutaneous sensory block area, muscle-relaxing effect, and block duration. METHODS: Sixteen...... healthy volunteers were randomized to receive an ultrasound-guided unilateral TAP block with 20 mL 7.5 mg/mL ropivacaine and placebo on the contralateral side. Measurements were performed at baseline and 90 minutes after performing the block. Cutaneous sensory block area was mapped and separated into a...... medial and lateral part by a vertical line through the anterior superior iliac spine. We measured muscle thickness of the 3 lateral abdominal muscle layers with ultrasound in the relaxed state and during maximal voluntary muscle contraction. The volunteers reported the duration of the sensory block and...

  16. Limiting Spectral Distribution of Block Matrices with Toeplitz Block Structure

    CERN Document Server

    Basu, Riddhipratim; Ganguly, Shirshendu; Hazra, Rajat Subhra

    2011-01-01

    We study two specific symmetric random block Toeplitz (of dimension $k \\times k$) matrices: where the blocks (of size $n \\times n$) are (i) matrices with i.i.d. entries, and (ii) asymmetric Toeplitz matrices. Under suitable assumptions on the entries, their limiting spectral distributions (LSDs) exist (after scaling by $\\sqrt{nk}$) when (a) $k$ is fixed and $n \\to\\infty$ (b) $n$ is fixed and $k\\rightarrow \\infty$ (c) $n$ and $k$ go to $\\infty$ simultaneously. Further the LSD's obtained in (a) and (b) coincide with those in (c) when $n$ or respectively $k$ tends to infinity. This limit in (c) is the semicircle law in case (i). In Case (ii) the limit is related to the limit of the random symmetric Toepiltz matrix as obtained by Bryc et al.(2006) and Hammond and Miller(2005).

  17. On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.

  18. Emplacement of small and large buffer blocks

    International Nuclear Information System (INIS)

    The report describes emplacement of a buffer structure encircling a spent fuel canister to be deposited in a vertical hole. The report deals with installability of various size blocks and with an emplacement gear, as well as evaluates the achieved quality of emplacement and the time needed for installing the buffer. Two block assembly of unequal size were chosen for examination. A first option involved small blocks, the use of which resulted in a buffer structure consisting of small sector blocks 200 mm in height. A second option involved large blocks, resulting in a buffer structure which consists of eight blocks. In these tests, the material chosen for both block options was concrete instead of bentonite. The emplacement test was a three-phase process. A first phase included stacking a two meter high buffer structure with small blocks for ensuring the operation of test equipment and blocks. A second phase included installing buffer structures with both block options to a height matching that of a canister-encircling cylindrical component. A third phase included testing also the installability of blocks to be placed above the canister by using small blocks. In emplacement tests, special attention was paid to the installability of blocks as well as to the time required for emplacement. Lifters for both blocks worked well. Due to the mass to be lifted, the lifter for large blocks had a more heavy-duty frame structure (and other lifting gear). The employed lifters were suspended in the tests on a single steel wire rope. Stacking was managed with both block sizes at adequate precision and stacked-up towers were steady. The stacking of large blocks was considerably faster. Therefore it is probably that the overall handling of the large blocks will be more convenient at a final disposal site. From the standpoint of reliability in lifting, the small blocks were safer to install above the canister. In large blocks, there are strict shape-related requirements which are

  19. Is age-related failure of metabolic reprogramming a principal mediator in idiopathic Parkinson's disease? Implications for treatment and inverse cancer risk.

    Science.gov (United States)

    Engel, Peter A

    2016-08-01

    Idiopathic Parkinson's disease (IPD) is a neurodegenerative disorder characterized by selective degeneration of the substantia nigra pars compacta (SNc), dorsal motor nucleus of the vagus and other vulnerable nervous system regions characterized by extensive axonal arborization and intense energy requirements. Systemic age-related depression of mitochondrial function, oxidative phosphorylation (OXPHOS) and depressed expression of genes supporting energy homeostasis is more severe in IPD than normal aging such that energy supply may exceed regional demand. In IPD, the overall risk of malignancy is reduced. Cancer is a collection of proliferative diseases marked by malignant transformation, dysregulated mitosis, invasion and metastasis. Many cancers demonstrate normal mitochondrial function, preserved OXPHOS, competent mechanisms of energy homeostasis, and metabolic reprogramming capacities that are lacking in IPD. Metabolic reprogramming adjusts OXPHOS and glycolytic pathways in response to changing metabolic needs. These opposite metabolic features form the basis of a two component hypothesis. First, that depressed mitochondrial function, OXPHOS deficiency and impaired metabolic reprogramming contribute to focal energy failure, neurodegeneration and disease expression in IPD. Second, that the same systemic metabolic deficits inhibit development and proliferation of malignancies in IPD. Studies of mitochondrial aging, familial PD (FPD), the lysosomal storage disorder, Gaucher's disease, Parkinson's disease cybrids, the mitochondrial cytopathies, and disease-related metabolic reprogramming both in IPD and cancer provide support for this model. PMID:27372878

  20. C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4

    DEFF Research Database (Denmark)

    Di Stefano, Bruno; Collombet, Samuel; Jakobsen, Janus Schou;

    2016-01-01

    reprogrammed into iPSCs by the Yamanaka factors OSKM. Here we show that C/EBPα post-transcriptionally increases the abundance of several hundred proteins, including Lsd1, Hdac1, Brd4, Med1 and Cdk9, components of chromatin-modifying complexes present at super-enhancers. Lsd1 was found to be required for B cell...

  1. Compact planar microwave blocking filters

    Science.gov (United States)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  2. Multi-level block permutation.

    Science.gov (United States)

    Winkler, Anderson M; Webster, Matthew A; Vidaurre, Diego; Nichols, Thomas E; Smith, Stephen M

    2015-12-01

    Under weak and reasonable assumptions, mainly that data are exchangeable under the null hypothesis, permutation tests can provide exact control of false positives and allow the use of various non-standard statistics. There are, however, various common examples in which global exchangeability can be violated, including paired tests, tests that involve repeated measurements, tests in which subjects are relatives (members of pedigrees) - any dataset with known dependence among observations. In these cases, some permutations, if performed, would create data that would not possess the original dependence structure, and thus, should not be used to construct the reference (null) distribution. To allow permutation inference in such cases, we test the null hypothesis using only a subset of all otherwise possible permutations, i.e., using only the rearrangements of the data that respect exchangeability, thus retaining the original joint distribution unaltered. In a previous study, we defined exchangeability for blocks of data, as opposed to each datum individually, then allowing permutations to happen within block, or the blocks as a whole to be permuted. Here we extend that notion to allow blocks to be nested, in a hierarchical, multi-level definition. We do not explicitly model the degree of dependence between observations, only the lack of independence; the dependence is implicitly accounted for by the hierarchy and by the permutation scheme. The strategy is compatible with heteroscedasticity and variance groups, and can be used with permutations, sign flippings, or both combined. We evaluate the method for various dependence structures, apply it to real data from the Human Connectome Project (HCP) as an example application, show that false positives can be avoided in such cases, and provide a software implementation of the proposed approach. PMID:26074200

  3. A conformal block Farey tail

    CERN Document Server

    Maloney, Alexander; Ng, Gim Seng

    2016-01-01

    We investigate the constraints of crossing symmetry on CFT correlation functions. Four point conformal blocks are naturally viewed as functions on the upper-half plane, on which crossing symmetry acts by PSL(2,Z) modular transformations. This allows us to construct a unique, crossing symmetric function out of a given conformal block by averaging over PSL(2,Z). In some two dimensional CFTs the correlation functions are precisely equal to the modular average of the contributions of a finite number of light states. For example, in the two dimensional Ising and tri-critical Ising model CFTs, the correlation functions of identical operators are equal to the PSL(2,Z) average of the Virasoro vacuum block; this determines the 3 point function coefficients uniquely in terms of the central charge. The sum over PSL(2,Z) in CFT2 has a natural AdS3 interpretation as a sum over semi-classical saddle points, which describe particles propagating along rational tangles in the bulk. We demonstrate this explicitly for the corre...

  4. Interfaces between Block Copolymer Domains

    Science.gov (United States)

    Kim, Jaeup; Jeong, Seong-Jun; Kim, Sang Ouk

    2011-03-01

    Block copolymers naturally form nanometer scale structures which repeat their geometry on a larger scale. Such a small scale periodic pattern can be used for various applications such as storage media, nano-circuits and optical filters. However, perfect alignment of block copolymer domains in the macroscopic scale is still a distant dream. The nanostructure formation usually occurs with spontaneously broken symmetry; hence it is easily infected by topological defects which sneak in due to entropic fluctuation and incomplete annealing. Careful annealing can gradually reduce the number of defects, but once kinetically trapped, it is extremely difficult to remove all the defects. One of the main reasons is that the defect finds a locally metastable morphology whose potential depth is large enough to prohibit further morphology evolution. In this work, the domain boundaries between differently oriented lamellar structures in thin film are studied. For the first time, it became possible to quantitatively study the block copolymer morphology in the transitional region, and it was shown that the twisted grain boundary is energetically favorable compared to the T-junction grain boundary. [Nano Letters, 9, 2300 (2010)]. This theoretical method successfully explained the experimental results.

  5. [THE TECHNOLOGY "CELL BLOCK" IN CYTOLOGICAL PRACTICE].

    Science.gov (United States)

    Volchenko, N N; Borisova, O V; Baranova, I B

    2015-08-01

    The article presents summary information concerning application of "cell block" technology in cytological practice. The possibilities of implementation of various modern techniques (immune cytochemnical analysis. FISH, CISH, polymerase chain reaction) with application of "cell block" method are demonstrated. The original results of study of "cell block" technology made with gelatin, AgarCyto and Shadon Cyoblock set are presented. The diagnostic effectiveness of "cell block" technology and common cytological smear and also immune cytochemical analysis on samples of "cell block" technology and fluid cytology were compared. Actually application of "cell block" technology is necessary for ensuring preservation of cell elements for subsequent immune cytochemical and molecular genetic analysis. PMID:26596046

  6. Some new construction methods of variance balanced block designs with repeated blocks

    OpenAIRE

    Ceranka, Bronisław; Graczyk, Małgorzata

    2014-01-01

    Some new construction methods of the variance balanced block designs with repeated blocks are given. They are based on the specialized product of incidence matrices of the balanced incomplete block designs.

  7. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation

    Institute of Scientific and Technical Information of China (English)

    Jing Jiang; Wenjian Lv; Xiaoying Ye; Lingbo Wang; Man Zhang; Hui Yang; Maja Okuka

    2013-01-01

    Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy.However,genomic abnormalities exist in human iPS cells,and most mouse iPS cells are not fully pluripotent,as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors.In contrast,nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA.We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming,and improve the quality of the resultant iPS cells.To test this hypothesis,we screened for factors that could decrease DDR signals during iPS cell induction.We determined that Zscan4,in combination with the Yamanaka factors,not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation.The inclusion of Zscan4 stabilized the genomic DNA,resulting in p53 downregulation.Furthermore,Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism.As a result,iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells.Strikingly,more than 50%of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA,compared to 1/12 for lines produced using the classical Yamanaka factors.Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.

  8. Using Quilt Blocks to Construct Understanding

    Science.gov (United States)

    Westegaard, Susanne K.

    2008-01-01

    The article documents student experiences with quilt blocks in a mathematics classroom. Using blocks as tools, students construct their understanding of perimeter, area, probability, and transformations. (Contains 9 figures.)

  9. Multigrid Methods for General Block Toeplitz Matrices

    OpenAIRE

    Thomas Huckle; Jochen Staudacher

    2016-01-01

    In this paper we discuss multigrid methods for symmetric positive definite Block Toeplitz matrices. Our Block Toeplitz systems are general in the sense that the individual blocks are not necessarily Toeplitz. We investigate how transfer operators for prolongation and restriction have to be chosen such that our multigrid algorithms converge quickly. We will point out why these transfer operators can be understood as block matrices as well. We explain how our new algorithms can also be combined...

  10. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jun Hyoung Park

    2016-03-01

    Full Text Available Transmitochondrial cybrids and multiple OMICs approaches were used to understand mitochondrial reprogramming and mitochondria-regulated cancer pathways in triple-negative breast cancer (TNBC. Analysis of cybrids and established breast cancer (BC cell lines showed that metastatic TNBC maintains high levels of ATP through fatty acid β oxidation (FAO and activates Src oncoprotein through autophosphorylation at Y419. Manipulation of FAO including the knocking down of carnitine palmitoyltransferase-1A (CPT1 and 2 (CPT2, the rate-limiting proteins of FAO, and analysis of patient-derived xenograft models confirmed the role of mitochondrial FAO in Src activation and metastasis. Analysis of TCGA and other independent BC clinical data further reaffirmed the role of mitochondrial FAO and CPT genes in Src regulation and their significance in BC metastasis.

  11. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation

    Directory of Open Access Journals (Sweden)

    Diego Balboa

    2015-09-01

    Full Text Available CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.

  12. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S;

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet...... weight and pancreatic beta-cell mass. Adult female, but not male, offspring of HFD-fed fathers were glucose intolerant and resistant to HFD-induced weight gain. This phenotype was perpetuated in the F2 progeny, indicating transgenerational epigenetic inheritance. The epigenome of spermatozoa from HFD...... provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  13. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Park, Jun Hyoung; Vithayathil, Sajna; Kumar, Santosh; Sung, Pi-Lin; Dobrolecki, Lacey Elizabeth; Putluri, Vasanta; Bhat, Vadiraja B; Bhowmik, Salil Kumar; Gupta, Vineet; Arora, Kavisha; Wu, Danli; Tsouko, Efrosini; Zhang, Yiqun; Maity, Suman; Donti, Taraka R; Graham, Brett H; Frigo, Daniel E; Coarfa, Cristian; Yotnda, Patricia; Putluri, Nagireddy; Sreekumar, Arun; Lewis, Michael T; Creighton, Chad J; Wong, Lee-Jun C; Kaipparettu, Benny Abraham

    2016-03-01

    Transmitochondrial cybrids and multiple OMICs approaches were used to understand mitochondrial reprogramming and mitochondria-regulated cancer pathways in triple-negative breast cancer (TNBC). Analysis of cybrids and established breast cancer (BC) cell lines showed that metastatic TNBC maintains high levels of ATP through fatty acid β oxidation (FAO) and activates Src oncoprotein through autophosphorylation at Y419. Manipulation of FAO including the knocking down of carnitine palmitoyltransferase-1A (CPT1) and 2 (CPT2), the rate-limiting proteins of FAO, and analysis of patient-derived xenograft models confirmed the role of mitochondrial FAO in Src activation and metastasis. Analysis of TCGA and other independent BC clinical data further reaffirmed the role of mitochondrial FAO and CPT genes in Src regulation and their significance in BC metastasis. PMID:26923594

  14. Bullet-Block Science Video Puzzle

    Science.gov (United States)

    Shakur, Asif

    2015-01-01

    A science video blog, which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a…

  15. New Considerations of Turbo Block Codes

    Institute of Scientific and Technical Information of China (English)

    YUEDianwu; EdSHWEDYK

    2004-01-01

    It is shown that (1) a general linear systematic block code can be expressed as a turbo block code and therefore can be decoded using any turbo decoding algorithm; (2) a turbo block code can be also encoded and decoded without any interleaver with the same performance as when an interleaver is present.

  16. 31 CFR 500.319 - Blocked account.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account. 500.319 Section 500... § 500.319 Blocked account. The term blocked account shall mean an account in which any designated national has an interest, with respect to which account payments, transfers or withdrawals of...

  17. 31 CFR 515.319 - Blocked account.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Blocked account. 515.319 Section 515... § 515.319 Blocked account. The term blocked account shall mean an account in which any designated national has an interest, with respect to which account payments, transfers or withdrawals or...

  18. Practical Binary Adaptive Block Coder

    CERN Document Server

    Reznik, Yuriy A

    2007-01-01

    This paper describes design of a low-complexity algorithm for adaptive encoding/ decoding of binary sequences produced by memoryless sources. The algorithm implements universal block codes constructed for a set of contexts identified by the numbers of non-zero bits in previous bits in a sequence. We derive a precise formula for asymptotic redundancy of such codes, which refines previous well-known estimate by Krichevsky and Trofimov, and provide experimental verification of this result. In our experimental study we also compare our implementation with existing binary adaptive encoders, such as JBIG's Q-coder, and MPEG AVC (ITU-T H.264)'s CABAC algorithms.

  19. Reprogramming Caspase-7 Specificity by Regio-Specific Mutations and Selection Provides Alternate Solutions for Substrate Recognition.

    Science.gov (United States)

    Hill, Maureen E; MacPherson, Derek J; Wu, Peng; Julien, Olivier; Wells, James A; Hardy, Jeanne A

    2016-06-17

    The ability to routinely engineer protease specificity can allow us to better understand and modulate their biology for expanded therapeutic and industrial applications. Here, we report a new approach based on a caged green fluorescent protein (CA-GFP) reporter that allows for flow-cytometry-based selection in bacteria or other cell types enabling selection of intracellular protease specificity, regardless of the compositional complexity of the protease. Here, we apply this approach to introduce the specificity of caspase-6 into caspase-7, an intracellular cysteine protease important in cellular remodeling and cell death. We found that substitution of substrate-contacting residues from caspase-6 into caspase-7 was ineffective, yielding an inactive enzyme, whereas saturation mutagenesis at these positions and selection by directed evolution produced active caspases. The process produced a number of nonobvious mutations that enabled conversion of the caspase-7 specificity to match caspase-6. The structures of the evolved-specificity caspase-7 (esCasp-7) revealed alternate binding modes for the substrate, including reorganization of an active site loop. Profiling the entire human proteome of esCasp-7 by N-terminomics demonstrated that the global specificity toward natural protein substrates is remarkably similar to that of caspase-6. Because the esCasp-7 maintained the core of caspase-7, we were able to identify a caspase-6 substrate, lamin C, that we predict relies on an exosite for substrate recognition. These reprogrammed proteases may be the first tool built with the express intent of distinguishing exosite dependent or independent substrates. This approach to specificity reprogramming should also be generalizable across a wide range of proteases. PMID:27032039

  20. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available UNLABELLED: The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules. METHODS AND RESULTS: SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS: Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  1. Isostatic compression of buffer blocks. Middle scale

    Energy Technology Data Exchange (ETDEWEB)

    Ritola, J.; Pyy, E. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-01-15

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  2. Isostatic compression of buffer blocks. Middle scale

    International Nuclear Information System (INIS)

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  3. Thyroid blocking after nuclear accidents

    International Nuclear Information System (INIS)

    Following the Chernobyl accident a marked increase in thyroid cancer incidence among the children in Belarus, the Ukraine and Russia has been detected, strongly suggesting a causal relationship to the large amounts of radioactive iodine isotopes in the resulting fallout. Taking into account the Chernobyl experience the German Committee on Radiation Protection decided to reduce the intervention levels on the basis of the 1989 WHO recommendations and adopted a new concept concerning thyroid blocking in response to nuclear power plant accidents. Experimental animal studies and theoretical considerations show that thyroid blocking with potassium iodide (KI) in a dose of about 1.4 mg per kg body weight is most effective in reducing irradiation to the thyroid from the intake of radioiodine nuclides, provided KI is given within 2 hours after exposure. According to the new concept, persons over 45 years of age should not take iodine tablets because the drug could cause a greater health risk due to prevalent functional thyroid autonomy in this age group than the radioactive iodine averted by KI. On the basis of accident analysis and the new philosophy suitable distribution strategies and logistics are proposed and discussed. (orig.)

  4. Seismicity of the Jalisco Block

    Science.gov (United States)

    Nunez-Cornu, F. J.; Rutz, M.; Camarena-Garcia, M.; Trejo-Gomez, E.; Reyes-Davila, G.; Suarez-Plascencia, C.

    2002-12-01

    In April 2002 began to transmit the stations of the first phase of Jalisco Telemetric Network located at the northwest of Jalisco Block and at the area of Volcan de Fuego (Colima Volcano), in June were deployed four additional MarsLite portable stations in the Bahia de Banderas area, and by the end of August one more portable station at Ceboruco Volcano. The data of these stations jointly with the data from RESCO (Colima Telemetric Network) give us the minimum seismic stations coverage to initiate in a systematic and permanent way the study of the seismicity in this very complex tectonic region. A preliminary analysis of seismicity based on the events registered by the networks using a shutter algorithm, confirms several important features proposed by microseismicity studies carried out between 1996 and 1998. A high level of seismicity inside and below of Rivera plate is observed, this fact suggest a very complex stress pattern acting on this plate. Shallow seismicity at south and east of Bahia de Banderas also suggest a complex stress pattern in this region of the Jalisco Block, events at more than 30 km depth are located under the mouth of the bay and in face of it, a feature denominated Banderas Boundary mark the change of the seismic regime at north of this latitude (20.75°N), however some shallow events were located at the region of Nayarit.

  5. Ganglion block. When and how?

    International Nuclear Information System (INIS)

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.)

  6. Self-assembly of block copolymers

    Directory of Open Access Journals (Sweden)

    Hidenori Otsuka

    2001-05-01

    Full Text Available Block copolymers in a selective solvent have a tendency to self-assemble at surfaces and into micelles1–4. At an aqueous interface, the amphiphilic property of block copolymers composed of hydrophilic and hydrophobic segments can cause the distal end of the hydrophilic chain to extend into the bulk aqueous solution, anchoring the hydrophilic block to the substrate surface through hydrophobic segments1, 2. In an aqueous solution, micelles with core-shell structure are formed by the segregation of insoluble blocks into the core, which is surrounded by a hydrophilic shell composed of hydrophilic blocks3, 4. This interfacial activity of amphiphilic block copolymers provides their utility in the biomedical field as colloidal dispersants, surface modifiers and drug carriers, prompting many studies of block copolymer adsorption on solid surfaces5, 6, 7, 8, force measurements between tethered layers9, 10, 11 and the characterization of micelle properties12, 13, 14.

  7. General Floorplans with L/T-Shaped Blocks Using Corner Block List

    Institute of Scientific and Technical Information of China (English)

    Yu-Chun Ma; Xian-Long Hong; She-Qin Dong; C.K.Cheng; Jun Gu

    2006-01-01

    With the recent advent of deep submicron technology and new packing schemes, the components in the integrated circuit are often not rectangular. On the basis of the representation of Corner Block List (CBL), we propose a new method of handling rectilinear blocks. In this paper, the handling of the rectilinear blocks is simplified by transforming the L/T-shaped block problem into the align-abutment constraint problem. We devise the block rejoining process and block alignment operation for forming the L/T-shaped blocks into their original configurations. The shape flexibility of the soft blocks, and the rotation and reflection of L/T-shaped blocks are exploited to obtain a tight packing. The empty rooms are introduced to the process of block rejoining. The efficiency and effectiveness of the proposed method are demonstrated by the experimental results on a set of some benchmark examples.

  8. Continuous-time block-monotone Markov chains and their block-augmented truncations

    OpenAIRE

    Masuyama, Hiroyuki

    2015-01-01

    This paper considers continuous-time block-monotone Markov chains (BMMCs) and their block-augmented truncations. We first introduce the block-monotonicity and block-wise dominance relation for continuous-time Markov chains and then provide some fundamental results on the two notions. Using these results, we show that the stationary probability vectors obtained by the block-augmented truncation converge to the stationary probability vector of the original BMMC. We also show that the last-colum...

  9. Computing eigenvectors of block tridiagonal matrices based on twisted block factorizations

    OpenAIRE

    König, Gerhard; Moldaschl, Michael; Gansterer, Wilfried N.

    2012-01-01

    New methods for computing eigenvectors of symmetric block tridiagonal matrices based on twisted block factorizations are explored. The relation of the block where two twisted factorizations meet to an eigenvector of the block tridiagonal matrix is reviewed. Based on this, several new algorithmic strategies for computing the eigenvector efficiently are motivated and designed. The underlying idea is to determine a good starting vector for an inverse iteration process from the twisted block fact...

  10. A comparison between caudal block versus splash block for postoperative analgesia following inguinal herniorrhaphy in children

    OpenAIRE

    Cheon, Jun Kong; Park, Cheon Hee; Hwang, Kan Taeck; Choi, Bo Yoon

    2011-01-01

    Background We wanted to determine the postoperative analgesic efficacy of preincisional caudal epidural block versus instillation (splash block) following inguinal herniorrhaphy in children. Methods Thirty children (age range: 1-7 years) who were scheduled to undergo inguinal herniorrhaphy were divided into 2 groups: the caudal block group and the splash block group with 15 children in each group. Tracheal intubation was performed. Fifteen children received caudal block with 1.0 ml/kg of 0.25...

  11. LARGE BLOCK TEST STATUS REPORT

    International Nuclear Information System (INIS)

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved. The United States Department of Energy (DOE) is investigatinq the suitability of Yucca Mountain (YM) as a potential site for the nation's first high-level nuclear waste repository. As shown in Fig. 1-1, the site is located about 120 km northwest of Las Vegas, Nevada, in an area of uninhabited desert

  12. System for Gauge Blocks Diagnostics

    Czech Academy of Sciences Publication Activity Database

    Buchta, Zdeněk; Mikel, Břetislav; Čížek, Martin; Lazar, Josef; Číp, Ondřej

    Düsseldorf: VDI Verlag GmbH, 2011, s. 91-96. ISBN 978-3-18-092156-3. ISSN 0083-5560. [IMEKO Symposium - Laser Metrology for Precision Measurement and Inspection in Industry 2011 /10./. Braunschweig (DE), 12.09.2011-14.09.2011] R&D Projects: GA ČR GP102/09/P293; GA ČR GPP102/11/P819; GA ČR GAP102/10/1813; GA MPO 2A-1TP1/127; GA MŠk ED0017/01/01; GA MŠk(CZ) LC06007 Institutional research plan: CEZ:AV0Z20650511 Keywords : gauge blocks calibration * low-coherence interferometry * laser interferometry Subject RIV: BH - Optics, Masers, Lasers

  13. Landscape block of geoinformation system

    International Nuclear Information System (INIS)

    Expirience of constructing landscape block of geoinformation system, designated for regional geoecological forecasting on the basis of mega-line-Delta computer is presented. Works were conducted in summer of 1986 for the purpose of forecasting radionuclide migration in 30-km zone of the Chernobyl accident, as well as evaluation of radioecological situation in Kiev, Zhitomir and Chernigov regions. System design work lies in choice and construction of information model of the natural medium, reflected and processed in data bank by methods of information science. Three groups were distinguished in examined region according to intensity of substance migration: 1) zones of preferred evacuation with surface run-off, 2) transit zones, 3) zones of evacuation and accumulation of flood plain substance

  14. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer.

    Science.gov (United States)

    Mondal, Susmita; Roy, Debarshi; Camacho-Pereira, Juliana; Khurana, Ashwani; Chini, Eduardo; Yang, Lifeng; Baddour, Joelle; Stilles, Katherine; Padmabandu, Seth; Leung, Sam; Kalloger, Steve; Gilks, Blake; Lowe, Val; Dierks, Thomas; Hammond, Edward; Dredge, Keith; Nagrath, Deepak; Shridhar, Viji

    2015-10-20

    Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling. Here we report that HSulf-1, a known putative tumor suppressor, is a negative regulator of glycolysis. Silencing of HSulf-1 expression in OV202 cell line increased glucose uptake and lactate production by upregulating glycolytic genes such as Glut1, HKII, LDHA, as well as metabolites. Conversely, HSulf-1 overexpression in TOV21G cells resulted in the down regulation of glycolytic enzymes and reduced glycolytic phenotype, supporting the role of HSulf-1 loss in enhanced aerobic glycolysis. HSulf-1 deficiency mediated glycolytic enhancement also resulted in increased inhibitory phosphorylation of pyruvate dehydrogenase (PDH) thus blocking the entry of glucose flux into TCA cycle. Consistent with this, metabolomic and isotope tracer analysis showed reduced glucose flux into TCA cycle. Moreover, HSulf-1 loss is associated with lower oxygen consumption rate (OCR) and impaired mitochondrial function. Mechanistically, lack of HSulf-1 promotes c-Myc induction through HB-EGF-mediated p-ERK activation. Pharmacological inhibition of c-Myc reduced HB-EGF induced glycolytic enzymes implicating a major role of c-Myc in loss of HSulf-1 mediated altered glycolytic pathway in OVCA. Similarly, PG545 treatment, an agent that binds to heparan binding growth factors and sequesters growth factors away from their ligand also blocked HB-EGF signaling and reduced glucose uptake in vivo in HSulf-1 deficient cells. PMID:26378042

  15. Updating the QR decomposition of block tridiagonal and block Hessenberg matrices generated by block Krylov space methods

    OpenAIRE

    Gutknecht, Martin; Schmelzer, Thomas

    2005-01-01

    For MINRES and SYMMLQ it is essential to compute the QR decompositions of tridiagonal coefficient matrices gained in the Lanczos process. Likewise, for GMRES one has to find those of Hessenberg matrices. These QR decompositions are computed by an update scheme where in every step a single Givens rotation is constructed. Generalizing this approach we introduce a block-wise update scheme for the QR decomposition of the block tridiagonal and block Hessenberg matrices that come up in generalizati...

  16. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol®-resistant ovarian cancer

    OpenAIRE

    Shen, Yao-An; Li, Wai-Hou; Chen, Po-Hung; He, Chun-Lin; Chang, Yen-Hou; Chuang, Chi-Mu

    2015-01-01

    Taxol® remained as the mainstay therapeutic agent in the treatment of ovarian cancer, however recurrence rate is still high. Cancer stem cells (CSCs) represent a subset of cells in the bulk of tumors and play a central role in inducing drug resistance and recurrence. Furthermore, cancer metabolism has been an area under intensive investigation, since accumulating evidence has shown that CSCs and cancer metabolism are closely linked, an effect named as metabolic reprogramming. In this work, we...

  17. Members of the NODE (Nanog and Oct4-associated deacetylase) complex and SOX-2 promote the initiation of a natural cellular reprogramming event in vivo.

    Science.gov (United States)

    Kagias, Konstantinos; Ahier, Arnaud; Fischer, Nadine; Jarriault, Sophie

    2012-04-24

    Differentiated cells can be forced to change identity, either to directly adopt another differentiated identity or to revert to a pluripotent state. Direct reprogramming events can also occur naturally. We recently characterized such an event in Caenorhabditis elegans, in which a rectal cell switches to a neuronal cell. Here we have used this single-cell paradigm to investigate the molecular requirements of direct cell-type conversion, with a focus on the early steps. Our genetic analyses revealed the requirement of sem-4/Sall, egl-27/Mta, and ceh-6/Oct, members of the NODE complex recently identified in embryonic stem (ES) cells, and of the OCT4 partner sox-2, for the initiation of this natural direct reprogramming event. These four factors have been shown to individually impact on ES cell pluripotency; however, whether they act together to control cellular potential during development remained an open question. We further found that, in addition to acting at the same time, these factors physically associate, suggesting that they could act together as a NODE-like complex during this in vivo process. Finally, we have elucidated the functional domains in EGL-27/MTA that mediate its reprogramming activity in this system and have found that modulation of the posterior HOX protein EGL-5 is a downstream event to allow the initiation of Y identity change. Our data reveal unique in vivo functions in a natural direct reprogramming event for these genes that impact on ES cells pluripotency and suggest that conserved nuclear events could be shared between different cell plasticity phenomena across phyla. PMID:22493276

  18. Members of the NODE (Nanog and Oct4-associated deacetylase) complex and SOX-2 promote the initiation of a natural cellular reprogramming event in vivo

    OpenAIRE

    Kagias, Konstantinos; Ahier, Arnaud; Fischer, Nadine; JARRIAULT, Sophie

    2012-01-01

    Differentiated cells can be forced to change identity, either to directly adopt another differentiated identity or to revert to a pluripotent state. Direct reprogramming events can also occur naturally. We recently characterized such an event in Caenorhabditis elegans, in which a rectal cell switches to a neuronal cell. Here we have used this single-cell paradigm to investigate the molecular requirements of direct cell-type conversion, with a focus on the early steps. Our genetic analyses rev...

  19. Readiness for surgery after axillary block

    DEFF Research Database (Denmark)

    Koscielniak-Nielsen, Z J; Stens-Pedersen, H L; Lippert, F K

    1997-01-01

    We have assessed prospectively the time to readiness for surgery following axillary block (sum of block performance and latency times) in 80 patients. The brachial plexus was identified using a nerve stimulator, and anaesthetized with 45 mL of mepivacaine 1% with adrenaline 5 micrograms mL-1. In...... group 1 (single injection) the whole volume of mepivacaine was injected after locating only one of the plexus nerves. In group 2 (multiple injections) at least three plexus nerves were located, and the volume of mepivacaine was divided between them. Sensory block was assessed by a blinded observer every...... required less time for block performance (mean 5.5 min) than multiple injections (mean 9.5 min), P <0.0001. However, latency of the block was longer and the requirement for supplemental nerve blocks was greater, after single injections (33 min and 57%) than after multiple injections (15.5 min and 7...

  20. Lymphatic Reprogramming by Kaposi Sarcoma Herpes Virus Promotes the Oncogenic Activity of the Virus-Encoded G-protein Coupled Receptor

    Science.gov (United States)

    Aguilar, Berenice; Choi, Inho; Choi, Dongwon; Chung, Hee Kyoung; Lee, Sunju; Yoo, Jaehyuk; Lee, Yong Suk; Maeng, Yong Sun; Lee, Ha Neul; Park, Eunkyung; Kim, Kyu Eui; Kim, Nam Yoon; Baik, Jae Myung; Jung, Jae U.; Koh, Chester J.; Hong, Young-Kwon

    2012-01-01

    Kaposi sarcoma (KS), the most common cancer in HIV-positive individuals, is caused by endothelial transformation mediated by the KS herpes virus (KSHV)-encoded G-protein coupled receptor (vGPCR). Infection of blood vascular endothelial cells (BECs) by KSHV reactivates an otherwise silenced embryonic program of lymphatic differentiation. Thus, KS tumors express numerous lymphatic endothelial cell (LEC)-signature genes. A key unanswered question is how lymphatic reprogramming by the virus promotes tumorigenesis leading to KS formation. In this study, we present evidence that this process creates an environment needed to license the oncogenic activity of vGPCR. We found that the G-protein regulator RGS4 is an inhibitor of vGPCR that is expressed in BECs, but not in LECs. RGS4 was downregulated by the master regulator of LEC differentiation PROX1, which is upregulated by KSHV and directs KSHV-induced lymphatic reprogramming. Moreover, we found that KSHV upregulates the nuclear receptor LRH1, which physically interacts with PROX1 and synergizes with it to mediate repression of RGS4 expression. Mechanistic investigations revealed that RGS4 reduced vGPCR-enhanced cell proliferation, migration, VEGF expression and Akt activation and to suppress tumor formation induced by vGPCR. Our findings resolve long-standing questions about the pathological impact of KSHV-induced reprogramming of host cell identity, and they offer biological and mechanistic insights supporting the hypothesis that a lymphatic microenvironment is more favorable for KS tumorigenesis. PMID:22942256

  1. Advanced heart block in acute rheumatic fever

    OpenAIRE

    Hubail, Zakariya; Ebrahim, Ishaq M.

    2015-01-01

    First degree heart block is considered a minor criterion for the diagnosis of this condition. The cases presented here demonstrate that higher degrees of heart block do occur in rheumatic fever. Children presenting with acquired heart block should be worked-up for rheumatic fever. Likewise, it is imperative to serially follow the electrocardiogram in patients already diagnosed with acute rheumatic fever, as the conduction abnormalities can change during the course of the disease.

  2. Functional Nanoporous Polymers from Block Copolymer Precursors

    OpenAIRE

    Guo, Fengxiao

    2010-01-01

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential applications as, e.g., membranes for separation and purification, templates for nanostructured materials, sensors, substrates for catalysis, low dielectric constant materials, photonic materials, and...

  3. Block methods for linear Hamiltonian systems

    OpenAIRE

    Tian, Hongjiong; Chen, Bailin

    2014-01-01

    For the numerical treatment of Hamiltonian differential equations,symplectic integrators are regarded as the most suitable choice.In this paper we are concerned with the applicability of block methods for the discrete approximate solution of linear Hamiltonian systems.The k-dimensional block methods are convergent of order at least k+1 for ordinary differential equations.We provide conditions on the coefficients of the equivalent block methods in order to maintain two important properties of...

  4. Recent developments in paediatric neuraxial blocks

    Directory of Open Access Journals (Sweden)

    Vrushali Chandrashekhar Ponde

    2012-01-01

    Full Text Available Paediatric anaesthesia and paediatric regional anaesthesia are intertwined. Almost all surgeries unless contradicted could be and should be supplemented with a regional block. The main objective of this review is to elaborate on the recent advances of the central neuraxial blocks, such as application of ultrasound guidance and electrical stimulation in the pursuit of safety and an objective end point. This review also takes account of the traditional technique and understand the benefits as well the risk of each as compared with the recent technique. The recent trends in choosing the most appropriate peripheral block for a given surgery thereby sparing the central neuroaxis is considered. A penile block for circumcision or a sciatic block for unilateral foot surgery, rather than caudal epidural would have a better risk benefit equation. Readers will find a special mention on the recent thoughts on continuous epidural analgesia in paediatrics, especially its rise and fall, yet its unique importance. Lastly, the issue of block placements under sedation or general anaesthesia with its implication in this special population is dealt with. We conducted searches in MEDLINE (PubMed and assessed the relevance of the abstracts of citations identified from literature searches. The search was carried out in English, for last 10 years, with the following key words: Recent advances in paediatric regional anaesthesia; ultrasound guidance for central neuraxial blocks in children; role of electrical stimulation in neuraxial blocks in children; complications in neuraxial block. Full-text articles of potentially relevant abstracts were retrieved for further review.

  5. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues.

    Directory of Open Access Journals (Sweden)

    Chongsheng He

    2012-08-01

    Full Text Available In plants, multiple detached tissues are capable of forming a pluripotent cell mass, termed callus, when cultured on media containing appropriate plant hormones. Recent studies demonstrated that callus resembles the root-tip meristem, even if it is derived from aerial organs. This finding improves our understanding of the regeneration process of plant cells; however, the molecular mechanism that guides cells of different tissue types to form a callus still remains elusive. Here, we show that genome-wide reprogramming of histone H3 lysine 27 trimethylation (H3K27me3 is a critical step in the leaf-to-callus transition. The Polycomb Repressive Complex 2 (PRC2 is known to function in establishing H3K27me3. By analyzing callus formation of mutants corresponding to different histone modification pathways, we found that leaf blades and/or cotyledons of the PRC2 mutants curly leaf swinger (clf swn and embryonic flower2 (emf2 were defective in callus formation. We identified the H3K27me3-covered loci in leaves and calli by a ChIP-chip assay, and we found that in the callus H3K27me3 levels decreased first at certain auxin-pathway genes. The levels were then increased at specific leaf genes but decreased at a number of root-regulatory genes. Changes in H3K27me3 levels were negatively correlated with expression levels of the corresponding genes. One possible role of PRC2-mediated H3K27me3 in the leaf-to-callus transition might relate to elimination of leaf features by silencing leaf-regulatory genes, as most leaf-preferentially expressed regulatory genes could not be silenced in the leaf explants of clf swn. In contrast to the leaf explants, the root explants of both clf swn and emf2 formed calli normally, possibly because the root-to-callus transition bypasses the leaf gene silencing process. Furthermore, our data show that PRC2-mediated H3K27me3 and H3K27 demethylation act in parallel in the reprogramming of H3K27me3 during the leaf-to-callus transition

  6. PACS photometer calibration block analysis

    CERN Document Server

    Moór, A; Kiss, Cs; Balog, Z; Billot, N; Marton, G

    2013-01-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic h...

  7. Building blocks of the universe

    International Nuclear Information System (INIS)

    COSI [Ohio's Center for Science and Industry], a well established science center, and SciTech, an emerging one, have formed a collaboration to develop a group of original interactive exhibits conveying to a wide audience the nature of the most fundamental features of the Universe, as revealed in the fascinating world of nuclear and particle science. These new exhibits will add to, and be supported by, the basic science exhibits which have already attracted large numbers of visitors to both centers. The new project, called Building Blocks of the Universe, aims to foster an appreciation of the way all features of the Universe arise from simple, basic rules and to lead the visitor from the perceived complexities of our surroundings, to the unperceived, but simpler features of the sub-nuclear world. It has already become apparent from individual prototypes that these simple but immensely far-reaching ideas can indeed be conveyed by hands-on exhibits. These exhibits will be linked and enhanced by an effective museum environment, using pictorial diagrams, accurate non-technical text, and artistic displays to create an atmosphere in which visitors can learn about phenomena beyond the range of direct perception. This paper describes the goals, content and organization of the exhibition. The authors also outline their experience with prototype exhibits, and thereby invite additional input into the development process

  8. Arsenic hyperaccumulation induces metabolic reprogramming in Pityrogramma calomelanos to reduce oxidative stress.

    Science.gov (United States)

    Campos, Naiara V; Araújo, Talita O; Arcanjo-Silva, Samara; Freitas-Silva, Larisse; Azevedo, Aristéa A; Nunes-Nesi, Adriano

    2016-06-01

    Arsenic (As) pollution is a major environmental concern due to its worldwide distribution and high toxicity to organisms. The fern Pityrogramma calomelanos is one of the few plant species known to be able to hyperaccumulate As, although the mechanisms involved are largely unknown. This study aimed to investigate the metabolic adjustments involved in the As-tolerance of P. calomelanos. For this purpose, ferns with five to seven fronds were exposed to a series of As concentrations. Young fronds were used for biochemical analysis and metabolite profiling using gas chromatography-mass spectrometry. As treatment increased the total concentration of proteins and soluble phenols, enhanced peroxidase activities, and promoted disturbances in nitrogen and carbon metabolism. The reduction of the glucose pool was one of the striking responses to As. Remarkable changes in amino acids levels were observed in As-treated plants, including those related to biosynthesis of glutathione and phenols, osmoregulation and two photorespiratory intermediates. In addition, increases in polyamines levels and antioxidant enzyme activities were observed. In summary, this study indicates that P. calomelanos tolerates high concentration of As due to its capacity to upregulate biosynthesis of amino acids and antioxidants, without greatly disturbing central carbon metabolism. At extremely high As concentrations, however, this protective mechanism fails to block reactive oxygen species production, leading to lipid peroxidation and leaf necrosis. PMID:26853807

  9. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    International Nuclear Information System (INIS)

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1+-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1+-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1+-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in

  10. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2014-01-17

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1{sup +}-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1{sup +}-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1{sup +}-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and

  11. New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers

    NARCIS (Netherlands)

    Loos, Katja; Müller, Axel H.E.

    2002-01-01

    Hybrid block copolymers amylose-block-polystyrene were synthesized by covalent attachment of maltoheptaose derivatives to end-functionalized polystyrene and subsequent enzymatic grafting from polymerization. The maltoheptaose derivatives were attached by reductive amination or hydrosilation to amino

  12. The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins.

    Science.gov (United States)

    Coppotelli, Giuseppe; Mughal, Nouman; Callegari, Simone; Sompallae, Ramakrishna; Caja, Laia; Luijsterburg, Martijn S; Dantuma, Nico P; Moustakas, Aristidis; Masucci, Maria G

    2013-03-01

    Viral proteins reprogram their host cells by hijacking regulatory components of protein networks. Here we describe a novel property of the Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA1) that may underlie the capacity of the virus to promote a global remodeling of chromatin architecture and cellular transcription. We found that the expression of EBNA1 in transfected human and mouse cells is associated with decreased prevalence of heterochromatin foci, enhanced accessibility of cellular DNA to micrococcal nuclease digestion and decreased average length of nucleosome repeats, suggesting de-protection of the nucleosome linker regions. This is a direct effect of EBNA1 because targeting the viral protein to heterochromatin promotes large-scale chromatin decondensation with slow kinetics and independent of the recruitment of adenosine triphosphate-dependent chromatin remodelers. The remodeling function is mediated by a bipartite Gly-Arg rich domain of EBNA1 that resembles the AT-hook of High Mobility Group A (HMGA) architectural transcription factors. Similar to HMGAs, EBNA1 is highly mobile in interphase nuclei and promotes the mobility of linker histone H1, which counteracts chromatin condensation and alters the transcription of numerous cellular genes. Thus, by regulating chromatin compaction, EBNA1 may reset cellular transcription during infection and prime the infected cells for malignant transformation. PMID:23358825

  13. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes.

    Science.gov (United States)

    Wang, Junjian; Duan, Zhijian; Nugent, Zoann; Zou, June X; Borowsky, Alexander D; Zhang, Yanhong; Tepper, Clifford G; Li, Jian Jian; Fiehn, Oliver; Xu, Jianzhen; Kung, Hsing-Jien; Murphy, Leigh C; Chen, Hong-Wu

    2016-08-10

    Metabolic reprogramming such as the aerobic glycolysis or Warburg effect is well recognized as a common feature of tumorigenesis. However, molecular mechanisms underlying metabolic alterations for tumor therapeutic resistance are poorly understood. Through gene expression profiling analysis we found that histone H3K36 methyltransferase NSD2/MMSET/WHSC1 expression was highly elevated in tamoxifen-resistant breast cancer cell lines and clinical tumors. IHC analysis indicated that NSD2 protein overexpression was associated with the disease recurrence and poor survival. Ectopic expression of NSD2 wild type, but not the methylase-defective mutant, drove endocrine resistance in multiple cell models and xenograft tumors. Mechanistically, NSD2 was recruited to and methylated H3K36me2 at the promoters of key glucose metabolic enzyme genes. Its overexpression coordinately up-regulated hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD), two key enzymes of glycolysis and the pentose phosphate pathway (PPP), as well as TP53-induced glycolysis regulatory phosphatase TIGAR. Consequently, NSD2-driven tamoxifen-resistant cells and tumors displayed heightened PPP activity, elevated NADPH production, and reduced ROS level, without significantly altered glycolysis. These results illustrate a coordinated, epigenetic activation of key glucose metabolic enzymes in therapeutic resistance and nominate methyltransferase NSD2 as a potential therapeutic target for endocrine resistant breast cancer. PMID:27164560

  14. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  15. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis.

    Science.gov (United States)

    Rato, L; Alves, M G; Dias, T R; Cavaco, J E; Oliveira, Pedro F

    2015-01-01

    Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993

  16. Testicular Metabolic Reprogramming in Neonatal Streptozotocin-Induced Type 2 Diabetic Rats Impairs Glycolytic Flux and Promotes Glycogen Synthesis

    Directory of Open Access Journals (Sweden)

    L. Rato

    2015-01-01

    Full Text Available Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters.

  17. Transcriptional reprogramming and phenotypical changes associated with growth of Xanthomonas campestris pv. campestris in cabbage xylem sap.

    Science.gov (United States)

    Dugé de Bernonville, Thomas; Noël, Laurent D; SanCristobal, Magali; Danoun, Saida; Becker, Anke; Soreau, Paul; Arlat, Matthieu; Lauber, Emmanuelle

    2014-09-01

    Xylem sap (XS) is the first environment that xylem phytopathogens meet in planta during the early infection steps. Xanthomonas campestris pv. campestris (Xcc), the causative agent of Brassicaceae black rot, colonizes the plant xylem vessels to ensure its multiplication and dissemination. Besides suppression of plant immunity, Xcc has to adapt its metabolism to exploit plant-derived nutrients present in XS. To study Xcc behaviour in the early infection steps, we used cabbage XS to analyse bacterial growth. Mineral and organic composition of XS were determined. Significant growth of Xcc in XS was allowed by the rapid catabolism of amino acids, sugars and organic acids, and it was accompanied by the formation of biofilm-like structures. Transcriptome analysis of Xcc cultivated in XS using cDNA microarrays revealed a XS-specific transcriptional reprogramming compared to minimal or rich media. More specifically, up-regulation of genes encoding transporters such as TonB-dependent transporters (TBDTs), that could be associated with nutrient acquisition and detoxification, was observed. In agreement with the aggregation phenotype, expression of genes important for twitching motility and adhesion was up-regulated in XS. Taken together, our data show specific responses of Xcc to colonization of cabbage XS that could be important for the pathogenesis process and establish XS as a model medium to study mechanisms important for the early infection events. PMID:24784488

  18. Cancer stem cell molecular reprogramming of the Warburg effect in glioblastomas: a new target gleaned from an old concept.

    Science.gov (United States)

    Yuen, Carlen A; Asuthkar, Swapna; Guda, Maheedhara R; Tsung, Andrew J; Velpula, Kiran K

    2016-01-01

    Prior targeted treatment for glioblastoma multiforme (GBM) with anti-angiogenic agents, such as bevacizumab, has been met with limited success potentially owing to GBM tumor's ability to develop a hypoxia-induced escape mechanism--a glycolytic switch from oxidative phosphorylation to glycolysis, an old concept known as the Warburg effect. New studies points to a subpopulation of cells as a source for treatment-resistance, cancer stem cells (CSCs). Taken together, the induction of the Warburg effect leads to the promotion of CSC self-renewal and undifferentiation. In response to hypoxia, hypoxia-inducible transcription factor is upregulated and is the central driver in setting off the cascade of events in CSC metabolic reprogramming. Hypoxia-inducible transcription factor upregulates GLUT1 to increase glucose uptake into the cell, upregulates HK2 and PK during glycolysis, upregulates LDHA in the termination of glycolysis, and downregulates PDH to redirect energy production toward glycolysis. This review aims to unite these old and new concepts simultaneously and examine potential enzyme targets driven by hypoxia in the glycolytic phenotype of CSCs to reverse the metabolic shift induced by the Warburg effect. PMID:26997129

  19. Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques.

    Science.gov (United States)

    Yang, Hao; Liu, Cui-Cui; Wang, Chun-Yu; Zhang, Qian; An, Jiang; Zhang, Lingling; Hao, Ding-Jun

    2016-07-01

    Spinal cord injury (SCI) is a traumatic event resulting in disturbances to normal sensory, motor, or autonomic functions, which ultimately impacts a patient's physical, psychological, and social well-being. Until now, no available therapy for SCI can effectively slow down or halt the disease progression. Compared to traditional treatments, e.g., medication, surgery, and functional electrical stimulation, stem cell replacement therapy shows high potential for repair and functional plasticity. Thus, stem cell therapy may provide a promising strategy in curative treatment of SCI, specifically when considering the requirement of neuron replenishment in the spinal cord after distinct acute injuries. However, the therapeutic application of neural stem cells (NSCs) still faces enormous challenges, such as ethical issues, possible inflammatory reactions, graft rejection, and tumor formation. Therefore, it is of vital interest to identify more suitable sources of cells with stem cell potential, which might potentially be harnessed for local neural repair. Due to abovementioned possible drawbacks, these cells should be autologous. Reprogramming of astrocytes to generate the desired neuronal cell types would open the door to autologous cell transplantation and treatment of SCI without possible severe side effects. In this paper, we review the relevant therapeutic strategies for SCI, and conversion of astrocyte into NSCs, suggesting this procedure as a possible treatment option. PMID:25863960

  20. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    Science.gov (United States)

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders. PMID:26079804

  1. Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco

    Science.gov (United States)

    Lackman, Petri; González-Guzmán, Miguel; Tilleman, Sofie; Carqueijeiro, Inês; Pérez, Amparo Cuéllar; Moses, Tessa; Seo, Mitsunori; Kanno, Yuri; Häkkinen, Suvi T.; Van Montagu, Marc C. E.; Thevelein, Johan M.; Maaheimo, Hannu; Oksman-Caldentey, Kirsi-Marja; Rodriguez, Pedro L.; Rischer, Heiko; Goossens, Alain

    2011-01-01

    The phytohormones jasmonates (JAs) constitute an important class of elicitors for many plant secondary metabolic pathways. However, JAs do not act independently but operate in complex networks with crosstalk to several other phytohormonal signaling pathways. Here, crosstalk was detected between the JA and abscisic acid (ABA) signaling pathways in the regulation of tobacco (Nicotiana tabacum) alkaloid biosynthesis. A tobacco gene from the PYR/PYL/RCAR family, NtPYL4, the expression of which is regulated by JAs, was found to encode a functional ABA receptor. NtPYL4 inhibited the type-2C protein phosphatases known to be key negative regulators of ABA signaling in an ABA-dependent manner. Overexpression of NtPYL4 in tobacco hairy roots caused a reprogramming of the cellular metabolism that resulted in a decreased alkaloid accumulation and conferred ABA sensitivity to the production of alkaloids. In contrast, the alkaloid biosynthetic pathway was not responsive to ABA in control tobacco roots. Functional analysis of the Arabidopsis (Arabidopsis thaliana) homologs of NtPYL4, PYL4 and PYL5, indicated that also in Arabidopsis altered PYL expression affected the JA response, both in terms of biomass and anthocyanin production. These findings define a connection between a component of the core ABA signaling pathway and the JA responses and contribute to the understanding of the role of JAs in balancing tradeoffs between growth and defense. PMID:21436041

  2. Violacein induces death of resistant leukaemia cells via kinome reprogramming, endoplasmic reticulum stress and Golgi apparatus collapse.

    Directory of Open Access Journals (Sweden)

    Karla C S Queiroz

    Full Text Available It is now generally recognised that different modes of programmed cell death (PCD are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34(+/c-Kit(+/P-glycoprotein(+/MRP1(+ TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.

  3. Erosion patterns on dissolving blocks

    Science.gov (United States)

    Courrech du Pont, Sylvain; Cohen, Caroline; Derr, Julien; Berhanu, Michael

    2016-04-01

    Patterns in nature are shaped under water flows and wind action, and the understanding of their morphodynamics goes through the identification of the physical mechanisms at play. When a dissoluble body is exposed to a water flow, typical patterns with scallop-like shapes may appear [1,2]. These shapes are observed on the walls of underground rivers or icebergs. We experimentally study the erosion of dissolving bodies made of salt, caramel or ice into water solutions without external flow. The dissolving mixture, which is created at the solid/liquid interface, undergoes a buoyancy-driven instability comparable to a Rayleigh-Bénard instability so that the dissolving front destabilizes into filaments. This mechanism yields to spatial variations of solute concentration and to differential dissolution of the dissolving block. We first observe longitudinal stripes with a well defined wavelength, which evolve towards chevrons and scallops that interact and move again the dissolving current. Thanks to a careful analysis of the competing physical mechanisms, we propose scaling laws, which account for the characteristic lengths and times of the early regime in experiments. The long-term evolution of patterns is understood qualitatively. A close related mechanism has been proposed to explain structures observed on the basal boundary of ice cover on brakish lakes [3] and we suggest that our experiments are analogous and explain the scallop-like patterns on iceberg walls. [1] P. Meakin and B. Jamtveit, Geological pattern formation by growth and dissolution in aqueous systems, Proc. R. Soc. A 466, 659-694 (2010). [2] P.N. Blumberg and R.L. Curl, Experimental and theoretical studies of dissolution roughness, J. Fluid Mech. 65, 735-751 (1974). [3] L. Solari and G. Parker, Morphodynamic modelling of the basal boundary of ice cover on brakish lakes, J.G.R. 118, 1432-1442 (2013).

  4. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems ...

  5. Improving massive experiments with threshold blocking.

    Science.gov (United States)

    Higgins, Michael J; Sävje, Fredrik; Sekhon, Jasjeet S

    2016-07-01

    Inferences from randomized experiments can be improved by blocking: assigning treatment in fixed proportions within groups of similar units. However, the use of the method is limited by the difficulty in deriving these groups. Current blocking methods are restricted to special cases or run in exponential time; are not sensitive to clustering of data points; and are often heuristic, providing an unsatisfactory solution in many common instances. We present an algorithm that implements a widely applicable class of blocking-threshold blocking-that solves these problems. Given a minimum required group size and a distance metric, we study the blocking problem of minimizing the maximum distance between any two units within the same group. We prove this is a nondeterministic polynomial-time hard problem and derive an approximation algorithm that yields a blocking where the maximum distance is guaranteed to be, at most, four times the optimal value. This algorithm runs in O(n log n) time with O(n) space complexity. This makes it, to our knowledge, the first blocking method with an ensured level of performance that works in massive experiments. Whereas many commonly used algorithms form pairs of units, our algorithm constructs the groups flexibly for any chosen minimum size. This facilitates complex experiments with several treatment arms and clustered data. A simulation study demonstrates the efficiency and efficacy of the algorithm; tens of millions of units can be blocked using a desktop computer in a few minutes. PMID:27382151

  6. Building blocks for embedded control systems

    NARCIS (Netherlands)

    Broenink, Jan F.; Hilderink, Gerald H.; Bakkers, André W.P.; Veen, Jean Pierre

    2000-01-01

    Developing embedded control systems using a building-block approach at all the parts enables an efficient and fast design process. Main reasons are the real plug-and-play capabilities of the blocks. Furthermore, due the simulatability of the designs, parts of the system can already be tested before

  7. C++ application development with Code::Blocks

    CERN Document Server

    Modak, Biplab Kumar

    2013-01-01

    This is a comprehensive tutorial with step-by-step instructions on how to develop applications with Code::Blocks.This book is for C++ developers who wish to use Code::Blocks to create applications with a consistent look and feel across multiple platforms. This book assumes that you are familiar with the basics of the C++ programming language.

  8. Block Grants: Federal Data Collection Provisions.

    Science.gov (United States)

    General Accounting Office, Washington, DC. Div. of Human Resources.

    This fact sheet compares statutory data collection and reporting provisions of the federal education block grant (chapter 2 of the Education Consolidation and Improvement Act of 1981) with the nine other block grant programs funded in fiscal year 1986; data on statutory administrative cost limits are also provided. Each grant's legislation was…

  9. Round Gating for Low Energy Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco;

    2016-01-01

    design techniques for implementing block ciphers in a low energy fashion. We concentrate on round based implementation and we discuss how gating, applied at round level can affect and improve the energy consumption of the most common lightweight block cipher currently used in the internet of things...

  10. Ground reaction curve based upon block theory

    International Nuclear Information System (INIS)

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. Once a potentially unstable block is identified, the forces affecting it can be calculated to assess its stability. The normal and shear stresses on each block face before displacement are calculated using elastic theory and are modified in a nonlinear way by discontinuity deformations as the keyblock displaces. The stresses are summed into resultant forces to evaluate block stability. Since the resultant forces change with displacement, successive increments of block movement are examined to see whether the block ultimately becomes stable or fails. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were evaluated. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls blocks displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender

  11. Transient non-autoimmune fetal heart block

    NARCIS (Netherlands)

    Breur, JMPJ; Oudijk, MA; Stoutenbeek, P; Visser, GHA; Meijboom, EJ

    2005-01-01

    Objectives: Fetal heart block is a rare and irreversible condition associated with structural heart defects or maternal autoantibodies (SS-A/Ro and SS-B/La) resulting in permanent damage of the atrioventricular (AV) node. This is the first report of 4 cases with a transient fetal heart block in stru

  12. Using Interference to Block RFID Tags

    DEFF Research Database (Denmark)

    Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund;

    We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag....

  13. Programs for the calculi of blocks permeabilities

    International Nuclear Information System (INIS)

    This report studies the stochastic analysis of radionuclide transport. The permeability values of blocks are necessary to do a numeric model for the flux and transport problems in ground soils. The determination of block value by function on grill value is the objective of this program

  14. Light extraction block with curved surface

    Science.gov (United States)

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  15. Block Gas Sol Unit in Haderslev

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    2000-01-01

    Investigation of a SDHW system based on a Block Gas Sol Unit from Baxi A/S installed by a consumer i Haderslev, Denmark.......Investigation of a SDHW system based on a Block Gas Sol Unit from Baxi A/S installed by a consumer i Haderslev, Denmark....

  16. A revisit of transthecal digital block and traditional digital block for anesthesia of the finger

    OpenAIRE

    Mohammad Dehghani; Arsalan Mahmoodian

    2007-01-01

    BACKGROUND: Finger injuries are very common and the majority can be treated under digital block anesthesia. Traditional digital block is one of the most commonly performed blocks by care providers in several medical fields. There is another less known method, transthecal (Pulley) block, in which local anesthesia is injected into the flexor tendon sheath.
    METHODS: A randomized clinical trial was performed to compare the tran...

  17. From Accumulation to Degradation: Reprogramming Polyamine Metabolism Facilitates Dark-Induced Senescence in Barley Leaf Cells

    Science.gov (United States)

    Sobieszczuk-Nowicka, Ewa; Kubala, Szymon; Zmienko, Agnieszka; Małecka, Arleta; Legocka, Jolanta

    2016-01-01

    The aim of this study was to analyze whether polyamine (PA) metabolism is involved in dark-induced Hordeum vulgare L. ‘Nagrad’ leaf senescence. In the cell, the titer of PAs is relatively constant and is carefully controlled. Senescence-dependent increases in the titer of the free PAs putrescine, spermidine, and spermine occurred when the process was induced, accompanied by the formation of putrescine conjugates. The addition of the anti-senescing agent cytokinin, which delays senescence, to dark-incubated leaves slowed the senescence-dependent PA accumulation. A feature of the senescence process was initial accumulation of PAs at the beginning of the process and their subsequent decrease during the later stages. Indeed, the process was accompanied by both enhanced expression of PA biosynthesis and catabolism genes and an increase in the activity of enzymes involved in the two metabolic pathways. To confirm whether the capacity of the plant to control senescence might be linked to PA, chlorophyll fluorescence parameters, and leaf nitrogen status in senescing barley leaves were measured after PA catabolism inhibition and exogenously applied γ-aminobutyric acid (GABA). The results obtained by blocking putrescine oxidation showed that the senescence process was accelerated. However, when the inhibitor was applied together with GABA, senescence continued without disruption. On the other hand, inhibition of spermidine and spermine oxidation delayed the process. It could be concluded that in dark-induced leaf senescence, the initial accumulation of PAs leads to facilitating their catabolism. Putrescine supports senescence through GABA production and spermidine/spermine supports senescence-dependent degradation processes, is verified by H2O2 generation. PMID:26779231

  18. Virasoro conformal blocks in closed form

    CERN Document Server

    Perlmutter, Eric

    2015-01-01

    Virasoro conformal blocks are fixed in principle by symmetry, but a closed-form expression is unknown in the general case. In this work, we provide three closed-form expansions for the four-point Virasoro blocks on the sphere, for arbitrary operator dimensions and central charge $c$. We do so by solving known recursion relations. One representation is a sum over hypergeometric global blocks, whose coefficients we provide at arbitrary level. Another is a sum over semiclassical Virasoro blocks obtained in the limit in which two external operator dimensions scale linearly with large $c$. In both cases, the $1/c$ expansion of the Virasoro blocks is easily extracted. We discuss applications of these expansions to entanglement and thermality in conformal field theories and particle scattering in three-dimensional quantum gravity.

  19. Fermion RG blocking transformations and IR structure

    CERN Document Server

    Cheng, X

    2011-01-01

    We explore fermion RG block-spinning transformations on the lattice with the aim of studying the IR structure of gauge theories and, in particular, the existence of IR fixed points for varying fermion content. In the case of light fermions the main concern and difficulty is ensuring locality of any adopted blocking scheme. We discuss the problem of constructing a local blocked fermion action in the background of arbitrary gauge fields. We then discuss the carrying out of accompanying gauge field blocking. In the presence of the blocked fermions implementation of MCRG is not straightforward. By adopting judicious approximations we arrive at an easily implementable approximate RG recursion scheme that allows quick, inexpensive estimates of the location of conformal windows for various groups and fermion representations. We apply this scheme to locate the conformal windows in the case of SU(2) and SU(3) gauge groups. Some of the reasons for the apparent efficacy of this and similar decimation schemes are discuss...

  20. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  1. STUDY ON POLYSULFONE-POLYESTER BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan

    1988-01-01

    Synthesis and characterization of a series of Polysulfone (PSF)-Polyester (PEs) block copolymers were studied.The degree of randomness (B) of these block copolymers was calculated from the intensities of their proton signals in 1H NMR spectra and lies in the region of 0 < B < 1. It was shown that the degree of randomness (B) and the average sequence length (L) in block copolymers were relatively dependent on the reaction conditions, various feed ratios and structure of diols.The phenomenon was observed, when the PSF-PEs block copolymers dissolved in different solvents they had different viscosities and molecular conformations.The PSF-PEs block copolymers had better solvent resistance than homo-polysulfone.

  2. Sympathetic blocks for visceral cancer pain management

    DEFF Research Database (Denmark)

    Mercadante, Sebastiano; Klepstad, Pal; Kurita, Geana Paula; Sjogren, Per; Giarratano, Antonino

    2015-01-01

    The neurolytic blocks of sympathetic pathways, including celiac plexus block (CPB) and superior hypogastric plexus block (SHPB) , have been used for years. The aim of this review was to assess the evidence to support the performance of sympathetic blocks in cancer patients with abdominal visceral...... effects in comparison with a conventional analgesic treatment. In one study patients treated with superior hypogastric plexus block (SHPB) had a decrease in pain intensity and a less morphine consumption, while no statistical differences in adverse effects were found. The quality of these studies was...... generally poor due to several limitations, including sample size calculation, allocation concealment, no intention to treat analysis. However, at least two CPB studies were of good quality. Data regarding the comparison of techniques or other issues were sparse and of poor quality, and evidence could not be...

  3. The undesirable effects of neuromuscular blocking drugs

    DEFF Research Database (Denmark)

    Claudius, C; Garvey, L H; Viby-Mogensen, J

    question. Moreover, all neuromuscular blocking drugs may cause hypersensitivity reactions. Often the symptoms are mild and self-limiting but massive histamine release can cause systematic reactions with circulatory and respiratory symptoms and signs. At the end of anaesthesia, no residual effect of a......Neuromuscular blocking drugs are designed to bind to the nicotinic receptor at the neuromuscular junction. However, they also interact with other acetylcholine receptors in the body. Binding to these receptors causes adverse effects that vary with the specificity for the cholinergic receptor in...... neuromuscular blocking drug should be present. However, the huge variability in response to neuromuscular blocking drugs makes it impossible to predict which patient will suffer postoperative residual curarization. This article discusses the undesirable effects of the currently available neuromuscular blocking...

  4. Continuous peripheral nerve blocks in children.

    Science.gov (United States)

    Dadure, C; Capdevila, X

    2005-06-01

    In recent years, regional anaesthesia in children has generated increasing interest. Continuous peripheral nerve blocks have an important role in the anaesthetic arsenal, allowing effective, safe and prolonged postoperative pain management. Indications for continuous peripheral nerve blocks depend on benefits/risks analysis of each technique for each patient. The indications include surgery associated with intense postoperative pain, surgery requiring painful physical therapy, and complex regional pain syndrome. Continuous peripheral nerve blocks are usually performed under general anaesthesia or sedation, and require appropriate equipment in order to decrease the risk of nerve injury. New techniques, such as transcutaneous stimulation or ultrasound guidance, appear to facilitate nerve and plexus identification in paediatric patients. Nevertheless, continuous peripheral nerve block may mask compartment syndrome in certain surgical procedure or trauma. Finally, ropivacaine appears to be the best local anaesthetic for continuous peripheral nerve blocks in children, requiring low flow rate with low concentration of the local anaesthetic. PMID:15966500

  5. A note on "Block H-matrices and spectrum of block matrices"

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-zhou; HUANG Ze-jun

    2008-01-01

    In this paper, we make further discussions and improvements on the results presented in the previously published work "Block H-matrices and spectrum of block matrices". Furthermore, a new bound for eigenvalues of block matrices is given with examples to show advantages of the new result.

  6. Rotate Intra Block Copy for Still Image Coding

    OpenAIRE

    Zhang, Zhengdong; Sze, Vivienne

    2015-01-01

    This paper proposes a method called rotate intra block copy, which extends the intra block copy technique by making the block matching process invariant to rotation. HEVC intra prediction plus rotate intra block copy gives an average of 20% reduction in residual energy (i.e. prediction error) compared to HEVC intra prediction plus intra block copy. As the motion vector correlation in rotate intra block copy is different from the intra block copy, a new method of motion vector coding is pre...

  7. Multivariate Regression with Block-structured Predictors

    Science.gov (United States)

    Ye, Saier

    We study the problem of predicting multiple responses with a common set of predicting variables. Applying generalized Ordinary Least Squares (OLS) criterion on the responses altogether is practically equivalent to OLS estimation on the responses separately. Possible correlations between the response variables are overlooked. In order to take advantage of these interrelationships, Reduced-Rank Regression (RRR) imposes rank constraint on the coefficient matrix. RRR constructs latent factors from the original predicting variables, and the latent factors are the effective predictors. RRR reduces number of parameters to be estimated, and improves estimation efficiency. In the present work, we explore a novel regression model to incorporate "block-structured" predicting variables, where the predictors can be naturally partitioned into several groups or blocks. Variables in the same block share similar characteristics. It is reasonable to assume that in addition to an overall impact, predictors also have block-specific effects on the responses. Furthermore, we impose rank constraints on the coefficient matrices. In our framework, we construct two types of latent factors that drive the variation in the responses. We have joint factors, which are formed by all predictors across all blocks; and individual factors, which are formed by variables within individual blocks. The proposed method exceeds RRR in terms of prediction accuracy and ease of interpretation in the presence of block structure in the predicting variables.

  8. DYNAMIC BEHAVIOR OF TYRE TREAD BLOCK

    Directory of Open Access Journals (Sweden)

    K. Sridharan

    2012-01-01

    Full Text Available The Tyre tread pattern is the arrangement of blocks, grooves and voids, sipes and channels designed into the tread to enhance its grip on the road. Tread is the uppermost part of any tyre which contact into the road and it has its own performance towards mileage, traction, low noise and heat built up properties. It would be meaningful to conduct an extended analysis on the tyre tread blocks for its performance in static and dynamic condition to predict its behavior and wear of tread block in on-road condition. The Finite Element software Abaqus is used for the present analysis of the tread block and its behavior was studied on two different contact surfaces. The tread block is modeled in six different shapes and analyzed for is performance. The deformation stress strain characteristic of different blocks is studied which will be useful in deciding the contact behavior, friction and road grip. The regular shape/geometry has common behavior and the mixed type geometry shows a distinguished variation in the analysis. The dynamic stiffness and deformed shape was analyzed in this study and it has its own effect in tyre design. The tread block dynamics study by geometric shape would be vital in tread pattern optimization to enhance the traction, better hydroplaning and rolling resistance under all operating conditions.

  9. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    Science.gov (United States)

    Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M

    2011-10-01

    Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks. PMID:20924860

  10. Superintegrability of $d$-dimensional Conformal Blocks

    CERN Document Server

    Isachenkov, Mikhail

    2016-01-01

    We observe that conformal blocks of scalar 4-point functions in a $d$-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled P\\"oschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension $d$, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.

  11. Multi-block and path modelling procedures

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2008-01-01

    of sub-processes, overall model can be specified. There can be several useful path models during the process, where the data blocks in a path are the ones that are actual or important at given stages of the process. Data collection equipments are getting more and more advanced and cheap. Data analysis...... that lead to it. Methods of standard regression analysis are extended to this type of modelling. Three types of 'strengths' of relationship are computed for each set of two connected data blocks. First is the strength in the path, second the strength where only the data blocks leading to the last one...

  12. Block Copolymer Membranes for Biofuel Purification

    Science.gov (United States)

    Evren Ozcam, Ali; Balsara, Nitash

    2012-02-01

    Purification of biofuels such as ethanol is a matter of considerable concern as they are produced in complex multicomponent fermentation broths. Our objective is to design pervaporation membranes for concentrating ethanol from dilute aqueous mixtures. Polystyrene-b-polydimethylsiloxane-b-polystyrene block copolymers were synthesized by anionic polymerization. The polydimethylsiloxane domains provide ethanol-transporting pathways, while the polystyrene domains provide structural integrity for the membrane. The morphology of the membranes is governed by the composition of the block copolymer while the size of the domains is governed by the molecular weight of the block copolymer. Pervaporation data as a function of these two parameters will be presented.

  13. Productivity assessment of Angola's oil blocks

    International Nuclear Information System (INIS)

    This paper analyzes the change in productivity as a result of Angola oil policy from 2001 to 2007. Angola oil blocks are the main source of tax receipts and, therefore, strategically important for public finances. A Malmquist index with the input technological bias is applied to measure productivity change. Oil blocks on average became both more efficient and experienced technological progress. Our results indicate that the traditional growth accounting method, which assumes Hicks neutral technological change, is not appropriate for analyzing changes in productivity for Angola oil blocks. Policy implications are derived. (author)

  14. Measurement of soil moisture using gypsum blocks

    DEFF Research Database (Denmark)

    Friis Dela, B.

    For the past 50 years, gypsum blocks have been used to determine soil moisture content. This report describes a method for calibrating gypsum blocks for soil moisture measurements. Moisture conditions inside a building are strongly influenced by the moisture conditions in the soil surrounding the...... building. Consequently, measuring the moisture of the surrounding soil is of great importance for detecting the source of moisture in a building. Up till now, information has been needed to carry out individual calibrations for the different types of gypsum blocks available on the market and to account for...

  15. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block length...... copolymer mixtures, and evidence in favor of a multi-equilibria unimer-micelle model will be presented. Results obtained by liquid chromatographic methods will be shown and it will be demonstrated that commercial EPE copolymers are inhomogeneous at several levels and many of their unusual properties reflect...

  16. Evaluative Conditioning is Insensitive to Blocking

    Directory of Open Access Journals (Sweden)

    Tom Beckers

    2009-01-01

    Full Text Available Evaluative conditioning has been claimed to have a number of functional characteristics that set it apart from other forms of associative learning in humans, such as insensitivity to extinction and contingency, independence of contingency awareness, and insensitivity to modulation. Despite its potential theoretical importance, until now few data are available concerning the susceptibility of evaluative conditioning to cue competition effects such as blocking. In the present study, we assessed the susceptibility of acquired preferences and evaluations to blocking in a candy game. Results suggest that evaluative conditioning is not susceptible to blocking. We discuss this observation in the light of theoretical accounts of evaluative conditioning and associative learning in humans.

  17. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems of...... such PEG-based block copolymers in aqueous suspensions are reviewed. Based on scattering experiments using either X-ray or neutrons, the phase behavior is characterized, showing that the thermo-reversible gelation is a result of micellar ordering into mesoscopic crystalline phases of cubic, hexagonal...

  18. Blocks and families for cyclotomic Hecke algebras

    CERN Document Server

    Chlouveraki, Maria

    2009-01-01

    The definition of Rouquier for the families of characters introduced by Lusztig for Weyl groups in terms of blocks of the Hecke algebras has made possible the generalization of this notion to the case of complex reflection groups. The aim of this book is to study the blocks and to determine the families of characters for all cyclotomic Hecke algebras associated to complex reflection groups. This volume offers a thorough study of symmetric algebras, covering topics such as block theory, representation theory and Clifford theory, and can also serve as an introduction to the Hecke algebras of complex reflection groups.

  19. Exploring Energy Efficiency of Lightweight Block Ciphers

    DEFF Research Database (Denmark)

    Banik, Subhadeep; Bogdanov, Andrey; Regazzoni, Francesco

    2016-01-01

    In the last few years, the field of lightweight cryptography has seen an influx in the number of block ciphers and hash functions being proposed. One of the metrics that define a good lightweight design is the energy consumed per unit operation of the algorithm. For block ciphers, this operation is...... well known lightweight block ciphers, and thereby try to predict the optimal value of r at which an r-round unrolled architecture for a cipher is likely to be most energy efficient. We also try to relate our results to some physical design parameters like the signal delay across a round and algorithmic...

  20. Theory of circuit block switch-off

    Directory of Open Access Journals (Sweden)

    S. Henzler

    2004-01-01

    Full Text Available Switching-off unused circuit blocks is a promising approach to supress static leakage currents in ultra deep sub-micron CMOS digital systems. Basic performance parameters of Circuit Block Switch-Off (CBSO schemes are defined and their dependence on basic circuit parameters is estimated. Therefore the design trade-off between strong leakage suppression in idle mode and adequate dynamic performance in active mode can be supported by simple analytic investigations. Additionally, a guideline for the estimation of the minimum time for which a block deactivation is useful is derived.