WorldWideScience

Sample records for blocks kras-dependent reprogramming

  1. Successful reprogramming of epiblast stem cells by blocking nuclear localization of β-catenin.

    Science.gov (United States)

    Murayama, Hideyuki; Masaki, Hideki; Sato, Hideyuki; Hayama, Tomonari; Yamaguchi, Tomoyuki; Nakauchi, Hiromitsu

    2015-01-13

    Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3 signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine LIF. Analysis revealed that blocking nuclear localization of β-CATENIN with small-molecule inhibitors significantly enhances reprogramming efficiency of mouse EpiSCs. Although activation of Wnt/β-catenin signals has been thought desirable for maintenance of naive PSCs, this study provides the evidence that inhibition of nuclear translocation of β-CATENIN enhances conversion of mouse EpiSCs to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming of PSCs. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block

    Science.gov (United States)

    Hu, Yu-Feng; Dawkins, James Frederick; Cho, Hee Cheol; Marbán, Eduardo; Cingolani, Eugenio

    2016-01-01

    Somatic reprogramming by reexpression of the embryonic transcription factor T-box 18 (TBX18) converts cardiomyocytes into pacemaker cells. We hypothesized that this could be a viable therapeutic avenue for pacemaker-dependent patients afflicted with device-related complications, and therefore tested whether adenoviral TBX18 gene transfer could create biological pacemaker activity in vivo in a large-animal model of complete heart block. Biological pacemaker activity, originating from the intramyocardial injection site, was evident in TBX18-transduced animals starting at day 2 and persisted for the duration of the study (14 days) with minimal backup electronic pacemaker use. Relative to controls transduced with a reporter gene, TBX18-transduced animals exhibited enhanced autonomic responses and physiologically superior chronotropic support of physical activity. Induced sinoatrial node cells could be identified by their distinctive morphology at the site of injection in TBX18-transduced animals, but not in controls. No local or systemic safety concerns arose. Thus, minimally invasive TBX18 gene transfer creates physiologically relevant pacemaker activity in complete heart block, providing evidence for therapeutic somatic reprogramming in a clinically relevant disease model. PMID:25031269

  3. NuRD blocks reprogramming of mouse somatic cells into pluripotent stem cells.

    Science.gov (United States)

    Luo, Min; Ling, Te; Xie, Wenbing; Sun, He; Zhou, Yonggang; Zhu, Qiaoyun; Shen, Meili; Zong, Le; Lyu, Guoliang; Zhao, Yun; Ye, Tao; Gu, Jun; Tao, Wei; Lu, Zhigang; Grummt, Ingrid

    2013-07-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of a defined set of transcription factors requires epigenetic changes in pluripotency genes. Nuclear reprogramming is an inefficient process and the molecular mechanisms that reset the epigenetic state during iPSC generation are largely unknown. Here, we show that downregulation of the nucleosome remodeling and deacetylation (NuRD) complex is required for efficient reprogramming. Overexpression of Mbd3, a subunit of NuRD, inhibits induction of iPSCs by establishing heterochromatic features and silencing embryonic stem cell-specific marker genes, including Oct4 and Nanog. Depletion of Mbd3, on the other hand, improves reprogramming efficiency and facilitates the formation of pluripotent stem cells that are capable of generating viable chimeric mice, even in the absence of c-Myc or Sox2. The results establish Mbd3/NuRD as an important epigenetic regulator that restricts the expression of key pluripotency genes, suggesting that drug-induced downregulation of Mbd3/NuRD may be a powerful means to improve the efficiency and fidelity of reprogramming. Copyright © 2013 AlphaMed Press.

  4. A Potent and Selective Quinoxalinone-Based STK33 Inhibitor Does Not Show Synthetic Lethality in KRAS-Dependent Cells.

    Science.gov (United States)

    Weïwer, Michel; Spoonamore, James; Wei, Jingqiang; Guichard, Boris; Ross, Nathan T; Masson, Kristina; Silkworth, Whitney; Dandapani, Sivaraman; Palmer, Michelle; Scherer, Christina A; Stern, Andrew M; Schreiber, Stuart L; Munoz, Benito

    2012-12-13

    The KRAS oncogene is found in up to 30% of all human tumors. In 2009, RNAi experiments revealed that lowering mRNA levels of a transcript encoding the serine/threonine kinase STK33 was selectively toxic to KRAS-dependent cancer cell lines, suggesting that small-molecule inhibitors of STK33 might selectively target KRAS-dependent cancers. To test this hypothesis, we initiated a high-throughput screen using compounds in the Molecular Libraries Small Molecule Repository (MLSMR). Several hits were identified, and one of these, a quinoxalinone derivative, was optimized. Extensive SAR studies were performed and led to the chemical probe ML281 that showed low nanomolar inhibition of purified recombinant STK33 and a distinct selectivity profile as compared to other STK33 inhibitors that were reported in the course of these studies. Even at the highest concentration tested (10 μM), ML281 had no effect on the viability of KRAS-dependent cancer cells. These results are consistent with other recent reports using small-molecule STK33 inhibitors. Small molecules having different chemical structures and kinase-selectivity profiles are needed to fully understand the role of STK33 in KRAS-dependent cancers. In this regard, ML281 is a valuable addition to small-molecule probes of STK33.

  5. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells.

    Science.gov (United States)

    Scholl, Claudia; Fröhling, Stefan; Dunn, Ian F; Schinzel, Anna C; Barbie, David A; Kim, So Young; Silver, Serena J; Tamayo, Pablo; Wadlow, Raymond C; Ramaswamy, Sridhar; Döhner, Konstanze; Bullinger, Lars; Sandy, Peter; Boehm, Jesse S; Root, David E; Jacks, Tyler; Hahn, William C; Gilliland, D Gary

    2009-05-29

    An alternative to therapeutic targeting of oncogenes is to perform "synthetic lethality" screens for genes that are essential only in the context of specific cancer-causing mutations. We used high-throughput RNA interference (RNAi) to identify synthetic lethal interactions in cancer cells harboring mutant KRAS, the most commonly mutated human oncogene. We find that cells that are dependent on mutant KRAS exhibit sensitivity to suppression of the serine/threonine kinase STK33 irrespective of tissue origin, whereas STK33 is not required by KRAS-independent cells. STK33 promotes cancer cell viability in a kinase activity-dependent manner by regulating the suppression of mitochondrial apoptosis mediated through S6K1-induced inactivation of the death agonist BAD selectively in mutant KRAS-dependent cells. These observations identify STK33 as a target for treatment of mutant KRAS-driven cancers and demonstrate the potential of RNAi screens for discovering functional dependencies created by oncogenic mutations that may enable therapeutic intervention for cancers with "undruggable" genetic alterations.

  6. MEK and TAK1 Regulate Apoptosis in Colon Cancer Cells with KRAS-Dependent Activation of Proinflammatory Signaling.

    Science.gov (United States)

    McNew, Kelsey L; Whipple, William J; Mehta, Anita K; Grant, Trevor J; Ray, Leah; Kenny, Connor; Singh, Anurag

    2016-12-01

    MEK inhibitors have limited efficacy in treating RAS-RAF-MEK pathway-dependent cancers due to feedback pathway compensation and dose-limiting toxicities. Combining MEK inhibitors with other targeted agents may enhance efficacy. Here, codependencies of MEK, TAK1, and KRAS in colon cancer were investigated. Combined inhibition of MEK and TAK1 potentiates apoptosis in KRAS-dependent cells. Pharmacologic studies and cell-cycle analyses on a large panel of colon cancer cell lines demonstrate that MEK/TAK1 inhibition induces cell death, as assessed by sub-G 1 accumulation, in a distinct subset of cell lines. Furthermore, TAK1 inhibition causes G 2 -M cell-cycle blockade and polyploidy in many of the cell lines. MEK plus TAK1 inhibition causes reduced G 2 -M/polyploid cell numbers and additive cytotoxic effects in KRAS/TAK1-dependent cell lines as well as a subset of BRAF-mutant cells. Mechanistically, sensitivity to MEK/TAK1 inhibition can be conferred by KRAS and BMP receptor activation, which promote expression of NF-κB-dependent proinflammatory cytokines, driving tumor cell survival and proliferation. MEK/TAK1 inhibition causes reduced mTOR, Wnt, and NF-κB signaling in TAK1/MEK-dependent cell lines concomitant with apoptosis. A Wnt/NF-κB transcriptional signature was derived that stratifies primary tumors into three major subtypes: Wnt-high/NF-κB-low, Wnt-low/NF-κB-high and Wnt-high/NF-κB-high, designated W, N, and WN, respectively. These subtypes have distinct characteristics, including enrichment for BRAF mutations with serrated carcinoma histology in the N subtype. Both N and WN subtypes bear molecular hallmarks of MEK and TAK1 dependency seen in cell lines. Therefore, N and WN subtype signatures could be utilized to identify tumors that are most sensitive to anti-MEK/TAK1 therapeutics. This study describes a potential therapeutic strategy for a subset of colon cancers that are dependent on oncogenic KRAS signaling pathways, which are currently difficult to

  7. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  8. Cellular reprogramming.

    Science.gov (United States)

    Takahashi, Kazutoshi

    2014-02-01

    Nuclear reprogramming technology was first established more than 50 years ago. It can rejuvenate somatic cells by erasing the epigenetic memories and reconstructing a new pluripotent order. The recent discovery reviewed here that induced pluripotency can be achieved by a small set of transcription factors has opened up unprecedented opportunities in the pharmaceutical industry, the clinic, and laboratories. This technology allows us to access pathological studies by using patient-specific induced pluripotent stem (iPS) cells. In addition, iPS cells are also expected to be a rising star for regenerative medicine, as sources of transplantation therapy.

  9. Reprogrammed metabolism of cancer cells as a potential therapeutic target

    NARCIS (Netherlands)

    Keijer, J.; Dartel, van D.A.M.

    2014-01-01

    Metabolism in cancer cells is reprogrammed. Cancer cells largely depend on glycolysis for ATP production. The metabolic alterations in cancer cells facilitate resistance to cell death as well as biosynthesis of nucleotides and lipids, building blocks for growth. The reprogrammed metabolism is

  10. Epigenetic reprogramming in mammals.

    Science.gov (United States)

    Morgan, Hugh D; Santos, Fátima; Green, Kelly; Dean, Wendy; Reik, Wolf

    2005-04-15

    Epigenetic marking systems confer stability of gene expression during mammalian development. Genome-wide epigenetic reprogramming occurs at stages when developmental potency of cells changes. At fertilization, the paternal genome exchanges protamines for histones, undergoes DNA demethylation, and acquires histone modifications, whereas the maternal genome appears epigenetically more static. During preimplantation development, there is passive DNA demethylation and further reorganization of histone modifications. In blastocysts, embryonic and extraembryonic lineages first show different epigenetic marks. This epigenetic reprogramming is likely to be needed for totipotency, correct initiation of embryonic gene expression, and early lineage development in the embryo. Comparative work demonstrates reprogramming in all mammalian species analysed, but the extent and timing varies, consistent with notable differences between species during preimplantation development. Parental imprinting marks originate in sperm and oocytes and are generally protected from this genome-wide reprogramming. Early primordial germ cells possess imprinting marks similar to those of somatic cells. However, rapid DNA demethylation after midgestation erases these parental imprints, in preparation for sex-specific de novo methylation during gametogenesis. Aberrant reprogramming of somatic epigenetic marks after somatic cell nuclear transfer leads to epigenetic defects in cloned embryos and stem cells. Links between epigenetic marking systems appear to be developmentally regulated contributing to plasticity. A number of activities that confer epigenetic marks are firmly established, while for those that remove marks, particularly methylation, some interesting candidates have emerged recently which need thorough testing in vivo. A mechanistic understanding of reprogramming will be crucial for medical applications of stem cell technology.

  11. Reprogramming cells with synthetic proteins.

    Science.gov (United States)

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  12. Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains.

    Science.gov (United States)

    Shao, Zhicheng; Yao, Chunping; Khodadadi-Jamayran, Alireza; Xu, Weihua; Townes, Tim M; Crowley, Michael R; Hu, Kejin

    2016-09-20

    One critical event in reprogramming to pluripotency is erasure of the somatic transcriptional program of starting cells. Here, we present the proof of principle of a strategy for reprogramming to pluripotency facilitated by small molecules that interfere with the somatic transcriptional memory. We show that mild chemical targeting of the acetyllysine-binding pockets of the BET bromodomains, the transcriptional bookmarking domains, robustly enhances reprogramming. Furthermore, we show that chemical targeting of the transcriptional bookmarking BET bromodomains downregulates or turns off the expression of somatic genes in both naive and reprogramming fibroblasts. Chemical blocking of the BET bromodomains also results in loss of fibroblast morphology early in reprogramming. We therefore experimentally demonstrate that cell fate conversion can be achieved by chemically targeting the transcriptional bookmarking BET bromodomains responsible for transcriptional memory. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains

    Directory of Open Access Journals (Sweden)

    Zhicheng Shao

    2016-09-01

    Full Text Available One critical event in reprogramming to pluripotency is erasure of the somatic transcriptional program of starting cells. Here, we present the proof of principle of a strategy for reprogramming to pluripotency facilitated by small molecules that interfere with the somatic transcriptional memory. We show that mild chemical targeting of the acetyllysine-binding pockets of the BET bromodomains, the transcriptional bookmarking domains, robustly enhances reprogramming. Furthermore, we show that chemical targeting of the transcriptional bookmarking BET bromodomains downregulates or turns off the expression of somatic genes in both naive and reprogramming fibroblasts. Chemical blocking of the BET bromodomains also results in loss of fibroblast morphology early in reprogramming. We therefore experimentally demonstrate that cell fate conversion can be achieved by chemically targeting the transcriptional bookmarking BET bromodomains responsible for transcriptional memory.

  14. en arquitectura digital reprogramable

    Directory of Open Access Journals (Sweden)

    Eugenio Duque

    2005-01-01

    Full Text Available En este artículo se describe la concepción, diseño, simulación e implementación de un analizador lógico de tiempos implementado sobre una arquitectura digital reprogramable. El sistema fue especificado en VHDL [1] e implementado en una plataforma basada en una FPGA (Field Programmable Gate Array Spartan II. El uso de esta metodología para la implementación del analizador, permite obtener un sistema flexible, económico y eficiente en cuanto a capacidad de procesamiento, ya que su característica modular hace posible escalar el sistema cuando sea necesario utilizando varios de los subsistemas desarrollados.

  15. Reprogramming cells with synthetic proteins

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  16. Reprogramming cells with synthetic proteins

    Science.gov (United States)

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  17. Totipotency, Pluripotency and Nuclear Reprogramming

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  18. Re: Epigenetics of Cellular Reprogramming

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-12-01

    Full Text Available EDITORIAL COMMENT Cells have some specific molecular and physiological properties that act their functional process. However, many cells have an ability of efficient transition from one type to another. This ability is named plasticity. This process occurs due to epigenetic reprogramming that involves changes in transcription and chromatin structure. Some changes during reprogramming that have been identified in recent years as genomic demethylation (both histone and DNA, histone acetylation and loss of heterochromatin during the development of many diseases such as infertility and cancer progression. In this review, the authors focused on the latest work addressing the mechanisms surrounding the epigenetic regulation of various types of reprogramming, including somatic cell nuclear transfer, cell fusion and transcription factor- and microRNA-induced pluripotency. There are many responsible factors such as genes, cytokines, proteins, co-factors (i.e. vitamin C in this local area network. The exact mechanisms by which these changes are achieved and the detailed interplay between the players responsible, however, remain relatively unclear. In the treatment of diseases, such as infertility, urooncology, reconstructive urology, etc., epigenetic changes and cellular reprogramming will be crucial in the near future. Central to achieving that goal is a more thorough understanding of the epigenetic state of fully reprogrammed cells. By the progress of researches on this topic, new treatment modalities will be identified for these diseases.

  19. Cell reprogramming: Into the groove

    Science.gov (United States)

    Xu, Yan; Liu, Longqi; Laslett, Andrew L.; Esteban, Miguel A.

    2013-12-01

    Adult cells can be routinely reprogrammed into pluripotent stem cells by chemical and genetic means, such as the expression of a cocktail of exogenous transcription factors. It is now shown that growing cells on substrates with aligned features such as microgrooves can enhance this process.

  20. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  1. The cellular memory disc of reprogrammed cells.

    Science.gov (United States)

    Anjamrooz, Seyed Hadi

    2013-04-01

    The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].

  2. Epigenetics of reprogramming to induced pluripotency

    Science.gov (United States)

    Papp, Bernadett; Plath, Kathrin

    2013-01-01

    Reprogramming to induced pluripotent stem cells (iPSCs) proceeds in a step-wise manner with reprogramming factor binding, transcription, and chromatin states changing during transitions. Evidence is emerging that epigenetic priming events early in the process may be critical for pluripotency induction later. Chromatin and its regulators are important controllers of reprogramming, and reprogramming factor levels, stoichiometry, and extracellular conditions influence the outcome. The rapid progress in characterizing reprogramming is benefiting applications of iPSCs and already enabling the rational design of novel reprogramming factor-cocktails. However, recent studies have uncovered an epigenetic instability of the X-chromosome in human iPSCs that warrants careful consideration. PMID:23498940

  3. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  4. Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation

    Science.gov (United States)

    Lu, Hongyun; Gao, Zhanguo; Zhao, Zhiyun; Weng, Jianping; Ye, Jianping

    2015-01-01

    Objective To investigate the impact of transient (2-4 h) hypoxia on metabolic reprogramming of adipocytes. Methods The impact of transient hypoxia on metabolic reprogramming was investigated in 3T3-L1 cells before and after differentiation. Glucose uptake, fatty acid oxidation, lipolysis, and mitochondria were examined to determine the hypoxia effects. Preadipocytes were exposed to transient hypoxia (4h/day) in the course of differentiation. Insulin sensitivity and TG accumulation was examined in the cells at the end of differentiation to determine the reprogramming effects. AMPK activity and gene expression were determined by quantitative RT-PCR and Western blotting in search for mechanism of the reprogramming. Results In acute response to hypoxia, adipocytes exhibited an increase in insulin-dependent and -independent glucose uptake. Fatty acid β-oxidation and pyruvate dehydrogenase (PDH) activity were decreased. Multiple exposures of differentiating adipocytes to transient hypoxia enhanced insulin signaling, TG accumulation, expression of antioxidant genes in differentiated adipocytes in the absence of hypoxia. The metabolic memory was associated with elevated AMPK activity and gene expression (GLUT1, PGC-1α, PPARγ, SREBP, NRF-1, ESRRα, LPL). The enhanced insulin sensitivity was blocked by an AMPK inhibitor. Conclusions Repeated exposure of differentiating adipocytes to transient hypoxia is able to reprogram the cells for increased TG accumulation and enhanced insulin sensitivity. The metabolic alterations were observed in post-differentiated cells under normoxia. The reprogramming involves AMPK activation and gene expression in the metabolic pathways in cytosol and mitochondria. PMID:26219415

  5. Reprogramming by cell fusion: boosted by Tets.

    Science.gov (United States)

    Ficz, Gabriella; Reik, Wolf

    2013-03-28

    Pluripotent cells, when fused with somatic cells, have the dominant ability to reprogram the somatic genome. Work by Piccolo et al. (2013) shows that the Tet1 and Tet2 hydroxylases are important for DNA methylation reprogramming of pluripotency genes and parental imprints. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Reprogramming cancer cells: overview & current progress.

    Science.gov (United States)

    Lim, Kian Lam; Teoh, Hoon Koon; Choong, Pei Feng; Teh, Hui Xin; Cheong, Soon Keng; Kamarul, Tunku

    2016-07-01

    Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model. Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents. Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  7. Induced Pluripotency and Epigenetic Reprogramming

    Science.gov (United States)

    Hochedlinger, Konrad; Jaenisch, Rudolf

    2015-01-01

    SUMMARY Induced pluripotency defines the process by which somatic cells are converted into induced pluripotent stem cells (iPSCs) upon overexpression of a small set of transcription factors. In this article, we put transcription factor–induced pluripotency into a historical context, review current methods to generate iPSCs, and discuss mechanistic insights that have been gained into the process of reprogramming. In addition, we focus on potential therapeutic applications of induced pluripotency and emerging technologies to efficiently engineer the genomes of human pluripotent cells for scientific and therapeutic purposes. PMID:26626939

  8. Spin glass model for cell reprogramming

    Science.gov (United States)

    Pusuluri, Sai Teja; Castillo, Horacio E.

    2014-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor state to another attractor state. We use a simple model based on spin glass theory that can construct a simulated epigenetic landscape starting from the experimental genomic data. We modify the model to incorporate experimental reprogramming protocols. Our simulations successfully reproduce several reprogramming experiments. We probe the robustness of the results against random changes in the model, explore the importance of asymmetric interactions between transcription factors and study the importance of histone modification errors in reprogramming.

  9. Understanding the molecular mechanisms of reprogramming

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Marie N. [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); University Hospital of Würzburg, Department of Pediatrics, 2 Josef-Schneiderstrasse, 97080 Würzburg (Germany); Sancho-Martinez, Ignacio [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States); Centre for Stem Cells and Regenerative Medicine, King' s College London, 28th Floor, Tower Wing, Guy' s Hospital, Great Maze Pond, London (United Kingdom); Izpisua Belmonte, Juan Carlos, E-mail: belmonte@salk.edu [Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla 92037, CA (United States)

    2016-05-06

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called “Pioneer TFs”, play an important role during the stochastic phase of iPSC reprogramming [2–6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. - Highlights: • Pioneer transcription factor activity underlies the initial steps of iPSC generation. • Reprogramming can occur by cis- and/or trans- reprogramming events. • Cis-reprogramming implies remodeling of the chromatin for enabling TF accessibility. • Trans-reprogramming encompasses direct binding of Tfs to their target gene promoters.

  10. Metabolic Reprogramming in Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Raquel Guimaraes Coelho

    2018-03-01

    Full Text Available Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer.

  11. Metabolic Reprogramming in Thyroid Carcinoma

    Science.gov (United States)

    Coelho, Raquel Guimaraes; Fortunato, Rodrigo S.; Carvalho, Denise P.

    2018-01-01

    Among all the adaptations of cancer cells, their ability to change metabolism from the oxidative to the glycolytic phenotype is a hallmark called the Warburg effect. Studies on tumor metabolism show that improved glycolysis and glutaminolysis are necessary to maintain rapid cell proliferation, tumor progression, and resistance to cell death. Thyroid neoplasms are common endocrine tumors that are more prevalent in women and elderly individuals. The incidence of thyroid cancer has increased in the Past decades, and recent findings describing the metabolic profiles of thyroid tumors have emerged. Currently, several drugs are in development or clinical trials that target the altered metabolic pathways of tumors are undergoing. We present a review of the metabolic reprogramming in cancerous thyroid tissues with a focus on the factors that promote enhanced glycolysis and the possible identification of promising metabolic targets in thyroid cancer. PMID:29629339

  12. Stem cell reprogramming: A 3D boost

    Science.gov (United States)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  13. Epigenetic reprogramming in plant and animal development.

    Science.gov (United States)

    Feng, Suhua; Jacobsen, Steven E; Reik, Wolf

    2010-10-29

    Epigenetic modifications of the genome are generally stable in somatic cells of multicellular organisms. In germ cells and early embryos, however, epigenetic reprogramming occurs on a genome-wide scale, which includes demethylation of DNA and remodeling of histones and their modifications. The mechanisms of genome-wide erasure of DNA methylation, which involve modifications to 5-methylcytosine and DNA repair, are being unraveled. Epigenetic reprogramming has important roles in imprinting, the natural as well as experimental acquisition of totipotency and pluripotency, control of transposons, and epigenetic inheritance across generations. Small RNAs and the inheritance of histone marks may also contribute to epigenetic inheritance and reprogramming. Reprogramming occurs in flowering plants and in mammals, and the similarities and differences illuminate developmental and reproductive strategies.

  14. Cellular reprogramming for clinical cartilage repair

    OpenAIRE

    Driessen, Britta J.H.; Logie, Colin; Vonk, Lucienne A.

    2017-01-01

    The repair of articular cartilage needs a sufficient number of chondrocytes to replace the defect tissue, and therefore, expansion of cells is generally required. Chondrocytes derived by cellular reprogramming may provide a solution to the limitations of current (stem) cell-based therapies. In this article, two distinct approaches?induced pluripotent stem cell (iPSC)-mediated reprogramming and direct lineage conversion?are analysed and compared according to criteria that encompass the qualifi...

  15. mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells.

    Science.gov (United States)

    Pusapati, Raju V; Daemen, Anneleen; Wilson, Catherine; Sandoval, Wendy; Gao, Min; Haley, Benjamin; Baudy, Andreas R; Hatzivassiliou, Georgia; Evangelista, Marie; Settleman, Jeff

    2016-04-11

    Although glycolysis is substantially elevated in many tumors, therapeutic targeting of glycolysis in cancer patients has not yet been successful, potentially reflecting the metabolic plasticity of tumor cells. In various cancer cells exposed to a continuous glycolytic block, we identified a recurrent reprogramming mechanism involving sustained mTORC1 signaling that underlies escape from glycolytic addiction. Active mTORC1 directs increased glucose flux via the pentose phosphate pathway back into glycolysis, thereby circumventing a glycolysis block and ensuring adequate ATP and biomass production. Combined inhibition of glycolysis and mTORC1 signaling disrupted metabolic reprogramming in tumor cells and inhibited their growth in vitro and in vivo. These findings reveal novel combinatorial therapeutic strategies to realize the potential benefit from targeting the Warburg effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  17. Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes

    Directory of Open Access Journals (Sweden)

    Wenqiang Liu

    2014-03-01

    Full Text Available It has been demonstrated that reprogramming factors are sequestered in the pronuclei of zygotes after fertilization, because zygotes enucleated at the M phase instead of interphase of the first mitosis can support the development of cloned embryos. However, the contribution of the parental pronucleus derived from either the sperm or the oocyte in reprogramming remains elusive. Here, we demonstrate that the parental pronuclei have asymmetric reprogramming capacities and that the reprogramming factors reside predominantly in the male pronucleus. As a result, only female pronucleus-depleted (FPD mouse zygotes can reprogram somatic cells to a pluripotent state and support the full-term development of cloned embryos; male pronucleus-depleted (MPD zygotes fail to support somatic cell reprogramming. We further demonstrate that fusion of an additional male pronucleus into a zygote greatly enhances reprogramming efficiency. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.

  18. Chromatin reprogramming: gender equality during Arabidopsis germline differentiation

    Science.gov (United States)

    Jacob, Yannick; Martienssen, Robert A.

    2017-01-01

    Large-scale histone H3 reprogramming during male germline differentiation is conserved between animals and plants. A new report now shows that H3 reprogramming also occurs in the female germline of the flowering plant Arabidopsis thaliana. PMID:21215930

  19. Metabolic Reprogramming, Autophagy, and Reactive Oxygen Species Are Necessary for Primordial Germ Cell Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    D. Sainz de la Maza

    2017-01-01

    Full Text Available Cellular reprogramming is accompanied by a metabolic shift from oxidative phosphorylation (OXPHOS toward glycolysis. Previous results from our laboratory showed that hypoxia alone is able to reprogram primordial germ cells (PGCs into pluripotency and that this action is mediated by hypoxia-inducible factor 1 (HIF1. As HIF1 exerts a myriad of actions by upregulating several hundred genes, to ascertain whether the metabolic switch toward glycolysis is solely responsible for reprogramming, PGCs were cultured in the presence of a pyruvate kinase M2 isoform (PKM2 activator, or glycolysis was promoted by manipulating PPARγ. Conversely, OXPHOS was stimulated by inhibiting PDK1 activity in normoxic or in hypoxic conditions. Inhibition or promotion of autophagy and reactive oxygen species (ROS production was performed to ascertain their role in cell reprogramming. Our results show that a metabolic shift toward glycolysis, autophagy, and mitochondrial inactivation and an early rise in ROS levels are necessary for PGC reprogramming. All of these processes are governed by HIF1/HIF2 balance and strict intermediate Oct4 levels. Histone acetylation plays a role in reprogramming and is observed under all reprogramming conditions. The pluripotent cells thus generated were unable to self-renew, probably due to insufficient Blimp1 downregulation and a lack of Klf4 and cMyc expression.

  20. Optical reprogramming with ultrashort femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans G.; Batista, Ana; König, Karsten

    2015-03-01

    The use of sub-15 femtosecond laser pulses in stem cell research is explored with particular emphasis on the optical reprogramming of somatic cells. The reprogramming of somatic cells into induced pluripotent stem (iPS) cells can be evoked through the ectopic expression of defined transcription factors. Conventional approaches utilize retro/lenti-viruses to deliver genes/transcription factors as well as to facilitate the integration of transcription factors into that of the host genome. However, the use of viruses may result in insertional mutations caused by the random integration of genes and as a result, this may limit the use within clinical applications due to the risk of the formation of cancer. In this study, a new approach is demonstrated in realizing non-viral reprogramming through the use of ultrashort laser pulses, to introduce transcription factors into the cell so as to generate iPS cells.

  1. Fluctuating levels of reprogramming factor expression in cultured ...

    African Journals Online (AJOL)

    user

    Although human undifferentiated keratinocytes (HUKs) can be reprogrammed to become induced pluripotent stem cells (iPSCs) with high efficiency and rapid kinetics by transducing reprogramming factors (RFs), the endogenous expression of reprogramming factors in cultured HUKs is not clear at different stages. In this ...

  2. Genomic stability during cellular reprogramming: Mission impossible?

    Energy Technology Data Exchange (ETDEWEB)

    Joest, Mathieu von; Búa Aguín, Sabela; Li, Han, E-mail: han.li@pasteur.fr

    2016-06-15

    The generation of induced pluripotent stem cells (iPSCs) from adult somatic cells is one of the most exciting discoveries in recent biomedical research. It holds tremendous potential in drug discovery and regenerative medicine. However, a series of reports highlighting genomic instability in iPSCs raises concerns about their clinical application. Although the mechanisms cause genomic instability during cellular reprogramming are largely unknown, several potential sources have been suggested. This review summarizes current knowledge on this active research field and discusses the latest efforts to alleviate the genomic insults during cellular reprogramming to generate iPSCs with enhanced quality and safety.

  3. Incomplete methylation reprogramming in SCNT embryos.

    Science.gov (United States)

    Peat, Julian R; Reik, Wolf

    2012-09-01

    The cloning of Dolly the sheep was a remarkable demonstration of the oocyte's ability to reprogram a specialized nucleus. However, embryos derived from such somatic cell nuclear transfer (SCNT) very rarely result in live births-a fate that may be linked to observed epigenetic defects. A new genome-wide study shows that epigenetic reprogramming in SCNT embryos does not fully recapitulate the natural DNA demethylation events occurring at fertilization, resulting in aberrant methylation at some promoters and repetitive elements that may contribute to developmental failure.

  4. Epigenetic reprogramming: Prdm14 hits the accelerator

    NARCIS (Netherlands)

    Geijsen, N.

    2012-01-01

    The EMBO Journal (2012) 31, 2247 - 2248 doi:10.1038/emboj.2012.117 Published online: 20 April 2012 There is an Article (May 2012) associated with this Have you seen?. Epigenetic reprogramming: Prdm14 hits the accelerator Niels Geijsen1 Hubrecht Institute KNAW, School of Veterinary Medicine, Utrecht

  5. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  6. The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    Directory of Open Access Journals (Sweden)

    Juli J. Unternaehrer

    2014-11-01

    Full Text Available Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs entails a mesenchymal to epithelial transition (MET. While attempting to dissect the mechanism of MET during reprogramming, we observed that knockdown (KD of the epithelial-to-mesenchymal transition (EMT factor SNAI1 (SNAIL paradoxically reduced, while overexpression enhanced, reprogramming efficiency in human cells and in mouse cells, depending on strain. We observed nuclear localization of SNAI1 at an early stage of fibroblast reprogramming and using mouse fibroblasts expressing a knockin SNAI1-YFP reporter found cells expressing SNAI1 reprogrammed at higher efficiency. We further demonstrated that SNAI1 binds the let-7 promoter, which may play a role in reduced expression of let-7 microRNAs, enforced expression of which, early in the reprogramming process, compromises efficiency. Our data reveal an unexpected role for the EMT factor SNAI1 in reprogramming somatic cells to pluripotency.

  7. Reprogramming of germ cells into pluripotency

    OpenAIRE

    Sekita, Yoichi; Nakamura, Toshinobu; Kimura, Tohru

    2016-01-01

    Primordial germ cells (PGCs) are precursors of all gametes, and represent the founder cells of the germline. Although developmental potency is restricted to germ-lineage cells, PGCs can be reprogrammed into a pluripotent state. Specifically, PGCs give rise to germ cell tumors, such as testicular teratomas, in vivo, and to pluripotent stem cells known as embryonic germ cells in vitro. In this review, we highlight the current knowledge on signaling pathways, transcriptional controls, and post-t...

  8. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells

    NARCIS (Netherlands)

    Carey, B.W.; Markoulaki, S.; Hanna, J.H.; Faddah, D.A.; Buganim, Y.; Kim, J.; Ganz, K.; Steine, E.J.; Cassady, J.P.; Creyghton, M.P.; Welstead, G.G.; Gao, Q.; Jaenisch, R.

    2011-01-01

    We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting

  9. Reprogramming stem cells is a microenvironmental task

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Inman, Jamie

    2008-10-14

    That tumor cells for all practical purposes are unstable and plastic could be expected. However, the astonishing ability of the nuclei from cells of normal adult tissues to be reprogrammed - given the right embryonic context - found its final truth even for mammals in the experiments that allowed engineering Dolly (1). The landmark experiments showed that nuclei originating from cells of frozen mammary tissues were capable of being reprogrammed by the embryonic cytoplasm and its microenvironment to produce a normal sheep. The rest is history. However, whether microenvironments other than those of the embryos can also reprogram adult cells of different tissue origins still containing their cytoplasm is of obvious interest. In this issue of PNAS, the laboratory of Gilbert Smith (2) reports on how the mammary gland microenvironment can reprogram both embryonic and adult stem neuronal cells. The work is a follow-up to their previous report on testis stem cells that were reprogrammed by the mammary microenvironment (3). They demonstrated that cells isolated from the seminiferous tubules of the mature testis, mixed with normal mammary epithelial cells, contributed a sizable number of epithelial progeny to normal mammary outgrowths in transplanted mammary fat pads. However, in those experiments they were unable to distinguish which subpopulation of the testis cells contributed progeny to the mammary epithelial tree. The current work adds new, compelling, and provocative information to our understanding of stem cell plasticity. Booth et al. (2) use neuronal stem cells (NSCs) isolated from WAP-cre/R26R mice combined with unlabeled mammary epithelial cells that subsequently are implanted in cleared mammary fat pads. In this new microenvironment, the NSCs that are incorporated into the branching mammary tree make chimeric glands (Fig. 1) that remarkably can also express the milk protein {beta}-casein, progesterone receptor, and estrogen receptor {alpha}. Remarkably, the

  10. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    Science.gov (United States)

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  11. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos

    Science.gov (United States)

    Dean, Wendy; Santos, Fátima; Stojkovic, Miodrag; Zakhartchenko, Valeri; Walter, Jörn; Wolf, Eckhard; Reik, Wolf

    2001-01-01

    Mouse embryos undergo genome-wide methylation reprogramming by demethylation in early preimplantation development, followed by remethylation thereafter. Here we show that genome-wide reprogramming is conserved in several mammalian species and ask whether it also occurs in embryos cloned with the use of highly methylated somatic donor nuclei. Normal bovine, rat, and pig zygotes showed a demethylated paternal genome, suggesting active demethylation. In bovine embryos methylation was further reduced during cleavage up to the eight-cell stage, and this reduction in methylation was followed by de novo methylation by the 16-cell stage. In cloned one-cell embryos there was a reduction in methylation consistent with active demethylation, but no further demethylation occurred subsequently. Instead, de novo methylation and nuclear reorganization of methylation patterns resembling those of differentiated cells occurred precociously in many cloned embryos. Cloned, but not normal, morulae had highly methylated nuclei in all blastomeres that resembled those of the fibroblast donor cells. Our study shows that epigenetic reprogramming occurs aberrantly in most cloned embryos; incomplete reprogramming may contribute to the low efficiency of cloning. PMID:11717434

  12. Probabilistic Modeling of Reprogramming to Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Liu, Lin L; Brumbaugh, Justin; Bar-Nur, Ori; Smith, Zachary; Stadtfeld, Matthias; Meissner, Alexander; Hochedlinger, Konrad; Michor, Franziska

    2016-12-20

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is typically an inefficient and asynchronous process. A variety of technological efforts have been made to accelerate and/or synchronize this process. To define a unified framework to study and compare the dynamics of reprogramming under different conditions, we developed an in silico analysis platform based on mathematical modeling. Our approach takes into account the variability in experimental results stemming from probabilistic growth and death of cells and potentially heterogeneous reprogramming rates. We suggest that reprogramming driven by the Yamanaka factors alone is a more heterogeneous process, possibly due to cell-specific reprogramming rates, which could be homogenized by the addition of additional factors. We validated our approach using publicly available reprogramming datasets, including data on early reprogramming dynamics as well as cell count data, and thus we demonstrated the general utility and predictive power of our methodology for investigating reprogramming and other cell fate change systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Fluorescent tagged episomals for stoichiometric induced pluripotent stem cell reprogramming.

    Science.gov (United States)

    Schmitt, Christopher E; Morales, Blanca M; Schmitz, Ellen M H; Hawkins, John S; Lizama, Carlos O; Zape, Joan P; Hsiao, Edward C; Zovein, Ann C

    2017-06-05

    Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.

  14. Advances in cellular reprogramming: moving toward a reprieve from immunogenicity.

    Science.gov (United States)

    Gallegos, Thomas F; Sancho-Martinez, Ignacio; Izpisua Belmonte, Juan Carlos

    2013-01-01

    Somatic cell nuclear reprogramming is opening new doors for the modeling of human disease phenotypes in vitro, the identification of novel therapeutic compounds and diagnostic factors as well as future autologous cell replacement therapies. Despite the potential that reprogramming technologies bring, there are remaining concerns preventing their broad application in the short-term. One of them is the safety concern associated with the use of stem cell derivatives, those generated by reprogramming or even when embryonic stem cells are employed. Here we summarize the current knowledge in the field of stem cells and reprogramming with a particular focus on the pitfalls preventing rapid translation of stem cell technologies into the clinic. We discuss the most recent findings on immunogenicity and tumorigenicity of reprogrammed cells. We additionally provide an overview on the potential applications that reprogramming approaches might bring to the immunological field and elaborate on the use of induced pluripotent stem cells (iPSCs) with pre-arranged immune receptors for the development of future immunotherapeutic approaches. The use of reprogramming approaches can represent and provide groundbreaking strategies previously unachievable for stem cell engineering aimed at modulating immune responses. In summary, we provide an overview on the different topics related to the use of stem cells and highlight the most provocative, yet perhaps currently underappreciated, aspect of combining immunological and reprogramming strategies for the treatment of human disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  16. Probabilistic Modeling of Reprogramming to Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Lin L. Liu

    2016-12-01

    Full Text Available Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs is typically an inefficient and asynchronous process. A variety of technological efforts have been made to accelerate and/or synchronize this process. To define a unified framework to study and compare the dynamics of reprogramming under different conditions, we developed an in silico analysis platform based on mathematical modeling. Our approach takes into account the variability in experimental results stemming from probabilistic growth and death of cells and potentially heterogeneous reprogramming rates. We suggest that reprogramming driven by the Yamanaka factors alone is a more heterogeneous process, possibly due to cell-specific reprogramming rates, which could be homogenized by the addition of additional factors. We validated our approach using publicly available reprogramming datasets, including data on early reprogramming dynamics as well as cell count data, and thus we demonstrated the general utility and predictive power of our methodology for investigating reprogramming and other cell fate change systems.

  17. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    Science.gov (United States)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  18. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  19. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes

    OpenAIRE

    Qian, L; Huang, Y; Spencer, CI; Foley, A; Vedantham, V; Liu, L; Conway, SJ; Fu, JD; Srivastava, D

    2012-01-01

    The reprogramming of adult cells into pluripotent cells or directly into alternative adult cell types holds great promise for regenerative medicine. We reported previously that cardiac fibroblasts, which represent 50% of the cells in the mammalian heart, can be directly reprogrammed to adult cardiomyocyte-like cells in vitro by the addition of Gata4, Mef2c and Tbx5 (GMT). Here we use genetic lineage tracing to show that resident non-myocytes in the murine heart can be reprogrammed into cardio...

  20. Mechanistic Insights into Reprogramming to Induced Pluripotency

    Science.gov (United States)

    Ho, Ritchie; Chronis, Constantinos; Plath, Kathrin

    2010-01-01

    Induced pluripotent stem (iPS) cells can be generated from various embryonic or adult cell types upon expression of a set of few transcription factors, most commonly consisting of Oct4, Sox2, c-Myc and Klf4, following a strategy originally published by Takahashi and Yamanaka in 2006 (Takahashi and Yamanaka, 2006). Since iPS cells are molecularly and functionally similar to embryonic stem (ES) cells, they provide a source of patient-specific pluripotent cells for regenerative medicine and disease modeling, and therefore have generated enormous scientific and public interest. The generation of iPS cells also presents a powerful tool for dissecting mechanisms that stabilize the differentiated state and are required for the establishment of pluripotency. In this review, we discuss our current view of the molecular mechanisms underlying transcription factor-mediated reprogramming to induced pluripotency. PMID:20945378

  1. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  2. Spin glass model for dynamics of cell reprogramming

    Science.gov (United States)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2015-03-01

    Recent experiments show that differentiated cells can be reprogrammed to become pluripotent stem cells. The possible cell fates can be modeled as attractors in a dynamical system, the ``epigenetic landscape.'' Both cellular differentiation and reprogramming can be described in the landscape picture as motion from one attractor to another attractor. We perform Monte Carlo simulations in a simple model of the landscape. This model is based on spin glass theory and it can be used to construct a simulated epigenetic landscape starting from the experimental genomic data. We re-analyse data from several cell reprogramming experiments and compare with our simulation results. We find that the model can reproduce some of the main features of the dynamics of cell reprogramming.

  3. Advances in Reprogramming-Based Study of Neurologic Disorders

    Science.gov (United States)

    Baldwin, Kristin K.

    2015-01-01

    The technology to convert adult human non-neural cells into neural lineages, through induced pluripotent stem cells (iPSCs), somatic cell nuclear transfer, and direct lineage reprogramming or transdifferentiation has progressed tremendously in recent years. Reprogramming-based approaches aimed at manipulating cellular identity have enormous potential for disease modeling, high-throughput drug screening, cell therapy, and personalized medicine. Human iPSC (hiPSC)-based cellular disease models have provided proof of principle evidence of the validity of this system. However, several challenges remain before patient-specific neurons produced by reprogramming can provide reliable insights into disease mechanisms or be efficiently applied to drug discovery and transplantation therapy. This review will first discuss limitations of currently available reprogramming-based methods in faithfully and reproducibly recapitulating disease pathology. Specifically, we will address issues such as culture heterogeneity, interline and inter-individual variability, and limitations of two-dimensional differentiation paradigms. Second, we will assess recent progress and the future prospects of reprogramming-based neurologic disease modeling. This includes three-dimensional disease modeling, advances in reprogramming technology, prescreening of hiPSCs and creating isogenic disease models using gene editing. PMID:25749371

  4. Susceptibility of pancreatic cancer stem cells to reprogramming.

    Science.gov (United States)

    Noguchi, Kozo; Eguchi, Hidetoshi; Konno, Masamitsu; Kawamoto, Koichi; Nishida, Naohiro; Koseki, Jun; Wada, Hiroshi; Marubashi, Shigeru; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2015-09-01

    Previous reports have indicated that reprogramming technologies may be useful for altering the malignant phenotype of cancer cells. Although somatic stem cells in normal tissues are more sensitive to reprogramming induction than differentiated cells, it remains to be elucidated whether any specific subpopulations are sensitive to reprogramming in heterogeneous tumor tissues. Here we examined the susceptibility of pancreatic cancer stem cells (CSC) and non-CSC to reprogramming. To characterize CSC populations, we focused on c-Met signaling, which has been identified as a marker of CSC in mouse experiments in vivo. Cells that expressed high levels of c-Met showed higher CSC properties, such as tumor-initiating capacity, and resistance to gemcitabine. Real-time reverse transcription-polymerase chain reaction in cells expressing high levels of c-Met revealed endogenous expression of reprogramming factors, such as OCT3/4, SOX2, KLF4 and cMYC. Introduction of these four factors resulted in higher alkaline phosphatase staining in cells with high c-Met expression than in controls. Therefore, the study results demonstrate that cellular reprogramming may be useful for extensive epigenetic modification of malignant features of pancreatic CSC. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. High-risk human papillomavirus E6 protein promotes reprogramming of Fanconi anemia patient cells through repression of p53 but does not allow for sustained growth of induced pluripotent stem cells.

    Science.gov (United States)

    Chlon, Timothy M; Hoskins, Elizabeth E; Mayhew, Christopher N; Wikenheiser-Brokamp, Kathryn A; Davies, Stella M; Mehta, Parinda; Myers, Kasiani C; Wells, James M; Wells, Susanne I

    2014-10-01

    DNA repair plays a crucial role in embryonic and somatic stem cell biology and cell reprogramming. The Fanconi anemia (FA) pathway, which promotes error-free repair of DNA double-strand breaks, is required for somatic cell reprogramming to induced pluripotent stem cells (iPSC). Thus, cells from Fanconi anemia patients, which lack this critical pathway, fail to be reprogrammed to iPSC under standard conditions unless the defective FA gene is complemented. In this study, we utilized the oncogenes of high-risk human papillomavirus 16 (HPV16) to overcome the resistance of FA patient cells to reprogramming. We found that E6, but not E7, recovers FA iPSC colony formation and, furthermore, that p53 inhibition is necessary and sufficient for this activity. The iPSC colonies resulting from each of these approaches stained positive for alkaline phosphatase, NANOG, and Tra-1-60, indicating that they were fully reprogrammed into pluripotent cells. However, FA iPSC were incapable of outgrowth into stable iPSC lines regardless of p53 suppression, whereas their FA-complemented counterparts grew efficiently. Thus, we conclude that the FA pathway is required for the growth of iPSC beyond reprogramming and that p53-independent mechanisms are involved. A novel approach is described whereby HPV oncogenes are used as tools to uncover DNA repair-related molecular mechanisms affecting somatic cell reprogramming. The findings indicate that p53-dependent mechanisms block FA cells from reprogramming but also uncover a previously unrecognized defect in FA iPSC proliferation independent of p53. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC

    Science.gov (United States)

    Satoh, Kiyotoshi; Yachida, Shinichi; Sugimoto, Masahiro; Oshima, Minoru; Nakagawa, Toshitaka; Akamoto, Shintaro; Tabata, Sho; Saitoh, Kaori; Kato, Keiko; Sato, Saya; Igarashi, Kaori; Aizawa, Yumi; Kajino-Sakamoto, Rie; Kojima, Yasushi; Fujishita, Teruaki; Enomoto, Ayame; Hirayama, Akiyoshi; Ishikawa, Takamasa; Taketo, Makoto Mark; Kushida, Yoshio; Haba, Reiji; Okano, Keiichi; Tomita, Masaru; Suzuki, Yasuyuki; Fukuda, Shinji; Aoki, Masahiro; Soga, Tomoyoshi

    2017-01-01

    Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy. PMID:28847964

  7. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming

    Directory of Open Access Journals (Sweden)

    Bernadette M. M. Zwaans

    2014-09-01

    Full Text Available In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect. Despite the inefficiency of ATP generation through glycolysis, the breakdown of glucose into lactate provides cancer cells with a number of advantages, including the ability to withstand fluctuations in oxygen levels, and the production of intermediates that serve as building blocks to support rapid proliferation. Recent evidence from many cancer types supports the notion that pervasive metabolic reprogramming in cancer and stromal cells is a crucial feature of neoplastic transformation. Two key transcription factors that play major roles in this metabolic reprogramming are hypoxia inducible factor-1 (HIF1 and MYC. Sirtuin-family deacetylases regulate diverse biological processes, including many aspects of tumor biology. Recently, the sirtuin SIRT6 has been shown to inhibit the transcriptional output of both HIF1 and MYC, and to function as a tumor suppressor. In this Review, we highlight the importance of HIF1 and MYC in regulating tumor metabolism and their regulation by sirtuins, with a main focus on SIRT6.

  8. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming.

    Science.gov (United States)

    Zwaans, Bernadette M M; Lombard, David B

    2014-09-01

    In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect). Despite the inefficiency of ATP generation through glycolysis, the breakdown of glucose into lactate provides cancer cells with a number of advantages, including the ability to withstand fluctuations in oxygen levels, and the production of intermediates that serve as building blocks to support rapid proliferation. Recent evidence from many cancer types supports the notion that pervasive metabolic reprogramming in cancer and stromal cells is a crucial feature of neoplastic transformation. Two key transcription factors that play major roles in this metabolic reprogramming are hypoxia inducible factor-1 (HIF1) and MYC. Sirtuin-family deacetylases regulate diverse biological processes, including many aspects of tumor biology. Recently, the sirtuin SIRT6 has been shown to inhibit the transcriptional output of both HIF1 and MYC, and to function as a tumor suppressor. In this Review, we highlight the importance of HIF1 and MYC in regulating tumor metabolism and their regulation by sirtuins, with a main focus on SIRT6. © 2014. Published by The Company of Biologists Ltd.

  9. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    Science.gov (United States)

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  10. Novel Markov model of induced pluripotency predicts gene expression changes in reprogramming

    Directory of Open Access Journals (Sweden)

    Hu Zhirui

    2011-12-01

    Full Text Available Abstract Background Somatic cells can be reprogrammed to induced-pluripotent stem cells (iPSCs by introducing few reprogramming factors, which challenges the long held view that cell differentiation is irreversible. However, the mechanism of induced pluripotency is still unknown. Methods Inspired by the phenomenological reprogramming model of Artyomov et al (2010, we proposed a novel Markov model, stepwise reprogramming Markov (SRM model, with simpler gene regulation rules and explored various properties of the model with Monte Carlo simulation. We calculated the reprogramming rate and showed that it would increase in the condition of knockdown of somatic transcription factors or inhibition of DNA methylation globally, consistent with the real reprogramming experiments. Furthermore, we demonstrated the utility of our model by testing it with the real dynamic gene expression data spanning across different intermediate stages in the iPS reprogramming process. Results The gene expression data at several stages in reprogramming and the reprogramming rate under several typically experiment conditions coincided with our simulation results. The function of reprogramming factors and gene expression change during reprogramming could be partly explained by our model reasonably well. Conclusions This lands further support on our general rules of gene regulation network in iPSC reprogramming. This model may help uncover the basic mechanism of reprogramming and improve the efficiency of converting somatic cells to iPSCs.

  11. Direct cellular reprogramming for cardiac repair and regeneration.

    Science.gov (United States)

    Batty, Jonathan A; Lima, Jose A C; Kunadian, Vijay

    2016-02-01

    Heart failure is a major cause of morbidity and mortality, characterized by depletion of functioning cardiomyocytes, myocardial remodelling, and impaired contractile function. As the heart has a limited capacity for repair, and current treatments do not reverse myocardial attrition, novel regenerative strategies are imperative. Although cell delivery-based approaches remain promising, in situ reprogramming of endogenous cardiac fibroblasts (which are pathophysiologically implicated in cardiac remodelling) into functional cardiomyocytes may represent an advantageous approach. Several groups report successful in vitro and in vivo reprogramming of murine fibroblasts, using critical transcription factors, microRNA mimics, and small molecules, to cells demonstrating cardiomyocyte-like morphology, gene expression, and spontaneous contraction, which improve cardiac function in post-infarct models. Although proof-of-concept studies demonstrate reprogramming in human fibroblasts, significant barriers to therapeutic reprogramming remain. In this review, we evaluate the current status of reprogramming strategies for cardiac repair, and explore future perspectives within the context of clinical translation. © 2015 The Authors European Journal of Heart Failure © 2015 European Society of Cardiology.

  12. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    Science.gov (United States)

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming. © FASEB.

  13. Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency

    DEFF Research Database (Denmark)

    Yan, Zhou; Al-Saaidi, Rasha Abdelkadhem; Fernandez Guerra, Paula

    2017-01-01

    Nuclear reprogramming efficiency has been shown to be highly variable among different types of somatic cells and different individuals, yet the underlying mechanism remains largely unknown. Several studies have shown that reprogramming of fibroblasts into induced pluripotent stem cells (i...... extracellular energy flux analyzer, we measured oxygen consumption rate (OCR) profiles of the cells, along with their nuclear reprogramming efficiency into iPSCs. Our results showed that fibroblasts with the lowest mitochondrial spare respiratory capacity (SRC) had the highest nuclear reprogramming efficiency...... of the modified fibroblasts and impaired reprogramming efficiency. Our findings indicate a negative correlation between high mitochondrial SRC in somatic cells and low reprogramming efficiencies. This type of analysis potentially allows screening and predicting reprogramming efficiency before reprogramming...

  14. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    Science.gov (United States)

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Progress in understanding reprogramming to the induced pluripotent state

    Science.gov (United States)

    Plath, Kathrin; Lowry, William E.

    2012-01-01

    Induction of pluripotency by transcription factors has become a commonplace method to produce pluripotent stem cells. Great strides have been made in our understanding of the mechanism by which this occurs - particularly in terms of transcriptional and chromatin-based events – yet it is possible that still only a small part of the complete picture has been revealed. Understanding the mechanism of reprogramming to pluripotency will have important implications not only to improve the efficiency of the method, generate highest quality reprogrammed cells, and propel their therapeutic applications, but will help to reveal the machinery that stabilizes cell identity and instruct the design of directed differentiation or lineage switching strategies. To inform the next phase in our understanding of reprogramming, we review the latest findings, highlight ongoing debates and outline future challenges to this important problem. PMID:21415849

  16. Electromagnetic fields mediate efficient cell reprogramming into a pluripotent state.

    Science.gov (United States)

    Baek, Soonbong; Quan, Xiaoyuan; Kim, Soochan; Lengner, Christopher; Park, Jung-Keug; Kim, Jongpil

    2014-10-28

    Life on Earth is constantly exposed to natural electromagnetic fields (EMFs), and it is generally accepted that EMFs may exert a variety of effects on biological systems. Particularly, extremely low-frequency electromagnetic fields (EL-EMFs) affect biological processes such as cell development and differentiation; however, the fundamental mechanisms by which EMFs influence these processes remain unclear. Here we show that EMF exposure induces epigenetic changes that promote efficient somatic cell reprogramming to pluripotency. These epigenetic changes resulted from EMF-induced activation of the histone lysine methyltransferase Mll2. Remarkably, an EMF-free system that eliminates Earth's naturally occurring magnetic field abrogates these epigenetic changes, resulting in a failure to undergo reprogramming. Therefore, our results reveal that EMF directly regulates dynamic epigenetic changes through Mll2, providing an efficient tool for epigenetic reprogramming including the acquisition of pluripotency.

  17. The Role of microRNAs in Animal Cell Reprogramming.

    Science.gov (United States)

    Cruz-Santos, María Concepción; Aragón-Raygoza, Alejandro; Espinal-Centeno, Annie; Arteaga-Vázquez, Mario; Cruz-Hernández, Andrés; Bako, Laszlo; Cruz-Ramírez, Alfredo

    2016-07-15

    Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.

  18. Metabolic Reprogramming of Immune Cells in Cancer Progression.

    Science.gov (United States)

    Biswas, Subhra K

    2015-09-15

    Immune cells play a key role in host defense against infection and cancer. Upon encountering danger signals, these cells undergo activation leading to a modulation in their immune functions. However, recent studies reveal that immune cells upon activation also show distinct metabolic changes that impact their immune functions. Such metabolic reprogramming and its functional effects are well known for cancer cells. Given that immune cells have emerged as crucial players in cancer progression, it is important to understand whether immune cells also undergo metabolic reprogramming in tumors and how this might affect their contribution in cancer progression. This emerging aspect of tumor-associated immune cells is reviewed here, discussing metabolic reprogramming of different immune cell types, the key pathways involved, and its impact on tumor progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants.

    Science.gov (United States)

    Wang, Qing-Long; Chen, Juan-Hua; He, Ning-Yu; Guo, Fang-Qing

    2018-03-14

    Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.

  20. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration.

  1. Transcriptional and epigenetic mechanisms of cellular reprogramming to induced pluripotency.

    Science.gov (United States)

    van den Hurk, Mark; Kenis, Gunter; Bardy, Cedric; van den Hove, Daniel L; Gage, Fred H; Steinbusch, Harry W; Rutten, Bart P

    2016-08-01

    Enforced ectopic expression of a cocktail of pluripotency-associated genes such as Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). The remarkable proliferation ability of iPSCs and their aptitude to redifferentiate into any cell lineage makes these cells a promising tool for generating a variety of human tissue in vitro. Yet, pluripotency induction is an inefficient process, as cells undergoing reprogramming need to overcome developmentally imposed epigenetic barriers. Recent work has shed new light on the molecular mechanisms that drive the reprogramming of somatic cells to iPSCs. Here, we present current knowledge on the transcriptional and epigenetic regulation of pluripotency induction and discuss how variability in epigenetic states impacts iPSCs' inherent biological properties.

  2. Genome-wide transcriptional reprogramming under drought stress

    KAUST Repository

    Chen, Hao

    2012-01-01

    Soil water deficit is one of the major factors limiting plant productivity. Plants cope with this adverse environmental condition by coordinating the up- or downregulation of an array of stress responsive genes. Reprogramming the expression of these genes leads to rebalanced development and growth that are in concert with the reduced water availability and that ultimately confer enhanced stress tolerance. Currently, several techniques have been employed to monitor genome-wide transcriptional reprogramming under drought stress. The results from these high throughput studies indicate that drought stress-induced transcriptional reprogramming is dynamic, has temporal and spatial specificity, and is coupled with the circadian clock and phytohormone signaling pathways. © 2012 Springer-Verlag Berlin Heidelberg. All rights are reserved.

  3. DMPD: Cellular reprogramming by gram-positive bacterial components: a review. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16885502 Cellular reprogramming by gram-positive bacterial components: a review. Bu...(.csml) Show Cellular reprogramming by gram-positive bacterial components: a review. PubmedID 16885502 Title Cellular reprogramming...ckley JM, Wang JH, Redmond HP. J Leukoc Biol. 2006 Oct;80(4):731-41. Epub 2006 Aug 2. (.png) (.svg) (.html)

  4. Reprogramming the methylome: erasing memory and creating diversity.

    Science.gov (United States)

    Lee, Heather J; Hore, Timothy A; Reik, Wolf

    2014-06-05

    The inheritance of epigenetic marks, in particular DNA methylation, provides a molecular memory that ensures faithful commitment to transcriptional programs during mammalian development. Epigenetic reprogramming results in global hypomethylation of the genome together with a profound loss of memory, which underlies naive pluripotency. Such global reprogramming occurs in primordial germ cells, early embryos, and embryonic stem cells where reciprocal molecular links connect the methylation machinery to pluripotency. Priming for differentiation is initiated upon exit from pluripotency, and we propose that epigenetic mechanisms create diversity of transcriptional states, which help with symmetry breaking during cell fate decisions and lineage commitment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Linking metabolic reprogramming to therapy resistance in cancer.

    Science.gov (United States)

    Morandi, Andrea; Indraccolo, Stefano

    2017-08-01

    Metabolic rearrangements are essential to satisfy the different requirements of cancer cells during tumorigenesis and recent studies have highlighted a role for such metabolic reprogramming in response and adaptation to therapies. However, therapy-resistant experimental models have been described to be either glycolysis-dependent or OXPHOS-addicted. Here we discuss the recent literature on metabolic reprogramming of cancer in therapy resistance with a plausible explanation of the observed differences which collectively indicate that dis-regulated metabolic pathways could be considered potential therapeutic targets in tumors resistant to conventional therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  7. Molecular Imaging of Metabolic Reprograming in Mutant IDH Cells.

    Science.gov (United States)

    Viswanath, Pavithra; Chaumeil, Myriam M; Ronen, Sabrina M

    2016-01-01

    Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH) have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG). Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG). In turn, 2-HG, which has been termed an "oncometabolite," inhibits key α-KG-dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprograming that extends beyond 2-HG production, and this reprograming often differs from what has been previously reported in other cancer types. In this review, we will discuss in detail what is known to date about the metabolic reprograming of mutant IDH cells, and how this reprograming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells, and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  8. precise delta extraction scheme for reprogramming of wireless

    African Journals Online (AJOL)

    eobe

    implemented via the use of embedded operating systems. Jun-Zhao in [6] as well as Dunkiels et al. in [7] categorized the reprogramming processes into three, namely: full code image replacement approach, the loadable module approach and the incremental- differential approach. Each approach evolved from the need to ...

  9. Think About the Environment: Cellular Reprogramming by the Extracellular Matrix

    NARCIS (Netherlands)

    Huels, David J.; Medema, Jan Paul

    2018-01-01

    In this issue of Cell Stem Cell, Yui et al. (2018) show how tissue regeneration is driven by changes in the micro-environment. During intestinal regeneration, the epithelium is reprogrammed into a fetal state by an altered extracellular matrix (ECM), which is dependent on YAP/TAZ activation

  10. Local epigenetic reprogramming induced by G-quadruplex ligands

    Science.gov (United States)

    Guilbaud, Guillaume; Murat, Pierre; Recolin, Bénédicte; Campbell, Beth C.; Maiter, Ahmed; Sale, Julian E.; Balasubramanian, Shankar

    2017-11-01

    DNA and histone modifications regulate transcriptional activity and thus represent valuable targets to reprogram the activity of genes. Current epigenetic therapies target the machinery that regulates these modifications, leading to global transcriptional reprogramming with the potential for extensive undesired effects. Epigenetic information can also be modified as a consequence of disrupting processive DNA replication. Here, we demonstrate that impeding replication by small-molecule-mediated stabilization of G-quadruplex nucleic acid secondary structures triggers local epigenetic plasticity. We report the use of the BU-1 locus of chicken DT40 cells to screen for small molecules able to induce G-quadruplex-dependent transcriptional reprogramming. Further characterization of the top hit compound revealed its ability to induce a dose-dependent inactivation of BU-1 expression in two steps: the loss of H3K4me3 and then subsequent DNA cytosine methylation, changes that were heritable across cell divisions even after the compound was removed. Targeting DNA secondary structures thus represents a potentially new approach for locus-specific epigenetic reprogramming.

  11. Nuclear Reprogramming in Mouse Primordial Germ Cells: Epigenetic Contribution

    Directory of Open Access Journals (Sweden)

    Massimo De Felici

    2011-01-01

    Full Text Available The unique capability of germ cells to give rise to a new organism, allowing the transmission of primary genetic information from generation to generation, depends on their epigenetic reprogramming ability and underlying genomic totipotency. Recent studies have shown that genome-wide epigenetic modifications, referred to as “epigenetic reprogramming”, occur during the development of the gamete precursors termed primordial germ cells (PGCs in the embryo. This reprogramming is likely to be critical for the germ line development itself and necessary to erase the parental imprinting and setting the base for totipotency intrinsic to this cell lineage. The status of genome acquired during reprogramming and the associated expression of key pluripotency genes render PGCs susceptible to transform into pluripotent stem cells. This may occur in vivo under still undefined condition, and it is likely at the origin of the formation of germ cell tumors. The phenomenon appears to be reproduced under partly defined in vitro culture conditions, when PGCs are transformed into embryonic germ (EG cells. In the present paper, I will try to summarize the contribution that epigenetic modifications give to nuclear reprogramming in mouse PGCs.

  12. Global Splicing Pattern Reversion during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Sho Ohta

    2013-10-01

    Full Text Available Alternative splicing generates multiple transcripts from a single gene, and cell-type-specific splicing profiles are important for the properties and functions of the cells. Recently, somatic cells have been shown to undergo dedifferentiation after the forced expression of transcription factors. However, it remains unclear whether somatic cell splicing is reorganized during reprogramming. Here, by combining deep sequencing with high-throughput absolute qRT-PCR, we show that somatic splicing profiles revert to pluripotent ones during reprogramming. Remarkably, the splicing pattern in pluripotent stem cells resembles that in testes, and the regulatory regions have specific characteristics in length and sequence. Furthermore, our siRNA screen has identified RNA-binding proteins that regulate splicing events in iPSCs. We have then demonstrated that two of the RNA-binding proteins, U2af1 and Srsf3, play a role in somatic cell reprogramming. Our results indicate that the drastic alteration in splicing represents part of the molecular network involved in the reprogramming process.

  13. Control of Cell Fate Reprogramming Towards De Novo Shoot Organogenesis.

    Science.gov (United States)

    Tian, Xin; Zhang, Chen; Xu, Jian

    2017-12-23

    Many plants have a high regenerative capacity, which can be used to induce de novo organogenesis and produce various valuable plant species and products. In the classic 2-step protocol for de novo shoot organogenesis, small pieces of plant parts or tissues known as explants are initially cultured on an auxin-rich medium to produce a cell mass called callus. Upon transfer to a cytokinin-rich medium, a subpopulation of cells within the callus acquire shoot cell fate and subsequently develop into a fertile shoot. Cell fate reprogramming during de novo organogenesis is thus recognized as the decisive step to progressively acquire new cell types, in response to a change in the levels of plant hormones auxin and cytokinin. Currently, the molecular mechanisms underlying the onset and completion of cell fate reprogramming remains partly understood. In this review, we sought to summarize the most recent progress made in the study of cell fate reprogramming during de novo shoot organogenesis, and highlight the critical roles of epigenetic and transcription factors in the developmental timing of cell fate reprogramming. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Forget the Parents: Epigenetic Reprogramming in Human Germ Cells.

    Science.gov (United States)

    von Meyenn, Ferdinand; Reik, Wolf

    2015-06-04

    Epigenetic reprogramming in the germline resets genomic potential and erases epigenetic memory. Three studies by Gkountela et al., Guo et al., and Tang et al. analyze the transcriptional and epigenetic landscape of human primordial germ cells, revealing a unique transcriptional network and progressive and conserved global erasure of DNA methylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Role of sound stimulation in reprogramming brain connectivity

    Indian Academy of Sciences (India)

    2013-07-17

    Jul 17, 2013 ... Thus, it becomes imperative to examine in detail the possible ameliorating effects of prenatal sound stimulation in existing animal models of various psychiatric disorders, such as autism. [Chaudhury S, Nag TC, Jain S and Wadhwa S 2013 Role of sound stimulation in reprogramming brain connectivity.

  16. Protein Kinase A Signaling Is Inhibitory for Reprogramming into Pluripotent Stem Cells.

    Science.gov (United States)

    Kim, Jong Soo; Hong, Yean Ju; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2016-03-01

    Somatic cells may be reprogrammed into pluripotent cells by the ectopic expression of defined transcription factors. However, some of the hurdles that affect the generation of induced pluripotent stem cells include extremely low efficiency and slow reprogramming. In the present study, we examined the effects of small molecules on cellular reprogramming and found that 8-Bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), an analog of cyclic adenosine monophosphate (cAMP), improves the reprogramming efficiency of reprogrammable mouse fibroblasts induced with dox in serum replacement (SR) medium. Interestingly, treatment with 8-Br-cAMP in mouse embryonic stem cell culture conditions does not affect reprogramming into the pluripotent state; however, reprogramming efficiency is significantly enhanced by inhibition of protein kinase A (PKA) in SR medium. Therefore, our results suggest that PKA signaling is unnecessary and may in fact act as a barrier to reprogramming into pluripotent stem cells.

  17. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    Science.gov (United States)

    Tain, You-Lin; Huang, Li-Tung; Hsu, Chien-Ning

    2017-02-16

    Adult-onset chronic non-communicable diseases (NCDs) can originate from early life through so-called the "developmental origins of health and disease" (DOHaD) or "developmental programming". The DOHaD concept offers the "reprogramming" strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  18. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    Science.gov (United States)

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  19. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.

    Science.gov (United States)

    Seisenberger, Stefanie; Peat, Julian R; Hore, Timothy A; Santos, Fátima; Dean, Wendy; Reik, Wolf

    2013-01-05

    In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine.

  20. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    Science.gov (United States)

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Direct Reprogramming-The Future of Cardiac Regeneration?

    Science.gov (United States)

    Doppler, Stefanie A; Deutsch, Marcus-André; Lange, Rüdiger; Krane, Markus

    2015-07-29

    Today, the only available curative therapy for end stage congestive heart failure (CHF) is heart transplantation. This therapeutic option is strongly limited by declining numbers of available donor hearts and by restricted long-term performance of the transplanted graft. The disastrous prognosis for CHF with its restricted therapeutic options has led scientists to develop different concepts of alternative regenerative treatment strategies including stem cell transplantation or stimulating cell proliferation of different cardiac cell types in situ. However, first clinical trials with overall inconsistent results were not encouraging, particularly in terms of functional outcome. Among other approaches, very promising ongoing pre-clinical research focuses on direct lineage conversion of scar fibroblasts into functional myocardium, termed "direct reprogramming" or "transdifferentiation." This review seeks to summarize strategies for direct cardiac reprogramming including the application of different sets of transcription factors, microRNAs, and small molecules for an efficient generation of cardiomyogenic cells for regenerative purposes.

  2. Somatic cell reprogramming-free generation of genetically modified pigs.

    Science.gov (United States)

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-Ichiro; Otoi, Takeshige

    2016-09-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs.

  3. Chemical strategies for pancreatic β cell differentiation, reprogramming, and regeneration.

    Science.gov (United States)

    Ma, Xiaojie; Zhu, Saiyong

    2017-04-01

    Generation of unlimited functional pancreatic β cells is critical for the study of pancreatic biology and treatment of diabetes mellitus. Recent advances have suggested several promising directions, including directed differentiation of pancreatic β cells from pluripotent stem cells, reprogramming of pancreatic β cells from other types of somatic cells, and stimulated proliferation and enhanced functions of existing pancreatic β cells. Small molecules are useful in generating unlimited numbers of functional pancreatic cells in vitro and could be further developed as drugs to stimulate endogenous pancreatic regeneration. Here, we provide an updated summary of recent major achievements in pancreatic β cell differentiation, reprogramming, proliferation, and function. These studies will eventually lead to significant advances in the field of pancreatic biology and regeneration. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer.

    Science.gov (United States)

    Sciacovelli, Marco; Frezza, Christian

    2017-10-01

    Several lines of evidence indicate that during transformation epithelial cancer cells can acquire mesenchymal features via a process called epithelial-to-mesenchymal transition (EMT). This process endows cancer cells with increased invasive and migratory capacity, enabling tumour dissemination and metastasis. EMT is associated with a complex metabolic reprogramming, orchestrated by EMT transcription factors, which support the energy requirements of increased motility and growth in harsh environmental conditions. The discovery that mutations in metabolic genes such as FH, SDH and IDH activate EMT provided further evidence that EMT and metabolism are intertwined. In this review, we discuss the role of EMT in cancer and the underpinning metabolic reprogramming. We also put forward the hypothesis that, by altering chromatin structure and function, metabolic pathways engaged by EMT are necessary for its full activation. © 2017 Federation of European Biochemical Societies.

  5. Developmental Programming of Adult Disease: Reprogramming by Melatonin?

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2017-02-01

    Full Text Available Adult-onset chronic non-communicable diseases (NCDs can originate from early life through so-called the “developmental origins of health and disease” (DOHaD or “developmental programming”. The DOHaD concept offers the “reprogramming” strategy to shift the treatment from adulthood to early life, before clinical disease is apparent. Melatonin, an endogenous indoleamine produced by the pineal gland, has pleiotropic bioactivities those are beneficial in a variety of human diseases. Emerging evidence support that melatonin is closely inter-related to other proposed mechanisms contributing to the developmental programming of a variety of chronic NCDs. Recent animal studies have begun to unravel the multifunctional roles of melatonin in many experimental models of developmental programming. Even though some progress has been made in research on melatonin as a reprogramming strategy to prevent DOHaD-related NCDs, future human studies should aim at filling the translational gap between animal models and clinical trials. Here, we review several key themes on the reprogramming effects of melatonin in DOHaD research. We have particularly focused on the following areas: mechanisms of developmental programming; the interrelationship between melatonin and mechanisms underlying developmental programming; pathophysiological roles of melatonin in pregnancy and fetal development; and insight provided by animal models to support melatonin as a reprogramming therapy. Rates of NCDs are increasing faster than anticipated all over the world. Hence, there is an urgent need to understand reprogramming mechanisms of melatonin and to translate experimental research into clinical practice for halting a growing list of DOHaD-related NCDs.

  6. Exploring the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model

  7. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    Science.gov (United States)

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.

  8. Biophysical regulation of epigenetic state and cell reprogramming

    Science.gov (United States)

    Downing, Timothy L.; Soto, Jennifer; Morez, Constant; Houssin, Timothee; Fritz, Ashley; Yuan, Falei; Chu, Julia; Patel, Shyam; Schaffer, David V.; Li, Song

    2013-12-01

    Biochemical factors can help reprogram somatic cells into pluripotent stem cells, yet the role of biophysical factors during reprogramming is unknown. Here, we show that biophysical cues, in the form of parallel microgrooves on the surface of cell-adhesive substrates, can replace the effects of small-molecule epigenetic modifiers and significantly improve reprogramming efficiency. The mechanism relies on the mechanomodulation of the cells’ epigenetic state. Specifically, decreased histone deacetylase activity and upregulation of the expression of WD repeat domain 5 (WDR5)—a subunit of H3 methyltranferase—by microgrooved surfaces lead to increased histone H3 acetylation and methylation. We also show that microtopography promotes a mesenchymal-to-epithelial transition in adult fibroblasts. Nanofibrous scaffolds with aligned fibre orientation produce effects similar to those produced by microgrooves, suggesting that changes in cell morphology may be responsible for modulation of the epigenetic state. These findings have important implications in cell biology and in the optimization of biomaterials for cell-engineering applications.

  9. Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming

    Science.gov (United States)

    Han, Ji Woong

    2011-01-01

    Abstract Introduction of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, can successfully reprogram somatic cells into embryonic stem (ES)-like cells. These cells, which are referred to as induced pluripotent stem (iPS) cells, closely resemble embryonic stem cells in genomic, cell biologic, and phenotypic characteristics, and the creation of these special cells was a major triumph in cell biology. In contrast to pluripotent stem cells generated by somatic cell nuclear-transfer (SCNT) or ES cells derived from the inner cell mass (ICM) of the blastocyst, direct reprogramming provides a convenient and reliable means of generating pluripotent stem cells. iPS cells have already shown incredible potential for research and for therapeutic applications in regenerative medicine within just a few years of their discovery. In this review, current techniques of generating iPS cells and mechanisms of nuclear reprogramming are reviewed, and the potential for therapeutic applications is discussed. Antioxid. Redox Signal. 15, 1799–1820. PMID:21194386

  10. Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries.

    Science.gov (United States)

    Blanchard, Joel W; Xie, Jia; El-Mecharrafie, Nadja; Gross, Simon; Lee, Sohyon; Lerner, Richard A; Baldwin, Kristin K

    2017-10-01

    The reprogramming of differentiated cells into induced pluripotent stem cells (iPSCs) is usually achieved by exogenous induction of transcription by factors acting in the nucleus. In contrast, during development, signaling pathways initiated at the membrane induce differentiation. The central idea of this study is to identify antibodies that can catalyze cellular de-differentiation and nuclear reprogramming by acting at the cell surface. We screen a lentiviral library encoding ∼100 million secreted and membrane-bound single-chain antibodies and identify antibodies that can replace either Sox2 and Myc (c-Myc) or Oct4 during reprogramming of mouse embryonic fibroblasts into iPSCs. We show that one Sox2-replacing antibody antagonizes the membrane-associated protein Basp1, thereby de-repressing nuclear factors WT1, Esrrb and Lin28a (Lin28) independent of Sox2. By manipulating this pathway, we identify three methods to generate iPSCs. Our results establish unbiased selection from autocrine combinatorial antibody libraries as a robust method to discover new biologics and uncover membrane-to-nucleus signaling pathways that regulate pluripotency and cell fate.

  11. ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Katherine M. Aird

    2015-05-01

    Full Text Available Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.

  12. PPARδ Reprograms Glutamine Metabolism in Sorafenib-Resistant HCC.

    Science.gov (United States)

    Kim, Mi-Jin; Choi, Yeon-Kyung; Park, Soo Young; Jang, Se Young; Lee, Jung Yi; Ham, Hye Jin; Kim, Byung-Gyu; Jeon, Hui-Jeon; Kim, Ji-Hyun; Kim, Jung-Guk; Lee, In-Kyu; Park, Keun-Gyu

    2017-09-01

    The tyrosine kinase inhibitor sorafenib is the only therapeutic agent approved for the treatment of advanced hepatocellular carcinoma (HCC), but acquired resistance to sorafenib is high. Here, we report metabolic reprogramming in sorafenib-resistant HCC and identify a regulatory molecule, peroxisome proliferator-activated receptor-δ (PPARδ), as a potential therapeutic target. Sorafenib-resistant HCC cells showed markedly higher glutamine metabolism and reductive glutamine carboxylation, which was accompanied by increased glucose-derived pentose phosphate pathway and glutamine-derived lipid biosynthetic pathways and resistance to oxidative stress. These glutamine-dependent metabolic alterations were attributed to PPARδ, which was upregulated in sorafenib-resistant HCC cells and human HCC tissues. Furthermore, PPARδ contributed to increased proliferative capacity and redox homeostasis in sorafenib-resistant HCC cells. Accordingly, inhibiting PPARδ activity reversed compensatory metabolic reprogramming in sorafenib-resistant HCC cells and sensitized them to sorafenib. Therefore, targeting compensatory metabolic reprogramming of glutamine metabolism in sorafenib-resistant HCC by inhibiting PPARδ constitutes a potential therapeutic strategy for overcoming sorafenib-resistance in HCC. Implications: This study provides novel insight into the mechanism underlying sorafenib resistance and a potential therapeutic strategy targeting PPARδ in advanced hepatocellular carcinoma. Mol Cancer Res; 15(9); 1230-42. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Establishment of Hepatocellular Cancer Induced Pluripotent Stem Cells Using a Reprogramming Technique.

    Science.gov (United States)

    Kim, Han Joon; Jeong, Jaemin; Park, Sunhoo; Jin, Young-Woo; Lee, Seung-Sook; Lee, Seung Bum; Choi, Dongho

    2017-03-15

    Cancer is known to be a disease by many factors. However, specific results of reprogramming by pluripotency-related transcription factors remain to be scarcely reported. Here, we verified potential effects of pluripotent-related genes in hepatocellular carcinoma cancer cells. To better understand reprogramming of cancer cells in different genetic backgrounds, we used four liver cancer cell lines representing different states of p53 (HepG2, Hep3B, Huh7 and PLC). Retroviral-mediated introduction of reprogramming related genes (KLF4, Oct4, Sox2, and Myc) was used to induce the expression of proteins related to a pluripotent status in liver cancer cells. Hep3B cells (null p53) exhibited a higher efficiency of reprogramming in comparison to the other liver cancer cell lines. The reprogrammed Hep3B cells acquired similar characteristics to pluripotent stem cells. However, loss of stemness in Hep3B-iPCs was detected during continual passage. We demonstrated that reprogramming was achieved in tumor cells through retroviral induction of genes associated with reprogramming. Interestingly, the reprogrammed pluripotent cancer cells (iPCs) were very different from original cancer cells in terms of colony shape and expressed markers. The induction of pluripotency of liver cancer cells correlated with the status of p53, suggesting that different expression level of p53 in cancer cells may affect their reprogramming.

  14. Manipulation of KLF4 Expression Generates iPSCs Paused at Successive Stages of Reprogramming

    Directory of Open Access Journals (Sweden)

    Ken Nishimura

    2014-11-01

    Full Text Available The detailed mechanism of reprogramming somatic cells into induced pluripotent stem cells (iPSCs remains largely unknown. Partially reprogrammed iPSCs are informative and useful for understanding the mechanism of reprogramming but remain technically difficult to generate in a predictable and reproducible manner. Using replication-defective and persistent Sendai virus (SeVdp vectors, we analyzed the effect of decreasing the expression levels of OCT4, SOX2, KLF4, and c-MYC and found that low KLF4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of KLF4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path toward pluripotency. Paused iPSCs with different KLF4 expression levels remain at distinct intermediate stages of reprogramming. This SeVdp-based stage-specific reprogramming system (3S reprogramming system is applicable for both mouse and human somatic cells and will facilitate the mechanistic analysis of reprogramming.

  15. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation...... capacity. Here we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules...... influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations....

  16. Comparison of reprogramming genes in induced pluripotent stem cells and nuclear transfer cloned embryos.

    Science.gov (United States)

    Duan, Lian; Wang, Zhendong; Shen, Jingling; Shan, Zhiyan; Shen, Xinghui; Wu, Yanshuang; Sun, Ruizhen; Li, Tong; Yuan, Rui; Zhao, Qiaoshi; Bai, Guangyu; Gu, Yanli; Jin, Lianhong; Lei, Lei

    2014-08-01

    The most effective reprogramming methods, somatic cell nuclear transfer (SCNT) and induced pluripotent stem cells (iPSCs), are widely used in biological research and regenerative medicine, yet the mechanism that reprograms somatic cells to totipotency remains unclear and thus reprogramming efficiency is still low. Microarray technology has been employed in analyzing the transcriptomes changes during iPS reprogramming. Unfortunately, it is difficult to obtain enough DNA from SCNT reconstructed embryos to take advantage of this technology. In this study, we aimed to identify critical genes from the transcriptional profile for iPS reprogramming and compared expression levels of these genes in SCNT reprogramming. By integrating gene expression information from microarray databases and published studies comparing somatic cells with either miPSCs or mouse embryonic stem cells (ESCs), we obtained two lists of co-upregulated genes. The gene ontology (GO) enriched analysis of these two lists demonstrated that the reprogramming process is associated with numerous biological processes. Specifically, we selected 32 genes related to heterochromatin, embryonic development, and cell cycle from our co-upregulated gene datasets and examined the gene expression level in iPSCs and SCNT embryos by qPCR. The results revealed that some reprogramming related genes in iPSCs were also expressed in SCNT reprogramming. We established the network of gene interactions that occur with genes differentially expressed in iPS and SCNT reprogramming and then performed GO analysis on the genes in the network. The network genes function in chromatin organization, heterochromatin, transcriptional regulation, and cell cycle. Further researches to improve reprogramming efficiency, especially in SCNT, will focus on functional studies of these selected genes.

  17. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  18. Reprogramming of retinoblastoma cancer cells into cancer stem cells.

    Science.gov (United States)

    Yue, Fengming; Hirashima, Kanji; Tomotsune, Daihachiro; Takizawa-Shirasawa, Sakiko; Yokoyama, Tadayuki; Sasaki, Katsunori

    2017-01-22

    Retinoblastoma is the most common intraocular malignancy in pediatric patients. It develops rapidly in the retina and can be fatal if not treated promptly. It has been proposed that a small population of cancer cells, termed cancer stem cells (CSCs), initiate tumorigenesis from immature tissue stem cells or progenitor cells. Reprogramming technology, which can convert mature cells into pluripotent stem cells (iPS), provides the possibility of transducing malignant cancer cells back to CSCs, a type of early stage of cancer. We herein took advantage of reprogramming technology to induce CSCs from retinoblastoma cancer cells. In the present study, the 4 Yamanaka transcription factors, Oct4, Sox2, Klf4 and c-myc, were transduced into retinoblastoma cells (Rbc51). iPS-like colonies were observed 15 days after transduction and showed significantly enhanced CSC properties. The gene and protein expression levels of pluripotent stem cell markers (Tra-1-60, Oct4, Nanog) and cancer stem cell markers (CD133, CD44) were up-regulated in transduced Rbc51 cells compared to control cells. Moreover, iPS-like CSCs could be sorted using the Magnetic-activated cell sorting (MACS) method. A sphere formation assay demonstrated spheroid formation in transduced Rbc51 cells cultured in serum free media, and these spheroids could be differentiated into Pax6-, Nestin-positive neural progenitors and rhodopsin- and recoverin-positive mature retinal cells. The cell viability after 5-Fu exposure was higher in transduced Rbc51 cells. In conclusion, CSCs were generated from retinoblastoma cancer cells using reprogramming technology. Our novel method can generate CSCs, the study of which can lead to better understanding of cancer-specific initiation, cancer epigenetics, and the overlapping mechanisms of cancer development and pluripotent stem cell behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Developmental Programming of Renal Function and Re-Programming Approaches.

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to "re-program" renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin-angiotensin-aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application. Early

  20. An Algorithmic Information Calculus for Causal Discovery and Reprogramming Systems

    KAUST Repository

    Zenil, Hector

    2017-09-08

    We introduce a conceptual framework and an interventional calculus to steer and manipulate systems based on their intrinsic algorithmic probability using the universal principles of the theory of computability and algorithmic information. By applying sequences of controlled interventions to systems and networks, we estimate how changes in their algorithmic information content are reflected in positive/negative shifts towards and away from randomness. The strong connection between approximations to algorithmic complexity (the size of the shortest generating mechanism) and causality induces a sequence of perturbations ranking the network elements by the steering capabilities that each of them is capable of. This new dimension unmasks a separation between causal and non-causal components providing a suite of powerful parameter-free algorithms of wide applicability ranging from optimal dimension reduction, maximal randomness analysis and system control. We introduce methods for reprogramming systems that do not require the full knowledge or access to the system\\'s actual kinetic equations or any probability distributions. A causal interventional analysis of synthetic and regulatory biological networks reveals how the algorithmic reprogramming qualitatively reshapes the system\\'s dynamic landscape. For example, during cellular differentiation we find a decrease in the number of elements corresponding to a transition away from randomness and a combination of the system\\'s intrinsic properties and its intrinsic capabilities to be algorithmically reprogrammed can reconstruct an epigenetic landscape. The interventional calculus is broadly applicable to predictive causal inference of systems such as networks and of relevance to a variety of machine and causal learning techniques driving model-based approaches to better understanding and manipulate complex systems.

  1. Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; Van Oevelen, Chris; De Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  2. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells.

    Science.gov (United States)

    Hung, Sandy S C; Van Bergen, Nicole J; Jackson, Stacey; Liang, Helena; Mackey, David A; Hernández, Damián; Lim, Shiang Y; Hewitt, Alex W; Trounce, Ian; Pébay, Alice; Wong, Raymond C B

    2016-05-01

    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology.

  3. A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens

    Science.gov (United States)

    Li, Chen; Sako, Yusuke; Imai, Akihiro; Nishiyama, Tomoaki; Thompson, Kari; Kubo, Minoru; Hiwatashi, Yuji; Kabeya, Yukiko; Karlson, Dale; Wu, Shu-Hsing; Ishikawa, Masaki; Murata, Takashi; Benfey, Philip N.; Sato, Yoshikatsu; Tamada, Yosuke; Hasebe, Mitsuyasu

    2017-01-01

    Both land plants and metazoa have the capacity to reprogram differentiated cells to stem cells. Here we show that the moss Physcomitrella patens Cold-Shock Domain Protein 1 (PpCSP1) regulates reprogramming of differentiated leaf cells to chloronema apical stem cells and shares conserved domains with the induced pluripotent stem cell factor Lin28 in mammals. PpCSP1 accumulates in the reprogramming cells and is maintained throughout the reprogramming process and in the resultant stem cells. Expression of PpCSP1 is negatively regulated by its 3′-untranslated region (3′-UTR). Removal of the 3′-UTR stabilizes PpCSP1 transcripts, results in accumulation of PpCSP1 protein and enhances reprogramming. A quadruple deletion mutant of PpCSP1 and three closely related PpCSP genes exhibits attenuated reprogramming indicating that the PpCSP genes function redundantly in cellular reprogramming. Taken together, these data demonstrate a positive role of PpCSP1 in reprogramming, which is similar to the function of mammalian Lin28. PMID:28128346

  4. High-efficiency RNA-based reprogramming of human primary fibroblasts

    NARCIS (Netherlands)

    Kogut, Igor; McCarthy, Sandra M.; Pavlova, Maryna; Astling, David P.; Chen, Xiaomi; Jakimenko, Ana; Jones, Kenneth L.; Getahun, Andrew; Cambier, John C.; Pasmooij, Anna M. G.; Jonkman, Marcel F.; Roop, Dennis R.; Bilousova, Ganna

    2018-01-01

    Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine; however, their potential clinical application is hampered by the low efficiency of somatic cell reprogramming. Here, we show that the synergistic activity of synthetic modified mRNAs encoding reprogramming factors

  5. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming

    DEFF Research Database (Denmark)

    Swales, Nathalie; Martens, Geert A; Bonné, Stefan

    2012-01-01

    Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it....

  6. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  7. A unique Oct4 interface is crucial for reprogramming to pluripotency

    NARCIS (Netherlands)

    Esch, Daniel; Vahokoski, Juha; Groves, Matthew R; Pogenberg, Vivian; Cojocaru, Vlad; Vom Bruch, Hermann; Han, Dong; Drexler, Hannes C A; Araúzo-Bravo, Marcos J; Ng, Calista K L; Jauch, Ralf; Wilmanns, Matthias; Schöler, Hans R

    Terminally differentiated cells can be reprogrammed to pluripotency by the forced expression of Oct4, Sox2, Klf4 and c-Myc. However, it remains unknown how this leads to the multitude of epigenetic changes observed during the reprogramming process. Interestingly, Oct4 is the only factor that cannot

  8. The novel tool of cell reprogramming for applications in molecular medicine.

    Science.gov (United States)

    Mall, Moritz; Wernig, Marius

    2017-07-01

    Recent discoveries in the field of stem cell biology have enabled scientists to "reprogram" cells from one type to another. For example, it is now possible to place adult skin or blood cells in a dish and convert them into neurons, liver, or heart cells. It is also possible to literally "rejuvenate" adult cells by reprogramming them into embryonic-like stem cells, which in turn can be differentiated into every tissue and cell type of the human body. Our ability to reprogram cell types has four main implications for medicine: (1) scientists can now take skin or blood cells from patients and convert them to other cells to study disease processes. This disease modeling approach has the advantage over animal models because it is directly based on human patient cells. (2) Reprogramming could also be used as a "clinical trial in a dish" to evaluate the general efficacy and safety of newly developed drugs on human patient cells before they would be tested in animal models or people. (3) In addition, many drugs have deleterious side effects like heart arrhythmias in only a small and unpredictable subpopulation of patients. Reprogramming could facilitate precision medicine by testing the safety of already approved drugs first on reprogrammed patient cells in a personalized manner prior to administration. For example, drugs known to sometimes cause arrhythmias could be first tested on reprogrammed heart cells from individual patients. (4) Finally, reprogramming allows the generation of new tissues that could be grafted therapeutically to regenerate lost or damaged cells.

  9. Hacker Within! Ehrlichia chaffeensis Effector Driven Phagocyte Reprogramming Strategy

    Directory of Open Access Journals (Sweden)

    Taslima Taher Lina

    2016-05-01

    Full Text Available Ehrlichia chaffeensis is a small, gram negative, obligately intracellular bacterium that preferentially infects mononuclear phagocytes. It is the etiologic agent of human monocytotropic ehrlichiosis (HME, an emerging life-threatening tick-borne zoonosis. Mechanisms by which E. chaffeensis establishes intracellular infection, and avoids host defenses are not well understood, but involve functionally relevant host-pathogen interactions associated with tandem and ankyrin repeat effector proteins. In this review, we discuss the recent advances in our understanding of the molecular and cellular mechanisms that underlie Ehrlichia host cellular reprogramming strategies that enable intracellular survival.

  10. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  11. Reprogramming of B cells into macrophages: mechanistic insights

    OpenAIRE

    Di Tullio, Alessandro, 1982-

    2012-01-01

    Our earlier work has shown that pre-B cells can be converted into macrophages by the transcription factor C/EBPα at very high frequencies and also that a clonal pre-B cell line with an inducible form of C/EBPα can be converted into macrophage-like cells. Using these systems we have performed a systematic analysis of the questions whether during transdifferentiation the cells retrodifferentiate to a precursor cell state and whether cell cycle is required for reprogramming. As for the first ...

  12. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase

    NARCIS (Netherlands)

    Buganim, Y.; Faddah, D.A.; Cheng, A.W.; Itskovich, E.; Markoulaki, S.; Ganz, K.; Klemm, S.L.; van Oudenaarden, A.; Jaenisch, R.

    2012-01-01

    During cellular reprogramming, only a small fraction of cells become induced pluripotent stem cells (iPSCs). Previous analyses of gene expression during reprogramming were based on populations of cells, impeding single-cell level identification of reprogramming events. We utilized two gene

  13. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  14. Genomic instability during reprogramming by nuclear transfer is DNA replication dependent.

    Science.gov (United States)

    Chia, Gloryn; Agudo, Judith; Treff, Nathan; Sauer, Mark V; Billing, David; Brown, Brian D; Baer, Richard; Egli, Dieter

    2017-04-01

    Somatic cells can be reprogrammed to a pluripotent state by nuclear transfer into oocytes, yet developmental arrest often occurs. While incomplete transcriptional reprogramming is known to cause developmental failure, reprogramming also involves concurrent changes in cell cycle progression and nuclear structure. Here we study cellular reprogramming events in human and mouse nuclear transfer embryos prior to embryonic genome activation. We show that genetic instability marked by frequent chromosome segregation errors and DNA damage arise prior to, and independent of, transcriptional activity. These errors occur following transition through DNA replication and are repaired by BRCA1. In the absence of mitotic nuclear remodelling, DNA replication is delayed and errors are exacerbated in subsequent mitosis. These results demonstrate that independent of gene expression, cell-type-specific features of cell cycle progression constitute a barrier sufficient to prevent the transition from one cell type to another during reprogramming.

  15. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury.

    Science.gov (United States)

    Tang, Yuewen; Cheng, Lin

    2017-04-01

    Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  16. Stem Cell Surface Marker Expression Defines Late Stages of Reprogramming to Pluripotency in Human Fibroblasts.

    Science.gov (United States)

    Pomeroy, Jordan E; Hough, Shelley R; Davidson, Kathryn C; Quaas, Alex M; Rees, Jordan A; Pera, Martin F

    2016-07-01

    Our current understanding of the induction of pluripotency by defined factors indicates that this process occurs in discrete stages characterized by specific alterations in the cellular transcriptome and epigenome. However, the final phase of the reprogramming process is incompletely understood. We sought to generate tools to characterize the transition to a fully reprogramed state. We used combinations of stem cell surface markers to isolate colonies emerging after transfection of human fibroblasts with reprogramming factors and then analyzed their expression of genes associated with pluripotency and early germ lineage specification. We found that expression of a subset of these genes, including the cell-cell adhesion molecule CDH3, characterized a late stage in the reprogramming process. Combined live-cell staining with the antibody GCTM-2 and anti-CDH3 during reprogramming identified colonies of cells that showed gene expression patterns very similar to those of embryonic stem cell or established induced pluripotent stem cell lines, and gave rise to stable induced pluripotent stem cell lines at high frequency. Our findings will facilitate studies of the final stages of reprogramming of human cells to pluripotency and will provide a simple means for prospective identification of fully reprogrammed cells. Reprogramming of differentiated cells back to an embryonic pluripotent state has wide ranging applications in understanding and treating human disease. However, how cells traverse the barriers on the journey to pluripotency still is not fully understood. This report describes tools to study the late stages of cellular reprogramming. The findings enable a more precise approach to dissecting the final phases of conversion to pluripotency, a process that is particularly poorly defined. The results of this study also provide a simple new method for the selection of fully reprogrammed cells, which could enhance the efficiency of derivation of cell lines for research

  17. Cell fate reprogramming by control of intracellular network dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Albert, Reka

    Identifying control strategies for biological networks is paramount for practical applications that involve reprogramming a cell's fate, such as disease therapeutics and stem cell reprogramming. Although the topic of controlling the dynamics of a system has a long history in control theory, most of this work is not directly applicable to intracellular networks. Here we present a network control method that integrates the structural and functional information available for intracellular networks to predict control targets. Formulated in a logical dynamic scheme, our control method takes advantage of certain function-dependent network components and their relation to steady states in order to identify control targets, which are guaranteed to drive any initial state to the target state with 100% effectiveness and need to be applied only transiently for the system to reach and stay in the desired state. We illustrate our method's potential to find intervention targets for cancer treatment and cell differentiation by applying it to a leukemia signaling network and to the network controlling the differentiation of T cells. We find that the predicted control targets are effective in a broad dynamic framework. Moreover, several of the predicted interventions are supported by experiments. This work was supported by NSF Grant PHY 1205840.

  18. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming

    Directory of Open Access Journals (Sweden)

    Kyung Tae Lim

    2016-04-01

    Full Text Available Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps. However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic.

  19. Small Molecules Facilitate Single Factor-Mediated Hepatic Reprogramming.

    Science.gov (United States)

    Lim, Kyung Tae; Lee, Seung Chan; Gao, Yimeng; Kim, Kee-Pyo; Song, Guangqi; An, Su Yeon; Adachi, Kenjiro; Jang, Yu Jin; Kim, Jonghun; Oh, Kyoung-Jin; Kwak, Tae Hwan; Hwang, Seon In; You, Jueng Soo; Ko, Kinarm; Koo, Seung-Hoi; Sharma, Amar Deep; Kim, Jong-Hoon; Hui, Lijian; Cantz, Tobias; Schöler, Hans R; Han, Dong Wook

    2016-04-26

    Recent studies have shown that defined factors could lead to the direct conversion of fibroblasts into induced hepatocyte-like cells (iHeps). However, reported conversion efficiencies are very low, and the underlying mechanism of the direct hepatic reprogramming is largely unknown. Here, we report that direct conversion into iHeps is a stepwise transition involving the erasure of somatic memory, mesenchymal-to-epithelial transition, and induction of hepatic cell fate in a sequential manner. Through screening for additional factors that could potentially enhance the conversion kinetics, we have found that c-Myc and Klf4 (CK) dramatically accelerate conversion kinetics, resulting in remarkably improved iHep generation. Furthermore, we identified small molecules that could lead to the robust generation of iHeps without CK. Finally, we show that Hnf1α supported by small molecules is sufficient to efficiently induce direct hepatic reprogramming. This approach might help to fully elucidate the direct conversion process and also facilitate the translation of iHep into the clinic. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Cellular reprogramming: recent advances in modeling neurological diseases.

    Science.gov (United States)

    Ming, Guo-Li; Brüstle, Oliver; Muotri, Alysson; Studer, Lorenz; Wernig, Marius; Christian, Kimberly M

    2011-11-09

    The remarkable advances in cellular reprogramming have made it possible to generate a renewable source of human neurons from fibroblasts obtained from skin samples of neonates and adults. As a result, we can now investigate the etiology of neurological diseases at the cellular level using neuronal populations derived from patients, which harbor the same genetic mutations thought to be relevant to the risk for pathology. Therapeutic implications include the ability to establish new humanized disease models for understanding mechanisms, conduct high-throughput screening for novel biogenic compounds to reverse or prevent the disease phenotype, identify and engineer genetic rescue of causal mutations, and develop patient-specific cellular replacement strategies. Although this field offers enormous potential for understanding and treating neurological disease, there are still many issues that must be addressed before we can fully exploit this technology. Here we summarize several recent studies presented at a symposium at the 2011 annual meeting of the Society for Neuroscience, which highlight innovative approaches to cellular reprogramming and how this revolutionary technique is being refined to model neurodevelopmental and neurodegenerative diseases, such as autism spectrum disorders, schizophrenia, familial dysautonomia, and Alzheimer's disease.

  1. O-GlcNAcylation and metabolic reprogramming in cancer

    Directory of Open Access Journals (Sweden)

    Anna eKrzeslak

    2014-09-01

    Full Text Available Although cancer metabolism has received considerable attention over the past decade, our knowledge on its specifics is still fragmentary. Altered cellular metabolism is one of the most important hallmarks of cancer. Cancer cells exhibit aberrant glucose metabolism characterized by aerobic glycolysis, a phenomenon known as Warburg effect. Accelerated glucose uptake and glycolysis are main characteristics of cancer cells that allow them for intensive growth and proliferation. Accumulating evidence suggests that O-GlcNAc transferase (OGT, an enzyme responsible for modification of proteins with N-acetylglucosamine, may act as a nutrient sensor that links hexosamine biosynthesis pathway to oncogenic signaling and regulation of factors involved in glucose and lipid metabolism. Recent studies suggest that metabolic reprogramming in cancer is connected to changes at the epigenetic level. O-GlcNAcylation seems to play an important role in the regulation of the epigenome in response to cellular metabolic status. Through histone modifications and assembly of gene transcription complexes, OGT can impact on expression of genes important for cellular metabolism.This paper reviews recent findings related to O-GlcNAc-dependent regulation of signaling pathways, transcription factors, enzymes and epigenetic changes involved in metabolic reprogramming of cancer.

  2. Reprogramming primordial germ cells into pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Gabriela Durcova-Hills

    Full Text Available Specification of primordial germ cells (PGCs results in the conversion of pluripotent epiblast cells into monopotent germ cell lineage. Blimp1/Prmt5 complex plays a critical role in the specification and maintenance of the early germ cell lineage. However, PGCs can be induced to dedifferentiate back to a pluripotent state as embryonic germ (EG cells when exposed to exogenous signaling molecules, FGF-2, LIF and SCF.Here we show that Trichostatin A (TSA, an inhibitor of histone deacetylases, is a highly potent agent that can replace FGF-2 to induce dedifferentiation of PGCs into EG cells. A key early event during dedifferentiation of PGCs in response to FGF-2 or TSA is the down-regulation of Blimp1, which reverses and apparently relieves the cell fate restriction imposed by it. Notably, the targets of Blimp1, which include c-Myc and Klf-4, which represent two of the key factors known to promote reprogramming of somatic cells to pluripotent state, are up-regulated. We also found early activation of the LIF/Stat-3 signaling pathway with the translocation of Stat-3 into the nucleus. By contrast, while Prmt5 is retained in EG cells, it translocates from the nucleus to the cytoplasm where it probably has an independent role in regulating pluripotency.We propose that dedifferentiation of PGCs into EG cells may provide significant mechanistic insights on early events associated with reprogramming of committed cells to a pluripotent state.

  3. Müller glia cell reprogramming and retina regeneration

    Science.gov (United States)

    Goldman, Daniel

    2014-01-01

    Müller glia are the major glial component of the retina. They are one of the last retinal cell types to be born during development and they function to maintain retinal homeostasis and integrity. In mammals, Müller glia respond to retinal injury in a variety of ways that can be either protective or detrimental to retinal function. Although under special circumstances these cells can be coaxed to proliferate and generate neurons, these responses are meager and insufficient for repairing a damaged retina. By contrast, in teleost fish (such as zebrafish) the response of Müller glia to retinal injury involves a reprogramming event that imparts retinal stem cell characteristics and allows them to produce a proliferating population of progenitors that can regenerate all major retinal cell types and restore vision. Recent studies have revealed a number of important mechanisms underlying Müller glia reprogramming and retina regeneration in fish that may lead to new strategies for stimulating retina regeneration in mammals. PMID:24894585

  4. Reprogramming of Mouse Calvarial Osteoblasts into Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yinxiang Wang

    2018-01-01

    Full Text Available Previous studies have demonstrated the ability of reprogramming endochondral bone into induced pluripotent stem (iPS cells, but whether similar phenomenon occurs in intramembranous bone remains to be determined. Here we adopted fluorescence-activated cell sorting-based strategy to isolate homogenous population of intramembranous calvarial osteoblasts from newborn transgenic mice carrying both Osx1-GFP::Cre and Oct4-EGFP transgenes. Following retroviral transduction of Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc, enriched population of osteoblasts underwent silencing of Osx1-GFP::Cre expression at early stage of reprogramming followed by late activation of Oct4-EGFP expression in the resulting iPS cells. These osteoblast-derived iPS cells exhibited gene expression profiles akin to embryonic stem cells and were pluripotent as demonstrated by their ability to form teratomas comprising tissues from all germ layers and also contribute to tail tissue in chimera embryos. These data demonstrate that iPS cells can be generated from intramembranous osteoblasts.

  5. Transcriptional reprogramming in nonhuman primate (rhesus macaque tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Smriti Mehra

    2010-08-01

    Full Text Available In response to Mtb infection, the host remodels the infection foci into a dense mass of cells known as the granuloma. The key objective of the granuloma is to contain the spread of Mtb into uninfected regions of the lung. However, it appears that Mtb has evolved mechanisms to resist killing in the granuloma. Profiling granuloma transcriptome will identify key immune signaling pathways active during TB infection. Such studies are not possible in human granulomas, due to various confounding factors. Nonhuman Primates (NHPs infected with Mtb accurately reflect human TB in clinical and pathological contexts.We studied transcriptomics of granuloma lesions in the lungs of NHPs exhibiting active TB, during early and late stages of infection. Early TB lesions were characterized by a highly pro-inflammatory environment, expressing high levels of immune signaling pathways involving IFNgamma, TNFalpha, JAK, STAT and C-C/C-X-C chemokines. Late TB lesions, while morphologically similar to the early ones, exhibited an overwhelming silencing of the inflammatory response. Reprogramming of the granuloma transcriptome was highly significant. The expression of approximately two-thirds of all genes induced in early lesions was later repressed.The transcriptional characteristics of TB granulomas undergo drastic changes during the course of infection. The overwhelming reprogramming of the initial pro-inflammatory surge in late lesions may be a host strategy to limit immunopathology. We propose that these host profiles can predict changes in bacterial replication and physiology, perhaps serving as markers for latency and reactivation.

  6. Rules governing the mechanism of epigenetic reprogramming memory.

    Science.gov (United States)

    Luu, Phuc-Loi; Gerovska, Daniela; Schöler, Hans R; Araúzo-Bravo, Marcos J

    2018-02-01

    Disclosing the mechanisms that regulate reprogramming memory. We established computational procedure to find DNA methylation somatic memory sites (SMSs) at single CpGs and integrated them with genomics, epigenomics, transcriptomics and imprinting information. Reprogramming memory persists at late passages in low methylated regions. Contrarily to hypomethylated, hypermethylated SMSs occur at evolutionary conserved sites overlapping active transcription loci in dynamic chromatin regions. The epigenetic-memory molecular origin is the expression of source-cell transcription factors protecting hypomethylated SMSs in euchromatin from de novo methylation, keeping source-cell lineage-specific loci in induced pluripotent stem (iPS) cells incompletely silenced. Sites in lineage-specific genes of different-from-those-of-the-source-cell lineages remain hypermethylated in heterochromatin regions becoming permanently silenced. SMSs cause differential expression between iPS cells and embryonic stem cells through two mechanisms: 'epigenetic/expression memory rule', the DNA unreprogramming methylation status coupled with chromatin states induces differentially expressed genes. 'Imprinting control', the change of DNA methylation status in imprinting control regions induces differential expression of imprinted genes.

  7. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  8. Specific Cell (Re-)Programming: Approaches and Perspectives.

    Science.gov (United States)

    Hausburg, Frauke; Jung, Julia Jeannine; David, Robert

    2018-01-01

    Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.

  9. Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts

    Directory of Open Access Journals (Sweden)

    Sara E. Howden

    2015-12-01

    Full Text Available The derivation of genetically modified induced pluripotent stem (iPS cells typically involves multiple steps, requiring lengthy cell culture periods, drug selection, and several clonal events. We report the generation of gene-targeted iPS cell lines following a single electroporation of patient-specific fibroblasts using episomal-based reprogramming vectors and the Cas9/CRISPR system. Simultaneous reprogramming and gene targeting was tested and achieved in two independent fibroblast lines with targeting efficiencies of up to 8% of the total iPS cell population. We have successfully targeted the DNMT3B and OCT4 genes with a fluorescent reporter and corrected the disease-causing mutation in both patient fibroblast lines: one derived from an adult with retinitis pigmentosa, the other from an infant with severe combined immunodeficiency. This procedure allows the generation of gene-targeted iPS cell lines with only a single clonal event in as little as 2 weeks and without the need for drug selection, thereby facilitating “seamless” single base-pair changes.

  10. Generation and characterization of reprogrammed sheep induced pluripotent stem cells.

    Science.gov (United States)

    Liu, Jun; Balehosur, Deepashree; Murray, Belinda; Kelly, Jennifer M; Sumer, Huseyin; Verma, Paul J

    2012-01-15

    Embryonic stem cells (ESCs) from domestic species have numerous potential applications in agricultural and biomedical sciences; however, despite intensive efforts, derivation of ESCs from sheep remains elusive. The objective was to derive sheep induced pluripotent stem cells (iPSCs), as an alternative pluripotent cell type to ESCs, from sheep fibroblasts by ectopic expression of heterologous transcription factors OCT4, SOX2, KLF4, and cMYC. Sheep fibroblasts were infected with pantropic retroviruses coding the four transcription factors and reprogrammed to pluripotency at a rate of 0.002%. The sheep iPSCs (siPSCs) reactivated endogenous OCT4 and SOX2 genes assessed by qRT-PCR and immuno-cytochemistry, retained normal karyotyping, and more importantly, concurrently silenced all exogenous transgenes. The siPSCs were enzymatically dissociated to single cells, making them amenable to efficient transfection and fluorescent-activated cell sorting techniques. Further, the siPSCs differentiated in vitro to form embryoid bodies, and in vivo to form robust teratomas, containing cells representative of the three germ layers. Moreover, when injected into diploid or tetraploid sheep embryos, siPSCs contributed to the inner cell mass of resulting blastocysts, suggesting true pluripotential. These reprogrammed siPSCs may constitute a robust pluripotent alternative to elusive sheep ESCs, with great potential for use in agriculture and pharmaceutical biotechnology. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.

    Science.gov (United States)

    Kaminski, Michael M; Tosic, Jelena; Pichler, Roman; Arnold, Sebastian J; Lienkamp, Soeren S

    2017-07-01

    Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.

  12. Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells*

    Science.gov (United States)

    Ruiz, Sergio; Panopoulos, Athanasia D.; Montserrat, Nuria; Multon, Marie-Christine; Daury, Aurélie; Rocher, Corinne; Spanakis, Emmanuel; Batchelder, Erika M.; Orsini, Cécile; Deleuze, Jean-François; Izpisua Belmonte, Juan Carlos

    2012-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency. PMID:23019325

  13. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4

    Directory of Open Access Journals (Sweden)

    Ling Wang

    2017-12-01

    Full Text Available The development of human induced pluripotent stem cells (iPSCs holds great promise for regenerative medicine. However the iPSC induction efficiency is still very low and with lengthy reprogramming process. We utilized the highly potent transactivation domain (TAD of MYC protein to engineer the human OCT4 fusion proteins. Applying the MYC-TAD-OCT4 fusion proteins in mouse iPSC generation leads to shorter reprogramming dynamics, with earlier activation of pluripotent markers in reprogrammed cells than wild type OCT4 (wt-OCT4. Dramatic enhancement of iPSC colony induction efficiency and shortened reprogramming dynamics were observed when these MYC-TAD-OCT4 fusion proteins were used to reprogram primary human cells. The OCT4 fusion proteins induced human iPSCs are pluripotent. We further show that the MYC Box I (MBI is dispensable while both MBII and the linking region between MBI/II are essential for the enhanced reprogramming activity of MYC-TAD-OCT4 fusion protein. Consistent with an enhanced transcription activity, the engineered OCT4 significantly stimulated the expression of genes specifically targeted by OCT4-alone, OCT4/SOX2, and OCT4/SOX2/KLF4 during human iPSC induction, compared with the wt-OCT4. The MYC-TAD-OCT4 fusion proteins we generated will be valuable tools for studying the reprogramming mechanisms and for efficient iPSC generation for humans as well as for other species.

  14. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

    Directory of Open Access Journals (Sweden)

    Nathalie Swales

    Full Text Available AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3. In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.

  15. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  16. ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells.

    Science.gov (United States)

    Jung, Laura; Tropel, Philippe; Moal, Yohann; Teletin, Marius; Jeandidier, Eric; Gayon, Régis; Himmelspach, Christian; Bello, Fiona; André, Cécile; Tosch, Adeline; Mansouri, Ahmed; Bruant-Rodier, Catherine; Bouillé, Pascale; Viville, Stéphane

    2014-06-01

    The advent of human induced pluripotent stem cells (hiPSC) is revolutionizing many research fields including cell-replacement therapy, drug screening, physiopathology of specific diseases and more basic research such as embryonic development or diseases modeling. Despite the large number of reports on reprogramming methods, techniques in use remain globally inefficient. We present here a new optimized approach to improve this efficiency. After having tested different monocistronic vectors with poor results, we adopted a polycistronic cassette encoding Thomson's cocktail OCT4, NANOG, SOX2 and LIN28 (ONSL) separated by 2A peptides. This cassette was tested in various vector backbones, based on lentivirus or retrovirus under a LTR or EF1 alpha promoter. This allowed us to show that ONSL-carrier retrovectors reprogrammed adult fibroblast cells with a much higher efficiency (up to 0.6%) than any other tested. We then compared the reprogramming efficiencies of two different polycistronic genes, ONSL and OCT4, SOX2, KLF4 and cMYC (OSKM) placed in the same retrovector backbone. Interestingly, in this context ONSL gene reprograms more efficiently than OSKM but OSKM reprograms faster suggesting that the two cocktails may reprogram through distinct pathways. By equally mixing RV-LTR-ONSL and RV-LTR-OSKM, we indeed observed a remarkable synergy, yielding a reprogramming efficiency of >2%. We present here a drastic improvement of the reprogramming efficiency, which opens doors to the development of automated and high throughput strategies of hiPSC production. Furthermore, non-integrative reprogramming protocols (i.e. mRNA) may take advantage of this synergy to boost their efficiency. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    Science.gov (United States)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  18. Reprogramming of Aged Cells into Pluripotent Stem Cells by Nuclear Transfer.

    Science.gov (United States)

    Wu, Dan-Ya; Zhang, Xia; Miao, Yi-Liang

    2018-03-07

    Stem cells have the potential to differentiate into specialized cell types under specific conditions in vivo or in vitro, which are used to cure many diseases related to aging. Somatic cell nuclear transfer (SCNT) can reprogram differential somatic cells into cloned embryos and embryonic stem cells can be derived from these cloned embryos. Recipient oocytes have healthier mitochondria and can improve the metabolism competence, lessen the ROS damage, and rejuvenate mitochondrial function of aged cells during reprogramming. Here, we describe a protocol to isolate aged somatic cells and reprogram them into embryonic stem cells by SCNT. These stem cells can be used to differentiate into regenerative somatic cells and replace the aged cells.

  19. Cellular Reprogramming Using Protein and Cell-Penetrating Peptides

    Directory of Open Access Journals (Sweden)

    Bong Jong Seo

    2017-03-01

    Full Text Available Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs. Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.

  20. Recent Progress in Cell Reprogramming Technology for Cell Transplantation Therapy.

    Science.gov (United States)

    Yamashita, Toru; Abe, Koji

    2016-01-01

    The discovery of induced pluripotent stem (iPS) cells opened the gate for reprogramming technology with which we can change the cell fate through overexpression of master transcriptional factors. Now we can prepare various kinds of neuronal cells directly induced from somatic cells. It has been reported that overexpression of a neuron-specific transcriptional factors might change the cell fate of endogenous astroglia to neuronal cells in vivo. In addition, some research groups demonstrated that chemical compound can induce chemical-induced neuronal cells, without transcriptional factors overexpression. In this review, we briefly review recent progress in the induced neuronal (iN) cells, and discuss the possibility of application for cell transplantation therapy.

  1. Reprogramming of mitochondrial energy metabolism in malignant neoplasms

    Directory of Open Access Journals (Sweden)

    A. A. Kaplia

    2015-12-01

    Full Text Available The novel ideas of fundamental role of mitochondria in the maintenance of viability of malignant cells have been reviewed. The modern state of research is considered in detail, including: mitochondrial control of the cellular redox state, sites of reactive oxygen species (ROS production in inner mitochondrial membrane and antioxidant protection systems. Specificities of the structural-functional mitochondrial remodelling in malignant tumors, the mechanisms of the energy metabolism reprogramming, enhancement of the ROS production and adaptation to the hypoxic conditions and metabolic stress are analyzed. The available data including our research on transplanted tumors indicate that cytotoxic action of sodium dichloroacetate (the inhibitor of pyruvate dehydrogenase kinase depends on biological properties of tumors and intensity of structural-functional mitochondrial rearrangement. Dichloroacetate turned out to be effective for sarcoma 37, but not for Lewis lung carcinoma.

  2. Developmental Programming of Renal Function and Re-Programming Approaches

    Directory of Open Access Journals (Sweden)

    Eva Nüsken

    2018-02-01

    Full Text Available Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated

  3. Developmental Programming of Renal Function and Re-Programming Approaches

    Science.gov (United States)

    Nüsken, Eva; Dötsch, Jörg; Weber, Lutz T.; Nüsken, Kai-Dietrich

    2018-01-01

    Chronic kidney disease affects more than 10% of the population. Programming studies have examined the interrelationship between environmental factors in early life and differences in morbidity and mortality between individuals. A number of important principles has been identified, namely permanent structural modifications of organs and cells, long-lasting adjustments of endocrine regulatory circuits, as well as altered gene transcription. Risk factors include intrauterine deficiencies by disturbed placental function or maternal malnutrition, prematurity, intrauterine and postnatal stress, intrauterine and postnatal overnutrition, as well as dietary dysbalances in postnatal life. This mini-review discusses critical developmental periods and long-term sequelae of renal programming in humans and presents studies examining the underlying mechanisms as well as interventional approaches to “re-program” renal susceptibility toward disease. Clinical manifestations of programmed kidney disease include arterial hypertension, proteinuria, aggravation of inflammatory glomerular disease, and loss of kidney function. Nephron number, regulation of the renin–angiotensin–aldosterone system, renal sodium transport, vasomotor and endothelial function, myogenic response, and tubuloglomerular feedback have been identified as being vulnerable to environmental factors. Oxidative stress levels, metabolic pathways, including insulin, leptin, steroids, and arachidonic acid, DNA methylation, and histone configuration may be significantly altered by adverse environmental conditions. Studies on re-programming interventions focused on dietary or anti-oxidative approaches so far. Further studies that broaden our understanding of renal programming mechanisms are needed to ultimately develop preventive strategies. Targeted re-programming interventions in animal models focusing on known mechanisms will contribute to new concepts which finally will have to be translated to human application

  4. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  5. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  6. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies.

    Science.gov (United States)

    Brouwer, Marinka; Zhou, Huiqing; Nadif Kasri, Nael

    2016-02-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are concerns in the use of iPSCs, especially in clinical settings. Therefore, reprogramming methods have been under development to generate safer iPSCs with higher efficiency and better quality. Developments have mainly focused on the somatic cell source, the cocktail of reprogramming factors, the delivery method used to introduce reprogramming factors and culture conditions to maintain the generated iPSCs. This review discusses the developments on these topics and briefly discusses pros and cons of iPSCs in comparison with human embryonic stem cells generated from somatic cell nuclear transfer.

  7. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage.

    Science.gov (United States)

    Jackson, Steven A; Olufs, Zachariah P G; Tran, Khoa A; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-03-08

    During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expressed stabilization markers, had upregulated several cell cycle genes; and were transgene independent. Inhibition of DOT1L activity enhanced both the numbers of NANOG+ and NANOG+E-cadherin+ colonies in neural stem cells. Expressing SOX2 in MEFs prior to reprogramming did not alter the ratio of NANOG colonies that express E-cadherin. Taken together these results provide a unique pathway for reprogramming taken by cells of the neural lineage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders

    Science.gov (United States)

    Smith, Derek K.; He, Miao; Zhang, Chun-Li; Zheng, Jialin C.

    2018-01-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. PMID:26844759

  9. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders.

    Science.gov (United States)

    Smith, Derek K; He, Miao; Zhang, Chun-Li; Zheng, Jialin C

    2017-10-01

    Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies. Copyright © 2016. Published by Elsevier Ltd.

  10. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.

    Science.gov (United States)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-12-20

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  12. Transcriptional regulatory networks underlying the reprogramming of spermatogonial stem cells to multipotent stem cells.

    Science.gov (United States)

    Jeong, Hoe-Su; Bhin, Jinhyuk; Joon Kim, Hyung; Hwang, Daehee; Ryul Lee, Dong; Kim, Kye-Seong

    2017-04-14

    Spermatogonial stem cells (SSCs) are germline stem cells located along the basement membrane of seminiferous tubules in testes. Recently, SSCs were shown to be reprogrammed into multipotent SSCs (mSSCs). However, both the key factors and biological networks underlying this reprogramming remain elusive. Here, we present transcriptional regulatory networks (TRNs) that control cellular processes related to the SSC-to-mSSC reprogramming. Previously, we established intermediate SSCs (iSSCs) undergoing the transition to mSSCs and generated gene expression profiles of SSCs, iSSCs and mSSCs. By comparing these profiles, we identified 2643 genes that were up-regulated during the reprogramming process and 15 key transcription factors (TFs) that regulate these genes. Using the TF-target relationships, we developed TRNs describing how these TFs regulate three pluripotency-related processes (cell proliferation, stem cell maintenance and epigenetic regulation) during the reprogramming. The TRNs showed that 4 of the 15 TFs (Oct4/Pou5f1, Cux1, Zfp143 and E2f4) regulated cell proliferation during the early stages of reprogramming, whereas 11 TFs (Oct4/Pou5f1, Foxm1, Cux1, Zfp143, Trp53, E2f4, Esrrb, Nfyb, Nanog, Sox2 and Klf4) regulated the three pluripotency-related processes during the late stages of reprogramming. Our TRNs provide a model for the temporally coordinated transcriptional regulation of pluripotency-related processes during the SSC-to-mSSC reprogramming, which can be further tested in detailed functional studies.

  13. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts.

    Science.gov (United States)

    Li, Dong; Secher, Jan O; Juhl, Morten; Mashayekhi, Kaveh; Nielsen, Troels T; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Hall, Vanessa J

    2017-06-03

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig.

  14. Novel Epigenetic Reprogramming to Inhibit or Reverse EMT in Lung Cancer

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0226 TITLE: Novel Epigenetic Reprogramming to Inhibit or Reverse EMT in Lung Cancer PRINCIPAL INVESTIGATOR: Drabkin...SUBTITLE Novel Epigenetic Reprogramming to Inhibit or Reverse EMT in Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0226 5c. PROGRAM...hypothesized that TGFβ links NRP2-dependent signaling to upregulation of EZH2, an epigenetic modifier, and that EMT results from gene expression changes

  15. Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming

    OpenAIRE

    Warlich, Eva; Kuehle, Johannes; Cantz, Tobias; Brugman, Martijn H; Maetzig, Tobias; Galla, Melanie; Filipczyk, Adam A; Halle, Stephan; Klump, Hannes; Schöler, Hans R; Baum, Christopher; Schroeder, Timm; Schambach, Axel

    2011-01-01

    Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iP...

  16. Senescence-Inflammatory Regulation of Reparative Cellular Reprogramming in Aging and Cancer.

    Science.gov (United States)

    Menendez, Javier A; Alarcón, Tomás

    2017-01-01

    The inability of adult tissues to transitorily generate cells with functional stem cell-like properties is a major obstacle to tissue self-repair. Nuclear reprogramming-like phenomena that induce a transient acquisition of epigenetic plasticity and phenotype malleability may constitute a reparative route through which human tissues respond to injury, stress, and disease. However, tissue rejuvenation should involve not only the transient epigenetic reprogramming of differentiated cells, but also the committed re-acquisition of the original or alternative committed cell fate. Chronic or unrestrained epigenetic plasticity would drive aging phenotypes by impairing the repair or the replacement of damaged cells; such uncontrolled phenomena of in vivo reprogramming might also generate cancer-like cellular states. We herein propose that the ability of senescence-associated inflammatory signaling to regulate in vivo reprogramming cycles of tissue repair outlines a threshold model of aging and cancer. The degree of senescence/inflammation-associated deviation from the homeostatic state may delineate a type of thresholding algorithm distinguishing beneficial from deleterious effects of in vivo reprogramming. First, transient activation of NF-κB-related innate immunity and senescence-associated inflammatory components (e.g., IL-6) might facilitate reparative cellular reprogramming in response to acute inflammatory events. Second, para-inflammation switches might promote long-lasting but reversible refractoriness to reparative cellular reprogramming. Third, chronic senescence-associated inflammatory signaling might lock cells in highly plastic epigenetic states disabled for reparative differentiation. The consideration of a cellular reprogramming-centered view of epigenetic plasticity as a fundamental element of a tissue's capacity to undergo successful repair, aging degeneration or malignant transformation should provide challenging stochastic insights into the current

  17. Reprogramming of the Ovarian Tumor Stroma by Activation of a Biomechanical ECM Switch

    Science.gov (United States)

    2016-09-01

    AWARD NUMBER: W81XWH-14-1-0178 TITLE: Reprogramming of the Ovarian Tumor Stroma by Activation of a Biomechanical ECM Switch PRINCIPAL...SUBTITLE 5a. CONTRACT NUMBER Reprogramming of the Ovarian Tumor Stroma by Activation of a Biomechanical ECM Switch 5b. GRANT NUMBER W81XWH-14-1...particular we, have characterized stromal cell infiltration of ovarian tumors and have shown extensive infiltration of tumor associated blood vessels as well

  18. Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State

    Directory of Open Access Journals (Sweden)

    Federico González

    2013-03-01

    Full Text Available Induced pluripotent stem cells (iPSCs hold great promise for personalized regenerative medicine. However, recent studies show that iPSC lines carry genetic abnormalities, suggesting that reprogramming may be mutagenic. Here, we show that the ectopic expression of reprogramming factors increases the level of phosphorylated histone H2AX, one of the earliest cellular responses to DNA double-strand breaks (DSBs. Additional mechanistic studies uncover a direct role of the homologous recombination (HR pathway, a pathway essential for error-free repair of DNA DSBs, in reprogramming. This role is independent of the use of integrative or nonintegrative methods in introducing reprogramming factors, despite the latter being considered a safer approach that circumvents genetic modifications. Finally, deletion of the tumor suppressor p53 rescues the reprogramming phenotype in HR-deficient cells primarily through the restoration of reprogramming-dependent defects in cell proliferation and apoptosis. These mechanistic insights have important implications for the design of safer approaches to creating iPSCs.

  19. Advances and Challenges on Cancer Cells Reprogramming Using Induced Pluripotent Stem Cells Technologies.

    Science.gov (United States)

    Câmara, Diana Aparecida Dias; Mambelli, Lisley Inata; Porcacchia, Allan Saj; Kerkis, Irina

    2016-01-01

    Cancer cells transformation into a normal state or into a cancer cell population which is less tumorigenic than the initial one is a challenge that has been discussed during last decades and it is still far to be solved. Due to the highly heterogeneous nature of cancer cells, such transformation involves many genetic and epigenetic factors which are specific for each type of tumor. Different methods of cancer cells reprogramming have been established and can represent a possibility to obtain less tumorigenic or even normal cells. These methods are quite complex, thus a simple and efficient method of reprogramming is still required. As soon as induced pluripotent stem cells (iPSC) technology, which allowed to reprogram terminally differentiated cells into embryonic stem cells (ESC)-like, was developed, the method strongly attracted the attention of researches, opening new perspectives for stem cell (SC) personalized therapies and offering a powerful in vitro model for drug screening. This technology is also used to reprogram cancer cells, thus providing a modern platform to study cancer-related genes and the interaction between these genes and the cell environment before and after reprogramming, in order to elucidate the mechanisms of cancer initiation and progression. The present review summarizes recent advances on cancer cells reprogramming using iPSC technology and shows the progress achieved in such field.

  20. Cell reprogramming modelled as transitions in a hierarchy of cell cycles

    Science.gov (United States)

    Hannam, Ryan; Annibale, Alessia; Kühn, Reimer

    2017-10-01

    We construct a model of cell reprogramming (the conversion of fully differentiated cells to a state of pluripotency, known as induced pluripotent stem cells, or iPSCs) which builds on key elements of cell biology viz. cell cycles and cell lineages. Although reprogramming has been demonstrated experimentally, much of the underlying processes governing cell fate decisions remain unknown. This work aims to bridge this gap by modelling cell types as a set of hierarchically related dynamical attractors representing cell cycles. Stages of the cell cycle are characterised by the configuration of gene expression levels, and reprogramming corresponds to triggering transitions between such configurations. Two mechanisms were found for reprogramming in a two level hierarchy: cycle specific perturbations and a noise induced switching. The former corresponds to a directed perturbation that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic) change in the cellular environment. These reprogramming protocols were found to be effective in large regimes of the parameter space and make specific predictions concerning reprogramming dynamics which are broadly in line with experimental findings.

  1. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    Alvaro Muñoz-López

    2016-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.

  2. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  3. Lentiviral Reprogramming of A-T Patient Fibroblasts to Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Nayler, Sam; Kozlov, Sergei V; Lavin, Martin F; Wolvetang, Ernst

    2017-01-01

    Reprogramming of cells enables generation of pluripotent stem cells and resulting progeny through directed differentiation, making this technology an invaluable tool for the study of human development and disease. Reprogramming occurs with a wide range of efficiency, a culmination of intrinsic and extrinsic factors including the tissue of origin, the passage number and culture history of the target cells. Another major factor affecting reprogramming is the methodology used and the quality of the reprogramming process itself, including for conventional viral-based approaches viral titer and subsequent viral transduction efficiency, including downstream transgene insertion and stoichiometry. Genetic background is an important parameter affecting the efficiency of the reprogramming process with reports that cells from individuals harboring specific mutations are more difficult to reprogram than control counterparts.Ataxia-Telangiectasia (A-T) fibroblasts underwent reprogramming at reduced efficiency in contrast to their controls. To optimize reprogramming of fibroblasts from patients with A-T, we examined the response of A-T cells to various cell culture conditions after lentiviral transduction with reprogramming factors Oc4/Sox2 (pSIN4-EF2-O2S) and Klf4/c-Myc (pSIN4-CMV-K2M). Parameters included media type (KSR or serum-containing DMEM), treatment with a p53 inhibitor (small-molecule cyclic pifithrin-α), and either a low or high concentration of bFGF. Post-transduction, equivalent numbers of cells from heterozygote and homozygote patients were plated and assessed at regular intervals for survival and proliferation. Our findings indicate that A-T cells responded favorably to the addition of FCS and gradual weaning away from their native media into KSR-containing stem cell media that produced suitable conditions for their reprogramming. We examined a range of properties to identify and isolate good quality iPSCs including the expression status of important stem cell

  4. A Continuous Molecular Roadmap to iPSC Reprogramming through Progression Analysis of Single-Cell Mass Cytometry

    OpenAIRE

    Zunder, Eli R.; Lujan, Ernesto; Goltsev, Yury; Wernig, Marius; Nolan, Garry P.

    2015-01-01

    To analyze cellular reprogramming at the single-cell level, mass cytometry was used to simultaneously measure markers of pluripotency, differentiation, cell-cycle status, and cellular signaling throughout the reprogramming process. Time-resolved progression analysis of the resulting data sets was used to construct a continuous molecular roadmap for three independent reprogramming systems. Although these systems varied substantially in Oct4, Sox2, Klf4, and c-Myc stoichiometry, they presented ...

  5. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  6. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; Duan, Susu; Morfouace, Marie; Rezinciuc, Svetlana; Shulkin, Barry L.; Shelat, Anang; Zink, Erika E.; Milasta, Sandra; Bajracharya, Resha; Oluwaseum, Ajayi J.; Roussel, Martine F.; Green, Douglas R.; Pasa-Tolic, Ljiljana; Thomas, Paul G.

    2017-05-01

    Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

  7. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  8. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention

    Directory of Open Access Journals (Sweden)

    Heather S. Smallwood

    2017-05-01

    Full Text Available Influenza is a worldwide health and financial burden posing a significant risk to the immune-compromised, obese, diabetic, elderly, and pediatric populations. We identified increases in glucose metabolism in the lungs of pediatric patients infected with respiratory pathogens. Using quantitative mass spectrometry, we found metabolic changes occurring after influenza infection in primary human respiratory cells and validated infection-associated increases in c-Myc, glycolysis, and glutaminolysis. We confirmed these findings with a metabolic drug screen that identified the PI3K/mTOR inhibitor BEZ235 as a regulator of infectious virus production. BEZ235 treatment ablated the transient induction of c-Myc, restored PI3K/mTOR pathway homeostasis measured by 4E-BP1 and p85 phosphorylation, and reversed infection-induced changes in metabolism. Importantly, BEZ235 reduced infectious progeny but had no effect on the early stages of viral replication. BEZ235 significantly increased survival in mice, while reducing viral titer. We show metabolic reprogramming of host cells by influenza virus exposes targets for therapeutic intervention.

  9. Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC.

    Directory of Open Access Journals (Sweden)

    Anna Durrans

    Full Text Available Lung cancer is the leading cause of cancer related mortality worldwide, with non-small cell lung cancer (NSCLC as the most prevalent form. Despite advances in treatment options including minimally invasive surgery, CT-guided radiation, novel chemotherapeutic regimens, and targeted therapeutics, prognosis remains dismal. Therefore, further molecular analysis of NSCLC is necessary to identify novel molecular targets that impact prognosis and the design of new-targeted therapies. In recent years, tumor "activated/reprogrammed" stromal cells that promote carcinogenesis have emerged as potential therapeutic targets. However, the contribution of stromal cells to NSCLC is poorly understood. Here, we show increased numbers of bone marrow (BM-derived hematopoietic cells in the tumor parenchyma of NSCLC patients compared with matched adjacent non-neoplastic lung tissue. By sorting specific cellular fractions from lung cancer patients, we compared the transcriptomes of intratumoral myeloid compartments within the tumor bed with their counterparts within adjacent non-neoplastic tissue from NSCLC patients. The RNA sequencing of specific myeloid compartments (immature monocytic myeloid cells and polymorphonuclear neutrophils identified differentially regulated genes and mRNA isoforms, which were inconspicuous in whole tumor analysis. Genes encoding secreted factors, including osteopontin (OPN, chemokine (C-C motif ligand 7 (CCL7 and thrombospondin 1 (TSP1 were identified, which enhanced tumorigenic properties of lung cancer cells indicative of their potential as targets for therapy. This study demonstrates that analysis of homogeneous stromal populations isolated directly from fresh clinical specimens can detect important stromal genes of therapeutic value.

  10. Reprogramming of round spermatids by the germinal vesicle cytoplasm in mice.

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Kong

    Full Text Available The birthrate following round spermatid injection (ROSI remains low in current and evidence suggests that factors in the germinal vesicle (GV cytoplasm and certain substances in the GV such as the nucleolus might be responsible for genomic reprogramming and embryonic development. However, little is known whether the reprogramming factors in GV oocyte cytoplasm and/or nucleolus in GV are beneficial to the reprogramming of round spermatids and development of ROSI embryos. Here, round spermatids were treated with GV cytolysates and injected this round spermatid alone or co-injected with GV oocyte nucleolus into mature metaphase II oocytes. Subsequent embryonic development was assessed morphologically and by Oct4 expression in blastocysts. There was no significant difference between experimental groups at the zygote to four-cell development stages. Blastocysts derived from oocytes which were injected with cytolysate treated-round spermatid alone or co-injected with nucleoli injection yielded 63.6% and 70.3% high quality embryos, respectively; comparable to blastocysts derived by intracytoplasmic sperm injection (ICSI, but higher than these oocytes which were co-injected with lysis buffer-treated round spermatids and nucleoli or injected with the lysis buffer-treated round spermatids alone. Furthermore, the proportion of live offspring resulting from oocytes which were co-injected with cytolysate treated-round spermatids and nucleoli or injected with cytolysate treated-round spermatids alone was higher than those were injected with lysis buffer treated-round spermaids, but comparable with the ICSI group. Our results demonstrate that factors from the GV cytoplasm improve round spermatid reprogramming, and while injection of the extra nucleolus does not obviously improve reprogramming its potential contribution, although which cannot be definitively excluded. Thus, some reprogramming factors are evidently present in GV oocyte cytoplasm and could

  11. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.

    Science.gov (United States)

    Farthing, Cassandra R; Ficz, Gabriella; Ng, Ray Kit; Chan, Chun-Fung; Andrews, Simon; Dean, Wendy; Hemberger, Myriam; Reik, Wolf

    2008-06-27

    DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early

  12. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.

    Directory of Open Access Journals (Sweden)

    Cassandra R Farthing

    2008-06-01

    Full Text Available DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES cells, embryonic germ (EG cells, sperm, trophoblast stem (TS cells, and primary embryonic fibroblasts (pMEFs. Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency

  13. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    A new 3-parameter family of homogeneous 2-by-2 block shifts is described. These are the first examples of irreducible homogeneous bilateral block shifts of block size larger than 1. Author Affiliations. Adam Korányi1. Department of Mathematics, The Graduate Center, City University of New York, New York, NY 10016, USA ...

  14. Epigenetic Aberrations Are Not Specific to Transcription Factor-Mediated Reprogramming

    Directory of Open Access Journals (Sweden)

    Ulf Tiemann

    2016-01-01

    Full Text Available Somatic cells can be reprogrammed to pluripotency using different methods. In comparison with pluripotent cells obtained through somatic nuclear transfer, induced pluripotent stem cells (iPSCs exhibit a higher number of epigenetic errors. Furthermore, most of these abnormalities have been described to be intrinsic to the iPSC technology. Here, we investigate whether the aberrant epigenetic patterns detected in iPSCs are specific to transcription factor-mediated reprogramming. We used germline stem cells (GSCs, which are the only adult cell type that can be converted into pluripotent cells (gPSCs under defined culture conditions, and compared GSC-derived iPSCs and gPSCs at the transcriptional and epigenetic level. Our results show that both reprogramming methods generate indistinguishable states of pluripotency. GSC-derived iPSCs and gPSCs retained similar levels of donor cell-type memory and exhibited comparable numbers of reprogramming errors. Therefore, our study demonstrates that the epigenetic abnormalities detected in iPSCs are not specific to transcription factor-mediated reprogramming.

  15. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue

    Science.gov (United States)

    Gallego-Perez, Daniel; Pal, Durba; Ghatak, Subhadip; Malkoc, Veysi; Higuita-Castro, Natalia; Gnyawali, Surya; Chang, Lingqian; Liao, Wei-Ching; Shi, Junfeng; Sinha, Mithun; Singh, Kanhaiya; Steen, Erin; Sunyecz, Alec; Stewart, Richard; Moore, Jordan; Ziebro, Thomas; Northcutt, Robert G.; Homsy, Michael; Bertani, Paul; Lu, Wu; Roy, Sashwati; Khanna, Savita; Rink, Cameron; Sundaresan, Vishnu Baba; Otero, Jose J.; Lee, L. James; Sen, Chandan K.

    2017-10-01

    Although cellular therapies represent a promising strategy for a number of conditions, current approaches face major translational hurdles, including limited cell sources and the need for cumbersome pre-processing steps (for example, isolation, induced pluripotency). In vivo cell reprogramming has the potential to enable more-effective cell-based therapies by using readily available cell sources (for example, fibroblasts) and circumventing the need for ex vivo pre-processing. Existing reprogramming methodologies, however, are fraught with caveats, including a heavy reliance on viral transfection. Moreover, capsid size constraints and/or the stochastic nature of status quo approaches (viral and non-viral) pose additional limitations, thus highlighting the need for safer and more deterministic in vivo reprogramming methods. Here, we report a novel yet simple-to-implement non-viral approach to topically reprogram tissues through a nanochannelled device validated with well-established and newly developed reprogramming models of induced neurons and endothelium, respectively. We demonstrate the simplicity and utility of this approach by rescuing necrotizing tissues and whole limbs using two murine models of injury-induced ischaemia.

  16. Strategies for heart regeneration: approaches ranging from induced pluripotent stem cells to direct cardiac reprogramming.

    Science.gov (United States)

    Yamakawa, Hiroyuki; Ieda, Masaki

    2015-01-01

    Cardiovascular disease remains a leading cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, development of cardiac regenerative therapy is highly desired. Embryonic stem (ES) and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine; however, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which should be solved for clinical applications. Up until the last decade, it was an established theory that cardiomyocytes could only be produced from fibroblasts mediating through stem cells. However, in 2010, we reported for the first time a novel method of the direct reprogramming of fibroblasts into cardiomyocytes, demonstrating various reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research, touching upon iPS cells, partial reprogramming strategy, and direct cardiac reprogramming. Specifically, we examine the many recent advances in both in vitro and in vivo direct cardiac reprogramming, and explore the application of these methods to cardiovascular regenerative medicine.

  17. Reprogramming of two somatic nuclei in the same ooplasm leads to pluripotent embryonic stem cells.

    Science.gov (United States)

    Pfeiffer, Martin J; Esteves, Telma C; Balbach, Sebastian T; Araúzo-Bravo, Marcos J; Stehling, Martin; Jauch, Anna; Houghton, Franchesca D; Schwarzer, Caroline; Boiani, Michele

    2013-11-01

    The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes. © AlphaMed Press.

  18. Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency.

    Science.gov (United States)

    Do, Eun Kyoung; Park, Jae Kyung; Cheon, Hyo Cheon; Kwon, Yang Woo; Heo, Soon Chul; Choi, Eun Jung; Seo, Jeong Kon; Jang, Il Ho; Lee, Sang Chul; Kim, Jae Ho

    2017-11-24

    Embryonic stem (ES) cells are pluripotent cells characterized by self-renewability and differentiation potential. Induced pluripotent stem (iPS) cells are ES cell-equivalent cells derived from somatic cells by the introduction of core reprogramming factors. ES and iPS cells are important sources for understanding basic biology and for generating therapeutic cells for clinical applications. Tribbles homolog 2 (Trib2) functions as a scaffold in signaling pathways. However, the relevance of Trib2 to the pluripotency of ES and iPS cells is unknown. In the present study, we elucidated the importance of Trib2 in maintaining pluripotency in mouse ES cells and in generating iPS cells from somatic cells through the reprogramming process. Trib2 expression decreased as ES cells differentiated, and Trib2 knockdown in ES cells changed their colony morphology while reducing the activity of alkaline phosphatase and the expression of the pluripotency marker genes Oct4, Sox2, Nanog and Klf4. Trib2 directly interacted with Oct4 and elevated Oct4 promoter activity. During the generation of iPS cells, Trib2 knockdown decreased the reprogramming efficiency of mouse embryonic fibroblasts, whereas Trib2 overexpression significantly increased their reprogramming efficiency. In summary, our results suggest that Trib2 is important for maintaining self-renewal in ES cells and for pluripotency induction during the reprogramming process.

  19. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  20. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Trevisan, Marta; Desole, Giovanna; Costanzi, Giulia; Lavezzo, Enrico; Palù, Giorgio; Barzon, Luisa

    2017-01-20

    Induced pluripotent stem cells (iPSCs) are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  1. Heart regeneration for clinical application update 2016: from induced pluripotent stem cells to direct cardiac reprogramming.

    Science.gov (United States)

    Yamakawa, Hiroyuki

    2016-01-01

    Cardiovascular disease remains a major cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, the development of cardiac regenerative therapy is highly desired. Embryonic stem and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine. However, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which must be resolved prior to clinical regenerative applications. Until the last decade, an established theory was that cardiomyocytes could only be produced from fibroblasts through iPS cell generation. In 2010, we first reported cardiac differentiation from fibroblasts by direct reprogramming, and we demonstrated that various cardiac reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research regarding iPS cells, a partial reprogramming strategy, and direct cardiac reprogramming. We also examine the many recent advances in direct cardiac reprogramming and explore the suitable utilization of these methods for regenerative medicine in the cardiovascular field.

  2. Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells.

    Science.gov (United States)

    Benchetrit, Hana; Herman, Shay; van Wietmarschen, Niek; Wu, Tao; Makedonski, Kirill; Maoz, Noam; Yom Tov, Nataly; Stave, Danielle; Lasry, Rachel; Zayat, Valery; Xiao, Andrew; Lansdorp, Peter M; Sebban, Shulamit; Buganim, Yosef

    2015-11-05

    Induced pluripotent stem cells (iPSCs) undergo extensive nuclear reprogramming and are generally indistinguishable from embryonic stem cells (ESCs) in their functional capacity and transcriptome and DNA methylation profiles. However, direct conversion of cells from one lineage to another often yields incompletely reprogrammed, functionally compromised cells, raising the question of whether pluripotency is required to achieve a high degree of nuclear reprogramming. Here, we show that transient expression of Gata3, Eomes, and Tfap2c in mouse fibroblasts induces stable, transgene-independent trophoblast stem-like cells (iTSCs). iTSCs possess transcriptional profiles highly similar to blastocyst-derived TSCs, with comparable methylation and H3K27ac patterns and genome-wide H2A.X deposition. iTSCs generate trophoectodermal lineages upon differentiation, form hemorrhagic lesions, and contribute to developing placentas in chimera assays, indicating a high degree of nuclear reprogramming, with no evidence of passage through a transient pluripotent state. Together, these data demonstrate that extensive nuclear reprogramming can be achieved independently of pluripotency. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Direct lineage reprogramming of mouse fibroblasts to functional midbrain dopaminergic neuronal progenitors

    Directory of Open Access Journals (Sweden)

    Han-Seop Kim

    2014-01-01

    Full Text Available The direct lineage reprogramming of somatic cells to other lineages by defined factors has led to innovative cell-fate-change approaches for providing patient-specific cells. Recent reports have demonstrated that four pluripotency factors (Oct4, Sox2, Klf4, and c-Myc are sufficient to directly reprogram fibroblasts to other specific cells, including induced neural stem cells (iNSCs. Here, we show that mouse fibroblasts can be directly reprogrammed into midbrain dopaminergic neuronal progenitors (DPs by temporal expression of the pluripotency factors and environment containing sonic hedgehog and fibroblast growth factor 8. Within thirteen days, self-renewing and functional induced DPs (iDPs were generated. Interestingly, the inhibition of both Jak and Gsk3β notably enhanced the iDP reprogramming efficiency. We confirmed the functionality of the iDPs by showing that the dopaminergic neurons generated from iDPs express midbrain markers, release dopamine, and show typical electrophysiological profiles. Our results demonstrate that the pluripotency factors-mediated direct reprogramming is an invaluable strategy for supplying functional and proliferating iDPs and may be useful for other neural progenitors required for disease modeling and cell therapies for neurodegenerative disorders.

  4. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors.

    Science.gov (United States)

    Bao, Lei; He, Lixiazi; Chen, Jijun; Wu, Zhao; Liao, Jing; Rao, Lingjun; Ren, Jiangtao; Li, Hui; Zhu, Hui; Qian, Lei; Gu, Yijun; Dai, Huimin; Xu, Xun; Zhou, Jinqiu; Wang, Wen; Cui, Chun; Xiao, Lei

    2011-04-01

    Reprogramming of somatic cells in the enucleated egg made Dolly, the sheep, the first successfully cloned mammal in 1996. However, the mechanism of sheep somatic cell reprogramming has not yet been addressed. Moreover, sheep embryonic stem (ES) cells are still not available, which limits the generation of precise gene-modified sheep. In this study, we report that sheep somatic cells can be directly reprogrammed to induced pluripotent stem (iPS) cells using defined factors (Oct4, Sox2, c-Myc, Klf4, Nanog, Lin28, SV40 large T and hTERT). Our observations indicated that somatic cells from sheep are more difficult to reprogram than somatic cells from other species, in which iPS cells have been reported. We demonstrated that sheep iPS cells express ES cell markers, including alkaline phosphatase, Oct4, Nanog, Sox2, Rex1, stage-specific embryonic antigen-1, TRA-1-60, TRA-1-81 and E-cadherin. Sheep iPS cells exhibited normal karyotypes and were able to differentiate into all three germ layers both in vitro and in teratomas. Our study may help to reveal the mechanism of somatic cell reprogramming in sheep and provide a platform to explore the culture conditions for sheep ES cells. Moreover, sheep iPS cells may be directly used to generate precise gene-modified sheep.

  5. Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Zuo, Yongchun; Su, Guanghua; Cheng, Lei; Liu, Kun; Feng, Yu; Wei, Zhuying; Bai, Chunling; Cao, Guifang; Li, Guangpeng

    2017-09-12

    The success of cloned animal "Dolly Sheep" demonstrated the somatic cell nuclear transfer (SCNT) technique holds huge potentials for mammalian asexual reproduction. However, the extremely poor development of SCNT embryos indicates their molecular mechanism remain largely unexplored. Deciphering the spatiotemporal patterns of gene expression in SCNT embryos is a crucial step toward understanding the mechanisms associated with nuclear reprogramming. In this study, a valuable transcriptome recourse of SCNT embryos was firstly established, which derived from different inter-/intra donor cells. The gene co-expression analysis identified 26 cell-specific modules, and a series of regulatory pathways related to reprogramming barriers were further enriched. Compared to the intra-SCNT embryos, the inter-SCNT embryos underwent only complete partially reprogramming. As master genome trigger genes, the transcripts related to TFIID subunit, RNA polymerase and mediators were incomplete activated in inter-SCNT embryos. The inter-SCNT embryos only wasted the stored maternal mRNA of master regulators, but failed to activate their self-sustained pathway of RNA polymerases. The KDM family of epigenetic regulator also seriously delayed in inter-SCNT embryo reprogramming process. Our study provided new insight into understanding of the mechanisms of nuclear reprogramming.

  6. NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression

    Directory of Open Access Journals (Sweden)

    Francesco Faiola

    2017-09-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs is a long and inefficient process. A thorough understanding of the molecular mechanisms underlying reprogramming is paramount for efficient generation and safe application of iPSCs in medicine. While intensive efforts have been devoted to identifying reprogramming facilitators and barriers, a full repertoire of such factors, as well as their mechanistic actions, is poorly defined. Here, we report that NAC1, a pluripotency-associated factor and NANOG partner, is required for establishment of pluripotency during reprogramming. Mechanistically, NAC1 is essential for proper expression of E-cadherin by a dual regulatory mechanism: it facilitates NANOG binding to the E-cadherin promoter and fine-tunes its expression; most importantly, it downregulates the E-cadherin repressor ZEB1 directly via transcriptional repression and indirectly via post-transcriptional activation of the miR-200 miRNAs. Our study thus uncovers a previously unappreciated role for the pluripotency regulator NAC1 in promoting efficient somatic cell reprogramming.

  7. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming

    Directory of Open Access Journals (Sweden)

    Derek K. Smith

    2016-11-01

    Full Text Available Pro-neural transcription factors and small molecules can induce the reprogramming of fibroblasts into functional neurons; however, the immediate-early molecular events that catalyze this conversion have not been well defined. We previously demonstrated that neurogenin 2 (NEUROG2, forskolin (F, and dorsomorphin (D can reprogram fibroblasts into functional neurons with high efficiency. Here, we used this model to define the genetic and epigenetic events that initiate an acquisition of neuronal identity. We demonstrate that NEUROG2 is a pioneer factor, FD enhances chromatin accessibility and H3K27 acetylation, and synergistic transcription activated by these factors is essential to successful reprogramming. CREB1 promotes neuron survival and acts with NEUROG2 to upregulate SOX4, which co-activates NEUROD1 and NEUROD4. In addition, SOX4 targets SWI/SNF subunits and SOX4 knockdown results in extensive loss of open chromatin and abolishes reprogramming. Applying these insights, adult human glioblastoma cell and skin fibroblast reprogramming can be improved using SOX4 or chromatin-modifying chemicals.

  8. The Effect of Substrate Topography on Direct Reprogramming of Fibroblasts to Induced Neurons

    Science.gov (United States)

    Kulangara, Karina; Adler, Andrew F.; Wang, Hong; Chellappan, Malathi; Hammett, Ellen; Yasuda, Ryohei; Leong, Kam W.

    2014-01-01

    Cellular reprogramming holds tremendous potential for cell therapy and regenerative medicine. Recently, fibroblasts have been directly converted into induced neurons (iNs) by overexpression of the neuronal transcription factors Ascl1, Brn2 and Myt1L. Hypothesizing that cell-topography interactions could influence the fibroblast-to-neuron reprogramming process, we investigated the effects of various topographies on iNs produced by direct reprogramming. Final iN purity and conversion efficiency were increased on micrograting substrates. Neurite branching was increased on microposts and decreased on microgratings, with a simplified dendritic arbor characterized by the reduction of MAP2+ neurites. Neurite outgrowth increased significantly on various topographies. DNA microarray analysis detected 20 differentially expressed genes in iNs reprogrammed on smooth versus microgratings, and quantitative PCR (qPCR) confirmed the upregulation of Vip and downregulation of Thy1 and Bmp5 on microgratings. Electrophysiology and calcium imaging verified the functionality of these iNs. This study demonstrates the potential of applying topographical cues to optimize cellular reprogramming. PMID:24709523

  9. Naked Mole Rat Cells Have a Stable Epigenome that Resists iPSC Reprogramming

    Directory of Open Access Journals (Sweden)

    Li Tan

    2017-11-01

    Full Text Available Naked mole rat (NMR is a valuable model for aging and cancer research due to its exceptional longevity and cancer resistance. We observed that the reprogramming efficiency of NMR fibroblasts in response to OSKM was drastically lower than that of mouse fibroblasts. Expression of SV40 LargeT antigen (LT dramatically improved reprogramming of NMR fibroblasts. Inactivation of Rb alone, but not p53, was sufficient to improve reprogramming efficiency, suggesting that NMR chromatin may be refractory to reprogramming. Analysis of the global histone landscape revealed that NMR had higher levels of repressive H3K27 methylation marks and lower levels of activating H3K27 acetylation marks than mouse. ATAC-seq revealed that in NMR, promoters of reprogramming genes were more closed than mouse promoters, while expression of LT led to massive opening of the NMR promoters. These results suggest that NMR displays a more stable epigenome that resists de-differentiation, contributing to the cancer resistance and longevity of this species.

  10. Discovery of porcine maternal factors related to nuclear reprogramming and early embryo development by proteomic analysis.

    Science.gov (United States)

    Zhao, Qi; Guo, Zheng; Piao, Shanhua; Wang, Chunsheng; An, Tiezhu

    2015-01-01

    Differentiated cell nuclei can be reprogrammed to a pluripotent state in several ways, including incubation with oocyte extracts, transfer into enucleated oocytes, and induced pluripotent stem cell technology. Nuclear transfer-mediated reprogramming has been proven to be the most efficient method. Maternal factors stored in oocytes have critical roles on nuclear reprogramming and early embryo development, but remain elusive. In this study, we showed most of porcine oocytes became nuclear matured at 33 h of IVM and the rate had no significant difference with oocytes at 42 h of IVM (p > 0.05). Moreover, the cleavage and blastocyst rates of SCNT and PA embryos derived from 42O were significantly higher than that of 33O (p embryo development with higher cleavage and blastocyst rates comparing to 42O (p development potential difference between 33O and 42O, 18 differentially expressed proteins were identified by proteomic analysis, and randomly selected proteins were confirmed by Western blot. Bioinformatic analysis of these proteins revealed that 33O highly synthesized proteins related to fertilization, and 42O was rich in nuclear reprogramming factors. These results present a unique insight into maternal factors related to nuclear reprogramming and early embryo development.

  11. Nanog-Independent Reprogramming to iPSCs with Canonical Factors

    Directory of Open Access Journals (Sweden)

    Ava C. Carter

    2014-02-01

    Full Text Available It has been suggested that the transcription factor Nanog is essential for the establishment of pluripotency during the derivation of embryonic stem cells and induced pluripotent stem cells (iPSCs. However, successful reprogramming to pluripotency with a growing list of divergent transcription factors, at ever-increasing efficiencies, suggests that there may be many distinct routes to a pluripotent state. Here, we have investigated whether Nanog is necessary for reprogramming murine fibroblasts under highly efficient conditions using the canonical-reprogramming factors Oct4, Sox2, Klf4, and cMyc. In agreement with prior results, the efficiency of reprogramming Nanog−/− fibroblasts was significantly lower than that of control fibroblasts. However, in contrast to previous findings, we were able to reproducibly generate iPSCs from Nanog−/− fibroblasts that effectively contributed to the germline of chimeric mice. Thus, whereas Nanog may be an important mediator of reprogramming, it is not required for establishing pluripotency in the mouse, even under standard conditions.

  12. Schwann Cells Can Be Reprogrammed to Multipotency by Culture

    Science.gov (United States)

    Widera, Darius; Heimann, Peter; Zander, Christin; Imielski, Yvonne; Heidbreder, Meike; Heilemann, Mike; Kaltschmidt, Christian

    2011-01-01

    Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription–polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75NTR, and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions. PMID:21466279

  13. Rational reprogramming of fungal polyketide first-ring cyclization.

    Science.gov (United States)

    Xu, Yuquan; Zhou, Tong; Zhou, Zhengfu; Su, Shiyou; Roberts, Sue A; Montfort, William R; Zeng, Jia; Chen, Ming; Zhang, Wei; Lin, Min; Zhan, Jixun; Molnár, István

    2013-04-02

    Resorcylic acid lactones and dihydroxyphenylacetic acid lactones represent important pharmacophores with heat shock response and immune system modulatory activities. The biosynthesis of these fungal polyketides involves a pair of collaborating iterative polyketide synthases (iPKSs): a highly reducing iPKS with product that is further elaborated by a nonreducing iPKS (nrPKS) to yield a 1,3-benzenediol moiety bridged by a macrolactone. Biosynthesis of unreduced polyketides requires the sequestration and programmed cyclization of highly reactive poly-β-ketoacyl intermediates to channel these uncommitted, pluripotent substrates to defined subsets of the polyketide structural space. Catalyzed by product template (PT) domains of the fungal nrPKSs and discrete aromatase/cyclase enzymes in bacteria, regiospecific first-ring aldol cyclizations result in characteristically different polyketide folding modes. However, a few fungal polyketides, including the dihydroxyphenylacetic acid lactone dehydrocurvularin, derive from a folding event that is analogous to the bacterial folding mode. The structural basis of such a drastic difference in the way a PT domain acts has not been investigated until now. We report here that the fungal vs. bacterial folding mode difference is portable on creating hybrid enzymes, and we structurally characterize the resulting unnatural products. Using structure-guided active site engineering, we unravel structural contributions to regiospecific aldol condensations and show that reshaping the cyclization chamber of a PT domain by only three selected point mutations is sufficient to reprogram the dehydrocurvularin nrPKS to produce polyketides with a fungal fold. Such rational control of first-ring cyclizations will facilitate efforts to the engineered biosynthesis of novel chemical diversity from natural unreduced polyketides.

  14. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling.

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E; Zarnke, Allison L; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B; Nickisch, Klaus J; Long, Henry W; Becker, Lev; Brown, Myles; Greene, Geoffrey L

    2018-01-12

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  15. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia.

    Science.gov (United States)

    Shukla, Surendra K; Gebregiworgis, Teklab; Purohit, Vinee; Chaika, Nina V; Gunda, Venugopal; Radhakrishnan, Prakash; Mehla, Kamiya; Pipinos, Iraklis I; Powers, Robert; Yu, Fang; Singh, Pankaj K

    2014-01-01

    Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy. We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia. Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss.

  16. Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment

    Science.gov (United States)

    Costa, Fabricio F; Seftor, Elisabeth A; Bischof, Jared M; Kirschmann, Dawn A; Strizzi, Luigi; Arndt, Kelly; de Fatima Bonaldo, Maria; Soares, Marcelo B; Hendrix, Mary JC

    2010-01-01

    We have previously shown that the microenvironment of human embryonic stem cells (hESCs) is able to change and reprogram aggressive cancer cells to a less aggressive state. Some mechanisms implicated in the phenotypic changes observed after this exposure are mainly associated with the Nodal signaling pathway, which plays a key role in tumor cell plasticity. However, several other molecular mechanisms might be related directly and/or indirectly to these changes, including microRNA (miRNA) regulation and DNA methylation. Aim: To further explore the epigenetic mechanisms potentially underlying the phenotypic changes that occur after exposing metastatic melanoma cells to a hESC microenvironment. Materials & Methods: A total of 365 miRNAs were screened using the TaqMan® Low Density Arrays. We also evaluated whether DNA methylation could be one of the factors regulating the expression of the inhibitor of Nodal, Lefty, in hESCs (where it is highly expressed) vs melanoma cells (where it is not expressed). Results: Using these experimental approaches, we identified miRNAs that are up- and down-regulated in melanoma cells exposed to a hESC microenvironment, such as miR-302a and miR-27b, respectively. We also demonstrate that Notch4 is one of the targets of miR-302a, which is upstream of Nodal. Additionally, one of the mechanisms that might explain the absence of the inhibitor of Nodal, Lefty, in cancer cells is silencing by DNA methylation, which provides new insights into the unregulated expression of Nodal in melanoma. Conclusion: These findings suggest that epigenetic changes such as DNA methylation and regulation by microRNAs might play a significant role in tumor cell plasticity and the metastatic phenotype. PMID:20495621

  17. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  18. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  19. Blocked randomization with randomly selected block sizes.

    Science.gov (United States)

    Efird, Jimmy

    2011-01-01

    When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  20. 31 CFR 595.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM SANCTIONS REGULATIONS General Definitions § 595.301 Blocked account; blocked property. The terms blocked account and blocked...

  1. Cellular Ontogeny and Hierarchy Influence the Reprogramming Efficiency of Human B Cells into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Muñoz-López, Álvaro; van Roon, Eddy H J; Romero-Moya, Damià; López-Millan, Belén; Stam, Ronald W; Colomer, Dolors; Nakanishi, Mahito; Bueno, Clara; Menendez, Pablo

    2016-03-01

    Although B cells have been shown to be refractory to reprogramming into pluripotency, induced pluripotent stem cells (iPSCs) have been very recently generated, at very low efficiency, from human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20 + B cells using nonintegrative tetracistronic OSKM-expressing Sendai Virus (SeV). Here, we addressed whether cell ontogeny and hierarchy influence the reprogramming efficiency of the B-cell compartment. We demonstrate that human fetal liver (FL)-derived CD19 + B cells are 110-fold easier to reprogram into iPSCs than those from CB/PB. Similarly, FL-derived CD34+CD19 + B progenitors are reprogrammed much easier than mature B cells (0.46% vs. 0.11%). All FL B-cell iPSCs carry complete VDJH rearrangements while 55% and 45% of the FL B-progenitor iPSCs carry incomplete and complete VDJH rearrangements, respectively, reflecting the reprogramming of developmentally different B progenitors (pro-B vs. pre-B) within a continuous differentiation process. Finally, our data suggest that successful B-cell reprogramming relies on active cell proliferation, and it is MYC-dependent as identical nonintegrative polycistronic SeV lacking MYC (OSKL or OSKLN) fail to reprogram B cells. The ability to efficiently reprogram human fetal primary B cells and B precursors offers an unprecedented opportunity for studying developmental B-lymphopoiesis and modeling B-cell malignances. © 2016 AlphaMed Press.

  2. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.

    Science.gov (United States)

    Rony, I K; Baten, A; Bloomfield, J A; Islam, M E; Billah, M M; Islam, K D

    2015-04-01

    Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering. © 2015 John Wiley & Sons Ltd.

  3. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes.

    Science.gov (United States)

    Worringer, Kathleen A; Rand, Tim A; Hayashi, Yohei; Sami, Salma; Takahashi, Kazutoshi; Tanabe, Koji; Narita, Megumi; Srivastava, Deepak; Yamanaka, Shinya

    2014-01-02

    Reprogramming differentiated cells into induced pluripotent stem cells (iPSCs) promotes a broad array of cellular changes. Here we show that the let-7 family of microRNAs acts as an inhibitory influence on the reprogramming process through a regulatory pathway involving prodifferentiation factors, including EGR1. Inhibiting let-7 in human cells promotes reprogramming to a comparable extent to c-MYC when combined with OCT4, SOX2, and KLF4, and persistence of let-7 inhibits reprogramming. Inhibiting let-7 during reprogramming leads to an increase in the level of the let-7 target LIN-41/TRIM71, which in turn promotes reprogramming and is important for overcoming the let-7 barrier to reprogramming. Mechanistic studies revealed that LIN-41 regulates a broad array of differentiation genes, and more specifically, inhibits translation of EGR1 through binding its cognate mRNA. Together our findings outline a let-7-based pathway that counteracts the activity of reprogramming factors through promoting the expression of prodifferentiation genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  5. MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons.

    Science.gov (United States)

    Yang, Hao; Zhang, Lingling; An, Jing; Zhang, Qian; Liu, Cuicui; He, Baorong; Hao, Ding-Jun

    2017-03-01

    Cellular reprogramming is a promising strategy to generate neural stem cells (NSCs) or desired subtype-specific neurons for cell-based therapeutic intervention. By far, the intricate cell event like reprogramming of non-neural cells to desired cell types can be achieved by forced expression of lineage-related transcription factors (TFs), nuclear transfer, a defined set of factors, and via non-coding microRNAs (miRNAs), as well as other precisely defined conditions. In addition, scientists have been trying to develop better approaches for reprogramming, either by using distinct combinations of a set of small molecules and certain TFs or delivery of appropriate small molecules and miRNAs. The miRNA-mediated approach is fascinating because of its potential to rapidly generate a variety of therapeutically desired cell types from other cell lineages. Recent studies have made great progress in miRNA-mediated neural reprogramming of somatic cells to various specific neuronal subtypes with more efficiency even though the exact mechanisms remain to be further explored. Based on key roles of miRNAs in neural reprogramming across differentiated cell lineages, it is of vital interest to summarize the recent knowledge regarding the instructive role of miRNAs in direct conversion of somatic cells into neural lineages. This precise review mainly focuses on recent discoveries of miRNAs functions in initiating cell reprogramming and fate specification of the neuronal subtype. Moreover, we discuss most recent findings about some miRNAs' activity in regulating various developmental stages of neurons, which is helpful for understanding the event network between miRNAs and their targets.

  6. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    Science.gov (United States)

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies.

  7. Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells.

    Science.gov (United States)

    Linta, Leonhard; Stockmann, Marianne; Kleinhans, Karin N; Böckers, Anja; Storch, Alexander; Zaehres, Holm; Lin, Qiong; Barbi, Gotthold; Böckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2012-04-10

    Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells. © Mary Ann Liebert, Inc.

  8. Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-12-01

    Full Text Available Summary: A suitable source of progenitor cells is required to attenuate disease or affect cure. We present an “interrupted reprogramming” strategy to generate “induced progenitor-like (iPL cells” using carefully timed expression of induced pluripotent stem cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM from non-proliferative Club cells. Interrupted reprogramming allowed controlled expansion yet preservation of lineage commitment. Under clonogenic conditions, iPL cells expanded and functioned as a bronchiolar progenitor-like population to generate mature Club cells, mucin-producing goblet cells, and cystic fibrosis transmembrane conductance regulator (CFTR-expressing ciliated epithelium. In vivo, iPL cells can repopulate CFTR-deficient epithelium. This interrupted reprogramming process could be metronomically applied to achieve controlled progenitor-like proliferation. By carefully controlling the duration of expression of OSKM, iPL cells do not become pluripotent, and they maintain their memory of origin and retain their ability to efficiently return to their original phenotype. A generic technique to produce highly specified populations may have significant implications for regenerative medicine. : In this article Waddell, Nagy, and colleagues present an “interrupted reprogramming” strategy to produce highly specified functional “induced progenitor-like cells” from mature quiescent cells. They propose that careful control of the duration of transient expression of iPSC reprogramming factors (OSKM allows controlled expansion yet preservation of parental lineage without traversing the pluripotent state. Keywords: generation of induced progenitor-like cells

  9. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  10. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    Science.gov (United States)

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  11. Reprogramming of various cell types to a beta-like state by Pdx1, Ngn3 and MafA.

    Science.gov (United States)

    Akinci, Ersin; Banga, Anannya; Tungatt, Katie; Segal, Joanna; Eberhard, Daniel; Dutton, James R; Slack, Jonathan M W

    2013-01-01

    The three transcription factors, PDX1, NGN3 and MAFA, are very important in pancreatic development. Overexpression of these three factors can reprogram both pancreatic exocrine cells and SOX9-positive cells of the liver into cells resembling pancreatic beta cells. In this study we investigate whether other cell types can be reprogrammed. Eight cell types are compared and the results are consistent with the idea that reprogramming occurs to a greater degree for developmentally related cells (pancreas, liver) than for other types, such as fibroblasts. Using a line of mouse hepatocyte-derived cells we screened 13 compounds for the ability to increase the yield of reprogrammed cells. Three are active and when used in combination they can increase the yield of insulin-immunopositive cells by a factor of six. These results should contribute to the eventual ability to develop a new cure for diabetes based on the ability to reprogram other cells in the body to a beta cell phenotype.

  12. Perspective for special Gurdon issue for differentiation: can cell fusion inform nuclear reprogramming?

    Science.gov (United States)

    Burns, David; Blau, Helen M

    2014-07-01

    Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  13. A hit and run approach to inducible direct reprogramming of astrocytes to neural stem cells

    Directory of Open Access Journals (Sweden)

    Maria ePoulou

    2016-04-01

    Full Text Available Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel hit and run inducible direct reprogramming approach. In a single step, two days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2 triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine.

  14. A MILI-independent piRNA biogenesis pathway empowers partial germline reprogramming.

    Science.gov (United States)

    Vasiliauskaitė, Lina; Vitsios, Dimitrios; Berrens, Rebecca V; Carrieri, Claudia; Reik, Wolf; Enright, Anton J; O'Carroll, Dónal

    2017-07-01

    In mice, the pathway involving PIWI and PIWI-interacting RNA (PIWI-piRNA) is essential to re-establish transposon silencing during male-germline reprogramming. The cytoplasmic PIWI protein MILI mediates piRNA-guided transposon RNA cleavage as well as piRNA amplification. MIWI2's binding to piRNA and its nuclear localization are proposed to be dependent upon MILI function. Here, we demonstrate the existence of a piRNA biogenesis pathway that sustains partial MIWI2 function and reprogramming activity in the absence of MILI.

  15. JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Neganova, Irina; Shmeleva, Evgenija; Munkley, Jennifer; Chichagova, Valeria; Anyfantis, George; Anderson, Rhys; Passos, Joao; Elliott, David J; Armstrong, Lyle; Lako, Majlinda

    2016-05-01

    Reprogramming of somatic cells to the phenotypic state termed "induced pluripotency" is thought to occur through three consecutive stages: initiation, maturation, and stabilisation. The initiation phase is stochastic but nevertheless very important as it sets the gene expression pattern that permits completion of reprogramming; hence a better understanding of this phase and how this is regulated may provide the molecular cues for improving the reprogramming process. c-Jun N-terminal kinase (JNK)/stress-activated protein kinase (SAPKs) are stress activated MAPK kinases that play an essential role in several processes known to be important for successful completion of the initiation phase such as cellular proliferation, mesenchymal to epithelial transition (MET) and cell cycle regulation. In view of this, we postulated that manipulation of this pathway would have significant impacts on reprogramming of human fibroblasts to induced pluripotent stem cells. Accordingly, we found that key components of the JNK/SAPK signaling pathway increase expression as early as day 3 of the reprogramming process and continue to rise in reprogrammed cells throughout the initiation and maturation stages. Using both chemical inhibitors and RNA interference of MKK4, MKK7 and JNK1, we tested the role of JNK/SAPK signaling during the initiation stage of neonatal and adult fibroblast reprogramming. These resulted in complete abrogation of fully reprogrammed colonies and the emergence of partially reprogrammed colonies which disaggregated and were lost from culture during the maturation stage. Inhibition of JNK/SAPK signaling resulted in reduced cell proliferation, disruption of MET and loss of the pluripotent phenotype, which either singly or in combination prevented establishment of pluripotent colonies. Together these data provide new evidence for an indispensable role for JNK/SAPK signaling to overcome the well-established molecular barriers in human somatic cell induced reprogramming

  16. Generalized Block Failure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2015-01-01

    Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...... shows that no readily available tests with a well-defined substantial eccentricity have been performed. This paper presents theoretical and experimental work leading towards generalized block failure capacity methods. Simple combination of normal force, shear force and moment stress distributions along...

  17. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Homogeneous bilateral block shifts. ADAM KORÁNYI. Department of Mathematics, The Graduate Center, City University of New York,. New York, NY 10016, USA. E-mail: Adam.Koranyi@lehman.cuny.edu. MS received 18 January 2013. Abstract. A new 3-parameter family of homogeneous 2-by-2 block shifts is described.

  18. Related Drupal Nodes Block

    NARCIS (Netherlands)

    Van der Vegt, Wim

    2010-01-01

    Related Drupal Nodes Block This module exposes a block that uses Latent Semantic Analysis (Lsa) internally to suggest three nodes that are relevant to the node a user is viewing. This module performs three tasks. 1) It periodically indexes a Drupal site and generates a Lsa Term Document Matrix.

  19. Control rod blocking monitor

    International Nuclear Information System (INIS)

    Suzuki, Shigeru.

    1993-01-01

    The number of times for setting up a control rod blocking monitor of a BWR type power plant is remarkably reduced to mitigate operator's burden. In the control rod blocking monitor, trip levels, as a judging standard upon outputting control rod blocking inhibition signals, are set up stepwise depending on the power level around control rods put to blocking control. The present invention comprises an allowance judging means capable of setting up trip levels for each of power levels corresponding to a plurality of control rods at once if the power levels are within the set up allowable range. With such a constitution, the set up allowable range is determined previously in the allowance judging means. Accordingly, when a gang blocking is conducted to control rods, if power levels around the control rods are increased at once into the set up allowable range, the trip levels for each of the control rods are set up at once. (I.S.)

  20. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Science.gov (United States)

    Zhao, Chunli; Farruggio, Alfonso P; Bjornson, Christopher R R; Chavez, Christopher L; Geisinger, Jonathan M; Neal, Tawny L; Karow, Marisa; Calos, Michele P

    2014-01-01

    A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

  1. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    Science.gov (United States)

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  2. Intermediate Reprogramming of Mouse Skin Fibroblasts into Stem-Like Cells by Bone Morphogenetic Protein 4.

    Science.gov (United States)

    Lee, Seung-Eun; Uhm, Sang-Jun; Son, Yeo-Jin; Park, Yun-Gwi; Kim, Eun-Young; Park, Se-Pill

    2017-04-01

    Specific transcription factors are sufficient to reprogram fully induced pluripotent stem cells or other types of cells. These findings raise the question of whether chemical molecules or proteins can replace transcription factors to alter the defined cell fate. In this study, we treated mouse skin fibroblasts (MSFs) with bone morphogenetic protein 4 (BMP4) and examined intermediate reprogramming of MSFs into stem-like cells. Putative epidermal stem cells isolated from the ventral skin epidermis of an adult mouse were used to confirm the reprogramming activity of BMP4, which increased the proliferation of these cells. After these cells formed spheroids, they were treated with BMP4 and cultured for 5 days. Following BMP4 treatment, the characteristics of these cells changed, and they expressed Oct-4 and its target transcripts Nanog, Sox2, and alkaline phosphatase. To confirm the stem cell potency of these cells, we induced their differentiation into cardiomyocytes. Stem-like cell-derived cardiomyocytes exhibited mRNA expression of cardiac mesoderm markers such as Nk2 transcription factor-related locus 5 and connexin 40, and the cardiomyocyte marker troponin T. These differentiated cells exhibited contracting masses. These results suggest that BMP4-mediated somatic stem cell reprogramming may become an alternative approach for cell therapy.

  3. Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies

    NARCIS (Netherlands)

    Brouwer, M.; Zhou, Huiqing; Nadif Kasri, N.

    2016-01-01

    The ability to generate human induced pluripotent stem cells (iPSCs) from somatic cells provides tremendous promises for regenerative medicine and its use has widely increased over recent years. However, reprogramming efficiencies remain low and chromosomal instability and tumorigenic potential are

  4. Valproic acid assisted reprogramming of fibroblasts for generation of pluripotent stem cells in buffalo (Bubalus bubalis).

    Science.gov (United States)

    Mahapatra, Puspendra S; Singh, Renu; Kumar, Kuldeep; Sahoo, Nihar R; Agarwal, Pranjali; Mili, Bhabesh; Das, Kinsuk; Sarkar, Mihir; Bhanja, Subrat K; Das, Bikash C; Dhara, Sujoy K; Bag, Sadhan

    2017-01-01

    Generation of pluripotent stem cells by reprogramming somatic cells of quality animals has numerous potential applications in agricultural and biomedical sciences. Unfortunately, till now, reprogramming of buffalo fetal fibroblast cells (bFFs) has been very ineffient despite intensive efforts. Here, we attempted to enhance reprogramming efficiency by using the HDAC inhibitor valproic acid (VPA) in bFFs transfected with pLentG-KOSM pseudo virus carrying mouse specific pluripotent genes. FACS analysis revealed that VPA treatment significantly increased (p cells in comparison to VPA untreated control. Further, among different concentrations, 1.5 mM VPA was found to be optimal, increasing about 5 fold GFP + cells and 2.5-fold GFP+ colonies with significantly (P stem cell (ESC)-like morphology, normal karyotype, and were positive for alkaline phosphatase staining as well as immune-positive for the ESC specific markers Oct4, Nanog, SSEA1, TRA-1-60 and TRA-1-81. The primary colonies revealed significantly higher (P reprogrammed cells readily formed embryoid bodies in vitro and cells of all three germ layers. These results indicated that VPA treatment of viral transducted cells can improve the generation of induced pluripotent stem cells and help their long term maintenance in buffalo.

  5. Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells

    NARCIS (Netherlands)

    Benchetrit, Hana; Herman, Shay; van Wietmarschen, Niek; Wu, Tao; Makedonski, Kirill; Maoz, Noam; Tov, Nataly Yom; Stave, Danielle; Lasry, Rachel; Zayat, Valery; Xiao, Andrew; Lansdorp, Peter M.; Sebban, Shulamit; Buganim, Yosef

    2015-01-01

    Induced pluripotent stem cells (iPSCs) undergo extensive nuclear reprogramming and are generally indistinguishable from embryonic stem cells (ESCs) in their functional capacity and transcriptome and DNA methylation profiles. However, direct conversion of cells from one lineage to another often

  6. Pharmacological Reprogramming of Fibroblasts into Neural Stem Cells by Signaling-Directed Transcriptional Activation.

    Science.gov (United States)

    Zhang, Mingliang; Lin, Yuan-Hung; Sun, Yujiao Jennifer; Zhu, Saiyong; Zheng, Jiashun; Liu, Kai; Cao, Nan; Li, Ke; Huang, Yadong; Ding, Sheng

    2016-05-05

    Cellular reprogramming using chemically defined conditions, without genetic manipulation, is a promising approach for generating clinically relevant cell types for regenerative medicine and drug discovery. However, small-molecule approaches for inducing lineage-specific stem cells from somatic cells across lineage boundaries have been challenging. Here, we report highly efficient reprogramming of mouse fibroblasts into induced neural stem cell-like cells (ciNSLCs) using a cocktail of nine components (M9). The resulting ciNSLCs closely resemble primary neural stem cells molecularly and functionally. Transcriptome analysis revealed that M9 induces a gradual and specific conversion of fibroblasts toward a neural fate. During reprogramming specific transcription factors such as Elk1 and Gli2 that are downstream of M9-induced signaling pathways bind and activate endogenous master neural genes to specify neural identity. Our study provides an effective chemical approach for generating neural stem cells from mouse fibroblasts and reveals mechanistic insights into underlying reprogramming processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Mitochondrial resetting and metabolic reprogramming in induced pluripotent stem cells and mitochondrial disease modeling.

    Science.gov (United States)

    Hsu, Yi-Chao; Chen, Chien-Tsun; Wei, Yau-Huei

    2016-04-01

    Nuclear reprogramming with pluripotency factors enables somatic cells to gain the properties of embryonic stem cells. Mitochondrial resetting and metabolic reprogramming are suggested to be key early events in the induction of human skin fibroblasts to induced pluripotent stem cells (iPSCs). We review recent advances in the study of the molecular basis for mitochondrial resetting and metabolic reprogramming in the regulation of the formation of iPSCs. In particular, the recent progress in using iPSCs for mitochondrial disease modeling was discussed. iPSCs rely on glycolysis rather than oxidative phosphorylation as a major supply of energy. Mitochondrial resetting and metabolic reprogramming thus play crucial roles in the process of generation of iPSCs from somatic cells. Neurons, myocytes, and cardiomyocytes are cells containing abundant mitochondria in the human body, which can be differentiated from iPSCs or trans-differentiated from fibroblasts. Generating these cells from iPSCs derived from skin fibroblasts of patients with mitochondrial diseases or by trans-differentiation with cell-specific transcription factors will provide valuable insights into the role of mitochondrial DNA heteroplasmy in mitochondrial disease modeling and serves as a novel platform for screening of drugs to treat patients with mitochondrial diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vitro reprogramming of rat bmMSCs into pancreatic endocrine-like cells.

    Science.gov (United States)

    Li, Hong-Tu; Jiang, Fang-Xu; Shi, Ping; Zhang, Tao; Liu, Xiao-Yu; Lin, Xue-Wen; San, Zhong-Yan; Pang, Xi-Ning

    2017-02-01

    Islet transplantation provides curative treatments to patients with type 1 diabetes, but donor shortage restricts the broad use of this therapy. Thus, generation of alternative transplantable cell sources is intensively investigated worldwide. We previously showed that bone marrow-derived mesenchymal stem cells (bmMSCs) can be reprogrammed to pancreatic-like cells through simultaneously forced suppression of Rest/Nrsf (repressor element-1 silencing transcription factor/neuronal restrictive silencing factor) and Shh (sonic hedgehog) and activation of Pdx1 (pancreas and duodenal transcription factor 1). We here aimed to reprogram bmMSCs further along the developmental pathway towards the islet lineages by improving our previous strategy and by overexpression of Ngn3 (neurogenin 3) and NeuroD1 (neurogenic differentiation 1), critical regulators of the development of endocrine pancreas. We showed that compared to the previous protocol, the overexpression of only Pdx1 and Ngn3 reprogrammed bmMSCs into cells with more characteristics of islet endocrine lineages verified with bioinformatic analyses of our RNA-Seq datasets. These analyses indicated 2325 differentially expressed genes including those involved in the pancreas and islet development. We validated with qRT-PCR analysis selective genes identified from the RNA-Seq datasets. Thus, we reprogrammed bmMSCs into islet endocrine-like cells and advanced the endeavor to generate surrogate functional insulin-secreting cells.

  9. MicroRNA in Metabolic Re-Programming and Their Role in Tumorigenesis

    Czech Academy of Sciences Publication Activity Database

    Tomasetti, M.; Amati, M.; Santarelli, L.; Neužil, Jiří

    2016-01-01

    Roč. 17, č. 5 (2016), č. článku 754. E-ISSN 1422-0067 Institutional support: RVO:86652036 Keywords : miRNAs * tumorigenesis * miR-126 and cancer-stroma environment * metabolic reprogramming Subject RIV: EB - Genetics ; Molecular Biology

  10. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.

    Science.gov (United States)

    Grzybek, Maciej; Golonko, Aleksandra; Walczak, Marta; Lisowski, Pawel

    2017-03-01

    The reprogramming of human induced pluripotent stem cells (hiPSCs) proceeds in a stepwise manner with reprogramming factors binding and epigenetic composition changes during transition to maintain the epigenetic landscape, important for pluripotency. There arises a question as to whether the aberrant epigenetic state after reprogramming leads to epigenetic defects in induced stem cells causing unpredictable long term effects in differentiated cells. In this review, we present a comprehensive view of epigenetic alterations accompanying reprogramming, cell maintenance and differentiation as factors that influence applications of hiPSCs in stem cell based technologies. We conclude that sample heterogeneity masks DNA methylation signatures in subpopulations of cells and thus believe that beside a genetic evaluation, extensive epigenomic screening should become a standard procedure to ensure hiPSCs state before they are used for genome editing and differentiation into neurons of interest. In particular, we suggest that exploitation of the single-cell composition of the epigenome will provide important insights into heterogeneity within hiPSCs subpopulations to fast forward development of reliable hiPSC-based analytical platforms in neurological disorders modelling and before completed hiPSC technology will be implemented in clinical approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Miao

    2017-02-01

    Full Text Available Macrophages are vital regulators of the host defense in organisms. In response to different local microenvironments, resting macrophages (M0 can be polarized into different phenotypes, pro-inflammatory (M1 or anti-inflammatory (M2, and perform different roles in different physiological or pathological conditions. Polarized macrophages can also be further reprogrammed by reversing their phenotype according to the changed milieu. Macrophage polarization and reprogramming play essential roles in maintaining the steady state of the immune system and are involved in the processes of many diseases. As foreign substances, nanoparticles (NPs mainly target macrophages after entering the body. NPs can perturb the polarization and reprogramming of macrophages, affect their immunological function and, therefore, affect the pathological process of disease. Optimally-designed NPs for the modulation of macrophage polarization and reprogramming might provide new solutions for treating diseases. Systematically investigating how NPs affect macrophage polarization is crucial for understanding the regulatory effects of NPs on immune cells in vivo. In this review, macrophage polarization by NPs is summarized and discussed.

  12. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes.

    Science.gov (United States)

    Martinez-Fernandez, Almudena; Nelson, Timothy J; Reyes, Santiago; Alekseev, Alexey E; Secreto, Frank; Perez-Terzic, Carmen; Beraldi, Rosanna; Sung, Hoon-Ki; Nagy, Andras; Terzic, Andre

    2014-10-01

    Nuclear reprogramming inculcates pluripotent capacity by which de novo tissue differentiation is enabled. Yet, introduction of ectopic reprogramming factors may desynchronize natural developmental schedules. This study aims to evaluate the effect of imposed transgene load on the cardiogenic competency of induced pluripotent stem (iPS) cells. Targeted inclusion and exclusion of reprogramming transgenes (c-MYC, KLF4, OCT4, and SOX2) was achieved using a drug-inducible and removable cassette according to the piggyBac transposon/transposase system. Pulsed transgene overexpression, before iPS cell differentiation, hindered cardiogenic outcomes. Delayed in counterparts with maintained integrated transgenes, transgene removal enabled proficient differentiation of iPS cells into functional cardiac tissue. Transgene-free iPS cells generated reproducible beating activity with robust expression of cardiac α-actinin, connexin 43, myosin light chain 2a, α/β-myosin heavy chain, and troponin I. Although operational excitation-contraction coupling was demonstrable in the presence or absence of transgenes, factor-free derivatives exhibited an expedited maturing phenotype with canonical responsiveness to adrenergic stimulation. A disproportionate stemness load, caused by integrated transgenes, affects the cardiogenic competency of iPS cells. Offload of transgenes in engineered iPS cells ensures integrity of cardiac developmental programs, underscoring the value of nonintegrative nuclear reprogramming for derivation of competent cardiogenic regenerative biologics. © 2014 American Heart Association, Inc.

  13. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming

    Directory of Open Access Journals (Sweden)

    Inês Milagre

    2017-01-01

    Full Text Available Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.

  14. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  15. Nanog induced intermediate state in regulating stem cell differentiation and reprogramming.

    Science.gov (United States)

    Yu, Peijia; Nie, Qing; Tang, Chao; Zhang, Lei

    2018-02-27

    Heterogeneous gene expressions of cells are widely observed in self-renewing pluripotent stem cells, suggesting possible coexistence of multiple cellular states with distinct characteristics. Though the elements regulating cellular states have been identified, the underlying dynamic mechanisms and the significance of such cellular heterogeneity remain elusive. We present a gene regulatory network model to investigate the bimodal Nanog distribution in stem cells. Our model reveals a novel role of dynamic conversion between the cellular states of high and low Nanog levels. Model simulations demonstrate that the low-Nanog state benefits cell differentiation through serving as an intermediate state to reduce the barrier of transition. Interestingly, the existence of low-Nanog state dynamically slows down the reprogramming process, and additional Nanog activation is found to be essential to quickly attaining the fully reprogrammed cell state. Nanog has been recognized as a critical pluripotency gene in stem cell regulation. Our modeling results quantitatively show a dual role of Nanog during stem cell differentiation and reprogramming, and the importance of the intermediate state during cell state transitions. Our approach offers a general method for analyzing key regulatory factors controlling cell differentiation and reprogramming.

  16. TRIM28 is an Epigenetic Barrier to Induced Pluripotent Stem Cell Reprogramming.

    Science.gov (United States)

    Miles, Denise Catherine; de Vries, Nienke Alexandra; Gisler, Santiago; Lieftink, Cor; Akhtar, Waseem; Gogola, Ewa; Pawlitzky, Inka; Hulsman, Danielle; Tanger, Ellen; Koppens, Martijn; Beijersbergen, Roderick Leonardus; van Lohuizen, Maarten

    2017-01-01

    Since the discovery of induced pluripotent stem cells there has been intense interest in understanding the mechanisms that allow a somatic cell to be reprogrammed back to a pluripotent state. Several groups have studied the alterations in gene expression that occur as somatic cells modify their genome to that of an embryonic stem cell. Underpinning many of the gene expression changes are modifications to the epigenetic profile of the associated chromatin. We have used a large-scale shRNA screen to identify epigenetic modifiers that act as barriers to reprogramming. We have uncovered an important role for TRIM28 in cells resisting transition between somatic and pluripotent states. TRIM28 achieves this by maintaining the H3K9me3 repressed state and keeping endogenous retroviruses (ERVs) silenced. We propose that knockdown of TRIM28 during reprogramming results in more plastic H3K9me3 domains, dysregulation of genes nearby H3K9me3 marks, and up regulation of ERVs, thus facilitating the transition through reprogramming. Stem Cells 2017;35:147-157. © 2016 AlphaMed Press.

  17. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Chunli Zhao

    Full Text Available A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies.

  18. Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba

    2013-01-01

    High-sensitive and high-affinity methods to measure gene expression inside living cells have proven to be invaluable in regards to understanding fundamental processes such as cell differentiation, reprogramming, regeneration and cancer genesis. One tool for transcription visualization on single...

  19. Reprogramming factors involved in hybrids and cybrids of human embryonic stem cells fused with hepatocytes.

    Science.gov (United States)

    Guo, Jitong; Tecirlioglu, R Tayfur; Nguyen, Linh; Koh, Karen; Jenkin, Graham; Trounson, Alan

    2010-10-01

    Embryonic stem cells (ESCs) have the potential to reprogram somatic cells into ESC-like cells through cell fusion. In the present study, the potential of human (h)ESC cytoplasts and karyoplasts to reprogram human hepatocytes was evaluated. Green fluorescent protein (GFP) transfected hESCs (ENVY cells) were fused with SNARF-1 (CellTracker)-labeled human hepatocytes using polyethylene glycol (PEG) and fluorescence-activated cell sorting (FACS) to produce hESC-hepatocyte hybrids. Immunocytochemical analysis of ESC markers showed that the hybrids expressed OCT4, TRA-1-60, TRA-1-81, SSEA-4, and GCTM-2. However, SSEA-1, which is typically low or absent on hESCs, was detected on hESC–hepatocyte hybrids. Moreover, reverse transcriptase polymerase chain reaction (RT-PCR) showed that alpha-fetoprotein, which is highly expressed in hepatocytes, was erased in the hybrids. These results indicated that hESCs have the potential to reprogram hepatocyte phenotype to a relatively undifferentiated state, but such hybrid cells are not identical to hESCs. Although hESC–hepatocyte hybrids were aneuploid, they were able to differentiate into embryoid bodies and some types of somatic cells. Furthermore, cybrids of enucleated hESCs and hepatocytes were produced by cell fusion, but the cybrids were unable to self-renew in the same way as hESCs. Presumably, the reprogramming factors are associated with the karyoplast and not the cytoplast of hESCs.

  20. Gender Differences in Global but Not Targeted Demethylation in iPSC Reprogramming.

    Science.gov (United States)

    Milagre, Inês; Stubbs, Thomas M; King, Michelle R; Spindel, Julia; Santos, Fátima; Krueger, Felix; Bachman, Martin; Segonds-Pichon, Anne; Balasubramanian, Shankar; Andrews, Simon R; Dean, Wendy; Reik, Wolf

    2017-01-31

    Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency

    DEFF Research Database (Denmark)

    Yan, Zhou; Al-Saaidi, Rasha Abdelkadhem; Fernandez Guerra, Paula

    2017-01-01

    PSCs) requires remodeling of mitochondria and a metabolic shift from an oxidative state to a more glycolytic state. In this study, we evaluated the nuclear reprogramming efficiency in relation to mitochondrial bioenergetic parameters of fibroblasts from seven different human individuals. Using the Seahorse...

  2. Wnt/β-Catenin Signaling Triggers Neuron Reprogramming and Regeneration in the Mouse Retina

    Directory of Open Access Journals (Sweden)

    Daniela Sanges

    2013-07-01

    Full Text Available Cell-fusion-mediated somatic-cell reprogramming can be induced in culture; however, whether this process occurs in mammalian tissues remains enigmatic. Here, we show that upon activation of Wnt/β-catenin signaling, mouse retinal neurons can be transiently reprogrammed in vivo back to a precursor stage. This occurs after their spontaneous fusion with transplanted hematopoietic stem and progenitor cells (HSPCs. Moreover, we demonstrate that retinal damage is essential for cell-hybrid formation in vivo. Newly formed hybrids can proliferate, commit to differentiation toward a neuroectodermal lineage, and finally develop into terminally differentiated neurons. This results in partial regeneration of the damaged retinal tissue, with functional rescue. Following retinal damage and induction of Wnt/β-catenin signaling, cell-fusion-mediated reprogramming also occurs after endogenous recruitment of bone-marrow-derived cells in the eyes. Our data demonstrate that in vivo reprogramming of terminally differentiated retinal neurons after their fusion with HSPCs is a potential mechanism for tissue regeneration.

  3. Plant hormones increase efficiency of reprogramming mouse somatic cells to induced pluripotent stem cells and reduce tumorigenicity.

    Science.gov (United States)

    Alvarez Palomo, Ana Belén; McLenachan, Samuel; Requena Osete, Jordi; Menchón, Cristina; Barrot, Carme; Chen, Fred; Munné-Bosch, Sergi; Edel, Michael J

    2014-03-15

    Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for over 30 years. The plant hormones responsible for cell reprogramming to pluripotency, indole-3-acetic acid (IAA) and isopentenyl adenosine (IPA), are present in human cells, leading to the exciting possibility that plant hormones might reprogram mammalian cells without genetic factors. We found that plant hormones on their own could not reprogram mammalian cells but increase the efficiency of the early formation of iPS cells combined with three defined genetic factors during the first 3 weeks of reprogramming by accelerating the cell cycle and regulating pluripotency genes. Moreover, the cytokinin IPA, a known human anticancer agent, reduced the threat of cancer of iPS cell in vitro by regulating key cancer and stem cell-related genes, most notably c-Myc and Igf-1. In conclusion, the plant hormones, auxin and cytokinin, are new small chemicals useful for enhancing early reprogramming efficiency of mammalian cells and reducing the threat of cancer from iPS cells. These findings suggest a novel role for plant hormones in the biology of mammalian cell plasticity.

  4. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  5. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts.

    Science.gov (United States)

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs.

  6. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  7. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells.

    Science.gov (United States)

    Tian, Zuojun; Guo, Fuzheng; Biswas, Sangita; Deng, Wenbin

    2016-04-20

    Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.

  8. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract.

    Science.gov (United States)

    Mills, Jason C; Sansom, Owen J

    2015-07-14

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, postmitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the long-term maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like the stomach and intestine, reprogramming may allow mature cells to serve as reserve ("quiescent") stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, postmitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferation in the stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. Copyright © 2015, American Association for the Advancement of Science.

  9. Reserve stem cells: Reprogramming of differentiated cells fuels repair, metaplasia, and neoplasia in the adult gastrointestinal tract

    Science.gov (United States)

    Mills, Jason C.; Sansom, Owen J.

    2016-01-01

    It has long been known that differentiated cells can switch fates, especially in vitro, but only recently has there been a critical mass of publications describing the mechanisms adult, post-mitotic cells use in vivo to reverse their differentiation state. We propose that this sort of cellular reprogramming is a fundamental cellular process akin to apoptosis or mitosis. Because reprogramming can invoke regenerative cells from mature cells, it is critical to the longterm maintenance of tissues like the pancreas, which encounter large insults during adulthood but lack constitutively active adult stem cells to repair the damage. However, even in tissues with adult stem cells, like stomach and intestine, reprogramming may allow mature cells to serve as reserve (“quiescent”) stem cells when normal stem cells are compromised. We propose that the potential downside to reprogramming is that it increases risk for cancers that occur late in adulthood. Mature, long-lived cells may have years of exposure to mutagens. Mutations that affect the physiological function of differentiated, post-mitotic cells may lead to apoptosis, but mutations in genes that govern proliferation might not be selected against. Hence, reprogramming with reentry into the cell cycle might unmask those mutations, causing an irreversible progenitor-like, proliferative state. We review recent evidence showing that reprogramming fuels irreversible metaplastic and precancerous proliferations in stomach and pancreas. Finally, we illustrate how we think reprogrammed differentiated cells are likely candidates as cells of origin for cancers of the intestine. PMID:26175494

  10. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

    Science.gov (United States)

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  11. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  12. Predictability of blocking

    International Nuclear Information System (INIS)

    Tosi, E.; Ruti, P.; Tibaldi, S.; D'Andrea, F.

    1994-01-01

    Tibaldi and Molteni (1990, hereafter referred to as TM) had previously investigated operational blocking predictability by the ECMWF model and the possible relationships between model systematic error and blocking in the winter season of the Northern Hemisphere, using seven years of ECMWF operational archives of analyses and day 1 to 10 forecasts. They showed that fewer blocking episodes than in the real atmosphere were generally simulated by the model, and that this deficiency increased with increasing forecast time. As a consequence of this, a major contribution to the systematic error in the winter season was shown to derive from the inability of the model to properly forecast blocking. In this study, the analysis performed in TM for the first seven winter seasons of the ECMWF operational model is extended to the subsequent five winters, during which model development, reflecting both resolution increases and parametrisation modifications, continued unabated. In addition the objective blocking index developed by TM has been applied to the observed data to study the natural low frequency variability of blocking. The ability to simulate blocking of some climate models has also been tested

  13. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting.

    Directory of Open Access Journals (Sweden)

    David J Kahler

    Full Text Available Current methods to derive induced pluripotent stem cell (iPSC lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS to isolate single cells expressing the cell surface marker signature CD13(NEGSSEA4(POSTra-1-60(POS on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral or non- integrating (Sendai virus reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.

  14. Reptin regulates pluripotency of embryonic stem cells and somatic cell reprogramming through Oct4-dependent mechanism.

    Science.gov (United States)

    Do, Eun Kyoung; Cheon, Hyo Cheon; Jang, Il Ho; Choi, Eun Jung; Heo, Soon Chul; Kang, Kyung Taek; Bae, Kwang Hee; Cho, Yee Sook; Seo, Jeong Kon; Yoon, Jong Hyuk; Lee, Taehoon G; Kim, Jae Ho

    2014-12-01

    Oct4 has been implicated in regulation of pluripotency in embryonic stem cells (ESCs) and reprogramming of somatic cells into induced pluripotent stem cells. However, the molecular mechanisms involved in Oct4-dependent regulation of pluripotency and reprogramming have not been clear. To gain insight into the mechanism of regulation of Oct4-mediated self-renewal of ESCs and reprogramming of somatic cells, we attempted to identify Oct4-binding proteins using affinity purification and mass spectrometry. We identified Reptin, a key component of ATP-dependent chromatin remodeling complexes, as an Oct4-binding protein. Depletion of endogenous Reptin using lentiviral short hairpin RNA (shRNA) led to a decrease in the number and size of alkaline phosphatase-positive colonies of mouse ESCs. In addition, shRNA-mediated silencing of Reptin resulted in decreased expression of pluripotency-specific marker genes, including Oct4, Sox2, Nanog, and SSEA-1. Results of the Oct4 reporter assay showed synergism between Oct4 and Reptin, and depletion of endogenous Reptin abolished Oct4 transcriptional activity. Results of a chromatin immunoprecipitation assay showed the overlapping interaction of Reptin and Oct4 to CR4 in the Oct4 enhancer in ESCs. Knockdown of Reptin using shRNA suppressed the reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells, whereas overexpression of Reptin resulted in enhanced efficiency of induced pluripotent stem cell generation. These results strongly suggest that Reptin plays a key role in maintaining the pluripotency of ESCs and in establishing the pluripotency during reprogramming of somatic cells by regulation of Oct4-mediated gene regulation. © 2014 AlphaMed Press.

  15. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation.

    Science.gov (United States)

    Palomo, Ana Belen Alvarez; Lucas, Michaela; Dilley, Rodney J; McLenachan, Samuel; Chen, Fred Kuanfu; Requena, Jordi; Sal, Marti Farrera; Lucas, Andrew; Alvarez, Inaki; Jaraquemada, Dolores; Edel, Michael J

    2014-04-04

    Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids), bone, optic vesicle-like structures (eye), cardiac muscle tissue (heart), primitive pancreas islet cells, a tooth-like structure (teeth), and functional liver buds (liver). Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1) such transplants will stimulate host immune responses; and (2) whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  16. Reprogramming of human cancer cells to pluripotency for models of cancer progression.

    Science.gov (United States)

    Kim, Jungsun; Zaret, Kenneth S

    2015-03-12

    The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. © 2015 The Authors.

  17. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  18. 31 CFR 594.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.301 Blocked account; blocked property. The terms blocked account and...

  19. Bundle Branch Block

    Science.gov (United States)

    ... 2015. Bundle branch block Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  20. Blocked Urethral Valves

    Science.gov (United States)

    ... the penis. Rarely, small membranes form across the urethra in boys early in pregnancy, and they can block the flow of urine out of the bladder. These membranes are called posterior urethral valves and can have life-threatening consequences ...

  1. Optoelectronics using block copolymers.

    Energy Technology Data Exchange (ETDEWEB)

    Botiz, I.; Darling, S. B.; Center for Nanoscale Materials

    2010-05-01

    Block copolymers, either as semiconductors themselves or as structure directors, are emerging as a promising class of materials for understanding and controlling processes associated with both photovoltaic energy conversion and light emitting devices.

  2. Mechanisms of transcription factor-mediated direct reprogramming of mouse embryonic stem cells to trophoblast stem-like cells.

    Science.gov (United States)

    Rhee, Catherine; Lee, Bum-Kyu; Beck, Samuel; LeBlanc, Lucy; Tucker, Haley O; Kim, Jonghwan

    2017-09-29

    Direct reprogramming can be achieved by forced expression of master transcription factors. Yet how such factors mediate repression of initial cell-type-specific genes while activating target cell-type-specific genes is unclear. Through embryonic stem (ES) to trophoblast stem (TS)-like cell reprogramming by introducing individual TS cell-specific 'CAG' factors (Cdx2, Arid3a and Gata3), we interrogate their chromosomal target occupancies, modulation of global transcription and chromatin accessibility at the initial stage of reprogramming. From the studies, we uncover a sequential, two-step mechanism of cellular reprogramming in which repression of pre-existing ES cell-associated gene expression program is followed by activation of TS cell-specific genes by CAG factors. Therefore, we reveal that CAG factors function as both decommission and pioneer factors during ES to TS-like cell fate conversion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  4. Transactivator protein: An alternative for delivery of recombinant proteins for safer reprogramming of induced Pluripotent Stem Cell.

    Science.gov (United States)

    Nordin, Fazlina; Ahmad, Raja Norazireen Raja; Farzaneh, Farzin

    2017-05-02

    Induced pluripotent stem cells (iPSC) are somatic cells reprogrammed to pluripotency by forced expression of pluripotency factors. These cells are shown to have the same pluripotent potential as embryonic stem cells (ESC) and considered as an alternative to the much controversial usage of ESC which involved human embryos. However, the traditional method in reprogramming cells into iPSC using genome-integrating retro- or lenti- viruses remains an obstacle for its application in clinical setting. Although numerous studies have been conducted for a safer DNA-based reprogramming, reprogramming of iPSC by genetic modifications may raise the possibility of malignant transformation and has been a major limitation for its usage in clinical applications. Therefore, there is a need for an alternative method to reprogram the cells without the use of gene editing and a much safer way to deliver transcription factors to induce pluripotency on target cells. Using protein transduction approach, a number of studies have demonstrated the generation of human iPSCs from human fibroblasts and mouse embryonic fibroblasts by direct delivery of reprogramming proteins. In this review, the definition and mechanism of HIV-TAT protein (a type of protein transduction domain) in delivering recombinant proteins, including the potential of protein-based delivery to induce iPSC were further discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Barta, Tomas; Peskova, Lucie; Collin, Joseph; Montaner, David; Neganova, Irina; Armstrong, Lyle; Lako, Majlinda

    2016-01-01

    MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs. © 2015 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  6. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency.

    Science.gov (United States)

    An, Junhui; Zheng, Yu; Dann, Christina Tenenhaus

    2017-02-14

    Cultured spermatogonial stem cells (GSCs) can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET) suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β) signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1 + after trypsin digestion, are epithelial-like cells. CDH1 + GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Hypoxia Inducible Factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency

    Science.gov (United States)

    Mathieu, Julie; Zhou, Wenyu; Xing, Yalan; Sperber, Henrik; Ferreccio, Amy; Agoston, Zsuzsa; Kuppusamy, Kavitha T; Moon, Randall T; Ruohola-Baker, Hannele

    2014-01-01

    SUMMARY Pluripotent stem cells have distinct metabolic requirements, and reprogramming cells to pluripotency requires a shift from oxidative to glycolytic metabolism. Here, we show that this shift occurs early during reprogramming of human cells and requires Hypoxia Inducible Factors in a stage-specific manner. HIF1α and HIF2α are both necessary to initiate this metabolic switch and for acquisition of pluripotency, and stabilization of either protein during early phases of reprogramming is sufficient to induce the switch to glycolytic metabolism. In contrast, stabilization of HIF2α during later stages represses reprogramming, due at least in part to up-regulation of TNF-related apoptosis-inducing ligand (TRAIL). TRAIL inhibits iPSC generation by repressing apoptotic caspase 3 activity specifically in cells undergoing reprogramming, but not hESCs, and inhibiting TRAIL activity enhances hiPSC generation. These results shed light on the mechanisms underlying the metabolic shifts associated with acquisition of a pluripotent identity during reprogramming. PMID:24656769

  8. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  9. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ras Trokovic

    2015-07-01

    Full Text Available Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  10. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included.......5%/2.3% in women, P Right bundle branch block was associated with significantly...... increased all-cause and cardiovascular mortality in both genders with age-adjusted hazard ratios (HR) of 1.31 [95% confidence interval (CI), 1.11-1.54] and 1.87 (95% CI, 1.48-2.36) in the gender pooled analysis with little attenuation after multiple adjustment. Right bundle branch block was associated...

  11. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process

    Directory of Open Access Journals (Sweden)

    Valentina Turinetto

    2017-09-01

    Full Text Available Evaluation of the extent and nature of induced pluripotent stem cell (iPSC genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations.

  12. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process

    Science.gov (United States)

    Orlando, Luca; Giachino, Claudia

    2017-01-01

    Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations. PMID:28902128

  13. Converting cell fates: generating hematopoietic stem cells de novo via transcription factor reprogramming.

    Science.gov (United States)

    Daniel, Michael G; Lemischka, Ihor R; Moore, Kateri

    2016-04-01

    Even though all paradigms of stem cell therapy and regenerative medicine emerged from the study of hematopoietic stem cells (HSCs), the inability to generate these cells de novo or expand them in vitro persists. Initial efforts to obtain these cells began with the use of embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technologies, but these strategies have yet to yield fully functional cells. Subsequently, more recent approaches involve transcription factor (TF) overexpression to reprogram PSCs and various somatic cells. The induction of pluripotency with just four TFs by Yamanaka informs our ability to convert cell fates and demonstrates the feasibility of utilizing terminally differentiated cells to generate cells with multilineage potential. In this review, we discuss the recent efforts undertaken using TF-based reprogramming strategies to convert several cell types into HSCs. © 2016 New York Academy of Sciences.

  14. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies

    DEFF Research Database (Denmark)

    Damgaard Jensen, Emil; Ferreira, Raphael; Jakociunas, Tadas

    2017-01-01

    Transcriptional reprogramming is a fundamental process of living cells in order to adapt to environmental and endogenous cues. In order to allow flexible and timely control over gene expression without the interference of native gene expression machinery, a large number of studies have focused...... on developing synthetic biology tools for orthogonal control of transcription. Most recently, the nuclease-deficient Cas9 (dCas9) has emerged as a flexible tool for controlling activation and repression of target genes, by the simple RNA-guided positioning of dCas9 in the vicinity of the target gene...... transcription start site. In this study we compared two different systems of dCas9-mediated transcriptional reprogramming, and applied them to genes controlling two biosynthetic pathways for biobased production of isoprenoids and triacylglycerols (TAGs) in baker's yeast Saccharomyces cerevisiae. By testing 101...

  15. EXPRESSION OF PLURIPOTENCY MARKERS IN REPROGRAMMING WITH TRANSPOSON SYSTEM MURINE FIBROBLASTS

    Directory of Open Access Journals (Sweden)

    S. V. Malysheva

    2013-10-01

    Full Text Available The search for effective and safe methods to generate induced pluripotent stem cells is especially urgent. In the paper murine embryonic fibro blasts were reprogrammed towards actively proliferating colonies with typical induced pluripotent stem cells morphology by means of Sleeping beauty transposon-based vector system. The obtained clones were checked for the expression of various pluripotency markers: alkaline phosphatase, Oct4 and Sox2 genes, SSEA-1 expression in various clones was evaluated. Also the reactivation of endogenous pluripotency factors Nanog and Rex1 was indicated. The data obtained is analyzed and compared to the established pluripotent stem cell line. It is shown that somatic cells are reprogrammed towards pluripotency by means of Sleeping beauty transposon system. Therefore, the system is a new perspective biotechnological tool to generate pluripotent cells.

  16. Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process.

    Science.gov (United States)

    Turinetto, Valentina; Orlando, Luca; Giachino, Claudia

    2017-09-13

    Evaluation of the extent and nature of induced pluripotent stem cell (iPSC) genetic instability is important for both basic research and future clinical use. As previously demonstrated regarding embryonic stem cells, such DNA aberrations might affect the differentiation capacity of the cells and increase their tumorigenicity. Here, we first focus on the contribution of multiple DNA damage response pathways during cellular reprogramming. We then discuss the origin and mechanisms responsible for the modification of genetic material in iPSCs (pre-existing variations in somatic cells, mutations induced by reprogramming factors, and mutations induced by culture expansion) and deepen the possible functional consequences of genetic variations in these cells. Lastly, we present some recent improvements of iPSC generation methods aimed at obtaining cells with fewer genetic variations.

  17. Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts

    DEFF Research Database (Denmark)

    Li, Dong; Secher, Jan Ole Bertelsen; Juhl, Morten

    2017-01-01

    Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells...... are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast...... populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore...

  18. Inflammatory Stimuli Reprogram Macrophage Phagocytosis to Macropinocytosis for the Rapid Elimination of Pathogens

    Science.gov (United States)

    BoseDasgupta, Somdeb; Pieters, Jean

    2014-01-01

    Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI)-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation. PMID:24497827

  19. Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens.

    Directory of Open Access Journals (Sweden)

    Somdeb Bosedasgupta

    2014-01-01

    Full Text Available Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation.

  20. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells.

    Science.gov (United States)

    Seisenberger, Stefanie; Andrews, Simon; Krueger, Felix; Arand, Julia; Walter, Jörn; Santos, Fátima; Popp, Christian; Thienpont, Bernard; Dean, Wendy; Reik, Wolf

    2012-12-28

    Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions.

    Science.gov (United States)

    Agnihotri, Sameer; Zadeh, Gelareh

    2016-02-01

    A defining hallmark of glioblastoma is altered tumor metabolism. The metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation, regardless of oxygen availability, is a phenomenon known as the Warburg effect. In addition to the Warburg effect, glioblastoma tumor cells also utilize the tricarboxylic acid cycle/oxidative phosphorylation in a different capacity than normal tissue. Altered metabolic enzymes and their metabolites are oncogenic and not simply a product of tumor proliferation. Here we highlight the advantages of why tumor cells, including glioblastoma cells, require metabolic reprogramming and how tumor metabolism can converge on tumor epigenetics and unanswered questions in the field. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity

    KAUST Repository

    Latrasse, David

    2017-07-06

    Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level.Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase.By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.

  3. Transient p53 suppression increases reprogramming of human fibroblasts without affecting apoptosis and DNA damage

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Holst, Bjørn; Tümer, Zeynep

    2014-01-01

    The discovery of human-induced pluripotent stem cells (iPSCs) has sparked great interest in the potential treatment of patients with their own in vitro differentiated cells. Recently, knockout of the Tumor Protein 53 (p53) gene was reported to facilitate reprogramming but unfortunately also led...... to genomic instability. Here, we report that transient suppression of p53 during nonintegrative reprogramming of human fibroblasts leads to a significant increase in expression of pluripotency markers and overall number of iPSC colonies, due to downstream suppression of p21, without affecting apoptosis...... and DNA damage. Stable iPSC lines generated with or without p53 suppression showed comparable expression of pluripotency markers and methylation patterns, displayed normal karyotypes, contained between 0 and 5 genomic copy number variations and produced functional neurons in vitro. In conclusion...

  4. Pluripotent Conversion of Muscle Stem Cells Without Reprogramming Factors or Small Molecules.

    Science.gov (United States)

    Bose, Bipasha; Shenoy P, Sudheer

    2016-02-01

    Muscle derived stem cells (MDSCs) are multipotent stem cells that can differentiate into several lineages including skeletal muscle precursor cells. Here, we show that MDSCs from myostatin null mice (Mstn (-/-) ) can be readily induced into pluripotent stem cells without using reprogramming factors. Microarray studies revealed a strong upregulation of markers like Leukemia Inhibitory factor (LIF) and Leukemia Inhibitory factor receptor (LIFR) in Mstn (-/-) MDSCs as compared to wild type MDSCs (WT-MDSCs). Furthermore when cultured in mouse embryonic stem cell media with LIF for 95 days, Mstn (-/-) MDSCs formed embryonic stem cell (ES) like colonies. We termed such ES like cells as the culture-induced pluripotent stem cells (CiPSC). CiPSCs from Mstn (-/-) MDSCs were phenotypically similar to ESCs, expressed high levels of Oct4, Nanog, Sox2 and SSEA-1, maintained a normal karyotype. Furthermore, CiPSCs formed embryoid bodies and teratomas when injected into immunocompromised mice. In addition, CiPSCs differentiated into somatic cells of all three lineages. We further show that culturing in ES cell media, resulted in hypermethylation and downregulation of BMP2 in Mstn(-/-) MDSCs. Western blot further confirmed a down regulation of BMP2 signaling in Mstn (-/-) MDSCs in supportive of pluripotent reprogramming. Given that down regulation of BMP2 has been shown to induce pluripotency in cells, we propose that lack of myostatin epigenetically reprograms the MDSCs to become pluripotent stem cells. Thus, here we report the successful establishment of ES-like cells from adult stem cells of the non-germline origin under culture-induced conditions without introducing reprogramming genes.

  5. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors.

    Science.gov (United States)

    Talbot, Neil C; Sparks, Wendy O; Phillips, Caitlin E; Ealy, Alan D; Powell, Anne M; Caperna, Thomas J; Garrett, Wesley M; Donovan, David M; Blomberg, Le Ann

    2017-06-01

    Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies. © 2017 Wiley Periodicals, Inc.

  6. Heart repair by reprogramming non-myocytes with cardiac transcription factors

    OpenAIRE

    Song, Kunhua; Nam, Young-Jae; Luo, Xiang; Qi, Xiaoxia; Tan, Wei; Huang, Guo N.; Acharya, Asha; Smith, Christopher L.; Tallquist, Michelle D.; Neilson, Eric G.; Hill, Joseph A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    The adult mammalian heart possesses little regenerative potential following injury. Fibrosis due to activation of cardiac fibroblasts impedes cardiac regeneration and contributes to loss of contractile function, pathological remodeling and susceptibility to arrhythmias. Cardiac fibroblasts account for a majority of cells in the heart and represent a potential cellular source for restoration of cardiac function following injury through phenotypic reprogramming to a myocardial cell fate. Here w...

  7. Epigenetically reprogramming of human embryonic stem cells by 3-Deazaneplanocin A and sodium butyrate

    Directory of Open Access Journals (Sweden)

    Soheila Azghadi

    2011-01-01

    Full Text Available Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit. Human embryonic stem cell (hESC lines are derived from the inner cell mass (ICM of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state, and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs. Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction. Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively.

  8. Lin28b stimulates the reprogramming of rat Müller glia to retinal progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen; Tao, Zui; Xue, Langyue; Zeng, Yuxiao [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Wang, Yi, E-mail: wangyieye@aliyun.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Xu, Haiwei, E-mail: haiweixu2001@163.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China); Yin, Zheng Qin, E-mail: qinzyin@aliyun.com [Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing 400038 (China); Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 (China)

    2017-03-01

    In lower-order vertebrates, Müller glia exhibit characteristics of retinal progenitor cells, while in higher vertebrates, such as mammals, the regenerative capacity of Müller glia is limited. Recently, we reported that Lin28b promoted the trans-differentiation of Müller cells to rod photoreceptor and bipolar cells in the retina of retinitis pigmentosa rat model, whereas it is unclear whether Lin28b can stimulate the reprogramming of Müller glia in vitro for transplantation into a damaged retina. In the present study, Long-Evens rat Müller glia were infected with Adeno-Lin28b or Adeno-GFP. Over-expression of Lin28b in isolated rat Müller glia resulted in the suppression of GFAP expression, enhancement of cell proliferation and a significant increase of the expression of retinal progenitor markers 5 days after infection. Moreover, Lin28b caused a significant reduction of the Let-7 family of microRNAs. Following sub-retinal space transplantation, Müller glia-derived retinal progenitors improved b-wave amplification of 30d Royal College of Surgeons retinitis pigmentosa model (RCS-P+) rats, as detected by electroretinography (ERG) recordings. Taken together, these data suggest that the up-regulation of Lin28b expression facilitated the reprogramming of Müller cells toward characteristics of retinal progenitors. - Highlights: • Lin28b reprograms Müller glia to retinal progenitors. • Let-7 micrRNAs are suppressed by Lin28b. • Transplantation of reprogrammed Müller glia restores retinal function.

  9. Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells.

    Science.gov (United States)

    Cao, Ting-Ting; Lin, Shu-Hai; Fu, Li; Tang, Zhi; Che, Chi-Ming; Zhang, Li-Yi; Ming, Xiao-Yan; Liu, Teng-Fei; Tang, Xu-Ming; Tan, Bin-Bin; Xiang, Di; Li, Feng; Chan, On-Yee; Xie, Dan; Cai, Zongwei; Guan, Xin-Yuan

    2017-01-01

    Reprogramming of intracellular metabolism is common in liver cancer cells. Understanding the mechanisms of cell metabolic reprogramming may present a new basis for liver cancer treatment. In our previous study, we reported that a novel oncogene eukaryotic translation initiation factor 5A2 (EIF5A2) promotes tumorigenesis under hypoxic condition. Here, we aim to investigate the role of EIF5A2 in cell metabolic reprogramming during hepatocellular carcinoma (HCC) development. In this study, we reported that the messenger RNA (mRNA) level of EIF5A2 was upregulated in 59 of 105 (56.2%) HCC clinical samples (P = 0.015), and EIF5A2 overexpression was significantly associated with shorter survival time of patients with HCC (P = 0.021). Ectopic expression of EIF5A2 in HCC cell lines significantly promoted cell growth and accelerated glucose utilization and lipogenesis rates. The high rates of glucose uptake and lactate secretion conferred by EIF5A2 revealed an abnormal activity of aerobic glycolysis in HCC cells. Several key enzymes involved in glycolysis including glucose transporter type 1 and 2, hexokinase 2, phosphofructokinase liver type, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase M2 isoform, phosphoglycerate mutase 1 and lactate dehydrogenase A were upregulated by overexpression of EIF5A2. Moreover, EIF5A2 showed positive correlations with FASN and ACSS2, two key enzymes involved in the fatty acid de novo biosynthetic pathway, at both protein and mRNA levels in HCC. These results indicated that EIF5A2 may regulate fatty acid de novo biosynthesis by increasing the uptake of acetate. In conclusion, our findings demonstrate that EIF5A2 has a critical role in HCC cell metabolic reprogramming and may serve as a prominent novel therapeutic target for liver cancer treatment. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos

    International Nuclear Information System (INIS)

    Cui Xiangshun; Zhang Dingxiao; Ko, Yoeung-Gyu; Kim, Nam-Hyung

    2009-01-01

    The microRNA (miRNA) genes mir-127 and mir-136 are located near two CpG islands in the imprinted mouse retrotransposon-like gene Rtl1, a key gene involved in placenta formation. These miRNAs appear to be involved in regulating the imprinting of Rtl1. To obtain insights into the epigenetic reprogramming of cloned embryos, we compared the expression levels of mir-127 and mir-136 in fertilized mouse embryos, parthenotes, androgenotes and cloned embryos developing in vitro. We also examined the DNA methylation status of the promoter regions of Rtl1 and mir-127 in these embryos. Our data showed that mir-127 and mir-136 were highly expressed in parthenotes, but rarely expressed in androgenotes. Interestingly, the expression levels of mir-127 and mir-136 in parthenotes were almost twice that seen in the fertilized embryos, but were much lower in the cloned embryos. The Rtl1 promoter region was hyper-methylated in blastocyst stage parthenotes (75.0%), moderately methylated (32.4%) in the fertilized embryos and methylated to a much lower extent (∼10%) in the cloned embryos. Conversely, the promoter region of mir-127 was hypo-methylated in parthenogenetically activated embryos (0.4%), moderately methylated (30.0%) in fertilized embryos and heavily methylated in cloned blastocysts (63-70%). These data support a role for mir-127 and mir-136 in the epigenetic reprogramming of the Rtl1 imprinting process. Analysis of the aberrant epigenetic reprogramming of mir-127 and Rtl1 in cloned embryos may help to explain the nuclear reprogramming procedures that occur in donor cells following somatic cell nuclear transfer (SCNT).

  11. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  12. Using Robot Skills for Flexible Reprogramming of Pick Operations in Industrial Scenarios

    DEFF Research Database (Denmark)

    Andersen, Rasmus S.; Nalpantidis, Lazaros; Krüger, Volker

    2014-01-01

    Traditional robots used in manufacturing are very efficient for solving specific tasks that are repeated many times. The robots are, however, difficult to (re-)configure and (re-)program. This can often only be done by expert robotic programmers, computer vision experts, etc., and it requires add......, preliminary tests indicate that non-expert users can learn to use the skill after only a short introduction....

  13. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells.

    Science.gov (United States)

    Galende, Elisa; Karakikes, Ioannis; Edelmann, Lisa; Desnick, Robert J; Kerenyi, Thomas; Khoueiry, Georges; Lafferty, James; McGinn, Joseph T; Brodman, Michael; Fuster, Valentin; Hajjar, Roger J; Polgar, Katalin

    2010-04-01

    Recently, cultured human adult skin cells were reprogrammed to induced pluripotent stem (iPS) cells, which have characteristics similar to human embryonic stem (hES) cells. Patient-derived iPS cells offer genetic and immunologic advantages for cell and tissue replacement or engineering. The efficiency of generating human iPS cells has been very low; therefore an easily and efficiently reprogrammed cell type is highly desired. Here, we demonstrate that terminally differentiated human amniotic fluid (AF) skin cells provide an accessible source for efficiently generating abundant-induced pluripotent stem (AF-iPS) cells. By induction of pluripotency with the transcription factor quartet (OCT3/4, SOX2, KLF4, and c-MYC) the terminally differentiated, cultured AF skin cells formed iPS colonies approximately twice as fast and yielded nearly a two-hundred percent increase in number, compared to cultured adult skin cells. AF-iPS cells were identical to hES cells for morphological and growth characteristics, antigenic stem cell markers, stem cell gene expression, telomerase activity, in vitro and in vivo differentiation into the three germ layers and for their capacity to form embryoid bodies (EBs) and teratomas. Our findings provide a biological interesting conclusion that these fetal AF cells are more rapidly, easily, and efficiently reprogrammed to pluripotency than neonatal and adult cells. AF-iPS cells may have a "young," more embryonic like epigenetic background, which may facilitate and accelerate pluripotency. The ability to efficiently and rapidly reprogram terminally differentiated AF skin cells and generate induced pluripotent stem cells provides an abundant iPS cell source for various basic studies and a potential for future patient-specific personalized therapies.

  14. E-Block: A Tangible Programming Tool with Graphical Blocks

    OpenAIRE

    Danli Wang; Yang Zhang; Shengyong Chen

    2013-01-01

    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  15. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Yakubov, Eduard [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Rechavi, Gidi [Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rozenblatt, Shmuel [Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv (Israel); Givol, David, E-mail: david.givol@weizmann.ac.il [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  16. GLIS1-3: emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance.

    Science.gov (United States)

    Scoville, David W; Kang, Hong Soon; Jetten, Anton M

    2017-01-01

    Recent studies have provided evidence for a regulatory role of GLI-similar (GLIS) transcription factors in reprogramming, maintenance and differentiation of several stem and progenitor cell populations. GLIS1, in conjunction with several other reprogramming factors, was shown to markedly increase the efficiency of generating induced pluripotent stem cells (iPSC) from somatic cells. GLIS2 has been reported to contribute to the maintenance of the pluripotent state in hPSCs. In addition, GLIS2 has a function in regulating self-renewal of hematopoietic progenitors and megakaryocytic differentiation. GLIS3 plays a critical role during the development of several tissues. GLIS3 is able to promote reprogramming of human fibroblasts into retinal pigmented epithelial (RPE) cells. Moreover, GLIS3 is essential for spermatogonial stem cell renewal and spermatogonial progenitor cell differentiation. During pancreas development, GLIS3 protein is first detectable in bipotent pancreatic progenitors and pro-endocrine progenitors and plays a critical role in the generation of pancreatic beta cells. Here, we review the current status of the roles of GLIS proteins in the maintenance and differentiation of these different stem and progenitor cells.

  17. Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming.

    Science.gov (United States)

    Dametti, Sara; Faravelli, Irene; Ruggieri, Margherita; Ramirez, Agnese; Nizzardo, Monica; Corti, Stefania

    2016-05-01

    Neuronal loss is a common substrate of many neurological diseases that still lack effective treatments and highly burden lives of affected individuals. The discovery of self-renewing stem cells within the central nervous system (CNS) has opened the doors to the possibility of using the plasticity of CNS as a potential strategy for the development of regenerative therapies after injuries. The role of neural progenitor cells appears to be crucial, but insufficient in reparative processes after damage. In addition, the mechanisms that regulate these events are still largely unknown. Stem cell-based therapeutic approaches have primarily focused on the use of either induced pluripotent stem cells or induced neural stem cells as sources for cell transplantation. More recently, in vivo direct reprogramming of endogenous CNS cells into multipotent neural stem/progenitor cells has been proposed as an alternative strategy that could overcome the limits connected with both the invasiveness of exogenous cell transplantation and the technical issues of in vitro reprogramming (i.e., the time requested and the limited available amount of directly induced neuronal cells). In this review, we aim to highlight the recent studies on in vivo direct reprogramming, focusing on astrocytes conversion to neurons or to neural stem/precursors cells, in the perspective of future therapeutic purposes for neurological disorders.

  18. HMG-CoA synthase 2 drives brain metabolic reprogramming in cocaine exposure.

    Science.gov (United States)

    Shao, Xue; Tang, Yunxuan; Long, Hailei; Gu, Hui; Zhang, Jie; Deng, Pengchi; Zhao, Yinglan; Cen, Xiaobo

    2017-10-04

    The brain is a high energy-consuming organ that typically utilizes glucose as the main energy source for cerebral activity. When glucose becomes scarce under conditions of stress, ketone bodies, such as β-hydroxybutyrate, acetoacetate and acetone, become extremely important. Alterations in brain energy metabolism have been observed in psychostimulant abusers; however, the mode of brain metabolic programming in cocaine dependence remains largely unknown. Here, we profiled the metabolites and metabolic enzymes from brain nucleus accumbens (NAc) of mice exposed to cocaine. We found that cocaine modified energy metabolism and markedly activated ketogenesis pathway in the NAc. The expression of HMG-CoA synthase 2 (HMGCS2), a critical rate-limiting ketogenesis enzyme, was markedly up-regulated. After switching metabolic pathways from ketogenesis to glycolysis through activation of glucokinase, cocaine-evoked metabolic reprogramming regained homeostasis, and the cocaine effect was attenuated. Importantly, both the pharmacological and genetic inhibition of HMGCS2 significantly suppressed cocaine-induced ketogenesis and behavior. In conclusion, cocaine induces a remarkable energy reprogramming in the NAc, which is characterized by HMGCS2-driven ketogenesis. Such effect may facilitate adaptations to cocaine-induced energy stress in the brain. Our findings establish an important link between drug-induced energy reprogramming and cocaine effect, and may have implication in the treatment of cocaine addiction. Copyright © 2017. Published by Elsevier Ltd.

  19. Direct Reprogramming of Fibroblasts via a Chemically Induced XEN-like State.

    Science.gov (United States)

    Li, Xiang; Liu, Defang; Ma, Yantao; Du, Xiaomin; Jing, Junzhan; Wang, Lipeng; Xie, Bingqing; Sun, Da; Sun, Shaoqiang; Jin, Xueqin; Zhang, Xu; Zhao, Ting; Guan, Jingyang; Yi, Zexuan; Lai, Weifeng; Zheng, Ping; Huang, Zhuo; Chang, Yanzhong; Chai, Zhen; Xu, Jun; Deng, Hongkui

    2017-08-03

    Direct lineage reprogramming, including with small molecules, has emerged as a promising approach for generating desired cell types. We recently found that during chemical induction of induced pluripotent stem cells (iPSCs) from mouse fibroblasts, cells pass through an extra-embryonic endoderm (XEN)-like state. Here, we show that these chemically induced XEN-like cells can also be induced to directly reprogram into functional neurons, bypassing the pluripotent state. The induced neurons possess neuron-specific expression profiles, form functional synapses in culture, and further mature after transplantation into the adult mouse brain. Using similar principles, we were also able to induce hepatocyte-like cells from the XEN-like cells. Cells in the induced XEN-like state were readily expandable over at least 20 passages and retained genome stability and lineage specification potential. Our study therefore establishes a multifunctional route for chemical lineage reprogramming and may provide a platform for generating a diverse range of cell types via application of this expandable XEN-like state. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Survivin Improves Reprogramming Efficiency of Human Neural Progenitors by Single Molecule OCT4

    Directory of Open Access Journals (Sweden)

    Shixin Zhou

    2016-01-01

    Full Text Available Induced pluripotent stem (iPS cells have been generated from human somatic cells by ectopic expression of four Yamanaka factors. Here, we report that Survivin, an apoptosis inhibitor, can enhance iPS cells generation from human neural progenitor cells (NPCs together with one factor OCT4 (1F-OCT4-Survivin. Compared with 1F-OCT4, Survivin accelerates the process of reprogramming from human NPCs. The neurocyte-originated induced pluripotent stem (NiPS cells generated from 1F-OCT4-Survivin resemble human embryonic stem (hES cells in morphology, surface markers, global gene expression profiling, and epigenetic status. Survivin keeps high expression in both iPS and ES cells. During the process of NiPS cell to neural cell differentiation, the expression of Survivin is rapidly decreased in protein level. The mechanism of Survivin promotion of reprogramming efficiency from NPCs may be associated with stabilization of β-catenin in WNT signaling pathway. This hypothesis is supported by experiments of RT-PCR, chromatin immune-precipitation, and Western blot in human ES cells. Our results showed overexpression of Survivin could improve the efficiency of reprogramming from NPCs to iPS cells by one factor OCT4 through stabilization of the key molecule, β-catenin.

  1. Lapatinib Resistance in Breast Cancer Cells Is Accompanied by Phosphorylation-Mediated Reprogramming of Glycolysis.

    Science.gov (United States)

    Ruprecht, Benjamin; Zaal, Esther A; Zecha, Jana; Wu, Wei; Berkers, Celia R; Kuster, Bernhard; Lemeer, Simone

    2017-04-15

    HER2/ERBB2-overexpressing breast cancers targeted effectively by the small-molecule kinase inhibitor lapatinib frequently acquire resistance to this drug. In this study, we employed explorative mass spectrometry to profile proteome, kinome, and phosphoproteome changes in an established model of lapatinib resistance to systematically investigate initial inhibitor response and subsequent reprogramming in resistance. The resulting dataset, which collectively contains quantitative data for >7,800 proteins, >300 protein kinases, and >15,000 phosphopeptides, enabled deep insight into signaling recovery and molecular reprogramming upon resistance. Our data-driven approach confirmed previously described mechanisms of resistance (e.g., AXL overexpression and PIK3 reactivation), revealed novel pharmacologically actionable targets, and confirmed the expectation of significant heterogeneity in molecular resistance drivers inducing distinct phenotypic changes. Furthermore, our approach identified an extensive and exclusively phosphorylation-mediated reprogramming of glycolytic activity, supported additionally by widespread changes of corresponding metabolites and an increased sensitivity towards glycolysis inhibition. Collectively, our multi-omic analysis offers deeper perspectives on cancer drug resistance and suggests new biomarkers and treatment options for lapatinib-resistant cancers. Cancer Res; 77(8); 1842-53. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Characterization of the Epigenetic Changes During Human Gonadal Primordial Germ Cells Reprogramming.

    Science.gov (United States)

    Eguizabal, C; Herrera, L; De Oñate, L; Montserrat, N; Hajkova, P; Izpisua Belmonte, J C

    2016-09-01

    Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428. © 2016 AlphaMed Press.

  3. bFGF signaling-mediated reprogramming of porcine primordial germ cells.

    Science.gov (United States)

    Zhang, Yu; Ma, Jing; Li, Hai; Lv, Jiawei; Wei, Renyue; Cong, Yimei; Liu, Zhonghua

    2016-05-01

    Primordial germ cells (PGCs) have the ability to be reprogrammed into embryonic germ cells (EGCs) in vitro and are an alternative source of embryonic stem cells. Other than for the mouse, the systematic characterization of mammalian PGCs is still lacking, especially the process by which PGCs convert to pluripotency. This hampers the understanding of germ cell development and the derivation of authenticated EGCs from other species. We observed the morphological development of the genital ridge from Bama miniature pigs and found primary sexual differentiation in the E28 porcine embryo, coinciding with Blimp1 nuclear exclusion in PGCs. To explore molecular events involved in porcine PGC reprogramming, transcriptome data of porcine EGCs and fetal fibroblasts (FFs) were assembled and 1169 differentially expressed genes were used for Gene Ontology analysis. These genes were significantly enriched in cell-surface receptor-linked signal transduction, in agreement with the activation of LIF/Stat3 signaling and FGF signaling during the derivation of porcine EG-like cells. Using a growth-factor-defined culture system, we explored the effects of bFGF on the process and found that bFGF not only functioned at the very beginning of PGC dedifferentiation by impeding Blimp1 nuclear expression via a PI3K/AKT-dependent pathway but also maintained the viability of cultured PGCs thereafter. These results provide further insights into the development of germ cells from livestock and the mechanism of porcine PGC reprogramming.

  4. Lineage Reprogramming of Astroglial Cells from Different Origins into Distinct Neuronal Subtypes

    Directory of Open Access Journals (Sweden)

    Malek Chouchane

    2017-07-01

    Full Text Available Astroglial cells isolated from the rodent postnatal cerebral cortex are particularly susceptible to lineage reprogramming into neurons. However, it remains unknown whether other astroglial populations retain the same potential. Likewise, little is known about the fate of induced neurons (iNs in vivo. In this study we addressed these questions using two different astroglial populations isolated from the postnatal brain reprogrammed either with Neurogenin-2 (Neurog2 or Achaete scute homolog-1 (Ascl1. We show that cerebellum (CerebAstro and cerebral cortex astroglia (CtxAstro generates iNs with distinctive neurochemical and morphological properties. Both astroglial populations contribute iNs to the olfactory bulb following transplantation in the postnatal and adult mouse subventricular zone. However, only CtxAstro transfected with Neurog2 differentiate into pyramidal-like iNs after transplantation in the postnatal cerebral cortex. Altogether, our data indicate that the origin of the astroglial population and transcription factors used for reprogramming, as well as the region of integration, affect the fate of iNs.

  5. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  6. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.

    Science.gov (United States)

    Armstrong, Laura C; Westlake, Grant; Snow, John P; Cawthon, Bryan; Armour, Eric; Bowman, Aaron B; Ess, Kevin C

    2017-12-01

    Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion.

    Science.gov (United States)

    Shutova, Maria V; Surdina, Anastasia V; Ischenko, Dmitry S; Naumov, Vladimir A; Bogomazova, Alexandra N; Vassina, Ekaterina M; Alekseev, Dmitry G; Lagarkova, Maria A; Kiselev, Sergey L

    2016-01-01

    The pluripotency of newly developed human induced pluripotent stem cells (iPSCs) is usually characterized by physiological parameters; i.e., by their ability to maintain the undifferentiated state and to differentiate into derivatives of the 3 germ layers. Nevertheless, a molecular comparison of physiologically normal iPSCs to the "gold standard" of pluripotency, embryonic stem cells (ESCs), often reveals a set of genes with different expression and/or methylation patterns in iPSCs and ESCs. To evaluate the contribution of the reprogramming process, parental cell type, and fortuity in the signature of human iPSCs, we developed a complete isogenic reprogramming system. We performed a genome-wide comparison of the transcriptome and the methylome of human isogenic ESCs, 3 types of ESC-derived somatic cells (fibroblasts, retinal pigment epithelium and neural cells), and 3 pairs of iPSC lines derived from these somatic cells. Our analysis revealed a high input of stochasticity in the iPSC signature that does not retain specific traces of the parental cell type and reprogramming process. We showed that 5 iPSC clones are sufficient to find with 95% confidence at least one iPSC clone indistinguishable from their hypothetical isogenic ESC line. Additionally, on the basis of a small set of genes that are characteristic of all iPSC lines and isogenic ESCs, we formulated an approach of "the best iPSC line" selection and confirmed it on an independent dataset.

  8. Metabolic reprogramming in keloid fibroblasts: Aerobic glycolysis and a novel therapeutic strategy.

    Science.gov (United States)

    Li, Qi; Qin, Zelian; Nie, Fangfei; Bi, Hongsen; Zhao, Runlei; Pan, Bailin; Ma, Jianxun; Xie, Xiang

    2018-02-05

    Keloids, tumor-like fibroproliferative cutaneous lesions, were reported in metabolic disturbance. However, the metabolic character remains unclear. The purpose of this study is to determine if glycolytic reprogramming is important for the pathogenesis of keloids and to assess the inhibition potential of glycolysis in keloid treatment. An intracellular metabolic profile assay was used to compare metabolic phenotypes between normal skin fibroblasts and keloid fibroblasts (NFs and KFs). Our data indicated that KFs underwent reprogramming of their metabolic phonotype from oxidative phosphorylation to aerobic glycolysis (Warburg effect) with augmented glycolysis and glycolytic capacity. Both gene and protein assays showed that the expression of glycolytic enzymes was upregulated in KFs compared to NFs. Our data showed higher glucose influx and lactate production in KFs compared to NFs. Furthermore, the proliferation of KFs was suppressed in a dose-dependent and time-dependent manner after inhibition of glycolysis with 2-deoxy-glucose (2-DG). Taken together, these findings suggested that keloids underwent a reprogrammed metabolic phenotype of aerobic glycolysis. This was essential for keloid hyperplasia, and glycolytic inhibitors might provide a potential treatment for keloids. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. MORE for multiple organ dysfunction syndrome: Multiple Organ REanimation, REgeneration, and REprogramming.

    Science.gov (United States)

    Cobb, J Perren

    2010-11-01

    Those who care for the critically ill and injured rightfully celebrate the advances made by our field over its first 50 yrs. Advances in systems, tissue, and molecular engineering, together defined as "health engineering," will provide unprecedented opportunities to treat multiple organ dysfunction syndrome in the 21st century. In the future, Multiple Organ REanimation, REgeneration, and REprogramming will be responsible for new treatment approaches for those with multiple organ dysfunction syndrome; several examples are presented here. Thus, as we spent the first 50 yrs of care for the critical ill and injured learning how best to hook humans up to machines, we will spend the next 50 yrs understanding better how to liberate patients from mechanical support. It is difficult to know when these advances will be realized given that the rate of change continues to increase and the seemingly impossible goal of reprogramming fully differentiated cells was accomplished recently by manipulating a few transcription factors. It is not unrealistic to expect that in the next couple of decades that it will be possible to dedifferentiate dysfunctional somatic cells in vivo to a more robust, resistant cell phenotype. Our future should be aimed in part at refining our skill sets and refocusing (even rebranding) critical care as health engineering aimed at Multiple Organ REanimation, REgeneration, and REprogramming.

  10. Reprogramming mediated radio-resistance of 3D-grown cancer cells

    International Nuclear Information System (INIS)

    Xue Gang; Ren Zhenxin; Chen Yaxiong; Zhu Jiayun; Du Yarong; Pan Dong; Li Xiaoman; Hu Burong; Grabham, Peter W.

    2015-01-01

    In vitro 3D growth of tumors is a new cell culture model that more closely mimics the features of the in vivo environment and is being used increasingly in the field of biological and medical research. It has been demonstrated that cancer cells cultured in 3D matrices are more radio-resistant compared with cells in monolayers. However, the mechanisms causing this difference remain unclear. Here we show that cancer cells cultured in a 3D microenvironment demonstrated an increase in cells with stem cell properties. This was confirmed by the finding that cells in 3D cultures upregulated the gene and protein expression of the stem cell reprogramming factors such as OCT4, SOX2, NANOG, LIN28 and miR-302a, compared with cells in monolayers. Moreover, the expression of β-catenin, a regulating molecule of reprogramming factors, also increased in 3D-grown cancer cells. These findings suggest that cancer cells were reprogrammed to become stem cell-like cancer cells in a 3D growth culture microenvironment. Since cancer stem cell-like cells demonstrate an increased radio-resistance and chemo-resistance, our results offer a new perspective as to why. Our findings shed new light on understanding the features of the 3D growth cell model and its application in basic research into clinical radiotherapy and medicine. (author)

  11. MicroRNA regulating metabolic reprogramming in tumor cells: New tumor markers

    Directory of Open Access Journals (Sweden)

    Daniel Otero-Albiol

    2016-01-01

    Full Text Available Metabolic reprogramming is a feature of cancer cells that provides fast energy production and the abundance of precursors required to fuel uncontrolled proliferation. The Warburg effect, increase in glucose uptake and preference for glycolysis over oxidative phosphorylation (OXPHOS as major source of energy even in the presence of oxygen, is the main metabolic adaptation of cancer cells but not the only one. Increased glutaminolysis is also observed in cancer cells, being another source of adenosine triphosphate production and supply of intermediates for macromolecule biosynthesis. The ability to shift from OXPHOS to glycolysis and vice versa, known as metabolic plasticity, allows cancer cells to adapt to continuous changes in the tumor microenvironment. Metabolic reprogramming is linked to the deregulation of pathways controlled by hypoxia-inducible factor 1 alpha, MYC, or p53, and microRNAs (miRNAs have emerged as key regulators of these signaling pathways. miRNAs target metabolic enzymes, oncogenes, and tumor suppressors involved in metabolic reprogramming, becoming crucial elements in the cross talk of molecular pathways that promotes survival, proliferation, migration, and consequently, tumor progression and metastasis. Moreover, several miRNAs have been found downregulated in different human cancers. Due to this fact and their central role in metabolism regulation, miRNAs may be considered as biomarkers for cancer therapy.

  12. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  13. Making Block Grants Accountable.

    Science.gov (United States)

    Chelimsky, Eleanor

    Methods of accountability are presented in considering the Reagan administration plan to consolidate 84 federal health, education and social service grants into six block grant areas and to cut overall funding. After matching aspects of public criticism with proposal objectives, a rationale is developed for building elements of accountability into…

  14. Linoleum Block Printing Revisited.

    Science.gov (United States)

    Chetelat, Frank J.

    1980-01-01

    The author discusses practical considerations of teaching linoleum block printing in the elementary grades (tool use, materials, motivation) and outlines a sequence of design concepts in this area for the primary, intermediate and junior high grades. A short list of books and audiovisual aids is appended. (SJL)

  15. Effects of Block Scheduling

    Directory of Open Access Journals (Sweden)

    William R. Veal

    1999-09-01

    Full Text Available This study examined the effects of a tri-schedule on the academic achievement of students in a high school. The tri-schedule consists of traditional, 4x4 block, and hybrid schedules running at the same time in the same high school. Effectiveness of the schedules was determined from the state mandated test of basic skills in reading, language, and mathematics. Students who were in a particular schedule their freshman year were tested at the beginning of their sophomore year. A statistical ANCOVA test was performed using the schedule types as independent variables and cognitive skill index and GPA as covariates. For reading and language, there was no statistically significant difference in test results. There was a statistical difference mathematics-computation. Block mathematics is an ideal format for obtaining more credits in mathematics, but the block format does little for mathematics achievement and conceptual understanding. The results have content specific implications for schools, administrations, and school boards who are considering block scheduling adoption.

  16. Coding with Blockly

    CERN Document Server

    Lovett, Amber

    2017-01-01

    "Blockly is a fun, graphical programming language designed to get kids interested in creating their own computer programs. Through simple text written to foster creativity and problem solving, students will the art of innovation. Large, colorful images show students how to complete activities. Additional tools, including a glossary and an index, help students learn new vocabulary and locate information."-- Provided by publisher.

  17. [Masquerading bundle branch block].

    Science.gov (United States)

    Kukla, Piotr; Baranchuk, Adrian; Jastrzębski, Marek; Bryniarski, Leszek

    2014-01-01

    We here describe a surface 12-lead electrocardiogram (ECG) of a 72-year-old female with a prior history of breast cancer and chemotherapy-induced cardiomyopathy. An echocardiogram revealed left ventricular dysfunction, ejection fraction of 23%, with mild enlarged left ventricle. The 12-lead ECG showed atrial fibrillation with a mean heart rate of about 100 bpm, QRS duration 160 ms, QT interval 400 ms, right bundle branch block (RBBB) and left anterior fascicular block (LAFB). The combination of RBBB features in the precordial leads and LAFB features in the limb leads is known as ''masquerading bundle branch block''. In most cases of RBBB and LAFB, the QRS axis deviation is located between - 80 to -120 degrees. Rarely, when predominant left ventricular forces are present, the QRS axis deviation is near about -90 degrees, turning the pattern into an atypical form. In a situation of RBBB associated with LAFB, the S wave can be absent or very small in lead I. Such a situation is the result of not only purely LAFB but also with left ventricular hypertrophy and/or focal block due to scar (extensive anterior myocardial infarction) or fibrosis (cardiomyopathy). Sometimes, this specific ECG pattern is mistaken for LBBB. RBBB with LAFB may imitate LBBB either in the limb leads (known as 'standard masquerading' - absence of S wave in lead I), or in the precordial leads (called 'precordial masquerading' - absence of S wave in leads V₅ and V₆). Our ECG showed both these types of masquerading bundle branch block - absence of S wave in lead I and in leads V₅ and V₆.

  18. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Yang, Jian; Wang, Wei; Ooi, Jolene; Campos, Lia S; Lu, Liming; Liu, Pentao

    2015-05-01

    We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog-1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration-free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose-sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant-negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell-like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β-catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390-1404. © 2014 AlphaMed Press.

  19. FoxO3a contributes to the reprogramming process and the differentiation of induced pluripotent stem cells.

    Science.gov (United States)

    Wang, Yongxiang; Tian, Changhai; Zheng, Jialin C

    2013-11-15

    Induced pluripotent stem (iPS) cells, which are morphologically and functionally similar with embryonic stem (ES) cells, have been successfully generated from somatic cells through defined reprogramming transcription factors. Forkhead class O3a (FoxO3a) has been recently reported to play an important role in the homeostasis and maintenance of certain types of stem cells; however, the role of FoxO3a in the reprogramming process and differentiation of iPS cells remains unclear. In this study, we investigate the function of FoxO3a during the reprogramming process and characterize the properties of iPS cells from FoxO3a-wild type and -null mouse embryonic fibroblasts (MEFs). Our results show that the FoxO3a-null iPS cells are similar to the wild-type iPS cells in the levels of ES cell markers, alkaline phosphatase activity, and formation of teratoma in vivo. The reprogramming process is delayed in the FoxO3a-null MEFs compared to the wild-type MEFs; whereas the overexpression of FoxO3a partially recovers the impaired reprogramming efficiency in the null group. More importantly, FoxO3a deficiency impairs the neuronal lineage differentiation potential of iPS cells in vitro. These results suggest that FoxO3a affects the reprogramming kinetics and the neuronal lineage differentiation potential of the resulting iPS cells. Therefore, this study demonstrates a novel function of FoxO3a in cell reprogramming, which will help the development of alternative strategies for generating iPS cells.

  20. Susceptibility of Human Oral Squamous Cell Carcinoma (OSCC H103 and H376 cell lines to Retroviral OSKM mediated reprogramming

    Directory of Open Access Journals (Sweden)

    Nalini Devi Verusingam

    2017-04-01

    Full Text Available Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs, reprogramming Oral Squamous Cell Carcinoma (OSCC to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR, immunofluorescence staining, embryoid bodies (EB formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103 exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376 did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60 and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.

  1. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Zuojun Tian

    2016-04-01

    Full Text Available Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs was discovered in 2006. Later, induced neural progenitor cells (iNPCs were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs, making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.

  2. SUPERFICIAL CERVICAL PLEXUS BLOCK

    Directory of Open Access Journals (Sweden)

    Komang Mega Puspadisari

    2014-01-01

    Full Text Available Superficial cervical plexus block is one of the regional anesthesia in  neck were limited to thesuperficial fascia. Anesthesia is used to relieve pain caused either during or after the surgery iscompleted. This technique can be done by landmark or with ultrasound guiding. The midpointof posterior border of the Sternocleidomastoid was identified and the prosedure done on thatplace or on the level of cartilage cricoid.

  3. Change Around the Block?

    Science.gov (United States)

    Berlin, Joey

    2017-04-01

    Proponents of a block grant or per-capita cap trumpet them as vehicles for the federal government to give the states a capped amount of funding for Medicaid that legislatures would effectively distribute how they see fit. Questions abound as to what capped Medicaid funding would look like, and what effect it would have on the current Medicaid-eligible population, covered services, and physician payments.

  4. Managing access block.

    Science.gov (United States)

    Cameron, Peter; Scown, Paul; Campbell, Donald

    2002-01-01

    There is pessimism regarding the ability of the Acute Health Sector to manage access block for emergency and elective patients. Melbourne Health suffered an acute bed crisis in 2001 resulting in record ambulance diversions and emergency department (ED) delays. We conducted an observational study to reduce access block for emergency patients whilst maintaining elective throughput at Melbourne Health. This involved a clinician-led taskforce using previously proven principles for organisational change to implement 51 actions to improve patient access over a three-month period. The primary outcome measures were ambulance diversion, emergency patients waiting more than 12 hours for an inpatient bed, elective throughput and theatre cancellations. Despite a reduction in multi-day bed numbers all primary objectives were met, ambulance diversion decreased to minimal levels, 12-hour waits decreased by 40% and elective throughput was maintained. Theatre cancellations were also minimised. We conclude that access block can be improved by clinician-led implementation of proven process improvements over a short time frame. The ability to sustain change over the longer term requires further study.

  5. Retinal Cell Type DNA Methylation and Histone Modifications Predict Reprogramming Efficiency and Retinogenesis in 3D Organoid Cultures

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2018-03-01

    Full Text Available Diverse cell types can be reprogrammed into pluripotent stem cells by ectopic expression of Oct4 (Pou5f1, Klf4, Sox3, and Myc. Many of these induced pluripotent stem cells (iPSCs retain memory, in terms of DNA methylation and histone modifications (epigenetic memory, of their cellular origins, and this may bias subsequent differentiation. Neurons are difficult to reprogram, and there has not been a systematic side-by-side characterization of reprogramming efficiency or epigenetic memory across different neuronal subtypes. Here, we compare reprogramming efficiency of five different retinal cell types at two different stages of development. Retinal differentiation from each iPSC line was measured using a quantitative standardized scoring system called STEM-RET and compared to the epigenetic memory. Neurons with the lowest reprogramming efficiency produced iPSC lines with the best retinal differentiation and were more likely to retain epigenetic memory of their cellular origins. In addition, we identified biomarkers of iPSCs that are predictive of retinal differentiation.

  6. The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms.

    Science.gov (United States)

    Ying, Shao-Yao; Fang, William; Lin, Shi-Lung

    2018-01-01

    Pluripotency represents a unique feature of embryonic stem cells (ESCs). To generate ESC-like-induced pluripotent stem cells (iPSCs) derived from somatic cells, the cell genome needs to be reset and reprogrammed to express the ESC-specific transcriptome. Numerous studies have shown that genomic DNA demethylation is required for epigenetic reprogramming of somatic cell nuclei to form iPSCs; yet, the mechanism remains largely unclear. In ESCs, the reprogramming process goes through two critical stages: germline and zygotic demethylation, both of which erase genomic DNA methylation sites and hence allow for different gene expression patterns to be reset into a pluripotent state. Recently, miR-302, an ESC-specific microRNA (miRNA), was found to play an essential role in four aspects of this reprogramming mechanism-(1) initiating global genomic DNA demethylation, (2) activating ESC-specific gene expression, (3) inhibiting developmental signaling, and (4) preventing stem cell tumorigenicity. In this review, we will summarize miR-302 functions in all four reprogramming aspects and further discuss how these findings may improve the efficiency and safety of the current iPSC technology.

  7. Generation of induced pluripotent stem cells from virus-free in vivo reprogramming of BALB/c mouse liver cells.

    Science.gov (United States)

    de Lázaro, Irene; Bussy, Cyrill; Yilmazer, Açelya; Jackson, Maj Simonsen; Humphreys, Neil E; Kostarelos, Kostas

    2014-09-01

    The in vivo cell reprogramming of terminally differentiated somatic cells to a pluripotent state by the ectopic expression of defined transcription factors has been previously shown in the BALB/c mouse liver upon plasmid DNA injection with no teratoma formation in the host tissue. Here, we hypothesized that the reprogrammed cells could be extracted from the tissue and cultured in vitro. We called these cells in vivo induced pluripotent stem (i(2)PS) cells because they showed pluripotent characteristics equivalent to a standard mouse ES cell line (E14TG2A). The pluripotent character of i(2)PS cells was determined by a battery of morphological, molecular and functional assays, including their contribution to adult tissues of chimeric mice upon blastocyst injection. These observations further confirm that terminally differentiated somatic cells in wild type, adult animals can be reprogrammed in vivo using virus-free methodologies. The reprogrammed cells can generate in vitro stem cell colonies that exhibit pluripotency similar to ES cells with numerous implications for the application of in vivo reprogramming for tissue regenerative purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells

    Science.gov (United States)

    Grabundzija, Ivana; Wang, Jichang; Sebe, Attila; Erdei, Zsuzsanna; Kajdi, Robert; Devaraj, Anantharam; Steinemann, Doris; Szuhai, Károly; Stein, Ulrike; Cantz, Tobias; Schambach, Axel; Baum, Christopher; Izsvák, Zsuzsanna; Sarkadi, Balázs; Ivics, Zoltán

    2013-01-01

    The discovery of direct cell reprogramming and induced pluripotent stem (iPS) cell technology opened up new avenues for the application of non-viral, transposon-based gene delivery systems. The Sleeping Beauty (SB) transposon is highly advanced for versatile genetic manipulations in mammalian cells. We established iPS cell reprogramming of mouse embryonic fibroblasts and human foreskin fibroblasts by transposition of OSKM (Oct4, Sox2, Klf4 and c-Myc) and OSKML (OSKM + Lin28) expression cassettes mobilized by the SB100X hyperactive transposase. The efficiency of iPS cell derivation with SB transposon system was in the range of that obtained with retroviral vectors. Co-expression of the miRNA302/367 cluster together with OSKM significantly improved reprogramming efficiency and accelerated the temporal kinetics of reprogramming. The iPS cells displayed a stable karyotype, and hallmarks of pluripotency including expression of stem cell markers and the ability to differentiate into embryoid bodies in vitro. We demonstrate Cre recombinase-mediated exchange allowing simultaneous removal of the reprogramming cassette and targeted knock-in of an expression cassette of interest into the transposon-tagged locus in mouse iPS cells. This strategy would allow correction of a genetic defect by site-specific insertion of a therapeutic gene construct into ‘safe harbor’ sites in the genomes of autologous, patient-derived iPS cells. PMID:23275558

  9. CD90- (Thy-1- High Selection Enhances Reprogramming Capacity of Murine Adipose-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2013-01-01

    Full Text Available Background. Mesenchymal stem cells (MSCs, including adipose tissue-derived mesenchymal stem cells (ADSC, are multipotent and can differentiate into various cell types possessing unique immunomodulatory features. Several clinical trials have demonstrated the safety and possible efficacy of MSCs in organ transplantation. Thus, stem cell therapy is promising for tolerance induction. In this study, we assessed the reprogramming capacity of murine ADSCs and found that CD90 (Thy-1, originally discovered as a thymocyte antigen, could be a useful marker for cell therapy. Method. Murine ADSCs were isolated from B6 mice, sorted using a FACSAria cell sorter by selection of CD90Hi or CD90Lo, and then transduced with four standard factors (4F; Oct4, Sox2, Klf4, and c-Myc. Results. Unsorted, CD90Hi-sorted, and CD90Lo-sorted murine ADSCs were reprogrammed using standard 4F transduction. CD90Hi ADSCs showed increased numbers of alkaline phosphatase-positive colonies compared with CD90Lo ADSCs. The relative reprogramming efficiencies of unsorted, CD90Hi-sorted, and CD90Lo-sorted ADSCs were 100%, 116.5%, and 74.7%, respectively. CD90Hi cells were more responsive to reprogramming. Conclusion. CD90Hi ADSCs had greater reprogramming capacity than CD90Lo ADSCs, suggesting that ADSCs have heterogeneous subpopulations. Thus, CD90Hi selection presents an effective strategy to isolate a highly suppressive subpopulation for stem cell-based tolerance induction therapy.

  10. Reprogramming of various cell types to a beta-like state by Pdx1, Ngn3 and MafA.

    Directory of Open Access Journals (Sweden)

    Ersin Akinci

    Full Text Available The three transcription factors, PDX1, NGN3 and MAFA, are very important in pancreatic development. Overexpression of these three factors can reprogram both pancreatic exocrine cells and SOX9-positive cells of the liver into cells resembling pancreatic beta cells. In this study we investigate whether other cell types can be reprogrammed. Eight cell types are compared and the results are consistent with the idea that reprogramming occurs to a greater degree for developmentally related cells (pancreas, liver than for other types, such as fibroblasts. Using a line of mouse hepatocyte-derived cells we screened 13 compounds for the ability to increase the yield of reprogrammed cells. Three are active and when used in combination they can increase the yield of insulin-immunopositive cells by a factor of six. These results should contribute to the eventual ability to develop a new cure for diabetes based on the ability to reprogram other cells in the body to a beta cell phenotype.

  11. Combinatorial Modulation of Signaling Pathways Reveals Cell-Type-Specific Requirements for Highly Efficient and Synchronous iPSC Reprogramming

    Directory of Open Access Journals (Sweden)

    Simon E. Vidal

    2014-10-01

    Full Text Available The differentiated state of somatic cells provides barriers for the derivation of induced pluripotent stem cells (iPSCs. To address why some cell types reprogram more readily than others, we studied the effect of combined modulation of cellular signaling pathways. Surprisingly, inhibition of transforming growth factor β (TGF-β together with activation of Wnt signaling in the presence of ascorbic acid allows >80% of murine fibroblasts to acquire pluripotency after 1 week of reprogramming factor expression. In contrast, hepatic and blood progenitors predominantly required only TGF-β inhibition or canonical Wnt activation, respectively, to reprogram at efficiencies approaching 100%. Strikingly, blood progenitors reactivated endogenous pluripotency loci in a highly synchronous manner, and we demonstrate that expression of specific chromatin-modifying enzymes and reduced TGF-β/mitogen-activated protein (MAP kinase activity are intrinsic properties associated with the unique reprogramming response of these cells. Our observations define cell-type-specific requirements for the rapid and synchronous reprogramming of somatic cells.

  12. Paving block study : final report.

    Science.gov (United States)

    1971-10-01

    The Louisiana Department of Highways has conducted field tests with an experimental revetment consisting of cellular concrete revetment blocks used in conjunction with plastic filter cloth and/or vegetation such as grass or vines. The precast blocks ...

  13. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  14. Demographic Data - MDC_Block

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A polygon feature class of Miami-Dade Census 2000 Blocks. Census blocks are areas bounded on all sides by visible and/or invisible features shown on a map prepared...

  15. Epigenetic reprogramming in Mist1(-/- mice predicts the molecular response to cerulein-induced pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rashid Mehmood

    Full Text Available Gene expression is affected by modifications to histone core proteins within chromatin. Changes in these modifications, or epigenetic reprogramming, can dictate cell fate and promote susceptibility to disease. The goal of this study was to determine the extent of epigenetic reprogramming in response to chronic stress that occurs following ablation of MIST1 (Mist1(-/- , which is repressed in pancreatic disease. Chromatin immunoprecipitation for trimethylation of lysine residue 4 on histone 3 (H3K4Me3 in purified acinar cells from wild type and Mist1(-/- mice was followed by Next Generation sequencing (ChIP-seq or ChIP-qPCR. H3K4Me3-enriched genes were assessed for expression by qRT-PCR in pancreatic tissue before and after induction of cerulein-induced pancreatitis. While most of H3K4Me3-enrichment is restricted to transcriptional start sites, >25% of enrichment sites are found within, downstream or between annotated genes. Less than 10% of these sites were altered in Mist1(-/- acini, with most changes in H3K4Me3 enrichment not reflecting altered gene expression. Ingenuity Pathway Analysis of genes differentially-enriched for H3K4Me3 revealed an association with pancreatitis and pancreatic ductal adenocarcinoma in Mist1(-/- tissue. Most of these genes were not differentially expressed but several were readily induced by acute experimental pancreatitis, with significantly increased expression in Mist1(-/- tissue relative to wild type mice. We suggest that the chronic cell stress observed in the absence of MIST1 results in epigenetic reprogramming of genes involved in promoting pancreatitis to a poised state, thereby increasing the sensitivity to events that promote disease.

  16. Reprogrammed transcriptome in rhesus-bovine interspecies somatic cell nuclear transfer embryos.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Global activation of the embryonic genome (EGA, one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT embryos fail to thrive.In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos.Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation.

  17. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  18. Nuclear reprogramming: the zygotic transcription program is established through an "erase-and-rebuild" strategy.

    Science.gov (United States)

    Sun, Feng; Fang, Haiyan; Li, Ruizhen; Gao, Tianlong; Zheng, Junke; Chen, Xuejin; Ying, Wenqin; Sheng, Hui Z

    2007-02-01

    Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naïve chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17: 135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition.

  19. Reprogramming the chiA expression profile of Autographa californica multiple nucleopolyhedrovirus.

    Science.gov (United States)

    Hodgson, Jeffrey J; Arif, Basil M; Krell, Peter J

    2007-09-01

    Expression of chiA and v-cath RNA and enzyme activity in wild-type Autographa californica multiple nucleopolyhedrovirus (AcMNPV) was compared with that of recombinant AcMNPV viruses reprogrammed for expression of the endogenous chiA. To establish a baseline for our recombinant AcMNPV studies, we compared, for the first time, the temporal expression profiles of both AcMNPV chiA transcription and translation simultaneously. The rate of intracellular chitinase accumulation during AcMNPV infection followed the same pattern observed for chiA transcription but was delayed by about 6 h. Replacement of 21 nucleotides containing the native late chiA and v-cath promoters with a selectable polh-EGFP cassette was sufficient to eliminate expression of both chiA and v-cath. Viruses were generated that express chiA from either the late p6.9 or very late polh promoters of AcMNPV, replacing the native chiA promoter. There was a marked difference in the temporal chiA transcription profiles from the native, p6.9 and polh promoters, resulting in respective specific activities of chitinase at 48 h p.i. of 62, 160 and 219 mU (mg lysate total protein)(-1). Based on temporal analysis of v-cath transcription by Northern blot, AcMNPV v-cath was transcribed from 9 h p.i. in Sf21 cells. However, expression of v-cath RNA or enzyme from a reconstructed v-cath promoter in the chiA-reprogrammed viruses was not detected at 48 h of virus replication. Reprogramming for increased chitinase (and putatively cathepsin) expression with native baculovirus promoters might provide a means for designing environmentally benign biological insecticides.

  20. Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity.

    Science.gov (United States)

    Zhang, Nianshu; Cao, Lu

    2017-10-01

    Studies on replicative and chronological aging in Saccharomyces cerevisiae have greatly advanced our understanding of how longevity is regulated in all eukaryotes. Chronological lifespan (CLS) of yeast is defined as the age-dependent viability of non-dividing cell populations. A number of nutrient sensing and signal transduction pathways (mainly TOR and PKA) have been shown to regulate CLS, yet it is poorly understood how the starvation signals transduced via these pathways lead to CLS extension. Using reporters whose expressions are induced by glucose starvation, we have screened the majority of the 'signaling' mutants in the yeast genome and identified many genes that are necessary for stress response. Subsequent analyses of the 'signaling' mutants not only revealed novel regulators of CLS, such as the GSK-3 ortholog Mck1, but also demonstrated that starvation signals transmitted by SNF1/AMPK, PKC1 and those negatively regulated by TOR/PKA, including Rim15, Yak1 and Mck1 kinases, are integrated to enable metabolic reprogramming and the acquisition of stress resistance. Coordinated metabolic reprogramming ensures the accumulation of storage carbohydrates for quiescent cells to maintain viability. We provide new evidence that Yak1, Rim15 and Mck1 kinases cooperate to activate H 2 O 2 -scanvenging activities, thus limiting the levels of ROS in cells entering quiescence. These findings support the recent advances in higher organisms that the flexibility of metabolic reprogramming and the balance between energetics and stress resistance are the unifying principles of lifespan extension. Future work to reveal how the metabolic switch and stress response is coordinated will help delineate the molecular mechanisms of aging in yeast and shed novel insight into aging/anti-aging principles in higher organisms.

  1. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells.

    Directory of Open Access Journals (Sweden)

    Kyra Oswald-Richter

    2004-07-01

    Full Text Available A T-cell subset, defined as CD4(+CD25(hi (regulatory T-cells [Treg cells], was recently shown to suppress T-cell activation. We demonstrate that human Treg cells isolated from healthy donors express the HIV-coreceptor CCR5 and are highly susceptible to HIV infection and replication. Because Treg cells are present in very few numbers and are difficult to expand in vitro, we genetically modified conventional human T-cells to generate Treg cells in vitro by ectopic expression of FoxP3, a transcription factor associated with reprogramming T-cells into a Treg subset. Overexpression of FoxP3 in naïve human CD4(+ T-cells recapitulated the hyporesponsiveness and suppressive function of naturally occurring Treg cells. However, FoxP3 was less efficient in reprogramming memory T-cell subset into regulatory cells. In addition, FoxP3-transduced T-cells also became more susceptible to HIV infection. Remarkably, a portion of HIV-positive individuals with a low percentage of CD4(+ and higher levels of activated T-cells have greatly reduced levels of FoxP3(+CD4(+CD25(hi T-cells, suggesting disruption of the Treg cells during HIV infection. Targeting and disruption of the T-cell regulatory system by HIV may contribute to hyperactivation of conventional T-cells, a characteristic of HIV disease progression. Moreover, the ability to reprogram human T-cells into Treg cells in vitro will greatly aid in decoding their mechanism of suppression, their enhanced susceptibility to HIV infection, and the unique markers expressed by this subset.

  2. Blocking the Hawking radiation

    DEFF Research Database (Denmark)

    Autzen, M.; Kouvaris, C.

    2014-01-01

    grows after its formation (and eventually destroys the star) instead of evaporating. The fate of the black hole is dictated by the two opposite mechanics, i.e., accretion of nuclear matter from the center of the star and Hawking radiation that tends to decrease the mass of the black hole. We study how...... the assumptions for the accretion rate can in fact affect the critical mass beyond which a black hole always grows. We also study to what extent degenerate nuclear matter can impede Hawking radiation due to the fact that emitted particles can be Pauli blocked at the core of the star....

  3. How Artists Overcome Creative Blocks.

    Science.gov (United States)

    Hirst, Barbara

    1992-01-01

    Six practicing artists were interviewed about how they overcome creative blocks. Their responses indicated that feelings of self-doubt, fear, and depression accompany blocks but that relaxing and working on new directions and playing ideas off a supportive person helped to overcome such blocks. (DB)

  4. Block Scheduling in High Schools.

    Science.gov (United States)

    Irmsher, Karen

    1996-01-01

    Block Scheduling has been considered a cure for a lengthy list of educational problems. This report reviews the literature on block schedules and describes some Oregon high schools that have integrated block scheduling. Major disadvantages included resistance to change and requirements that teachers change their teaching strategies. There is…

  5. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Neimann, Jens Dupont Børglum; Gögenür, Ismail; Bendtsen, Thomas F.

    2016-01-01

    Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.  Rec...

  6. Combined Overexpression of JARID2, PRDM14, ESRRB, and SALL4A Dramatically Improves Efficiency and Kinetics of Reprogramming to Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Iseki, Hiroyoshi; Nakachi, Yutaka; Hishida, Tomoaki; Yamashita-Sugahara, Yzumi; Hirasaki, Masataka; Ueda, Atsushi; Tanimoto, Yoko; Iijima, Saori; Sugiyama, Fumihiro; Yagami, Ken-ichi; Takahashi, Satoru; Okuda, Akihiko; Okazaki, Yasushi

    2016-02-01

    Identification of a gene set capable of driving rapid and proper reprogramming to induced pluripotent stem cells (iPSCs) is an important issue. Here we show that the efficiency and kinetics of iPSC reprogramming are dramatically improved by the combined expression of Jarid2 and genes encoding its associated proteins. We demonstrate that forced expression of JARID2 promotes iPSC reprogramming by suppressing the expression of Arf, a known reprogramming barrier, and that the N-terminal half of JARID2 is sufficient for such promotion. Moreover, JARID2 accelerated silencing of the retroviral Klf4 transgene and demethylation of the Nanog promoter, underpinning the potentiating activity of JARID2 in iPSC reprogramming. We further show that JARID2 physically interacts with ESRRB, SALL4A, and PRDM14, and that these JARID2-associated proteins synergistically and robustly facilitate iPSC reprogramming in a JARID2-dependent manner. Our findings provide an insight into the important roles of JARID2 during reprogramming and suggest that the JARID2-associated protein network contributes to overcoming reprogramming barriers. © 2015 AlphaMed Press.

  7. Ectopic expression of CITED2 prior to reprogramming, promotes and homogenises the conversion of somatic cells into induced pluripotent stem cells.

    Science.gov (United States)

    Charneca, João; Matias, Ana Catarina; Escapa, Ana Luisa; Fernandes, Catarina; Alves, André; Santos, João M A; Nascimento, Rita; Bragança, José

    2017-09-15

    Cited2 plays crucial roles in mouse embryonic stem cells self-renewal, the initiation of the somatic reprogramming process into induced pluripotent stem cells (iPSC) and the suppression of cell senescence. Here, we investigated the potential of CITED2 expression in combination with the Oct4, Sox2, Klf4 and c-Myc factors for reprogramming of primary mouse embryonic fibroblasts (MEF) at passage 2 and 4. The ectopic CITED2 expression in primary MEF prior to the onset of the reprogramming process, generated iPSC with less variability in the expression of endogenous pluripotency-related genes. In contrast, part of the MEF reprogrammed without ectopic expression of CITED2 at passage 4 originated partially reprogrammed iPSC or pre-iPSC. However, the overexpression of CITED2 in the pre-iPSC was insufficient to complete the reprogramming process into iPSC. These results indicated that ectopic CITED2 expression at the onset of the reprogramming process in combination with the reprogramming factors promotes a complete and homogeneous conversion of somatic cells into iPSC. Copyright © 2017. Published by Elsevier Inc.

  8. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  9. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state.

    Science.gov (United States)

    Poli, Vittoria; Fagnocchi, Luca; Fasciani, Alessandra; Cherubini, Alessandro; Mazzoleni, Stefania; Ferrillo, Sara; Miluzio, Annarita; Gaudioso, Gabriella; Vaira, Valentina; Turdo, Alice; Giaggianesi, Miriam; Chinnici, Aurora; Lipari, Elisa; Bicciato, Silvio; Bosari, Silvano; Todaro, Matilde; Zippo, Alessio

    2018-03-09

    Breast cancer consists of highly heterogeneous tumors, whose cell of origin and driver oncogenes are difficult to be uniquely defined. Here we report that MYC acts as tumor reprogramming factor in mammary epithelial cells by inducing an alternative epigenetic program, which triggers loss of cell identity and activation of oncogenic pathways. Overexpression of MYC induces transcriptional repression of lineage-specifying transcription factors, causing decommissioning of luminal-specific enhancers. MYC-driven dedifferentiation supports the onset of a stem cell-like state by inducing the activation of de novo enhancers, which drive the transcriptional activation of oncogenic pathways. Furthermore, we demonstrate that the MYC-driven epigenetic reprogramming favors the formation and maintenance of tumor-initiating cells endowed with metastatic capacity. This study supports the notion that MYC-driven tumor initiation relies on cell reprogramming, which is mediated by the activation of MYC-dependent oncogenic enhancers, thus establishing a therapeutic rational for treating basal-like breast cancers.

  10. Induction of artificial cancer stem cells from tongue cancer cells by defined reprogramming factors.

    Science.gov (United States)

    Harada, Koji; Ferdous, Tarannum; Cui, Dan; Kuramitsu, Yasuhiro; Matsumoto, Takuya; Ikeda, Eiji; Okano, Hideyuki; Ueyama, Yoshiya

    2016-07-27

    The cancer stem cells (CSCs), a small subpopulation of cells in tumor are responsible for the tumor initiation, growth, recurrence and metastasis of cancer, as well as resistance of cancers to drugs or radiotherapy. CSCs are an important target for the development of novel strategies in cancer treatment. However, CSCs-targeted new anti-cancer drug discovery is currently hindered by the lack of easy and reliable methods for isolating, collecting and maintaining sufficient number of CSCs. Here, we examined whether introduction of defined reprogramming factors (Oct4, shp53, Sox2, Klf4, l-Myc and Lin28) into HSC2 tongue cancer cells could transform the HSC2 into HSC2 with CSCs properties. We introduced the defined reprogramming factors into HSC2 tongue cancer cells via episomal vectors by electroporation method to generate transfectant cells. We investigated the malignant properties of the transfectant cells by cell proliferation assay, migration assay, wound healing assay, sphere formation assay, chemosensitivity and radiosensitivity assay in vitro; and also examined the tumorigenic potential of the transfectants in vivo. The transfectant cells (HSC2/hOCT3/4-shp53-F, HSC2/hSK, HSC2/hUL, HSC2/hOCT3/4-shp53-F + hSK, HSC2/hOCT3/4-shp53-F + hUL, HSC2/hSK + hUL, HSC2/hOCT3/4-shp53-F + hSK + hUL) displayed a malignant phenotype in culture and form tumors on the back of nude mice more efficiently than parental HSC2 and control HSC2/EGFP transfectant cells. They exhibited increased resistance to chemotherapeutic agents; 5-fluorouracil, cisplatin, docetaxel, trifluorothymidine, zoledronic acid, cetuximab, bortezomib and radiation when compared with HSC2 and HSC2/EGFP. Among all the transfected cells, HSC2/hOCT3/4-shp53-F + hSK + hUL cell containing all of the reprogramming factors showed the most aggressive and malignant properties and presented the highest number of spheres in the culture medium containing human recombinant fibroblast Growth Factor

  11. Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers

    DEFF Research Database (Denmark)

    Loft, Anne; Forss, Isabel; Siersbæk, Majken Storm

    2015-01-01

    Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone...... reprogramming of PPARγ binding, leading to the formation of PPARγ "superenhancers" that are selective for brown-in-white (brite) adipocytes. These are highly associated with key brite-selective genes. Based on such an association, we identified an evolutionarily conserved metabolic regulator, Kruppel...

  12. Nuclear reprogramming of cancer stem cells: Corrupting the epigenetic code of cell identity with oncometabolites.

    Science.gov (United States)

    Menendez, Javier A; Alarcón, Tomás

    2016-01-01

    Generation of cancer stem cell (CSC)-like cells might occur through metabolic corruption of the epigenetic codes that govern cell identity. We recently identified how archetypal oncometabolites, without altering the baseline expression of endogenous stem cell maintenance genes but endowing cells with epigenetic states refractory to differentiation, considerably enhance the global kinetic efficiency of nuclear reprogramming processes that generate CSC-like states de novo . This study highlights that metabolo-epigenetic axes of communication can direct the development and maintenance of CSCs during the natural history of cancer diseases.

  13. Safeguarding parental identity: Dnmt1 maintains imprints during epigenetic reprogramming in early embryogenesis.

    Science.gov (United States)

    Branco, Miguel R; Oda, Masaaki; Reik, Wolf

    2008-06-15

    During early mammalian embryogenesis, the genome undergoes global epigenetic reprogramming, losing most of its methylation before re-establishing it de novo at implantation. However, faithful maintenance of methylation at imprinted genes during this process is vital for embryonic development, but the DNA methyltransferase responsible for this maintenance has remained unknown. In this issue of Genes & Development, Hirasawa and colleagues (pp. 1607-1616) show that Dnmt1, and not Dnmt3a or Dnmt3b, maintains methylation at genomic imprints during preimplantation development.

  14. Quantitative H2S-mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response.

    Science.gov (United States)

    Gao, Xing-Huang; Krokowski, Dawid; Guan, Bo-Jhih; Bederman, Ilya; Majumder, Mithu; Parisien, Marc; Diatchenko, Luda; Kabil, Omer; Willard, Belinda; Banerjee, Ruma; Wang, Benlian; Bebek, Gurkan; Evans, Charles R; Fox, Paul L; Gerson, Stanton L; Hoppel, Charles L; Liu, Ming; Arvan, Peter; Hatzoglou, Maria

    2015-11-23

    The sulfhydration of cysteine residues in proteins is an important mechanism involved in diverse biological processes. We have developed a proteomics approach to quantitatively profile the changes of sulfhydrated cysteines in biological systems. Bioinformatics analysis revealed that sulfhydrated cysteines are part of a wide range of biological functions. In pancreatic β cells exposed to endoplasmic reticulum (ER) stress, elevated H2S promotes the sulfhydration of enzymes in energy metabolism and stimulates glycolytic flux. We propose that transcriptional and translational reprogramming by the integrated stress response (ISR) in pancreatic β cells is coupled to metabolic alternations triggered by sulfhydration of key enzymes in intermediary metabolism.

  15. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders

    Directory of Open Access Journals (Sweden)

    Shaoping Hou

    2016-01-01

    Full Text Available Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.

  16. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming.

    Science.gov (United States)

    Fisicaro, Paola; Boni, Carolina; Barili, Valeria; Laccabue, Diletta; Ferrari, Carlo

    2018-01-29

    HBV-specific T cells play a key role in antiviral protection and failure to control HBV is associated with severely dysfunctional T cell responses. Therefore, functional T cell reconstitution represents a potential way to treat chronically infected patients. The growing understanding of the dysregulated transcriptional/epigenetic and metabolic programs underlying T cell exhaustion allows to envisage functional T cell reconstitution strategies based on the combined/sequential use of compounds able to induce decline of antigen load, checkpoint modulation, metabolic and epigenetic reprogramming with possible boosting of functionally restored responses by specific vaccines. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. p18 inhibits reprogramming through inactivation of Cdk4/6

    OpenAIRE

    Zhu, Shaohua; Cao, Jiani; Sun, Hongyan; Liu, Kun; Li, Yaqiong; Zhao, Tongbiao

    2016-01-01

    Pluripotent stem cells (PSCs), including embryonic and induced pluripotent stem cells (iPSCs), show atypical cell cycle regulation characterized by a high proliferation rate and a shorter G1 phase compared with somatic cells. The mechanisms by which somatic cells remodel their cell cycle to achieve the high proliferation rate of PSCs during reprogramming are unclear. Here we identify that the Ink4 protein p18, which is expressed at high levels in somatic cells but at low levels in PSCs, is a ...

  18. Program structure-based blocking

    Science.gov (United States)

    Bertolli, Carlo; Eichenberger, Alexandre E.; O'Brien, John K.; Sura, Zehra N.

    2017-09-26

    Embodiments relate to program structure-based blocking. An aspect includes receiving source code corresponding to a computer program by a compiler of a computer system. Another aspect includes determining a prefetching section in the source code by a marking module of the compiler. Yet another aspect includes performing, by a blocking module of the compiler, blocking of instructions located in the prefetching section into instruction blocks, such that the instruction blocks of the prefetching section only contain instructions that are located in the prefetching section.

  19. Induced Pluripotent Stem Cell Clones Reprogrammed via Recombinant Adeno-Associated Virus-Mediated Transduction Contain Integrated Vector Sequences

    OpenAIRE

    Weltner, J.; Anisimov, A.; Alitalo, K.; Otonkoski, T.; Trokovic, R.

    2012-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSC) by ectopic expression of key transcription factors. Current methods for the generation of integration-free iPSC are limited by the low efficiency of iPSC generation and by challenges in reprogramming methodology. Recombinant adeno-associated virus (rAAV) is a potent gene delivery vehicle capable of efficient transduction of transgenic DNA into cells. rAAV stays mainly as an episome in nondividing cells, and the extent ...

  20. Optical reprogramming of human somatic cells using ultrashort Bessel-shaped near-infrared femtosecond laser pulses

    Science.gov (United States)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-11-01

    We report a virus-free optical approach to human cell reprogramming into induced pluripotent stem cells with low-power nanoporation using ultrashort Bessel-shaped laser pulses. Picojoule near-infrared sub-20 fs laser pulses at a high 85 MHz repetition frequency are employed to generate transient nanopores in the membrane of dermal fibroblasts for the introduction of four transcription factors to induce the reprogramming process. In contrast to conventional approaches which utilize retro- or lentiviruses to deliver genes or transcription factors into the host genome, the laser method is virus-free; hence, the risk of virus-induced cancer generation limiting clinical application is avoided.

  1. Current understanding and future perspectives of the roles of sirtuins in the reprogramming and differentiation of pluripotent stem cells.

    Science.gov (United States)

    Hsu, Yi-Chao; Wu, Yu-Ting; Tsai, Chia-Ling; Wei, Yau-Huei

    2018-03-01

    In mammalian cells, there are seven members of the sirtuin protein family (SIRT1-7). SIRT1, SIRT6, and SIRT7 catalyze posttranslational modification of proteins in the nucleus, SIRT3, SIRT4, and SIRT5 are in the mitochondria and SIRT2 is in the cytosol. SIRT1 can deacetylate the transcription factor SOX2 and regulate induced pluripotent stem cells (iPSCs) reprogramming through the miR-34a-SIRT1-p53 axis. SIRT2 can regulate the function of pluripotent stem cells through GSK3β. SIRT3 can positively regulate PPAR gamma coactivator 1-alpha (PGC-1α) expression during the differentiation of stem cells. SIRT4 has no direct role in regulating reprogramming but may have the potential to prevent senescence of somatic cells and to facilitate the reprogramming of iPSCs. SIRT5 can deacetylate STAT3, which is an important transcription factor in regulating pluripotency and differentiation of stem cells. SIRT6 can enhance the reprogramming efficiency of iPSCs from aged skin fibroblasts through miR-766 and increase the expression levels of the reprogramming genes including Sox2, Oct4, and Nanog through acetylation of histone H3 lysine 56. SIRT7 plays a regulatory role in the process of mesenchymal-to-epithelial transition (MET), which has been suggested to be a crucial process in the generation of iPSCs from fibroblasts. In this review, we summarize recent findings of the roles of sirtuins in the metabolic reprogramming and differentiation of stem cells and discuss the bidirectional changes in the gene expression and activities of sirtuins in the commitment of differentiation of mesenchymal stem cells (MSCs) and reprogramming of somatic cells to iPSCs, respectively. Thus, understanding the molecular basis of the interplay between different sirtuins and mitochondrial function will provide new insights into the regulation of differentiation of stem cells and iPSCs formation, respectively, and may help design effective stem cell therapies for regenerative medicine. Impact

  2. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells.

    Science.gov (United States)

    Bhise, Nupura S; Wahlin, Karl J; Zack, Donald J; Green, Jordan J

    2013-01-01

    Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester) nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs) from human fibroblasts. A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling. 1-(3-aminopropyl)-4-methylpiperazine end-terminated poly(1,4-butanediol diacry-late-co-4-amino-1-butanol) polymer (B4S4E7) self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available reagents, including Lipofectamine® 2000, FuGENE® HD, and 25 kDa branched polyethylenimine, for nonviral gene transfer. B4S4E7 nanoparticles showed effective gene delivery to IMR-90 human primary fibroblasts and to dermal fibroblasts derived from a patient with retinitis pigmentosa, and enabled coexpression of exogenously delivered genes, as is needed for reprogramming. The karyotypically normal hiPSC-like cells generated by conventional electroporation, but not by poly(beta-amino ester) reprogramming, could be differentiated toward the neuronal lineage, specifically pseudostratified optic cups. This

  3. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence.

    Science.gov (United States)

    Winiecka-Klimek, Marta; Smolarz, Maciej; Walczak, Maciej P; Zieba, Jolanta; Hulas-Bigoszewska, Krystyna; Kmieciak, Blazej; Piaskowski, Sylwester; Rieske, Piotr; Grzela, Dawid P; Stoczynska-Fidelus, Ewelina

    2015-01-01

    Tumorigenic potential of induced pluripotent stem cells (iPSCs) infiltrating population of induced neural stem cells (iNSCs) generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc) obtained with different methods-direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like) or SOX2 and c-MYC (SMiNSc-like) and induced pluripotent stem cells differentiation to ebiNSc-in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU) incorporation and senescence-associated beta-galactosidase (SA-β-gal) assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or reprogrammed only

  4. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA

    OpenAIRE

    Warren, Luigi; Manos, Philip D.; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj; Smith, Zachary D.; Meissner, Alexander; Daley, George Q.; Brack, Andrew S.; Collins, James J.; Cowan, Chad; Schlaeger, Thorsten M.

    2010-01-01

    Clinical application of induced pluripotent stem (iPS) cells is limited by the low efficiency of iPS derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-integrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral re...

  5. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia.

    Science.gov (United States)

    Wohl, Stefanie Gabriele; Reh, Thomas Andrew

    2016-05-01

    The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish. © 2016 Wiley Periodicals, Inc.

  6. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.

    Science.gov (United States)

    Ho, Lin; Hsu, Shan-Hui

    2018-04-01

    3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be

  7. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence.

    Directory of Open Access Journals (Sweden)

    Marta Winiecka-Klimek

    Full Text Available Tumorigenic potential of induced pluripotent stem cells (iPSCs infiltrating population of induced neural stem cells (iNSCs generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc obtained with different methods-direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like or SOX2 and c-MYC (SMiNSc-like and induced pluripotent stem cells differentiation to ebiNSc-in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU incorporation and senescence-associated beta-galactosidase (SA-β-gal assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or

  8. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.

    Science.gov (United States)

    Heng, Boon Chin; Fussenegger, Martin

    2014-01-01

    Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.

  9. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells.

    Science.gov (United States)

    Dai, Ying; Guo, Yonglong; Wang, Chan; Liu, Qing; Yang, Yan; Li, Shanyi; Guo, Xiaoling; Lian, Ruiling; Yu, Rongjie; Liu, Hongwei; Chen, Jiansu

    2014-01-01

    Cell fate and function can be regulated and reprogrammed by intrinsic genetic program, extrinsic factors and niche microenvironment. Direct reprogramming has shown many advantages in the field of cellular reprogramming. Here we tried the possibility to generate corneal endothelia (CE) -like cells from human adipose-derived stem cells (ADSCs) by the non-genetic direct reprogramming of recombinant cell-penetrating proteins Oct4/Klf4/Sox2 (PTD-OKS) and small molecules (purmorphamine, RG108 and other reprogramming chemical reagents), as well as biomimetic platforms of simulate microgravity (SMG) bioreactor. Co-cultured with corneal cells and decellularized corneal ECM, Reprogrammed ADSCs revealed spherical growth and positively expressing Nanog for RT-PCR analysis and CD34 for immunofluorescence staining after 7 days-treatment of both purmorphamine and PTD-OKS (P-OKS) and in SMG culture. ADSCs changed to CEC polygonal morphology from spindle shape after the sequential non-genetic direct reprogramming and biomimetic platforms. At the same time, induced cells converted to weakly express CD31, AQP-1 and ZO-1. These findings demonstrated that the treatments were able to promote the stem-cell reprogramming for human ADSCs. Our study also indicates for the first time that SMG rotary cell culture system can be used as a non-genetic means to promote direct reprogramming. Our methods of reprogramming provide an alternative strategy for engineering patient-specific multipotent cells for cellular plasticity research and future autologous CEC replacement therapy that avoids complications associated with the use of human pluripotent stem cells.

  10. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion.

    Directory of Open Access Journals (Sweden)

    Daniela Mailänder-Sánchez

    Full Text Available Candida albicans is an inhabitant of mucosal surfaces in healthy individuals but also the most common cause of fungal nosocomial blood stream infections, associated with high morbidity and mortality. As such life-threatening infections often disseminate from superficial mucosal infections we aimed to study the use of probiotic Lactobacillus rhamnosus GG (LGG in prevention of mucosal C. albicans infections. Here, we demonstrate that LGG protects oral epithelial tissue from damage caused by C. albicans in our in vitro model of oral candidiasis. Furthermore, we provide insights into the mechanisms behind this protection and dissect direct and indirect effects of LGG on C. albicans pathogenicity. C. albicans viability was not affected by LGG. Instead, transcriptional profiling using RNA-Seq indicated dramatic metabolic reprogramming of C. albicans. Additionally, LGG had a significant impact on major virulence attributes, including adhesion, invasion, and hyphal extension, whose reduction, consequently, prevented epithelial damage. This was accompanied by glucose depletion and repression of ergosterol synthesis, caused by LGG, but also due to blocked adhesion sites. Therefore, LGG protects oral epithelia against C. albicans infection by preventing fungal adhesion, invasion and damage, driven, at least in parts, by metabolic reprogramming due to nutrient limitation caused by LGG.

  11. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion

    Science.gov (United States)

    Braunsdorf, Christina; Grumaz, Christian; Müller, Christoph; Lorenz, Stefan; Stevens, Philip; Wagener, Jeanette; Hebecker, Betty; Hube, Bernhard; Bracher, Franz; Sohn, Kai; Schaller, Martin

    2017-01-01

    Candida albicans is an inhabitant of mucosal surfaces in healthy individuals but also the most common cause of fungal nosocomial blood stream infections, associated with high morbidity and mortality. As such life-threatening infections often disseminate from superficial mucosal infections we aimed to study the use of probiotic Lactobacillus rhamnosus GG (LGG) in prevention of mucosal C. albicans infections. Here, we demonstrate that LGG protects oral epithelial tissue from damage caused by C. albicans in our in vitro model of oral candidiasis. Furthermore, we provide insights into the mechanisms behind this protection and dissect direct and indirect effects of LGG on C. albicans pathogenicity. C. albicans viability was not affected by LGG. Instead, transcriptional profiling using RNA-Seq indicated dramatic metabolic reprogramming of C. albicans. Additionally, LGG had a significant impact on major virulence attributes, including adhesion, invasion, and hyphal extension, whose reduction, consequently, prevented epithelial damage. This was accompanied by glucose depletion and repression of ergosterol synthesis, caused by LGG, but also due to blocked adhesion sites. Therefore, LGG protects oral epithelia against C. albicans infection by preventing fungal adhesion, invasion and damage, driven, at least in parts, by metabolic reprogramming due to nutrient limitation caused by LGG. PMID:29023454

  12. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion.

    Science.gov (United States)

    Mailänder-Sánchez, Daniela; Braunsdorf, Christina; Grumaz, Christian; Müller, Christoph; Lorenz, Stefan; Stevens, Philip; Wagener, Jeanette; Hebecker, Betty; Hube, Bernhard; Bracher, Franz; Sohn, Kai; Schaller, Martin

    2017-01-01

    Candida albicans is an inhabitant of mucosal surfaces in healthy individuals but also the most common cause of fungal nosocomial blood stream infections, associated with high morbidity and mortality. As such life-threatening infections often disseminate from superficial mucosal infections we aimed to study the use of probiotic Lactobacillus rhamnosus GG (LGG) in prevention of mucosal C. albicans infections. Here, we demonstrate that LGG protects oral epithelial tissue from damage caused by C. albicans in our in vitro model of oral candidiasis. Furthermore, we provide insights into the mechanisms behind this protection and dissect direct and indirect effects of LGG on C. albicans pathogenicity. C. albicans viability was not affected by LGG. Instead, transcriptional profiling using RNA-Seq indicated dramatic metabolic reprogramming of C. albicans. Additionally, LGG had a significant impact on major virulence attributes, including adhesion, invasion, and hyphal extension, whose reduction, consequently, prevented epithelial damage. This was accompanied by glucose depletion and repression of ergosterol synthesis, caused by LGG, but also due to blocked adhesion sites. Therefore, LGG protects oral epithelia against C. albicans infection by preventing fungal adhesion, invasion and damage, driven, at least in parts, by metabolic reprogramming due to nutrient limitation caused by LGG.

  13. Block copolymer investigations

    Science.gov (United States)

    Yufa, Nataliya A.

    The research presented in this thesis deals with various aspects of block copolymers on the nanoscale: their behavior at a range of temperatures, their use as scaffolds, or for creation of chemically striped surfaces, as well as the behavior of metals on block copolymers under the influence of UV light, and the healing behavior of copolymers. Invented around the time of World War II, copolymers have been used for decades due to their macroscopic properties, such as their ability to be molded without vulcanization, and the fact that, unlike rubber, they can be recycled. In recent years, block copolymers (BCPs) have been used for lithography, as scaffolds for nano-objects, to create a magnetic hard drive, as well as in photonic and other applications. In this work we used primarily atomic force microscopy (AFM) and transmission electron microscopy (TEM), described in Chapter II, to conduct our studies. In Chapter III we demonstrate a new and general method for positioning nanoparticles within nanoscale grooves. This technique is suitable for nanodots, nanocrystals, as well as DNA. We use AFM and TEM to demonstrate selective decoration. In Chapters IV and V we use AFM and TEM to study the structure of polymer surfaces coated with metals and self-assembled monolayers. We describe how the surfaces were created, exhibit their structure on the nanoscale, and prove that their macroscopic wetting properties have been altered compared to the original polymer structures. Finally, Chapters VI and VII report out in-situ AFM studies of BCP at high temperatures, made possible only recently with the invention of air-tight high-temperature AFM imaging cells. We locate the transition between disordered films and cylinders during initial ordering. Fluctuations of existing domains leading to domain coarsening are also described, and are shown to be consistent with reptation and curvature minimization. Chapter VII deals with the healing of PS-b-PMMA following AFM-tip lithography or

  14. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells.

    Science.gov (United States)

    Mehta, Ashish; Verma, Vinod; Nandihalli, Manasi; Ramachandra, Chrishan J A; Sequiera, Glen L; Sudibyo, Yuliansa; Chung, Yingying; Sun, William; Shim, Winston

    2014-01-01

    Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC). In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA) based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA) recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine.

  15. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC.

  16. Generation of Arbas Cashmere Goat Induced Pluripotent Stem Cells Through Fibroblast Reprogramming.

    Science.gov (United States)

    Tai, Dapeng; Liu, Pengxia; Gao, Jing; Jin, Muzi; Xu, Teng; Zuo, Yongchun; Liang, Hao; Liu, Dongjun

    2015-08-01

    Various factors affect the process of obtaining stable Arbas cashmere goat embryonic stem cells (ESCs), for example, the difficulty in isolating cells at the appropriate stage of embryonic development, the in vitro culture environment, and passage methods. With the emergence of induced pluripotent stem cell (iPSC) technology, it has become possible to use specific genes to induce somatic cell differentiation in PSCs. We transferred OCT4, SOX2, c-MYC, and KLF4 into Arbas cashmere goat fetal fibroblasts, then induced and cultured them using a drug-inducible system to obtain Arbas goat iPSCs that morphologically resembled mouse iPSCs. After identification, the obtained goat iPSCs expressed ESC markers, had a normal karyotype, could differentiate into embryoid bodies in vitro, and could differentiate into three germ layer cell types and form teratomas in vivo. We used microarray gene expression profile analysis to elucidate the reprogramming process. Our results provide the experimental basis for establishing cashmere goat iPSC lines and for future in-depth studies on molecular mechanism of cashmere goat somatic cell reprogramming.

  17. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming

    Directory of Open Access Journals (Sweden)

    Pengfei Ji

    2016-01-01

    Full Text Available Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC, have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (dedifferentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs, generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.

  18. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes.

    Science.gov (United States)

    Dong, Kelei; Ni, Hua; Wu, Meiling; Tang, Ziqing; Halim, Michael; Shi, Dongyun

    2016-08-05

    Oxidative stress is known to contribute to insulin resistance in diabetes, however the mechanism is not clear. Here we show that reactive oxygen species (ROS) could reprogram the glucose metabolism through upregulating the pentose pathway so as to induce insulin resistance in type 2 diabetes (T2DM). By using streptozotocin-high fat diet (STZ-HFD) induced T2DM in rats, we show that diabetic rats exhibited high level of oxidative stress accompanied with insulin resistance. Hypoxia inducible factor (HIF-1α) protein expression as well as its downstream target glucokinase (GK), were upregulated; The glycogen synthesis increased accordingly; However the glycolysis was inhibited as indicated by decreased phosphofructokinase-1 (PFK-1), pyruvate kinase (PK), phospho-PFK-2/PFK-2 (p-PFK-2/PFK-2) ratio, lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK); Pyruvate dehydrogenase (PDH) which promotes pyruvate to generate acetyl-CoA declined as well. While phospho-acetyl-CoA carboxylase/acetyl-CoA carboxylase (p-ACC/ACC) ratio increased, meaning that lipid beta-oxidation increased. The pentose pathway was activated as indicated by increased G6PD activity and NADPH level. Our results suggest that diabetic rats countervail ROS stress through increasing pentose pathway, and reprogram the energy metabolic pathway from glycolysis into lipid oxidation in order to compensate the ATP requirement of the body, which causes insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  20. Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells.

    Science.gov (United States)

    Bhatt, Niraj; Ghosh, Rajib; Roy, Sanchita; Gao, Yongxing; Armanios, Mary; Cheng, Linzhao; Franco, Sonia

    2016-09-01

    Biallelic mutations in ATM result in the neurodegenerative syndrome Ataxia-Telangiectasia, while ATM haploinsufficiency increases the risk of cancer and other diseases. Previous studies revealed low reprogramming efficiency from A-T and carrier fibroblasts, a barrier to iPS cell-based modeling and regeneration. Here, we tested the feasibility of employing circulating erythroid cells, a compartment no or minimally affected in A-T, for the generation of A-T and carrier iPS cells. Our results indicate that episomal expression of Yamanaka factors plus BCL-xL in erythroid cells results in highly efficient iPS cell production in feeder-free, xeno-free conditions. Moreover, A-T iPS cells generated with this protocol maintain long-term replicative potential, stable karyotypes, re-elongated telomeres and capability to differentiate along the neural lineage in vitro and to form teratomas in vivo. Finally, we find that haploinsufficiency for ATM does not limit reprogramming from human erythroid cells or in vivo teratoma formation in the mouse. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. A systemic evaluation of cardiac differentiation from mRNA reprogrammed human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ashish Mehta

    Full Text Available Genetically unmodified cardiomyocytes mandated for cardiac regenerative therapy is conceivable by "foot-print free" reprogramming of somatic cells to induced pluripotent stem cells (iPSC. In this study, we report generation of foot-print free hiPSC through messenger RNA (mRNA based reprograming. Subsequently, we characterize cardiomyocytes derived from these hiPSC using molecular and electrophysiological methods to characterize their applicability for regenerative medicine. Our results demonstrate that mRNA-iPSCs differentiate ontogenetically into cardiomyocytes with increased expression of early commitment markers of mesoderm, cardiac mesoderm, followed by cardiac specific transcriptional and sarcomeric structural and ion channel genes. Furthermore, these cardiomyocytes stained positively for sarcomeric and ion channel proteins. Based on multi-electrode array (MEA recordings, these mRNA-hiPSC derived cardiomyocytes responded predictably to various pharmacologically active drugs that target adrenergic, sodium, calcium and potassium channels. The cardiomyocytes responded chronotropically to isoproterenol in a dose dependent manner, inotropic activity of nifidipine decreased spontaneous contractions. Moreover, Sotalol and E-4031 prolonged QT intervals, while TTX reduced sodium influx. Our results for the first time show a systemic evaluation based on molecular, structural and functional properties of cardiomyocytes differentiated from mRNA-iPSC. These results, coupled with feasibility of generating patient-specific iPSCs hold great promise for the development of large-scale generation of clinical grade cardiomyocytes for cardiac regenerative medicine.

  2. Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line

    Directory of Open Access Journals (Sweden)

    Joseph Brady Moore IV

    2015-03-01

    Full Text Available Developmental reprogramming techniques have been used to generate induced pluripotent stem (iPS cells from both normal and malignant cells. The derivation of iPS cells from cancer has the potential to provide a unique scientific tool to overcome challenges associated with the establishment of cell lines from primary patient samples and a readily expandable source of cells that may be used to model the initial disease. In the current study we developmentally reprogrammed a metastatic Ewing sarcoma (EWS cell line to a meta-stable embryonic stem (ES-like state sharing molecular and phenotypic features with previously established ES and iPS cell lines. EWS-iPS cells exhibited a pronounced drug resistant phenotype despite persistent expression of the oncogenic EWS-FLI1 fusion transcript. This included resistance to compounds that specifically target downstream effector pathways of EWS-FLI1, such as MAPK/ERK and PI3K/AKT, which play an important role in EWS pathogenesis. EWS-iPS cells displayed tumor initiation abilities in vivo and formed tumors exhibiting characteristic Ewing histopathology. In parallel, EWS-iPS cells re-differentiated in vitro recovered sensitivity to molecularly targeted chemotherapeutic agents, which reiterated pathophysiological features of the cells from which they were derived. These data suggest that EWS-iPS cells may provide an expandable disease model that could be used to investigate processes modulating oncogenesis, metastasis, and chemotherapeutic resistance in EWS.

  3. Hierarchical mechanisms for transcription factor-mediated reprogramming of fibroblasts to neurons

    Science.gov (United States)

    Wapinski, Orly L.; Vierbuchen, Thomas; Qu, Kun; Lee, Qian Yi; Chanda, Soham; Fuentes, Daniel R.; Giresi, Paul G.; Ng, Yi Han; Marro, Samuele; Neff, Norma F.; Drechsel, Daniela; Martynoga, Ben; Castro, Diogo S.; Webb, Ashley E.; Brunet, Anne; Guillemot, Francois; Chang, Howard Y.; Wernig, Marius

    2013-01-01

    SUMMARY Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine with poorly understood mechanisms. Here we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an “on target” pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead Ascl1 recruits Brn2 to Ascl1 sites genome-wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, precise match between pioneer factor and the chromatin context at key target genes is determinative for trans-differentiation to neurons and likely other cell types. PMID:24243019

  4. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  5. Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?

    Directory of Open Access Journals (Sweden)

    Janelle Drouin-Ouellet

    2017-09-01

    Full Text Available Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows for the possibility of generating patient-derived neurons. A unique feature of these so-called induced neurons (iNs is the potential to maintain aging and epigenetic signatures of the donor, which is critical given that many diseases of the CNS are age related. Here, we review the published literature on the work that has been undertaken using iNs to model human brain disorders. Furthermore, as disease-modeling studies using this direct neuronal reprogramming approach are becoming more widely adopted, it is important to assess the criteria that are used to characterize the iNs, especially in relation to the extent to which they are mature adult neurons. In particular: i what constitutes an iN cell, ii which stages of conversion offer the earliest/optimal time to assess features that are specific to neurons and/or a disorder and iii whether generating subtype-specific iNs is critical to the disease-related features that iNs express. Finally, we discuss the range of potential biomedical applications that can be explored using patient-specific models of neurological disorders with iNs, and the challenges that will need to be overcome in order to realize these applications.

  6. NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance.

    Science.gov (United States)

    Liu, Tie Fu; Yoza, Barbara K; El Gazzar, Mohamed; Vachharajani, Vidula T; McCall, Charles E

    2011-03-18

    Gene-selective epigenetic reprogramming and shifts in cellular bioenergetics develop when Toll-like receptors (TLR) recognize and respond to systemic life-threatening infections. Using a human monocyte cell model of endotoxin tolerance and human leukocytes from acute systemic inflammation with sepsis, we report that energy sensor sirtuin 1 (SIRT1) coordinates the epigenetic and bioenergy shifts. After TLR4 signaling, SIRT1 rapidly accumulated at the promoters of TNF-α and IL-1β, but not IκBα; SIRT1 promoter binding was dependent on its co-factor, NAD(+). During this initial process, SIRT1 deacetylated RelA/p65 lysine 310 and nucleosomal histone H4 lysine 16 to promote termination of NFκB-dependent transcription. SIRT1 then remained promoter bound and recruited de novo induced RelB, which directed assembly of the mature transcription repressor complex that generates endotoxin tolerance. SIRT1 also promoted de novo expression of RelB. During sustained endotoxin tolerance, nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme for endogenous production of NAD(+), and SIRT1 expression increased. The elevation of SIRT1 required protein stabilization and enhanced translation. To support the coordination of bioenergetics in human sepsis, we observed elevated NAD(+) levels concomitant with SIRT1 and RelB accumulation at the TNF-α promoter of endotoxin tolerant sepsis blood leukocytes. We conclude that TLR4 stimulation and human sepsis activate pathways that couple NAD(+) and its sensor SIRT1 with epigenetic reprogramming.

  7. Metabolic reprogramming in the pathogenesis of chronic lung diseases including BPD, COPD, and pulmonary fibrosis.

    Science.gov (United States)

    Zhao, Haifeng; Dennery, Phyllis A; Yao, Hongwei

    2018-01-04

    The metabolism of nutrient substrates including glucose, glutamine and fatty acids provides acetyl-CoA for the tricarboxylic acid cycle to generate energy, and metabolites for the biosynthesis of biomolecules including nucleotides, proteins, and lipids. It has been shown that metabolism of glucose, fatty acid, and glutamine plays important roles in modulating cellular proliferation, differentiation, apoptosis, autophagy, senescence, and inflammatory responses. All these cellular processes contribute to the pathogenesis of chronic lung diseases, including bronchopulmonary dysplasia, chronic obstructive pulmonary disease, and pulmonary fibrosis. Recent studies demonstrate that metabolic reprogramming occurs in patients with and animal models of chronic lung diseases, suggesting that metabolic dysregulation may participate in the pathogenesis and progression of these diseases. In this review, we briefly discuss the catabolic pathways for glucose, glutamine and fatty acids, and focus on how metabolic reprogramming of these pathways impacts cellular functions and leads to the development of these chronic lung diseases. We also highlight how targeting metabolic pathways can be utilized in the prevention and treatment of these diseases.

  8. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing

    Directory of Open Access Journals (Sweden)

    Delphine Trochet

    2016-01-01

    Full Text Available Dynamin 2 (DNM2 is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.

  9. Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes

    Directory of Open Access Journals (Sweden)

    Yuki Hatanaka

    2017-09-01

    Full Text Available At fertilization, the paternal genome undergoes extensive reprogramming through protamine-histone exchange and active DNA demethylation, but only a few maternal factors have been defined in these processes. We identified maternal Mettl23 as a protein arginine methyltransferase (PRMT, which most likely catalyzes the asymmetric dimethylation of histone H3R17 (H3R17me2a, as indicated by in vitro assays and treatment with TBBD, an H3R17 PRMT inhibitor. Maternal histone H3.3, which is essential for paternal nucleosomal assembly, is unable to be incorporated into the male pronucleus when it lacks R17me2a. Mettl23 interacts with Tet3, a 5mC-oxidizing enzyme responsible for active DNA demethylation, by binding to another maternal factor, GSE (gonad-specific expression. Depletion of Mettl23 from oocytes resulted in impaired accumulation of GSE, Tet3, and 5hmC in the male pronucleus, suggesting that Mettl23 may recruit GSE-Tet3 to chromatin. Our findings establish H3R17me2a and its catalyzing enzyme Mettl23 as key regulators of paternal genome reprogramming.

  10. Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs.

    Science.gov (United States)

    Ashworth, Justin; Taylor, Gregory K; Havranek, James J; Quadri, S Arshiya; Stoddard, Barry L; Baker, David

    2010-09-01

    Site-specific homing endonucleases are capable of inducing gene conversion via homologous recombination. Reprogramming their cleavage specificities allows the targeting of specific biological sites for gene correction or conversion. We used computational protein design to alter the cleavage specificity of I-MsoI for three contiguous base pair substitutions, resulting in an endonuclease whose activity and specificity for its new site rival that of wild-type I-MsoI for the original site. Concerted design for all simultaneous substitutions was more successful than a modular approach against individual substitutions, highlighting the importance of context-dependent redesign and optimization of protein-DNA interactions. We then used computational design based on the crystal structure of the designed complex, which revealed significant unanticipated shifts in DNA conformation, to create an endonuclease that specifically cleaves a site with four contiguous base pair substitutions. Our results demonstrate that specificity switches for multiple concerted base pair substitutions can be computationally designed, and that iteration between design and structure determination provides a route to large scale reprogramming of specificity.

  11. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States

    Directory of Open Access Journals (Sweden)

    Dongya Jia

    2018-03-01

    Full Text Available Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS. Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.

  12. Switching of pyruvate kinase isoform L to M2 promotes metabolic reprogramming in hepatocarcinogenesis.

    Directory of Open Access Journals (Sweden)

    Carmen Chak-Lui Wong

    Full Text Available Hepatocellular carcinoma (HCC is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2 was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.

  13. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  14. Esrrb, an estrogen-related receptor involved in early development, pluripotency, and reprogramming.

    Science.gov (United States)

    Festuccia, Nicola; Owens, Nick; Navarro, Pablo

    2017-08-23

    Estrogen-related receptor b (Esrrb) is part of a family of three orphan nuclear receptors with broad expression profiles and a generic function in regulating energy metabolism in mammals. However, Esrrb performs specific functions during early mouse development, in pluripotent and multipotent populations of the embryo as well as in primordial germ cells. Moreover, Esrrb also impinges upon the control of self-renewal in embryo-derived stem cells and enhances reprogramming. Here, we review the function of Esrrb with special emphasis on its role in pluripotency. Esrrb activity at crucial regulatory elements of the pluripotency network, coupled with its role as a mitotic bookmarking factor and the ability to reset cellular metabolism, might explain its potent functions in ensuring the stability of pluripotency and driving the late stages of reprogramming. Hence, we argue that Esrrb represents a key addition to the pantheon of transcription factors sustaining pluripotent stem cell identity in mice. Understanding the mechanisms governing the interplay between different estrogen-related receptors (ERRs) and their specificity of action may clarify the role these factors play during preimplantation development and in pluripotent cells in both mouse and humans. © 2017 Federation of European Biochemical Societies.

  15. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    Science.gov (United States)

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34 + hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34 + hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Conversion of Goat Fibroblasts into Lineage-Specific Cells Using a Direct Reprogramming Strategy.

    Science.gov (United States)

    Guo, Yanjie; Yu, Tong; Lei, Lei; Duan, Anqin; Ma, Xiaoling; Wang, Huayan

    2017-05-01

    Direct reprogramming is an efficient strategy to convert one cell type to another. In this study, due to the failure of maintaining the undifferentiated state of goat embryotic stem- and induced pluripotent stem-like cells in vitro, we explored an alternative way to directly convert goat fibroblasts to lineage-specific cells. The 'Yamanaka factors' was ectopically expressed in fibroblasts for a short term to situate cells in a metastable state. By culturing with lineage-specific media for 1-2 weeks, the cardiomyocyte-like cells and neurocyte-like cells were generated and confirmed by the quantitative RT-PCR and immunocytochemical staining. The metastable-state cells could also be converted into oocyte-like cells (OLCs) after culturing in media with retinoic acid (RA) and bovine follicular fluid (bFF) for 2-3 weeks. The generated OLCs were surrounded by cumulus granulosa cell-like cells and formed a structure resembling goat cumulus-oocyte complex from ovaries. This primary follicular structure could be developed further in oocyte mature medium and expressed germ cell-specific markers. In addition, we found that the induction efficiency was higher and OLC cell size was bigger in bFF than in RA treatment. Altogether, the direct reprogramming of goat fibroblasts into lineage-specific cells can facilitate stem cell research in domestic animals. © 2016 Japanese Society of Animal Science.

  17. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available A number of environmental factors (e.g. toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation progeny in regards to the primordial germ cell (PGC epigenetic reprogramming of the F3 generation (i.e. great-grandchildren. The F3 generation germline transcriptome and epigenome (DNA methylation were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13 and after cord formation in the testis at embryonic day 16 (E16. A larger number of DNA methylation abnormalities (epimutations and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  18. Celiac ganglia block

    Energy Technology Data Exchange (ETDEWEB)

    Akinci, Devrim [Department of Radiology, Hacettepe University School of Medicine, Sihhiye, 06100 Ankara (Turkey); Akhan, Okan [Department of Radiology, Hacettepe University School of Medicine, Sihhiye, 06100 Ankara (Turkey)]. E-mail: oakhan@hacettepe.edu.tr

    2005-09-01

    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation.

  19. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film......Photovoltaics (PV), better known as solar cells, are now a common day sight on many rooftops in Denmark.The installed capacity of PV systems worldwide is growing exponentially1 and is the third most importantrenewable energy source today. The cost of PV is decreasing fast with ~10%/year but to make...... it directcompetitive with fossil energy sources a further reduction is needed. By increasing the efficiency of the solar cells one gain an advantage through the whole chain of cost. So that per produced Watt of power less material is spent, installation costs are lower, less area is used etc. With an average...

  20. Atomic Basic Blocks

    Science.gov (United States)

    Scheler, Fabian; Mitzlaff, Martin; Schröder-Preikschat, Wolfgang

    Die Entscheidung, einen zeit- bzw. ereignisgesteuerten Ansatz für ein Echtzeitsystem zu verwenden, ist schwierig und sehr weitreichend. Weitreichend vor allem deshalb, weil diese beiden Ansätze mit äußerst unterschiedlichen Kontrollflussabstraktionen verknüpft sind, die eine spätere Migration zum anderen Paradigma sehr schwer oder gar unmöglich machen. Wir schlagen daher die Verwendung einer Zwischendarstellung vor, die unabhängig von der jeweils verwendeten Kontrollflussabstraktion ist. Für diesen Zweck verwenden wir auf Basisblöcken basierende Atomic Basic Blocks (ABB) und bauen darauf ein Werkzeug, den Real-Time Systems Compiler (RTSC) auf, der die Migration zwischen zeit- und ereignisgesteuerten Systemen unterstützt.

  1. Celiac ganglia block

    International Nuclear Information System (INIS)

    Akinci, Devrim; Akhan, Okan

    2005-01-01

    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation

  2. Generation of iPSCs as a Pooled Culture Using Magnetic Activated Cell Sorting of Newly Reprogrammed Cells.

    Directory of Open Access Journals (Sweden)

    Wenli Yang

    Full Text Available Although significant advancement has been made in the induced pluripotent stem cell (iPSC field, current methods for iPSC derivation are labor intensive and costly. These methods involve manual selection, expansion, and characterization of multiple clones for each reprogrammed cell sample and therefore significantly hampers the feasibility of studies where a large number of iPSCs need to be derived. To develop higher throughput iPSC reprogramming methods, we generated iPSCs as a pooled culture using rigorous cell surface pluripotent marker selection with TRA-1-60 or SSEA4 antibodies followed by Magnetic Activated Cell Sorting (MACS. We observed that pool-selected cells are similar or identical to clonally derived iPSC lines from the same donor by all criteria examined, including stable expression of endogenous pluripotency genes, normal karyotype, loss of exogenous reprogramming factors, and in vitro spontaneous and lineage directed differentiation potential. This strategy can be generalized for iPSC generation using both integrating and non-integrating reprogramming methods. Our studies provide an attractive alternative to clonal derivation of iPSCs using rigorously selected cell pools and is amenable to automation.

  3. Restoration of Mitochondrial NAD+Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Science.gov (United States)

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  4. Epiblastin A Induces Reprogramming of Epiblast Stem Cells Into Embryonic Stem Cells by Inhibition of Casein Kinase 1.

    Science.gov (United States)

    Ursu, Andrei; Illich, Damir J; Takemoto, Yasushi; Porfetye, Arthur T; Zhang, Miao; Brockmeyer, Andreas; Janning, Petra; Watanabe, Nobumoto; Osada, Hiroyuki; Vetter, Ingrid R; Ziegler, Slava; Schöler, Hans R; Waldmann, Herbert

    2016-04-21

    The discovery of novel small molecules that induce stem cell reprogramming and give efficient access to pluripotent stem cells is of major importance for potential therapeutic applications and may reveal novel insights into the factors controlling pluripotency. Chemical reprogramming of mouse epiblast stem cells (EpiSCs) into cells corresponding to embryonic stem cells (cESCs) is an inefficient process. In order to identify small molecules that promote this cellular transition, we analyzed the LOPAC library in a phenotypic screen monitoring Oct4-GFP expression and identified triamterene (TR) as initial hit. Synthesis of a TR-derived compound collection and investigation for reprogramming of EpiSCs into cESCs identified casein kinases 1 (CK1) α/δ/ɛ as responsible cellular targets of TR and unraveled the structural parameters that determine reprogramming. Delineation of a structure-activity relationship led to the development of Epiblastin A, which engages CK1 isoenzymes in cell lysate and induces efficient conversion of EpiSCs into cESCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Immobilized pH in culture reveals an optimal condition for somatic cell reprogramming and differentiation of pluripotent stem cells.

    Science.gov (United States)

    Kim, Narae; Minami, Naojiro; Yamada, Masayasu; Imai, Hiroshi

    2017-01-01

    One of the parameters that greatly affects homeostasis in the body is the pH. Regarding reproductive biology, germ cells, such as oocytes or sperm, are exposed to severe changes in pH, resulting in dramatic changes in their characteristics. To date, the effect of the pH has not been investigated regarding the reprogramming of somatic cells and the maintenance and differentiation of pluripotent stem cells. In order to investigate the effects of the pH on cell culture, the methods to produce induced pluripotent stem cells (iPSCs) and to differentiate embryonic stem cells (ESCs) into mesendoderm and neuroectoderm were performed at each medium pH from 6.6 to 7.8. Using the cells of the Oct4 -GFP (green fluorescent protein) carrying mouse, the effects of pH changes were examined on the timing and colony formation at cell reprogramming and on the cell morphology and direction of the differentiation of the ESCs. The colony formation rate and timing of the reprogramming of the somatic cells varied depending on the pH of the culture medium. In addition, mesendodermal differentiation of the mouse ESCs was enhanced at the high pH level of 7.8. These results suggest that the pH in the culture medium is one of the key factors in the induction of the reprogramming of somatic cells and in the differentiation of pluripotent stem cells.

  6. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  7. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

    Science.gov (United States)

    Warren, Luigi; Manos, Philip D; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj K; Smith, Zachary D; Meissner, Alexander; Daley, George Q; Brack, Andrew S; Collins, James J; Cowan, Chad; Schlaeger, Thorsten M; Rossi, Derrick J

    2010-11-05

    Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector.

    Science.gov (United States)

    Sommer, Cesar A; Sommer, Andreia Gianotti; Longmire, Tyler A; Christodoulou, Constantina; Thomas, Dolly D; Gostissa, Monica; Alt, Fred W; Murphy, George J; Kotton, Darrell N; Mostoslavsky, Gustavo

    2010-01-01

    The residual presence of integrated transgenes following the derivation of induced pluripotent stem (iPS) cells is highly undesirable. Here we demonstrate efficient derivation of iPS cells free of exogenous reprogramming transgenes using an excisable polycistronic lentiviral vector. A novel version of this vector containing a reporter fluorochrome allows direct visualization of vector excision in living iPS cells in real time. We find that removal of the reprogramming vector markedly improves the developmental potential of iPS cells and significantly augments their capacity to undergo directed differentiation in vitro. We further propose that methods to efficiently excise reprogramming transgenes with minimal culture passaging, such as those demonstrated here, are critical since we find that iPS cells may acquire chromosomal abnormalities, such as trisomy of chromosome 8, similar to embryonic stem cells after expansion in culture. Our findings illustrate an efficient method for the generation of transgene-free iPS cells and emphasize the potential beneficial effects that may result from elimination of integrated reprogramming factors. In addition, our results underscore the consequences of long-term culture that will need to be taken into account for the clinical application of iPS cells.

  9. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  10. Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts

    Science.gov (United States)

    Liu, Liu; Lei, Ienglam; Karatas, Hacer; Li, Yangbing; Wang, Li; Gnatovskiy, Leonid; Dou, Yali; Wang, Shaomeng; Qian, Li; Wang, Zhong

    2016-01-01

    Generation of induced cardiomyocytes (iCMs) directly from fibroblasts offers a great opportunity for cardiac disease modeling and cardiac regeneration. A major challenge of iCM generation is the low conversion rate. To address this issue, we attempted to identify small molecules that could potentiate the reprogramming ability towards cardiac fate by removing inhibitory roadblocks. Using mouse embryonic fibroblasts as the starting cell source, we first screened 47 cardiac development related epigenetic and transcription factors, and identified an unexpected role of H3K4 methyltransferase Mll1 and related factor Men1 in inhibiting iCM reprogramming. We then applied small molecules (MM408 and MI503) of Mll1 pathway inhibitors and observed an improved efficiency in converting embryonic fibroblasts and cardiac fibroblasts into functional cardiomyocyte-like cells. We further observed that these inhibitors directly suppressed the expression of Mll1 target gene Ebf1 involved in adipocyte differentiation. Consequently, Mll1 inhibition significantly decreased the formation of adipocytes during iCM induction. Therefore, Mll1 inhibitors likely increased iCM efficiency by suppressing alternative lineage gene expression. Our studies show that targeting Mll1 dependent H3K4 methyltransferase activity provides specificity in the process of cardiac reprogramming. These findings shed new light on the molecular mechanisms underlying cardiac conversion of fibroblasts and provide novel targets and small molecules to improve iCM reprogramming for clinical applications. PMID:27924221

  11. Reversibility of cellular aging by reprogramming through an embryonic-like state : a new paradigm for human cell rejuvenation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lemaitre

    2014-01-01

    Full Text Available Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs provides a unique opportunity to derive patient-specific stem cells with potential application in autologous tissue replacement therapies and without the ethical concerns of Embryonic Stem Cells (hESC. However, this strategy still suffers from several hurdles that need to be overcome before clinical applications. Among them, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. This suggests that aging might be an important limitation for therapeutic purposes for elderly individuals. Senescence is characterized by an irreversible cell cycle arrest in response to various forms of stress, including activation of oncogenes, shortened telomeres, DNA damage, oxidative stress, and mitochondrial dysfunction. To overcome this barrier, we developed an optimized 6-factor-based reprogramming protocol that is able to cause efficient reversing of cellular senescence and reprogramming into iPSCs. We demonstrated that iPSCs derived from senescent and centenarian fibroblasts have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESC. Finally, we demonstrate that re-differentiation led to rejuvenated cells with a reset cellular physiology, defining a new paradigm for human cell rejuvenation. We discuss the molecular mechanisms involved in cell reprogramming of senescent cells. 

  12. Comparative Principles of DNA Methylation Reprogramming during Human and Mouse In Vitro Primordial Germ Cell Specification.

    Science.gov (United States)

    von Meyenn, Ferdinand; Berrens, Rebecca V; Andrews, Simon; Santos, Fátima; Collier, Amanda J; Krueger, Felix; Osorno, Rodrigo; Dean, Wendy; Rugg-Gunn, Peter J; Reik, Wolf

    2016-10-10

    Primordial germ cell (PGC) development is characterized by global epigenetic remodeling, which resets genomic potential and establishes an epigenetic ground state. Here we recapitulate PGC specification in vitro from naive embryonic stem cells and characterize the early events of epigenetic reprogramming during the formation of the human and mouse germline. Following rapid de novo DNA methylation during priming to epiblast-like cells, methylation is globally erased in PGC-like cells. Repressive chromatin marks (H3K9me2/3) and transposable elements are enriched at demethylation-resistant regions, while active chromatin marks (H3K4me3 or H3K27ac) are more prominent at regions that demethylate faster. The dynamics of specification and epigenetic reprogramming show species-specific differences, in particular markedly slower reprogramming kinetics in the human germline. Differences in developmental kinetics may be explained by differential regulation of epigenetic modifiers. Our work establishes a robust and faithful experimental system of the early events of epigenetic reprogramming and regulation in the germline. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process

    Directory of Open Access Journals (Sweden)

    Yuko Arioka

    2017-04-01

    Full Text Available It remains unclear what cells are proper for the generation of induced pluripotent stem cells (iPSCs. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5 is well known as a tissue stem cell and progenitor marker, both of which are reported to be sensitive to reprogramming. In the present study, we examined the reprogramming behavior of Lgr5-expressing cells (Lgr5+ cells. First, we compared reprogramming behavior using mouse Lgr5+ and Lgr5 negative (Lgr5− hair follicles (HFs. The number of alkaline phosphatase staining-positive cells was lesser in a well of Lgr5+ HFs than in Lgr5− HFs; however, the ratio of Nanog+ SSEA1+ cells in the cell mixture derived from Lgr5+ HFs was much higher than that from Lgr5− HFs. Lgr5+ cells could be induced from mouse embryonic fibroblasts (MEFs after transduction with Yamanaka factors. As shown in HFs, the progeny of Lgr5+ cells arising from MEFs highly converted into Nanog+ cells and did not form Nanog− colonies. The progeny represented the status of the late reprogramming phase to a higher degree than the nonprogeny. We also confirmed this using human Lg5+ cells. Our findings suggest that the use of Lgr5+ cells will minimize sorting efforts for obtaining superior iPSCs.

  14. Dimensional reduction for conformal blocks

    Science.gov (United States)

    Hogervorst, Matthijs

    2016-09-01

    We consider the dimensional reduction of a CFT, breaking multiplets of the d-dimensional conformal group SO( d + 1 , 1) up into multiplets of SO( d, 1). This leads to an expansion of d-dimensional conformal blocks in terms of blocks in d - 1 dimensions. In particular, we obtain a formula for 3 d conformal blocks as an infinite sum over 2 F 1 hypergeometric functions with closed-form coefficients.

  15. Learning Potentials in Number Blocks

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob

    2012-01-01

    . The tool is called Number Blocks and it combines physical interaction, learning, and immediate feedback. Number Blocks supports the children's understanding of place value in the sense that it allows them to experiment with creating large numbers. We found the blocks contributed to the learning process...... in several ways. The blocks combined mathematics and play, and they included and supported children at different academic levels. The auditory representation, especially the enhanced rhythmic effects due to using speech synthesis, and the rhythm helped the children to pronounce large numbers. This creates...

  16. Common blocks for ASQS(12

    Directory of Open Access Journals (Sweden)

    Lorenzo Milazzo

    1997-05-01

    Full Text Available An ASQS(v is a particular Steiner system featuring a set of v vertices and two separate families of blocks, B and G, whose elements have a respective cardinality of 4 and 6. It has the property that any three vertices of X belong either to a B-block or to a G-block. The parameter cb is the number of common blocks in two separate ASQSs, both defined on the same set of vertices X . In this paper it is shown that cb ≤ 29 for any pair of ASQSs(12.

  17. CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Gómez-Cabello, Daniel; Checa-Rodríguez, Cintia; Abad, María; Serrano, Manuel; Huertas, Pablo

    2017-02-14

    Acquired genomic instability is one of the major concerns for the clinical use of induced pluripotent stem cells (iPSCs). All reprogramming methods are accompanied by the induction of DNA damage, of which double-strand breaks are the most cytotoxic and mutagenic. Consequently, DNA repair genes seem to be relevant for accurate reprogramming to minimize the impact of such DNA damage. Here, we reveal that reprogramming is associated with high levels of DNA end resection, a critical step in homologous recombination. Moreover, the resection factor CtIP is essential for cell reprogramming and establishment of iPSCs, probably to repair reprogramming-induced DNA damage. Our data reveal a new role for DNA end resection in maintaining genomic stability during cell reprogramming, allowing DNA repair fidelity to be retained in both human and mouse iPSCs. Moreover, we demonstrate that reprogramming in a resection-defective environment has long-term consequences on stem cell self-renewal and differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. CtIP-Specific Roles during Cell Reprogramming Have Long-Term Consequences in the Survival and Fitness of Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Daniel Gómez-Cabello

    2017-02-01

    Full Text Available Acquired genomic instability is one of the major concerns for the clinical use of induced pluripotent stem cells (iPSCs. All reprogramming methods are accompanied by the induction of DNA damage, of which double-strand breaks are the most cytotoxic and mutagenic. Consequently, DNA repair genes seem to be relevant for accurate reprogramming to minimize the impact of such DNA damage. Here, we reveal that reprogramming is associated with high levels of DNA end resection, a critical step in homologous recombination. Moreover, the resection factor CtIP is essential for cell reprogramming and establishment of iPSCs, probably to repair reprogramming-induced DNA damage. Our data reveal a new role for DNA end resection in maintaining genomic stability during cell reprogramming, allowing DNA repair fidelity to be retained in both human and mouse iPSCs. Moreover, we demonstrate that reprogramming in a resection-defective environment has long-term consequences on stem cell self-renewal and differentiation.

  19. Analysis of human and mouse reprogramming of somatic cells to induced pluripotent stem cells. What is in the plate?

    Directory of Open Access Journals (Sweden)

    Stéphanie Boué

    Full Text Available After the hope and controversy brought by embryonic stem cells two decades ago for regenerative medicine, a new turn has been taken in pluripotent cells research when, in 2006, Yamanaka's group reported the reprogramming of fibroblasts to pluripotent cells with the transfection of only four transcription factors. Since then many researchers have managed to reprogram somatic cells from diverse origins into pluripotent cells, though the cellular and genetic consequences of reprogramming remain largely unknown. Furthermore, it is still unclear whether induced pluripotent stem cells (iPSCs are truly functionally equivalent to embryonic stem cells (ESCs and if they demonstrate the same differentiation potential as ESCs. There are a large number of reprogramming experiments published so far encompassing genome-wide transcriptional profiling of the cells of origin, the iPSCs and ESCs, which are used as standards of pluripotent cells and allow us to provide here an in-depth analysis of transcriptional profiles of human and mouse cells before and after reprogramming. When compared to ESCs, iPSCs, as expected, share a common pluripotency/self-renewal network. Perhaps more importantly, they also show differences in the expression of some genes. We concentrated our efforts on the study of bivalent domain-containing genes (in ESCs which are not expressed in ESCs, as they are supposedly important for differentiation and should possess a poised status in pluripotent cells, i.e. be ready to but not yet be expressed. We studied each iPSC line separately to estimate the quality of the reprogramming and saw a correlation of the lowest number of such genes expressed in each respective iPSC line with the stringency of the pluripotency test achieved by the line. We propose that the study of expression of bivalent domain-containing genes, which are normally silenced in ESCs, gives a valuable indication of the quality of the iPSC line, and could be used to select the

  20. 31 CFR 545.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TALIBAN (AFGHANISTAN) SANCTIONS... name of the Taliban or persons whose property or interests in property are blocked pursuant to § 545.201, or in which the Taliban or persons whose property or interests in property are blocked pursuant...

  1. iPS Cells Reprogrammed From Human Mesenchymal-Like Stem/Progenitor Cells of Dental Tissue Origin

    Science.gov (United States)

    2010-01-01

    Generation of induced pluripotent stem (iPS) cells holds a great promise for regenerative medicine and other aspects of clinical applications. Many types of cells have been successfully reprogrammed into iPS cells in the mouse system; however, reprogramming human cells have been more difficult. To date, human dermal fibroblasts are the most accessible and feasible cell source for iPS generation. Dental tissues derived from ectomesenchyme harbor mesenchymal-like stem/progenitor cells and some of the tissues have been treated as biomedical wastes, for example, exfoliated primary teeth and extracted third molars. We asked whether stem/progenitor cells from discarded dental tissues can be reprogrammed into iPS cells. The 4 factors Lin28/Nanog/Oct4/Sox2 or c-Myc/Klf4/Oct4/Sox2 carried by viral vectors were used to reprogram 3 different dental stem/progenitor cells: stem cells from exfoliated deciduous teeth (SHED), stem cells from apical papilla (SCAP), and dental pulp stem cells (DPSCs). We showed that all 3 can be reprogrammed into iPS cells and appeared to be at a higher rate than fibroblasts. They exhibited a morphology indistinguishable from human embryonic stem (hES) cells in cultures and expressed hES cell markers SSEA-4, TRA-1-60, TRA-1-80, TRA-2-49, Nanog, Oct4, and Sox2. They formed embryoid bodies in vitro and teratomas in vivo containing tissues of all 3 germ layers. We conclude that cells of ectomesenchymal origin serve as an excellent alternative source for generating iPS cells. PMID:19795982

  2. Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: implications in cell reprogramming and stem cell therapy.

    Science.gov (United States)

    Navarro, S; Moleiro, V; Molina-Estevez, F J; Lozano, M L; Chinchon, R; Almarza, E; Quintana-Bustamante, O; Mostoslavsky, G; Maetzig, T; Galla, M; Heinz, N; Schiedlmeier, B; Torres, Y; Modlich, U; Samper, E; Río, P; Segovia, J C; Raya, A; Güenechea, G; Izpisua-Belmonte, J C; Bueren, J A

    2014-02-01

    Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2(Δ) (27/) (Δ27)), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2(Δ) (27/) (Δ27) induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2(Δ) (27/) (Δ27) iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2(Δ) (27/) (Δ27) mouse embryonic fibroblasts. Gene-corrected Brca2(Δ) (27/) (Δ27) iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2(Δ) (27/) (Δ27) recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2(Δ) (27/) (Δ) (27) iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed. © AlphaMed Press.

  3. Using Oct4:MerCreMer Lineage Tracing to Monitor Endogenous Oct4 Expression During the Reprogramming of Fibroblasts into Induced Pluripotent Stem Cells (iPSCs).

    Science.gov (United States)

    Greder, Lucas V; Post, Jason; Dutton, James R

    2016-01-01

    The reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) using a combination of defined transcription factors has become one of the most widely used techniques in stem cell biology. A critical, early event in iPSC reprogramming is the induction of the endogenous transcription factor network that maintains pluripotency in iPSCs. Here we describe using a transgenic, conditional Oct4-Cre construct to investigate the spatial and temporal induction of endogenous Oct4 expression during the reprogramming of mouse fibroblasts into iPS cells.

  4. Classical Virasoro irregular conformal block

    Science.gov (United States)

    Rim, Chaiho; Zhang, Hong

    2015-07-01

    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  5. Classical Virasoro irregular conformal block

    Energy Technology Data Exchange (ETDEWEB)

    Rim, Chaiho; Zhang, Hong [Department of Physics and Center for Quantum Spacetime (CQUeST), Sogang University,Seoul 121-742 (Korea, Republic of)

    2015-07-30

    Virasoro irregular conformal block with arbitrary rank is obtained for the classical limit or equivalently Nekrasov-Shatashvili limit using the beta-deformed irregular matrix model (Penner-type matrix model for the irregular conformal block). The same result is derived using the generalized Mathieu equation which is equivalent to the loop equation of the irregular matrix model.

  6. Four-block beam collimator

    CERN Document Server

    CERN PhotoLab

    1977-01-01

    The photo shows a four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with the secondary beams, the collimators operated in vacuum conditions. The blocks were made of steel and had a standard length of 1 m. The maximum aperture had a square coss-section of 144 cm2. (See Annual Report 1976.)

  7. OPAL Various Lead Glass Blocks

    CERN Document Server

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  8. Writing Blocks and Tacit Knowledge.

    Science.gov (United States)

    Boice, Robert

    1993-01-01

    A review of the literature on writing block looks at two kinds: inability to write in a timely, fluent fashion, and reluctance by academicians to assist others in writing. Obstacles to fluent writing are outlined, four historical trends in treating blocks are discussed, and implications are examined. (MSE)

  9. Block storage subsystem performance analysis

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    You feel that your service is slow because of the storage subsystem? But there are too many abstraction layers between your software and the raw block device for you to debug all this pile... Let's dive on the platters and check out how the block storage sees your I/Os! We can even figure out what those patterns are meaning.

  10. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  11. Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status.

    Science.gov (United States)

    Kim, Sung Min; Lim, Kyung Tae; Kwak, Tae Hwan; Lee, Seung Chan; Im, Jung Hyun; Hali, Sai; In Hwang, Seon; Kim, Dajeong; Hwang, Jeongho; Kim, Kee-Pyo; Chung, Hak-Jae; Kim, Jeong Beom; Ko, Kinarm; Chung, Hyung-Min; Lee, Hoon Taek; Schöler, Hans R; Han, Dong Wook

    2016-03-01

    Somatic cells could be directly converted into induced neural stem cells (iNSCs) by ectopic expression of defined transcription factors. However, the underlying mechanism of direct lineage transition into iNSCs is largely unknown. In this study, we examined the effect of genetic background on the direct conversion process into an iNSC state. The iNSCs from two different mouse strains exhibited the distinct efficiency of lineage conversion as well as clonal expansion. Furthermore, the expression levels of endogenous NSC markers, silencing of transgenes, and in vitro differentiation potential were also different between iNSC lines from different strains. Therefore, our data suggest that the genetic background of starting cells influences the conversion efficiency as well as reprogramming status of directly converted iNSCs. Copyright © 2016 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.

  12. Deletion of the Mitochondrial Chaperone TRAP-1 Uncovers Global Reprogramming of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Sofia Lisanti

    2014-08-01

    Full Text Available Reprogramming of metabolic pathways contributes to human disease, especially cancer, but the regulators of this process are unknown. Here, we have generated a mouse knockout for the mitochondrial chaperone TRAP-1, a regulator of bioenergetics in tumors. TRAP-1−/− mice are viable and showed reduced incidence of age-associated pathologies, including obesity, inflammatory tissue degeneration, dysplasia, and spontaneous tumor formation. This was accompanied by global upregulation of oxidative phosphorylation and glycolysis transcriptomes, causing deregulated mitochondrial respiration, oxidative stress, impaired cell proliferation, and a switch to glycolytic metabolism in vivo. These data identify TRAP-1 as a central regulator of mitochondrial bioenergetics, and this pathway could contribute to metabolic rewiring in tumors.

  13. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression.

    Science.gov (United States)

    Li, Zhaoyong; Zhang, Huafeng

    2016-01-01

    Metabolic reprogramming is widely observed during cancer development to confer cancer cells the ability to survive and proliferate, even under the stressed, such as nutrient-limiting, conditions. It is famously known that cancer cells favor the "Warburg effect", i.e., the enhanced glycolysis or aerobic glycolysis, even when the ambient oxygen supply is sufficient. In addition, deregulated anabolism/catabolism of fatty acids and amino acids, especially glutamine, serine and glycine, have been identified to function as metabolic regulators in supporting cancer cell growth. Furthermore, extensive crosstalks are being revealed between the deregulated metabolic network and cancer cell signaling. These exciting advancements have inspired new strategies for treating various malignancies by targeting cancer metabolism. Here we review recent findings related to the regulation of glucose, fatty acid and amino acid metabolism, their crosstalk, and relevant cancer therapy strategy.

  14. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism.

    Science.gov (United States)

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-06-01

    Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.

  15. An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts

    DEFF Research Database (Denmark)

    Bredenkamp, Nicholas; Ulyanchenko, Svetlana; O'Neill, Kathy Emma

    2014-01-01

    A central goal of regenerative medicine is to generate transplantable organs from cells derived or expanded in vitro. Although numerous studies have demonstrated the production of defined cell types in vitro, the creation of a fully intact organ has not been reported. The transcription factor......1-induced TECs (iTECs) supported efficient development of both CD4(+) and CD8(+) T cells in vitro. On transplantation, iTECs established a complete, fully organized and functional thymus, that contained all of the TEC subtypes required to support T-cell differentiation and populated the recipient...... immune system with T cells. iTECs thus demonstrate that cellular reprogramming approaches can be used to generate an entire organ, and open the possibility of widespread use of thymus transplantation to boost immune function in patients....

  16. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation.

    Science.gov (United States)

    Williams, Niamh C; O'Neill, Luke A J

    2018-01-01

    Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP) production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs) and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA) is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function.

  17. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-01-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. PMID:23828660

  18. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.

    Science.gov (United States)

    Burridge, Paul W; Sharma, Arun; Wu, Joseph C

    2015-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.

  19. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology.

    Science.gov (United States)

    Rawat, N; Singh, M K

    2017-06-01

    Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs) paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.

  20. Induced pluripotent stem cell: A headway in reprogramming with promising approach in regenerative biology

    Directory of Open Access Journals (Sweden)

    N. Rawat

    2017-06-01

    Full Text Available Since the embryonic stem cells have knocked the doorsteps, they have proved themselves in the field of science, research, and medicines, but the hovered restrictions confine their application in human welfare. Alternate approaches used to reprogram the cells to the pluripotent state were not up to par, but the innovation of induced pluripotent stem cells (iPSCs paved a new hope for the researchers. Soon after the discovery, iPSCs technology is undergoing renaissance day by day, i.e., from the use of genetic material to recombinant proteins and now only chemicals are employed to convert somatic cells to iPSCs. Thus, this technique is moving straightforward and productive at an astonishing pace. Here, we provide a brief introduction to iPSCs, the mechanism and methods for their generation, their prevailing and prospective applications and the future opportunities that can be expected from them.

  1. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  2. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  3. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation

    Directory of Open Access Journals (Sweden)

    Niamh C. Williams

    2018-02-01

    Full Text Available Metabolism in immune cells is no longer thought of as merely a process for adenosine triphosphate (ATP production, biosynthesis, and catabolism. The reprogramming of metabolic pathways upon activation is also for the production of metabolites that can act as immune signaling molecules. Activated dendritic cells (DCs and macrophages have an altered Krebs cycle, one consequence of which is the accumulation of both citrate and succinate. Citrate is exported from the mitochondria via the mitochondrial citrate- carrier. Cytosolic metabolism of citrate to acetyl-coenzyme A (acetyl-CoA is important for both fatty-acid synthesis and protein acetylation, both of which have been linked to macrophage and DC activation. Citrate-derived itaconate has a direct antibacterial effect and also has been shown to act as an anti-inflammatory agent, inhibiting succinate dehydrogenase. These findings identify citrate as an important metabolite for macrophage and DC effector function.

  4. Differentiation of blood T cells: Reprogramming human induced pluripotent stem cells into neuronal cells.

    Science.gov (United States)

    Tsai, Ping-Hsing; Chang, Yun-Ching; Lee, Yi-Yen; Ko, Yu-Ling; Yang, Yu-Hsuan; Lin, Chun-Fu; Chang, Yuh-Lih; Yu, Wen-Chung; Shih, Yang-Hsin; Chen, Ming-Teh

    2015-06-01

    Human induced pluripotent stem cells (iPSCs) morphologically and functionally resemble human embryonic stem cells, which presents the opportunity to use patient-specific somatic cells for disease modeling and drug screening. In order to take one step closer to clinical applications, it is important to generate iPSCs through a less invasive approach and from any accessible tissue, including peripheral blood. Meanwhile, how to differentiate blood cell-derived iPSCs into neuron-like cells is still unclear. We utilized Epstein-Barr nuclear antigen-1-based episomal vectors, a nonviral system that can reprogram somatic cells into iPSCs in both feeder-dependent and feeder-free conditions, to generate iPSCs from T cells via electroporation and then induce them into neuronal cells. We successfully isolated sufficient T cells from 20 mL peripheral blood of the donors and reprogrammed these T cells into iPSCs within 4 weeks. These iPSCs could be stably passaged to at least 50 passages, and exhibited the abilities of pluripotency and multiple-lineage differentiation. Notably, under the medium induction for 21 days, these T-cell-derived iPSCs could be differentiated into Nestin (neural progenitor marker)-, GFAP (glial cell marker)-, and MAP2 (neuron cell marker)-positive cells detected by immunofluorescence methods. We have developed a safer method to generate integration-free and nonviral human iPSCs from adult somatic cells. This induction method will be useful for the derivation of human integration-free iPSCs and will also be applicable to the generation of iPSCs-derived neuronal cells for drug screening or therapeutics in the near future. Copyright © 2015. Published by Elsevier Taiwan.

  5. Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes

    Science.gov (United States)

    Abd Elmageed, Zakaria Y.; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M.; Moparty, Krishnarao; Sikka, Suresh C.; Sartor, Oliver; Abdel-Mageed, Asim B.

    2014-01-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition (MET) and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to down-regulation of the large tumor suppressor homolog2 (Lats2) and the programmed cell death protein 4 (PDCD4), a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. PMID:24715691

  6. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Ahmed Kamel El-Sayed

    2014-11-01

    Full Text Available Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1 and Rex-1 (ZFP-42, zinc finger protein 42. Using embryonic stem cells (ESCs conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations.

  7. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells.

    Science.gov (United States)

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Yuan, Ziao; Hu, Pengfei; Wang, Hui; Liu, Changqing; Guan, Weijun; Ma, Yuehui

    2016-09-01

    Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Reprogramming neutral lipid metabolism in mouse dendritic leucocytes hosting live Leishmania amazonensis amastigotes.

    Directory of Open Access Journals (Sweden)

    Hervé Lecoeur

    Full Text Available BACKGROUND: After loading with live Leishmania (L amazonensis amastigotes, mouse myeloid dendritic leucocytes/DLs are known to undergo reprogramming of their immune functions. In the study reported here, we investigated whether the presence of live L. amazonensis amastigotes in mouse bone marrow-derived DLs is able to trigger re-programming of DL lipid, and particularly neutral lipid metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Affymetrix-based transcriptional profiles were determined in C57BL/6 and DBA/2 mouse bone marrow-derived DLs that had been sorted from cultures exposed or not to live L. amazonensis amastigotes. This showed that live amastigote-hosting DLs exhibited a coordinated increase in: (i long-chain fatty acids (LCFA and cholesterol uptake/transport, (ii LCFA and cholesterol (re-esterification to triacyl-sn-glycerol (TAG and cholesteryl esters (CE, respectively. As these neutral lipids are known to make up the lipid body (LB core, oleic acid was added to DL cultures and LB accumulation was compared in live amastigote-hosting versus amastigote-free DLs by epi-fluorescence and transmission electron microscopy. This showed that LBs were both significantly larger and more numerous in live amastigote-hosting mouse dendritic leucocytes. Moreover, many of the larger LB showed intimate contact with the membrane of the parasitophorous vacuoles hosting the live L. amazonensis amastigotes. CONCLUSIONS/SIGNIFICANCE: As leucocyte LBs are known to be more than simple neutral lipid repositories, we set about addressing two related questions. Could LBs provide lipids to live amastigotes hosted within the DL parasitophorous vacuole and also deliver? Could LBs impact either directly or indirectly on the persistence of L. amazonensis amastigotes in rodent skin?

  9. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  10. Diversity among POU transcription factors in chromatin recognition and cell fate reprogramming.

    Science.gov (United States)

    Malik, Vikas; Zimmer, Dennis; Jauch, Ralf

    2018-05-01

    The POU (Pit-Oct-Unc) protein family is an evolutionary ancient group of transcription factors (TFs) that bind specific DNA sequences to direct gene expression programs. The fundamental importance of POU TFs to orchestrate embryonic development and to direct cellular fate decisions is well established, but the molecular basis for this activity is insufficiently understood. POU TFs possess a bipartite 'two-in-one' DNA binding domain consisting of two independently folding structural units connected by a poorly conserved and flexible linker. Therefore, they represent a paradigmatic example to study the molecular basis for the functional versatility of TFs. Their modular architecture endows POU TFs with the capacity to accommodate alternative composite DNA sequences by adopting different quaternary structures. Moreover, associations with partner proteins crucially influence the selection of their DNA binding sites. The plentitude of DNA binding modes confers the ability to POU TFs to regulate distinct genes in the context of different cellular environments. Likewise, different binding modes of POU proteins to DNA could trigger alternative regulatory responses in the context of different genomic locations of the same cell. Prominent POU TFs such as Oct4, Brn2, Oct6 and Brn4 are not only essential regulators of development but have also been successfully employed to reprogram somatic cells to pluripotency and neural lineages. Here we review biochemical, structural, genomic and cellular reprogramming studies to examine how the ability of POU TFs to select regulatory DNA, alone or with partner factors, is tied to their capacity to epigenetically remodel chromatin and drive specific regulatory programs that give cells their identities.

  11. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, Cong T. [Tennessee Univ., Knoxville, TN (United States). Dept. of Chemical and Biomolecular Engineering

    2012-08-15

    Elementary mode (EM) analysis based on the constraint-based metabolic network modeling was applied to elucidate and compare complex fermentative metabolisms of Escherichia coli for obligate anaerobic production of n-butanol and isobutanol. The result shows that the n-butanol fermentative metabolism was NADH-deficient, while the isobutanol fermentative metabolism was NADH redundant. E. coli could grow and produce n-butanol anaerobically as the sole fermentative product but not achieve the maximum theoretical n-butanol yield. In contrast, for the isobutanol fermentative metabolism, E. coli was required to couple with either ethanol- or succinate-producing pathway to recycle NADH. To overcome these ''defective'' metabolisms, EM analysis was implemented to reprogram the native fermentative metabolism of E. coli for optimized anaerobic production of n-butanol and isobutanol through multiple gene deletion ({proportional_to}8-9 genes), addition ({proportional_to}6-7 genes), up- and downexpression ({proportional_to}6-7 genes), and cofactor engineering (e.g., NADH, NADPH). The designed strains were forced to couple both growth and anaerobic production of n-butanol and isobutanol, which is a useful characteristic to enhance biofuel production and tolerance through metabolic pathway evolution. Even though the n-butanol and isobutanol fermentative metabolisms were quite different, the designed strains could be engineered to have identical metabolic flux distribution in ''core'' metabolic pathways mainly supporting cell growth and maintenance. Finally, the model prediction in elucidating and reprogramming the native fermentative metabolism of E. coli for obligate anaerobic production of n-butanol and isobutanol was validated with published experimental data. (orig.)

  12. Demyelination in Multiple Sclerosis: Reprogramming Energy Metabolism and Potential PPARγ Agonist Treatment Approaches.

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-04-16

    Demyelination in multiple sclerosis (MS) cells is the site of several energy metabolic abnormalities driven by dysregulation between the opposed interplay of peroxisome proliferator-activated receptor γ (PPARγ) and WNT/β-catenin pathways. We focus our review on the opposing interactions observed in demyelinating processes in MS between the canonical WNT/β-catenin pathway and PPARγ and their reprogramming energy metabolism implications. Demyelination in MS is associated with chronic inflammation, which is itself associated with the release of cytokines by CD4⁺ Th17 cells, and downregulation of PPARγ expression leading to the upregulation of the WNT/β-catenin pathway. Upregulation of WNT/β-catenin signaling induces activation of glycolytic enzymes that modify their energy metabolic behavior. Then, in MS cells, a large portion of cytosolic pyruvate is converted into lactate. This phenomenon is called the Warburg effect, despite the availability of oxygen. The Warburg effect is the shift of an energy transfer production from mitochondrial oxidative phosphorylation to aerobic glycolysis. Lactate production is correlated with increased WNT/β-catenin signaling and demyelinating processes by inducing dysfunction of CD4⁺ T cells leading to axonal and neuronal damage. In MS, downregulation of PPARγ decreases insulin sensitivity and increases neuroinflammation. PPARγ agonists inhibit Th17 differentiation in CD4⁺ T cells and then diminish release of cytokines. In MS, abnormalities in the regulation of circadian rhythms stimulate the WNT pathway to initiate the demyelination process. Moreover, PPARγ contributes to the regulation of some key circadian genes. Thus, PPARγ agonists interfere with reprogramming energy metabolism by directly inhibiting the WNT/β-catenin pathway and circadian rhythms and could appear as promising treatments in MS due to these interactions.

  13. Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Abraham

    2012-09-01

    Full Text Available Natural populations are known to differ not only in DNA but also in their chromatin-associated epigenetic marks. When such inter-individual epigenomic differences (or "epi-polymorphisms" are observed, their stability is usually not known: they may or may not be reprogrammed over time or upon environmental changes. In addition, their origin may be purely epigenetic, or they may result from regulatory variation encoded in the DNA. Studying epi-polymorphisms requires, therefore, an assessment of their nature and stability. Here we estimate the stability of yeast epi-polymorphisms of chromatin acetylation, and we provide a genome-by-epigenome map of their genetic control. A transient epi-drug treatment was able to reprogram acetylation variation at more than one thousand nucleosomes, whereas a similar amount of variation persisted, distinguishing "labile" from "persistent" epi-polymorphisms. Hundreds of genetic loci underlied acetylation variation at 2,418 nucleosomes either locally (in cis or distantly (in trans, and this genetic control overlapped only partially with the genetic control of gene expression. Trans-acting regulators were not necessarily associated with genes coding for chromatin modifying enzymes. Strikingly, "labile" and "persistent" epi-polymorphisms were associated with poor and strong genetic control, respectively, showing that genetic modifiers contribute to persistence. These results estimate the amount of natural epigenomic variation that can be lost after transient environmental exposures, and they reveal the complex genetic architecture of the DNA-encoded determinism of chromatin epi-polymorphisms. Our observations provide a basis for the development of population epigenetics.

  14. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression

    International Nuclear Information System (INIS)

    Hakelien, Anne-Mari; Gaustad, Kristine G.; Taranger, Christel K.; Skalhegg, Bjorn S.; Kuentziger, Thomas; Collas, Philippe

    2005-01-01

    We demonstrate a cell extract-based, genome-wide and heritable reprogramming of gene expression in vitro. Kidney epithelial 293T cells have previously been shown to take on T cell properties following a brief treatment with an extract of Jurkat T cells. We show here that 293T cells exposed for 1 h to a Jurkat cell extract undergo genome-wide, target cell-type-specific and long-lasting transcriptional changes. Microarray analyses indicate that on any given week after extract treatment, ∼2500 genes are upregulated >3-fold, of which ∼900 are also expressed in Jurkat cells. Concomitantly, ∼1500 genes are downregulated or repressed, of which ∼500 are also downregulated in Jurkat cells. Gene expression changes persist for over 30 passages (∼80 population doublings) in culture. Target cell-type specificity of these changes is shown by the lack of activation or repression of Jurkat-specific genes by extracts of 293T cells or carcinoma cells. Quantitative RT-PCR analysis confirms the long-term transcriptional activation of genes involved in key T cell functions. Additionally, growth of cells in suspended aggregates, expression of CD3 and CD28 T cell surface markers, and interleukin-2 secretion by 293T cells treated with extract of adult peripheral blood T cells illustrate a functional nuclear reprogramming. Therefore, target cell-type-specific and heritable changes in gene expression, and alterations in cell function, can be promoted by extracts derived from transformed cells as well as from adult primary cells

  15. Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition.

    Science.gov (United States)

    Scott, Mary T; Korfi, Koorosh; Saffrey, Peter; Hopcroft, Lisa E M; Kinstrie, Ross; Pellicano, Francesca; Guenther, Carla; Gallipoli, Paolo; Cruz, Michelle; Dunn, Karen; Jorgensen, Heather G; Cassels, Jennifer E; Hamilton, Ashley; Crossan, Andrew; Sinclair, Amy; Holyoake, Tessa L; Vetrie, David

    2016-11-01

    A major obstacle to curing chronic myeloid leukemia (CML) is residual disease maintained by tyrosine kinase inhibitor (TKI)-persistent leukemic stem cells (LSC). These are BCR-ABL1 kinase independent, refractory to apoptosis, and serve as a reservoir to drive relapse or TKI resistance. We demonstrate that Polycomb Repressive Complex 2 is misregulated in chronic phase CML LSCs. This is associated with extensive reprogramming of H3K27me3 targets in LSCs, thus sensitizing them to apoptosis upon treatment with an EZH2-specific inhibitor (EZH2i). EZH2i does not impair normal hematopoietic stem cell survival. Strikingly, treatment of primary CML cells with either EZH2i or TKI alone caused significant upregulation of H3K27me3 targets, and combined treatment further potentiated these effects and resulted in significant loss of LSCs compared to TKI alone, in vitro, and in long-term bone marrow murine xenografts. Our findings point to a promising epigenetic-based therapeutic strategy to more effectively target LSCs in patients with CML receiving TKIs. In CML, TKI-persistent LSCs remain an obstacle to cure, and approaches to eradicate them remain a significant unmet clinical need. We demonstrate that EZH2 and H3K27me3 reprogramming is important for LSC survival, but renders LSCs sensitive to the combined effects of EZH2i and TKI. This represents a novel approach to more effectively target LSCs in patients receiving TKI treatment. Cancer Discov; 6(11); 1248-57. ©2016 AACR.See related article by Xie et al., p. 1237This article is highlighted in the In This Issue feature, p. 1197. ©2016 American Association for Cancer Research.

  16. Reprogramming Malignant Cancer Cells toward a Benign Phenotype following Exposure to Human Embryonic Stem Cell Microenvironment

    Science.gov (United States)

    Arena, Vincenzo; Arena, Manuel; Arena, Goffredo Orazio

    2017-01-01

    The embryonic microenvironment is well known to be non-permissive for tumor development because early developmental signals naturally suppress the expression of proto-oncogenes. In an analogous manner, mimicking an early embryonic environment during embryonic stem cell culture has been shown to suppress oncogenic phenotypes of cancer cells. Exosomes derived from human embryonic stem cells harbor substances that mirror the content of the cells of origin and have been reported to reprogram hematopoietic stem/progenitor cells via horizontal transfer of mRNA and proteins. However, the possibility that these embryonic stem cells-derived exosomes might be the main effectors of the anti-tumor effect mediated by the embryonic stem cells has not been explored yet. The present study aims to investigate whether exosomes derived from human embryonic stem cells can reprogram malignant cancer cells to a benign stage and reduce their tumorigenicity. We show that the embryonic stem cell-conditioned medium contains factors that inhibit cancer cell growth and tumorigenicity in vitro and in vivo. Moreover, we demonstrate that exosomes derived from human embryonic stem cells display anti-proliferation and pro-apoptotic effects, and decrease tumor size in a xenograft model. These exosomes are also able to transfer their cargo into target cancer cells, inducing a dose-dependent increase in SOX2, OCT4 and Nanog proteins, leading to a dose-dependent decrease of cancer cell growth and tumorigenicity. This study shows for the first time that human embryonic stem cell-derived exosomes play an important role in the tumor suppressive activity displayed by human embryonic stem cells. PMID:28068409

  17. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells.

    Science.gov (United States)

    Menendez, Javier A; Joven, Jorge; Cufí, Sílvia; Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Martin-Castillo, Begoña; López-Bonet, Eugeni; Alarcón, Tomás; Vazquez-Martin, Alejandro

    2013-04-15

    When fighting cancer, knowledge on metabolism has always been important. Today, it matters more than ever. The restricted cataloging of cancer genomes is quite unlikely to achieve the task of curing cancer, unless it is integrated into metabolic networks that respond to and influence the constantly evolving cancer stem cell (CSC) cellular states. Once the genomic era of carcinogenesis had pushed the 1920s Otto Warburg's metabolic cancer hypothesis into obscurity for decades, the most recent studies begin to support a new developing paradigm, in which the molecular logic behind the conversion of non-CSCs into CSCs can be better understood in terms of the "metabolic facilitators" and "metabolic impediments" that operate as proximate openings and roadblocks, respectively, for the transcriptional events and signal transduction programs that ultimately orchestrate the intrinsic and/or microenvironmental paths to CSC cellular states. Here we propose that a profound understanding of how human carcinomas install a proper "Warburg effect version 2.0" allowing them to "run" the CSCs' "software" programs should guide a new era of metabolo-genomic-personalized cancer medicine. By viewing metabolic reprogramming of CSCs as an essential characteristic that allows dynamic, multidimensional and evolving cancer populations to compete successfully for their expansion on the organism, we now argue that CSCs bioenergetics might be another cancer hallmark. A definitive understanding of metabolic reprogramming in CSCs may complement or to some extent replace, the 30-y-old paradigm of targeting oncogenes to treat human carcinomas, because it can be possible to metabolically create non-permissive or "hostile" metabotypes to prevent the occurrence of CSC cellular states with tumor- and metastasis-initiating capacity.

  18. Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection

    Directory of Open Access Journals (Sweden)

    Mukherjee Krishnendu

    2012-10-01

    Full Text Available Abstract Background Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs and histone deacetylases (HDACs whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessibility and promotes gene expression, whereas the removal of acetyl groups by HDACs has the opposite effect. Results We explored the role of HDACs and HATs in epigenetic reprogramming during metamorphosis, wounding and infection in the lepidopteran model host Galleria mellonella. We measured the expression of genes encoding components of HATs and HDACs to monitor the transcriptional activity of each enzyme complex and found that both enzymes were upregulated during pupation. Specific HAT inhibitors were able to postpone pupation and to reduce insect survival following wounding, whereas HDAC inhibitors accelerated pupation and increased survival. The administration of HDAC inhibitors modulated the expression of effector genes with key roles in tissue remodeling (matrix metalloproteinase, the regulation of sepsis (inhibitor of metalloproteinases from insects and host defense (antimicrobial peptides, and simultaneously induced HAT activity, suggesting that histone acetylation is regulated by a feedback mechanism. We also discovered that both the entomopathogenic fungus Metarhizium anisopliae and the human bacterial pathogen Listeria monocytogenes can delay metamorphosis in G. mellonella by skewing the HDAC/HAT balance. Conclusions Our study provides for the first evidence that pathogenic bacteria can interfere with the regulation of HDACs and HATs in insects which appear to manipulate host immunity and development. We conclude that histone acetylation/deacetylation in insects mediates transcriptional reprogramming during metamorphosis and in response to wounding and infection.

  19. Criminal Justice Systems. Block I: Law Enforcement. Block II: The Courts. Block III: Corrections. Block IV: Community Relations. Block V: Proficiency Skills. Block VI: Criminalistics. Student Guide.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    This student guide together with an instructor guide comprise a set of curriculum materials on the criminal justice system. The student guide contains self-contained instructional material that students can study at their own pace most of the time. Six major subject areas or blocks, which are further broken down into several units, with some units…

  20. Criminal Justice Systems. Block I: Law Enforcement. Block II: The Courts. Block III: Corrections. Block IV: Community Relations. Block V: Proficiency Skills. Block VI: Criminalistics. Instructor Guide.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    This instructor guide together with a student guide comprise a set of curriculum materials on the criminal justice system. The instructor guide is a resource for planning and managing individualized, competency-based instruction in six major subject areas or blocks, which are further broken down into several units with some units having several…

  1. Block by Block: Civic Action in the Battle of Baghdad

    Science.gov (United States)

    2007-11-01

    bedding, and latrine facilities. Additionally, provide milk , baby formula, diapers, 7 Bogart: Block by Block and infant/family care items such as...viable agricultural businesses. The cattle are a cross breed of a “regular” Iraqi cow and a water buffalo. Chicken farms are mostly egg farms, and...a problem. Contractors did not want to work for fear of being shot or kid - napped. For example, four contractors were shot over the duration of

  2. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)

    2017-03-15

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  3. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics

    2016-12-07

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  4. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  5. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    -based method in terms of asymptotic accuracy of variance estimation and distribution approximation. For stationary time series, the asymptotic validity, and the favorable bias properties of the new bootstrap method are shown in two important cases: smooth functions of means, and M-estimators. The first......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample......In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...

  6. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  7. Defying gravity using Jenga™ blocks

    Science.gov (United States)

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-11-01

    This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.

  8. Brief Report: Human Acute Myeloid Leukemia Reprogramming to Pluripotency Is a Rare Event and Selects for Patient Hematopoietic Cells Devoid of Leukemic Mutations.

    Science.gov (United States)

    Lee, Jong-Hee; Salci, Kyle R; Reid, Jennifer C; Orlando, Luca; Tanasijevic, Borko; Shapovalova, Zoya; Bhatia, Mickie

    2017-09-01

    Induced pluripotent stem cell reprogramming has provided critical insights into disease processes by modeling the genetics and related clinical pathophysiology. Human cancer represents highly diverse genetics, as well as inter- and intra-patient heterogeneity, where cellular model systems capable of capturing this disease complexity would be invaluable. Acute myeloid leukemia (AML) represents one of most heterogeneous cancers and has been divided into genetic subtypes correlated with unique risk stratification over the decades. Here, we report our efforts to induce pluripotency from the heterogeneous population of human patients that represents this disease in the clinic. Using robust optimized reprogramming methods, we demonstrate that reprogramming of AML cells harboring leukemic genomic aberrations is a rare event with the exception of those with de novo mixed-lineage leukemia (MLL) mutations that can be reprogrammed and model drug responses in vitro. Our findings indicate that unlike hematopoietic cells devoid of genomic aberrations, AML cells harboring driver mutations are refractory to reprogramming. Expression of MLL fusion proteins in AML cells did not contribute to induced reprogramming success, which continued to select for patient derived cells devoid of AML patient-specific aberrations. Our study reveals that unanticipated blockades to achieving pluripotency reside within the majority of transformed AML patient cells. Stem Cells 2017;35:2095-2102. © 2017 AlphaMed Press.

  9. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells.

    Science.gov (United States)

    Wu, Jia; Ji, Xiaowei; Zhu, Linlin; Jiang, Qiaoli; Wen, Zhenzhen; Xu, Song; Shao, Wei; Cai, Jianting; Du, Qin; Zhu, Yongliang; Mao, Jianshan

    2013-02-28

    Abnormal cytokinesis increases the possibility of nuclear fusion in tumor cells. However, the role of microRNAs (miRNAs) in abnormal cytokinesis is unclear. Here, we found that miR-1290 was significantly up-regulated in clinical colon cancer tissues. Up-regulation of miR-1290 postponed cytokinesis and led to the formation of multinucleated cells. KIF13B was a target of miR-1290 that was involved in aberrant cytokinesis. Furthermore, enforced expression of miR-1290 activated the Wnt pathway and increased the reprogramming-related transcript factors c-Myc and Nanog. Our results suggest that up-regulation of miR-1290 in colon cancer cells impaired cytokinesis and affected reprogramming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy

    Science.gov (United States)

    Yoo, Junsang; Lee, Euiyeon; Kim, Hee Young; Youn, Dong-Ho; Jung, Junghyun; Kim, Hongwon; Chang, Yujung; Lee, Wonwoong; Shin, Jaein; Baek, Soonbong; Jang, Wonhee; Jun, Won; Kim, Soochan; Hong, Jongki; Park, Hi-Joon; Lengner, Christopher J.; Moh, Sang Hyun; Kwon, Youngeun; Kim, Jongpil

    2017-10-01

    Electromagnetic fields (EMF) are physical energy fields generated by electrically charged objects, and specific ranges of EMF can influence numerous biological processes, which include the control of cell fate and plasticity. In this study, we show that electromagnetized gold nanoparticles (AuNPs) in the presence of specific EMF conditions facilitate an efficient direct lineage reprogramming to induced dopamine neurons in vitro and in vivo. Remarkably, electromagnetic stimulation leads to a specific activation of the histone acetyltransferase Brd2, which results in histone H3K27 acetylation and a robust activation of neuron-specific genes. In vivo dopaminergic neuron reprogramming by EMF stimulation of AuNPs efficiently and non-invasively alleviated symptoms in mouse Parkinson's disease models. This study provides a proof of principle for EMF-based in vivo lineage conversion as a potentially viable and safe therapeutic strategy for the treatment of neurodegenerative disorders.

  11. Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function

    DEFF Research Database (Denmark)

    Andersen, Emil; Ingerslev, Lars Roed; Fabre, Odile

    2018-01-01

    BACKGROUND: Deterioration of the adipogenic potential of preadipocytes may contribute to adipose tissue dysfunction in obesity and type 2 diabetes (T2D). Here, we hypothesized that extracellular factors in obesity epigenetically reprogram adipogenesis potential and metabolic function...... and CD36) were associated with DNA methylation remodelling at genes controlling insulin sensitivity and adipocytokine signalling pathways. Prior incubation of 3T3-L1 preadipocytes with TNF-α or palmitate markedly altered insulin responsiveness and metabolic function in the differentiated adipocytes......, and remodelled DNA methylation and gene expression at specific genes, notably related to PPAR signalling. CONCLUSIONS: Our findings that preadipocytes retain the memory of the donor in culture and can be reprogrammed by extracellular factors support a mechanism by which adipocyte precursors are epigenetically...

  12. Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L

    Directory of Open Access Journals (Sweden)

    Jerrica L. Breindel

    2017-09-01

    Full Text Available Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment.

  13. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    Science.gov (United States)

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.

  14. Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells.

    Science.gov (United States)

    Lin, Ying-Chu; Murayama, Yoshinobu; Hashimoto, Koichiro; Nakamura, Yukio; Lin, Chang-Shin; Yokoyama, Kazunari K; Saito, Shigeo

    2014-01-01

    Because of their pluripotent characteristics, human induced pluripotent stem cells (iPSCs) possess great potential for therapeutic application and for the study of degenerative disorders. These cells are generated from normal somatic cells, multipotent stem cells, or cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, NANOG, SSEA-3, SSEA-4, and REX1, and can differentiate into all adult tissue types, both in vitro and in vivo. However, some of the pluripotency-promoting factors have been implicated in tumorigenesis. Here, we describe the merits of tumor suppresser genes as reprogramming factors for the generation of iPSCs without tumorigenic activity. The initial step of reprogramming is induction of the exogenous pluripotent factors to generate the oxidative stress that leads to senescence by DNA damage and metabolic stresses, thus inducing the expression of tumor suppressor genes such as p21CIP1 and p16INK4a through the activation of p53 to be the pre-induced pluripotent stem cells (pre-iPSCs). The later stage includes overcoming the barrier of reprogramming-induced senescence or cell-cycle arrest by shutting off the function of these tumor suppressor genes, followed by the induction of endogenous stemness genes for the full commitment of iPSCs (full-iPSCs). Thus, the reactive oxygen species (ROS) produced by oxidative stress might be critical for the induction of endogenous reprogramming-factor genes via epigenetic changes or antioxidant reactions. We also discuss the critical role of tumor suppressor genes in the evaluation of the tumorigenicity of human cancer cell-derived pluripotent stem cells, and describe how to overcome their tumorigenic properties for application in stem cell therapy in the field of regenerative medicine.

  15. Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Cesar A Sommer

    Full Text Available Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs. We demonstrate that residual expression of the Yamanaka factors prevents iPSCs from acquiring the transcriptional program exhibited by embryonic stem cells (ESCs and that the expression profiles of iPSCs generated with and without c-Myc are indistinguishable. After vector excision, we find 36% of iPSC clones show normal methylation of the Gtl2 region, an imprinted locus that marks ESC-equivalent iPSC lines. Furthermore, we show that the reprogramming factor Klf4 binds to the promoter region of Gtl2. Regardless of Gtl2 methylation status, we find similar endodermal and hepatocyte differentiation potential comparing syngeneic Gtl2(ON vs Gtl2(OFF iPSC clones. Our findings provide new insights into the reprogramming process and emphasize the importance of generating iPSCs free of any residual transgene expression.

  16. Ionizing Radiation Potentiates High Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

    DEFF Research Database (Denmark)

    Nylander, Vibe; Ingerslev, Lars R; Andersen, Emil

    2016-01-01

    Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment...... mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture...

  17. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming.

    Science.gov (United States)

    Quinlan, Aaron R; Boland, Michael J; Leibowitz, Mitchell L; Shumilina, Svetlana; Pehrson, Sidney M; Baldwin, Kristin K; Hall, Ira M

    2011-10-04

    The biomedical utility of induced pluripotent stem cells (iPSCs) will be diminished if most iPSC lines harbor deleterious genetic mutations. Recent microarray studies have shown that human iPSCs carry elevated levels of DNA copy number variation compared with those in embryonic stem cells, suggesting that these and other classes of genomic structural variation (SV), including inversions, smaller duplications and deletions, complex rearrangements, and retroelement transpositions, may frequently arise as a consequence of reprogramming. Here we employ whole-genome paired-end DNA sequencing and sensitive mapping algorithms to identify all classes of SV in three fully pluripotent mouse iPSC lines. Despite the improved scope and resolution of this study, we find few spontaneous mutations per line (one or two) and no evidence for endogenous retroelement transposition. These results show that genome stability can persist throughout reprogramming, and argue that it is possible to generate iPSCs lacking gene-disrupting mutations using current reprogramming methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells.

    Science.gov (United States)

    Shirane, Kenjiro; Kurimoto, Kazuki; Yabuta, Yukihiro; Yamaji, Masashi; Satoh, Junko; Ito, Shinji; Watanabe, Akira; Hayashi, Katsuhiko; Saitou, Mitinori; Sasaki, Hiroyuki

    2016-10-10

    Specification of primordial germ cells (PGCs) activates epigenetic reprogramming for totipotency, the elucidation of which remains a fundamental challenge. Here, we uncover regulatory principles for DNA methylation reprogramming during in vitro PGC specification, in which mouse embryonic stem cells (ESCs) are induced into epiblast-like cells (EpiLCs) and then PGC-like cells (PGCLCs). While ESCs reorganize their methylome to form EpiLCs, PGCLCs essentially dilute the EpiLC methylome at constant, yet different, rates between unique sequence regions and repeats. ESCs form hypomethylated domains around pluripotency regulators for their activation, whereas PGCLCs create demethylation-sensitive domains around developmental regulators by accumulating abundant H3K27me3 for their repression. Loss of PRDM14 globally upregulates methylation and diminishes the hypomethylated domains, but it preserves demethylation-sensitive domains. Notably, female ESCs form hypomethylated lamina-associated domains, while female PGCLCs effectively reverse such states into a more normal configuration. Our findings illuminate the unique orchestration of DNA methylation and histone modification reprogramming during PGC specification. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Concise review: the involvement of SOX2 in direct reprogramming of induced neural stem/precursor cells.

    Science.gov (United States)

    Maucksch, Christof; Jones, Kathryn S; Connor, Bronwen

    2013-08-01

    Since induced pluripotent stem cells were first generated from mouse embryonic fibroblasts in 2006, somatic cell reprogramming has become a powerful and valuable tool in many fields of biomedical research, with the potential to lead to the development of in vitro disease models, cell-based drug screening platforms, and ultimately novel cell therapies. Recent research has now demonstrated the direct conversion of fibroblasts into stem, precursor, or mature cell types that are committed in their fate within a specific lineage, such as hematopoietic precursors or mature neurons. This has been achieved by ectopic expression of defined, tissue-specific transcription factors. Several studies have demonstrated direct reprogramming of mouse and human fibroblasts into immature neural stem or precursor cells, either by transient expression of the four pluripotency genes OCT3/4, KLF4, SOX2, and C-MYC or by application of different combinations of up to 11 neural transcription factors. Interestingly, in all of these studies SOX2 was introduced alone or in combination with other transcription factors. In this review we discuss the different combinations of ectopic transcription factors used to generate neural stem/precursor cells from somatic cells, with particular emphasis on SOX2 and its potential to act as a master regulator for reprogramming to a neural precursor state.