WorldWideScience

Sample records for blockade selectively targets

  1. Viral vector-mediated selective and reversible blockade of the pathway for visual orienting in mice

    Directory of Open Access Journals (Sweden)

    Tadashi eIsa

    2013-10-01

    Full Text Available Recently, by using a combination of two viral vectors, we developed a technique for pathway-selective and reversible synaptic transmission blockade, and successfully induced a behavioral deficit of dexterous hand movements in macaque monkeys by affecting a population of spinal interneurons. To explore the capacity of this technique to work in other pathways and species, and to obtain fundamental methodological information, we tried to block the crossed tecto-reticular pathway, which is known to control orienting responses to visual targets, in mice. A neuron-specific retrograde gene transfer vector with the gene encoding enhanced tetanus neurotoxin (eTeNT tagged with enhanced green fluorescent protein (EGFP under the control of a tetracycline responsive element was injected into the left medial pontine reticular formation. 7–17 days later, an adeno-associated viral vector with a highly efficient Tet-ON sequence, rtTAV16, was injected into the right superior colliculus. 5–9 weeks later, the daily administration of doxycycline (Dox was initiated. Visual orienting responses toward the left side were impaired 1 - 4 days after Dox administration. Anti-GFP immunohistochemistry revealed that a number of neurons in the intermediate and deep layers of the right superior colliculus were positively stained, indicating eTeNT expression. After the termination of Dox administration, the anti-GFP staining returned to the baseline level within 28 days. A second round of Dox administration, starting from 28 days after the termination of the first Dox administration, resulted in the reappearance of the behavioral impairment. These findings showed that pathway-selective and reversible blockade of synaptic transmission causes behavioral effects also in rodents, and that the crossed tecto-reticular pathway surely controls visual orienting behaviors.

  2. Burglar Target Selection

    Science.gov (United States)

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  3. Effect of selective blockade of oxygen consumption, glucose transport, and Ca2+ influx on thyroxine action in human mononuclear cells

    DEFF Research Database (Denmark)

    Kvetny, J; Matzen, L E

    1990-01-01

    The effect of selective blockade of cellular glucose transporters, Ca2+ influx, and mitochondrial oxygen consumption on thyroxine (T4)-stimulated oxygen consumption and glucose uptake was examined in human mononuclear blood cells. Blockade of glucose transporters by cytochalasin B (1 x 10(-5) mol...

  4. CDTI target selection criteria

    Science.gov (United States)

    Britt, C. L.; Davis, C. M.; Jackson, C. B.; Mcclellan, V. A.

    1984-01-01

    A Cockpit Display of Traffic Information (CDTI) is a cockpit instrument which provides information to the aircrew on the relative location of aircraft traffic in the vicinity of their aircraft (township). In addition, the CDTI may provide information to assist in navigation and in aircraft control. It is usually anticipated that the CDTI will be integrated with a horizontal situation indicator used for navigational purposes and/or with a weather radar display. In this study, several sets of aircraft traffic data are analyzed to determine statistics on the number of targets that will be displayed on a CDTI using various target selection criteria. Traffic data were obtained from an Atlanta Terminal Area Simulation and from radar tapes recorded at the Atlanta and Miami terminal areas. Results are given in the form of plots showing the average percentage of time (or probability) that an aircraft equipped with a CDTI would observe from 0 to 10 other aircraft on the display for range settings on the CDTI up to 30 n. mi. and using various target discrimination techniques.

  5. Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation.

    Science.gov (United States)

    Chen, Jun; Joshi, Shailen K; DiDomenico, Stanley; Perner, Richard J; Mikusa, Joe P; Gauvin, Donna M; Segreti, Jason A; Han, Ping; Zhang, Xu-Feng; Niforatos, Wende; Bianchi, Bruce R; Baker, Scott J; Zhong, Chengmin; Simler, Gricelda H; McDonald, Heath A; Schmidt, Robert G; McGaraughty, Steve P; Chu, Katharine L; Faltynek, Connie R; Kort, Michael E; Reilly, Regina M; Kym, Philip R

    2011-05-01

    Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). It is >1000-fold selective over other TRP channels, and is >150-fold selective over 75 other ion channels, enzymes, and G-protein-coupled receptors. Oral dosing of A-967079 produces robust drug exposure in rodents, and exhibits analgesic efficacy in allyl isothiocyanate-induced nocifensive response and osteoarthritic pain in rats (ED(50): 23.2 mg/kg, p.o.). A-967079 attenuates cold allodynia produced by nerve injury but does not alter noxious cold sensation in naive animals, suggesting distinct roles of TRPA1 in physiological and pathological states. Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Immune Checkpoint Blockade in Cancer Treatment: A Double-Edged Sword Cross-Targeting the Host as an “Innocent Bystander”

    Directory of Open Access Journals (Sweden)

    Lucia Gelao

    2014-03-01

    Full Text Available Targeted immune checkpoint blockade augments anti-tumor immunity and induces durable responses in patients with melanoma and other solid tumors. It also induces specific “immune-related adverse events” (irAEs. IrAEs mainly include gastrointestinal, dermatological, hepatic and endocrinological toxicities. Off-target effects that arise appear to account for much of the toxicity of the immune checkpoint blockade. These unique “innocent bystander” effects are likely a direct result of breaking immune tolerance upon immune check point blockade and require specific treatment guidelines that include symptomatic therapies or systemic corticosteroids. What do we need going forward to limit immune checkpoint blockade-induced toxicity? Most importantly, we need a better understanding of the roles played by these agents in normal tissues, so that we can begin to predict potentially problematic side effects on the basis of their selectivity profile. Second, we need to focus on the predictive factors of the response and toxicity of the host rather than serially focusing on individual agents. Third, rigorous biomarker-driven clinical trials are needed to further elucidate the mechanisms of both the benefit and toxicity. We will summarize the double-edged sword effect of immunotherapeutics in cancer treatment.

  7. Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis.

    Science.gov (United States)

    McCann, Fiona E; Perocheau, Dany P; Ruspi, Gerhard; Blazek, Katrina; Davies, Marie L; Feldmann, Marc; Dean, Jonathan L E; Stoop, A Allart; Williams, Richard O

    2014-10-01

    Tumor necrosis factor (TNF) signals via 2 receptors, TNFR type I (TNFRI) and TNFRII, with distinct cellular distribution and signaling functions. In rheumatoid arthritis (RA), the net effect of TNFR signaling favors inflammatory responses while inhibiting the activity of regulatory T cells. TNFRII signaling has been shown to promote Treg cell function. To assess the relative contributions of TNFRI and TNFRII signaling to inflammatory and regulatory responses in vivo, we compared the effect of TNF blockade, hence TNFRI/II, versus TNFRI alone in collagen-induced arthritis (CIA) as a model of RA. Mice with established arthritis were treated for 10 days with anti-mouse TNFRI domain antibody (dAb; DMS5540), an isotype control dAb (DMS5538), or murine TNFRII genetically fused with mouse IgG1 Fc domain (mTNFRII-Fc) beginning on the day of arthritis onset, and disease progression was monitored. Systemic cytokine concentrations and numbers of T cell subsets in lymph nodes and spleens were measured, and intrinsic Treg cell function was determined by ex vivo suppression assays. Progression of CIA was suppressed similarly by TNFRI (DMS5540) and TNFRI/II (mTNFRII-Fc) blockade. However, blockade of TNFRI/II led to increased effector T cell activity, which was not observed after selective TNFRI blockade, suggesting an immunoregulatory role of TNFRII. In support of this, TNFRI blockade, but not TNFRI/II blockade, expanded and activated Treg cells. Furthermore, a dramatic increase in expression of the Treg cell signature genes FoxP3 and TNFRII was observed in joints undergoing remission, which supports the notion that these molecules have a physiologic role in the resolution of inflammation. We propose that a therapeutic strategy that targets TNFRI while sparing TNFRII has the potential to both inhibit inflammation and promote Treg cell activity, which might be superior to TNF blockade. Copyright © 2014 by the American College of Rheumatology.

  8. Selective beta-1 receptor blockade with oral practolol in man. A dose-related phenomenon.

    Science.gov (United States)

    Lertora, J J; Mark, A L; Johannsen, J; Wilson, W R; Abboud, F M

    1975-09-01

    The purpose of this study was to test the hypothesis that oral administration of a low dose of practolol in man produces selective beta-1 receptor blockade, whereas oral administration of a high dose blocks both beta-1 and beta-2 receptors. Normal men were studied 2-4 h after a single oral dose of practolol (1.5 or 12 mg/kg) and after placebo. Effects on beta-1 receptors were studied by measuring heart rate responses to exercise. Effects on beta-2 receptors were tested by measuring forearm vascular responses to brachial arterial infusions of isoproterenol. Neither dose of practolol altered base-line heart rate, forearm vascular resistance, and arterial pressure, Both low and high doses significantly attenuated heart rate responses to exercise. Forearm vasodilator responses to isoproterenol were attenuated by the high dose, but not the low dose, of practolol. Serum concentrations of practolol 2 h after administration of the drug and at the time of the studies of forearm vascular responses averaged 0.5+/-0.1 (SE) and 5.9+/-1.0 mug/ml for low and high doses of practolol, respectively. The results indicate that the phenomenon of selective beta-1 receptor blockade in man is related to the dose and serum concentration of practolol selectively block beta-1 receptors; a high dose and serum concentrations block both beta-1 and beta-2 receptors.

  9. Selective Blockade of Periostin Exon 17 Preserves Cardiac Performance in Acute Myocardial Infarction.

    Science.gov (United States)

    Taniyama, Yoshiaki; Katsuragi, Naruto; Sanada, Fumihiro; Azuma, Junya; Iekushi, Kazuma; Koibuchi, Nobutaka; Okayama, Keita; Ikeda-Iwabu, Yuka; Muratsu, Jun; Otsu, Rei; Rakugi, Hiromi; Morishita, Ryuichi

    2016-02-01

    We previously reported that overexpression of full-length periostin, Pn-1, resulted in ventricular dilation with enhanced interstitial collagen deposition in a rat model. However, other reports have documented that the short-form splice variants Pn-2 (lacking exon 17) and Pn-4 (lacking exons 17 and 21) promoted cardiac repair by angiogenesis and prevented cardiac rupture after acute myocardial infarction. The apparently differing findings from those reports prompted us to use a neutralizing antibody to selectively inhibit Pn-1 by blockade of exon 17 in a rat acute myocardial infarction model. Administration of Pn neutralizing antibody resulted in a significant decrease in the infarcted and fibrotic areas of the myocardium, which prevented ventricular wall thinning and dilatation. The inhibition of fibrosis by Pn neutralizing antibody was associated with a significant decrease in gene expression of fibrotic markers, including collagen I, collagen III, and transforming growth factor-β1. Importantly, the number of α-smooth muscle actin-positive myofibroblasts was significantly reduced in the hearts of animals treated with Pn neutralizing antibody, whereas cardiomyocyte proliferation and angiogenesis were comparable in the IgG and neutralizing antibody groups. Moreover, the level of Pn-1 expression was significantly correlated with the severity of myocardial infarction. In addition, Pn-1, but not Pn-2 or Pn-4, inhibited fibroblast and myocyte attachment, which might account for the cell slippage observed during cardiac remodeling. Collectively, these results indicate that therapeutics that specifically inhibit Pn exon-17, via a neutralizing antibody or drug, without suppressing other periostin variants might offer a new class of medication for the treatment of acute myocardial infarction patients. © 2015 American Heart Association, Inc.

  10. Graft-versus-host disease is enhanced by selective CD73 blockade in mice.

    Directory of Open Access Journals (Sweden)

    Long Wang

    Full Text Available CD73 functions as an ecto-5'-nucleotidase to produce extracellular adenosine that has anti-inflammatory and immunosuppressive activity. We here demonstrate that CD73 helps control graft-versus-host disease (GVHD in mouse models. Survival of wild-type (WT recipients of either allogeneic donor naïve CD73 knock-out (KO or WT T cells was similar suggesting that donor naïve T cell CD73 did not contribute to GVHD. By contrast, donor CD73 KO CD4(+CD25(+ regulatory T cells (Treg had significantly impaired ability to mitigate GVHD mortality compared to WT Treg, suggesting that CD73 on Treg is critical for GVHD protection. However, compared to donor CD73, recipient CD73 is more effective in limiting GVHD. Pharmacological blockade of A2A receptor exacerbated GVHD in WT recipients, but not in CD73 KO recipients, suggesting that A2 receptor signaling is primarily implicated in CD73-mediated GVHD protection. Moreover, pharmacological blockade of CD73 enzymatic activity induced stronger alloreactive T cell activity, worsened GVHD and enhanced the graft-versus-leukemia (GVL effect. These findings suggest that both donor and recipient CD73 protects against GVHD but also limits GVL effects. Thus, either enhancing or blocking CD73 activity has great potential clinical application in allogeneic bone marrow transplants.

  11. Target selection for direct marketing.

    NARCIS (Netherlands)

    Bult, Jan Roelf

    1993-01-01

    In this thesis we concentrated on the use ol direct mail for targeting potential buyers. The major characteristics that influences the success of a plomotional direct mail campaign are the of-fbr,the communication elements, the timing or sequence of these communication elements, and the list of

  12. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Selective Nanoparticle Targeting of the Renal Tubules.

    Science.gov (United States)

    Williams, Ryan M; Shah, Janki; Tian, Helen S; Chen, Xi; Geissmann, Frederic; Jaimes, Edgar A; Heller, Daniel A

    2018-01-01

    Direct targeting to the kidneys is a promising strategy to improve drug therapeutic index for the treatment of kidney diseases. We sought to investigate the renal selectivity and safety of kidney-targeted mesoscale nanoparticle technology. We found that direct intravenous administration of these particles resulted in 26-fold renal selectivity and localized negligibly in the liver or other organs. The nanoparticles targeted the renal proximal tubular epithelial cells, as evidenced by intravital microscopy and ex vivo imaging. Mice treated with the nanoparticles exhibited no negative systemic consequences, immune reaction, liver impairment, or renal impairment. The localization of material selectively to the renal tubules is uncommon, and this work portends the development of renal-targeted drugs for the treatment of kidney diseases. © 2017 American Heart Association, Inc.

  14. Selective targeting of epigenetic reader domains.

    Science.gov (United States)

    Greschik, Holger; Schüle, Roland; Günther, Thomas

    2017-05-01

    Epigenetic regulators including writers, erasers, and readers of chromatin marks have been implicated in numerous diseases and are therefore subject of intense academic and pharmaceutical research. While several small-molecule inhibitors targeting writers or erasers are either approved drugs or are currently being evaluated in clinical trials, the targeting of epigenetic readers has lagged behind. Proof-of-principle that epigenetic readers are also relevant drug targets was provided by landmark discoveries of selective inhibitors targeting the BET family of acetyl-lysine readers. More recently, high affinity chemical probes for non-BET acetyl- and methyl-lysine reader domains have also been developed. Areas covered: This article covers recent advances with the identification and validation of inhibitors and chemical probes targeting epigenetic reader domains. Issues related to epigenetic reader druggability, quality requirements for chemical probes, interpretation of cellular action, unexpected cross-talk, and future challenges are also discussed. Expert opinion: Chemical probes provide a powerful means to unravel biological functions of epigenetic readers and evaluate their potential as drug targets. To yield meaningful results, potency, selectivity, and cellular target engagement of chemical probes need to be stringently validated. Future chemical probes will probably need to fulfil additional criteria such as strict target specificity or the targeting of readers within protein complexes.

  15. Biomarkers for PD-1/PD-L1 Blockade Therapy in Non-Small-cell Lung Cancer: Is PD-L1 Expression a Good Marker for Patient Selection?

    Science.gov (United States)

    Chae, Young Kwang; Pan, Alan; Davis, Andrew A; Raparia, Kirtee; Mohindra, Nisha A; Matsangou, Maria; Giles, Francis J

    2016-09-01

    Immunotherapy has emerged as a promising treatment modality in cancer therapy. With improved understanding of how to tip the balance of immune homeostasis, novel therapeutics targeting immune checkpoints have been developed, with durable responses observed in multiple solid tumors, including melanoma, renal cell carcinoma, and non-small-cell lung cancer. Clinical trials have reported favorable responses using programmed cell death-1 protein receptor (PD-1)/programmed cell death-1 protein ligand (PD-L1) blockade as monotherapy and most impressively in combinatorial trials with cytotoxic T-lymphocyte antigen-4 protein blockade. Nonetheless, a clinical benefit has not been observed in all patients. Therefore, identifying the ideal biomarkers for patient selection would be of great value in optimizing and personalizing immunotherapy. The utility of PD-L1 expression as a biomarker has varied in different clinical trials and immunohistochemistry assays. In addition, the response to immune checkpoint inhibition has been complicated by PD-L1 expression as a marker influenced by the dynamic tumor microenvironment. No consensus has yet been reached on whether PD-L1 expression is an ideal marker for patient selection. Recent research has shown promise for alternative markers, including T-cell immunohistochemistry, other immunologic markers, T-cell receptor clonality, and somatic mutational burden. However, additional studies are needed to assess the value of these as practical predictive biomarkers for patient selection and treatment response. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    Directory of Open Access Journals (Sweden)

    Jonathan eShelton

    2015-01-01

    Full Text Available Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6 induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg. Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15 or advance (CT22 wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light-induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  17. Blockade of CD7 expression in T cells for effective chimeric antigen receptor targeting of T-cell malignancies.

    Science.gov (United States)

    Png, Yi Tian; Vinanica, Natasha; Kamiya, Takahiro; Shimasaki, Noriko; Coustan-Smith, Elaine; Campana, Dario

    2017-11-28

    Effective immunotherapies for T-cell malignancies are lacking. We devised a novel approach based on chimeric antigen receptor (CAR)-redirected T lymphocytes. We selected CD7 as a target because of its consistent expression in T-cell acute lymphoblastic leukemia (T-ALL), including the most aggressive subtype, early T-cell precursor (ETP)-ALL. In 49 diagnostic T-ALL samples (including 14 ETP-ALL samples), median CD7 expression was >99%; CD7 expression remained high at relapse (n = 14), and during chemotherapy (n = 54). We targeted CD7 with a second-generation CAR (anti-CD7-41BB-CD3ζ), but CAR expression in T lymphocytes caused fratricide due to the presence of CD7 in the T cells themselves. To downregulate CD7 and control fratricide, we applied a new method (protein expression blocker [PEBL]), based on an anti-CD7 single-chain variable fragment coupled with an intracellular retention domain. Transduction of anti-CD7 PEBL resulted in virtually instantaneous abrogation of surface CD7 expression in all transduced T cells; 2.0% ± 1.7% were CD7 + vs 98.1% ± 1.5% of mock-transduced T cells (n = 5; P < .0001). PEBL expression did not impair T-cell proliferation, interferon-γ and tumor necrosis factor-α secretion, or cytotoxicity, and eliminated CAR-mediated fratricide. PEBL-CAR T cells were highly cytotoxic against CD7 + leukemic cells in vitro and were consistently more potent than CD7 + T cells spared by fratricide. They also showed strong anti-leukemic activity in cell line- and patient-derived T-ALL xenografts. The strategy described in this study fits well with existing clinical-grade cell manufacturing processes and can be rapidly implemented for the treatment of patients with high-risk T-cell malignancies.

  18. Selective targeting of microglia by quantum dots

    Directory of Open Access Journals (Sweden)

    Minami S Sakura

    2012-01-01

    Full Text Available Abstract Background Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases. Methods Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies. Results In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity. Conclusions These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.

  19. Linking Target Selection to Political Objectives

    National Research Council Canada - National Science Library

    Tew, Scott

    2002-01-01

    ... up for effect, Our goal is to find and effect the targets that will ultimately lead to attainment of our political objectives Yet, how do we logically link a target to the desired political objectives...

  20. Killing two birds with one stone: dual blockade of integrin and FGF signaling through targeting syndecan-4 in postoperative capsular opacification.

    Science.gov (United States)

    Qin, Yingyan; Zhu, Yi; Luo, Furong; Chen, Chuan; Chen, Xiaoyun; Wu, Mingxing

    2017-07-13

    The most common complication after cataract surgery is postoperative capsular opacification, which includes anterior capsular opacification (ACO) and posterior capsular opacification (PCO). Increased adhesion of lens epithelial cells (LECs) to the intraocular lens material surface promotes ACO formation, whereas proliferation and migration of LECs to the posterior capsule lead to the development of PCO. Cell adhesion is mainly mediated by the binding of integrin to extracellular matrix proteins, while cell proliferation and migration are regulated by fibroblast growth factor (FGF). Syndecan-4 (SDC-4) is a co-receptor for both integrin and FGF signaling pathways. Therefore, SDC-4 may be an ideal therapeutic target for the prevention and treatment of postoperative capsular opacification. However, how SDC-4 contributes to FGF-mediated proliferation, migration, and integrin-mediated adhesion of LECs is unclear. Here, we found that downregulation of SDC-4 inhibited FGF signaling through the blockade of ERK1/2 and PI3K/Akt/mTOR activation, thus suppressing cell proliferation and migration. In addition, downregulation of SDC-4 suppressed integrin-mediated cell adhesion through inhibiting focal adhesion kinase (FAK) phosphorylation. Moreover, SDC-4 knockout mice exhibited normal lens morphology, but had significantly reduced capsular opacification after injury. Finally, SDC-4 expression level was increased in the anterior capsule LECs of age-related cataract patients. Taken together, we for the first time characterized the key regulatory role of SDC-4 in FGF and integrin signaling in human LECs, and provided the basis for future pharmacological interventions of capsular opacification.

  1. Targeted blockade in lethal West Nile virus encephalitis indicates a crucial role for very late antigen (VLA-4-dependent recruitment of nitric oxide-producing macrophages

    Directory of Open Access Journals (Sweden)

    Getts Daniel R

    2012-10-01

    Full Text Available Abstract Infiltration of Ly6Chi monocytes from the blood is a hallmark of viral encephalitis. In mice with lethal encephalitis caused by West Nile virus (WNV, an emerging neurotropic flavivirus, inhibition of Ly6Chi monocyte trafficking into the brain by anti-very late antigen (VLA-4 integrin antibody blockade at the time of first weight loss and leukocyte influx resulted in long-term survival of up to 60% of infected mice, with subsequent sterilizing immunity. This treatment had no effect on viral titers but appeared to be due to inhibition of Ly6Chi macrophage immigration. Although macrophages isolated from the infected brain induced WNV-specific CD4+ T-cell proliferation, T cells did not directly contribute to pathology, but are likely to be important in viral control, as antibody-mediated T-cell depletion could not reproduce the therapeutic benefit of anti-VLA-4. Instead, 70% of infiltrating inflammatory monocyte-derived macrophages were found to be making nitric oxide (NO. Furthermore, aminoguanidine-mediated inhibition of induced NO synthase activity in infiltrating macrophages significantly prolonged survival, indicating involvement of NO in the immunopathology. These data show for the first time the therapeutic effects of temporally targeting pathogenic NO-producing macrophages during neurotropic viral encephalitis.

  2. Frontal fasciculi and psychotic symptoms in antipsychotic-naive patients with schizophrenia before and after 6 weeks of selective dopamine D2/3 receptor blockade

    DEFF Research Database (Denmark)

    Ebdrup, Bjørn H; Raghava, Jayachandra M; Nielsen, Mette Ødegaard

    2016-01-01

    in the right CT (t= 2.52, p= 0.019). LIMITATIONS: Smoking and a previous diagnosis of substance abuse were potential confounders. Long-term effects of amisulpride on white matter were not evaluated. CONCLUSION: Antipsychotic-naive patients with schizophrenia displayed subtle deficits in white matter......BACKGROUND: Psychotic symptoms are core clinical features of schizophrenia. We tested recent hypotheses proposing that psychotic, or positive, symptoms stem from irregularities in long-range white matter tracts projecting into the frontal cortex, and we predicted that selective dopamine D2....../3 receptor blockade would restore white matter. METHODS: Between December 2008 and July 2011, antipsychotic-naive patients with first-episode schizophrenia and matched healthy controls underwent baseline examination with 3 T MRI diffusion tensor imaging and clinical assessments. We assessed group differences...

  3. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein.

    Science.gov (United States)

    Ayub, Maximiliano Juri; Nyambega, Benson; Simonetti, Leandro; Duffy, Tomas; Longhi, Silvia A; Gómez, Karina A; Hoebeke, Johan; Levin, Mariano J; Smulski, Cristian R

    2012-01-01

    The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5) directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β) recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.

  4. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein.

    Directory of Open Access Journals (Sweden)

    Maximiliano Juri Ayub

    Full Text Available The ribosomal P proteins are located on the stalk of the ribosomal large subunit and play a critical role during the elongation step of protein synthesis. The single chain recombinant antibody C5 (scFv C5 directed against the C-terminal region of the Trypanosoma cruzi P2β protein (TcP2β recognizes the conserved C-terminal end of all T. cruzi ribosomal P proteins. Although this region is highly conserved among different species, surface plasmon resonance analysis showed that the scFv C5 possesses very low affinity for the corresponding mammalian epitope, despite having only one single amino-acid change. Crystallographic analysis, in silico modelization and NMR assays support the analysis, increasing our understanding on the structural basis of epitope specificity. In vitro protein synthesis experiments showed that scFv C5 was able to specifically block translation by T. cruzi and Crithidia fasciculata ribosomes, but virtually had no effect on Rattus norvegicus ribosomes. Therefore, we used the scFv C5 coding sequence to make inducible intrabodies in Trypanosoma brucei. Transgenic parasites showed a strong decrease in their growth rate after induction. These results strengthen the importance of the P protein C terminal regions for ribosomal translation activity and suggest that trypanosomatid ribosomal P proteins could be a possible target for selective therapeutic agents that could be derived from structural analysis of the scFv C5 antibody paratope.

  5. IL-3R-alpha blockade inhibits tumor endothelial cell-derived extracellular vesicle (EV)-mediated vessel formation by targeting the β-catenin pathway.

    Science.gov (United States)

    Lombardo, Giusy; Gili, Maddalena; Grange, Cristina; Cavallari, Claudia; Dentelli, Patrizia; Togliatto, Gabriele; Taverna, Daniela; Camussi, Giovanni; Brizzi, Maria Felice

    2018-03-01

    The proangiogenic cytokine Interleukin-3 (IL-3) is released by inflammatory cells in breast and ovarian cancer tissue microenvironments and also acts as an autocrine factor for human breast and kidney tumor-derived endothelial cells (TECs). We have previously shown that IL-3-treated endothelial cells (ECs) release extracellular vesicles (EVs), which serve as a paracrine mechanism for neighboring ECs, by transferring active molecules. The impact of an anti-IL-3R-alpha blocking antibody on the proangiogenic effect of EVs released from TECs (anti-IL-3R-EVs) has therefore been investigated in this study. We have found that anti-IL-3R-EV treatment prevented neovessel formation and, more importantly, also induced the regression of in vivo TEC-derived neovessels. Two miRs that target the canonical wingless (Wnt)/β-catenin pathway, at different levels, were found to be differentially regulated when comparing the miR-cargo of naive TEC-derived EVs (EVs) and anti-IL-3R-EVs. miR-214-3p, which directly targets β-catenin, was found to be upregulated, whereas miR-24-3p, which targets adenomatous polyposis coli (APC) and glycogen synthase kinase-3β (GSK3β), was found to be downregulated. In fact, upon their transfer into the cell, low β-catenin content and high levels of the two members of the "β-catenin destruction complex" were detected. Moreover, c-myc downregulation was found in TECs treated with anti-IL-3R-EVs, pre-miR-214-3p-EVs and antago-miR-24-3p-EVs, which is consistent with network analyses of miR-214-3p and miR-24-3p gene targeting. Finally, in vivo studies have demonstrated the impaired growth of vessels in pre-miR-214-3p-EV- and antago-miR-24-3p-EV-treated animals. These effects became much more evident when combo treatment was applied. The results of the present study identify the canonical Wnt/β-catenin pathway as a relevant mechanism of TEC-derived EV proangiogenic action. Furthermore, we herein provide evidence that IL-3R blockade may yield some

  6. Sexual selection targets cetacean pelvic bones.

    Science.gov (United States)

    Dines, James P; Otárola-Castillo, Erik; Ralph, Peter; Alas, Jesse; Daley, Timothy; Smith, Andrew D; Dean, Matthew D

    2014-11-01

    Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis that seems to serve no other function except to anchor muscles that maneuver the penis. Here, we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: (1) males from species with relatively intense sexual selection (inferred by relative testes size) tend to evolve larger penises and pelvic bones compared to their body length, and (2) pelvic bone shape has diverged more in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  7. Sexual selection targets cetacean pelvic bones

    Science.gov (United States)

    Dines, J. P.; Otárola-Castillo, E.; Ralph, P.; Alas, J.; Daley, T.; Smith, A. D.; Dean, M. D.

    2014-01-01

    Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis which seems to serve no other function except to anchor muscles that maneuver the penis. Here we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: 1) males from species with relatively intense sexual selection (inferred by relative testes size) have evolved relatively large penises and pelvic bones compared to their body size, and 2) pelvic bone shape diverges more quickly in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496

  8. Selective enhancement of glutamate-mediated pressor responses after GABAA receptor blockade in the RVLM of sedentary versus spontaneous wheel running rats

    Science.gov (United States)

    Mueller, Patrick J.; Mischel, Nicholas A.

    2012-01-01

    Overactivity of the sympathetic nervous system (SNS) is a hallmark of many cardiovascular diseases. It is also well-known that physical inactivity independently contributes to cardiovascular diseases, likely in part via increased SNS activity. Recent work from our laboratory has demonstrated increased SNS responses in sedentary animals following either direct activation or disinhibition of the rostral ventrolateral medulla (RVLM), an integral cardiovascular brainstem region. These data led us to hypothesize that the interaction between excitation and inhibition of the RVLM is altered in sedentary versus physically active animals. To test this hypothesis, we recorded mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA) in Inactin anesthetized rats that were housed for 8–12 weeks with or without access to a running wheel. Pressor responses to direct activation of the RVLM with glutamate were similar between groups under intact conditions. However, blockade of γ-aminobutyric acid (GABA)A receptors with bicuculline selectively enhanced pressor responses to glutamate in sedentary animals. Interestingly, LSNA responses to glutamate were not enhanced in sedentary versus active animals in the presence or absence of tonic GABAergic tone. These results suggest that sedentary compared to active conditions enhance GABAergic inhibition of glutamate-sensitive neurons in the RVLM that are involved in blood pressure regulation, and by mechanisms that do not involve LSNA. We also speculate that regular physical activity has differential effects on SNS activity to specific vascular beds and may reduce the risk of developing cardiovascular diseases via changes occurring in the RVLM. PMID:23189062

  9. An algorithm for preferential selection of spectroscopic targets in LEGUE

    International Nuclear Information System (INIS)

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Lépine, Sébastien; Deng Licai; Chen Yuqin; Fu Xiaoting; Gao Shuang; Li Jing; Liu Chao; Beers, Timothy C.; Christlieb, Norbert; Grillmair, Carl J.; Guhathakurta, Puragra; Han Zhanwen; Hou Jinliang; Lee, Hsu-Tai; Liu Xiaowei; Pan Kaike; Sellwood, J. A.; Wang Hongchi

    2012-01-01

    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.

  10. Target Selection Models with Preference Variation Between Offenders

    NARCIS (Netherlands)

    Townsley, Michael; Birks, Daniel; Ruiter, Stijn; Bernasco, Wim; White, Gentry

    2016-01-01

    Objectives: This study explores preference variation in location choice strategies of residential burglars. Applying a model of offender target selection that is grounded in assertions of the routine activity approach, rational choice perspective, crime pattern and social disorganization theories,

  11. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  12. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ

    1990-03-01

    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  13. Selection and Identification of Skeletal-Muscle-Targeted RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Styliana Philippou

    2018-03-01

    Full Text Available Oligonucleotide gene therapy has shown great promise for the treatment of muscular dystrophies. Nevertheless, the selective delivery to affected muscles has shown to be challenging because of their high representation in the body and the high complexity of their cell membranes. Current trials show loss of therapeutic molecules to non-target tissues leading to lower target efficacy. Therefore, strategies that increase uptake efficiency would be particularly compelling. To address this need, we applied a cell-internalization SELEX (Systematic Evolution of Ligands by Exponential Enrichment approach and identified a skeletal muscle-specific RNA aptamer. A01B RNA aptamer preferentially internalizes in skeletal muscle cells and exhibits decreased affinity for off-target cells. Moreover, this in vitro selected aptamer retained its functionality in vivo, suggesting a potential new approach for targeting skeletal muscles. Ultimately, this will aid in the development of targeted oligonucleotide therapies against muscular dystrophies.

  14. Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells.

    Science.gov (United States)

    Rezaei Araghi, Raheleh; Bird, Gregory H; Ryan, Jeremy A; Jenson, Justin M; Godes, Marina; Pritz, Jonathan R; Grant, Robert A; Letai, Anthony; Walensky, Loren D; Keating, Amy E

    2018-01-30

    Bcl-2 family proteins regulate apoptosis, and aberrant interactions of overexpressed antiapoptotic family members such as Mcl-1 promote cell transformation, cancer survival, and resistance to chemotherapy. Discovering potent and selective Mcl-1 inhibitors that can relieve apoptotic blockades is thus a high priority for cancer research. An attractive strategy for disabling Mcl-1 involves using designer peptides to competitively engage its binding groove, mimicking the structural mechanism of action of native sensitizer BH3-only proteins. We transformed Mcl-1-binding peptides into α-helical, cell-penetrating constructs that are selectively cytotoxic to Mcl-1-dependent cancer cells. Critical to the design of effective inhibitors was our introduction of an all-hydrocarbon cross-link or "staple" that stabilizes α-helical structure, increases target binding affinity, and independently confers binding specificity for Mcl-1 over related Bcl-2 family paralogs. Two crystal structures of complexes at 1.4 Å and 1.9 Å resolution demonstrate how the hydrophobic staple induces an unanticipated structural rearrangement in Mcl-1 upon binding. Systematic sampling of staple location and iterative optimization of peptide sequence in accordance with established design principles provided peptides that target intracellular Mcl-1. This work provides proof of concept for the development of potent, selective, and cell-permeable stapled peptides for therapeutic targeting of Mcl-1 in cancer, applying a design and validation workflow applicable to a host of challenging biomedical targets.

  15. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik; Bendtsen, Flemming; Hansen, Erik Feldager

    2004-01-01

    received 80 mg propranolol orally during a haemodynamic investigation with measurements at baseline and 90 min after propranolol ingestion. RESULTS: Beta-blockade reduced cardiac output (-21%, P17%, P...BACKGROUND/AIMS: Earlier studies have shown a prolonged frequency-adjusted Q-T interval (QTc>0.440 s(1/2)) in a substantial fraction of patients with cirrhosis. The effect of beta-blockade on QTc is unknown, and its determination was the aim of the study. METHODS: Seventeen patients with cirrhosis......=0.460 s(1/2) was prolonged compared to 0.410 s(1/2) in age-matched controls (Pbeta-blockade in the cirrhotic patients (from 0.460 to 0.440 s(1/2), P

  16. Acute non-selective beta-adrenergic blockade reduces prolonged frequency-adjusted Q-T interval (QTc) in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens H; Bendtsen, Flemming; Hansen, Erik Feldager

    2004-01-01

    BACKGROUND/AIMS: Earlier studies have shown a prolonged frequency-adjusted Q-T interval (QTc>0.440 s(1/2)) in a substantial fraction of patients with cirrhosis. The effect of beta-blockade on QTc is unknown, and its determination was the aim of the study. METHODS: Seventeen patients with cirrhosis...... received 80 mg propranolol orally during a haemodynamic investigation with measurements at baseline and 90 min after propranolol ingestion. RESULTS: Beta-blockade reduced cardiac output (-21%, P...=0.460 s(1/2) was prolonged compared to 0.410 s(1/2) in age-matched controls (Pbeta-blockade in the cirrhotic patients (from 0.460 to 0.440 s(1/2), P2), ns), and a reduction was seen...

  17. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  18. In-silico Leishmania Target Selectivity of Antiparasitic Terpenoids

    Directory of Open Access Journals (Sweden)

    Ifedayo Victor Ogungbe

    2013-07-01

    Full Text Available Neglected Tropical Diseases (NTDs, like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.

  19. Improved targeted immunization strategies based on two rounds of selection

    Science.gov (United States)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  20. Feature Extraction and Selection Strategies for Automated Target Recognition

    Science.gov (United States)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  1. WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization

    Science.gov (United States)

    Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry

    2018-01-01

    We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.

  2. Deep Brain Stimulation Target Selection for Parkinson's Disease.

    Science.gov (United States)

    Honey, Christopher R; Hamani, Clement; Kalia, Suneil K; Sankar, Tejas; Picillo, Marina; Munhoz, Renato P; Fasano, Alfonso; Panisset, Michel

    2017-01-01

    During the "DBS Canada Day" symposium held in Toronto July 4-5, 2014, the scientific committee invited experts to discuss three main questions on target selection for deep brain stimulation (DBS) of patients with Parkinson's disease (PD). First, is the subthalamic nucleus (STN) or the globus pallidus internus (GPi) the ideal target? In summary, both targets are equally effective in improving the motor symptoms of PD. STN allows a greater medications reduction, while GPi exerts a direct antidyskinetic effect. Second, are there further potential targets? Ventral intermediate nucleus DBS has significant long-term benefit for tremor control but insufficiently addresses other motor features of PD. DBS in the posterior subthalamic area also reduces tremor. The pedunculopontine nucleus remains an investigational target. Third, should DBS for PD be performed unilaterally, bilaterally or staged? Unilateral STN DBS can be proposed to asymmetric patients. There is no evidence that a staged bilateral approach reduces the incidence of DBS-related adverse events.

  3. Neural Networks for Target Selection in Direct Marketing

    NARCIS (Netherlands)

    R. Potharst (Rob); U. Kaymak (Uzay); W.H.L.M. Pijls (Wim)

    2001-01-01

    textabstractPartly due to a growing interest in direct marketing, it has become an important application field for data mining. Many techniques have been applied to select the targets in commercial applications, such as statistical regression, regression trees, neural computing, fuzzy clustering

  4. Classification and Target Group Selection Based Upon Frequent Patterns

    NARCIS (Netherlands)

    W.H.L.M. Pijls (Wim); R. Potharst (Rob)

    2000-01-01

    textabstractIn this technical report , two new algorithms based upon frequent patterns are proposed. One algorithm is a classification method. The other one is an algorithm for target group selection. In both algorithms, first of all, the collection of frequent patterns in the training set is

  5. Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides.

    Science.gov (United States)

    Lohse, Jonas; Swier, Lotteke J Y M; Oudshoorn, Ruben C; Médard, Guillaume; Kuster, Bernhard; Slotboom, Dirk-Jan; Witte, Martin D

    2017-04-19

    In chemical biology, azides are used to chemically manipulate target structures in a bioorthogonal manner for a plethora of applications ranging from target identification to the synthesis of homogeneously modified protein conjugates. While a variety of methods have been established to introduce the azido group into recombinant proteins, a method that directly converts specific amino groups in endogenous proteins is lacking. Here, we report the first biotin-tethered diazotransfer reagent DtBio and demonstrate that it selectively modifies the model proteins streptavidin and avidin and the membrane protein BioY on cell surface. The reagent converts amines in the proximity of the binding pocket to azides and leaves the remaining amino groups in streptavidin untouched. Reagents of this novel class will find use in target identification as well as the selective functionalization and bioorthogonal protection of proteins.

  6. Target Selection for the SDSS-IV APOGEE-2 Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zasowski, G. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Cohen, R. E.; Carlberg, J. K.; Fleming, Scott W. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chojnowski, S. D.; Holtzman, J. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88001 (United States); Santana, F. [Departamento de Astronomía, Universidad de Chile, Santiago (Chile); Oelkers, R. J.; Bird, J. C. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Andrews, B. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Beaton, R. L. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bender, C.; Cunha, K. [Steward Observatory, The University of Arizona, Tucson, AZ 85719 (United States); Bovy, J. [Department of Astronomy and Astrophysics and Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Covey, K. [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States); Dell’Agli, F.; García-Hernández, D. A. [Departamento de Astrofísica, Universidad de La Laguna, and Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Harding, P. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Johnson, J. A., E-mail: gail.zasowski@gmail.com [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); and others

    2017-11-01

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10{sup 5} stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.

  7. Predicting selective drug targets in cancer through metabolic networks

    Science.gov (United States)

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  8. Target Selection for the SDSS-IV APOGEE-2 Survey

    Science.gov (United States)

    Zasowski, G.; Cohen, R. E.; Chojnowski, S. D.; Santana, F.; Oelkers, R. J.; Andrews, B.; Beaton, R. L.; Bender, C.; Bird, J. C.; Bovy, J.; Carlberg, J. K.; Covey, K.; Cunha, K.; Dell'Agli, F.; Fleming, Scott W.; Frinchaboy, P. M.; García-Hernández, D. A.; Harding, P.; Holtzman, J.; Johnson, J. A.; Kollmeier, J. A.; Majewski, S. R.; Mészáros, Sz.; Munn, J.; Muñoz, R. R.; Ness, M. K.; Nidever, D. L.; Poleski, R.; Román-Zúñiga, C.; Shetrone, M.; Simon, J. D.; Smith, V. V.; Sobeck, J. S.; Stringfellow, G. S.; Szigetiáros, L.; Tayar, J.; Troup, N.

    2017-11-01

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ˜3 × 105 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.

  9. Integrative analysis to select cancer candidate biomarkers to targeted validation

    Science.gov (United States)

    Heberle, Henry; Domingues, Romênia R.; Granato, Daniela C.; Yokoo, Sami; Canevarolo, Rafael R.; Winck, Flavia V.; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Filgueiras, Paulo R.; Cruz, Karen S. P.; Barbuto, José Alexandre; Poppi, Ronei J.; Minghim, Rosane; Telles, Guilherme P.; Fonseca, Felipe Paiva; Fox, Jay W.; Santos-Silva, Alan R.; Coletta, Ricardo D.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2015-01-01

    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. PMID:26540631

  10. Target Selection for the SDSS-III MARVELS Survey

    Science.gov (United States)

    Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-06-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.

  11. Coulomb Blockade Plasmonic Switch.

    Science.gov (United States)

    Xiang, Dao; Wu, Jian; Gordon, Reuven

    2017-04-12

    Tunnel resistance can be modulated with bias via the Coulomb blockade effect, which gives a highly nonlinear response current. Here we investigate the optical response of a metal-insulator-nanoparticle-insulator-metal structure and show switching of a plasmonic gap from insulator to conductor via Coulomb blockade. By introducing a sufficiently large charging energy in the tunnelling gap, the Coulomb blockade allows for a conductor (tunneling) to insulator (capacitor) transition. The tunnelling electrons can be delocalized over the nanocapacitor again when a high energy penalty is added with bias. We demonstrate that this has a huge impact on the plasmonic resonance of a 0.51 nm tunneling gap with ∼70% change in normalized optical loss. Because this structure has a tiny capacitance, there is potential to harness the effect for high-speed switching.

  12. Target selection and deselection at the Berkeley Structural Genomics Center.

    Science.gov (United States)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E

    2006-02-01

    At the Berkeley Structural Genomics Center (BSGC), our goal is to obtain a near-complete structural complement of proteins in the minimal organisms Mycoplasma genitalium and M. pneumoniae, two closely related pathogens. Current targets for structure determination have been selected in six major stages, starting with those predicted to be most tractable to high throughput study and likely to yield new structural information. We report on the process used to select these proteins, as well as our target deselection procedure. Target deselection reduces experimental effort by eliminating targets similar to those recently solved by the structural biology community or other centers. We measure the impact of the 69 structures solved at the BSGC as of July 2004 on structure prediction coverage of the M. pneumoniae and M. genitalium proteomes. The number of Mycoplasma proteins for which the fold could first be reliably assigned based on structures solved at the BSGC (24 M. pneumoniae and 21 M. genitalium) is approximately 25% of the total resulting from work at all structural genomics centers and the worldwide structural biology community (94 M. pneumoniae and 86 M. genitalium) during the same period. As the number of structures contributed by the BSGC during that period is less than 1% of the total worldwide output, the benefits of a focused target selection strategy are apparent. If the structures of all current targets were solved, the percentage of M. pneumoniae proteins for which folds could be reliably assigned would increase from approximately 57% (391 of 687) at present to around 80% (550 of 687), and the percentage of the proteome that could be accurately modeled would increase from around 37% (254 of 687) to about 64% (438 of 687). In M. genitalium, the percentage of the proteome that could be structurally annotated based on structures of our remaining targets would rise from 72% (348 of 486) to around 76% (371 of 486), with the percentage of accurately modeled

  13. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  14. Think Outside The Color Box: Probabilistic Target Selection And The SDSS-XDQSO Quasar Targeting Catalog

    International Nuclear Information System (INIS)

    Bovy, J.; Sheldon, E.; Hennawi, J.F.; Hogg, D.W.; Myers, A.D.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 ∼ 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg 2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

  15. Dynamic interactions between visual working memory and saccade target selection

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  16. Dynamic interactions between visual working memory and saccade target selection.

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-09-16

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. © 2014 ARVO.

  17. SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS

    International Nuclear Information System (INIS)

    Batalha, Natalie M.; Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Haas, Michael R.; Brown, Timothy M.; Caldwell, Douglas A.; Hall, Jennifer R.; Gilliland, Ronald L.; Latham, David W.; Meibom, Soren; Monet, David G.

    2010-01-01

    The Kepler Mission began its 3.5 year photometric monitoring campaign in 2009 May on a select group of approximately 150,000 stars. The stars were chosen from the ∼ half million in the field of view that are brighter than 16th magnitude. The selection criteria are quantitative metrics designed to optimize the scientific yield of the mission with regard to the detection of Earth-size planets in the habitable zone. This yields more than 90,000 G-type stars on or close to the main sequence, >20, 000 of which are brighter than 14th magnitude. At the temperature extremes, the sample includes approximately 3000 M-type dwarfs and a small sample of O- and B-type MS stars (<200). The small numbers of giants are included in the sample: ∼5000 stars with surface gravities log(g) < 3.5. We present a brief summary of the selection process and the stellar populations it yields in terms of surface gravity, effective temperature, and apparent magnitude. In addition to the primary, statistically derived target set, several ancillary target lists were manually generated to enhance the science of the mission, examples being: known eclipsing binaries, open cluster members, and high proper motion stars.

  18. Selective inhibition of retinal angiogenesis by targeting PI3 kinase.

    Directory of Open Access Journals (Sweden)

    Yolanda Alvarez

    Full Text Available Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease.

  19. An assessment of spacecraft target mode selection methods

    Science.gov (United States)

    Mercer, J. F.; Aglietti, G. S.; Remedia, M.; Kiley, A.

    2017-11-01

    Coupled Loads Analyses (CLAs), using finite element models (FEMs) of the spacecraft and launch vehicle to simulate critical flight events, are performed in order to determine the dynamic loadings that will be experienced by spacecraft during launch. A validation process is carried out on the spacecraft FEM beforehand to ensure that the dynamics of the analytical model sufficiently represent the behavior of the physical hardware. One aspect of concern is the containment of the FEM correlation and update effort to focus on the vibration modes which are most likely to be excited under test and CLA conditions. This study therefore provides new insight into the prioritization of spacecraft FEM modes for correlation to base-shake vibration test data. The work involved example application to large, unique, scientific spacecraft, with modern FEMs comprising over a million degrees of freedom. This comprehensive investigation explores: the modes inherently important to the spacecraft structures, irrespective of excitation; the particular 'critical modes' which produce peak responses to CLA level excitation; an assessment of several traditional target mode selection methods in terms of ability to predict these 'critical modes'; and an indication of the level of correlation these FEM modes achieve compared to corresponding test data. Findings indicate that, although the traditional methods of target mode selection have merit and are able to identify many of the modes of significance to the spacecraft, there are 'critical modes' which may be missed by conventional application of these methods. The use of different thresholds to select potential target modes from these parameters would enable identification of many of these missed modes. Ultimately, some consideration of the expected excitations is required to predict all modes likely to contribute to the response of the spacecraft in operation.

  20. Targets of balancing selection in the human genome

    DEFF Research Database (Denmark)

    Andrés, Aida M; Hubisz, Melissa J; Indap, Amit

    2009-01-01

    Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant...... to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set......, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment...

  1. Recombinant protein expression by targeting pre-selected chromosomal loci

    Directory of Open Access Journals (Sweden)

    Krömer Wolfgang

    2009-12-01

    Full Text Available Abstract Background Recombinant protein expression in mammalian cells is mostly achieved by stable integration of transgenes into the chromosomal DNA of established cell lines. The chromosomal surroundings have strong influences on the expression of transgenes. The exploitation of defined loci by targeting expression constructs with different regulatory elements is an approach to design high level expression systems. Further, this allows to evaluate the impact of chromosomal surroundings on distinct vector constructs. Results We explored antibody expression upon targeting diverse expression constructs into previously tagged loci in CHO-K1 and HEK293 cells that exhibit high reporter gene expression. These loci were selected by random transfer of reporter cassettes and subsequent screening. Both, retroviral infection and plasmid transfection with eGFP or antibody expression cassettes were employed for tagging. The tagged cell clones were screened for expression and single copy integration. Cell clones producing > 20 pg/cell in 24 hours could be identified. Selected integration sites that had been flanked with heterologous recombinase target sites (FRTs were targeted by Flp recombinase mediated cassette exchange (RMCE. The results give proof of principle for consistent protein expression upon RMCE. Upon targeting antibody expression cassettes 90-100% of all resulting cell clones showed correct integration. Antibody production was found to be highly consistent within the individual cell clones as expected from their isogenic nature. However, the nature and orientation of expression control elements revealed to be critical. The impact of different promoters was examined with the tag-and-targeting approach. For each of the chosen promoters high expression sites were identified. However, each site supported the chosen promoters to a different extent, indicating that the strength of a particular promoter is dominantly defined by its chromosomal context

  2. Selective Targeting to Glioma with Nucleic Acid Aptamers.

    Directory of Open Access Journals (Sweden)

    Shraddha Aptekar

    Full Text Available Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.

  3. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  4. Attentional set mixing: Effects on target selection and selective response activation.

    Science.gov (United States)

    Ruge, Hannes; Stoet, Gijsbert; Naumann, Ewald

    2006-07-01

    Performance is impaired under set mixing conditions that require frequent readjustments of attentional focus over an extended time period. We compared set repetitions within pure blocks (constant focus of attention) to physically identical repetitions within mixed blocks (changing focus of attention). The aim was to investigate how set mixing affects target selection, indexed by the N2pc component, and selective response activation, indexed by the lateralized readiness potential (LRP). We found that set mixing prolonged the evolution of the N2pc while leaving its onset unaffected. Impaired target selection indicated by the N2pc mixing effect also delayed the start of response planning indexed by an onset delay of the stimulus-locked LRP, explaining one part of the behavioral mixing cost. A larger part of mixing cost could be attributed to a prolonged response planning phase, indexed by an earlier onset of the response-locked LRP.

  5. Blockade of KCa3.1 Attenuates Left Ventricular Remodeling after Experimental Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Chen-Hui Ju

    2015-07-01

    Full Text Available Background/Aims: After myocardial infarction (MI, cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1 has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. Methods: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs stimulated by angiotensin II (Ang II was tested. Results: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. Conclusion: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.

  6. CD133, Selectively Targeting the Root of Cancer

    Directory of Open Access Journals (Sweden)

    Jörg U. Schmohl

    2016-05-01

    Full Text Available Cancer stem cells (CSC are capable of promoting tumor initiation and self-renewal, two important hallmarks of carcinoma formation. This population comprises a small percentage of the tumor mass and is highly resistant to chemotherapy, causing the most difficult problem in the field of cancer research, drug refractory relapse. Many CSC markers have been reported. One of the most promising and perhaps least ubiquitous is CD133, a membrane-bound pentaspan glycoprotein that is frequently expressed on CSC. There is evidence that directly targeting CD133 with biological drugs might be the most effective way to eliminate CSC. We have investigated two entirely unrelated, but highly effective approaches for selectively targeting CD133. The first involves using a special anti-CD133 single chain variable fragment (scFv to deliver a catalytic toxin. The second utilizes this same scFv to deliver components of the immune system. In this review, we discuss the development and current status of these CD133 associated biological agents. Together, they show exceptional promise by specific and efficient CSC elimination.

  7. MESSI: metabolic engineering target selection and best strain identification tool.

    Science.gov (United States)

    Kang, Kang; Li, Jun; Lim, Boon Leong; Panagiotou, Gianni

    2015-01-01

    Metabolic engineering and synthetic biology are synergistically related fields for manipulating target pathways and designing microorganisms that can act as chemical factories. Saccharomyces cerevisiae's ideal bioprocessing traits make yeast a very attractive chemical factory for production of fuels, pharmaceuticals, nutraceuticals as well as a wide range of chemicals. However, future attempts of engineering S. cerevisiae's metabolism using synthetic biology need to move towards more integrative models that incorporate the high connectivity of metabolic pathways and regulatory processes and the interactions in genetic elements across those pathways and processes. To contribute in this direction, we have developed Metabolic Engineering target Selection and best Strain Identification tool (MESSI), a web server for predicting efficient chassis and regulatory components for yeast bio-based production. The server provides an integrative platform for users to analyse ready-to-use public high-throughput metabolomic data, which are transformed to metabolic pathway activities for identifying the most efficient S. cerevisiae strain for the production of a compound of interest. As input MESSI accepts metabolite KEGG IDs or pathway names. MESSI outputs a ranked list of S. cerevisiae strains based on aggregation algorithms. Furthermore, through a genome-wide association study of the metabolic pathway activities with the strains' natural variation, MESSI prioritizes genes and small variants as potential regulatory points and promising metabolic engineering targets. Users can choose various parameters in the whole process such as (i) weight and expectation of each metabolic pathway activity in the final ranking of the strains, (ii) Weighted AddScore Fuse or Weighted Borda Fuse aggregation algorithm, (iii) type of variants to be included, (iv) variant sets in different biological levels.Database URL: http://sbb.hku.hk/MESSI/. © The Author(s) 2015. Published by Oxford University

  8. Deciphering the code for retroviral integration target site selection.

    Directory of Open Access Journals (Sweden)

    Federico Andrea Santoni

    2010-11-01

    Full Text Available Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses.

  9. Identification of a Selective G1-Phase Benzimidazolone Inhibitor by a Senescence-Targeted Virtual Screen Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Alan E. Bilsland

    2015-09-01

    Full Text Available Cellular senescence is a barrier to tumorigenesis in normal cells, and tumor cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning–based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. One hundred and forty-seven virtual hits were acquired for validation in growth inhibition and senescence-associated β-galactosidase assays. Among the found hits, a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced senescence-associated β-galactosidase activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1, and CDC25C. In addition, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long-term treatments. Preliminary structure-activity and structure clustering analyses are reported, and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor–like profile in normal cells, with different pathways affected in cancer cells.

  10. Neuromuscular blockade in children

    Directory of Open Access Journals (Sweden)

    Almeida João Fernando Lourenço de

    2000-01-01

    Full Text Available Neuromuscular blocking agents (NMBAs have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000 and active search of articles were the mechanisms used in this review.

  11. Target product selection - where can Molecular Pharming make the difference?

    Science.gov (United States)

    Paul, Mathew J; Teh, Audrey Y H; Twyman, Richard M; Ma, Julian K-C

    2013-01-01

    Four major developments have taken place in the world of Molecular Pharming recently. In the USA, the DARPA initiative challenged plant biotechnology companies to develop strategies for the large-scale manufacture of influenza vaccines, resulting in a successful Phase I clinical trial; in Europe the Pharma-Planta academic consortium gained regulatory approval for a plant-derived monoclonal antibody and completed a first-in-human phase I clinical trial; the Dutch pharmaceutical company Synthon acquired the assets of Biolex Therapeutics, an established Molecular Pharming company with several clinical candidates produced in their proprietary LEX system based on aquatic plants; and finally, the Israeli biotechnology company Protalix Biotherapeutics won FDA approval for the commercial release of a recombinant form of the enzyme glucocerebrosidase produced in carrot cells, the first plant biotechnology-derived biopharmaceutical in the world approved for the market. Commercial momentum is gathering pace with additional candidates now undergoing or awaiting approval for phase III clinical trials. Filling the product pipeline is vital to establish commercial sustainability, and the selection of appropriate target products for Molecular Pharming will be a critical factor. An interesting feature of the four stories outlined above is that they span the use of very different platform technologies addressing different types of molecules which aim to satisfy distinct market demands. In each case, Molecular Pharming was an economically and technically suitable approach, but this decisionmaking process is not necessarily straightforward. Although the various technologies available to Molecular Pharming are broad ranging and flexible, competing technologies are better established, so there needs to be a compelling reason to move into plants. It is most unlikely that plant biotechnology will be the answer for the whole biologics field. In this article, we discuss the current plant

  12. EFFECTIVELY SELECTING A TARGET POPULATION FOR A FUTURE COMPARATIVE STUDY.

    Science.gov (United States)

    Zhao, Lihui; Tian, Lu; Cai, Tianxi; Claggett, Brian; Wei, L J

    2013-01-01

    When comparing a new treatment with a control in a randomized clinical study, the treatment effect is generally assessed by evaluating a summary measure over a specific study population. The success of the trial heavily depends on the choice of such a population. In this paper, we show a systematic, effective way to identify a promising population, for which the new treatment is expected to have a desired benefit, utilizing the data from a current study involving similar comparator treatments. Specifically, using the existing data, we first create a parametric scoring system as a function of multiple multiple baseline covariates to estimate subject-specific treatment differences. Based on this scoring system, we specify a desired level of treatment difference and obtain a subgroup of patients, defined as those whose estimated scores exceed this threshold. An empirically calibrated threshold-specific treatment difference curve across a range of score values is constructed. The subpopulation of patients satisfying any given level of treatment benefit can then be identified accordingly. To avoid bias due to overoptimism, we utilize a cross-training-evaluation method for implementing the above two-step procedure. We then show how to select the best scoring system among all competing models. Furthermore, for cases in which only a single pre-specified working model is involved, inference procedures are proposed for the average treatment difference over a range of score values using the entire data set, and are justified theoretically and numerically. Lastly, the proposals are illustrated with the data from two clinical trials in treating HIV and cardiovascular diseases. Note that if we are not interested in designing a new study for comparing similar treatments, the new procedure can also be quite useful for the management of future patients, so that treatment may be targeted towards those who would receive nontrivial benefits to compensate for the risk or cost of the

  13. Effects of Mode of Target Task Selection on Learning about Plants in a Mobile Learning Environment: Effortful Manual Selection versus Effortless QR-Code Selection

    Science.gov (United States)

    Gao, Yuan; Liu, Tzu-Chien; Paas, Fred

    2016-01-01

    This study compared the effects of effortless selection of target plants using quick respond (QR) code technology to effortful manual search and selection of target plants on learning about plants in a mobile device supported learning environment. In addition, it was investigated whether the effectiveness of the 2 selection methods was…

  14. Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides

    NARCIS (Netherlands)

    Lohse, Jonas; Swier, Lotteke; Oudshoorn, Ruben; Médard, Guillaume; Kuster, Bernhard; Slotboom, Dirk Jan; Witte, Martin D

    In chemical biology, azides are used to chemically manipulate target structures in a bioorthogonal manner for a plethora of applications ranging from target identification to the synthesis of homogeneously modified protein conjugates. While a variety of methods have been established to introduce the

  15. Rational design of chemical ligands for selective mitochondrial targeting

    Czech Academy of Sciences Publication Activity Database

    Rimpelová, S.; Bříza, T.; Králová, Jarmila; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V.

    2013-01-01

    Roč. 24, č. 9 (2013), s. 1445-1454 ISSN 1520-4812 R&D Projects: GA ČR(CZ) GAP303/11/1291; GA ČR GA203/09/1311 Grant - others:GA AV ČR(CZ) KAN200100801; GA MŠk(CZ) ED0030/01/01 Program:KA Institutional support: RVO:68378050 Keywords : intracellular targeting * mitochondria * cardiolipin * pentamethine * fluorescent dyes Subject RIV: EB - Genetics ; Molecular Biology

  16. Development of Antibacterials Targeting the MEP Pathway of Select Agents

    Science.gov (United States)

    2015-03-01

    Yersinia pestis will serve as effective antibiotics by blocking isoprene biosynthesis . In strong support of this hypothesis, we have demonstrated the dose... antibiotic resistant strains and the ease by which antibiotic resistance can be engineered into bacteria further highlights the need for continued...development of novel antibiotics against new bacterial targets. This research project directly addresses this need through the development of a broad spectrum

  17. Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade (review).

    Science.gov (United States)

    Harris, Randall E; Beebe-Donk, Joanne; Doss, Hani; Burr Doss, Deborah

    2005-04-01

    We comprehensively reviewed the published scientific literature on non-steroidal anti-inflammatory drugs (NSAIDs) and cancer and evaluated results based upon epidemiologic criteria of judgment: consistency of results, strength of association, dose response, molecular specificity, and biological plausibility. Sufficient data from 91 epidemiologic studies were available to examine the dose response of relative risk and level of NSAID intake for ten human malignancies. Dose response curves were fitted by exponential regression. Results showed a significant exponential decline in the risk with increasing intake of NSAIDs (primarily aspirin or ibuprofen) for 7-10 malignancies including the four major types: colon, breast, lung, and prostate cancer. Daily intake of NSAIDs, primarily aspirin, produced risk reductions of 63% for colon, 39% for breast, 36% for lung, and 39% for prostate cancer. Significant risk reductions were also observed for esophageal (73%), stomach (62%), and ovarian cancer (47%). NSAID effects became apparent after five or more years of use and were stronger with longer duration. Observed protective effects were also consistently stronger for gastrointestinal malignancies (esophagus, stomach, and colon). Results for pancreatic, urinary bladder, and renal cancer were inconsistent. Initial epidemiologic studies of malignant melanoma, Hodgkin's disease, and adult leukemia also found that NSAIDs are protective. A few studies suggest that ibuprofen has stronger anticancer effects than aspirin, particularly against breast and lung cancer. Overexpression of cyclooxygenase-2 (COX-2) and increased prostaglandin biosynthesis correlates with carcinogenesis and metastasis at most anatomic sites. Preclinical investigations provide consistent evidence that both selective and non-selective NSAIDs effectively inhibit chemically-induced carcinogenesis of epithelial tumors. This review provides compelling and converging evidence that regular intake of NSAIDs that non-selectively

  18. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  19. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  20. Why not treat human cancer with interleukin-1 blockade?

    NARCIS (Netherlands)

    Dinarello, C.A.

    2010-01-01

    The clinical successes of targeting angiogenesis provide a basis for trials of interleukin-1 (IL-1) blockade and particularly anti-IL-1beta as an add-on therapy in human metastatic disease. In animal studies for over 20 years, IL-1 has been demonstrated to increase adherence of tumor cells to the

  1. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  2. Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator

    Science.gov (United States)

    Zalachoras, Ioannis; Houtman, René; Atucha, Erika; Devos, Rene; Tijssen, Ans M. I.; Hu, Pu; Lockey, Peter M.; Datson, Nicole A.; Belanoff, Joseph K.; Lucassen, Paul J.; Joëls, Marian; de Kloet, E. Ronald; Roozendaal, Benno; Hunt, Hazel; Meijer, Onno C.

    2013-01-01

    Glucocorticoid receptor (GR) antagonism may be of considerable therapeutic value in stress-related psychopathology such as depression. However, blockade of all GR-dependent processes in the brain will lead to unnecessary and even counteractive effects, such as elevated endogenous cortisol levels. Selective GR modulators are ligands that can act both as agonist and as antagonist and may be used to separate beneficial from harmful treatment effects. We have discovered that the high-affinity GR ligand C108297 is a selective modulator in the rat brain. We first demonstrate that C108297 induces a unique interaction profile between GR and its downstream effector molecules, the nuclear receptor coregulators, compared with the full agonist dexamethasone and the antagonist RU486 (mifepristone). C108297 displays partial agonistic activity for the suppression of hypothalamic corticotropin-releasing hormone (CRH) gene expression and potently enhances GR-dependent memory consolidation of training on an inhibitory avoidance task. In contrast, it lacks agonistic effects on the expression of CRH in the central amygdala and antagonizes GR-mediated reduction in hippocampal neurogenesis after chronic corticosterone exposure. Importantly, the compound does not lead to disinhibition of the hypothalamus–pituitary–adrenal axis. Thus, C108297 represents a class of ligands that has the potential to more selectively abrogate pathogenic GR-dependent processes in the brain, while retaining beneficial aspects of GR signaling. PMID:23613579

  3. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.

    2008-01-01

    Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick–Nernst–Planck equation. The cell model considers...... the diffusion of neutral and ionic molecules across biomembranes, protonation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate to high...... predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation...

  4. Selective blockade of leukotriene production by a single dose of the FPL 64170XX 0.5% enema in active ulcerative colitis

    DEFF Research Database (Denmark)

    Kjeldsen, J; Laursen, L S; Hillingsø, Jens

    1995-01-01

    5-Lipoxygenase products of arachidonic acid metabolism are thought to play a central role in the secondary amplification of the inflammatory response of several inflammatory diseases, including ulcerative colitis. FPL 64170XX is a selective inhibitor of the enzyme 5-lipoxygenase. Concentrations...... containing 0.5% of FPL 64170XX. Repeated measures analysis of leukotriene B4, after adjusting for baseline, showed a significant treatment effect (P = 0.0014). The concentration of leukotriene B4 from rectal dialysates in patients receiving the active drug dropped to 15% (95% confidence interval 5......-40%) of the placebo level in the second dialysis following administration of FPL 64170XX 0.5%. By contrast, prostaglanding E2 concentrations doubled (P = 0.0068) in patients receiving FPL 64170XX 0.5% with no change in the placebo group. These findings demonstrate that a single dose of FPL 64170XX 0.5% enema...

  5. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice

    Science.gov (United States)

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M

    2013-01-01

    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  6. Leveraging big data to transform target selection and drug discovery.

    Science.gov (United States)

    Chen, B; Butte, A J

    2016-03-01

    The advances of genomics, sequencing, and high throughput technologies have led to the creation of large volumes of diverse datasets for drug discovery. Analyzing these datasets to better understand disease and discover new drugs is becoming more common. Recent open data initiatives in basic and clinical research have dramatically increased the types of data available to the public. The past few years have witnessed successful use of big data in many sectors across the whole drug discovery pipeline. In this review, we will highlight the state of the art in leveraging big data to identify new targets, drug indications, and drug response biomarkers in this era of precision medicine. © 2015 The Authors Clinical Pharmacology & Therapeutics published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  7. Metformin selectively targets redox control of complex I energy transduction

    Directory of Open Access Journals (Sweden)

    Amy R. Cameron

    2018-04-01

    Full Text Available Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Keywords: Diabetes, Metformin, Mitochondria, NADH, NAD+

  8. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance.

    Directory of Open Access Journals (Sweden)

    John Koren

    Full Text Available MKT-077, a rhodacyanine dye, was shown to produce cancer specific cell death. However, complications prevented the use of this compound beyond clinical trials. Here we describe YM-1, a derivative of MKT-077. We found that YM-1 was more cytotoxic and localized differently than MKT-077. YM-1 demonstrated this cytotoxicity across multiple cancer cell lines. This toxicity was limited to cancer cell lines; immortalized cell models were unaffected. Brief applications of YM-1 were found to be non-toxic. Brief treatment with YM-1 restored tamoxifen sensitivity to a refractory tamoxifen-resistant MCF7 cell model. This effect is potentially due to altered estrogen receptor alpha phosphorylation, an outcome precipitated by selective reductions in Akt levels (Akt/PKB. Thus, modifications to the rhodocyanine scaffold could potentially be made to improve efficacy and pharmacokinetic properties. Moreover, the impact on tamoxifen sensitivity could be a new utility for this compound family.

  9. Visual cells remember earlier applied target: plasticity of orientation selectivity.

    Directory of Open Access Journals (Sweden)

    Narcis Ghisovan

    Full Text Available BACKGROUND: A canonical proposition states that, in mature brain, neurons responsive to sensory stimuli are tuned to specific properties installed shortly after birth. It is amply demonstrated that that neurons in adult visual cortex of cats are orientation-selective that is they respond with the highest firing rates to preferred oriented stimuli. METHODOLOGY/PRINCIPAL FINDINGS: In anesthetized cats, prepared in a conventional fashion for single cell recordings, the present investigation shows that presenting a stimulus uninterruptedly at a non-preferred orientation for twelve minutes induces changes in orientation preference. Across all conditions orientation tuning curves were investigated using a trial by trial method. Contrary to what has been previously reported with shorter adaptation duration, twelve minutes of adaptation induces mostly attractive shifts, i.e. toward the adapter. After a recovery period allowing neurons to restore their original orientation tuning curves, we carried out a second adaptation which produced three major results: (1 more frequent attractive shifts, (2 an increase of their magnitude, and (3 an additional enhancement of responses at the new or acquired preferred orientation. Additionally, we also show that the direction of shifts depends on the duration of the adaptation: shorter adaptation in most cases produces repulsive shifts, whereas adaptation exceeding nine minutes results in attractive shifts, in the same unit. Consequently, shifts in preferred orientation depend on the duration of adaptation. CONCLUSION/SIGNIFICANCE: The supplementary response improvements indicate that neurons in area 17 keep a memory trace of the previous stimulus properties, thereby upgrading cellular performance. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the orientation tuning selectivity and the response strength to the preferred orientation. These

  10. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Ultrasound-guided neural blockade in Proteus syndrome

    African Journals Online (AJOL)

    anatomy, a young patient with Proteus syndrome requiring forearm surgery successfully received a supraclavicular block, using an ultrasound-guided technique for needle placement. We recommend that practitioners experienced in ultrasound- guided neural blockade perform regional anaesthesia in selected patients with ...

  12. Checkpoint Blockade in Lung Cancer and Mesothelioma.

    Science.gov (United States)

    Lievense, Lysanne A; Sterman, Daniel H; Cornelissen, Robin; Aerts, Joachim G

    2017-08-01

    In the last decade, immunotherapy has emerged as a new treatment modality in cancer. The most success has been achieved with the class of checkpoint inhibitors (CPIs), antibodies that unleash the antitumor immune response. After the success in melanoma, numerous clinical trials are being conducted investigating CPIs in lung cancer and mesothelioma. The programmed death protein (PD) 1-PD ligand 1/2 pathway and cytotoxic T lymphocyte-associated protein 4 are currently the most studied immunotherapeutic targets in these malignancies. In non-small cell lung cancer, anti-PD-1 antibodies have become part of the approved treatment arsenal. In small cell lung cancer and mesothelioma, the efficacy of checkpoint inhibition has not yet been proven. In this Concise Clinical Review, an overview of the landmark clinical trials investigating checkpoint blockade in lung cancer and mesothelioma is provided. Because response rates are around 20% in the majority of clinical trials, there is much room for improvement. Predictive biomarkers are therefore essential to fully develop the potential of CPIs. To increase efficacy, multiple clinical trials investigating the combination of cytotoxic T lymphocyte-associated protein 4 inhibitors and PD-1/PD ligand 1 blockade in lung cancer and mesothelioma are being conducted. Given the potential benefit of immunotherapy, implementation of current and new knowledge in trial designs and interpretation of results is essential for moving forward.

  13. Evaluating gaze-based interface tools to facilitate point-and-select tasks with small targets

    DEFF Research Database (Denmark)

    Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin

    2011-01-01

    Gaze interaction affords hands-free control of computers. Pointing to and selecting small targets using gaze alone is difficult because of the limited accuracy of gaze pointing. This is the first experimental comparison of gaze-based interface tools for small-target (e.g. <12 × 12 pixels) point-a...

  14. Goal-driven modulations as a function of time in saccadic target selection

    NARCIS (Netherlands)

    van Zoest, L.J.F.M.; Donk, M.

    2008-01-01

    Four experiments were performed to investigate the contribution of goal-driven modulation in saccadic target selection as a function of time. Observers were required to make an eye movement to a prespecified target that was concurrently presented with multiple nontargets and possibly one distractor.

  15. Quantifying the Tendency of Therapeutic Target Proteins to Bind Promiscuous or Selective Compounds

    Science.gov (United States)

    Hu, Ye; Bajorath, Jürgen

    2015-01-01

    The ability of target proteins to bind structurally diverse compounds and compounds with different degrees of promiscuity (multi-target activity) was systematically assessed on the basis of currently available activity data and target annotations. Intuitive first- and second-order target promiscuity indices were introduced to quantify these binding characteristics and relate them to each other. For compounds and targets, opposite promiscuity trends were observed. Furthermore, the analysis detected many targets that interacted with compounds representing a similar degree of structural diversity but displayed strong tendencies to recognize either promiscuous or selective compounds. Moreover, target families were identified that preferentially interacted with promiscuous compounds. Taken together, these findings further extend our understanding of the molecular basis of polypharmacology. PMID:26000736

  16. Prior Knowledge of Target Direction and Intended Movement Selection Improves Indirect Reaching Movement Decoding.

    Science.gov (United States)

    Li, Hongbao; Hao, Yaoyao; Zhang, Shaomin; Wang, Yiwen; Chen, Weidong; Zheng, Xiaoxiang

    2017-01-01

    Objective. Previous studies have demonstrated that target direction information presented by the dorsal premotor cortex (PMd) during movement planning could be incorporated into neural decoder for achieving better decoding performance. It is still unknown whether the neural decoder combined with only target direction could work in more complex tasks where obstacles impeded direct reaching paths. Methods. In this study, spike activities were collected from the PMd of two monkeys when performing a delayed obstacle-avoidance task. We examined how target direction and intended movement selection were encoded in neuron population activities of the PMd during movement planning. The decoding performances of movement trajectory were compared for three neural decoders with no prior knowledge, or only target direction, or both target direction and intended movement selection integrated into a mixture of trajectory model (MTM). Results. We found that not only target direction but also intended movement selection was presented in neural activities of the PMd during movement planning. It was further confirmed by quantitative analysis. Combined with prior knowledge, the trajectory decoder achieved the best performance among three decoders. Conclusion. Recruiting prior knowledge about target direction and intended movement selection extracted from the PMd could enhance the decoding performance of hand trajectory in indirect reaching movement.

  17. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  18. Detecting signatures of balancing selection to identify targets of anti-parasite immunity.

    Science.gov (United States)

    Weedall, Gareth D; Conway, David J

    2010-07-01

    Parasite antigen genes might evolve under frequency-dependent immune selection. The distinctive patterns of polymorphism that result can be detected using population genetic methods that test for signatures of balancing selection, allowing genes encoding important targets of immunity to be identified. Analyses can be complicated by population structures, histories and features of a parasite's genome. However, new sequencing technologies facilitate scans of polymorphism throughout parasite genomes to identify the most exceptional gene specific signatures. We focus on malaria parasites to illustrate challenges and opportunities for detecting targets of frequency-dependent immune selection to discover new potential vaccine candidates. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Pro and cons of targeted selective treatment against digestive-tract strongyles of ruminants

    Directory of Open Access Journals (Sweden)

    Cabaret J.

    2008-09-01

    Full Text Available The increasing prevalence of resistance to anthelmintics among gastrointestinal nematodes and the desire for lower input agriculture have promoted the idea that targeted selective treatment (treating the animals in need of such a treatment and only them could be a sustainable solution for controlling internal parasites of ruminants. The pros are the slowing of resistance prevalence, lower residues of anthelmintics in meat and milk, and lower cost; the cons are the difficulty and time spent on selecting animals in need of treatment and the possibility of lower production. Using actual experiments and modelling we show that targeted selective treatment can be used to sustainably control gastrointestinal nematode infections in flock.

  20. Molecular Connectivity Predefines Polypharmacology: Aliphatic Rings, Chirality, and sp3 Centers Enhance Target Selectivity

    Directory of Open Access Journals (Sweden)

    Stefania Monteleone

    2017-08-01

    Full Text Available Dark chemical matter compounds are small molecules that have been recently identified as highly potent and selective hits. For this reason, they constitute a promising class of possible candidates in the process of drug discovery and raise the interest of the scientific community. To this purpose, Wassermann et al. (2015 have described the application of 2D descriptors to characterize dark chemical matter. However, their definition was based on the number of reported positive assays rather than the number of known targets. As there might be multiple assays for one single target, the number of assays does not fully describe target selectivity. Here, we propose an alternative classification of active molecules that is based on the number of known targets. We cluster molecules in four classes: black, gray, and white compounds are active on one, two to four, and more than four targets respectively, whilst inactive compounds are found to be inactive in the considered assays. In this study, black and inactive compounds are found to have not only higher solubility, but also a higher number of chiral centers, sp3 carbon atoms and aliphatic rings. On the contrary, white compounds contain a higher number of double bonds and fused aromatic rings. Therefore, the design of a screening compound library should consider these molecular properties in order to achieve target selectivity or polypharmacology. Furthermore, analysis of four main target classes (GPCRs, kinases, proteases, and ion channels shows that GPCR ligands are more selective than the other classes, as the number of black compounds is higher in this target superfamily. On the other side, ligands that hit kinases, proteases, and ion channels bind to GPCRs more likely than to other target classes. Consequently, depending on the target protein family, appropriate screening libraries can be designed in order to minimize the likelihood of unwanted side effects early in the drug discovery process

  1. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    Science.gov (United States)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally

  2. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    Science.gov (United States)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  3. Contextual control over selective attention: evidence from a two-target method.

    Science.gov (United States)

    MacLellan, Ellen; Shore, David I; Milliken, Bruce

    2015-07-01

    Selective attention is generally studied with conflict tasks, using response time as the dependent measure. Here, we study the impact of selective attention to a first target, T1, presented simultaneously with a distractor, on the accuracy of subsequent encoding of a second target item, T2. This procedure produces an "attentional blink" (AB) effect much like that reported in other studies, and allowed us to study the influence of context on cognitive control with a novel method. In particular, we examined whether preparation to attend selectively to T1 had an impact on the selective encoding of T1 that would translate to report of T2. Preparation to attend selectively was manipulated by varying whether difficult selective attention T1 trials were presented in the context of other difficult selective attention T1 trials. The results revealed strong context effects of this nature, with smaller AB effects when difficult selective attention T1 trials were embedded in a context with many, rather than few, other difficult selective attention T1 trials. Further, the results suggest that both the trial-to-trial local context and the block-wide global context modulate performance in this task.

  4. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  5. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    Science.gov (United States)

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  6. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    Science.gov (United States)

    Sironi, Manuela; Forni, Diego; Clerici, Mario; Cagliani, Rachele

    2016-09-01

    The Flavivirus genus comprises several human pathogens such as dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV). Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS) proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus). After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V) in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING) and viral (i.e. NS1, NS4A) proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of the Asian

  7. Nonstructural Proteins Are Preferential Positive Selection Targets in Zika Virus and Related Flaviviruses.

    Directory of Open Access Journals (Sweden)

    Manuela Sironi

    2016-09-01

    Full Text Available The Flavivirus genus comprises several human pathogens such as dengue virus (DENV, Japanese encephalitis virus (JEV, and Zika virus (ZIKV. Although ZIKV usually causes mild symptoms, growing evidence is linking it to congenital birth defects and to increased risk of Guillain-Barré syndrome. ZIKV encodes a polyprotein that is processed to produce three structural and seven nonstructural (NS proteins. We investigated the evolution of the viral polyprotein in ZIKV and in related flaviviruses (DENV, Spondweni virus, and Kedougou virus. After accounting for saturation issues, alignment uncertainties, and recombination, we found evidence of episodic positive selection on the branch that separates DENV from the other flaviviruses. NS1 emerged as the major selection target, and selected sites were located in immune epitopes or in functionally important protein regions. Three of these sites are located in an NS1 region that interacts with structural proteins and is essential for virion biogenesis. Analysis of the more recent evolutionary history of ZIKV lineages indicated that positive selection acted on NS5 and NS4B, this latter representing the preferential target. All selected sites were located in the N-terminal portion of NS4B, which inhibits interferon response. One of the positively selected sites (26M/I/T/V in ZIKV also represents a selection target in sylvatic DENV2 isolates, and a nearby residue evolves adaptively in JEV. Two additional positively selected sites are within a protein region that interacts with host (e.g. STING and viral (i.e. NS1, NS4A proteins. Notably, mutations in the NS4B region of other flaviviruses modulate neurovirulence and/or neuroinvasiveness. These results suggest that the positively selected sites we identified modulate viral replication and contribute to immune evasion. These sites should be prioritized in future experimental studies. However, analyses herein detected no selective events associated to the spread of

  8. Lesional-targeting of neuroprotection to the inflammatory penumbra in experimental multiple sclerosis

    NARCIS (Netherlands)

    Al-Izki, S.; Pryce, G.; Hankey, D.J.R.; Lidster, K.; von Kutzleben, S.M.; Browne, L.; Clutterbuck, L.; Posada, C.; Chan, A.W.E.; Amor, S.; Perkins, V.; Gerritsen, W.H.; Ummenthum, K.; Peferoen-Baert, R.; van der Valk, P.; Montoya, A.; Joel, S.P.; Garthwaite, J.; Giovannoni, G.; Selwood, D.L.; Baker, D.

    2014-01-01

    Progressive multiple sclerosis is associated with metabolic failure of the axon and excitotoxicity that leads to chronic neurodegeneration. Global sodium-channel blockade causes side effects that can limit its use for neuroprotection in multiple sclerosis. Through selective targeting of drugs to

  9. W::Neo: a novel dual-selection marker for high efficiency gene targeting in Drosophila.

    Science.gov (United States)

    Zhou, Wenke; Huang, Juan; Watson, Annie M; Hong, Yang

    2012-01-01

    We have recently developed a so-called genomic engineering approach that allows for directed, efficient and versatile modifications of Drosophila genome by combining the homologous recombination (HR)-based gene targeting with site-specific DNA integration. In genomic engineering and several similar approaches, a "founder" knock-out line must be generated first through HR-based gene targeting, which can still be a potentially time and resource intensive process. To significantly improve the efficiency and success rate of HR-based gene targeting in Drosophila, we have generated a new dual-selection marker termed W::Neo, which is a direct fusion between proteins of eye color marker White (W) and neomycin resistance (Neo). In HR-based gene targeting experiments, mutants carrying W::Neo as the selection marker can be enriched as much as fifty times by taking advantage of the antibiotic selection in Drosophila larvae. We have successfully carried out three independent gene targeting experiments using the W::Neo to generate genomic engineering founder knock-out lines in Drosophila.

  10. In silico tools used for compound selection during target-based drug discovery and development.

    Science.gov (United States)

    Caldwell, Gary W

    2015-01-01

    The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies. This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach. There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.

  11. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Rao, Sandhya M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ross, Ashley J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Comparat, Johan [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Tojeiro, Rita [School of Physics and Astronomy, St Andrews, KY16 9SS (United Kingdom); Ho, Shirley; Lang, Dustin [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Guangtun Ben, E-mail: abp15@pitt.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); and others

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  12. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment ...

  13. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes

    2013-01-01

    . However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. RESULTS: We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called...

  14. Neuromuscular blockade during laparoscopic ventral herniotomy

    DEFF Research Database (Denmark)

    Medici, Roar; Madsen, Matias V; Asadzadeh, Sami

    2015-01-01

    INTRODUCTION: Laparoscopic herniotomy is the preferred technique for some ventral hernias. Several factors may influence the surgical conditions, one being the depth of neuromuscular blockade (NMB) applied. We hypothesised that deep neuromuscular blockade defined as a post-tetanic count below eight...

  15. Neuromuscular blockade during laparoscopic ventral herniotomy

    DEFF Research Database (Denmark)

    Medici, Roar; Madsen, Matias V; Asadzadeh, Sami

    2015-01-01

    INTRODUCTION: Laparoscopic herniotomy is the preferred technique for some ventral hernias. Several factors may influence the surgical conditions, one being the depth of neuromuscular blockade (NMB) applied. We hypothesised that deep neuromuscular blockade defined as a post-tetanic count below eig...

  16. Combined blockade of vascular endothelial growth factor and programmed death 1 pathways in advanced kidney cancer.

    Science.gov (United States)

    Einstein, David J; McDermott, David F

    2017-06-01

    Targeted and immune-based therapies have improved outcomes in advanced kidney cancer, yet novel strategies are needed to extend the duration of these benefits and expand them to more patients. Combined inhibition of vascular endothelial growth factor (VEGF) and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathways with therapeutic agents already in clinical use may offer such a strategy. Here, we describe the development and clinical evaluation of VEGF inhibitors and, separately, PD-1/PD-L1 inhibitors. We present preclinical evidence of interaction between these pathways and the rationale for combined blockade. Beyond well-known effects on pathologic angiogenesis, VEGF blockade also may decrease immune tolerance and enhance PD-1/PD-L1 blockade. We conclude with the results of several early trials of combined VEGF and PD-1/PD-L1 blockade, which demonstrate encouraging antitumor activity, and we pose questions for future study.

  17. Observation of Hopping and Blockade of Bosons in a Trapped Ion Spin Chain

    Science.gov (United States)

    Debnath, S.; Linke, N. M.; Wang, S.-T.; Figgatt, C.; Landsman, K. A.; Duan, L.-M.; Monroe, C.

    2018-02-01

    The local phonon modes in a Coulomb crystal of trapped ions can represent a Hubbard system of coupled bosons. We selectively prepare single excitations at each site and observe free hopping of a boson between sites, mediated by the long-range Coulomb interaction between ions. We then implement phonon blockades on targeted sites by driving a Jaynes-Cummings interaction on individually addressed ions to couple their internal spin to the local phonon mode. The resulting dressed states have energy splittings that can be tuned to suppress phonon hopping into the site. This new experimental approach opens up the possibility of realizing large-scale Hubbard systems from the bottom up with tunable interactions at the single-site level.

  18. Dual Blockade of the Renin-angiotensin-aldosterone System in Type 2 Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Yan-Huan Feng

    2016-01-01

    Full Text Available Objective: To examine the efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system (RAAS among patients with type 2 diabetic kidney disease. Data Sources: We searched the major literature repositories, including the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE, for randomized clinical trials published between January 1990 and October 2015 that compared the efficacy and safety of the use of dual blockade of the RAAS versus the use of monotherapy, without applying any language restrictions. Keywords for the searches included "diabetic nephropathy," "chronic kidney disease," "chronic renal insufficiency," "diabetes mellitus," "dual therapy," "combined therapy," "dual blockade," "renin-angiotensin system," "angiotensin-converting enzyme inhibitor," "angiotensin-receptor blocker," "aldosterone blockade," "selective aldosterone blockade," "renin inhibitor," "direct renin inhibitor," "mineralocorticoid receptor blocker," etc. Study Selection: The selected articles were carefully reviewed. We excluded randomized clinical trials in which the kidney damage of patients was related to diseases other than diabetes mellitus. Results: Combination treatment with an angiotensin-converting enzyme inhibitor supplemented by an angiotensin II receptor blocking agent is expected to provide a more complete blockade of the RAAS and a better control of hypertension. However, existing literature has presented mixed results, in particular, related to patient safety. In view of this, we conducted a comprehensive literature review in order to explain the rationale for dual blockade of the RAAS, and to discuss the pros and cons. Conclusions: Despite the negative results of some recent large-scale studies, it may be immature to declare that the dual blockade is a failure because of the complex nature of the RAAS surrounding its diversified functions and utility. Further trials are warranted to study the combination therapy as an

  19. Treatment Strategies that Enhance the Efficacy and Selectivity of Mitochondria-Targeted Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Josephine S. Modica-Napolitano

    2015-07-01

    Full Text Available Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy.

  20. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Science.gov (United States)

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  1. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    Directory of Open Access Journals (Sweden)

    Katja Spiess

    2017-01-01

    Full Text Available Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP consisted of a variant (F49A of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE. Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1 altered chemokine sequence (K14A, F49L, and F49E, (2 shortened and elongated linker region, and (3 modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus may be targeted by FTPs.

  2. Out with the old? The role of selective attention in retaining targets in partial report.

    Science.gov (United States)

    Lindsey, Dakota R B; Bundesen, Claus; Kyllingsbæk, Søren; Petersen, Anders; Logan, Gordon D

    2017-01-01

    In the partial-report task, subjects are asked to report only a portion of the items presented. Selective attention chooses which objects to represent in short-term memory (STM) on the basis of their relevance. Because STM is limited in capacity, one must sometimes choose which objects are removed from memory in light of new relevant information. We tested the hypothesis that the choices among newly presented information and old information in STM involve the same process-that both are acts of selective attention. We tested this hypothesis using a two-display partial-report procedure. In this procedure, subjects had to select and retain relevant letters (targets) from two sequentially presented displays. If selection in perception and retention in STM are the same process, then irrelevant letters (distractors) in the second display, which demanded attention because of their similarity to the targets, should have decreased target report from the first display. This effect was not obtained in any of four experiments. Thus, choosing objects to keep in STM is not the same process as choosing new objects to bring into STM.

  3. Gene expression levels are a target of recent natural selection in the human genome.

    Science.gov (United States)

    Kudaravalli, Sridhar; Veyrieras, Jean-Baptiste; Stranger, Barbara E; Dermitzakis, Emmanouil T; Pritchard, Jonathan K

    2009-03-01

    Changes in gene expression may represent an important mode of human adaptation. However, to date, there are relatively few known examples in which selection has been shown to act directly on levels or patterns of gene expression. In order to test whether single nucleotide polymorphisms (SNPs) that affect gene expression in cis are frequently targets of positive natural selection in humans, we analyzed genome-wide SNP and expression data from cell lines associated with the International HapMap Project. Using a haplotype-based test for selection that was designed to detect incomplete selective sweeps, we found that SNPs showing signals of selection are more likely than random SNPs to be associated with gene expression levels in cis. This signal is significant in the Yoruba (which is the population that shows the strongest signals of selection overall) and shows a trend in the same direction in the other HapMap populations. Our results argue that selection on gene expression levels is an important type of human adaptation. Finally, our work provides an analytical framework for tackling a more general problem that will become increasingly important: namely, testing whether selection signals overlap significantly with SNPs that are associated with phenotypes of interest.

  4. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    Science.gov (United States)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  5. Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights

    Science.gov (United States)

    Matsuda, Kazuhiko; Kanaoka, Satoshi; Akamatsu, Miki; Sattelle, David B.

    2009-01-01

    The nicotinic acetylcholine receptors (nAChRs) are targets for human and veterinary medicines as well as insecticides. Subtype-selectivity among the diverse nAChR family members is important for medicines targeting particular disorders, and pest-insect selectivity is essential for the development of safer, environmentally acceptable insecticides. Neonicotinoid insecticides selectively targeting insect nAChRs have important applications in crop protection and animal health. Members of this class exhibit strikingly diverse actions on their nAChR targets. Here we review the chemistry and diverse actions of neonicotinoids on insect and mammalian nAChRs. Electrophysiological studies on native nAChRs and on wild-type and mutagenized recombinant nAChRs have shown that basic residues particular to loop D of insect nAChRs are likely to interact electrostatically with the nitro group of neonicotinoids. In 2008, the crystal structures were published showing neonicotinoids docking into the acetylcholine binding site of molluscan acetylcholine binding proteins with homology to the ligand binding domain (LBD) of nAChRs. The crystal structures showed that 1) glutamine in loop D, corresponding to the basic residues of insect nAChRs, hydrogen bonds with the NO2 group of imidacloprid and 2) neonicotinoid-unique stacking and CH-π bonds at the LBD. A neonicotinoid-resistant strain obtained by laboratory-screening has been found to result from target site mutations, and possible reasons for this are also suggested by the crystal structures. The prospects of designing neonicotinoids that are safe not only for mammals but also for beneficial insects such as honey bees (Apis mellifera) are discussed in terms of interactions with non-α nAChR subunits. PMID:19321668

  6. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    OpenAIRE

    Debebe, Tewodros; Kr?ger, Monika; Huse, Klaus; Kacza, Johannes; M?hlberg, Katja; K?nig, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and...

  7. Selective Targeting of Antiviral and Immunomodulating Agents in the Treatment of Arenavirus Infections

    Science.gov (United States)

    1987-10-01

    designated by other authorized documents. aCURqY CLASIFICATION OF THIS PAGE R T M A PForm Approved REPORT DOCUMEN[ATION PAGE OMB No. 0704-0188 la...protected mice from viral infections in which the liver or lung served as the primary site of virus infection. Liposome-encapsulated ribavirin was more...report summarizes our findings using liposomes as carriers for the selective targeting of antiviral and immunomodulating agents in viral infections

  8. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells.

    Science.gov (United States)

    Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

    2015-01-14

    Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.

  9. Mitochondrial permeability transition pore as a selective target for anti-cancer therapy

    Directory of Open Access Journals (Sweden)

    Dong Hoon eSuh

    2013-03-01

    Full Text Available Mitochondrial outer membrane permeabilization (MOMP is the ultimate step in dozens of lethal apoptotic signal transduction pathways which converge on mitochondria. One of the representative systems proposed to be responsible for the MOMP is the mitochondrial permeability transition pore (MPTP. Although the molecular composition of the MPTP is not clearly understood, the MPTP attracts much interest as a promising target for resolving two conundrums regarding cancer treatment: tumor selectivity and resistance to treatment. The regulation of the MPTP is closely related to metabolic reprogramming in cancer cells including mitochondrial alterations. Restoration of deregulated apoptotic machinery in cancer cells by tumor-specific modulation of the MPTP could therefore be a promising anti-cancer strategy. Currently, a number of MPTP-targeting agents are under pre-clinical and clinical studies. Here, we reviewed the structure and regulation of the MPTP as well as the current status of the development of promising MPTP-targeting drugs.

  10. The TESS Input Catalog and Selection of Targets for the TESS Transit Search

    Science.gov (United States)

    Pepper, Joshua; Stassun, Keivan G.; Paegert, Martin; Oelkers, Ryan; De Lee, Nathan Michael; Torres, Guillermo; TESS Target Selection Working Group

    2018-01-01

    The TESS mission will photometrically survey millions of the brightest stars over almost the entire the sky to detect transiting exoplanets. A key step to enable that search is the creation of the TESS Input Catalog (TIC), a compiled catalog of 700 million stars and galaxies with observed and calculated parameters. From the TIC we derive the Candidate Target List (CTL) to identify target stars for the 2-minute TESS postage stamps. The CTL is designed to identify the best stars for the detection of small planets, which includes all bright cool dwarf stars in the sky. I will describe the target selection strategy, the distribution of stars in the current CTL, and how both the TIC and CTL will expand and improve going forward.

  11. Retroviral DNA integration: viral and cellular determinants of target-site selection.

    Directory of Open Access Journals (Sweden)

    Mary K Lewinski

    2006-06-01

    Full Text Available Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV integrates preferentially within active transcription units, whereas murine leukemia virus (MLV integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN coding region into HIV (to make HIVmIN caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb, and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.

  12. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  13. Merger and Acquisition Target Selection Based on Interval Neutrosophic Multigranulation Rough Sets over Two Universes

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-07-01

    Full Text Available As a significant business activity, merger and acquisition (M&A generally means transactions in which the ownership of companies, other business organizations or their operating units are transferred or combined. In a typical M&A procedure, M&A target selection is an important issue that tends to exert an increasingly significant impact on different business areas. Although some research works based on fuzzy methods have been explored on this issue, they can only deal with incomplete and uncertain information, but not inconsistent and indeterminate information that exists universally in the decision making process. Additionally, it is advantageous to solve M&A problems under the group decision making context. In order to handle these difficulties in M&A target selection background, we introduce a novel rough set model by combining interval neutrosophic sets (INSs with multigranulation rough sets over two universes, called an interval neutrosophic (IN multigranulation rough set over two universes. Then, we discuss the definition and some fundamental properties of the proposed model. Finally, we establish decision making rules and computing approaches for the proposed model in M&A target selection background, and the effectiveness of the decision making approach is demonstrated by an illustrative case analysis.

  14. Efficient and Adaptive Node Selection for Target Tracking in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2016-01-01

    Full Text Available In target tracking wireless sensor network, choosing the proper working nodes can not only minimize the number of active nodes, but also satisfy the tracking reliability requirement. However, most existing works focus on selecting sensor nodes which are the nearest to the target for tracking missions and they did not consider the correlation of the location of the sensor nodes so that these approaches can not meet all the goals of the network. This work proposes an efficient and adaptive node selection approach for tracking a target in a distributed wireless sensor network. The proposed approach combines the distance-based node selection strategy and particle filter prediction considering the spatial correlation of the different sensing nodes. Moreover, a joint distance weighted measurement is proposed to estimate the information utility of sensing nodes. Experimental results show that EANS outperformed the state-of-the-art approaches by reducing the energy cost and computational complexity as well as guaranteeing the tracking accuracy.

  15. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  17. Blockade of Death Ligand TRAIL Inhibits Renal Ischemia Reperfusion Injury

    International Nuclear Information System (INIS)

    Adachi, Takaomi; Sugiyama, Noriyuki; Gondai, Tatsuro; Yagita, Hideo; Yokoyama, Takahiko

    2013-01-01

    Renal ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI). Many investigators have reported that cell death via apoptosis significantly contributed to the pathophysiology of renal IRI. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily, and induces apoptosis and inflammation. However, the role of TRAIL in renal IRI is unclear. Here, we investigated whether TRAIL contributes to renal IRI and whether TRAIL blockade could attenuate renal IRI. AKI was induced by unilateral clamping of the renal pedicle for 60 min in male FVB/N mice. We found that the expression of TRAIL and its receptors were highly upregulated in renal tubular cells in renal IRI. Neutralizing anti-TRAIL antibody or its control IgG was given 24 hr before ischemia and a half-dose booster injection was administered into the peritoneal cavity immediately after reperfusion. We found that TRAIL blockade inhibited tubular apoptosis and reduced the accumulation of neutrophils and macrophages. Furthermore, TRAIL blockade attenuated renal fibrosis and atrophy after IRI. In conclusion, our study suggests that TRAIL is a critical pathogenic factor in renal IRI, and that TRAIL could be a new therapeutic target for the prevention of renal IRI

  18. Checkpoint blockade in combination with cancer vaccines.

    Science.gov (United States)

    Morse, Michael A; Lyerly, H Kim

    2015-12-16

    Checkpoint blockade, prevention of inhibitory signaling that limits activation or function of tumor antigen-specific T cells responses, is revolutionizing the treatment of many poor prognosis malignancies. Indeed monoclonal antibodies that modulate signaling through the inhibitory molecules CTLA-4 and PD-1 are now clinically available; however, many tumors, demonstrate minimal response suggesting the need for combinations with other therapeutic strategies. Because an inadequate frequency of activated tumor antigen-specific T cells in the tumor environment, the so-called non-inflamed phenotype, is observed in some malignancies, other rationale partners are modalities that lead to enhanced T cell activation (vaccines, cytokines, toll-like receptor agonists, and other anticancer therapies such as chemo-, radio- or targeted therapies that lead to release of antigen from tumors). This review will focus on preclinical and clinical data supporting the use of cancer vaccines with anti-CTLA-4 and anti-PD-1/PD-L1 antibodies. Preliminary preclinical data demonstrate enhanced antitumor activity although the results in human studies are less clear. Broader combinations of multiple immune modulators are now under study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  20. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys...

  1. Body condition score as a selection tool for targeted selective treatment-based nematode control strategies in Merino ewes.

    Science.gov (United States)

    Cornelius, M P; Jacobson, C; Besier, R B

    2014-12-15

    Sheep nematode control utilising refugia-based strategies have been shown to delay anthelmintic resistance, but the optimal indices to select individuals to be left untreated under extensive sheep grazing conditions are not clear. This experiment tested the hypothesis that high body condition can indicate ability of mature sheep to better cope with worms and therefore remain untreated in a targeted treatment programme. Adult Merino ewes from flocks on two private farms located in south-west Western Australia (Farm A, n = 271, and Farm B, n = 258) were measured for body condition score (BCS), body weight and worm egg counts (WEC) on four occasions between May and December (pre-lambing, lamb marking, lamb weaning and post-weaning). Half of the ewes in each flock received anthelmintic treatments to suppress WEC over the experimental period and half remained untreated (unless critical limits were reached). Response to treatment was analysed in terms of BCS change and percentage live weight change. No effect of high or low initial WEC groups was shown for BCS response, and liveweight responses were inconsistent. A relatively greater BCS response to treatment was observed in ewes in low BCS pre-lambing compared to better-conditioned ewes on one farm where nutrition was sub-optimal and worm burdens were high. Sheep in low body condition pre-lambing were more than three times more likely to fall into a critically low BCS (<2.0) if left untreated. Recommendations can be made to treat ewes in lower BCS and leave a proportion of the higher body condition sheep untreated in a targeted selective treatment programme, to provide a population of non-resistant worms to delay the development of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Science.gov (United States)

    MacLeod, Chelsea L.; Green, Paul J.; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie; Nielsen Brandt, William; Badenes, Carles; Greene, Jenny; Morganson, Eric; Schmidt, Sarah J.; Schwope, Axel; Shen, Yue; Amaro, Rachael; Lebleu, Amy; Filiz Ak, Nurten; Grier, Catherine J.; Hoover, Daniel; McGraw, Sean M.; Dawson, Kyle; Hall, Patrick B.; Hawley, Suzanne L.; Mariappan, Vivek; Myers, Adam D.; Pâris, Isabelle; Schneider, Donald P.; Stassun, Keivan G.; Bershady, Matthew A.; Blanton, Michael R.; Seo, Hee-Jong; Tinker, Jeremy; Fernández-Trincado, J. G.; Chambers, Kenneth; Kaiser, Nick; Kudritzki, R.-P.; Magnier, Eugene; Metcalfe, Nigel; Waters, Chris Z.

    2018-01-01

    As astronomers increasingly exploit the information available in the time domain, spectroscopic variability in particular opens broad new channels of investigation. Here we describe the selection algorithms for all targets intended for repeat spectroscopy in the Time Domain Spectroscopic Survey (TDSS), part of the extended Baryon Oscillation Spectroscopic Survey within the Sloan Digital Sky Survey (SDSS)-IV. Also discussed are the scientific rationale and technical constraints leading to these target selections. The TDSS includes a large “repeat quasar spectroscopy” (RQS) program delivering ∼13,000 repeat spectra of confirmed SDSS quasars, and several smaller “few-epoch spectroscopy” (FES) programs targeting specific classes of quasars as well as stars. The RQS program aims to provide a large and diverse quasar data set for studying variations in quasar spectra on timescales of years, a comparison sample for the FES quasar programs, and an opportunity for discovering rare, serendipitous events. The FES programs cover a wide variety of phenomena in both quasars and stars. Quasar FES programs target broad absorption line quasars, high signal-to-noise ratio normal broad line quasars, quasars with double-peaked or very asymmetric broad emission line profiles, binary supermassive black hole candidates, and the most photometrically variable quasars. Strongly variable stars are also targeted for repeat spectroscopy, encompassing many types of eclipsing binary systems, and classical pulsators like RR Lyrae. Other stellar FES programs allow spectroscopic variability studies of active ultracool dwarf stars, dwarf carbon stars, and white dwarf/M dwarf spectroscopic binaries. We present example TDSS spectra and describe anticipated sample sizes and results.

  3. Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Brian D Fink

    Full Text Available Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone actually increased superoxide production by bovine aortic endothelial (BAE cell mitochondria incubated with complex I but not complex II substrates.To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety, decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity.In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring

  4. Atomic Fock State Preparation Using Rydberg Blockade

    OpenAIRE

    Ebert, Matthew; Gill, Alexander; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G.

    2013-01-01

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected $\\sqrt{N}$ Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with essentially perfect blockade. We then use collective Rabi $\\pi$ pulses to produce ${\\cal N}=1,2$ atom number Fock states with fidelities of 62% and 48% respectively. The ${\\cal N}=2$ ...

  5. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys......INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic...

  6. Heat Coulomb blockade of one ballistic channel

    Science.gov (United States)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (<~temperature × kB/h). This observation establishes the different nature of the quantum laws for thermal transport in nanocircuits.

  7. Sequential Retraction Segregates SGN Processes during Target Selection in the Cochlea.

    Science.gov (United States)

    Druckenbrod, Noah R; Goodrich, Lisa V

    2015-12-09

    A hallmark of the nervous system is the presence of precise patterns of connections between different types of neurons. Many mechanisms can be used to establish specificity, including homophilic adhesion and synaptic refinement, but the range of strategies used across the nervous system remains unclear. To broaden the understanding of how neurons find their targets, we studied the developing murine cochlea, where two classes of spiral ganglion neurons (SGNs), type I and type II, navigate together to the sensory epithelium and then diverge to contact inner hair cells (IHCs) or outer hair cells (OHCs), respectively. Neurons with type I and type II morphologies are apparent before birth, suggesting that target selection might be accomplished by excluding type I processes from the OHC region. However, because type I processes appear to overshoot into type II territory postnatally, specificity may also depend on elimination of inappropriate synapses. To resolve these differences, we analyzed the morphology and dynamic behaviors of individual fibers and their branches as they interact with potential partners. We found that SGN processes continue to be segregated anatomically in the postnatal cochlea. Although type I-like fibers branched locally, few branches contacted OHCs, arguing against synaptic elimination. Instead, time-lapse imaging studies suggest a prominent role for retraction, first positioning processes to the appropriate region and then corralling branches during a subsequent period of exuberant growth and refinement. Thus, sequential stages of retraction can help to achieve target specificity, adding to the list of mechanisms available for sculpting neural circuits. During development, different types of neurons must form connections with specific synaptic targets, thereby creating the precise wiring diagram necessary for adult function. Although studies have revealed multiple mechanisms for target selection, we still know little about how different

  8. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    Science.gov (United States)

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes

    2013-01-01

    . However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. RESULTS: We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called...... Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising vaccine targets. Our online software implementation provides a computationally light and reliable analysis of bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic....... Half of the 60 proteins were classified as highest scored by the MED statistic, while the other half were classified as lowest scored. Among the lowest scored proteins, ~13% were confirmed as not related to antigenicity or not contributing to the bacterial pathogenicity, and 70% of the highest scored...

  10. Real-time target selection optimization to enhance alignment of gas chromatograms.

    Science.gov (United States)

    Dearing, Thomas I; Nadeau, Jeremy S; Rohrback, Brian G; Ramos, L Scott; Synovec, Robert E

    2011-01-15

    An improved method for real-time selection of the target for the alignment of gas chromatographic data is described. Further outlined is a simple method to determine the accuracy of the alignment procedure. The target selection method proposed uses a moving window of aligned chromatograms to generate a target, herein referred to as the window target method (WTM). The WTM was initially tested using a series of 100 simulated chromatograms, and additionally evaluated using a series of 55 diesel fuel gas chromatograms obtained with four fuel samples. The WTM was evaluated via a comparison to a related method (the nearest neighbor method (NNM)). The results using the WTM with simulated chromatograms showed a significant improvement in the correlation coefficient and the accuracy of alignment when compared to the alignments performed using the NNM. A significant improvement in real-time alignment accuracy, as assessed by a correlation coefficient metric, was achieved with the WTM (starting at ∼ 1.0 and declining to only ∼ 0.985 for the 100th sample), relative to the NNM (starting at ∼ 1.0 and declining to ∼ 0.4 for the 100th sample) for the simulated chromatogram study. The results determined when using the WTM with the diesel fuels also showed an improvement in correlation coefficient and accuracy of the within-class alignments as compared to the results obtained from the NNM. In practice, the WTM could be applied to the real-time analysis of process and feedstock industrial streams to enable real-time decision making from the more precisely aligned chromatographic data. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Therapeutic Potential of Selectively Targeting the α2C-Adrenoceptor in Cognition, Depression, and Schizophrenia—New Developments and Future Perspective

    Directory of Open Access Journals (Sweden)

    Madeleine Monique Uys

    2017-08-01

    Full Text Available α2A- and α2C-adrenoceptors (ARs are the primary α2-AR subtypes involved in central nervous system (CNS function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine and atypical antipsychotic (e.g., clozapine drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine. While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer’s disease. This review will emphasize the importance and

  12. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    DEFF Research Database (Denmark)

    Lasko, Loren M; Jakob, Clarissa G; Edalji, Rohinton P

    2017-01-01

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved...... model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases....... also been implicated in human pathological conditions (including cancer). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products, bi-substrate analogues and the widely used small molecule C646, lack potency or selectivity. Here, we describe A-485, a potent...

  13. Tumor-Selective Targeting of Androgen Receptor Expression by Novel Small-Molecule Agents

    Science.gov (United States)

    2013-05-01

    Cancer 2008;8(9):705–713. 4. Elstrom RL, Bauer DE , Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM, Thomp- son CB...in many types of human cancers , including those of brain,10 breast,11,12 cervix ,13 colon,14 kidney,15 lung,16 ovary,17 prostate,18 thyroid,19 and skin...Warburg effect to prostate cancer therapy, in part, through the blockade of AR signaling. Oral CG-5 exhibits in vivo efficacy in suppressing LNCaP-abl

  14. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  15. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    International Nuclear Information System (INIS)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-01

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  16. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection.

    Directory of Open Access Journals (Sweden)

    Harpinder S Randhawa

    Full Text Available A marker-assisted background selection (MABS-based gene introgression approach in wheat (Triticum aestivum L. was optimized, where 97% or more of a recurrent parent genome (RPG can be recovered in just two backcross (BC generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was <4 cM. For non-carrier chromosome markers that flanked each of the 48 wheat gene-rich regions, this distance was approximately 12 cM. Employed to introgress seedling stripe rust (Puccinia striiformis f. sp. tritici resistance gene Yr15 into the spring wheat cultivar 'Zak', marker analysis of 2,187 backcross-derived progeny resulted in the recovery of a BC(2F(2ratio3 plant with 97% of the recurrent parent genome. In contrast, only 82% of the recurrent parent genome was recovered in phenotypically selected BC(4F(7 plants developed without MABS. Field evaluation results from 17 locations indicated that the MABS-derived line was either equal or superior to the recurrent parent for the tested agronomic characteristics. Based on these results, MABS is recommended as a strategy for rapidly introgressing a targeted gene into a wheat genotype in just two backcross generations while recovering 97% or more of the recurrent parent genotype.

  17. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seula [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Woo, Jong Kyu [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Oh, Seung Hyun [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Ryu, Jae-Ha [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Kim, Woo-Young, E-mail: wykim@sookmyung.ac.kr [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  18. Selective Targeting of SH2 Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies

    Energy Technology Data Exchange (ETDEWEB)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-01

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.

  19. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  20. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    Directory of Open Access Journals (Sweden)

    Alexander D M Wilson

    Full Text Available Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics differentially target wild largemouth bass (Micropterus salmoides and rock bass (Ambloplites rupestris based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.

  1. Targeting Ras-Driven Cancer Cell Survival and Invasion through Selective Inhibition of DOCK1

    Directory of Open Access Journals (Sweden)

    Hirotada Tajiri

    2017-05-01

    Full Text Available Oncogenic Ras plays a key role in cancer initiation but also contributes to malignant phenotypes by stimulating nutrient uptake and promoting invasive migration. Because these latter cellular responses require Rac-mediated remodeling of the actin cytoskeleton, we hypothesized that molecules involved in Rac activation may be valuable targets for cancer therapy. We report that genetic inactivation of the Rac-specific guanine nucleotide exchange factor DOCK1 ablates both macropinocytosis-dependent nutrient uptake and cellular invasion in Ras-transformed cells. By screening chemical libraries, we have identified 1-(2-(3′-(trifluoromethyl-[1,1′-biphenyl]-4-yl-2-oxoethyl-5-pyrrolidinylsulfonyl-2(1H-pyridone (TBOPP as a selective inhibitor of DOCK1. TBOPP dampened DOCK1-mediated invasion, macropinocytosis, and survival under the condition of glutamine deprivation without impairing the biological functions of the closely related DOCK2 and DOCK5 proteins. Furthermore, TBOPP treatment suppressed cancer metastasis and growth in vivo in mice. Our results demonstrate that selective pharmacological inhibition of DOCK1 could be a therapeutic approach to target cancer cell survival and invasion.

  2. Update on the Pfam5000 Strategy for Selection of StructuralGenomics Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-06-27

    Structural Genomics is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy that is medically and biologically relevant, of good financial value, and tractable. In 2003, we presented the ''Pfam5000'' strategy, which involves selecting the 5,000 most important families from the Pfam database as sources for targets. In this update, we show that although both the Pfam database and the number of sequenced genomes have increased in size, the expected benefits of the Pfam5000 strategy have not changed substantially. Solving the structures of proteins from the 5,000 largest Pfam families would allow accurate fold assignment for approximately 65 percent of all prokaryotic proteins (covering 54 percent of residues) and 63 percent of eukaryotic proteins (42 percent of residues). Fewer than 2,300 of the largest families on this list remain to be solved, making the project feasible in the next five years given the expected throughput to be achieved in the production phase of the Protein Structure Initiative.

  3. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    Science.gov (United States)

    Wilson, Alexander D M; Brownscombe, Jacob W; Sullivan, Brittany; Jain-Schlaepfer, Sofia; Cooke, Steven J

    2015-01-01

    Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics) differentially target wild largemouth bass (Micropterus salmoides) and rock bass (Ambloplites rupestris) based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity) in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes) but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.

  4. Selective apoptotic killing of malignant hemopoietic cells by antibody-targeted delivery of an amphipathic peptide.

    Science.gov (United States)

    Marks, Alexandra J; Cooper, Margaret S; Anderson, Robert J; Orchard, Kim H; Hale, Geoffrey; North, Janet M; Ganeshaguru, Kanagasabai; Steele, Andrew J; Mehta, Atul B; Lowdell, Mark W; Wickremasinghe, R Gitendra

    2005-03-15

    The alpha-helical amphipathic peptide D-(KLAKLAK)2 is toxic to eukaryotic cells if internalized by a suitable targeting mechanism. We have targeted this peptide to malignant hemopoietic cells via conjugation to monoclonal antibodies, which recognize lineage-specific cell surface molecules. An anti-CD19/peptide conjugate efficiently killed 3/3 B lymphoid lines. However, an anti-CD33/peptide conjugate was cytotoxic to only one of three CD33-positive myeloid leukemia lines. The IC50 towards susceptible lines were in the low nanomolar range. Conjugates were highly selective and did not kill cells that did not express the appropriate cell surface cognate of the antibody moiety. Anti-CD19/peptide conjugates efficiently killed cells from patients with chronic lymphocytic leukemia but anti-CD33/peptide reagents were less effective against fresh acute myeloid leukemia cells. We therefore suggest that amphipathic peptides may be of value as targeted therapeutic agents for the treatment of a subset of hematologic malignancies.

  5. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)

    Science.gov (United States)

    Basilevsky, A. T.; Keller, H. U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.

    2004-12-01

    The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.

  6. Selective Vitamin D Receptor Activation as Anti-Inflammatory Target in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    J. Donate-Correa

    2014-01-01

    Full Text Available Paricalcitol, a selective vitamin D receptor (VDR activator used for treatment of secondary hyperparathyroidism in chronic kidney disease (CKD, has been associated with survival advantages, suggesting that this drug, beyond its ability to suppress parathyroid hormone, may have additional beneficial actions. In this prospective, nonrandomised, open-label, proof-of-concept study, we evaluated the hypothesis that selective vitamin D receptor activation with paricalcitol is an effective target to modulate inflammation in CKD patients. Eight patients with an estimated glomerular filtration rate between 15 and 44 mL/min/1.73 m2 and an intact parathyroid hormone (PTH level higher than 110 pg/mL received oral paricalcitol (1 μg/48 hours as therapy for secondary hyperparathyroidism. Nine patients matched by age, sex, and stage of CKD, but a PTH level <110 pg/mL, were enrolled as a control group. Our results show that five months of paricalcitol administration were associated with a reduction in serum concentrations of hs-CRP (13.9%, P<0.01, TNF-α (11.9%, P=0.01, and IL-6 (7%, P<0.05, with a nonsignificant increase of IL-10 by 16%. In addition, mRNA expression levels of the TNFα and IL-6 genes in peripheral blood mononuclear cells decreased significantly by 30.8% (P=0.01 and 35.4% (P=0.01, respectively. In conclusion, selective VDR activation is an effective target to modulate inflammation in CKD.

  7. Glucose intolerance induced by blockade of central FGF receptors is linked to an acute stress response

    Directory of Open Access Journals (Sweden)

    Jennifer M. Rojas

    2015-08-01

    Conclusions: The effect of acute inhibition of central FGFR signaling to impair glucose tolerance likely involves a stress response associated with pronounced, but transient, sympathoadrenal activation and an associated reduction of insulin secretion. Whether this effect is a true consequence of FGFR blockade or involves an off-target effect of the FGFR inhibitor requires additional study.

  8. Targeted Curing of All Lysogenic Bacteriophage from Streptococcus pyogenes Using a Novel Counter-selection Technique

    Science.gov (United States)

    Euler, Chad W.; Juncosa, Barbara; Ryan, Patricia A.; Deutsch, Douglas R.; McShan, W. Michael; Fischetti, Vincent A.

    2016-01-01

    Streptococcus pyogenes is a human commensal and a bacterial pathogen responsible for a wide variety of human diseases differing in symptoms, severity, and tissue tropism. The completed genome sequences of >37 strains of S. pyogenes, representing diverse disease-causing serotypes, have been published. The greatest genetic variation among these strains is attributed to numerous integrated prophage and prophage-like elements, encoding several virulence factors. A comparison of isogenic strains, differing in prophage content, would reveal the effects of these elements on streptococcal pathogenesis. However, curing strains of prophage is often difficult and sometimes unattainable. We have applied a novel counter-selection approach to identify rare S. pyogenes mutants spontaneously cured of select prophage. To accomplish this, we first inserted a two-gene cassette containing a gene for kanamycin resistance (KanR) and the rpsL wild-type gene, responsible for dominant streptomycin sensitivity (SmS), into a targeted prophage on the chromosome of a streptomycin resistant (SmR) mutant of S. pyogenes strain SF370. We then applied antibiotic counter-selection for the re-establishment of the KanS/SmR phenotype to select for isolates cured of targeted prophage. This methodology allowed for the precise selection of spontaneous phage loss and restoration of the natural phage attB attachment sites for all four prophage-like elements in this S. pyogenes chromosome. Overall, 15 mutants were constructed that encompassed every permutation of phage knockout as well as a mutant strain, named CEM1ΔΦ, completely cured of all bacteriophage elements (a ~10% loss of the genome); the only reported S. pyogenes strain free of prophage-like elements. We compared CEM1ΔΦ to the WT strain by analyzing differences in secreted DNase activity, as well as lytic and lysogenic potential. These mutant strains should allow for the direct examination of bacteriophage relationships within S. pyogenes and

  9. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  10. Greater occipital nerve blockade in cervicogenic headache

    Directory of Open Access Journals (Sweden)

    VINCENT MAURICE B.

    1998-01-01

    Full Text Available Cervicocogenic headache (CeH is a relatively common disorder. Although no ideal treatment is available so far, blockades in different structures and nerves may be temporarily effective. We studied the effects of 1-2 mL 0.5% bupivacaine injection at the ipsilateral greater occipital nerve (GON in 41 CeH patients. The pain is significantly reduced both immediately and as long as 7 days after the blockade. The improvement is less marked during the first two days, a phenomenon we called "tilde pattern". GON blockades may reduce the pool of exaggerated sensory input and antagonize a putative "wind-up-like effect" which may explain the headache improvement.

  11. A precisely substituted benzopyran targets androgen refractory prostate cancer cells through selective modulation of estrogen receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev; Verma, Vikas; Sharma, Vikas; Jain, Ashish; Singh, Vishal [Division of Endocrinology, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Sarswat, Amit [Division of Medicinal & Process Chemistry, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Maikhuri, Jagdamba P. [Division of Endocrinology, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Vishnu L. [Division of Medicinal & Process Chemistry, CSIR—Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR—Central Drug Research Institute, Lucknow 226 031 (India)

    2015-03-15

    Dietary consumption of phytoestrogens like genistein has been linked with lower incidence of prostate cancer. The estradiol-like benzopyran core of genistein confers estrogen receptor-β (ER-β) selectivity that imparts weak anti-proliferative activity against prostate cancer cells. DL-2-[4-(2-piperidinoethoxy)phenyl]-3-phenyl-2H-1-benzopyran (BP), a SERM designed with benzopyran core, targeted androgen independent prostate cancer (PC-3) cells 14-times more potently than genistein, ~ 25% more efficiently than tamoxifen and 6.5-times more actively than ICI-182780, without forfeiting significant specificity in comparison to genistein. BP increased apoptosis (annexin-V and TUNEL labeling), arrested cell cycle, and significantly increased caspase-3 activity along with mRNA expressions of estrogen receptor (ER)-β and FasL (qPCR) in PC-3 cells. In classical ERE-luc reporter assay BP behaved as a potent ER-α antagonist and ER-β agonist. Accordingly, it decreased expression of ER-α target PS2 (P < 0.01) and increased expression of ER-β target TNF-α (P < 0.05) genes in PC-3. ER-β deficient PC-3 (siRNA-transfected) was resistant to apoptotic and anti-proliferative actions of SERMs, including stimulation of FasL expression by BP. BP significantly inhibited phosphorylation of Akt and ERK-1/2, JNK and p38 in PC-3 (immunoblotting), and thus adopted a multi-pathway mechanism to exert a more potent anti-proliferative activity against prostate cancer cells than natural and synthetic SERMs. Its precise ER-subtype specific activity presents a unique lead structure for further optimization. - Highlights: • BP with benzopyran core of genistein was identified for ER-β selective action. • BP was 14-times more potent than genistien in targeting prostate cancer cells. • It behaved as a potent ER-β agonist and ER-α antagonist in gene reporter assays. • BP's anti-proliferative action was inhibited significantly in ER-β deficient cells. • BP — a unique lead

  12. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.; Qiu, Wei; Montgomery, Debra; Digiammarino, Enrico L.; Hansen, T. Matt; Risi, Roberto M.; Frey, Robin; Manaves, Vlasios; Shaw, Bailin; Algire, Mikkel; Hessler, Paul; Lam, Lloyd T.; Uziel, Tamar; Faivre, Emily; Ferguson, Debra; Buchanan, Fritz G.; Martin, Ruth L.; Torrent, Maricel; Chiang, Gary G.; Karukurichi, Kannan; Langston, J. William; Weinert, Brian T.; Choudhary, Chunaram; de Vries, Peter; Van Drie, John H.; McElligott, David; Kesicki, Ed; Marmorstein, Ronen; Sun, Chaohong; Cole, Philip A.; Rosenberg, Saul H.; Michaelides, Michael R.; Lai, Albert; Bromberg, Kenneth D. (AbbVie); (UCopenhagen); (Petra Pharma); (UPENN); (JHU); (Van Drie); (Faraday)

    2017-09-27

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4, bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.

  13. Atomic Fock State Preparation Using Rydberg Blockade

    Science.gov (United States)

    Ebert, Matthew; Gill, Alexander; Gibbons, Michael; Zhang, Xianli; Saffman, Mark; Walker, Thad G.

    2014-01-01

    We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected √N Rabi frequency enhancement to within 4%. The resulting atom number distributions are consistent with an essentially perfect blockade. We then use collective Rabi π pulses to produce N =1, 2 atom number Fock states with fidelities of 62% and 48%, respectively. The N=2 Fock state shows the collective Rabi frequency enhancement without corruption from atom number fluctuations.

  14. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms.

    Science.gov (United States)

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well.

  15. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms.

    Directory of Open Access Journals (Sweden)

    Tewodros Debebe

    Full Text Available The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well.

  16. NuMA is required for the selective induction of p53 target genes.

    Science.gov (United States)

    Ohata, Hirokazu; Miyazaki, Makoto; Otomo, Ryo; Matsushima-Hibiya, Yuko; Otsubo, Chihiro; Nagase, Takahiro; Arakawa, Hirofumi; Yokota, Jun; Nakagama, Hitoshi; Taya, Yoichi; Enari, Masato

    2013-06-01

    The p53 tumor suppressor protein is a transcription factor controlling various outcomes, such as growth arrest and apoptosis, through the regulation of different sets of target genes. The nuclear mitotic apparatus protein (NuMA) plays important roles in spindle pole organization during mitosis and in chromatin regulation in the nucleus during interphase. Although NuMA has been shown to colocalize with several nuclear proteins, including high-mobility-group proteins I and Y and GAS41, the role of NuMA during interphase remains unclear. Here we report that NuMA binds to p53 to modulate p53-mediated transcription. Acute and partial ablation of NuMA attenuates the induction of the proarrested p21 gene following DNA damage, subsequently causing impaired cell cycle arrest. Interestingly, NuMA knockdown had little effect on the induction of the p53-dependent proapoptotic PUMA gene. Furthermore, NuMA is required for the recruitment of cyclin-dependent kinase 8 (Cdk8), a component of the Mediator complex and a promoter of p53-mediated p21 gene function. These data demonstrate that NuMA is critical for the target selectivity of p53-mediated transcription.

  17. Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces.

    Science.gov (United States)

    Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A

    2017-04-01

    The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.

  18. First report of in vitro selection of RNA aptamers targeted to recombinant Loxosceles laeta spider toxins.

    Science.gov (United States)

    Sapag, Amalia; Salinas-Luypaert, Catalina; Constenla-Muñoz, Carlos

    2014-03-26

    Loxoscelism is the envenomation caused by the bite of Loxosceles spp. spiders. It entails severe necrotizing skin lesions, sometimes accompanied by systemic reactions and even death. There are no diagnostic means and treatment is mostly palliative. The main toxin, found in several isoforms in the venom, is sphingomyelinase D (SMD), a phospholipase that has been used to generate antibodies intended for medical applications. Nucleic acid aptamers are a promising alternative to antibodies. Aptamers may be isolated from a combinatorial mixture of oligonucleotides by iterative selection of those that bind to the target. In this work, two Loxosceles laeta SMD isoforms, Ll1 and Ll2, were produced in bacteria and used as targets with the aim of identifying RNA aptamers that inhibit sphingomyelinase activity. Six RNA aptamers capable of eliciting partial but statistically significant inhibitions of the sphingomyelinase activity of recombinant SMD-Ll1 and SMD-Ll2 were obtained: four aptamers exert ~17% inhibition of SMD-Ll1, while two aptamers result in ~25% inhibition of SMD-Ll2 and ~18% cross inhibition of SMD-Ll1. This work is the first attempt to obtain aptamers with therapeutic and diagnostic potential for loxoscelism and provides an initial platform to undertake the development of novel anti Loxosceles venom agents.

  19. First report of in vitro selection of RNA aptamers targeted to recombinant Loxosceles laeta spider toxins

    Directory of Open Access Journals (Sweden)

    Amalia Sapag

    2014-01-01

    Full Text Available BACKGROUND: Loxoscelism is the envenomation caused by the bite of Loxosceles spp. spiders. It entails severe necrotizing skin lesions, sometimes accompanied by systemic reactions and even death. There are no diagnostic means and treatment is mostly palliative. The main toxin, found in several isoforms in the venom, is sphingomyelinase D (SMD, a phospholipase that has been used to generate antibodies intended for medical applications. Nucleic acid aptamers are a promising alternative to antibodies. Aptamers may be isolated from a combinatorial mixture of oligonucleotides by iterative selection of those that bind to the target. In this work, two Loxosceles laeta SMD isoforms, Ll1 and Ll2, were produced in bacteria and used as targets with the aim of identifying RNA aptamers that inhibit sphingomyelinase activity. RESULTS: Six RNA aptamers capable of eliciting partial but statistically significant inhibitions of the sphingomyelinase activity of recombinant SMD-Ll1 and SMD-Ll2 were obtained: four aptamers exert ~17% inhibition of SMD-Ll1, while two aptamers result in ~25% inhibition of SMD-Ll2 and ~18% cross inhibition of SMD-Ll1. CONCLUSIONS: This work is the first attempt to obtain aptamers with therapeutic and diagnostic potential for loxoscelism and provides an initial platform to undertake the development of novel anti Loxoscelesvenom agents.

  20. Bombesin peptide antagonist for target-selective delivery of liposomal doxorubicin on cancer cells.

    Science.gov (United States)

    Accardo, Antonella; Mansi, Rosalba; Salzano, Giuseppina; Morisco, Anna; Aurilio, Michela; Parisi, Antonio; Maione, Francesco; Cicala, Carla; Ziaco, Barbara; Tesauro, Diego; Aloj, Luigi; De Rosa, Giuseppe; Morelli, Giancarlo

    2012-11-21

    Purpose: This study addresses novel peptide modified liposomal doxorubicin to specifically target tissues overexpressing bombesin (BN) receptors. Methods: DOTA-(AEEA)(2)-peptides containing the [7-14]bombesin and the new BN-AA1 sequence have been synthesized to compare their binding properties and in serum stabilities. The amphiphilic peptide derivative (MonY-BN-AA1) containing BN-AA1, a hydrophobic moiety, polyethylenglycole (PEG), and diethylenetriaminepentaacetate (DTPA), has been synthesized. Liposomes have been obtained by mixing of MonY-BN-AA1 with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). Results: Both (111)In labeled peptide derivatives present nanomolar Kd to PC-3 cells. (177)Lu labeled peptide DOTA-(AEEA)(2)-BN-AA1 is very stable (half-life 414.1 h), while DOTA-(AEEA)(2)-BN, shows a half-life of 15.5 h. In vivo studies on the therapeutic efficacy of DSPC/MonY-BN-AA1/Dox in comparison to DSPC/MonY-BN/Dox, were performed in PC-3 xenograft bearing mice. Both formulations showed similar tumor growth inhibition (TGI) compared to control animals treated with non-targeted DSPC/Dox liposomes or saline solution. For DSPC/MonY-BN-AA1/Dox the maximum effect was observed 19 days after treatment. Conclusions: DSPC/MonY-BN-AA1/Dox nanovectors confirm the ability to selectively target and provide therapeutic efficacy in mice. The lack of receptor activation and possible acute biological side effects provided by using the AA1 antagonist bombesin sequence should provide safe working conditions for further development of this class of drug delivery vehicles.

  1. The Breakthrough Listen Search for Intelligent Life: Target Selection of Nearby Stars and Galaxies

    Science.gov (United States)

    Isaacson, Howard; Siemion, Andrew P. V.; Marcy, Geoffrey W.; Lebofsky, Matt; Price, Danny C.; MacMahon, David; Croft, Steve; DeBoer, David; Hickish, Jack; Werthimer, Dan; Sheikh, Sofia; Hellbourg, Greg; Enriquez, J. Emilio

    2017-05-01

    We present the target selection for the Breakthrough Listen search for extraterrestrial intelligence during the first year of observations at the Green Bank Telescope, Parkes Telescope, and Automated Planet Finder. On the way to observing 1,000,000 nearby stars in search of technological signals, we present three main sets of objects we plan to observe in addition to a smaller sample of exotica. We chose the 60 nearest stars, all within 5.1 pc from the Sun. Such nearby stars offer the potential to observe faint radio signals from transmitters that have a power similar to those on Earth. We add a list of 1649 stars drawn from the Hipparcos catalog that span the Hertzprung-Russell diagram, including all spectral types along the main sequence, subgiants, and giant stars. This sample offers diversity and inclusion of all stellar types, but with thoughtful limits and due attention to main sequence stars. Our targets also include 123 nearby galaxies composed of a “morphological-type-complete” sample of the nearest spirals, ellipticals, dwarf spherioidals, and irregulars. While their great distances hamper the detection of technological electromagnetic radiation, galaxies offer the opportunity to observe billions of stars simultaneously and to sample the bright end of the technological luminosity function. We will also use the Green Bank and Parkes telescopes to survey the plane and central bulge of the Milky Way. Finally, the complete target list includes several classes of exotica, including white dwarfs, brown dwarfs, black holes, neutron stars, and asteroids in our solar system.

  2. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  3. A structural annotation resource for the selection of putative target proteins in the malaria parasite

    Directory of Open Access Journals (Sweden)

    Joubert Fourie

    2008-05-01

    Full Text Available Abstract Background Protein structure plays a pivotal role in elucidating mechanisms of parasite functioning and drug resistance. Moreover, protein structure aids the determination of protein function, which can together with the structure be used to identify novel drug targets in the parasite. However, various structural features in Plasmodium falciparum proteins complicate the experimental determination of protein structures. Limited similarity to proteins in the Protein Data Bank and the shortage of solved protein structures in the malaria parasite necessitate genome-scale structural annotation of P. falciparum proteins. Additionally, the annotation of a range of structural features facilitates the identification of suitable targets for experimental and computational studies. Methods An integrated structural annotation system was developed and applied to P. falciparum, Plasmodium vivax and Plasmodium yoelii. The annotation included searches for sequence similarity, patterns and domains in addition to the following predictions: secondary structure, transmembrane helices, protein disorder, low complexity, coiled-coils and small molecule interactions. Subsequently, candidate proteins for further structural studies were identified based on the annotated structural features. Results The annotation results are accessible through a web interface, enabling users to select groups of proteins which fulfil multiple criteria pertaining to structural and functional features 1. Analysis of features in the P. falciparum proteome showed that protein-interacting proteins contained a higher percentage of predicted disordered residues than non-interacting proteins. Proteins interacting with 10 or more proteins have a disordered content concentrated in the range of 60–100%, while the disorder distribution for proteins having only one interacting partner, was more evenly spread. Conclusion A series of P. falciparum protein targets for experimental structure

  4. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability.

    Science.gov (United States)

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-10-11

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM.

  5. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  6. Optimal Decision Rules for Biomarker-Based Subgroup Selection for a Targeted Therapy in Oncology

    Directory of Open Access Journals (Sweden)

    Johannes Krisam

    2015-05-01

    Full Text Available Throughout recent years, there has been a rapidly increasing interest regarding the evaluation of so-called targeted therapies. These therapies are assumed to show a greater benefit in a pre-specified subgroup of patients—commonly identified by a predictive biomarker—as compared to the total patient population of interest. This situation has led to the necessity to develop biostatistical methods allowing an efficient evaluation of such treatments. Among others, adaptive enrichment designs have been proposed as a solution. These designs allow the selection of the most promising patient population based on an efficacy analysis at interim and restricting recruitment to these patients afterwards. As has recently been shown, the performance of the applied interim decision rule in such a design plays a crucial role in ensuring a successful trial. In this work, we investigate the situation when the primary outcome of the trial is a binary variable. Optimal decision rules are derived which incorporate the uncertainty about the treatment effects. These optimal decision rules are evaluated with respect to their performance in an adaptive enrichment design in terms of correct selection probability and power, and are compared to proposed ad hoc decision rules. Our methods are illustrated by means of a clinical trial example.

  7. Identification of genomic variants putatively targeted by selection during dog domestication.

    Science.gov (United States)

    Cagan, Alex; Blass, Torsten

    2016-01-12

    Dogs [Canis lupus familiaris] were the first animal species to be domesticated and continue to occupy an important place in human societies. Recent studies have begun to reveal when and where dog domestication occurred. While much progress has been made in identifying the genetic basis of phenotypic differences between dog breeds we still know relatively little about the genetic changes underlying the phenotypes that differentiate all dogs from their wild progenitors, wolves [Canis lupus]. In particular, dogs generally show reduced aggression and fear towards humans compared to wolves. Therefore, selection for tameness was likely a necessary prerequisite for dog domestication. With the increasing availability of whole-genome sequence data it is possible to try and directly identify the genetic variants contributing to the phenotypic differences between dogs and wolves. We analyse the largest available database of genome-wide polymorphism data in a global sample of dogs 69 and wolves 7. We perform a scan to identify regions of the genome that are highly differentiated between dogs and wolves. We identify putatively functional genomic variants that are segregating or at high frequency [> = 0.75 Fst] for alternative alleles between dogs and wolves. A biological pathways analysis of the genes containing these variants suggests that there has been selection on the 'adrenaline and noradrenaline biosynthesis pathway', well known for its involvement in the fight-or-flight response. We identify 11 genes with putatively functional variants fixed for alternative alleles between dogs and wolves. The segregating variants in these genes are strong candidates for having been targets of selection during early dog domestication. We present the first genome-wide analysis of the different categories of putatively functional variants that are fixed or segregating at high frequency between a global sampling of dogs and wolves. We find evidence that selection has been strongest

  8. Virotherapy targeting cyclin E overexpression in tumors with adenovirus-enhanced cancer-selective promoter.

    Science.gov (United States)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Duan, Xiaoxian; Li, Xiao-Feng; Egger, Michael E; McMasters, Kelly M; Zhou, H Sam

    2015-02-01

    Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. Key messages: Cyclin E promoter activity is high in cancer cells and enhanced by adenovirus infection. Cyclin E promoter is used to control the E1a gene of a tumor-specific oncolytic adenovirus. Ad-cycE efficiently targets cancer cells and induces oncolysis. Ad-cycE significantly repressed xenograft tumor and prolonged survival.

  9. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown that...

  10. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.

    Science.gov (United States)

    Lyu, Junfang; Yang, Eun Ju; Head, Sarah A; Ai, Nana; Zhang, Baoyuan; Wu, Changjie; Li, Ruo-Jing; Liu, Yifan; Yang, Chen; Dang, Yongjun; Kwon, Ho Jeong; Ge, Wei; Liu, Jun O; Shim, Joong Sup

    2017-11-28

    Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease.

    Science.gov (United States)

    Lautenschläger, Christian; Schmidt, Carsten; Lehr, Claus-Michael; Fischer, Dagmar; Stallmach, Andreas

    2013-11-01

    The systemic therapy of inflammatory bowel diseases (IBD) by oral administration of anti-inflammatory and immunosuppressive agents is characterized by an increased probability of adverse drug reactions. A successful treatment with a simultaneous reduction in adverse events may be achieved by the administration of micro- and nanosized targeted drug delivery systems, which accumulate selectively in inflamed mucosal areas without systemic absorption. We described in a first in vivo study in IBD patients a significantly enhanced, but minor accumulation of non-functionalized poly(lactic-co-glycolic acid) (PLGA) microparticles in ulcerous lesions very recently. The aim of this study was therefore the assessment of an increased targeting potential of different non-, chitosan- and polyethylene glycol (PEG)-functionalized PLGA micro- and nanoparticles to inflamed intestinal mucosa compared to healthy mucosa. For the quantification of nano- and microparticles, fluoresceinamine-labeled-PLGA was synthesized by carbodiimide reaction. Fluorescent chitosan-, PEG-, and non-functionalized PLGA micro- and nanoparticles with mean hydrodynamic diameters of 3000 nm and 300 nm were prepared by solvent evaporation technique. The targeting efficiencies in terms of particle translocation and deposition were investigated in Ussing chamber experiments. Healthy and inflamed macrobiopsies were received from routine endoscopic examinations of patients with IBD as well as control patients. One-hundred and one Ussing chamber experiments of patients with IBD (Crohn's disease: n=7 and ulcerative colitis: n=9) as well as healthy control patients (n=5) were performed. Histomorphological and electrophysiological investigations of inflamed mucosal tissues confirmed a significant alteration of mucosal barrier integrity in IBD patients (TER: healthy: 34.1 Ω cm(2); inflamed: 21.6 Ωc m(2); p=0.034). In summary, nanoparticles showed an increased translocation and deposition compared to microparticles in

  12. Localized CD47 blockade enhances immunotherapy for murine melanoma.

    Science.gov (United States)

    Ingram, Jessica R; Blomberg, Olga S; Sockolosky, Jonathan T; Ali, Lestat; Schmidt, Florian I; Pishesha, Novalia; Espinosa, Camilo; Dougan, Stephanie K; Garcia, K Christopher; Ploegh, Hidde L; Dougan, Michael

    2017-09-19

    CD47 is an antiphagocytic ligand broadly expressed on normal and malignant tissues that delivers an inhibitory signal through the receptor signal regulatory protein alpha (SIRPα). Inhibitors of the CD47-SIRPα interaction improve antitumor antibody responses by enhancing antibody-dependent cellular phagocytosis (ADCP) in xenograft models. Endogenous expression of CD47 on a variety of cell types, including erythrocytes, creates a formidable antigen sink that may limit the efficacy of CD47-targeting therapies. We generated a nanobody, A4, that blocks the CD47-SIRPα interaction. A4 synergizes with anti-PD-L1, but not anti-CTLA4, therapy in the syngeneic B16F10 melanoma model. Neither increased dosing nor half-life extension by fusion of A4 to IgG2a Fc (A4Fc) overcame the issue of an antigen sink or, in the case of A4Fc, systemic toxicity. Generation of a B16F10 cell line that secretes the A4 nanobody showed that an enhanced response to several immune therapies requires near-complete blockade of CD47 in the tumor microenvironment. Thus, strategies to localize CD47 blockade to tumors may be particularly valuable for immune therapy.

  13. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.

    Science.gov (United States)

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-06-13

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.

  14. Uranium exploration target selection for proterozoic iron oxide/breccia complex type deposits in India

    International Nuclear Information System (INIS)

    Dwivedy, K.K.; Sinha, K.K.

    1997-01-01

    Multimetal iron oxide/breccia complex (IOBC) type deposits exemplified by Olympic Dam in Australia, fall under low grade, large tonnage deposits. A multidisciplinary integrated exploration programme consisting of airborne surveys, ground geological surveys, geophysical and geochemical investigations and exploratory drilling, supported adequately by the state of the art analytical facilities, data processing using various software and digital image processing has shown moderate success in the identification of target areas for this type of deposits in the Proterozoic terrains of India. Intracratonic, anorogenic, continental rift to continental margin environment have been identified in a very wide spectrum of rock associations. The genesis and evolution of such associations during the Middle Proterozoic period have been reviewed and applied for target selection in the (i) Son-Narmada rift valley zone; (ii) areas covered by Dongargarh Supergroup of rocks in Madhya Pradesh; (iii) areas exposing ferruginous breccia in the western part of the Singhbhum Shear Zone (SSZ) around Lotapahar; (iv) Siang Group of rocks in Arunachal Pradesh; (v) Crystalline rocks of Garo Hills around Anek; and (vi) Chhotanagpur Gneissic complex in the Bahia-Ulatutoli tract of Ranchi Plateau. Of theses six areas, the Son-Narmada rift area appears to be the most promising area for IOBC type deposits. Considering occurrences of the uranium anomalies near Meraraich, Kundabhati, Naktu and Kudar and positive favourability criteria observed in a wide variety of rocks spatially related to the rifts and shears, certain sectors in Son-Narmada rift zone have been identified as promising for intense subsurface exploration. 20 refs, 4 figs, 1 tab

  15. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  16. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  17. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    Science.gov (United States)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-12-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  18. Endothelin-A receptor blockade slows the progression of renal injury in experimental renovascular disease.

    Science.gov (United States)

    Kelsen, Silvia; Hall, John E; Chade, Alejandro R

    2011-07-01

    Endothelin (ET)-1, a potent renal vasoconstrictor with mitogenic properties, is upregulated by ischemia and has been shown to induce renal injury via the ET-A receptor. The potential role of ET-A blockade in chronic renovascular disease (RVD) has not, to our knowledge, been previously reported. We hypothesized that chronic ET-A receptor blockade would preserve renal hemodynamics and slow the progression of injury of the stenotic kidney in experimental RVD. Renal artery stenosis, a major cause of chronic RVD, was induced in 14 pigs and observed for 6 wk. In half of the pigs, chronic ET-A blockade was initiated (RVD+ET-A, 0.75 mg·kg(-1)·day(-1)) at the onset of RVD. Single-kidney renal blood flow, glomerular filtration rate, and perfusion were quantified in vivo after 6 wk using multidetector computer tomography. Renal microvascular density was quantified ex vivo using three-dimensional microcomputer tomography, and growth factors, inflammation, apoptosis, and fibrosis were determined in renal tissue. The degree of stenosis and increase in blood pressure were similar in RVD and RVD+ET-A pigs. Renal hemodynamics, function, and microvascular density were decreased in the stenotic kidney but preserved by ET-A blockade, accompanied by increased renal expression of vascular endothelial growth factor, hepatocyte growth factor, and downstream mediators such as phosphorilated-Akt, angiopoietins, and endothelial nitric oxide synthase. ET-A blockade also reduced renal apoptosis, inflammation, and glomerulosclerosis. This study shows that ET-A blockade slows the progression of renal injury in experimental RVD and preserves renal hemodynamics, function, and microvascular density in the stenotic kidney. These results support a role for ET-1/ET-A as a potential therapeutic target in chronic RVD.

  19. Neuromuscular blockade in the elderly.

    Science.gov (United States)

    Stankiewicz-Rudnicki, Michał

    2016-01-01

    The aim of the presented review is to highlight the clinical problem of postoperative residual curarization (PORC) following general anaesthesia in the elderly. Possible complications of PORC are described along with age-induced changes in pharmacokinetics of long and intermediate-acting neuromuscular blocking agents. This is intended to facilitate the selection and to promote appropriate intraoperative use of muscle relaxants in patients over the age of 65 years.

  20. Ken & barbie selectively regulates the expression of a subset of Jak/STAT pathway target genes.

    Science.gov (United States)

    Arbouzova, Natalia I; Bach, Erika A; Zeidler, Martin P

    2006-01-10

    A limited number of evolutionarily conserved signal transduction pathways are repeatedly reused during development to regulate a wide range of processes. Here we describe a new negative regulator of JAK/STAT signaling and identify a potential mechanism by which the pleiotropy of responses resulting from pathway activation is generated in vivo. As part of a genetic interaction screen, we have identified Ken & Barbie (Ken) , which is an ortholog of the mammalian proto-oncogene BCL6 , as a negative regulator of the JAK/STAT pathway. Ken genetically interacts with the pathway in vivo and recognizes a DNA consensus sequence overlapping that of STAT92E in vitro. Tissue culture-based assays demonstrate the existence of Ken-sensitive and Ken-insensitive STAT92E binding sites, while ectopically expressed Ken is sufficient to downregulate a subset of JAK/STAT pathway target genes in vivo. Finally, we show that endogenous Ken specifically represses JAK/STAT-dependent expression of ventral veins lacking (vvl) in the posterior spiracles. Ken therefore represents a novel regulator of JAK/STAT signaling whose dynamic spatial and temporal expression is capable of selectively modulating the transcriptional repertoire elicited by activated STAT92E in vivo.

  1. A covalent PIN1 inhibitor selectively targets cancer cells by a dual mechanism of action

    Science.gov (United States)

    Campaner, Elena; Rustighi, Alessandra; Zannini, Alessandro; Cristiani, Alberto; Piazza, Silvano; Ciani, Yari; Kalid, Ori; Golan, Gali; Baloglu, Erkan; Shacham, Sharon; Valsasina, Barbara; Cucchi, Ulisse; Pippione, Agnese Chiara; Lolli, Marco Lucio; Giabbai, Barbara; Storici, Paola; Carloni, Paolo; Rossetti, Giulia; Benvenuti, Federica; Bello, Ezia; D'Incalci, Maurizio; Cappuzzello, Elisa; Rosato, Antonio; Del Sal, Giannino

    2017-06-01

    The prolyl isomerase PIN1, a critical modifier of multiple signalling pathways, is overexpressed in the majority of cancers and its activity strongly contributes to tumour initiation and progression. Inactivation of PIN1 function conversely curbs tumour growth and cancer stem cell expansion, restores chemosensitivity and blocks metastatic spread, thus providing the rationale for a therapeutic strategy based on PIN1 inhibition. Notwithstanding, potent PIN1 inhibitors are still missing from the arsenal of anti-cancer drugs. By a mechanism-based screening, we have identified a novel covalent PIN1 inhibitor, KPT-6566, able to selectively inhibit PIN1 and target it for degradation. We demonstrate that KPT-6566 covalently binds to the catalytic site of PIN1. This interaction results in the release of a quinone-mimicking drug that generates reactive oxygen species and DNA damage, inducing cell death specifically in cancer cells. Accordingly, KPT-6566 treatment impairs PIN1-dependent cancer phenotypes in vitro and growth of lung metastasis in vivo.

  2. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.

    Science.gov (United States)

    Yun, Jihye; Mullarky, Edouard; Lu, Changyuan; Bosch, Kaitlyn N; Kavalier, Adam; Rivera, Keith; Roper, Jatin; Chio, Iok In Christine; Giannopoulou, Eugenia G; Rago, Carlo; Muley, Ashlesha; Asara, John M; Paik, Jihye; Elemento, Olivier; Chen, Zhengming; Pappin, Darryl J; Dow, Lukas E; Papadopoulos, Nickolas; Gross, Steven S; Cantley, Lewis C

    2015-12-11

    More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations. Copyright © 2015, American Association for the Advancement of Science.

  3. Green tea extract selectively targets nanomechanics of live metastatic cancer cells

    Science.gov (United States)

    Cross, Sarah E.; Jin, Yu-Sheng; Lu, Qing-Yi; Rao, JianYu; Gimzewski, James K.

    2011-05-01

    Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83 Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.

  4. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product.

    Science.gov (United States)

    Liberti, Maria V; Dai, Ziwei; Wardell, Suzanne E; Baccile, Joshua A; Liu, Xiaojing; Gao, Xia; Baldi, Robert; Mehrmohamadi, Mahya; Johnson, Marc O; Madhukar, Neel S; Shestov, Alexander A; Chio, Iok I Christine; Elemento, Olivier; Rathmell, Jeffrey C; Schroeder, Frank C; McDonnell, Donald P; Locasale, Jason W

    2017-10-03

    Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE. With machine learning and integrated pharmacogenomics and metabolomics, we demonstrate that KA efficacy is not determined by the status of individual genes, but by the quantitative extent of the WE, leading to a therapeutic window in vivo. Thus, the basis of targeting the WE can be encoded by molecular principles that extend beyond the status of individual genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Microbial metabolomics: Replacing trial-and-error by the unbiased selection and ranking of targets

    NARCIS (Netherlands)

    Werf, M.J. van der; Jellema, R.H.; Hankemeier, T.

    2005-01-01

    Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the

  6. Targeting of captopril to the kidney : towards selective renal ACE inhibition

    NARCIS (Netherlands)

    Kok, Robbert Jan

    1998-01-01

    The present thesis deals with the targeting of the angiotensin converting enzyme (ACE) inhibiting drug captopril to the kidney. Drug targeting is a technique that aims at a more specific action of drugs by restricting their distribution to a specific part of the body. In other words, the targeting

  7. Deciding Where to Attend: Priming of Pop-Out Drives Target Selection

    Science.gov (United States)

    Brascamp, Jan W.; Blake, Randolph; Kristjansson, Arni

    2011-01-01

    With attention and eye-movements humans orient to targets of interest. This orienting occurs faster when the same target repeats: priming of pop-out (PoP). While reaction times (RTs) can be important, PoP's real function could be to steer "where" to orient, a possibility underexposed in many current paradigms, as these predesignate a target to…

  8. Attention Blinks for Selection, Not Perception or Memory: Reading Sentences and Reporting Targets

    Science.gov (United States)

    Potter, Mary C.; Wyble, Brad; Olejarczyk, Jennifer

    2011-01-01

    In whole report, a sentence presented sequentially at the rate of about 10 words/s can be recalled accurately, whereas if the task is to report only two target words (e.g., red words), the second target suffers an attentional blink if it appears shortly after the first target. If these two tasks are carried out simultaneously, is there an…

  9. New Strategies for the Next Generation of Matrix-Metalloproteinase Inhibitors: Selectively Targeting Membrane-Anchored MMPs with Therapeutic Antibodies

    Directory of Open Access Journals (Sweden)

    Laetitia Devy

    2011-01-01

    Full Text Available MMP intervention strategies have met with limited clinical success due to severe toxicities. In particular, treatment with broad-spectrum MMP-inhibitors (MMPIs caused musculoskeletal pain and inflammation. Selectivity may be essential for realizing the clinical potential of MMPIs. Here we review discoveries pinpointing membrane-bound MMPs as mediators of mechanisms underlying cancer and inflammation and as possible therapeutic targets for prevention/treatment of these diseases. We discuss strategies to target these therapeutic proteases using highly selective inhibitory agents (i.e., human blocking antibodies against individual membrane-bound MMPs.

  10. Efficient Multiparticle Entanglement via Asymmetric Rydberg Blockade

    DEFF Research Database (Denmark)

    Saffman, Mark; Mølmer, Klaus

    2009-01-01

    We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On t....... On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.......We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles...

  11. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  12. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery.

    Science.gov (United States)

    de Geus, Susanna W L; Boogerd, Leonora S F; Swijnenburg, Rutger-Jan; Mieog, J Sven D; Tummers, Willemieke S F J; Prevoo, Hendrica A J M; Sier, Cornelis F M; Morreau, Hans; Bonsing, Bert A; van de Velde, Cornelis J H; Vahrmeijer, Alexander L; Kuppen, Peter J K

    2016-12-01

    The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. Integrin α v β 6 , carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. The results of this study show that integrin α v β 6 , CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.

  13. Bill restricts abortion blockades. Clinic violence is target of action.

    Science.gov (United States)

    1993-11-17

    On November 16, 1993, the US Senate voted approval, by 69 to 30 members, to impose stiff penalties on those obstructing access to abortion clinics. The penalties include up to 1 year in jail and a $100,000 fine for first violent offenses. Obstruction without violence would lead to a fine of $10,000 and 6 months in jail. The legislation was deemed necessary after the murder of a doctor in Florida and the wounding of another doctor in Kansas. Democratic Senator Edward Kennedy said that those who do not obstruct access have nothing to fear. Support came not only from abortion rights advocates, but from those against lawlessness in the pro-life movement. Maryland's Democratic Senators Mikulski and Sarbanes and California's Democratic Senator Barbara Boxes supported the bill, as well as Attorney General Janet Reno and President Clinton. House Speaker Thomas S. Foley announced that the House would consider its version of the bill on November 18, 1993. The original version was changed to reduce fines for nonviolent offenders from $100,000 to $10,000. Opponents argued that the legislation treated peaceful protesters as felons, and was directed in a singular=sided way with no regard to civil disobedience by animal rights activists, antinuclear protesters, and AIDS activists. North Carolina Republican Senator Jesse Helms thought that the Supreme Court would find the bill unconstitutional. Other arguments were that civil disobedience should be allowed for anti-abortion protesters, as it was allowed for civil rights protesters such as Dr. Martin Luther King, Jr. Senator Kennedy pointed out the Dr. King was trying to secure a constitutional right, unlike anti-abortion protesters who were trying to deny a constitutional right.

  14. Optimizing target selection and development strategy in cancer treatment: the next wave.

    Science.gov (United States)

    Sausville, Edward A

    2004-09-01

    Successful cancer treatments of the future are being developed with a focus on the molecular targets underlying the pathophysiology of neoplasia. Prominent targets which have emerged are those which are mutated in the course of a cancer's development, and mediate activation or release from suppression of pathways mediating proliferation or apoptosis. These arguably are "pathogenic" targets. However, equally important are targets which can be defined on the basis of "large scale" analysis techniques of gene or protein expression in tumors which define targets expressed as a result of a tumor's differentiation state or tissue of origin ("ontogenic" targets); targets mediating drug uptake or metabolism ("pharmacologic" targets), and "microenvironmental" targets mediating the alteration of tumor stromal elements. Irrespective of the nature of the molecular target which is the focus of new therapeutic efforts, target definition in susceptible tumors or patients ideally would be part of the development plan. In addition, an understanding of the therapeutic index which might be achieved in host vs tumor tissues using a surrogate or actual marker of drug effect ideally would be available from animal models and inform the development strategy in humans.

  15. Effectiveness of a selective alcohol prevention program targeting personality risk factors: Results of interaction analyses.

    Science.gov (United States)

    Lammers, Jeroen; Goossens, Ferry; Conrod, Patricia; Engels, Rutger; Wiers, Reinout W; Kleinjan, Marloes

    2017-08-01

    To explore whether specific groups of adolescents (i.e., scoring high on personality risk traits, having a lower education level, or being male) benefit more from the Preventure intervention with regard to curbing their drinking behaviour. A clustered randomized controlled trial, with participants randomly assigned to a 2-session coping skills intervention or a control no-intervention condition. Fifteen secondary schools throughout The Netherlands; 7 schools in the intervention and 8 schools in the control condition. 699 adolescents aged 13-15; 343 allocated to the intervention and 356 to the control condition; with drinking experience and elevated scores in either negative thinking, anxiety sensitivity, impulsivity or sensation seeking. Differential effectiveness of the Preventure program was examined for the personality traits group, education level and gender on past-month binge drinking (main outcome), binge frequency, alcohol use, alcohol frequency and problem drinking, at 12months post-intervention. Preventure is a selective school-based alcohol prevention programme targeting personality risk factors. The comparator was a no-intervention control. Intervention effects were moderated by the personality traits group and by education level. More specifically, significant intervention effects were found on reducing alcohol use within the anxiety sensitivity group (OR=2.14, CI=1.40, 3.29) and reducing binge drinking (OR=1.76, CI=1.38, 2.24) and binge drinking frequency (β=0.24, p=0.04) within the sensation seeking group at 12months post-intervention. Also, lower educated young adolescents reduced binge drinking (OR=1.47, CI=1.14, 1.88), binge drinking frequency (β=0.25, p=0.04), alcohol use (OR=1.32, CI=1.06, 1.65) and alcohol use frequency (β=0.47, p=0.01), but not those in the higher education group. Post hoc latent-growth analyses revealed significant effects on the development of binge drinking (β=-0.19, p=0.02) and binge drinking frequency (β=-0.10, p=0

  16. From Target Selection to Post-Stimulation Analysis: Example of an Unconventional Faulted Reservoir

    Science.gov (United States)

    LeCalvez, J. H.; Williams, M.; Xu, W.; Stokes, J.; Moros, H.; Maxwell, S. C.; Conners, S.

    2011-12-01

    As the global balance of supply and demand forces the hydrocarbon industry toward unconventional resources, technology- and economics-driven shale oil and gas production is gaining momentum throughout many basins worldwide. Production from such unconventional plays is facilitated by massive hydraulic fracturing treatments aimed at increasing permeability and reactivating natural fractures. Large-scale faulting and fracturing partly control stress distribution, hence stimulation-derived hydraulically-induced fracture systems development. Therefore, careful integrated approaches to target selection, treatment staging, and stimulation methods need to be used to economically maximize ultimate hydrocarbon recovery. We present a case study of a multistage, multilateral stimulation project in the Fort Worth Basin, Texas. Wells had to be drilled within city limits in a commercially developing building area. Well locations and trajectories were determined in and around large-scale faults using 3D surface seismic with throws varying from seven to thirty meters. As a result, three horizontal wells were drilled in the Lower Barnett Shale section, 150 m apart with the central well landed about 25 m shallower than the outside laterals. Surface seismic indicates that the surface locations are on top of a major fault complex with the lateral sections drilling away from the major fault system and through a smaller fault. Modeling of the borehole-based microseismic monitoring options led to the selection of an optimum set of configurations given the operational restrictions faced: monitoring would mainly take place using a horizontal array to be tractored downhole and moved according to the well and stage to be monitored. Wells were completed using a perf-and-plug approach allowing for each stimulation stage to obtain a precise orientation of the various three-component accelerometers of the monitoring array as well as the calibration of the velocity model used to process the

  17. Nicotine facilitates nicotinic acetylcholine receptor targeting to mitochondria but makes them less susceptible to selective ligands.

    Science.gov (United States)

    Uspenska, Kateryna; Lykhmus, Olena; Gergalova, Galyna; Chernyshov, Volodymyr; Arias, Hugo R; Komisarenko, Sergiy; Skok, Maryna

    2017-08-24

    Several nicotinic acetylcholine receptor (nAChR) subtypes are expressed in mitochondria to regulate the internal pathway of apoptosis in ion channel-independent manner. However, the mechanisms of nAChR activation in mitochondria and targeting to mitochondria are still unknown. Nicotine has been shown to favor nAChR pentamer assembly, folding, and maturation on the way of biosynthesis. The idea of the present work was to determine whether nicotine affects the content, glycosylation, and function of mitochondrial nAChRs. Experiments were performed in isolated liver mitochondria from mice, that either consumed or not nicotine with the drinking water (200μL/L) for 7days. Mitochondria detergent lysates were studied by sandwich or lectin ELISA for the presence and carbohydrate composition of different nAChR subunits. Intact mitochondria were examined by flow cytometry for the binding of fluorescently labeled α-cobratoxin and were tested in functional assay of cytochrome c release under the effect of either Ca 2+ or wortmannin in the presence or absence of nAChR-selective ligands, including PNU-282987 (1nM), dihydro-β-erythroidine (DhβE, 1μM), PNU-120596 (0.3, 3, or 10μM) and desformylflustrabromine hydrochloride (dFBr, 0.001, 0.3, or 1μM). It was found that nicotine consumption increased the ratio of mitochondrial vs non-mitochondrial nAChRs in the liver, enhanced fucosylation of mitochondrial nAChRs, but prevented the binding of α-cobratoxin and the cytochrome c release-attenuating effects of nAChR-specific agonists, antagonists, or positive allosteric modulators. It is concluded that nicotine consumption in vivo favors nAChR glycosylation and trafficking to mitochondria but makes them less susceptible to the effects of specific ligands. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Development of novel agents for idiopathic pulmonary fibrosis: progress in target selection and clinical trial design.

    Science.gov (United States)

    O'Riordan, Thomas G; Smith, Victoria; Raghu, Ganesh

    2015-10-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disease. Until recently, the standard therapy for this disease has been essentially supportive, with the exception of a minority of patients who were eligible for lung transplantation. The development pathway for novel medications for IPF has been complicated. There have been several challenges, including an incomplete understanding of the pathogenesis, unpredictable clinical course, lack of validated biomarkers, the low clinical predictive value of animal models of lung injury, and the need to commit to large clinical trials of long duration to obtain initial evidence of clinical efficacy. Despite these challenges, the combination of recent advances in translational medicine and the unprecedented increase in clinical data accumulated from recent large clinical trials has stimulated an increase in the number of clinical development programs for IPF. Clinical programs are increasingly characterized by rational target selection, preclinical optimization of therapeutic molecules, and an emphasis on efficient clinical trial design. A lower rate of functional decline in patients treated with pirfenidone and nintedanib was demonstrated in large clinical trials. In October 2014, these two drugs became the first agents to be approved by the US Food and Drug Administration for the treatment of IPF. (Pirfenidone had already been approved in several countries outside the United States.) In November 2014, the European Medicines Agency approved the use of nintedanib for IPF. The landscape for management of IPF has markedly changed with the advent of approved therapeutic options for IPF. In this article, we review the strategies that are being used to increase the likelihood of success in clinical development programs of novel disease-modifying agents in IPF.

  19. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses.

    Directory of Open Access Journals (Sweden)

    Jie Zhou

    Full Text Available Plant autophagy plays an important role in delaying senescence, nutrient recycling, and stress responses. Functional analysis of plant autophagy has almost exclusively focused on the proteins required for the core process of autophagosome assembly, but little is known about the proteins involved in other important processes of autophagy, including autophagy cargo recognition and sequestration. In this study, we report functional genetic analysis of Arabidopsis NBR1, a homolog of mammalian autophagy cargo adaptors P62 and NBR1. We isolated two nbr1 knockout mutants and discovered that they displayed some but not all of the phenotypes of autophagy-deficient atg5 and atg7 mutants. Like ATG5 and ATG7, NBR1 is important for plant tolerance to heat, oxidative, salt, and drought stresses. The role of NBR1 in plant tolerance to these abiotic stresses is dependent on its interaction with ATG8. Unlike ATG5 and ATG7, however, NBR1 is dispensable in age- and darkness-induced senescence and in resistance to a necrotrophic pathogen. A selective role of NBR1 in plant responses to specific abiotic stresses suggest that plant autophagy in diverse biological processes operates through multiple cargo recognition and delivery systems. The compromised heat tolerance of atg5, atg7, and nbr1 mutants was associated with increased accumulation of insoluble, detergent-resistant proteins that were highly ubiquitinated under heat stress. NBR1, which contains an ubiquitin-binding domain, also accumulated to high levels with an increasing enrichment in the insoluble protein fraction in the autophagy-deficient mutants under heat stress. These results suggest that NBR1-mediated autophagy targets ubiquitinated protein aggregates most likely derived from denatured or otherwise damaged nonnative proteins generated under stress conditions.

  20. Intrauterine neuromuscular blockade in fetus.

    Science.gov (United States)

    Fan, S Z; Huang, F Y; Lin, S Y; Wang, Y P; Hsieh, F J

    1990-03-01

    Antenatal intrauterine fetal therapy has now become the target of numerous invasive diagnostic and therapeutic maneuvers. Fetal motion during intrauterine fetal therapy not only makes these procedures technically more difficult but also increases the likelihood of trauma to the umbilical vessels and the fetus. Combination of high doses of sedatives, tranquilizers, and narcotics rarely results in adequate suppression of fetal movement. Such medication puts the mother at risk of respiratory depression, regurgitation and aspiration. The use of pancuronium or atracurium to temporarily arrest fetal movement in ten fetus is reported. After an initial ultrasound assessment of fetal lie, placental location, and umbilical cord insertion site, the fetal weight was calculated by the ultrasound parameters of biparietal diameter and abdominal circumference. Under ultrasound guidance, we injected pancuronium 0.15 mg/kg or atracurium 1.0 mg/kg using a 23-gauge spinal needle into the fetal gluteal muscle. Short-term paralysis of the fetus was induced in all cases. Fetal movement stopped by sonographic observation within 5.8 +/- 2.3 min in the pancuronium group and 4.7 +/- 1.8 min in the atracurium group. Fetal movements returned both to maternal sensation or ultrasonic observation by 92 +/- 23 min in the first group and 36 +/- 11 min in the second group. No adverse effect of the relaxant has been observed in any of the mothers. There was no evidence of local soft tissue, nerve or muscle damage at the site of injection on initial examination of the neonates after delivery. The use of neuromuscular relaxant in fetus was a safe and useful method.

  1. Target-triggered transcription machinery for ultra-selective and sensitive fluorescence detection of nucleoside triphosphates in one minute.

    Science.gov (United States)

    Dong, Jiantong; Wu, Tongbo; Xiao, Yu; Chen, Lu; Xu, Lei; Li, Mengyuan; Zhao, Meiping

    2018-02-15

    Nucleoside triphosphates (NTPs) play important roles in living organisms. However, no fluorescent assays are currently available to simply and rapidly detect multiple NTPs with satisfactory selectivity, sensitivity and low cost. Here we demonstrate for the first time a target-triggered in-vitro transcription machinery for ultra-selective, sensitive and instant fluorescence detection of multiple NTPs. The machinery assembles RNA polymerase, DNA template and non-target NTPs to convert the target NTP into equivalent RNA signal sequences which are monitored by the fluorescence enhancement of molecular beacon. The machinery offers excellent selectivity for the target NTP against NDP, NMP and dNTP. Notably, to accelerate the kinetics of the machinery while maintain its high specificity, we investigated the sequence of DNA templates systematically and established a set of guidelines for the design of the optimum DNA templates, which allowed for instant detection of the target NTP at fmol level in less than 1min. Furthermore, the machinery could be transformed into logic gates to study the coeffects of two NTPs in biosynthesis and real-time monitoring systems to reflect the distribution of NTP in nucleotide pools. These results provide very useful and low-cost tools for both biochemical tests and point-of-care analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficacy Trial of a Selective Prevention Program Targeting Both Eating Disorder Symptoms and Unhealthy Weight Gain among Female College Students

    Science.gov (United States)

    Stice, Eric; Rohde, Paul; Shaw, Heather; Marti, C. Nathan

    2012-01-01

    Objective: Evaluate a selective prevention program targeting both eating disorder symptoms and unhealthy weight gain in young women. Method: Female college students at high-risk for these outcomes by virtue of body image concerns (N = 398; M age = 18.4 years, SD = 0.6) were randomized to the Healthy Weight group-based 4-hr prevention program,…

  3. Restoration for the future: Setting endpoints and targets and selecting indicators of progress and success

    Science.gov (United States)

    Daniel C. Dey; Callie Jo Schweitzer; John M. Kabrick

    2014-01-01

    Setting endpoints and targets in forest restoration is a complicated task that is best accomplished in cooperative partnerships that account for the ecology of the system, production of desired ecosystem goods and services, economics and well-being of society, and future environments. Clearly written and quantitative endpoints and intermediary targets need to be...

  4. Acquisitions as lotteries? : The selection of target-firm risk and its impact on merger outcomes

    NARCIS (Netherlands)

    Schneider, C.A.R.; Spalt, Oliver

    2017-01-01

    From 1987 to 2008, riskier firms were more likely to be taken over. Yet, on average, the acquirer declined in value by 2.8% when it bought a "risky target" (the third tercile, having an annualized idiosyncratic volatility of 61% or more), but only by 0.6% when it bought a "safe target" (the first

  5. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD.

    Science.gov (United States)

    Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A

    2016-12-01

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  6. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... neuromuscular blockade at PACU admission, defined as a train-of-four (TOF) ratio

  7. Comparing the selection and placement of best management practices in improving water quality using a multiobjective optimization and targeting method.

    Science.gov (United States)

    Chiang, Li-Chi; Chaubey, Indrajeet; Maringanti, Chetan; Huang, Tao

    2014-03-11

    Suites of Best Management Practices (BMPs) are usually selected to be economically and environmentally efficient in reducing nonpoint source (NPS) pollutants from agricultural areas in a watershed. The objective of this research was to compare the selection and placement of BMPs in a pasture-dominated watershed using multiobjective optimization and targeting methods. Two objective functions were used in the optimization process, which minimize pollutant losses and the BMP placement areas. The optimization tool was an integration of a multi-objective genetic algorithm (GA) and a watershed model (Soil and Water Assessment Tool-SWAT). For the targeting method, an optimum BMP option was implemented in critical areas in the watershed that contribute the greatest pollutant losses. A total of 171 BMP combinations, which consist of grazing management, vegetated filter strips (VFS), and poultry litter applications were considered. The results showed that the optimization is less effective when vegetated filter strips (VFS) are not considered, and it requires much longer computation times than the targeting method to search for optimum BMPs. Although the targeting method is effective in selecting and placing an optimum BMP, larger areas are needed for BMP implementation to achieve the same pollutant reductions as the optimization method.

  8. Comparing the Selection and Placement of Best Management Practices in Improving Water Quality Using a Multiobjective Optimization and Targeting Method

    Directory of Open Access Journals (Sweden)

    Li-Chi Chiang

    2014-03-01

    Full Text Available Suites of Best Management Practices (BMPs are usually selected to be economically and environmentally efficient in reducing nonpoint source (NPS pollutants from agricultural areas in a watershed. The objective of this research was to compare the selection and placement of BMPs in a pasture-dominated watershed using multiobjective optimization and targeting methods. Two objective functions were used in the optimization process, which minimize pollutant losses and the BMP placement areas. The optimization tool was an integration of a multi-objective genetic algorithm (GA and a watershed model (Soil and Water Assessment Tool—SWAT. For the targeting method, an optimum BMP option was implemented in critical areas in the watershed that contribute the greatest pollutant losses. A total of 171 BMP combinations, which consist of grazing management, vegetated filter strips (VFS, and poultry litter applications were considered. The results showed that the optimization is less effective when vegetated filter strips (VFS are not considered, and it requires much longer computation times than the targeting method to search for optimum BMPs. Although the targeting method is effective in selecting and placing an optimum BMP, larger areas are needed for BMP implementation to achieve the same pollutant reductions as the optimization method.

  9. In vitro HIV-1 selective integration into the target sequence and decoy-effect of the modified sequence.

    Directory of Open Access Journals (Sweden)

    Tatsuaki Tsuruyama

    Full Text Available Although there have been a few reports that the HIV-1 genome can be selectively integrated into the genomic DNA of cultured host cell, the biochemistry of integration selectivity has not been fully understood. We modified the in vitro integration reaction protocol and developed a reaction system with higher efficiency. We used a substrate repeat, 5'-(GTCCCTTCCCAGT(n(ACTGGGAAGGGAC(n-3', and a modified sequence DNA ligated into a circular plasmid. CAGT and ACTG (shown in italics in the above sequence in the repeat units originated from the HIV-1 proviral genome ends. Following the incubation of the HIV-1 genome end cDNA and recombinant integrase for the formation of the pre-integration (PI complex, substrate DNA was reacted with this complex. It was confirmed that the integration selectively occurred in the middle segment of the repeat sequence. In addition, integration frequency and selectivity were positively correlated with repeat number n. On the other hand, both frequency and selectivity decreased markedly when using sequences with deletion of CAGT in the middle position of the original target sequence. Moreover, on incubation with the deleted DNAs and original sequence, the integration efficiency and selectivity for the original target sequence were significantly reduced, which indicated interference effects by the deleted sequence DNAs. Efficiency and selectivity were also found to vary discontinuously with changes in manganese dichloride concentration in the reaction buffer, probably due to its influence on the secondary structure of substrate DNA. Finally, integrase was found to form oligomers on the binding site and substrate DNA formed a loop-like structure. In conclusion, there is a considerable selectivity in HIV-integration into the specified sequence; however, similar DNA sequences can interfere with the integration process, and it is therefore difficult for in vivo integration to occur selectively in the actual host genome DNA.

  10. Targeting the Binding Interface on a Shared Receptor Subunit of a Cytokine Family Enables the Inhibition of Multiple Member Cytokines with Selectable Target Spectrum*

    Science.gov (United States)

    Nata, Toshie; Basheer, Asjad; Cocchi, Fiorenza; van Besien, Richard; Massoud, Raya; Jacobson, Steven; Azimi, Nazli; Tagaya, Yutaka

    2015-01-01

    The common γ molecule (γc) is a shared signaling receptor subunit used by six γc-cytokines. These cytokines play crucial roles in the differentiation of the mature immune system and are involved in many human diseases. Moreover, recent studies suggest that multiple γc-cytokines are pathogenically involved in a single disease, thus making the shared γc-molecule a logical target for therapeutic intervention. However, the current therapeutic strategies seem to lack options to treat such cases, partly because of the lack of appropriate neutralizing antibodies recognizing the γc and, more importantly, because of the inherent and practical limitations in the use of monoclonal antibodies. By targeting the binding interface of the γc and cytokines, we successfully designed peptides that not only inhibit multiple γc-cytokines but with a selectable target spectrum. Notably, the lead peptide inhibited three γc-cytokines without affecting the other three or non-γc-cytokines. Biological and mutational analyses of our peptide provide new insights to our current understanding on the structural aspect of the binding of γc-cytokines the γc-molecule. Furthermore, we provide evidence that our peptide, when conjugated to polyethylene glycol to gain stability in vivo, efficiently blocks the action of one of the target cytokines in animal models. Collectively, our technology can be expanded to target various combinations of γc-cytokines and thereby will provide a novel strategy to the current anti-cytokine therapies against immune, inflammatory, and malignant diseases. PMID:26183780

  11. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs.

    Science.gov (United States)

    Accardo, Antonella; Aloj, Luigi; Aurilio, Michela; Morelli, Giancarlo; Tesauro, Diego

    2014-01-01

    Active targeting by means of drug encapsulated nanoparticles decorated with targeting bioactive moieties represents the next frontier in drug delivery; it reduces drug side effects and increases the therapeutic index. Peptides, based on their chemical and biological properties, could have a prevalent role to direct drug encapsulated nanoparticles, such as liposomes, micelles, or hard nanoparticles, toward the tumor tissues. A considerable number of molecular targets for peptides are either exclusively expressed or overexpressed on both cancer vasculature and cancer cells. They can be classified into three wide categories: integrins; growth factor receptors (GFRs); and G-protein coupled receptors (GPCRs). Therapeutic agents based on nanovectors decorated with peptides targeting membrane receptors belonging to the GPCR family overexpressed by cancer cells are reviewed in this article. The most studied targeting membrane receptors are considered: somatostatin receptors; cholecystokinin receptors; receptors associated with the Bombesin like peptides family; luteinizing hormone-releasing hormone receptors; and neurotensin receptors. Nanovectors of different sizes and shapes (micelles, liposomes, or hard nanoparticles) loaded with doxorubicin or other cytotoxic drugs and externally functionalized with natural or synthetic peptides are able to target the overexpressed receptors and are described based on their formulation and in vitro and in vivo behaviors.

  12. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  13. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    Science.gov (United States)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-03-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  14. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Martin C. Boonstra

    2016-01-01

    Full Text Available Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.

  15. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points - An international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial

    DEFF Research Database (Denmark)

    Puhringer, F.K.; Rex, C.; Sielenkamper, A.W.

    2008-01-01

    Background: Sugammadex (Org 25969), a novel, selective relaxant binding agent, was specifically designed to rapidly reverse rocuronium-induced neuromuscular blockade. The efficacy and safety of sugammadex for the reversal of profound, high-dose rocuronium-induced neuromuscular blockade was evalua...

  16. Targeting hunter distribution based on host resource selection and kill sites to manage disease risk

    DEFF Research Database (Denmark)

    Dugal, Cherie; van Beest, Floris; Vander Wal, Eric

    2013-01-01

    of these cohorts were positively associated with landscape- level forest cover and increasing distance to streams and negatively associated with high road density. Local-level forest was positively associated with collared animal locations and hunter-kill sites; however, selection was stronger for collared......Endemic and emerging diseases are rarely uniform in their spatial distribution or prevalence among cohorts of wildlife. Spatial models that quantify risk-driven differences in resource selection and hunter mortality of animals at fine spatial scales can assist disease management by identifying high......-risk areas and individuals. We used resource selection functions (RSFs) and selection ratios (SRs) to quantify sex- and age-specific resource selection patterns of collared (n = 67) and hunter-killed (n = 796) nonmigratory elk (Cervus canadensis manitobensis) during the hunting season between 2002 and 2012...

  17. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  18. Target-selective phototherapy using a ligand-based photosensitizer for type 2 cannabinoid receptor.

    Science.gov (United States)

    Zhang, Shaojuan; Jia, Ningyang; Shao, Pin; Tong, Qin; Xie, Xiang-Qun; Bai, Mingfeng

    2014-03-20

    Phototherapy is a powerful, noninvasive approach for cancer treatment, with several agents currently in clinical use. Despite the progress and promise, most current phototherapy agents have serious side effects as they can lead to damage to healthy tissue, even when the photosensitizers are fused to targeting molecules due to nonspecific light activation of the unbound photosensitizer. To overcome these limitations, we developed a phototherapy agent that combines a functional ligand and a near infrared phthalocyanine dye. Our target is type 2 cannabinoid receptor (CB2R), considered an attractive therapeutic target for phototherapy given it is overexpressed by many types of cancers that are located at a surface or can be reached by an endoscope. We show that our CB2R-targeted phototherapy agent, IR700DX-mbc94, is specific for CB2R and effective only when bound to the target receptor. Overall, this opens up the opportunity for development of an alternative treatment option for CB2R-positive cancers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Joint Selection of Transmitters and Receivers in Distributed Multi-input Multi-output Radar Network for Multiple Targets Tracking

    Directory of Open Access Journals (Sweden)

    Lu Yanxi

    2017-02-01

    Full Text Available Only a subset of transmitters and receivers in a distributed Multi-Input Multi-Output (MIMO radar network is allowed to actively track a target at a particular instance due to the limited time and energy resource of a MIMO radar network. It is therefore desirable to obtain an efficient method to overcome the resource constraints while optimizing the tracking performance. In this study, posterior Cramer-Rao lower bound is used as the performance metric and the selection problem is formulated as a Boolean programming problem aiming at optimizing the worst tracking performance of multiple targets. It is later relaxed to a semidefinite programming and solved by the block coordinate descend method. Numerical results show that proposed method superior to the fixed selection method. In addition, with less computation complexity, the proposed method obtains nearly equivalent performance compared with exhaustive search method.

  20. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression

    DEFF Research Database (Denmark)

    Ravnskjær, Kim; Kester, Henri; Liu, Yi

    2007-01-01

    , but have minimal effects on CRE-dependent transcription. Here, we show that the latent cytoplasmic coactivator TORC2 mediates target gene activation in response to cAMP signaling by associating with CBP/p300 and increasing its recruitment to a subset of CREB target genes. TORC2 is not activated in response...... to stress signals, however; and in its absence, P-CREB is unable to stimulate CRE-dependent transcription, due to a block in CBP recruitment. The effect of TORC2 on CBP/p300 promoter occupancy appears pivotal because a gain of function mutant CREB polypeptide with increased affinity for CBP restored CRE...

  1. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  2. Algal Bioremediation of Waste Waters from Land-Based Aquaculture Using Ulva: Selecting Target Species and Strains

    OpenAIRE

    Lawton, Rebecca J.; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine wh...

  3. K-targeted metabolomic analysis extends chemical subtraction to DESIGNER extracts: selective depletion of extracts of hops (Humulus lupulus).

    Science.gov (United States)

    Ramos Alvarenga, René F; Friesen, J Brent; Nikolić, Dejan; Simmler, Charlotte; Napolitano, José G; van Breemen, Richard; Lankin, David C; McAlpine, James B; Pauli, Guido F; Chen, Shao-Nong

    2014-12-26

    This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid-liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by (1)H NMR, LC-MS, and HiFSA-based NMR fingerprinting.

  4. Genetic Manipulation of Lactococcus lactis by Using Targeted Group II Introns: Generation of Stable Insertions without Selection

    Science.gov (United States)

    Frazier, Courtney L.; San Filippo, Joseph; Lambowitz, Alan M.; Mills, David A.

    2003-01-01

    Despite their commercial importance, there are relatively few facile methods for genomic manipulation of the lactic acid bacteria. Here, the lactococcal group II intron, Ll.ltrB, was targeted to insert efficiently into genes encoding malate decarboxylase (mleS) and tetracycline resistance (tetM) within the Lactococcus lactis genome. Integrants were readily identified and maintained in the absence of a selectable marker. Since splicing of the Ll.ltrB intron depends on the intron-encoded protein, targeted invasion with an intron lacking the intron open reading frame disrupted TetM and MleS function, and MleS activity could be partially restored by expressing the intron-encoded protein in trans. Restoration of splicing from intron variants lacking the intron-encoded protein illustrates how targeted group II introns could be used for conditional expression of any gene. Furthermore, the modified Ll.ltrB intron was used to separately deliver a phage resistance gene (abiD) and a tetracycline resistance marker (tetM) into mleS, without the need for selection to drive the integration or to maintain the integrant. Our findings demonstrate the utility of targeted group II introns as a potential food-grade mechanism for delivery of industrially important traits into the genomes of lactococci. PMID:12571038

  5. Nuclear pore component Nup98 is a potential tumor suppressor and regulates posttranscriptional expression of select p53 target genes.

    Science.gov (United States)

    Singer, Stephan; Zhao, Ruiying; Barsotti, Anthony M; Ouwehand, Anette; Fazollahi, Mina; Coutavas, Elias; Breuhahn, Kai; Neumann, Olaf; Longerich, Thomas; Pusterla, Tobias; Powers, Maureen A; Giles, Keith M; Leedman, Peter J; Hess, Jochen; Grunwald, David; Bussemaker, Harmen J; Singer, Robert H; Schirmacher, Peter; Prives, Carol

    2012-12-14

    The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3σ) to be similarly regulated by Nup98. The expression of Nup98 is reduced in murine and human hepatocellular carcinomas (HCCs) and correlates with p21 expression in HCC patients. Our study elucidates a previously unrecognized function of wild-type Nup98 in regulating select p53 target genes that is distinct from the well-characterized oncogenic properties of Nup98 fusion proteins. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    Science.gov (United States)

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  7. A randomized, dose-response study of sugammadex given for the reversal of deep rocuronium- or vecuronium-induced neuromuscular blockade under sevoflurane anesthesia

    DEFF Research Database (Denmark)

    Duvaldestin, Philippe; Kuizenga, Karel; Saldien, Vera

    2010-01-01

    Sugammadex is the first of a new class of selective muscle relaxant binding drugs developed for the rapid and complete reversal of neuromuscular blockade induced by rocuronium and vecuronium. Many studies have demonstrated a dose-response relationship with sugammadex for reversal of neuromuscular...... blockade in patients induced and maintained under propofol anesthesia. However, sevoflurane anesthesia, unlike propofol, can prolong the effect of neuromuscular blocking drugs (NMBDs) such as rocuronium and vecuronium....

  8. Antilocalization of Coulomb Blockade in a Ge-Si Nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum

    2014-01-01

    The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...

  9. The impact of acute preoperative beta-blockade on perioperative ...

    African Journals Online (AJOL)

    To determine the impact of acute preoperative β-blockade on the incidence of perioperative cardiovascular morbidity and all- ... Our findings suggest that acute preoperative β-blockade is associated with an increased risk of perioperative cardiac ..... Shammash JB, Trost JC, Gold JM, Berlin JA, Golden MA, Kimmel SE.

  10. Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Schaub, M; Issazadeh-Navikas, Shohreh; Stadlbauer, T H

    1999-01-01

    Blockade of the CD28-B7 or CD40L-CD40 T cell costimulatory signals prevents induction of experimental autoimmune encephalomyelitis (EAE). However, the effect of simultaneous blockade of these signals in EAE is unknown. We show that administration of either MR1 (to block CD40L) or CTLA4Ig (to block...

  11. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  12. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    Science.gov (United States)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  13. Structure-based drug design targeting the cell membrane receptor GPBAR1: exploiting the bile acid scaffold towards selective agonism

    Science.gov (United States)

    di Leva, Francesco Saverio; Festa, Carmen; Renga, Barbara; Sepe, Valentina; Novellino, Ettore; Fiorucci, Stefano; Zampella, Angela; Limongelli, Vittorio

    2015-11-01

    Bile acids can regulate nutrient metabolism through the activation of the cell membrane receptor GPBAR1 and the nuclear receptor FXR. Developing an exogenous control over these receptors represents an attractive strategy for the treatment of enterohepatic and metabolic disorders. A number of dual GPBAR1/FXR agonists are known, however their therapeutic use is limited by multiple unwanted effects due to activation of the diverse downstream signals controlled by the two receptors. On the other hand, designing selective GPBAR1 and FXR agonists is challenging since the two proteins share similar structural requisites for ligand binding. Here, taking advantage of our knowledge of the two targets, we have identified through a rational drug design study a series of amine lithocholic acid derivatives as selective GPBAR1 agonists. The presence of the 3α-NH2 group on the steroidal scaffold is responsible for the selectivity over FXR unveiling unprecedented structural insights into bile acid receptors activity modulation.

  14. Many gases and many measures. Choice of targets and selection of measures in climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Aaheim, H. Asbjoern

    1997-12-31

    This report studies a mix of measures to reduce emissions of CO{sub 2}, CH{sub 4} and N{sub 2}O. It starts with a discussion of so-called direct measures and relates them to charges on emissions of fossil fuels in order to assess conditions for an optimal combination of the two. It then establishes cost functions for direct measures based on Norwegian data and discusses the calculation model. It further describes the atemporal conditions, which are relevant for a policy with emission targets and studies the implications for the choice of direct and indirect measures as well as the emphasis on different gases. In the final section, the intertemporal approach is taken, where the targets are related to concentrations of greenhouse gases by their radiative forcing. 15 refs., 19 figs., 1 table

  15. Evaluation of Alternative Splicing Regulators as Targets for Selective Therapy of Triple Negative (Basal) Breast Carcinoma

    Science.gov (United States)

    2017-10-01

    are generating the experimental animals that combine the transgene with the knockout alleles. Under Task 4, we analyzed the expression of KHDRBS3 in...tumorigenesis process and identify potential therapeutic targets. This will be accomplished through series of experiments in vitro and on animal ...We have already produced KHDRBS3(-/+); C3.1-Tag animals and these are now bred with KHDRBS3(-/-) animals to place the transgene in complete

  16. Hunting Leadership Targets in Counterinsurgency and Counterterrorist Operations: Selected Perspectives and Experience

    Science.gov (United States)

    2007-06-01

    efficacy of leadership targeting spans a broad spec- trum from highly successful in the case of Peru and the Sendero Luminoso in the 1990s to the less...countries from Central America to Argentina. In the Andean Ridge area, Colombia and Peru have been particularly notable. Among the largest and most intense...followers as “ Presidente Gonzalo” and the “Fourth Sword of Marxism” (joining Marx, Lenin and Mao), he had embraced Maoism in his travels to China

  17. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression.

    Science.gov (United States)

    Ravnskjaer, Kim; Kester, Henri; Liu, Yi; Zhang, Xinmin; Lee, Dong; Yates, John R; Montminy, Marc

    2007-06-20

    A number of hormones and growth factors stimulate gene expression by promoting the phosphorylation of CREB (P-CREB), thereby enhancing its association with the histone acetylase paralogs p300 and CBP (CBP/p300). Relative to cAMP, stress signals trigger comparable amounts of CREB phosphorylation, but have minimal effects on CRE-dependent transcription. Here, we show that the latent cytoplasmic coactivator TORC2 mediates target gene activation in response to cAMP signaling by associating with CBP/p300 and increasing its recruitment to a subset of CREB target genes. TORC2 is not activated in response to stress signals, however; and in its absence, P-CREB is unable to stimulate CRE-dependent transcription, due to a block in CBP recruitment. The effect of TORC2 on CBP/p300 promoter occupancy appears pivotal because a gain of function mutant CREB polypeptide with increased affinity for CBP restored CRE-mediated transcription in cells exposed to stress signals. Taken together, these results indicate that TORC2 is one of the long sought after cofactors that mediates the differential effects of cAMP and stress pathways on CREB target gene expression.

  18. Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference

    Science.gov (United States)

    Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan

    2015-01-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129

  19. Frontoparietal theta activity supports behavioral decisions in movement-target selection.

    NARCIS (Netherlands)

    Rawle, C.J.; Miall, R.C.; Praamstra, P.

    2012-01-01

    There is recent EEG evidence describing task-related changes of theta power in spatial attention and reaching/pointing tasks. Here, we aim to better characterize this theta activity and determine whether it is associated with visuospatial memory or with visuospatial selection functions of the

  20. Effects of angiotensin II and angiotensin II type 1 receptor blockade on neointimal formation after stent implantation

    NARCIS (Netherlands)

    Groenewegen, Hendrik C.; van der Harst, Pim; Roks, Anton J. M.; Buikema, Hendrik; Zijlstra, Felix; van Gilst, Wiek H.; de Smet, Bart J. G. L.

    2008-01-01

    Background: To evaluate the effect of supraphysiological levels of angiotensin II and selective angiotensin II type 1 receptor ( AT1-receptor) blockade on neointimal formation and systemic endothelial function after stent implantation in the rat abdominal aorta. Methods: Male Wistar rats were

  1. Blockade of Ca2+-activated K+ channels in T cells: an option for the treatment of multiple sclerosis?

    DEFF Research Database (Denmark)

    Madsen, Lars Siim; Christophersen, Palle; Olesen, Søren-Peter

    2005-01-01

    Voltage- and Ca(2+)-dependent K(+) channels in the membrane of both T and B lymphocytes are important for the cellular immune response. In the current issue of the European Journal of Immunology, Reich et al. demonstrate that selective blockade of the intermediate-conductance Ca(2+)-activated K(+...... of new immune-suppressant drugs for the treatment of autoimmune diseases....

  2. Neuropathogenesis of Zika Virus in a Highly Susceptible Immunocompetent Mouse Model After Antibody Blockade of Type I Interferon

    Science.gov (United States)

    2016-12-12

    46. Sheehan KC, Lazear HM, Diamond MS, Schreiber RD (2015) Selective Blockade of Interferon-alpha and -beta Reveals Their Non-Redundant Functions ...4: 229-237. 49. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, et al. (1998) Microglia-specific 750 localisation of a novel calcium binding

  3. Sugammadex 4.0 mg kg-1 reversal of deep rocuronium-induced neuromuscular blockade

    DEFF Research Database (Denmark)

    Yu, Buwei; Wang, Xiangrui; Hansen, Søren Helbo

    2014-01-01

    Objective: Maintenance of deep Neuro Muscular Blockade (NMB) until the end of surgery may be beneficial in some surgical procedures. The selective relaxant binding agent sugammadex rapidly reverses deep levels of rocuronium-induced NMB. The purpose of this study was to evaluate the efficacy and s...

  4. Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels.

    Science.gov (United States)

    Grigoriadis, Dimitri E; Hoare, Samuel R J; Lechner, Sandra M; Slee, Deborah H; Williams, John A

    2009-01-01

    Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.

  5. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  6. Differential Immune Microenvironments and Response to Immune Checkpoint Blockade among Molecular Subtypes of Murine Medulloblastoma.

    Science.gov (United States)

    Pham, Christina D; Flores, Catherine; Yang, Changlin; Pinheiro, Elaine M; Yearley, Jennifer H; Sayour, Elias J; Pei, Yanxin; Moore, Colin; McLendon, Roger E; Huang, Jianping; Sampson, John H; Wechsler-Reya, Robert; Mitchell, Duane A

    2016-02-01

    Despite significant strides in the identification and characterization of potential therapeutic targets for medulloblastoma, the role of the immune system and its interplay with the tumor microenvironment within these tumors are poorly understood. To address this, we adapted two syngeneic animal models of human Sonic Hedgehog (SHH)-driven and group 3 medulloblastoma for preclinical evaluation in immunocompetent C57BL/6 mice. Multicolor flow cytometric analyses were used to phenotype and characterize immune infiltrating cells within established cerebellar tumors. We observed significantly higher percentages of dendritic cells, infiltrating lymphocytes, myeloid-derived suppressor cells, and tumor-associated macrophages in murine SHH model tumors compared with group 3 tumors. However, murine group 3 tumors had higher percentages of CD8(+) PD-1(+) T cells within the CD3 population. PD-1 blockade conferred superior antitumor efficacy in animals bearing intracranial group 3 tumors compared with SHH group tumors, indicating that immunologic differences within the tumor microenvironment can be leveraged as potential targets to mediate antitumor efficacy. Further analysis of anti-PD-1 monoclonal antibody localization revealed binding to PD-1(+) peripheral T cells, but not tumor infiltrating lymphocytes within the brain tumor microenvironment. Peripheral PD-1 blockade additionally resulted in a marked increase in CD3(+) T cells within the tumor microenvironment. This is the first immunologic characterization of preclinical models of molecular subtypes of medulloblastoma and demonstration that response to immune checkpoint blockade differs across subtype classification. Our findings also suggest that effective anti-PD-1 blockade does not require that systemically administered antibodies penetrate the brain tumor microenvironment. ©2015 American Association for Cancer Research.

  7. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement

    Science.gov (United States)

    Altenhöfer, Sebastian; Radermacher, Kim A.; Kleikers, Pamela W.M.; Wingler, Kirstin

    2015-01-01

    Abstract Significance: Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. Recent Advances: Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. Critical Issues: Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. Future Directions: The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition. Antioxid. Redox Signal. 23, 406–427. PMID:24383718

  8. Virotherapy Targeting Cyclin E Overexpression in Tumors with Adenovirus-enhanced Cancer Selective Promoter

    Science.gov (United States)

    Cheng, Pei-Hsin; Rao, Xiao-Mei; Duan, Xiaoxian; Li, Xiao-Feng; Egger, Michael E.; McMasters, Kelly M.; Zhou, H. Sam

    2014-01-01

    Oncolytic virotherapy can selectively destroy cancer cells and is a potential approach in cancer treatment. A strategy to increase tumor-specific selectivity is to control the expression of a key regulatory viral gene with a tumor-specific promoter. We have previously found that cyclin E expression is augmented in cancer cells after adenovirus (Ad) infection. Thus, the cyclin E promoter that is further activated by Ad in cancer cells may have unique properties for enhancing oncolytic viral replication. We have shown that high levels of viral E1a gene expression are achieved in cancer cells infected with Ad-cycE, in which the endogenous Ad E1a promoter was replaced with the cyclin E promoter. Ad-cycE shows markedly selective oncolytic efficacy in vitro and destroys various types of cancer cells, including those resistant to ONYX-015/dl1520. Furthermore, Ad-cycE shows a strong capacity to repress A549 xenograft tumor growth in nude mice and significantly prolongs survival. This study suggests the potential of Ad-cycE in cancer therapy and indicates the advantages of using promoters that can be upregulated by virus infection in cancer cells in development of oncolytic viruses. PMID:25376708

  9. Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves

    Directory of Open Access Journals (Sweden)

    Zoe Berk

    2016-12-01

    Full Text Available The development of anthelmintic resistance by helminths can be slowed by maintaining refugia on pasture or in untreated hosts. Targeted selective treatments (TST may achieve this through the treatment only of individuals that would benefit most from anthelmintic, according to certain criteria. However TST consequences on cattle are uncertain, mainly due to difficulties of comparison between alternative strategies. We developed a mathematical model to compare: 1 the most ‘beneficial’ indicator for treatment selection and 2 the method of selection of calves exposed to Ostertagia ostertagi, i.e. treating a fixed percentage of the population with the lowest (or highest indicator values versus treating individuals who exceed (or are below a given indicator threshold. The indicators evaluated were average daily gain (ADG, faecal egg counts (FEC, plasma pepsinogen, combined FEC and plasma pepsinogen, versus random selection of individuals. Treatment success was assessed in terms of benefit per R (BPR, the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population. The optimal indicator in terms of BPR for fixed percentages of calves treated was plasma pepsinogen and the worst ADG; in the latter case treatment was applied to some individuals who were not in need of treatment. The reverse was found when calves were treated according to threshold criteria, with ADG being the best target indicator for treatment. This was also the most beneficial strategy overall, with a significantly higher BPR value than any other strategy, but its degree of success depended on the chosen threshold of the indicator. The study shows strong support for TST, with all strategies showing improvements on calves treated selectively, compared with whole-herd treatment at 3, 8, 13 weeks post-turnout. The developed model appeared capable of assessing the consequences of other TST strategies on calf populations.

  10. Clinical Application of Targeted Deep Sequencing in Solid-Cancer Patients and Utility for Biomarker-Selected Clinical Trials.

    Science.gov (United States)

    Kim, Seung Tae; Kim, Kyoung-Mee; Kim, Nayoung K D; Park, Joon Oh; Ahn, Soomin; Yun, Jae-Won; Kim, Kyu-Tae; Park, Se Hoon; Park, Peter J; Kim, Hee Cheol; Sohn, Tae Sung; Choi, Dong Il; Cho, Jong Ho; Heo, Jin Seok; Kwon, Wooil; Lee, Hyuk; Min, Byung-Hoon; Hong, Sung No; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Park, Woong-Yang; Lee, Jeeyun

    2017-10-01

    Molecular profiling of actionable mutations in refractory cancer patients has the potential to enable "precision medicine," wherein individualized therapies are guided based on genomic profiling. The molecular-screening program was intended to route participants to different candidate drugs in trials based on clinical-sequencing reports. In this screening program, we used a custom target-enrichment panel consisting of cancer-related genes to interrogate single-nucleotide variants, insertions and deletions, copy number variants, and a subset of gene fusions. From August 2014 through April 2015, 654 patients consented to participate in the program at Samsung Medical Center. Of these patients, 588 passed the quality control process for the 381-gene cancer-panel test, and 418 patients were included in the final analysis as being eligible for any anticancer treatment (127 gastric cancer, 122 colorectal cancer, 62 pancreatic/biliary tract cancer, 67 sarcoma/other cancer, and 40 genitourinary cancer patients). Of the 418 patients, 55 (12%) harbored a biomarker that guided them to a biomarker-selected clinical trial, and 184 (44%) patients harbored at least one genomic alteration that was potentially targetable. This study demonstrated that the panel-based sequencing program resulted in an increased rate of trial enrollment of metastatic cancer patients into biomarker-selected clinical trials. Given the expanding list of biomarker-selected trials, the guidance percentage to matched trials is anticipated to increase. This study demonstrated that the panel-based sequencing program resulted in an increased rate of trial enrollment of metastatic cancer patients into biomarker-selected clinical trials. Given the expanding list of biomarker-selected trials, the guidance percentage to matched trials is anticipated to increase. © AlphaMed Press 2017.

  11. Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2006-07-01

    Full Text Available Lipid-coated perfluorocarbon nanodroplets are submicrometer-diameter liquid-filled droplets with proposed applications in molecularly targeted therapeutics and ultrasound (US imaging. Ultrasonic molecular imaging is unique in that the optimal application of these agents depends not only on the surface chemistry, but also on the applied US field, which can increase receptor-ligand binding and membrane fusion. Theory and experiments are combined to demonstrate the displacement of perfluorocarbon nanoparticles in the direction of US propagation, where a traveling US wave with a peak pressure on the order of megapascals and frequency in the megahertz range produces a particle translational velocity that is proportional to acoustic intensity and increases with increasing center frequency. Within a vessel with a diameter on the order of hundreds of micrometers or larger, particle velocity on the order of hundreds of micrometers per second is produced and the dominant mechanism for droplet displacement is shown to be bulk fluid streaming. A model for radiation force displacement of particles is developed and demonstrates that effective particle displacement should be feasible in the microvasculature. In a flowing system, acoustic manipulation of targeted droplets increases droplet retention. Additionally, we demonstrate the feasibility of US-enhanced particle internalization and therapeutic delivery.

  12. Oxamate, but Not Selective Targeting of LDH-A, Inhibits Medulloblastoma Cell Glycolysis, Growth and Motility

    Directory of Open Access Journals (Sweden)

    Cara J. Valvona

    2018-03-01

    Full Text Available Medulloblastoma is the most common malignant paediatric brain tumour and current therapies often leave patients with severe neurological disabilities. Four major molecular groups of medulloblastoma have been identified (Wnt, Shh, Group 3 and Group 4, which include additional, recently defined subgroups with different prognosis and genetic characteristics. Lactate dehydrogenase A (LDHA is a key enzyme in the aerobic glycolysis pathway, an abnormal metabolic pathway commonly observed in cancers, associated with tumour progression and metastasis. Studies indicate MBs have a glycolytic phenotype; however, LDHA has not yet been explored as a therapeutic target for medulloblastoma. LDHA expression was examined in medulloblastoma subgroups and cell lines. The effects of LDHA inhibition by oxamate or LDHA siRNA on medulloblastoma cell line metabolism, migration and proliferation were examined. LDHA was significantly overexpressed in Group 3 and Wnt MBs compared to non-neoplastic cerebellum. Furthermore, we found that oxamate significantly attenuated glycolysis, proliferation and motility in medulloblastoma cell lines, but LDHA siRNA did not. We established that aerobic glycolysis is a potential therapeutic target for medulloblastoma, but broader LDH inhibition (LDHA, B, and C may be more appropriate than LDHA inhibition alone.

  13. A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots.

    Science.gov (United States)

    Seo, Junyoung; Al-Hilal, Taslim A; Jee, Jun-Goo; Kim, Yong-Lim; Kim, Ha-Jeong; Lee, Byung-Heon; Kim, Soyoun; Kim, In-San

    2018-04-01

    The use of thrombolytic therapies is limited by an increased risk of systemic hemorrhage due to lysis of hemostatic clots. We sought to develop a plasmin-based thrombolytic nanocage that efficiently dissolves the clot without causing systemic fibrinolysis or disrupting hemostatic clots. Here, we generated a double chambered short-length ferritin (sFt) construct that has an N-terminal region fused to multivalent clot targeting peptides (CLT: CNAGESSKNC) and a C-terminal end fused to a microplasmin (μPn); CLT recognizes fibrin-fibronectin complexes in clots, μPn efficiently dissolves clots, and the assembly of double chambered sFt (CLT-sFt-μPn) into nanocage structure protects the activated-μPn from its circulating inhibitors. Importantly, activated CLT-sFt-μPn thrombolytic nanocage showed a prolonged circulatory life over activated-μPn and efficiently lysed the preexisting clots in both arterial and venous thromboses models. Thus, CLT-sFt-μPn thrombolytic nanocage platform represents the prototype of a targeted clot-busting agent with high efficacy and safety over existing thrombolytic therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  15. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells.

    Science.gov (United States)

    Kurosawa, Nobuyuki; Yoshioka, Megumi; Isobe, Masaharu

    2011-04-13

    Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. We developed a single-step cloning method, target-selective homologous recombination (TS-HR), in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector) with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique. © 2011 Kurosawa et al; licensee BioMed Central Ltd.

  16. Target-selective homologous recombination cloning for high-throughput generation of monoclonal antibodies from single plasma cells

    Directory of Open Access Journals (Sweden)

    Isobe Masaharu

    2011-04-01

    Full Text Available Abstract Background Molecular cloning of functional immunoglobulin genes from single plasma cells is one of the most promising technologies for the rapid development of monoclonal antibody drugs. However, the proper insertion of PCR-amplified immunoglobulin genes into expression vectors remains an obstacle to the high-throughput production of recombinant monoclonal antibodies. Results We developed a single-step cloning method, target-selective homologous recombination (TS-HR, in which PCR-amplified immunoglobulin variable genes were selectively inserted into vectors, even in the presence of nonspecifically amplified DNA. TS-HR utilizes Red/ET-mediated homologous recombination with a target-selective vector (TS-vector with unique homology arms on its termini. Using TS-HR, immunoglobulin variable genes were cloned directly into expression vectors by co-transforming unpurified PCR products and the TS-vector into E. coli. Furthermore, the high cloning specificity of TS-HR allowed plasmids to be extracted from pools of transformed bacteria without screening single colonies for correct clones. We present a one-week protocol for the production of recombinant mouse monoclonal antibodies from large numbers of single plasma cells. Conclusion The time requirements and limitations of traditional cloning procedures for the production of recombinant immunoglobulins have been significantly reduced with the development of the TS-HR cloning technique.

  17. Combined AKT and MEK Pathway Blockade in Pre-Clinical Models of Enzalutamide-Resistant Prostate Cancer.

    Science.gov (United States)

    Toren, Paul; Kim, Soojin; Johnson, Fraser; Zoubeidi, Amina

    2016-01-01

    Despite recent improvements in patient outcomes using newer androgen receptor (AR) pathway inhibitors, treatment resistance in castrate resistant prostate cancer (CRPC) continues to remain a clinical problem. Co-targeting alternate resistance pathways are of significant interest to treat CRPC and delay the onset of resistance. Both the AKT and MEK signaling pathways become activated as prostate cancer develops resistance to AR-targeted therapies. This pre-clinical study explores co-targeting these pathways in AR-positive prostate cancer models. Using various in vitro models of prostate cancer disease states including androgen dependent (LNCaP), CRPC (V16D and 22RV1) and ENZ-resistant prostate cancer (MR49C and MR49F), we evaluate the relevance of targeting both AKT and MEK pathways. Our data reveal that AKT inhibition induces apoptosis and inhibits cell growth in PTEN null cell lines independently of their sensitivity to hormone therapy; however, AKT inhibition had no effect on the PTEN positive 22RV1 cell line. Interestingly, we found that MEK inhibition had greater effect on 22RV1 cells compared to LNCaP, V16D or ENZ-resistant cells MR49C and MR49F cells. In vitro, combination AKT and MEK blockade had evidence of synergy observed in some cell lines and assays, but this was not consistent across all results. In vivo, the combination of AKT and MEK inhibition resulted in more consistent tumor growth inhibition of MR49F xenografts and longer disease specific survival compared to AKT inhibitor monotherapy. As in our in vitro study, 22RV1 xenografts were more resistant to AKT inhibition while they were more sensitive to MEK inhibition. Our results suggest that targeting AKT and MEK in combination may be a valuable strategy in prostate cancer when both pathways are activated and further support the importance of characterizing the dominant oncogenic pathway in each patient's tumor in order to select optimal therapy.

  18. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data

    Directory of Open Access Journals (Sweden)

    Renata Bujak

    2016-07-01

    Full Text Available Non-targeted metabolomics constitutes a part of systems biology and aims to determine many metabolites in complex biological samples. Datasets obtained in non-targeted metabolomics studies are multivariate and high-dimensional due to the sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA without and with multiple testing correction as well as least absolute shrinkage and selection operator (LASSO were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction, selected 46 and 218 variables based on VIP criteria using Pareto and UV scaling, respectively. In the case of the PH study, 217 and 320 variables were selected based on VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built with multiple testing correction, selected 4 and 19 variables as statistically significant in terms of Pareto and UV scaling, respectively. For PH study, 14 and 18 variables were selected based on VIP criteria in terms of Pareto and UV scaling, respectively. Additionally, the concept and fundaments of the least absolute shrinkage and selection operator (LASSO with bootstrap procedure evaluating reproducibility of results, was demonstrated. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3% and 100%. However, apart from the popularity of PLS-DA and OPLS-DA methods in metabolomics, it should be highlighted that they do not control type I or type II error, but only arbitrarily establish a cut-off value for PLS-DA loadings

  19. Animal models for medications development targeting alcohol abuse using selectively bred rat lines: Neurobiological and pharmacological validity

    Science.gov (United States)

    Bell, Richard L.; Sable, Helen J.K.; Colombo, Giancarlo; Hyytia, Petri; Rodd, Zachary A.; Lumeng, Lawrence

    2012-01-01

    The purpose of this review paper is to present evidence that rat animal models of alcoholism provide an ideal platform for developing and screening medications that target alcohol abuse and dependence. The focus is on the 5 oldest international rat lines that have been selectively bred for a high alcohol-consumption phenotype. The behavioral and neurochemical phenotypes of these rat lines are reviewed and placed in the context of the clinical literature. The paper presents behavioral models for assessing the efficacy of pharmaceuticals for the treatment of alcohol abuse and dependence in rodents, with particular emphasis on rats. Drugs that have been tested for their effectiveness in reducing alcohol/ethanol consumption and/or self-administration by these rat lines and their putative site of action are summarized. The paper also presents some current and future directions for developing pharmacological treatments targeting alcohol abuse and dependence. PMID:22841890

  20. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  1. Increasing selective exposure to health messages by targeting person versus behavior schemas.

    Science.gov (United States)

    Pease, Meridith E; Brannon, Laura A; Pilling, Valerie K

    2006-01-01

    Schema correspondence theory (Brannon and Brock, 1994) was applied to the topic of selective exposure to health information. The following question was asked: When do people prefer to expose themselves to health-relevant information tailored to match their own needs and values (i.e., recipient self-schema matching) versus the values and goals that the healthy behavior brings to mind (i.e., behavior schema matching)? In general, recipient self-schema matched messages tended to be preferred over behavior schema matched messages. However, this tendency was attenuated to the extent that the behavior had a very well defined (prototypical) schema.

  2. A recombinant fusion toxin based on enzymatic inactive C3bot1 selectively targets macrophages.

    Directory of Open Access Journals (Sweden)

    Lydia Dmochewitz

    Full Text Available BACKGROUND: The C3bot1 protein (~23 kDa from Clostridium botulinum ADP-ribosylates and thereby inactivates Rho. C3bot1 is selectively taken up into the cytosol of monocytes/macrophages but not of other cell types such as epithelial cells or fibroblasts. Most likely, the internalization occurs by a specific endocytotic pathway via acidified endosomes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested whether enzymatic inactive C3bot1E174Q serves as a macrophage-selective transport system for delivery of enzymatic active proteins into the cytosol of such cells. Having confirmed that C3bot1E174Q does not induce macrophage activation, we used the actin ADP-ribosylating C2I (∼50 kDa from Clostridium botulinum as a reporter enzyme for C3bot1E174Q-mediated delivery into macrophages. The recombinant C3bot1E174Q-C2I fusion toxin was cloned and expressed as GST-protein in Escherichia coli. Purified C3bot1E174Q-C2I was recognized by antibodies against C2I and C3bot and showed C2I-specific enzyme activity in vitro. When applied to cultured cells C3bot1E174Q-C2I ADP-ribosylated actin in the cytosol of macrophages including J774A.1 and RAW264.7 cell lines as well as primary cultured human macrophages but not of epithelial cells. Together with confocal fluorescence microscopy experiments, the biochemical data indicate the selective uptake of a recombinant C3-fusion toxin into the cytosol of macrophages. CONCLUSIONS/SIGNIFICANCE: In summary, we demonstrated that C3bot1E174Q can be used as a delivery system for fast, selective and specific transport of enzymes into the cytosol of living macrophages. Therefore, C3-based fusion toxins can represent valuable molecular tools in experimental macrophage pharmacology and cell biology as well as attractive candidates to develop new therapeutic approaches against macrophage-associated diseases.

  3. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  4. Extending Data Worth Analyses to Select Multiple Observations Targeting Multiple Forecasts.

    Science.gov (United States)

    Vilhelmsen, Troels N; Ferré, Ty P A

    2017-09-15

    Hydrological models are often set up to provide specific forecasts of interest. Owing to the inherent uncertainty in data used to derive model structure and used to constrain parameter variations, the model forecasts will be uncertain. Additional data collection is often performed to minimize this forecast uncertainty. Given our common financial restrictions, it is critical that we identify data with maximal information content with respect to forecast of interest. In practice, this often devolves to qualitative decisions based on expert opinion. However, there is no assurance that this will lead to optimal design, especially for complex hydrogeological problems. Specifically, these complexities include considerations of multiple forecasts, shared information among potential observations, information content of existing data, and the assumptions and simplifications underlying model construction. In the present study, we extend previous data worth analyses to include: simultaneous selection of multiple new measurements and consideration of multiple forecasts of interest. We show how the suggested approach can be used to optimize data collection. This can be used in a manner that suggests specific measurement sets or that produces probability maps indicating areas likely to be informative for specific forecasts. Moreover, we provide examples documenting that sequential measurement election approaches often lead to suboptimal designs and that estimates of data covariance should be included when selecting future measurement sets. © 2017, National Ground Water Association.

  5. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells.

    Science.gov (United States)

    Geninatti Crich, S; Cadenazzi, M; Lanzardo, S; Conti, L; Ruiu, R; Alberti, D; Cavallo, F; Cutrin, J C; Aime, S

    2015-04-21

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml(-1) (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.

  6. Pauli Spin Blockade and the Ultrasmall Magnetic Field Effect

    KAUST Repository

    Danon, Jeroen

    2013-08-06

    Based on the spin-blockade model for organic magnetoresistance, we present an analytic expression for the polaron-bipolaron transition rate, taking into account the effective nuclear fields on the two sites. We reveal the physics behind the qualitatively different magnetoconductance line shapes observed in experiment, as well as the ultrasmall magnetic field effect (USFE). Since our findings agree in detail with recent experiments, they also indirectly provide support for the spin-blockade interpretation of organic magnetoresistance. In addition, we predict the existence of a similar USFE in semiconductor double quantum dots tuned to the spin-blockade regime.

  7. Discovery of Selective Nanobodies against α-elapitoxin Dpp2c from Black Mamba through Phage Display Screening

    DEFF Research Database (Denmark)

    Milbo, Christina; Laustsen, Andreas Hougaard; Lohse, Brian

    Feared for its highly neurotoxic venom and rapid attack technique, the Black mamba (Dendroaspis polylepis) is Africa’s largest venomous snake. The clinical manifestations of a bitefrom D. polylepis include flaccid paralysis leading to respiratory failure and death due to postsynaptic blockade of ......-neurotoxins. Here, we report the discovery of selective nanobodies targeting α-elapitoxin Dpp2c from D. polylepis through phage display screening....

  8. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons.

    Directory of Open Access Journals (Sweden)

    Casie Lindsly

    Full Text Available Synaptic scaling represents a process whereby the distribution of a cell's synaptic strengths are altered by a multiplicative scaling factor. Scaling is thought to be a compensatory response that homeostatically controls spiking activity levels in the cell or network. Previously, we observed GABAergic synaptic scaling in embryonic spinal motoneurons following in vivo blockade of either spiking activity or GABAA receptors (GABAARs. We had determined that activity blockade triggered upward GABAergic scaling through chloride accumulation, thus increasing the driving force for these currents. To determine whether chloride accumulation also underlies GABAergic scaling following GABAAR blockade we have developed a new technique. We expressed a genetically encoded chloride-indicator, Clomeleon, in the embryonic chick spinal cord, which provides a non-invasive fast measure of intracellular chloride. Using this technique we now show that chloride accumulation underlies GABAergic scaling following blockade of either spiking activity or the GABAAR. The finding that GABAAR blockade and activity blockade trigger scaling via a common mechanism supports our hypothesis that activity blockade reduces GABAAR activation, which triggers synaptic scaling. In addition, Clomeleon imaging demonstrated the time course and widespread nature of GABAergic scaling through chloride accumulation, as it was also observed in spinal interneurons. This suggests that homeostatic scaling via chloride accumulation is a common feature in many neuronal classes within the embryonic spinal cord and opens the possibility that this process may occur throughout the nervous system at early stages of development.

  9. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation.

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam; Ardell, Jeffrey L

    2016-11-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. Copyright © 2016 the American Physiological Society.

  10. FOXO3 Selectively Amplifies Enhancer Activity to Establish Target Gene Regulation

    Directory of Open Access Journals (Sweden)

    Astrid Eijkelenboom

    2013-12-01

    Full Text Available Forkhead box O (FOXO transcription factors regulate diverse cellular processes, affecting tumorigenesis, metabolism, stem cell maintenance, and lifespan. We show that FOXO3 transcription regulation mainly proceeds through the most active subset of enhancers. In addition to the general distinction between “open” and “closed” chromatin, we show that the level of activity marks (H3K27ac, RNAPII, enhancer RNAs of these open chromatin regions prior to FOXO3 activation largely determines FOXO3 DNA binding. Consequently, FOXO3 amplifies the levels of these activity marks and their absolute rather than relative changes associate best with FOXO3 target gene regulation. The importance of preexisting chromatin state in directing FOXO3 gene regulation, as shown here, provides a mechanism whereby FOXO3 can regulate cell-specific homeostasis. Genetic variation is reported to affect these chromatin signatures in a quantitative manner, and, in agreement, we observe a correlation between cancer-associated genetic variations and the amplitude of FOXO3 enhancer binding.

  11. Blockade of Vascular Endothelial Growth Factor Receptor 1 Prevents Inflammation and Vascular Leakage in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Jianbo He

    2015-01-01

    Full Text Available Diabetic retinopathy (DR is a leading cause of blindness in working age adults. The objective of this study is to investigate the effects of vascular endothelial growth factor receptor 1 (VEGFR1 blockade on the complications of DR. Experimental models of diabetes were induced with streptozotocin (STZ treatment or Insulin2 gene mutation (Akita in mice. Protein expression and localization were examined by western blots (WB and immunofluorescence (IF. mRNA expression was quantified by PCR array and real-time PCR. The activity of VEGFR1 signaling was blocked by a neutralizing antibody called MF1. Vascular leakage was evaluated by measuring the leakage of [3H]-mannitol tracer into the retina and the IF staining of albumin. VEGFR1 blockade significantly inhibited diabetes-related vascular leakage, leukocytes-endothelial cell (EC adhesion (or retinal leukostasis, expression of intercellular adhesion molecule- (ICAM- 1 protein, abnormal localization and degeneration of the tight junction protein zonula occludens- (ZO- 1, and the cell adhesion protein vascular endothelial (VE cadherin. In addition, VEGFR1 blockade interfered with the gene expression of 10 new cytokines and chemokines: cxcl10, il10, ccl8, il1f6, cxcl15, ccl4, il13, ccl6, casp1, and ccr5. These results suggest that VEGFR1 mediates complications of DR and targeting this signaling pathway represents a potential therapeutic strategy for the prevention and treatment of DR.

  12. Investigation of Prolactin Receptor Activation and Blockade Using Time-Resolved Fluorescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Estelle eTallet

    2011-09-01

    Full Text Available The prolactin receptor (PRLR is emerging as a therapeutic target in oncology. Knowledge-based drug design led to the development of a pure PRLR antagonist (Del1-9-G129R-hPRL that was recently shown to prevent PRL-induced mouse prostate tumorogenesis. In humans, the first gain-of-function mutation of the PRLR (PRLRI146L was recently identified in breast tumor patients. At the molecular level, the actual mechanism of action of these two novel players in the PRL system remains elusive. In this study, we addressed whether constitutive PRLR activation (PRLRI146L or PRLR blockade (antagonist involved alteration of receptor oligomerization and/or of inter-chain distances compared to unstimulated and PRL-stimulated PRLR. Using a combination of various biochemical and spectroscopic approaches (co-IP, blue-native electrophoresis, BRET1, we demonstrated that preformed PRLR homodimers are altered neither by PRL- or I146L-induced receptor triggering, nor by antagonist-mediated blockade. These findings were confirmed using a novel time-resolved fluorescence resonance energy transfer (TR-FRET technology that allows monitoring distance changes between cell-surface tagged receptors. This technology revealed that PRLR blockade or activation did not involve detectable distance changes between extracellular domains of receptor chains within the dimer. This study merges with our previous structural investigations suggesting that the mechanism of PRLR activation solely involves intermolecular contact adaptations leading to subtle intramolecular rearrangements.

  13. SCIB2, an antibody DNA vaccine encoding NY-ESO-1 epitopes, induces potent antitumor immunity which is further enhanced by checkpoint blockade.

    Science.gov (United States)

    Xue, Wei; Metheringham, Rachael L; Brentville, Victoria A; Gunn, Barbara; Symonds, Peter; Yagita, Hideo; Ramage, Judith M; Durrant, Lindy G

    2016-06-01

    Checkpoint blockade has demonstrated promising antitumor responses in approximately 10-40% of patients. However, the majority of patients do not make a productive immune response to their tumors and do not respond to checkpoint blockade. These patients may benefit from an effective vaccine that stimulates high-avidity T cell responses in combination with checkpoint blockade. We have previously shown that incorporating TRP-2 and gp100 epitopes into the CDR regions of a human IgG1 DNA (ImmunoBody®: IB) results in significant tumor regression both in animal models and patients. This vaccination strategy is superior to others as it targets antigen to antigen-presenting cells and stimulates high-avidity T cell responses. To broaden the application of this vaccination strategy, 16 NY-ESO-1 epitopes, covering over 80% of HLA phenotypes, were incorporated into the IB (SCIB2). They produced higher frequency and avidity T cell responses than peptide vaccination. These T cells were of sufficient avidity to kill NY-ESO-1-expressing tumor cells, and in vivo controlled the growth of established B16-NY-ESO-1 tumors, resulting in long-term survival (35%). When SCIB2 was given in combination with Treg depletion, CTLA-4 blockade or PD-1 blockade, long-term survival from established tumors was significantly enhanced to 56, 67 and 100%, respectively. Translating these responses into the clinic by using a combination of SCIB2 vaccination and checkpoint blockade can only further improve clinical responses.

  14. Identification of compounds that selectively target highly chemotherapy refractory neuroblastoma cancer stem cells.

    Science.gov (United States)

    Díaz-Carballo, David; Acikelli, Ali Haydar; Bardenheuer, Walter; Gustmann, Sebastian; Malak, Sascha; Stoll, Raphael; Kedziorski, Thorsten; Nazif, Mhd Ali; Jastrow, Holger; Wennemuth, Gunter; Dammann, Philip; Feigel, Martin; Strumberg, Dirk

    2014-09-01

    Relapse of cancer months or years after an apparently successful therapy is probably caused by cancer stem cells (CSCs) due to their intrinsic features like dormant periods, radiorefraction, and acquired multidrug resistance (MDR) phenotypes, among other mechanisms of cellular drug evasiveness. Thus, the lack of currently efficacious interventions remains a major problem in the treatment of malignancies, together with the inability of existing drugs to destroy specifically CSCs. Neuroblastomas per se are highly chemotherapy-refractory extracranial tumors in infants with very low survival rates. So far, no effective cytostatics against this kind of tumors are clinically available. Therefore, we have put much effort into the development of agents to efficiently combat this malignancy. For this purpose, we tested several compounds isolated from Cuban propolis on induced CSCs (iCSC) derived from LAN-1 neuroblastoma cells which expressed several characteristics of tumor-initiating cells both in in-vitro and in-vivo models. Some small molecules such as flavonoids and polycyclic polyprenylated acylphloroglucinols (PPAP) were isolated using successive RT-HPLC cycles and identified employing mass spectrometry and NMR spectroscopic techniques. Their cytotoxicity was first screened in sensitive cell systems by MTT proliferation assays and afterwards studied in less sensitive neuroblastoma iCSC models. We found several compounds with considerable anti-iCSC activity, most of them belonging to the PPAP class. The majority of the compounds act in a pleiotropic manner on the molecular biology of tumors although their specific targets remain unclear. Nevertheless, two substances, one of them a flavonoid, induced a strong disruption of tubulin polymerization. In addition, an unknown compound strongly inhibited replicative enzymes like toposimerases I/II and DNA polymerase. Here, we report for the first time cytotoxic activities of small molecules isolated from Caribbean propolis

  15. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation

    Science.gov (United States)

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J. Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam

    2016-01-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. PMID:27591222

  16. Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells.

    Science.gov (United States)

    Rovini, Amandine; Carré, Manon; Bordet, Thierry; Pruss, Rebecca M; Braguer, Diane

    2010-09-15

    Microtubule-targeting agents (MTAs), anticancer drugs widely used in the clinic, often induce peripheral neuropathy, a main dose-limiting side effect. The mechanism for this neurotoxicity remains poorly understood and there are still no approved therapies for neuropathies triggered by MTAs. Olesoxime (cholest-4-en-3-one, oxime; TRO19622) has shown marked neuroprotective properties in animals treated with paclitaxel and vincristine. The purpose of this study was to investigate its mechanism of neuroprotection against MTA neurotoxicity by using rat and human differentiated neuronal cells. We first showed that olesoxime prevented neurite shrinkage induced by MTAs in differentiated PC-12 and SK-N-SH neuroblastoma cell lines by up to 90%. This neuroprotective effect was correlated with enhanced EB1 accumulation at microtubule plus-ends, increased growth cone microtubule growing rate (20%) and decreased microtubule attenuation duration (54%). The effects of olesoxime on EB comets were specific for differentiated neuronal cells and were not seen either in proliferating neuroblastoma cells, glioblastoma cells or primary endothelial cells. Importantly, olesoxime did not alter MTA cytotoxic properties in a wide range of MTA-sensitive tumor cells, a prerequisite for future clinical application. Finally, olesoxime also counteracted MTA inhibition of microtubule-dependent mitochondria trafficking. These results provide additional insight into the neuroprotective properties of olesoxime, highlighting a role for microtubule dynamics in preservation of neurite architecture and axoplasmic transport, which are both disturbed by MTAs. The neuron-specific protective properties of olesoxime support its further development to treat MTA-induced neuropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  17. The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene.

    Directory of Open Access Journals (Sweden)

    Takahiro Fukui

    2015-07-01

    Full Text Available Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.

  18. Effectiveness of a selective, personality-targeted prevention program for adolescent alcohol use and misuse: a cluster randomized controlled trial.

    Science.gov (United States)

    Conrod, Patricia J; O'Leary-Barrett, Maeve; Newton, Nicola; Topper, Lauren; Castellanos-Ryan, Natalie; Mackie, Clare; Girard, Alain

    2013-03-01

    Selective school-based alcohol prevention programs targeting youth with personality risk factors for addiction and mental health problems have been found to reduce substance use and misuse in those with elevated personality profiles. To report 24-month outcomes of the Teacher-Delivered Personality-Targeted Interventions for Substance Misuse Trial (Adventure trial) in which school staff were trained to provide interventions to students with 1 of 4 high-risk (HR) profiles: anxiety sensitivity, hopelessness, impulsivity, and sensation seeking and to examine the indirect herd effects of this program on the broader low-risk (LR) population of students who were not selected for intervention. Cluster randomized controlled trial. Secondary schools in London, United Kingdom. A total of 1210 HR and 1433 LR students in the ninth grade (mean [SD] age, 13.7 [0.33] years). Schools were randomized to provide brief personality-targeted interventions to HR youth or treatment as usual (statutory drug education in class). Participants were assessed for drinking, binge drinking, and problem drinking before randomization and at 6-monthly intervals for 2 years. Two-part latent growth models indicated long-term effects of the intervention on drinking rates (β = -0.320, SE = 0.145, P = .03) and binge drinking rates (β = -0.400, SE = 0.179, P = .03) and growth in binge drinking (β = -0.716, SE = 0.274, P = .009) and problem drinking (β = -0.452, SE = 0.193, P = .02) for HR youth. The HR youth were also found to benefit from the interventions during the 24-month follow-up on drinking quantity (β = -0.098, SE = 0.047, P = .04), growth in drinking quantity (β = -0.176, SE = 0.073, P = .02), and growth in binge drinking frequency (β = -0.183, SE = 0.092, P = .047). Some herd effects in LR youth were observed, specifically on drinking rates (β = -0.259, SE = 0.132, P = .049) and growth of binge drinking (β = -0.244, SE = 0.073, P = .001), during the 24-month follow-up. Findings further

  19. Targeting of breast metastases using a viral gene vector with tumour-selective transcription.

    LENUS (Irish Health Repository)

    Rajendran, Simon

    2012-01-31

    BACKGROUND: Adeno-associated virus (AAV) vectors have significant potential as gene delivery vectors for cancer gene therapy. However, broad AAV2 tissue tropism results in nonspecific gene expression. MATERIALS AND METHODS: We investigated use of the C-X-C chemokine receptor type 4 (CXCR4) promoter to restrict AAV expression to tumour cells, in subcutaneous MCF-7 xenograft mouse models of breast cancer and in patient samples, using bioluminescent imaging and flow cytometric analysis. RESULTS: Higher transgene expression levels were observed in subcutaneous MCF-7 tumours relative to normal tissue (muscle) using the CXCR4 promoter, unlike a ubiquitously expressing Cytomegalovirus promoter construct, with preferential AAVCXCR4 expression in epithelial tumour and CXCR4-positive cells. Transgene expression following intravenously administered AAVCXCR4 in a model of liver metastasis was detected specifically in livers of tumour bearing mice. Ex vivo analysis using patient samples also demonstrated higher AAVCXCR4 expression in tumour compared with normal liver tissue. CONCLUSION: This study demonstrates for the first time, the potential for systemic administration of AAV2 vector for tumour-selective gene therapy.

  20. Targeted selected reaction monitoring mass spectrometric immunoassay for insulin-like growth factor 1.

    Directory of Open Access Journals (Sweden)

    Eric E Niederkofler

    Full Text Available Insulin-like growth factor 1 (IGF1 is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM mode. The resulting quantitative mass spectrometric immunoassay (MSIA exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories.

  1. Potential targets for selection during the evolution of viviparity in cold-climate reptiles.

    Science.gov (United States)

    Li, Hong; Elphick, Melanie; Shine, Richard

    2017-01-01

    Viviparity (live-bearing) has evolved from oviparity (egg-laying) in more than 100 lineages of squamate reptiles (lizards and snakes). This transition generally has occurred in cool climates, where thermal differentials between eggs in the (cool) nest versus the (warm) maternal oviduct influence embryonic development, in ways that may enhance offspring fitness. To identify specific traits potentially under selection, we incubated eggs of a montane scincid lizard at conditions simulating natural nests, maternal body temperatures, and an intermediate stage (2-week uterine retention of eggs prior to laying). Incubation at maternal temperatures throughout incubation affected the hatchling lizard's activity level and boldness, as well as its developmental rate, morphology, and locomotor ability. A treatment that mimicked the initial stages of the transition toward viviparity had a major effect on some hatchling traits (locomotor speeds), a minor effect on others (tail length, total incubation period) and no effect on yet others (offspring behaviors). More generally, different aspects of the phenotype are sensitive to incubation conditions at different stages of development; thus, the evolution of reptilian viviparity may have been driven by a succession of advantages that accrued at different stages of embryogenesis.

  2. Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.

    2013-01-01

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience. PMID:24190909

  3. Visual working memory modulates low-level saccade target selection: evidence from rapidly generated saccades in the global effect paradigm.

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J

    2013-11-04

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience.

  4. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity.

    Science.gov (United States)

    Janas, Maja M; Schlegel, Mark K; Harbison, Carole E; Yilmaz, Vedat O; Jiang, Yongfeng; Parmar, Rubina; Zlatev, Ivan; Castoreno, Adam; Xu, Huilei; Shulga-Morskaya, Svetlana; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Keirstead, Natalie D; Maier, Martin A; Jadhav, Vasant

    2018-02-19

    Small interfering RNAs (siRNAs) conjugated to a trivalent N-acetylgalactosamine (GalNAc) ligand are being evaluated in investigational clinical studies for a variety of indications. The typical development candidate selection process includes evaluation of the most active compounds for toxicity in rats at pharmacologically exaggerated doses. The subset of GalNAc-siRNAs that show rat hepatotoxicity is not advanced to clinical development. Potential mechanisms of hepatotoxicity can be associated with the intracellular accumulation of oligonucleotides and their metabolites, RNA interference (RNAi)-mediated hybridization-based off-target effects, and/or perturbation of endogenous RNAi pathways. Here we show that rodent hepatotoxicity observed at supratherapeutic exposures can be largely attributed to RNAi-mediated off-target effects, but not chemical modifications or the perturbation of RNAi pathways. Furthermore, these off-target effects can be mitigated by modulating seed-pairing using a thermally destabilizing chemical modification, which significantly improves the safety profile of a GalNAc-siRNA in rat and may minimize the occurrence of hepatotoxic siRNAs across species.

  5. Radiotherapy and immune checkpoint blockades: a snapshot in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Yool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

  6. Residual Neuromuscular Blockade in the Critical Care Setting.

    Science.gov (United States)

    Stawicki, Nicole; Gessner, Patty

    2018-01-01

    Residual neuromuscular blockade is a widespread challenge for providers in the acute care setting that, if left unrecognized or untreated, places patients at higher risk for morbidity and mortality. The condition is estimated to occur in 26% to 88% of patients undergoing general anesthesia. The role of the advanced practice nurse in the acute care setting is to facilitate a safe recovery process by identifying early signs of deterioration and supporting the patient until full muscular strength has returned. This article discusses the prevalence of residual neuromuscular blockade and associated complications and patient risk factors. A review is included of the current uses for neuromuscular blockade, pathophysiology of the neuromuscular junction, pharmacologic characteristics of neuromuscular blocking agents (including drug-drug interactions), monitoring modalities, and effectiveness of reversal agents. Treatment recommendations pertinent to residual neuromuscular blockade are outlined. ©2018 American Association of Critical-Care Nurses.

  7. Opioid Receptors Blockade Modulates Apoptosis in a Rat Model of ...

    African Journals Online (AJOL)

    of endogenous opioids in the apoptosis process in a rat model of cirrhotic cardiomyopathy. Materials and Methods: Cirrhosis was ... Conclusion: Apoptosis occurs during cirrhotic cardiomyopathy and endogenous opioid receptors blockade using naltrexone ..... Further research would define the responsible pathways.

  8. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers.

    Science.gov (United States)

    Elshafey, Reda; Siaj, Mohamed; Zourob, Mohammed

    2014-09-16

    Contamination of freshwater with cyanotoxin cylindrospermopsin (CYN) represents a significant global concern for public health. The sensitive detection of CYN is necessary to effectively manage and control the treatment of water resources. Here we report a novel, highly sensitive label-free aptasensor for CYN analysis, using aptamers as specific receptors. We have selected the DNA aptamers from a diverse random library using the in vitro screening SELEX approach. The aptamers exhibited high affinity for CYN with Kd of nanomolar range. One aptamer exhibited conformational change upon CYN recognition (CD analysis) and was used to fabricate the label-free impedimetric aptasensor for CYN. A self-assembled monolayer from a disulfide-derivatized aptamer was formed on a gold electrode to fabricate the aptasensor. Upon CYN capturing to the aptasensor surface, a marked drop in the electron transfer resistance was obtained, which was used as the principle of detection of CYN. This resulted from the aptamer's conformational change induced by CYN recognition. The present aptasensor could detect CYN with the limit of detection as low as 100 pM and a wide linear range of 0.1 to 80 nM. When mounted on the gold surface, the aptamer exhibited a lower dissociation constant for CYN than that observed in the fluorescence assay, implying that the anchoring of the aptamer on the Au surface improved its affinity to CYN. Moreover, the aptasensor showed high specificity toward other coexistent cyanobacterial toxins of microcystin-LR and Anatoxin-a. Further biosensor designs will be generated using those aptamers for simple and sensitive CYN monitoring.

  9. Impact of sleep inertia on visual selective attention for rare targets and the influence of chronotype.

    Science.gov (United States)

    Ritchie, Hannah K; Burke, Tina M; Dear, Tristan B; Mchill, Andrew W; Axelsson, John; Wright, Kenneth P

    2017-10-01

    Sleep inertia is affected by circadian phase, with worse performance upon awakening from sleep during the biological night than biological day. Visual search/selective visual attention performance is known to be sensitive to sleep inertia and circadian phase. Individual differences exist in the circadian timing of habitual wake time, which may contribute to individual differences in sleep inertia. Because later chronotypes awaken at an earlier circadian phase, we hypothesized that later chronotypes would have worse visual search performance during sleep inertia than earlier chronotypes if awakened at habitual wake time. We analysed performance from 18 healthy participants [five females (22.1 ± 3.7 years; mean ± SD)] at ~1, 10, 20, 30, 40 and 60 min following electroencephalogram-verified awakening from an 8 h in-laboratory sleep opportunity. Cognitive throughput and reaction times of correct responses were impaired by sleep inertia and took ~10-30 min to improve after awakening. Regardless whether chronotype was defined by dim light melatonin onset or mid-sleep clock hour on free days, derived from the Munich ChronoType Questionnaire, the duration of sleep inertia for cognitive throughput and reaction times was longer for later chronotypes (n = 7) compared with earlier chronotypes (n = 7). Specifically, performance for earlier chronotypes showed significant improvement within ~10-20 min after awakening, whereas performance for later chronotypes took ~30 min or longer to show significant improvement (P sleep, and are consistent with circadian theory suggesting that sleep inertia contributes to longer-lasting impairments in morning performance in later chronotypes. © 2017 European Sleep Research Society.

  10. High Level of Nonsynonymous Changes in Common Bean Suggests That Selection under Domestication Increased Functional Diversity at Target Traits.

    Science.gov (United States)

    Bitocchi, Elena; Rau, Domenico; Benazzo, Andrea; Bellucci, Elisa; Goretti, Daniela; Biagetti, Eleonora; Panziera, Alex; Laidò, Giovanni; Rodriguez, Monica; Gioia, Tania; Attene, Giovanna; McClean, Phillip; Lee, Rian K; Jackson, Scott A; Bertorelle, Giorgio; Papa, Roberto

    2016-01-01

    Crop species have been deeply affected by the domestication process, and there have been many efforts to identify selection signatures at the genome level. This knowledge will help geneticists to better understand the evolution of organisms, and at the same time, help breeders to implement successful breeding strategies. Here, we focused on domestication in the Mesoamerican gene pool of Phaseolus vulgaris by sequencing 49 gene fragments from a sample of 45 P. vulgaris wild and domesticated accessions, and as controls, two accessions each of the closely related species Phaseolus coccineus and Phaseolus dumosus . An excess of nonsynonymous mutations within the domesticated germplasm was found. Our data suggest that the cost of domestication alone cannot explain fully this finding. Indeed, the significantly higher frequency of polymorphisms in the coding regions observed only in the domesticated plants (compared to noncoding regions), the fact that these mutations were mostly nonsynonymous and appear to be recently derived mutations, and the investigations into the functions of their relative genes (responses to biotic and abiotic stresses), support a scenario that involves new functional mutations selected for adaptation during domestication. Moreover, consistent with this hypothesis, selection analysis and the possibility to compare data obtained for the same genes in different studies of varying sizes, data types, and methodologies allowed us to identify four genes that were strongly selected during domestication. Each selection candidate is involved in plant resistance/tolerance to abiotic stresses, such as heat, drought, and salinity. Overall, our study suggests that domestication acted to increase functional diversity at target loci, which probably controlled traits related to expansion and adaptation to new agro-ecological growing conditions.

  11. Speech-language pathologists' practices regarding assessment, analysis, target selection, intervention, and service delivery for children with speech sound disorders.

    Science.gov (United States)

    Mcleod, Sharynne; Baker, Elise

    2014-01-01

    A survey of 231 Australian speech-language pathologists (SLPs) was undertaken to describe practices regarding assessment, analysis, target selection, intervention, and service delivery for children with speech sound disorders (SSD). The participants typically worked in private practice, education, or community health settings and 67.6% had a waiting list for services. For each child, most of the SLPs spent 10-40 min in pre-assessment activities, 30-60 min undertaking face-to-face assessments, and 30-60 min completing paperwork after assessments. During an assessment SLPs typically conducted a parent interview, single-word speech sampling, collected a connected speech sample, and used informal tests. They also determined children's stimulability and estimated intelligibility. With multilingual children, informal assessment procedures and English-only tests were commonly used and SLPs relied on family members or interpreters to assist. Common analysis techniques included determination of phonological processes, substitutions-omissions-distortions-additions (SODA), and phonetic inventory. Participants placed high priority on selecting target sounds that were stimulable, early developing, and in error across all word positions and 60.3% felt very confident or confident selecting an appropriate intervention approach. Eight intervention approaches were frequently used: auditory discrimination, minimal pairs, cued articulation, phonological awareness, traditional articulation therapy, auditory bombardment, Nuffield Centre Dyspraxia Programme, and core vocabulary. Children typically received individual therapy with an SLP in a clinic setting. Parents often observed and participated in sessions and SLPs typically included siblings and grandparents in intervention sessions. Parent training and home programs were more frequently used than the group therapy. Two-thirds kept up-to-date by reading journal articles monthly or every 6 months. There were many similarities with

  12. Dual display: phage selection driven by co-engagement of two targets by two different antibody fragments.

    Science.gov (United States)

    Fagète, Séverine; Botas-Perez, Ledicia; Rossito-Borlat, Irène; Adea, Kenneth; Gueneau, Franck; Ravn, Ulla; Rousseau, François; Kosco-Vilbois, Marie; Fischer, Nicolas; Hartley, Oliver

    2017-09-01

    Antibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity. Phagemids encoding a first antibody fragment (scFv) fused to phage coat protein via the first leucine zipper are rescued in bacteria expressing a second scFv fused to the second leucine zipper as a soluble periplasmic protein, so that it is acquired by phage during assembly. Using a soluble scFv specific for a human CD3-derived peptide, we show that its acquisition by phage displaying an irrelevant antibody is sufficiently robust to drive selection of rare phage (1 in 105) over three rounds of panning. We then set up a model selection experiment using a cell line expressing the chemokine receptor CCR5 fused to the CD3 peptide together with a panel of phage clones capable displaying either an anti-CCR5 scFv or an irrelevant antibody, with or without the capacity to acquire the soluble anti-CD3 scFv. In this experiment we showed that rare phage (1 in 105) capable of displaying the two different scFvs can be specifically enriched over four rounds of panning. This approach has the potential to be applied to the identification of pairs of ligands capable of co-engaging two different user-defined targets, which would facilitate the discovery of novel bispecific antibodies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Glucose uptake during centrally induced stress is insulin independent and enhanced by adrenergic blockade.

    Science.gov (United States)

    Lekas, M C; Fisher, S J; El-Bahrani, B; van Delangeryt, M; Vranic, M; Shi, Z Q

    1999-08-01

    Glucose utilization increases markedly in the normal dog during stress induced by the intracerebroventricular (ICV) injection of carbachol. To determine the extent to which insulin, glucagon, and selective (alpha/beta)-adrenergic activation mediate the increment in glucose metabolic clearance rate (MCR) and glucose production (R(a)), we used five groups of normal mongrel dogs: 1) pancreatic clamp (PC; n = 7) with peripheral somatostatin (0.8 microg x kg(-1) x min(-1)) and intraportal replacement of insulin (1,482 +/- 84 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)) infusions; 2) PC plus combined alpha (phentolamine)- and beta (propranolol)-blockade (7 and 5 microg x kg(-1) x min(-1), respectively; alpha+beta; n = 5); 3) PC plus alpha-blockade (alpha; n = 6); 4) PC plus beta-blockade (beta; n = 5); and 5) a carbachol control group without PC (Con; n = 10). During ICV carbachol stress (0-120 min), catecholamines, ACTH, and cortisol increased in all groups. Baseline insulin and glucagon levels were maintained in all groups except Con, where glucagon rose 33%, and alpha, where insulin increased slightly but significantly. Stress increased (P glycogenolysis, and that R(a) is augmented by glucagon and alpha- and beta-catecholamine effects.

  14. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  15. Transport Through a Coulomb Blockaded Majorana Nanowire

    Science.gov (United States)

    Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd

    In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.

  16. Effect of {beta}{sub 1} adrenergic receptor blockade on myocardial blood flow and vasodilatory capacity

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, M.; Czernin, J.; Sun, K. [Univ. of California, Los Angeles, CA (United States)] [and others

    1997-03-01

    The {beta}{sub 1} receptor blockade reduces cardiac work and may thereby lower myocardial blood flow (MBF) at rest. The effect of {beta}{sub 1} receptor blockade on hyperemic MBF is unknown. To evaluate the effect of selective {beta}{sub 1} receptor blockade on MBF at rest and during dipyridamole induced hyperemia, 10 healthy volunteers (8 men, 2 women, mean age 24 {+-} 5 yr) were studied using {sup 13}N-ammonia PET (two-compartment model) under control conditions and again during metoprolol (50 mg orally 12 hr and 1 hr before the study). The resting rate pressure product (6628 {+-} 504 versus 5225 {+-} 807) and heart rate (63 {+-} 6-54 {plus_minus} 5 bpm) declined during metoprolol (p < 0.05). Similarly, heart rate and rate pressure product declined from the baseline dipyridamole study to dipyridamole plus metoprolol (p < 0.05). Resting MBF declined in proportion to cardiac work by approximately 20% from 0.61 {+-} 0.09-0.51 {+-} 0.10 ml/g/min (p < 0.05). In contrast, hyperemic MBF increased when metoprolol was added to dipyridamole (1.86 {plus_minus} 0.27 {+-} 0.45 ml/g/min; p<0.05). The decrease in resting MBF together with the increase in hyperemic MBF resulted in a significant increase in the myocardial flow reserve during metoprolol (3.14 {+-} 0.80-4.61 {+-} 0.68; p<0.01). The {beta}{sub 1} receptor blockade increases coronary vasodilatory capacity and myocardial flow reserve. However, the mechanisms accounting for this finding remain uncertain. 32 refs., 2 figs., 2 tabs.

  17. Ligand-Directed Functional Selectivity at the Mu Opioid Receptor Revealed by Label-Free Integrative Pharmacology On-Target

    Science.gov (United States)

    Morse, Megan; Tran, Elizabeth; Sun, Haiyan; Levenson, Robert; Fang, Ye

    2011-01-01

    Development of new opioid drugs that provide analgesia without producing dependence is important for pain treatment. Opioid agonist drugs exert their analgesia effects primarily by acting at the mu opioid receptor (MOR) sites. High-resolution differentiation of opioid ligands is crucial for the development of new lead drug candidates with better tolerance profiles. Here, we use a label-free integrative pharmacology on-target (iPOT) approach to characterize the functional selectivity of a library of known opioid ligands for the MOR. This approach is based on the ability to detect dynamic mass redistribution (DMR) arising from the activation of the MOR in living cells. DMR assays were performed in HEK-MOR cells with and without preconditioning with probe molecules using label-free resonant waveguide grating biosensors, wherein the probe molecules were used to modify the activity of specific signaling proteins downstream the MOR. DMR signals obtained were then translated into high resolution heat maps using similarity analysis based on a numerical matrix of DMR parameters. Our data indicate that the iPOT approach clearly differentiates functional selectivity for distinct MOR signaling pathways among different opioid ligands, thus opening new avenues to discover and quantify the functional selectivity of currently used and novel opioid receptor drugs. PMID:22003401

  18. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent

    Science.gov (United States)

    Accardo, Antonella; Salsano, Giuseppina; Morisco, Anna; Aurilio, Michela; Parisi, Antonio; Maione, Francesco; Cicala, Carla; Tesauro, Diego; Aloj, Luigi; De Rosa, Giuseppe; Morelli, Giancarlo

    2012-01-01

    Objectives Drug delivery systems consisting of liposomes displaying a cell surface receptor-targeting peptide are being developed to specifically deliver chemotherapeutic drugs to tumors overexpressing a target receptor. This study addresses novel liposome composition approaches to specifically target tissues overexpressing bombesin (BN) receptors. Methods A new amphiphilic peptide derivative (MonY-BN) containing the BN(7–14) peptide, the DTPA (diethylenetriaminepentaacetate) chelating agent, a hydrophobic moiety with two C18 alkyl chains, and polyethylene glycol spacers, has been synthesized by solid-phase methods. Liposomes have been generated by co-aggregation of MonY-BN with 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). The structural and biological properties of these new target-selective drug-delivery systems have been characterized. Results Liposomes with a DSPC/MonY-BN (97/3 molar ratio) composition showed a diameter of 145.5 ± 31.5 nm and a polydispersity index of 0.20 ± 0.05. High doxorubicin (Dox) loading was obtained with the remote pH gradient method using citrate as the inner buffer. Specific binding to PC-3 cells of DSPC/MonY-BN liposomes was obtained (2.7% ± 0.3%, at 37°C), compared with peptide-free DSPC liposomes (1.4% ± 0.2% at 37°C). Incubation of cells with DSPC/ MonY-BN/Dox showed significantly lower cell survival compared with DSPC/Dox-treated cells, in the presence of 100 ng/mL and 300 ng/mL drug amounts, in cytotoxicity experiments. Intravenous treatment of PC-3 xenograft-bearing mice with DSPC/MonY-BN/Dox at 10 mg/kg Dox dose produced higher tumour growth inhibition (60%) compared with nonspecific DSPC/ Dox liposomes (36%) relative to control animals. Conclusion The structural and loading properties of DSPC/MonY-BN liposomes along with the observed in-vitro and in-vivo activity are encouraging for further development of this approach for target-specific cancer chemotherapy. PMID:22619538

  19. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    Science.gov (United States)

    Ramonell, Kimberly M; Zhang, Wenxiao; Hadley, Annette; Chen, Ching-Wen; Fay, Katherine T; Lyons, John D; Klingensmith, Nathan J; McConnell, Kevin W; Coopersmith, Craig M; Ford, Mandy L

    2017-01-01

    Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  20. CXCR4 blockade decreases CD4+ T cell exhaustion and improves survival in a murine model of polymicrobial sepsis.

    Directory of Open Access Journals (Sweden)

    Kimberly M Ramonell

    Full Text Available Sepsis is a dysregulated systemic response to infection involving many inflammatory pathways and the induction of counter-regulatory anti-inflammatory processes that results in a state of immune incompetence and can lead to multi-organ failure. CXCR4 is a chemokine receptor that, following ligation by CXCL12, directs cells to bone marrow niches and also plays an important role in T cell cosignaling and formation of the immunological synapse. Here, we investigated the expression and function of CXCR4 in a murine model of polymicrobial sepsis. Results indicate that CXCR4 is selectively upregulated on naïve CD4+ and CD8+ T cells and CD4+ central memory T cells following the induction of sepsis, and that CXCR4 antagonism resulted in a significant decrease in sepsis-induced mortality. We probed the mechanistic basis for these findings and found that CXCR4 antagonism significantly increased the number of peripheral CD4+ and CD8+ T cells following sepsis. Moreover, mice treated with the CXCR4 antagonist contained fewer PD-1+ LAG-3+ 2B4+ cells, suggesting that blockade of CXCR4 mitigates CD4+ T cell exhaustion during sepsis. Taken together, these results characterize CXCR4 as an important pathway that modulates immune dysfunction and mortality following sepsis, which may hold promise as a target for future therapeutic intervention in septic patients.

  1. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  2. Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments.

    Science.gov (United States)

    Charlier, J; Morgan, E R; Rinaldi, L; van Dijk, J; Demeler, J; Höglund, J; Hertzberg, H; Van Ranst, B; Hendrickx, G; Vercruysse, J; Kenyon, F

    2014-09-13

    Due to the development of anthelmintic resistance, there have been calls for more sustainable nematode control practices. Two important concepts were introduced to study and promote the sustainable use of anthelmintics: targeted treatments (TT), where the whole flock/herd is treated based on knowledge of the risk, or parameters that quantify the severity of infection; and targeted selective treatments (TST), where only individual animals within the grazing group are treated. The aim of the TT and TST approaches is to effectively control nematode-induced production impacts while preserving anthelmintic efficacy by maintaining a pool of untreated parasites in refugia. Here, we provide an overview of recent studies that assess the use of TT/TST against gastrointestinal nematodes in ruminants and investigate the economic consequences, feasibility and knowledge gaps associated with TST. We conclude that TT/TST approaches are ready to be used and provide practical benefits today. However, a major shift in mentality will be required to make these approaches common practice in parasite control. British Veterinary Association.

  3. Managing anthelmintic resistance-Variability in the dose of drug reaching the target worms influences selection for resistance?

    Science.gov (United States)

    Leathwick, Dave M; Luo, Dongwen

    2017-08-30

    The concentration profile of anthelmintic reaching the target worms in the host can vary between animals even when administered doses are tailored to individual liveweight at the manufacturer's recommended rate. Factors contributing to variation in drug concentration include weather, breed of animal, formulation and the route by which drugs are administered. The implications of this variability for the development of anthelmintic resistance was investigated using Monte-Carlo simulation. A model framework was established where 100 animals each received a single drug treatment. The 'dose' of drug allocated to each animal (i.e. the concentration-time profile of drug reaching the target worms) was sampled at random from a distribution of doses with mean m and standard deviation s. For each animal the dose of drug was used in conjunction with pre-determined dose-response relationships, representing single and poly-genetic inheritance, to calculate efficacy against susceptible and resistant genotypes. These data were then used to calculate the overall change in resistance gene frequency for the worm population as a result of the treatment. Values for m and s were varied to reflect differences in both mean dose and the variability in dose, and for each combination of these 100,000 simulations were run. The resistance gene frequency in the population after treatment increased as m decreased and as s increased. This occurred for both single and poly-gene models and for different levels of dominance (survival under treatment) of the heterozygote genotype(s). The results indicate that factors which result in lower and/or more variable concentrations of active reaching the target worms are more likely to select for resistance. The potential of different routes of anthelmintic administration to play a role in the development of anthelmintic resistance is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  5. Targeting of Beta Adrenergic Receptors Results in Therapeutic Efficacy against Models of Hemangioendothelioma and Angiosarcoma

    Science.gov (United States)

    Stiles, Jessica M.; Amaya, Clarissa; Rains, Steven; Diaz, Dolores; Pham, Robert; Battiste, James; Modiano, Jaime F.; Kokta, Victor; Boucheron, Laura E.; Mitchell, Dianne C.; Bryan, Brad A.

    2013-01-01

    Therapeutic targeting of the beta-adrenergic receptors has recently shown remarkable efficacy in the treatment of benign vascular tumors such as infantile hemangiomas. As infantile hemangiomas are reported to express high levels of beta adrenergic receptors, we examined the expression of these receptors on more aggressive vascular tumors such as hemangioendotheliomas and angiosarcomas, revealing beta 1, 2, and 3 receptors were indeed present and therefore aggressive vascular tumors may similarly show increased susceptibility to the inhibitory effects of beta blockade. Using a panel of hemangioendothelioma and angiosarcoma cell lines, we demonstrate that beta adrenergic inhibition blocks cell proliferation and induces apoptosis in a dose dependent manner. Beta blockade is selective for vascular tumor cells over normal endothelial cells and synergistically effective when combined with standard chemotherapeutic or cytotoxic agents. We demonstrate that inhibition of beta adrenergic signaling induces large scale changes in the global gene expression patterns of vascular tumors, including alterations in the expression of established cell cycle and apoptotic regulators. Using in vivo tumor models we demonstrate that beta blockade shows remarkable efficacy as a single agent in reducing the growth of angiosarcoma tumors. In summary, these experiments demonstrate the selective cytotoxicity and tumor suppressive ability of beta adrenergic inhibition on malignant vascular tumors and have laid the groundwork for a promising treatment of angiosarcomas in humans. PMID:23555867

  6. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4.

    Science.gov (United States)

    Bachtell, Ryan; Hutchinson, Mark R; Wang, Xiaohui; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2015-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drugprimed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse.

  7. Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding.

    Science.gov (United States)

    Fitzgerald, Megan E; Rawling, David C; Potapova, Olga; Ren, Xiaoming; Kohlway, Andrew; Pyle, Anna Marie

    2017-02-17

    RIG-I is an innate immune receptor that detects and responds to infection by deadly RNA viruses such as influenza, and Hepatitis C. In the cytoplasm, RIG-I is faced with a difficult challenge: it must sensitively detect viral RNA while ignoring the abundance of host RNA. It has been suggested that RIG-I has a ‘proof-reading’ mechanism for rejecting host RNA targets, and that disruptions of this selectivity filter give rise to autoimmune diseases. Here, we directly monitor RNA proof-reading by RIG-I and we show that it is controlled by a set of conserved amino acids that couple RNA and ATP binding to the protein (Motif III). Mutations of this motif directly modulate proof-reading by eliminating or enhancing selectivity for viral RNA, with major implications for autoimmune disease and cancer. More broadly, the results provide a physical explanation for the ATP-gated behavior of SF2 RNA helicases and receptor proteins.

  8. Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets.

    Science.gov (United States)

    Ramasamy, Thilagavathi; Selvam, Chelliah

    2015-10-15

    Virtual screening has become an important tool in drug discovery process. Structure based and ligand based approaches are generally used in virtual screening process. To date, several benchmark sets for evaluating the performance of the virtual screening tool are available. In this study, our aim is to compare the performance of both structure based and ligand based virtual screening methods. Ten anti-cancer targets and their corresponding benchmark sets from 'Demanding Evaluation Kits for Objective In silico Screening' (DEKOIS) library were selected. X-ray crystal structures of protein-ligand complexes were selected based on their resolution. Openeye tools such as FRED, vROCS were used and the results were carefully analyzed. At EF1%, vROCS produced better results but at EF5% and EF10%, both FRED and ROCS produced almost similar results. It was noticed that the enrichment factor values were decreased while going from EF1% to EF5% and EF10% in many cases. Published by Elsevier Ltd.

  9. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin

    International Nuclear Information System (INIS)

    Demartis, S.; Tarli, L.; Neri, D.; Borsi, L.; Zardi, L.

    2001-01-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211 At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. (orig.)

  10. Selective Photothermolysis to target Sebaceous Glands: Theoretical Estimation of Parameters and Preliminary Results Using a Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Fernanda Sakamoto, Apostolos Doukas, William Farinelli, Zeina Tannous, Michelle D. Shinn, Stephen Benson, Gwyn P. Williams, H. Dylla, Richard Anderson

    2011-12-01

    The success of permanent laser hair removal suggests that selective photothermolysis (SP) of sebaceous glands, another part of hair follicles, may also have merit. About 30% of sebum consists of fats with copious CH2 bond content. SP was studied in vitro, using free electron laser (FEL) pulses at an infrared CH2 vibrational absorption wavelength band. Absorption spectra of natural and artificially prepared sebum were measured from 200 nm to 3000 nm, to determine wavelengths potentially able to target sebaceous glands. The Jefferson National Accelerator superconducting FEL was used to measure photothermal excitation of aqueous gels, artificial sebum, pig skin, human scalp and forehead skin (sebaceous sites). In vitro skin samples were exposed to FEL pulses from 1620 to 1720 nm, spot diameter 7-9.5 mm with exposure through a cold 4C sapphire window in contact with the skin. Exposed and control tissue samples were stained using H and E, and nitroblue tetrazolium chloride staining (NBTC) was used to detect thermal denaturation. Natural and artificial sebum both had absorption peaks near 1210, 1728, 1760, 2306 and 2346 nm. Laser-induced heating of artificial sebum was approximately twice that of water at 1710 and 1720 nm, and about 1.5x higher in human sebaceous glands than in water. Thermal camera imaging showed transient focal heating near sebaceous hair follicles. Histologically, skin samples exposed to {approx}1700 nm, {approx}100-125 ms pulses showed evidence of selective thermal damage to sebaceous glands. Sebaceous glands were positive for NBTC staining, without evidence of selective loss in samples exposed to the laser. Epidermis was undamaged in all samples. Conclusions: SP of sebaceous glands appears to be feasible. Potentially, optical pulses at {approx}1720 nm or {approx}1210 nm delivered with large beam diameter and appropriate skin cooling in approximately 0.1 s may provide an alternative treatment for acne.

  11. Endothelin receptor a blockade is an ineffective treatment for adriamycin nephropathy.

    Directory of Open Access Journals (Sweden)

    Roderick J Tan

    Full Text Available Endothelin is a vasoconstricting peptide that plays a key role in vascular homeostasis, exerting its biologic effects via two receptors, the endothelin receptor A (ETA and endothelin receptor B (ETB. Activation of ETA and ETB has opposing actions, in which hyperactive ETA is generally vasoconstrictive and pathologic. Selective ETA blockade has been shown to be beneficial in renal injuries such as diabetic nephropathy and can improve proteinuria. Atrasentan is a selective pharmacologic ETA blocker that preferentially inhibits ETA activation. In this study, we evaluated the efficacy of ETA blockade by atrasentan in ameliorating proteinuria and kidney injury in murine adriamycin nephropathy, a model of human focal segmental glomerulosclerosis. We found that ETA expression was unaltered during the course of adriamycin nephropathy. Whether initiated prior to injury in a prevention protocol (5 mg/kg/day, i.p. or after injury onset in a therapeutic protocol (7 mg/kg or 20 mg/kg three times a week, i.p., atrasentan did not significantly affect the initiation and progression of adriamycin-induced albuminuria (as measured by urinary albumin-to-creatinine ratios. Indices of glomerular damage were also not improved in atrasentan-treated groups, in either the prevention or therapeutic protocols. Atrasentan also failed to improve kidney function as determined by serum creatinine, histologic damage, and mRNA expression of numerous fibrosis-related genes such as collagen-I and TGF-β1. Therefore, we conclude that selective blockade of ETA by atrasentan has no effect on preventing or ameliorating proteinuria and kidney injury in adriamycin nephropathy.

  12. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    strategies that can be used to prepare peptides that both strongly and selectively target hairpin RNAs. Specifically, the findings indicate that tailor-made amphiphilic peptide ligands against certain hairpin RNAs can be obtained if the RNA target possesses a deep groove in which both the hydrophobic and hydrophilic spheres of the peptide interact.

  13. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C.; Van den Berge, D.; De Wagter, C.; Fortan, L.; Van Duyse, B.; De Neve, W.

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  14. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown...... and either CTLA4Ig or CTLA4IgY100F protected recipients from disease. In vitro studies confirmed the in vivo observations and showed that primed lymph node cells from protected animals had decreased proliferative responses to myelin basic protein as compared with controls, while lymphocytes from animals...

  15. Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes.

    Science.gov (United States)

    Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P

    2015-09-15

    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Enhanced Sensitivity for Selected Reaction Monitoring Mass Spectrometry-based Targeted Proteomics Using a Dual Stage Electrodynamic Ion Funnel Interface*

    Science.gov (United States)

    Hossain, Mahmud; Kaleta, David T.; Robinson, Errol W.; Liu, Tao; Zhao, Rui; Page, Jason S.; Kelly, Ryan T.; Moore, Ronald J.; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2011-01-01

    Selected reaction monitoring mass spectrometry (SRM-MS) is playing an increasing role in quantitative proteomics and biomarker discovery studies as a method for high throughput candidate quantification and verification. Although SRM-MS offers advantages in sensitivity and quantification compared with other MS-based techniques, current SRM technologies are still challenged by detection and quantification of low abundance proteins (e.g. present at ∼10 ng/ml or lower levels in blood plasma). Here we report enhanced detection sensitivity and reproducibility for SRM-based targeted proteomics by coupling a nanospray ionization multicapillary inlet/dual electrodynamic ion funnel interface to a commercial triple quadrupole mass spectrometer. Because of the increased efficiency in ion transmission, significant enhancements in overall signal intensities and improved limits of detection were observed with the new interface compared with the original interface for SRM measurements of tryptic peptides from proteins spiked into non-depleted mouse plasma over a range of concentrations. Overall, average SRM peak intensities were increased by ∼70-fold. The average level of detection for peptides also improved by ∼10-fold with notably improved reproducibility of peptide measurements as indicated by the reduced coefficients of variance. The ability to detect proteins ranging from 40 to 80 ng/ml within mouse plasma was demonstrated for all spiked proteins without the application of front-end immunoaffinity depletion and fractionation. This significant improvement in detection sensitivity for low abundance proteins in complex matrices is expected to enhance a broad range of SRM-MS applications including targeted protein and metabolite validation. PMID:20410378

  17. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    Science.gov (United States)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  18. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Science.gov (United States)

    Lawton, Rebecca J; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2013-01-01

    The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for

  19. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1 respectively across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1 and Sydney strains had the lowest growth rates (2.5-8.3% day(-1. We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to

  20. Mid-season targeted selective anthelmintic treatment based on flexible weight gain threshold for nematode infection control in dairy calves.

    Science.gov (United States)

    Merlin, A; Ravinet, N; Madouasse, A; Bareille, N; Chauvin, A; Chartier, C

    2017-10-09

    The suitability of a single mid-season targeted selective treatment (TST) for gastrointestinal nematodes control, based on flexible average daily weight gain (ADWG) thresholds, was investigated in 23 groups of first grazing season calves. In each group, animals were weighed three times: before turnout, at mid-season and at housing. Just after the first weighing, each group was divided in two homogenous sub-groups in terms of age, breed and weight, and randomly allocated to one of two sub-groups intented for two different mid-season anthelmintic treatment strategies: (1) a treatment of all calves composing the sub-group (whole-group treatment (WT)) or (2) a targeted selective weight gain-based treatment (TST) of the animals showing an individual pre-treatment ADWG inferior to the mean pre-treatment ADWG of the corresponding WT sub-group. Anthelmintic treatment (levamisole 7.5 mg/kg BW) was performed 3 to 4 months after turnout. At housing, two parasitological parameters (the anti-Ostertagia ostertagi antibody level-Ostertagia optical density ratio (ODR) and the pepsinogen level) and a clinical parameter (the breech soiling score) were assessed at individual level in each group. Then, the high exposed groups to gastrointestinal nematode (GIN) were defined as groups for which untreated animals exhibited a mean Ostertagia ODR ⩾0.7 and among these groups, the ones characterized by high abomasal damage due to Ostertagia for which untreated animals exhibited a mean pepsinogen level ⩾2.5 U Tyr were also identified. Among TST sub-groups, the treatment ADWG thresholds varied from 338 to 941 g/day and the percentage of treated animals from 28% to 75%. Pre- and post-treatment ADWG as well as parasitological and clinical parameters measured at housing were similar between TST and WT sub-groups including the 17 high exposed groups to GIN. Within these 17 groups, the treatment allowed to significantly improve post-treatment ADWG compared with untreated animals. In the six

  1. A BAND SELECTION METHOD FOR SUB-PIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGES BASED ON LABORATORY AND FIELD REFLECTANCE SPECTRAL COMPARISON

    Directory of Open Access Journals (Sweden)

    S. Sharifi hashjin

    2016-06-01

    Full Text Available In recent years, developing target detection algorithms has received growing interest in hyperspectral images. In comparison to the classification field, few studies have been done on dimension reduction or band selection for target detection in hyperspectral images. This study presents a simple method to remove bad bands from the images in a supervised manner for sub-pixel target detection. The proposed method is based on comparing field and laboratory spectra of the target of interest for detecting bad bands. For evaluation, the target detection blind test dataset is used in this study. Experimental results show that the proposed method can improve efficiency of the two well-known target detection methods, ACE and CEM.

  2. Is deep neuromuscular blockade beneficial in laparoscopic surgery?

    DEFF Research Database (Denmark)

    Madsen, M. V.; Staehr-Rye, A K; Claudius, C

    2016-01-01

    BACKGROUND: Deep neuromuscular blockade during laparoscopic surgery may provide some clinical benefit. We present the 'Pro-' argument in this paired position paper. METHODS: We reviewed recent evidence from a basic database of references which we agreed on with the 'Con-' side, and present...... this in narrative form. We have shared our analysis and text with the authors of the 'Con-' side of these paired position papers during the preparation of the manuscripts. RESULTS: There are a few low risk of bias studies indicating that use of deep neuromuscular blockade improve surgical conditions and improve...... patient outcomes such as post-operative pain in laparoscopic surgery. CONCLUSION: Our interpretation of recent findings is that there is reason to believe that there may be some patient benefit of deep neuromuscular blockade in this context, and more detailed study is needed....

  3. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  4. Suppress orthotopic colon cancer and its metastasis through exact targeting and highly selective drug release by a smart nanomicelle.

    Science.gov (United States)

    Zhu, Chunqi; Zhang, Hanbo; Li, Wei; Luo, Lihua; Guo, Xiaomeng; Wang, Zuhua; Kong, Fenfen; Li, Qingpo; Yang, Jie; Du, Yongzhong; You, Jian

    2018-04-01

    The treatment of metastatic cancer is a huge challenge at the moment. Highly precise targeting delivery and drug release in tumor have always been our pursuit in cancer therapy, especially to advance cancer with metastasis, for increasing the efficacy and biosafety. We established a smart nanosized micelle, formed by tocopherol succinate (TOS) conjugated hyaluronic acid (HA) using a disulfide bond linker. The micelle (HA-SS-TOS, HSST) can highly specifically bind with CD44 receptor over-expressed tumor, and response selectively to high GSH level in the cells, inducing disulfide bond breakage and the release of the payload (paclitaxel, PTX). To predict the antitumor efficacy of the micelles more clinically, we established an orthotopic colon cancer model with high metastasis rate, which could be visualized by the luciferase bioluminescence. Our data confirmed CD44 high expression in the colon cancer cells. Highly matching between the micellar fluorescence and bioluminescence of cancer cells in intestines demonstrated an exact recognition of our micelles to orthotopic colon tumor and its metastatic cells, attributing to the mediation of CD44 receptors. Furthermore, the fluorescence of the released Nile Red from the micelles was found only in the tumor and its metastatic cells, and almost completely overlapped with the bioluminescence of the cancer cells, indicating a highly selective drug release. Our micelles presented an excellent therapeutic effect against metastatic colon cancer, and induced significantly prolonged survival time for the mice, which might become a promising nanomedicine platform for the future clinical application against advanced cancers with high CD44 receptor expression. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of angiotensin II blockade on cardiac hypertrophy and remodelling: a review.

    Science.gov (United States)

    Dahlöf, B

    1995-11-01

    Activation of the renin-angiotensin system both systemically and locally seems to be of importance for cardiovascular hypertrophy and remodelling. The octapeptide angiotensin II definitively plays a central role. In the reversal, for example, of left ventricular hypertrophy, so far the most important independent risk factor for an adverse outcome, blocking of the renin-angiotensin system with ACE inhibition has been shown to be particularly effective. In cardiac tissue, however, ACE inhibition has been suggested to inhibit only a fraction of angiotensin II formed, indicating that other enzymatic pathways can be of importance. From a theoretical point of view a more complete blockade of the angiotensin II type 1 receptor would offer a more effective attenuation of the unfavourable effect of angiotensin II. Experimentally, losartan, a novel selective angiotensin II receptor type 1 antagonist has been shown to decrease cardiac hypertrophic response in models of both hypertension and volume cardiac hypertrophy as well as reverse hypertrophy in spontaneously hypertensive rats. TCV-116, another selective angiotensin II antagonist, also effectively reverses cardiac hypertophy and interstitial fibrosis in the rat. The only report so far regarding the effect of angiotensin II blockade on cardiac hypertrophy in essential hypertension suggests a more favourable short-term effect on cardiac hypertrophy for the same blood pressure reduction with losartan compared with atenolol in a small population of mild to moderate hypertensives. In the perspective of the well-established positive effects of ACE inhibition on the remodelling process in the remaining viable myocardium after myocardial infarction, involving myocyte hypertrophy, interstitial fibrosis and progressive dilatation, it is reassuring that angiotensin II blockade has been shown to perform equally well as ACE inhibition after experimental coronary ligation. In summary, the development of cardiovascular hypertrophy in

  6. Fibronectin-α4β1 Integrin-Mediated Blockade Protects Genetically Fat Zucker Rat Livers from Ischemia/Reperfusion Injury

    Science.gov (United States)

    Amersi, Farin; Shen, Xiu-Da; Moore, Carolina; Melinek, Judy; Busuttil, Ronald W.; Kupiec-Weglinski, Jerzy W.; Coito, Ana J.

    2003-01-01

    We tested a hypothesis that interactions between fibronectin (FN), the major extracellular matrix component, and its integrin α4β1 receptor is important in the development of ischemia/reperfusion injury of steatotic liver transplants. We examined the effect of connecting segment-1 (CS1) peptide-facilitated blockade of FN-α4β1 interaction in a well-established steatotic rat liver model of ex vivo cold ischemia followed by iso-transplantation. In this model, CS1 peptides were administered through the portal vein of steatotic Zucker rat livers before and after cold ischemic storage. Lean Zucker recipients of fatty liver transplants received an additional 3-day course of CS1 peptides after transplant. CS1 peptide therapy significantly inhibited the recruitment of T lymphocytes, neutrophil activation/infiltration, and repressed the expression of proinflammatory tumor necrosis factor-α and interferon-γ. Moreover, it resulted in selective inhibition of inducible nitric oxide synthase expression, peroxynitrite formation, and hepatic necrosis. Importantly, CS1 peptide therapy improved function/histological preservation of steatotic liver grafts, and extended their 14-day survival in lean recipients from 40% in untreated to 100% in CS1-treated OLTs. Thus, CS1 peptide-mediated blockade of FN-α4β1 interaction protects against severe ischemia/reperfusion injury experienced otherwise by steatotic OLTs. These novel findings document the potential of targeting FN-α4β1 in vivo interaction to increase the transplant donor pool through modulation of marginal steatotic livers. PMID:12651615

  7. Targeted drug discovery for pediatric leukemia

    Directory of Open Access Journals (Sweden)

    Andrew D Napper

    2013-07-01

    Full Text Available Despite dramatic advances in the treatment of pediatric leukemia over the past 50 years, there remain subsets of patients who respond poorly to treatment. Many of the high-risk cases of childhood leukemia with the poorest prognosis have been found to harbor specific genetic signatures, often resulting from chromosomal rearrangements. With increased understanding of the genetic and epigenetic makeup of high-risk pediatric leukemia has come the opportunity to develop targeted therapies that promise to be both more effective and less toxic than current chemotherapy. Of particular importance is an understanding of the interconnections between different targets within the same cancer, and observations of synergy between two different targeted therapies or between a targeted drug and conventional chemotherapy. It has become clear that many cancers are able to circumvent a single specific blockade, and pediatric leukemias are no exception in this regard. This review highlights the most promising approaches to new drugs and drug combinations for high-risk pediatric leukemia. Key biological evidence supporting selection of molecular targets is presented, together with a critical survey of recent progress towards the discovery, pre-clinical development, and clinical study of novel molecular therapeutics.

  8. Recommendations on the use of deep neuromuscular blockade by anaesthesiologists and surgeons. AQUILES (Anestesia QUIrúrgica para Lograr Eficiencia y Seguridad) Consensus.

    Science.gov (United States)

    Errando-Oyonarte, C L; Moreno-Sanz, C; Vila-Caral, P; Ruiz de Adana-Belbel, J C; Vázquez-Alonso, E; Ramírez-Rodríguez, J M; Veiga-Ruiz, G; Guasch-Arévalo, E; Lora-Tamayo D'Ocón, J I

    2017-02-01

    Neuromuscular blockade enables airway management, ventilation and surgical procedures. However there is no national consensus on its routine clinical use. The objective was to establish the degree of agreement among anaesthesiologists and general surgeons on the clinical use of neuromuscular blockade in order to make recommendations to improve its use during surgical procedures. Multidisciplinary consensus study in Spain. Anaesthesiologists experts in neuromuscular blockade management (n=65) and general surgeons (n=36) were included. Delphi methodology was selected. A survey with 17 final questions developed by a dedicated scientific committee was designed. The experts answered the successive questions in two waves. The survey included questions on: type of surgery, type of patient, benefits/harm during and after surgery, impact of objective neuromuscular monitoring and use of reversal drugs, viability of a multidisciplinary and efficient approach to the whole surgical procedure, focussing on the level of neuromuscular blockade. Five recommendations were agreed: 1) deep neuromuscular blockade is very appropriate for abdominal surgery (degree of agreement 94.1%), 2) and in obese patients (76.2%); 3) deep neuromuscular blockade maintenance until end of surgery might be beneficial in terms of clinical aspects, such as as immobility or better surgical access (86.1 to 72.3%); 4) quantitative monitoring and reversal drugs availability is recommended (89.1%); finally 5) anaesthesiologists/surgeons joint protocols are recommended. Collaboration among anaesthesiologists and surgeons has enabled some general recommendations to be established on deep neuromuscular blockade use during abdominal surgery. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Stellate ganglion blockade for analgesia following upper limb surgery.

    LENUS (Irish Health Repository)

    McDonnell, J G

    2012-01-31

    We report the successful use of a stellate ganglion block as part of a multi-modal postoperative analgesic regimen. Four patients scheduled for orthopaedic surgery following upper limb trauma underwent blockade of the stellate ganglion pre-operatively under ultrasound guidance. Patients reported excellent postoperative analgesia, with postoperative VAS pain scores between 0 and 2, and consumption of morphine in the first 24 h ranging from 0 to 14 mg. While these are preliminary findings, and must be confirmed in a clinical trial, they highlight the potential for stellate ganglion blockade to provide analgesia following major upper limb surgery.

  10. Quantum fluctuations and the single-junction Coulomb blockade

    Energy Technology Data Exchange (ETDEWEB)

    Girvin, S.M. (Department of Physics, Indiana University, Bloomington, IN (USA)); Glazman, L.I. (Institute of Microelectronics Technology and High Purity Materials, U.S.S.R. Academy of Science, Moscow District (U.S.S.R.)); Jonson, M. (Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN (USA)); Penn, D.R.; Stiles, M.D. (National Institute of Standards and Technology, Gaithersburg, MD (USA))

    1990-06-25

    We investigate the effect of quantum fluctuations on the Coulomb blockade in a single tunnel junction coupled to its environment by a transmission line of arbitrary impedance {ital Z}({omega}). The quantized oscillation modes of the transmission line are suddenly displaced when an electron tunnels through the junction. For small {ital Z} (relative to the quantum of resitance), a weak power-law zero-bias anomaly occurs associated with the infrared-divergent shakeup of low-frequency transmission-line modes. For large {ital Z}, the full blockade is recovered. Comparison with recent experiments is made.

  11. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  12. Neural Blockade for Persistent Pain After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Wijayasinghe, Nelun; Andersen, Kenneth Geving; Kehlet, Henrik

    2014-01-01

    involved in neuropathic pain syndromes or to be used as a treatment in its own right. The purpose of this review was to examine the evidence for neural blockade as a potential diagnostic tool or treatment for persistent pain after breast cancer surgery. In this systematic review, we found only 7 studies (n......Persistent pain after breast cancer surgery is predominantly a neuropathic pain syndrome affecting 25% to 60% of patients and related to injury of the intercostobrachial nerve, intercostal nerves, and other nerves in the region. Neural blockade can be useful for the identification of nerves...

  13. Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: a biodistribution study

    Energy Technology Data Exchange (ETDEWEB)

    Nijsen, F.; Rook, D.; Zonnenberg, B.; Klerk, J. de; Rijk, P. van; Schip, F. van het [Dept. of Nuclear Medicine, University Medical Center, Utrecht (Netherlands); Brandt, C. [Animal Inst., Utrecht Univ. (Netherlands); Meijer, R. [Dept. of Radiology, Univ. Medical Center, Utrecht (Netherlands); Dullens, H. [Dept. of Pathology, Univ. Medical Center, Utrecht (Netherlands); Hennink, W. [Dept. of Pharmaceutics, Utrecht Univ. (Netherlands)

    2001-06-01

    Intra-arterial administration of beta-emitting particles that become trapped in the vascular bed of a tumour and remain there while delivering high doses, represents a unique approach in the treatment of both primary and metastatic liver tumours. Studies on selective internal radiation therapy of colorectal liver metastases using yttrium-90 glass microspheres have shown encouraging results. This study describes the biodistribution of 40-{mu}m poly lactic acid microspheres loaded with radioactive holmium-166, after intra-arterial administration into the hepatic artery of rats with implanted liver tumours. Radioactivity measurements showed >95% retention of injected activity in the liver and its resident tumour. The average activity detected in other tissues was {<=}0.1%ID/g, with incidental exceptions in the lungs and stomach. Very little {sup 166}Ho activity was detected in kidneys (<0.1%ID/g), thereby indicating the stability of the microspheres in vivo. Tumour targeting was very effective, with a mean tumour to liver ratio of 6.1{+-}2.9 for rats with tumour (n=15) versus 0.7{+-}0.5 for control rats (n=6; P<0.001). These ratios were not significantly affected by the use of adrenaline. Histological analysis showed that five times as many large (>10) and medium-sized (4-9) clusters of microspheres were present within tumour and peritumoural tissue, compared with normal liver. Single microspheres were equally dispersed throughout the tumour, as well as normal liver parenchyma. (orig.)

  14. First- and Second-Line Targeted Systemic Therapy in Hepatocellular Carcinoma—An Update on Patient Selection and Response Evaluation

    Directory of Open Access Journals (Sweden)

    Johann von Felden

    2016-11-01

    Full Text Available Advanced hepatocellular carcinoma (HCC with vascular invasion and/or extrahepatic spread and preserved liver function, according to stage C of the Barcelona Clinic Liver Cancer (BCLC classification, has a dismal prognosis. The multi-targeted tyrosine-kinase receptor inhibitor (TKI sorafenib is the only proven active substance in systemic HCC therapy for first-line treatment. In this review, we summarize current aspects in patient selection and management of side effects, and provide an update on response evaluation during first-line sorafenib therapy. Since second-line treatment options have been improved with the successful completion of the RESORCE trial, demonstrating a survival benefit for second-line treatment with the TKI regorafenib, response monitoring during first-line therapy will be critical to deliver optimal systemic therapy in HCC. To this regard, specific side effects, in particular worsening of arterial hypertension and diarrhea, might suggest treatment response during first-line sorafenib therapy; however, clear predictive clinical markers, as well as laboratory test or serum markers, are not established. Assessment of radiologic response according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST is helpful to identify patients who do not benefit from sorafenib treatment.

  15. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia.

    Science.gov (United States)

    Pan, Rongqing; Hogdal, Leah J; Benito, Juliana M; Bucci, Donna; Han, Lina; Borthakur, Gautam; Cortes, Jorge; DeAngelo, Daniel J; Debose, Lakeisha; Mu, Hong; Döhner, Hartmut; Gaidzik, Verena I; Galinsky, Ilene; Golfman, Leonard S; Haferlach, Torsten; Harutyunyan, Karine G; Hu, Jianhua; Leverson, Joel D; Marcucci, Guido; Müschen, Markus; Newman, Rachel; Park, Eugene; Ruvolo, Peter P; Ruvolo, Vivian; Ryan, Jeremy; Schindela, Sonja; Zweidler-McKay, Patrick; Stone, Richard M; Kantarjian, Hagop; Andreeff, Michael; Konopleva, Marina; Letai, Anthony G

    2014-03-01

    B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here, we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nmol/L, and cell death occurred within 2 hours. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia, a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on-target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML.

  16. In Silico Screening, Structure-Activity Relationship, and Biologic Evaluation of Selective Pteridine Reductase Inhibitors Targeting Visceral Leishmaniasis▿ †

    Science.gov (United States)

    Kaur, Jaspreet; Kumar, Pranav; Tyagi, Sargam; Pathak, Richa; Batra, Sanjay; Singh, Prashant; Singh, Neeloo

    2011-01-01

    In this study we utilized the concept of rational drug design to identify novel compounds with optimal selectivity, efficacy and safety, which would bind to the target enzyme pteridine reductase 1 (PTR1) in Leishmania parasites. Twelve compounds afforded from Baylis-Hillman chemistry were docked by using the QUANTUM program into the active site of Leishmania donovani PTR1 homology model. The biological activity for these compounds was estimated in green fluorescent protein-transfected L. donovani promastigotes, and the most potential analogue was further investigated in intracellular amastigotes. Structure-activity relationship based on homology model drawn on our recombinant enzyme was substantiated by recombinant enzyme inhibition assay and growth of the cell culture. Flow cytometry results indicated that 7-(4-chlorobenzyl)-3-methyl-4-(4-trifluoromethyl-phenyl)-3,4,6,7,8,9-hexahydro-pyrimido[1,2-a]pyrimidin-2-one (compound 7) was 10 times more active on L. donovani amastigotes (50% inhibitory concentration [IC50] = 3 μM) than on promastigotes (IC50 = 29 μM). Compound 7 exhibited a Ki value of 0.72 μM in a recombinant enzyme inhibition assay. We discovered that novel pyrimido[1,2-a]pyrimidin-2-one systems generated from the allyl amines afforded from the Baylis-Hillman acetates could have potential as a valuable pharmacological tool against the neglected disease visceral leishmaniasis. PMID:21115787

  17. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics.

    Science.gov (United States)

    Charlton, Adrian J; Robb, Paul; Donarski, James A; Godward, John

    2008-06-23

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined 1H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare 1H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications.

  18. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, Adrian J. [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)], E-mail: adrian.charlton@csl.gov.uk; Robb, Paul; Donarski, James A.; Godward, John [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)

    2008-06-23

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined {sup 1}H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare {sup 1}H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications.

  19. Central serotonin(2B) receptor blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical dopamine outflow.

    Science.gov (United States)

    Devroye, Céline; Cathala, Adeline; Di Marco, Barbara; Caraci, Filippo; Drago, Filippo; Piazza, Pier Vincenzo; Spampinato, Umberto

    2015-10-01

    The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo.

    Science.gov (United States)

    Koo, G C; Blake, J T; Talento, A; Nguyen, M; Lin, S; Sirotina, A; Shah, K; Mulvany, K; Hora, D; Cunningham, P; Wunderler, D L; McManus, O B; Slaughter, R; Bugianesi, R; Felix, J; Garcia, M; Williamson, J; Kaczorowski, G; Sigal, N H; Springer, M S; Feeney, W

    1997-06-01

    The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation.

  1. Dual HER2 blockade in the neoadjuvant and adjuvant treatment of HER2-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Advani P

    2015-09-01

    Full Text Available Pooja Advani,1 Lauren Cornell,2 Saranya Chumsri,1 Alvaro Moreno-Aspitia1 1Division of Hematology and Oncology, 2Department of Internal Medicine, Mayo Clinic, Jacksonville, FL, USA Abstract: Human epidermal growth factor receptor 2 (HER2 is a tyrosine kinase transmembrane receptor that is overexpressed on the surface of 15%–20% of breast tumors and has been associated with poor prognosis. Consistently improved pathologic response and survival rates have been demonstrated with use of trastuzumab in combination with standard chemotherapy in both early and advanced breast cancer. However, resistance to trastuzumab may pose a major problem in the effective treatment of HER2-positive breast cancer. Dual HER2 blockade, using agents that work in a complimentary fashion to trastuzumab, has more recently been explored to evade resistance in both the preoperative (neoadjuvant and adjuvant settings. Increased effectiveness of dual anti-HER2 agents over single blockade has been recently reported in clinical studies. Pertuzumab in combination with trastuzumab and taxane is currently approved in the metastatic and neoadjuvant treatment of HER2-positive breast cancer. Various biomarkers have also been investigated to identify subsets of patients with HER2-positive tumors who would likely respond best to these targeted therapy combinations. In this article, available trial data regarding efficacy and toxicity of treatment with combination HER2 agents in the neoadjuvant and adjuvant setting have been reviewed, and relevant correlative biomarker data from these trials have been discussed. Keywords: HER2, dual blockade, neoadjuvant, adjuvant, breast cancer, trastuzumab

  2. Metabolic consequences of beta-adrenergic receptor blockade for the acutely ischemic dog myocardium

    Energy Technology Data Exchange (ETDEWEB)

    Westera, G.; Hollander, W. den; Wall, E.E. van der; Eenige, M.J. van; Scholtalbers, S.; Visser, F.C.; Roos, J.P.

    1984-02-01

    In an experimental study in 50 dogs the myocardial uptake of free fatty acids (FFAs) after beta-blockade was determined using radioiodinated heptadecanoic acid as a metabolic tracer. All 4 beta-blockers used (metoprolol, timolol, propranolol and pindolol) lowered the uptake of FFAs in the normal canine heart. Uptake of FFAs was also diminished after coronary artery occlusion per se, but administration of beta-blockers exerted little additional influence on the uptake of FFAs. This observation was qualitatively parallelled by the uptake of /sup 201/Tl in concomitant experiments. Plasma FFA levels were increased by pindolol (non-selective with intrinsic sympathomimetic activity), not changed by metoprolol (a cardioselective betablocking agent) and lowered by timolol and propranolol (both non-selective compounds). The extent of ischemic tissue, as reflected by uptake of iodoheptadecanoic acid and /sup 201/Tl, was diminished by metoprolol but not by other beta-blockers. Regional distribution of both tracers, as shown in the endo-epicardial uptake ratios, was hardly influenced by beta-blockade, except for a small increase of /sup 201/Tl uptake in non-occluded endocardium. Uptake of /sup 201/Tl as well as of iodoheptadecanoic acid in the ischemic area was increased by metoprolol, timolol and propranolol and decreased by pindolol. We conclude that beta-blocking agents confer different effects on myocardial uptake and metabolism of FFAs which might possibly be related to their different inherent properties.

  3. Activated platelets in carotid artery thrombosis in mice can be selectively targeted with a radiolabeled single-chain antibody.

    Directory of Open Access Journals (Sweden)

    Timo Heidt

    Full Text Available BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111Indium ((111In via bifunctional DTPA ( = (111In-LIBS/(111In-control. Autoradiography after incubation with (111In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2, 4010 ± 630 DLU/mm(2 and 4520 ± 293 DLU/mm(2 produced a significantly higher ligand uptake compared to (111In-control (2101 ± 76 DLU/mm(2, 1181 ± 96 DLU/mm(2 and 1866 ± 246 DLU/mm(2 indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2 vs. 17390 ± 7470 DLU/mm(2; P<0.05. These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01. CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of

  4. Effect of epidural blockade and oxygen therapy on changes in subcutaneous oxygen tension after abdominal surgery

    DEFF Research Database (Denmark)

    Rosenberg, J; Pedersen, U; Erichsen, C J

    1994-01-01

    The effect of oxygen therapy (37% by face mask) and epidural local anesthetic blockade (9 ml 0.5% bupivacaine at Th9-11 level) on wound oxygenation was evaluated in eight otherwise healthy patients undergoing elective colorectal resection. The patients were monitored continuously for subcutaneous...... without epidural blockade and 15 (10-20) min with blockade (P surgery....

  5. Topological matter with collective encoding and Rydberg blockade

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Mølmer, Klaus

    2010-01-01

    We propose to use a permutation symmetric sample of multilevel atoms to simulate the properties of topologically ordered states. The Rydberg blockade interaction is used to prepare states of the sample which are equivalent to resonating valence bond states, Laughlin states, and string...

  6. blockade therapy in patient with left ventricular systolic dysfunction ...

    African Journals Online (AJOL)

    Assessment of tolerability of β- blockade therapy in patient with left ventricular systolic dysfunction heart failure. SMI Mohammed. Abstract. Back ground: Little data exist to demonstrate the tolerability of β-blocker therapy in an unselected community heart failure population already treated with the clinical trial or higher dose ...

  7. Acute peri-operative beta-blockade in South Africa

    African Journals Online (AJOL)

    Adele

    This paper considers the effect of physiochemical and/or pharmacokinetic properties on the cardioprotective efficacy of acute peri-operative beta-blockade, indications for peri- operative beta-blockers and economic viability in South. Africa. 1. Is there a preferable peri-operative beta-blocker based on physiochemical and ...

  8. Effect of Dual Blockade of Renin-Angiotensin Aldosterone System ...

    African Journals Online (AJOL)

    Original Research Article. Effect of Dual Blockade of Renin-Angiotensin Aldosterone. System on Proteinuria in Patients with Diabetic. Nephropathy and Advanced Azotemia. Hatice Odabas1, İlyas Capoglu2, Ramazan Cetinkaya3, Ali Riza Odabas3,. Abdullah Uyanik3 and Mustafa Keles3*. 1Department of Internal Medicine, ...

  9. Effect of Dual Blockade of Renin-Angiotensin Aldosterone System ...

    African Journals Online (AJOL)

    Purpose: To investigate the dual effect of angiotensin blockade by irbesartan and enalapril on proteinuria in diabetic patients with azotemia. Methods: Patients with diabetes of > 5 years duration, proteinuria at a nephrotic level and serum creatinine > 1.5 mg/dL were enrolled in the study. Forty-five enrolled patients were ...

  10. CARDIOVASCULAR ENDOCRINOLOGY Dual RAAS blockade has dual effects on outcome

    NARCIS (Netherlands)

    Heerspink, Hiddo J. Lambers; de Zeeuw, Dick

    Makani and colleagues report that dual blockade of the renin-angiotensin-aldosterone system is associated with harm despite previous studies showing that this approach decreases blood pressure and albuminuria. Do these results imply that we should abandon surrogate markers? Or should we become more

  11. Effective dermatomal blockade after subcostal transversus abdominis plane block

    DEFF Research Database (Denmark)

    Mitchell, Anja Ulrike; Torup, Henrik; Hansen, Egon G

    2012-01-01

    . Sensory assessment of a TAP block may guide the decision on the extent of the block. The purpose of this study was to investigate if the dermatomal extent of sensory blockade after injection of 20 ml 0.5% ropivacaine bilaterally into the TAP can be assessed using cold and pinprick sensation....

  12. Entanglement of two ground state neutral atoms using Rydberg blockade

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Browaeys, Antoine; Evellin, Charles

    2011-01-01

    We report on our recent progress in trapping and manipulation of internal states of single neutral rubidium atoms in optical tweezers. We demonstrate the creation of an entangled state between two ground state atoms trapped in separate tweezers using the effect of Rydberg blockade. The quality...... of the entanglement is measured using global rotations of the internal states of both atoms....

  13. Axillary Brachial Plexus Blockade for the Reflex Sympathetic Dystrophy Syndrome.

    Science.gov (United States)

    Ribbers, G. M.; Geurts, A. C. H.; Rijken, R. A. J.; Kerkkamp, H. E. M.

    1997-01-01

    Reflex sympathetic dystrophy syndrome (RSD) is a neurogenic pain syndrome characterized by pain, vasomotor and dystrophic changes, and often motor impairments. This study evaluated the effectiveness of brachial plexus blockade with local anaesthetic drugs as a treatment for this condition. Three patients responded well; three did not. (DB)

  14. Predictors of responses to immune checkpoint blockade in advanced melanoma

    DEFF Research Database (Denmark)

    Jacquelot, N; Roberti, M P; Enot, D P

    2017-01-01

    stage III MMel patients after adjuvant ipilimumab + nivolumab (but not nivolumab alone). These biomarkers should be validated in prospective trials in MMel.The clinical management of metastatic melanoma requires predictors of the response to checkpoint blockade. Here, the authors use immunological...

  15. PD-1 Blockade Expands Intratumoral Memory T Cells

    DEFF Research Database (Denmark)

    Ribas, Antoni; Shin, Daniel Sanghoon; Zaretsky, Jesse

    2016-01-01

    Tumor responses to programmed cell death protein 1 (PD-1) blockade therapy are mediated by T cells, which we characterized in 102 tumor biopsies obtained from 53 patients treated with pembrolizumab, an antibody to PD-1. Biopsies were dissociated, and single-cell infiltrates were analyzed by multi...

  16. Coulomb blockade due to quantum phase slips illustrated with devices

    NARCIS (Netherlands)

    Hriscu, A.M.; Nazarov, Y.V.

    2011-01-01

    To illustrate the emergence of Coulomb blockade from coherent quantum phase-slip processes in thin superconducting wires, we propose and theoretically investigate two elementary setups, or devices. The setups are derived from the Cooper-pair box and Cooper-pair transistor, so we refer to them as the

  17. A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase

    Science.gov (United States)

    Paeshuyse, Jan; Leyssen, Pieter; Mabery, Eric; Boddeker, Nina; Vrancken, Robert; Froeyen, Matheus; Ansari, Israrul H.; Dutartre, Hélène; Rozenski, Jef; Gil, Laura H. V. G.; Letellier, Carine; Lanford, Robert; Canard, Bruno; Koenen, Frank; Kerkhofs, Pierre; Donis, Ruben O.; Herdewijn, Piet; Watson, Julia; De Clercq, Erik; Puerstinger, Gerhard; Neyts, Johan

    2006-01-01

    We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 ± 0.01 μM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 ± 0.02 μM) and production of infectious virus (EC50 = 0.074 ± 0.003 μM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was ∼2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed. PMID:16352539

  18. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson′s Disease

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Wang

    2015-01-01

    Full Text Available Objective: This review examines the evidence that deep brain stimulation (DBS has extensive impact on nonmotor symptoms (NMSs of patients with Parkinson′s disease (PD. Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi, subthalamic nucleus (STN, and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.

  19. Renal targeting of captopril selectively enhances the intrarenal over the systemic effects of ACE inhibition in rats

    Science.gov (United States)

    Haverdings, R Folgert G; Haas, Marijke; Navis, Gerjan; van Loenen-Weemaes, Anne-miek; Meijer, Dirk K F; de Zeeuw, Dick; Moolenaar, Frits

    2002-01-01

    In previous studies on the renal targeting of the ACE inhibitor captopril, we demonstrated that a 6 fold increased concentration of this drug could be obtained in the kidney after conjugation to the low-molecular-weight protein lysozyme. In this study, we investigated in unrestrained rats whether systemic administration of captopril–lysozyme also results in an enhanced effect on renal parameters, relative to the systemic effects. Renal effects: intravenous infusion of captopril–lysozyme for 6 h resulted in a more pronounced increment of renal blood flow (31±2% vs 17±4% at 0.5 mg kg−1 6h−1, Pcaptopril as a free drug. In correspondence with these findings, renal ACE inhibition was potentiated approximately 5 fold (−50±4% vs −22±3% at 1 mg kg−1 6 h−1, Pcaptopril did not affect blood pressure in dosages up to 5 mg kg−1 6 h−1. This effect coincided with a less pronounced inhibition of the pressor response to intravenously administered angiotensin I (−12±3% vs −66±5% at 1 mg kg−1 6 h−1, Pcaptopril. An experiment of continued intravenous administration of captopril–lysozyme for 7 days in nephrotic syndrome demonstrated that the conjugate is also active in renal disease: the antiproteinuric response was substantially augmented (−67±5% vs −15±7% at 4 mg kg−1 24 h−1, Pcaptopril–lysozyme conjugate leads to more selective renal ACE inhibition and enhanced renal effects as well as less systemic effects compared to captopril itself. PMID:12163343

  20. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  1. On Disruption of Fear Memory by Reconsolidation Blockade: Evidence from Cannabidiol Treatment

    Science.gov (United States)

    Stern, Cristina A J; Gazarini, Lucas; Takahashi, Reinaldo N; Guimarães, Francisco S; Bertoglio, Leandro J

    2012-01-01

    The search for reconsolidation blockers may uncover clinically relevant drugs for disrupting memories of significant stressful life experiences, such as those underlying the posttraumatic stress disorder. Considering the safety of systemically administered cannabidiol (CBD), the major non-psychotomimetic component of Cannabis sativa, to animals and humans, the present study sought to investigate whether and how this phytocannabinoid (3–30 mg/kg intraperitoneally; i.p.) could mitigate an established memory, by blockade of its reconsolidation, evaluated in a contextual fear-conditioning paradigm in rats. We report that CBD is able to disrupt 1- and 7-days-old memories when administered immediately, but not 6 h, after their retrieval for 3 min, with the dose of 10 mg/kg being the most effective. This effect persists in either case for at least 1 week, but is prevented when memory reactivation was omitted, or when the cannabinoid type-1 receptors were antagonized selectively with AM251 (1.0 mg/kg). Pretreatment with the serotonin type-1A receptor antagonist WAY100635, however, failed to block CBD effects. These results highlight that recent and older fear memories are equally vulnerable to disruption induced by CBD through reconsolidation blockade, with a consequent long-lasting relief in contextual fear-induced freezing. Importantly, this CBD effect is dependent on memory reactivation, restricted to time window of <6 h, and is possibly dependent on cannabinoid type-1 receptor-mediated signaling mechanisms. We also observed that the fear memories disrupted by CBD treatment do not show reinstatement or spontaneous recovery over 22 days. These findings support the view that reconsolidation blockade, rather than facilitated extinction, accounts for the aforementioned CBD results in our experimental conditions. PMID:22549120

  2. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with β-blockade or verapamil.

    Science.gov (United States)

    Sherrid, Mark V; Shetty, Aneesha; Winson, Glenda; Kim, Bette; Musat, Dan; Alviar, Carlos L; Homel, Peter; Balaram, Sandhya K; Swistel, Daniel G

    2013-07-01

    There is controversy about preferred methods to relieve obstruction in hypertrophic cardiomyopathy patients still symptomatic after β-blockade or verapamil. Of 737 patients prospectively registered at our institution, 299 (41%) required further therapy for obstruction for limiting symptoms, rest gradient 61 ± 45, provoked gradient 115 ± 49 mm Hg, and followed up for 4.8 years. Disopyramide was added in 221 (74%) patients and pharmacological control of symptoms was achieved in 141 (64%) patients. Overall, 138 (46%) patients had surgical relief of obstruction (91% myectomy) and 6 (2%) alcohol septal ablation. At follow-up, resting gradients in the 299 patients had decreased from 61 ± 44 to 10 ± 25 mm Hg (Psymptoms resistant to initial pharmacological therapy with β-blockade or verapamil may realize meaningful symptom relief and low mortality through stepped management, adding disopyramide in appropriately selected patients, and when needed, by surgical myectomy.

  3. Using an in Silico Approach to Teach 3D Pharmacodynamics of the Drug-Target Interaction Process Focusing on Selective COX2 Inhibition by Celecoxib

    Science.gov (United States)

    Tavares, Maurício T.; Primi, Marina C.; Silva, Nuno A. T. F.; Carvalho, Camila F.; Cunha, Micael R.; Parise-Filho, Roberto

    2017-01-01

    Teaching the molecular aspects of drug-target interactions and selectivity is not always an easy task. In this context, the use of alternative and engaging approaches could help pharmacy and chemistry students better understand this important topic of medicinal chemistry. Herein a 4 h practical exercise that uses freely available software as a…

  4. The Long-Term Effectiveness of a Selective, Personality-Targeted Prevention Program in Reducing Alcohol Use and Related Harms: A Cluster Randomized Controlled Trial

    Science.gov (United States)

    Newton, Nicola C.; Conrod, Patricia J.; Slade, Tim; Carragher, Natacha; Champion, Katrina E.; Barrett, Emma L.; Kelly, Erin V.; Nair, Natasha K.; Stapinski, Lexine; Teesson, Maree

    2016-01-01

    Background: This study investigated the long-term effectiveness of Preventure, a selective personality-targeted prevention program, in reducing the uptake of alcohol, harmful use of alcohol, and alcohol-related harms over a 3-year period. Methods: A cluster randomized controlled trial was conducted to assess the effectiveness of Preventure.…

  5. Blockade of S100A3 activity inhibits murine hair growth.

    Science.gov (United States)

    Guan, W; Deng, Q; Yu, X L; Yuan, Y S; Gao, J; Li, J J; Zhou, L; Xia, P; Han, G Y Q; Han, W; Yu, Y

    2015-10-28

    Using mouse gene expression microarray analysis, we obtained dynamic expression profiles of the whole genome in a depilation-induced hair growth mouse model. S100A3 expression increased during the anagen phase and returned to normal during the telogen phase. The effects of S100A3 blockade on the hair growth cycle were examined in mice after subcutaneous injection of an anti-mouse S100A3 antibody. Protein localization of S100A3 was confined to the hair shafts during the anagen phase and the sebaceous glands during the telogen phase. S100A3 blockade delayed hair follicle entry into the anagen phase, decreased hair elongation, and reduced the number of hair follicles in the subcutis, which correlated with the downregulated expression of hair growth induction-related genes in vivo. The present study demonstrates that anti-S100A3 antibody inhibits mouse hair growth, suggesting that S100A3 can be used as a target for hair loss treatment.

  6. Nebivolol : third-generation beta-blockade

    NARCIS (Netherlands)

    de Boer, Rudolf A.; Voors, Adriaan A.; van Veldhuisen, Dirk J.

    Nebivolol is a third generation beta-blocker. It is highly selective for the beta 1-adrenoceptor, and has additional nitric oxide-mediated vasodilating and antioxidant properties, along with a favourable metabolic profile. Nebivolol is well tolerated by patients with hypertension and heart failure.

  7. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory.

    Science.gov (United States)

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.

  8. Efficient Generation of Somatic Cell Nuclear Transfer-Competent Porcine Cells with Mutated Alleles at Multiple Target Loci by Using CRISPR/Cas9 Combined with Targeted Toxin-Based Selection System

    Directory of Open Access Journals (Sweden)

    Masahiro Sato

    2017-12-01

    Full Text Available The recent advancement in genome editing such a CRISPR/Cas9 system has enabled isolation of cells with knocked multiple alleles through a one-step transfection. Somatic cell nuclear transfer (SCNT has been frequently employed as one of the efficient tools for the production of genetically modified (GM animals. To use GM cells as SCNT donor, efficient isolation of transfectants with mutations at multiple target loci is often required. The methods for the isolation of such GM cells largely rely on the use of drug selection-based approach using selectable genes; however, it is often difficult to isolate cells with mutations at multiple target loci. In this study, we used a novel approach for the efficient isolation of porcine cells with at least two target loci mutations by one-step introduction of CRISPR/Cas9-related components. A single guide (sg RNA targeted to GGTA1 gene, involved in the synthesis of cell-surface α-Gal epitope (known as xenogenic antigen, is always a prerequisite. When the transfected cells were reacted with toxin-labeled BS-I-B4 isolectin for 2 h at 37 °C to eliminate α-Gal epitope-expressing cells, the surviving clones lacked α-Gal epitope expression and were highly expected to exhibit induced mutations at another target loci. Analysis of these α-Gal epitope-negative surviving cells demonstrated a 100% occurrence of genome editing at target loci. SCNT using these cells as donors resulted in the production of cloned blastocysts with the genotype similar to that of the donor cells used. Thus, this novel system will be useful for SCNT-mediated acquisition of GM cloned piglets, in which multiple target loci may be mutated.

  9. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  10. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  11. Unexpected High Sensory Blockade during Continuous Spinal Anesthesiology (CSA) in an Elderly Patient.

    Science.gov (United States)

    Ketelaars, R; Wolff, A P

    2012-01-01

    A 98-year-old woman presented for a hemiarthroplasty of the left hip. Because of her age and cardiac and pulmonary co-existing diseases we decided to provide adequate regional anesthesia by continuous spinal anesthesia. Fragmented doses of isobaric bupivacaine 0.5% were administered through a system consisting of a spinal catheter connected to an antimicrobial filter. After an uneventful surgical procedure, prior to removal of the catheter, this system was flushed with 10 mL of normal saline in order to try to prevent post-dural-puncture headache. After arrival at the postanesthesia care unit and fifteen minutes after removal of the catheter the patient suffered an unexpected high thoracic sensory blockade and hypotension requiring treatment. The continuous spinal anesthesia technique can be used in selected cases to be able to administer local anesthetic agents in a slow and controlled manner to reach the desired effect. The risk of post-dural-puncture headache using this technique in elderly patients is very low and therefore precludes the need to try to prevent it. We have described a potentially dangerous complication of flushing a bupivacaine-filled system into the spinal canal of an elderly patient resulting in an undesirable high sensory blockade.

  12. Memantine elicits spinal blockades of motor function, proprioception, and nociception in rats.

    Science.gov (United States)

    Chen, Yu-Wen; Chiu, Chong-Chi; Liu, Kuo-Sheng; Hung, Ching-Hsia; Wang, Jhi-Joung

    2015-12-01

    Although memantine blocks sodium currents and produces local skin anesthesia, spinal anesthesia with memantine is unknown. The purpose of the study was to evaluate the local anesthetic effect of memantine in spinal anesthesia and its comparison with a widely used local anesthetic lidocaine. After intrathecally injecting the rats with five doses of each drug, the dose-response curves of memantine and lidocaine were constructed. The potencies of the drugs and durations of spinal anesthetic effects on motor function, proprioception, and nociception were compared with those of lidocaine. We showed that memantine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED50 ) basis, the rank of potency was lidocaine greater than memantine (P < 0.05 for the differences). At the equipotent doses (ED25 , ED50 , ED75 ), the block duration produced by memantine was longer than that produced by lidocaine (P < 0.05 for the differences). Memantine, but not lidocaine, displayed more sensory/nociceptive block than motor block. The preclinical data demonstrated that memantine is less potent than lidocaine, whereas memantine produces longer duration of spinal anesthesia than lidocaine. Memantine shows a more sensory-selective action over motor blockade. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  13. Unexpected High Sensory Blockade during Continuous Spinal Anesthesiology (CSA in an Elderly Patient

    Directory of Open Access Journals (Sweden)

    R. Ketelaars

    2012-01-01

    Full Text Available A 98-year-old woman presented for a hemiarthroplasty of the left hip. Because of her age and cardiac and pulmonary co-existing diseases we decided to provide adequate regional anesthesia by continuous spinal anesthesia. Fragmented doses of isobaric bupivacaine 0.5% were administered through a system consisting of a spinal catheter connected to an antimicrobial filter. After an uneventful surgical procedure, prior to removal of the catheter, this system was flushed with 10 mL of normal saline in order to try to prevent post-dural-puncture headache. After arrival at the postanesthesia care unit and fifteen minutes after removal of the catheter the patient suffered an unexpected high thoracic sensory blockade and hypotension requiring treatment. The continuous spinal anesthesia technique can be used in selected cases to be able to administer local anesthetic agents in a slow and controlled manner to reach the desired effect. The risk of post-dural-puncture headache using this technique in elderly patients is very low and therefore precludes the need to try to prevent it. We have described a potentially dangerous complication of flushing a bupivacaine-filled system into the spinal canal of an elderly patient resulting in an undesirable high sensory blockade.

  14. Blockade of NR2A-Containing NMDA Receptors Induces Tau Phosphorylation in Rat Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Julie Allyson

    2010-01-01

    Full Text Available Physiological activation of the N-methyl-D-aspartate (NMDA subtype of glutamate receptors has been proposed to play a key role in both neuronal cell function and dysfunction. In the present study, we used selective NMDA receptor antagonists to investigate the involvement of NR2A and NR2B subunits in the modulatory effect of basal NMDA receptor activity on the phosphorylation of Tau proteins. We observed, in acute hippocampal slice preparations, that blockade of NR2A-containing NMDA receptors by the NR2A antagonist NVP-AAM077 provoked the hyperphosphorylation of a residue located in the proline-rich domain of Tau (i.e., Ser199. This effect seemed to be Ser199 specific as there was no increase in phosphorylation at Ser262 and Ser409 residues located in the microtubule-binding and C-terminal domains of Tau proteins, respectively. From a mechanistic perspective, our study revealed that blockade of NR2A-containing receptors influences Tau phosphorylation probably by increasing calcium influx into neurons, which seems to rely on accumulation of new NR1/NR2B receptors in neuronal membranes and could involve the cyclin-dependent kinase 5 pathway.

  15. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy

    Directory of Open Access Journals (Sweden)

    Weijie Ma

    2016-05-01

    Full Text Available Abstract Modulating immune inhibitory pathways has been a major recent breakthrough in cancer treatment. Checkpoint blockade antibodies targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4 and programed cell-death protein 1 (PD-1 have demonstrated acceptable toxicity, promising clinical responses, durable disease control, and improved survival in some patients with advanced melanoma, non-small cell lung cancer (NSCLC, and other tumor types. About 20 % of advanced NSCLC patients and 30 % of advanced melanoma patients experience tumor responses from checkpoint blockade monotherapy, with better clinical responses seen with the combination of anti-PD-1 and anti-CTLA-4 antibodies. Given the power of these new therapies, it is important to understand the complex and dynamic nature of host immune responses and the regulation of additional molecules in the tumor microenvironment and normal organs in response to the checkpoint blockade therapies. In this era of precision oncology, there remains a largely unmet need to identify the patients who are most likely to benefit from immunotherapy, to optimize the monitoring assays for tumor-specific immune responses, to develop strategies to improve clinical efficacy, and to identify biomarkers so that immune-related adverse events can be avoided. At this time, PD-L1 immunohistochemistry (IHC staining using 22C3 antibody is the only FDA-approved companion diagnostic for patients with NSCLC-treated pembrolizumab, but more are expected to come to market. We here summarize the current knowledge, clinical efficacy, potential immune biomarkers, and associated assays for immune checkpoint blockade therapies in advanced solid tumors.

  16. Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin.

    Science.gov (United States)

    Strahilevitz, Jacob; Hooper, David C

    2005-05-01

    Quinolones that act equally against DNA gyrase and topoisomerase IV are a desirable modality to decrease the selection of resistant strains. We first determined by genetic and biochemical studies in Staphylococcus aureus that the primary target enzyme of WCK-1734, a new quinolone, was DNA gyrase. A single mutation in gyrase, but not topoisomerase IV, caused a two- to fourfold increase in the MIC. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that gyrase was more sensitive than topoisomerase IV to WCK-1734 (50% inhibitory concentration, 1.25 and 2.5 to 5.0 microg/ml, respectively; 50% stimulation of cleavage complex formation, 0.62 and 2.5 to 5.0 microg/ml, respectively). To test the effect of balanced activity of quinolones against the two target enzymes, we measured the frequency of selection of mutants with ciprofloxacin (which targets topoisomerase IV) and WCK-1734 alone and in combination. With the combination of ciprofloxacin and WCK-1734, each at its MIC, the ratio of frequency of mutants selected was significantly lower than that with each drug alone at two times their respective MICs. We further characterized resistant strains selected with the combination of ciprofloxacin and WCK-1734 and found evidence to suggest the existence of novel mutational mechanisms for low-level quinolone resistance. By use of a combination of differentially targeting quinolones, this study provides novel data in direct support of the paradigm for dual targeting of quinolone action and reduced development of resistance.

  17. Empirical Evidence of Target Leverage, Adjustment Costs and Adjustment Speed of Non-Financial Firms in Selected African Countries

    OpenAIRE

    Oyebola Fatima Etudaiye-Muhtar; Oyebola Fatima Etudaiye-Muhtar; Rubi Ahmad

    2015-01-01

    The issue of target leverage for corporate firms in developing countries has received little attention in extant literature, especially countries in Africa. Given the imperfection that exists in African financial markets that may limit firms access to external capital, this study investigates dynamic adjustment towards a target debt ratio. In addition, the study used a dynamic panel data estimation technique to determine adjustment costs and speed of adjustment in non-financial firms in selec...

  18. Limitations of Short Range Mexican Hat Connection for Driving Target Selection in a 2D Neural Field: Activity Suppression and Deviation from Input Stimuli.

    Directory of Open Access Journals (Sweden)

    Geoffrey eMégardon

    2015-10-01

    Full Text Available Dynamic Neural Field models (DNF often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localisation, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC, a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted towards the strongest stimulus, reminiscent of well-known behavioural data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although those properties call for systematic testing, the discussion gathers neurophysiological and behavioural data suggesting that such properties are indeed present in target selection for saccadic eye movements.

  19. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli.

    Science.gov (United States)

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements.

  20. Conductance of a proximitized nanowire in the Coulomb blockade regime

    Science.gov (United States)

    van Heck, B.; Lutchyn, R. M.; Glazman, L. I.

    2016-06-01

    We identify the leading processes of electron transport across finite-length segments of proximitized nanowires and build a quantitative theory of their two-terminal conductance. In the presence of spin-orbit interaction, a nanowire can be tuned across the topological transition point by an applied magnetic field. Due to a finite segment length, electron transport is controlled by the Coulomb blockade. Upon increasing of the field, the shape and magnitude of the Coulomb blockade peaks in the linear conductance are defined, respectively, by Andreev reflection, single-electron tunneling, and resonant tunneling through the Majorana modes emerging after the topological transition. Our theory provides the framework for the analysis of experiments with proximitized nanowires [such as reported in S. M. Albrecht et al., Nature (London) 531, 206 (2016), 10.1038/nature17162] and identifies the signatures of the topological transition in the two-terminal conductance.

  1. Berry-phase blockade in single-molecule magnets

    OpenAIRE

    Gonzalez, Gabriel; Leuenberger, Michael N.

    2006-01-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that in the case of incoherent spin states it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the s...

  2. A mean field approach to Coulomb blockade for a disordered ...

    Indian Academy of Sciences (India)

    CB is the energy price paid in adding an electron to a QD. Classically, this price is ≈e2/C, where e is the electron charge and C is the capacitance of the QD. In many-body quantum mechanics, this price is given a name, namely Hubbard U. The Coulomb blockade is the model led by an effective Hubbard U which in the.

  3. Blockade of leukotriene production by a single oral dose of MK-0591 in active ulcerative colitis

    DEFF Research Database (Denmark)

    Hillingsø, Jens; Kjeldsen, J; Laursen, L S

    1995-01-01

    -ethyl)thio)-5(quinolin+ ++-2ylmethyl-oxy)-1H-indol-2yl)-2,2-dimethyl-propanoate) exerts its effect by binding to the 5-lipoxygenase activating protein, thereby inhibiting the translocation and activation of 5-lipoxygenase. METHODS: Concentrations of leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) in rectal...... that a single oral 250 mg dose of MK-0591 results in nearly complete blockade of systemic leukotriene production and LTB4 formation in the target tissue of inflammation (the rectum). Controlled multiple-dose trials to assess the clinical efficacy of this novel 5-lipoxygenase-activating protein inhibitor seem......BACKGROUND: 5-Lipoxygenase products of arachidonic acid metabolism are thought to play a central role in the secondary amplification of the inflammatory response in a number of human inflammatory diseases, such as ulcerative colitis. MK-0591 (3-(1((4-chlorophenyl)methyl)-3((1,1-dimethyl...

  4. Mismatch Repair Deficiency and Response to Immune Checkpoint Blockade.

    Science.gov (United States)

    Lee, Valerie; Murphy, Adrian; Le, Dung T; Diaz, Luis A

    2016-10-01

    : More than 1.6 million new cases of cancer will be diagnosed in the U.S. in 2016, resulting in more than 500,000 deaths. Although chemotherapy has been the mainstay of treatment in advanced cancers, immunotherapy development, particularly with PD-1 inhibitors, has changed the face of treatment for a number of tumor types. One example is the subset of tumors characterized by mismatch repair deficiency and microsatellite instability that are highly sensitive to PD-1 blockade. Hereditary forms of cancer have been noted for more than a century, but the molecular changes underlying mismatch repair-deficient tumors and subsequent microsatellite unstable tumors was not known until the early 1990s. In this review article, we discuss the history and pathophysiology of mismatch repair, the process of testing for mismatch repair deficiency and microsatellite instability, and the role of immunotherapy in this subset of cancers. Mismatch repair deficiency has contributed to our understanding of carcinogenesis for the past 2 decades and now identifies a subgroup of traditionally chemotherapy-insensitive solid tumors as sensitive to PD-1 blockade. This article seeks to educate oncologists regarding the nature of mismatch repair deficiency, its impact in multiple tumor types, and its implications for predicting the responsiveness of solid tumors to immune checkpoint blockade. ©AlphaMed Press.

  5. Effects of alpha-adrenoceptor and of combined sympathetic and parasympathetic blockade on cardiac performance and vascular resistance

    DEFF Research Database (Denmark)

    Kelbaek, H; Frandsen, Henrik Lund; Hilsted, J

    1992-01-01

    1. Cardiac performance and vascular resistance was studied in seven healthy men by radionuclide cardiography and venous plethysmography before and after alpha-adrenoceptor blockade with phentolamine and after combined alpha-adrenoceptor, beta-adrenoceptor (propranolol) and parasympathetic (atropine......) blockade. 2. During alpha-adrenoceptor blockade heart rate and cardiac output increased considerably and left ventricular ejection fraction increased because of increased contractility. Systemic vascular resistance fell both during alpha-adrenoceptor blockade alone and during combined blockade...

  6. Physio-biochemical parameters: a potential tool for target-selective treatment of haemonchosis in the small ruminants.

    Science.gov (United States)

    Das, Bhupamani; Kumar, Niranjan; Jadav, Mehul M; Solanki, Jayesh B; Rao, T K S

    2017-12-01

    This study aims to evaluate the conjunctiva colour-based FAMACHA score (FS) coupled with a body condition score (BCS), haemogram and stressor hormone level estimation, in identifying post-mortem (PM)/coproscopically proven individuals wanting therapy for economically important gastrointestinal (GI) helminths, Haemonchus contortus, in the small ruminants. The incidence of haemonchosis was significantly (p  0.05). The infected animals of FS 2, 3 and 4 measured 8.2 ± 0.0, 7.5 ± 0.23 and 6.7 ± 0.34 g/dl Hb (r = -0.452, p = 0.01) in goats/9.3 ± 0.8, 8.6 ± 0.5 and 7.6 ± 0.3 g/dl Hb (r = -0.511, p = 0.05) in sheep with 21.2, 19.8 ± 1.8 and 17.8 ± 0.2% PCV (r = -0.369, p = 0.05) in goats/26.7 ± 1.2, 22.2 ± 0.2 and 20.9 ± 0.6% PCV (r = -0.251, p = 0.03) in sheep, respectively. The FS 2, 3 and 4 infected goats/sheep measured 6.1 ± 0, 7.9 ± 1.0 and 9.5 ± 0.9 (p < 0.05)/5.8 ± 2.3, 6.9 ± 1.2 and 7.8 ± 0.2% (p < 0.05) mid-granulocyte [(r = 0.928 (goats)/0.834 (sheep), p < 0.05], while the cortisol level was 15.6, 23 ± 4.5 and 42 ± 2.3 (p = 0.23)/12.1 ± 0, 15.9 ± 1.2 and 24 ± 3.4 (p = 0.29) μg/dl, respectively. The infected ruminants recorded low (p < 0.05) level of Hb/PCV while high level of mid-granulocytes/cortisol. Specificity of FAMACHA test was maximized (100%) when FS = 4 was considered anaemic, but sensitivity was low (35.29% in goats; 25% in sheep). The false negatives was 5.9 (goat)/12.5 (sheep)% when FS ≥ 3 was considered anaemic. The small ruminants with FS ≥ 3, BCS ≤ 2.5, Hb ≤ 7.5 g/dl (goats)/8.6 g/dl (sheep), PCV ≤ 19.8% (goats)/22.2% (sheep) and mid-granulocyte ≥7.9% (goats)/6.9 ± 1.2% (sheep) can be subjected to target-selective treatment for haemonchosis in the field simultaneously maximizing the economic benefit to the farmers.

  7. Serotonin-dependent maintenance of spatial performance and electroencephalography activation after cholinergic blockade: effects of serotonergic receptor antagonists.

    Science.gov (United States)

    Dringenberg, H C; Zalan, R M

    1999-08-07

    The interaction between acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5-HT) in the control of behavior such as spatial navigation has received considerable attention over the last years. Previous research indicates that while a selective reduction in cholinergic transmission often produces only mild impairments in spatial and other behavioral tests, additional serotonergic blockade results in the appearance of severe behavioral deficits. Consequently, it has been argued that 5-HT plays a role in the maintenance of behavioral capacities in the face of reduced cholinergic transmission. Here, we examined the effects of 5-HT depletion and receptor blockade, alone and in combination with cholinergic-muscarinic antagonism, on spatial navigation of rats in the Morris water maze. Further, electroencephalographic (EEG) recordings were taken to test the hypothesis that a loss of neocortical activation is related to the behavioral deficits apparent after cholinergic-serotonergic blockade. The muscarinic antagonist, scopolamine (1 mg/kg) produced a moderate impairment in navigational performance. The 5-HT depletor, p-chlorophenylalanine (PCPA; 500 mg kg(-1) day(-1)x2) did not impair performance when given alone but strongly potentiated the scopolamine-induced deficit and completely blocked the acquisition of an escape response in the water maze. This effect was mimicked by the non-selective serotonin(1-2) receptor antagonist, methiothepin (0.3 mg/kg), but not by the selective serotonin(1A) antagonist, WAY 100635 (0.1-0.5 mg/kg) or the serotonin(2) antagonist, ketanserin (2-4 mg/kg). None of the 5-HT antagonists impaired performance when given alone. Electrocorticographic recordings in rats treated with scopolamine and serotonergic receptor antagonists showed that during behavioral immobility, scopolamine (1 mg/kg) increased spectral power in all frequency bands between 0.5 and 20 Hz without significantly affecting cortical activity during movement. None of the 5-HT

  8. Angiogenic Blockade and Radiotherapy in Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Chi, Kwan-Hwa; Liao, Chao-Sheng; Chang, Chih-Chia; Ko, Hui-Ling; Tsang, Yuk-Wah; Yang, Kuo-Ching; Mehta, Minesh P.

    2010-01-01

    Purpose: We report our preliminary experience of combining sunitinib and helical tomotherapy in patients with advanced HCC. Methods and Materials: Records of patients with advanced hepatocellular carcinoma (HCC) treated with helical tomotherapy and sunitinib after radiation therapy (RT) from March 2007 to August 2008 were retrospectively reviewed. We report acute toxicities, radiologic response, serial α-fetoprotein (AFP) kinetics, and survival. Results: Of 23 evaluable patients, 60% had ≥2 hepatic lesions, extrahepatic disease was present in 5 (21.7%), and all received 2 tablets (25 mg) of sunitinib at least 1 week before, during, and 2 weeks after RT. Thirteen patients continued maintenance sunitinib after RT until disease progression. Hypofractionated RT with a median target dose of 52.5 Gy/15 fractions was delivered. An objective response was achieved in 74% of patients. The 1-year survival rate was 70%, with median survival of 16 months. Multivariate analysis showed that maintenance sunitinib was the most significant factor for survival. The time to progression was 10 months in the maintenance group compared with 4 months in the control group. Eighteen out of 21 patients with elevated AFP (85.7%) had ≥50% decline of AFP within 2 months after RT. There were three episodes of upper gastrointestinal bleeding and one episode of pancreatitis; 10 patients had ≥Grade 2 elevation of liver enzymes, and 15 had ≥Grade 2 thrombocytopenia. Conclusions: These preliminary results suggest that sunitinib and helical tomotherapy yield high Response Evaluation Criteria in Solid Tumors (RECIST) and AFP response rates in advanced HCC with an acceptable safety profile. Maintenance sunitinib after RT potentially prolongs survival. A randomized trial is warranted.

  9. Effects of Dietary Sodium Restriction in Kidney Transplant Recipients Treated With Renin-Angiotensin-Aldosterone System Blockade: A Randomized Clinical Trial.

    Science.gov (United States)

    de Vries, Laura V; Dobrowolski, Linn C; van den Bosch, Jacqueline J O N; Riphagen, Ineke J; Krediet, C T Paul; Bemelman, Frederike J; Bakker, Stephan J L; Navis, Gerjan

    2016-06-01

    In patients with chronic kidney disease receiving renin-angiotensin-aldosterone system (RAAS) blockade, dietary sodium restriction is an often-used treatment strategy to reduce blood pressure (BP) and albuminuria. Whether these effects extend to kidney transplant recipients is unknown. We therefore studied the effects of dietary sodium restriction on BP and urinary albumin excretion (UAE) in kidney transplant recipients receiving RAAS blockade. Two-center randomized crossover trial. Stable outpatient kidney transplant recipients with creatinine clearance > 30mL/min, BP ≥120/80mmHg, receiving stable RAAS blockade therapy. 6-week regular-sodium diet (target, 150mmol/24 h) and a 6-week low-sodium diet (target, 50mmol/24 h). Main outcome parameters were systolic and diastolic BP, UAE, and estimated glomerular filtration rate (eGFR) at the end of each diet period. Dietary adherence was assessed by 24-hour urinary sodium excretion. We randomly assigned 23 kidney transplant recipients, of whom 22 (mean age, 58±8 [SD] years; 50% men; mean eGFR, 51±21mL/min/1.73m(2)) completed the study. One patient withdrew from the study because of concerns regarding orthostatic hypotension on the low-sodium diet. Sodium excretion decreased from 164±50mmol/24 h during the regular-sodium diet to 87±55mmol/24 h during the low-sodium diet (mean difference, -77 [95% CI, -110 to -44] mmol/24 h; Padherence to sodium diet was achieved in 86% of patients. In stable kidney transplant recipients receiving RAAS blockade, dietary sodium restriction effectively reduces BP without affecting eGFR. Dietary sodium restriction is relevant to BP management in kidney transplant recipients receiving RAAS blockade. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. Beam Energy Deposition from PS Booster and Production Rates of Selected Medical Radioisotopes in the CERN-MEDICIS Target

    OpenAIRE

    Gonsalves, Basil; Barlow, Roger; Dos Santos Augusto, Ricardo Manuel; Lee, Sangcheol; Stora, Thierry

    2016-01-01

    CERN-MEDICIS uses the scattered (ca. 90%) 1.4 GeV, 2 uA protons delivered by the PS Booster to the ISOLDE target, which would normally end up in the beam dump. After irradiation, the MEDICIS target is transported back to an offline isotope mass separator, where the produced isotopes are mass separated, and are then collected. The required medical radioisotopes are later chemically separated in the class A laboratory. The radioisotopes are transported to partner hospitals for processing and pr...

  11. Application of virtual screening and molecular dynamics for the analysis of selectivity of inhibitors of HU proteins targeted to the DNA-recognition site

    Science.gov (United States)

    Talyzina, A. A.; Agapova, Yu. K.; Podshivalov, D. D.; Timofeev, V. I.; Sidorov-Biryukov, D. D.; Rakitina, T. V.

    2017-11-01

    DNA-Binding HU proteins are essential for the maintenance of genomic DNA supercoiling and compaction in prokaryotic cells and are promising pharmacological targets for the design of new antibacterial agents. The virtual screening for low-molecular-weight compounds capable of specifically interacting with the DNA-recognition loop of the HU protein from the mycoplasma Spiroplasma melliferum was performed. The ability of the initially selected ligands to form stable complexes with the protein target was assessed by molecular dynamics simulation. One compound, which forms an unstable complex, was eliminated by means of a combination of computational methods, resulting in a decrease in the number of compounds that will pass to the experimental test phase. This approach can be used to solve a wide range of problems related to the search for and validation of low-molecular-weight inhibitors specific for a particular protein target.

  12. K-Targeted Metabolomic Analysis Extends Chemical Subtraction to DESIGNER Extracts: Selective Depletion of Extracts of Hops (Humulus lupulus)⊥

    Science.gov (United States)

    2015-01-01

    This study introduces a flexible and compound targeted approach to Deplete and Enrich Select Ingredients to Generate Normalized Extract Resources, generating DESIGNER extracts, by means of chemical subtraction or augmentation of metabolites. Targeting metabolites based on their liquid–liquid partition coefficients (K values), K targeting uses countercurrent separation methodology to remove single or multiple compounds from a chemically complex mixture, according to the following equation: DESIGNER extract = total extract ± target compound(s). Expanding the scope of the recently reported depletion of extracts by immunoaffinity or solid phase liquid chromatography, the present approach allows a more flexible, single- or multi-targeted removal of constituents from complex extracts such as botanicals. Chemical subtraction enables both chemical and biological characterization, including detection of synergism/antagonism by both the subtracted targets and the remaining metabolite mixture, as well as definition of the residual complexity of all fractions. The feasibility of the DESIGNER concept is shown by K-targeted subtraction of four bioactive prenylated phenols, isoxanthohumol (1), 8-prenylnaringenin (2), 6-prenylnaringenin (3), and xanthohumol (4), from a standardized hops (Humulus lupulus L.) extract using specific solvent systems. Conversely, adding K-targeted isolates allows enrichment of the original extract and hence provides an augmented DESIGNER material. Multiple countercurrent separation steps were used to purify each of the four compounds, and four DESIGNER extracts with varying depletions were prepared. The DESIGNER approach innovates the characterization of chemically complex extracts through integration of enabling technologies such as countercurrent separation, K-by-bioactivity, the residual complexity concepts, as well as quantitative analysis by 1H NMR, LC-MS, and HiFSA-based NMR fingerprinting. PMID:25437744

  13. Molecular Determinants of Response to Anti-Programmed Cell Death (PD)-1 and Anti-Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non-Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Rizvi, Hira; Sanchez-Vega, Francisco; La, Konnor; Chatila, Walid; Jonsson, Philip; Halpenny, Darragh; Plodkowski, Andrew; Long, Niamh; Sauter, Jennifer L; Rekhtman, Natasha; Hollmann, Travis; Schalper, Kurt A; Gainor, Justin F; Shen, Ronglai; Ni, Ai; Arbour, Kathryn C; Merghoub, Taha; Wolchok, Jedd; Snyder, Alexandra; Chaft, Jamie E; Kris, Mark G; Rudin, Charles M; Socci, Nicholas D; Berger, Michael F; Taylor, Barry S; Zehir, Ahmet; Solit, David B; Arcila, Maria E; Ladanyi, Marc; Riely, Gregory J; Schultz, Nikolaus; Hellmann, Matthew D

    2018-03-01

    Purpose Treatment of advanced non-small-cell lung cancer with immune checkpoint inhibitors (ICIs) is characterized by durable responses and improved survival in a subset of patients. Clinically available tools to optimize use of ICIs and understand the molecular determinants of response are needed. Targeted next-generation sequencing (NGS) is increasingly routine, but its role in identifying predictors of response to ICIs is not known. Methods Detailed clinical annotation and response data were collected for patients with advanced non-small-cell lung cancer treated with anti-programmed death-1 or anti-programmed death-ligand 1 [anti-programmed cell death (PD)-1] therapy and profiled by targeted NGS (MSK-IMPACT; n = 240). Efficacy was assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, and durable clinical benefit (DCB) was defined as partial response/stable disease that lasted > 6 months. Tumor mutation burden (TMB), fraction of copy number-altered genome, and gene alterations were compared among patients with DCB and no durable benefit (NDB). Whole-exome sequencing (WES) was performed for 49 patients to compare quantification of TMB by targeted NGS versus WES. Results Estimates of TMB by targeted NGS correlated well with WES (ρ = 0.86; P ratio, 1.38; P = .024). The fraction of copy number-altered genome was highest in those with NDB. Variants in EGFR and STK11 associated with a lack of benefit. TMB and PD-L1 expression were independent variables, and a composite of TMB plus PD-L1 further enriched for benefit to ICIs. Conclusion Targeted NGS accurately estimates TMB and elevated TMB further improved likelihood of benefit to ICIs. TMB did not correlate with PD-L1 expression; both variables had similar predictive capacity. The incorporation of both TMB and PD-L1 expression into multivariable predictive models should result in greater predictive power.

  14. The Molecular Targets of Selected Organophosphorus Compounds at Nicotinic, Muscarinic, GABA, and Glutamate Synapses: Acute and Chronic Studies Including Prophylactic and Therapeutic Approaches

    Science.gov (United States)

    1988-11-28

    acetylcholine and batrachotoxin . J. Physiol. (Par1i) 79.338-343, 1984. 7. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, FJ. Improved...for patch clamp studies of chemosensitive-and voltage-sensitive ion channels: Actions of acetylcholine and batrachotoxin . J. Pbiol(Pr 79:338- 343...EU,. Ther., 22&-73-79, 1984. 53 ii 9. Hudson, CS., Deshpande, SS, and Albuquerque, E.X. Consequences of axonal transport blockade by batrachotoxin

  15. CRISPR-Mediated Drug-Target Validation Reveals Selective Pharmacological Inhibition of the RNA Helicase, eIF4A

    Directory of Open Access Journals (Sweden)

    Jennifer Chu

    2016-06-01

    Full Text Available Targeting translation initiation is an emerging anti-neoplastic strategy that capitalizes on de-regulated upstream MAPK and PI3K-mTOR signaling pathways in cancers. A key regulator of translation that controls ribosome recruitment flux is eukaryotic initiation factor (eIF 4F, a hetero-trimeric complex composed of the cap binding protein eIF4E, the scaffolding protein eIF4G, and the RNA helicase eIF4A. Small molecule inhibitors targeting eIF4F display promising anti-neoplastic activity in preclinical settings. Among these are some rocaglate family members that are well tolerated in vivo, deplete eIF4F of its eIF4A helicase subunit, have shown activity as single agents in several xenograft models, and can reverse acquired resistance to MAPK and PI3K-mTOR targeted therapies. Herein, we highlight the power of using genetic complementation approaches and CRISPR/Cas9-mediated editing for drug-target validation ex vivo and in vivo, linking the anti-tumor properties of rocaglates to eIF4A inhibition.

  16. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug.

    Science.gov (United States)

    Lee, Beom Suk; Park, Kyeongsoon; Park, Sangjin; Kim, Gui Chul; Kim, Hyo Jung; Lee, Sangjoo; Kil, Heeseup; Oh, Seung Jun; Chi, Daeyoon; Kim, Kwangmeyung; Choi, Kuiwon; Kwon, Ick Chan; Kim, Sang Yoon

    2010-10-15

    The better understanding of polymeric nanoparticles as a drug delivery carrier is a decisive factor to get more efficient therapeutic response in vivo. Here, we report the non-invasive imaging of bare polymeric nanoparticles and drug-loaded polymeric nanoparticles to evaluate biodistribution in tumor bearing mice. To make nano-sized drug delivery carrier, glycol chitosan was modified with different degrees of hydrophobic N-acetyl histidine (NAcHis-GC-1, -2, and -3). The biodistribution of polymeric nanoparticles and drug was confirmed by using gamma camera with (131)I-labeled NAcHis-GC and (131)I-labeled doxorubicin (DOX) and by using in vivo live animal imaging with near-infrared fluorescence Cy5.5-labeled NAcHis-GC. Among bare nanoparticles, NAcHis-GC3 (7.8% NAcHis content) showed much higher tumor targeting efficiency than NAcHis-GC1 (3.3% NAcHis content) and NAcHis-GC2 (6.8% NAcHis content). In contrast, for drug-loaded nanoparticles, DOX-NAcHis-GC1 displayed two-fold higher tumor targeting property than DOX-NAcHis-GC3. These data imply that the biodistribution and tumor targeting efficiency between bare and drug-loaded nanoparticles may be greatly different. Therapeutic responses for NAcHis-GC nanoparticles after drug loading were also evaluated. In xenograft animal model, we could find out that DOX-NAcHis-GC1 with higher tumor targeting of DOX has more excellent therapeutic effect than DOX-NAcHis-GC3 and free DOX. These results mean that the hydrophobic core stability might be a critical factor for tumor targeting efficiency of nanoparticles. The present study indicates that by using molecular imaging, we can select more appropriate nanoparticles with the highest tumor targeting properties, leading to exerting more excellent therapeutic results in cancer therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Impact of Novel LDL-C Assessment on the Utility of Secondary Non-HDL-C and ApoB Targets in Selected Worldwide Dyslipidemia Guidelines.

    Science.gov (United States)

    Sathiyakumar, Vasanth; Park, Jihwan; Quispe, Renato; Elshazly, Mohamed B; Michos, Erin D; Banach, Maciej; Toth, Peter P; Whelton, Seamus P; Blumenthal, Roger S; Jones, Steven R; Martin, Seth S

    2018-03-05

    Background -Selected dyslipidemia guidelines recommend non-high-density lipoprotein-cholesterol (non-HDL-C) and apolipoprotein B (apoB) as secondary targets to the primary target of low-density lipoprotein-cholesterol (LDL-C). We examined, after considering two LDL-C estimates that differ in accuracy: (1) how frequently non-HDL-C guideline targets could change management; and (2) utility of apoB targets after meeting LDL-C and non-HDL-C targets. Methods -We analyzed 2,518 adults representative of the U.S. population from the 2011-2012 National Health and Nutrition Examination Survey and 126,092 patients from the Very Large Database of Lipids study with apoB. We identified all individuals as well as those with high-risk clinical features including coronary disease, diabetes, and metabolic syndrome who met very high- and high-risk guideline targets of LDL-CC F ) and a novel, more accurate method (LDL-C N ). Next, we examined those not meeting non-HDL-C (C and non-HDL-C targets (CC F C≥100 mg/dL, and 7-8% had apoB≥80 mg/dL. Among those with LDL-C F C≥130 mg/dL and 2-3% had apoB≥100 mg/dL. In comparison, among those with LDL-C N C and apoB values above guideline targets. Similar trends were upheld among those with high-risk clinical features: ~0-3% of individuals with LDL-C N C≥100 mg/dL or apoB≥80 mg/dL compared to 13-38% and 9-25%, respectively, in those with LDL-C F C F or LDL-C N CC F or LDL-C N CC, guideline-suggested non-HDL-C targets could alter management in only a small fraction of individuals, including those with coronary disease and other high-risk clinical features. Furthermore, current guideline-suggested apoB targets provide modest utility after meeting cholesterol targets. Clinical Trial Registration -URL: https://clinicaltrials.gov Unique Identifier: NCT01698489.

  18. Application of a body condition score index for targeted selective treatment in adult Merino sheep--A modelling study.

    Science.gov (United States)

    Cornelius, M P; Jacobson, C; Besier, R B

    2015-11-30

    This study aimed to establish whether sheep flock production losses due to nematode (worm) infections are typically greater in mature sheep selected for anthelmintic treatment at random compared to sheep selected for treatment based on low (poorer) body condition score (BCS). The study also examined the proportion of sheep in flocks that could be left untreated before production losses became evident, and projected worm egg pasture contamination. Sheep were monitored at two experimental sites in Western Australia (Mediterranean climate). Sheep were stratified for BCS, liveweight and faecal worm egg count (WEC) and allocated into treatment groups (treated or untreated), with equal numbers for each. Liveweight, BCS and WEC measurements were taken on 6 occasions at Farm A and 10 occasions at Farm B. Comparisons of sheep production (liveweight and BCS change) and pasture contamination potential (WEC) were conducted by generating "virtual flocks" of varying proportions sheep untreated (10%, 20%, 30%, 40%, and 50% untreated). For the comparison of the selection mode of sheep for treatment, the untreated sheep were either selected at random, or as the highest BCS animals at the commencement of observations. Univariate general linear models with least square difference post-hoc tests were used to examine differences between flocks for liveweight, BCS and WEC, and regression analysis was used to examine relationships between BCS and WEC, and liveweight and WEC. No difference in body weights was observed between flocks with varying proportions of ewes notionally left untreated at Farm B, and until more than 30% were left untreated at Farm A. There was no difference in BCS between flocks with varying proportions of ewes left untreated at either site. At no point were there differences in cumulative liveweight change or BCS between selection methods (BCS versus random) where the same proportion of sheep in virtual flocks were left untreated, suggesting that effort committed to

  19. Effects of adductor-canal-blockade on pain and ambulation after total knee arthroplasty

    DEFF Research Database (Denmark)

    Jenstrup, M T; Jæger, P; Lund, J

    2012-01-01

    Total knee arthroplasty (TKA) is associated with intense post-operative pain. Besides providing optimal analgesia, reduction in side effects and enhanced mobilization are important in this elderly population. The adductor-canal-blockade is theoretically an almost pure sensory blockade. We...... hypothesized that the adductor-canal-blockade may reduce morphine consumption (primary endpoint), improve pain relief, enhance early ambulation ability, and reduce side effects (secondary endpoints) after TKA compared with placebo....

  20. Additional sex combs-like 2 is required for polycomb repressive complex 2 binding at select targets.

    Science.gov (United States)

    Lai, Hsiao-Lei; Wang, Q Tian

    2013-01-01

    Polycomb Group (PcG) proteins are epigenetic repressors of gene expression. The Drosophila Additional sex combs (Asx) gene and its mammalian homologs exhibit PcG function in genetic assays; however, the mechanism by which Asx family proteins mediate gene repression is not well understood. ASXL2, one of three mammalian homologs for Asx, is highly expressed in the mammalian heart and is required for the maintenance of cardiac function. We have previously shown that Asxl2 deficiency results in a reduction in the bulk level of histone H3 lysine 27 trimethylation (H3K27me3), a repressive mark generated by the Polycomb Repressive Complex 2 (PRC2). Here we identify several ASXL2 target genes in the heart and investigate the mechanism by which ASXL2 facilitates their repression. We show that the Asxl2-deficient heart is defective in converting H3K27me2 to H3K27me3 and in removing ubiquitin from mono-ubiquitinated histone H2A. ASXL2 and PRC2 interact in the adult heart and co-localize to target promoters. ASXL2 is required for the binding of PRC2 and for the enrichment of H3K27me3 at target promoters. These results add a new perspective to our understanding of the mechanisms that regulate PcG activity and gene repression.

  1. Additional sex combs-like 2 is required for polycomb repressive complex 2 binding at select targets.

    Directory of Open Access Journals (Sweden)

    Hsiao-Lei Lai

    Full Text Available Polycomb Group (PcG proteins are epigenetic repressors of gene expression. The Drosophila Additional sex combs (Asx gene and its mammalian homologs exhibit PcG function in genetic assays; however, the mechanism by which Asx family proteins mediate gene repression is not well understood. ASXL2, one of three mammalian homologs for Asx, is highly expressed in the mammalian heart and is required for the maintenance of cardiac function. We have previously shown that Asxl2 deficiency results in a reduction in the bulk level of histone H3 lysine 27 trimethylation (H3K27me3, a repressive mark generated by the Polycomb Repressive Complex 2 (PRC2. Here we identify several ASXL2 target genes in the heart and investigate the mechanism by which ASXL2 facilitates their repression. We show that the Asxl2-deficient heart is defective in converting H3K27me2 to H3K27me3 and in removing ubiquitin from mono-ubiquitinated histone H2A. ASXL2 and PRC2 interact in the adult heart and co-localize to target promoters. ASXL2 is required for the binding of PRC2 and for the enrichment of H3K27me3 at target promoters. These results add a new perspective to our understanding of the mechanisms that regulate PcG activity and gene repression.

  2. Stable expression of green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in Babesia bovis with the WR99210/dhfr selection system.

    Science.gov (United States)

    Asada, Masahito; Tanaka, Miho; Goto, Yasuyuki; Yokoyama, Naoaki; Inoue, Noboru; Kawazu, Shin-ichiro

    2012-02-01

    We have achieved stable expression of green fluorescent protein (GFP) in Babesia bovis by using the WR99210/human dihydrofolate reductase (DHFR) gene selection system. A GFP-expression plasmid with a dhfr expression cassette (DHFR-gfp) was constructed and transfected into B. bovis by nucleofection. Following WR99210 selection, a GFP-fluorescent parasite population was obtained and the fluorescent parasite was maintained for more than 7 months under WR99210 drug pressure. The DHFR-gfp was used to construct a small circular chromosome and to target gene disruption in the parasite. For construction of the small circular chromosome (DHFR-gfp-Bbcent2), the putative centromere region of B. bovis chromosome 2 (Bbcent2) was cloned and inserted into the DHFR-gfp plasmid. Addition of Bbcent2 to the DHFR-gfp plasmid improved its segregation efficiency during parasite multiplication and GFP-expressing parasites were maintained for more than 2 months without drug pressure. For targeted disruption of a B. bovis gene we attempted to knockout the thioredoxin peroxidase-1 (TPx-1) gene (a single-copy 2-Cys peroxiredoxin gene, Tbtpx-1) by homologous recombination. To generate the targeting construct (DHFR-gfp-Bbtpx1KO), 5' and 3' portions of Bbtpx-1 were cloned into the DHFR-gfp plasmid. Following nucleofection, WR99210 selection and cloning, a GFP-fluorescent parasite population was obtained. Integration of the construct into the Bbtpx-1 locus was confirmed by PCR. The absence of Bbtpx-1 mRNA and protein were verified by reverse transcription PCR and western blot analysis/indirect immunofluorescence assay, respectively. This is the first report of targeted gene disruption of a Babesia gene. These advances in the methodology of genetic manipulation in B. bovis will facilitate functional analysis of Babesia genomes and will improve our understanding of the basic biology of apicomplexan parasites. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase.

    Science.gov (United States)

    Gallant, Joseph P; Lima-Cordón, Raquel Asunción; Justi, Silvia A; Monroy, Maria Carlota; Viola, Toni; Stevens, Lori

    2018-04-21

    Rational drug design creates innovative therapeutics based on knowledge of the biological target to provide more effective and responsible therapeutics. Chagas disease, endemic throughout Latin America, is caused by Trypanosoma cruzi, a protozoan parasite. Current therapeutics are problematic with widespread calls for new approaches. Researchers are using rational drug design for Chagas disease and one target receiving considerable attention is the T. cruzi trans-sialidase protein (TcTS). In T. cruzi, trans-sialidase catalyzes the transfer of sialic acid from a mammalian host to coat the parasite surface membrane and avoid immuno-detection. However, the role of TcTS in pathology variance among and within genetic variants of the parasite is not well understood despite numerous studies. Previous studies reported the crystalline structure of TcTS and the TS protein structure in other trypanosomes where the enzyme is often inactive. However, no study has examined the role of natural selection in genetic variation in TcTS. To understand the role of natural selection in TcTS DNA sequence and protein variation, we examined a 471 bp portion of the TcTS gene from 48 T. cruzi samples isolated from insect vectors. Because there may be multiple parasite genotypes infecting one insect and there are multiple copies of TcTS per parasite genome, all 48 sequences had multiple polymorphic bases. To resolve these polymorphisms, we examined cloned sequences from two insect vectors. The data are analyzed to understand the role of natural selection in shaping genetic variation in TcTS and interpreted in light of the possible role of TcTS as a drug target. The analysis highlights negative or purifying selection on three amino acids previously shown to be important in TcTS transfer activity. One amino acid in particular, Tyr342, is a strong candidate for a drug target because it is under negative selection and amino acid substitutions inactivate TcTS transfer activity. Chagas disease

  4. Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein

    Science.gov (United States)

    We present phylogenetic analyses of 37 taxa of Amaryllidaceae, tribe Haemantheae and Amaryllis belladonna L. as an outgroup, in order to provide a phylogenetic framework for the selection of candidate plants for lead discoveries in relation to Alzheimer´s disease and depression. DNA sequences from t...

  5. Selecting targets for the diagnosis of Schistosoma mansoni infection: An integrative approach using multi-omic and immunoinformatics data.

    Directory of Open Access Journals (Sweden)

    Gardenia B F Carvalho

    Full Text Available In order to effectively control and monitor schistosomiasis, new diagnostic methods are essential. Taking advantage of computational approaches provided by immunoinformatics and considering the availability of Schistosoma mansoni predicted proteome information, candidate antigens of schistosomiasis were selected and used in immunodiagnosis tests based on Enzime-linked Immunosorbent Assay (ELISA. The computational selection strategy was based on signal peptide prediction; low similarity to human proteins; B- and T-cell epitope prediction; location and expression in different parasite life stages within definitive host. Results of the above-mentioned analysis were parsed to extract meaningful biological information and loaded into a relational database developed to integrate them. In the end, seven proteins were selected and one B-cell linear epitope from each one of them was selected using B-cell epitope score and the presence of intrinsically disordered regions (IDRs. These predicted epitopes generated synthetic peptides that were used in ELISA assays to validate the rational strategy of in silico selection. ELISA was performed using sera from residents of areas of low endemicity for S. mansoni infection and also from healthy donors (HD, not living in an endemic area for schistosomiasis. Discrimination of negative (NEG and positive (INF individuals from endemic areas was performed using parasitological and molecular methods. All infected individuals were treated with praziquantel, and serum samples were obtained from them 30 and 180 days post-treatment (30DPT and 180DPT. Results revealed higher IgG levels in INF group than in HD and NEG groups when peptides 1, 3, 4, 5 and 7 were used. Moreover, using peptide 5, ELISA achieved the best performance, since it could discriminate between individuals living in an endemic area that were actively infected from those that were not (NEG, 30DPT, 180DPT groups. Our experimental results also indicate that

  6. Asteroseismology of OB stars with hundreds of single snapshot spectra (and a few time-series of selected targets)

    Science.gov (United States)

    Simón-Díaz, S.

    2015-01-01

    Imagine we could do asteroseismology of large samples of OB-type stars by using just one spectrum per target. That would be great! But this is probably a crazy and stupid idea. Or maybe not. Maybe we have the possibility to open a new window to investigate stellar oscillations in massive stars that has been in front of us for many years, but has not attracted very much our attention: the characterization and understanding of the so-called macroturbulent broadening in OB-type stars.

  7. Metallogenic geologic prerequisites of sandstone-type uranium deposits and target area selection. Taking Erlian and Ordos basins as examples

    International Nuclear Information System (INIS)

    Chen Fazheng

    2002-01-01

    Sandstone-type uranium deposit is the main target of recent uranium prospecting and exploration. According to the metallogenic characteristics, sandstone-type uranium deposits are divided into three groups: paleo-channel type, interlayer oxidation zone type and phreatic interlayer oxidation type. The author makes an analysis on the geologic prerequisites of the three types of uranium deposits, the similarities and difference, and preliminarily summarizes genetic models of different types of uranium deposits. Finally, taking Erlian and Ordos basins as examples, the author makes an evaluation and a strategic analysis on the uranium metallogenic prospect of the above two basins

  8. Overcoming Barriers in Oncolytic Virotherapy with HDAC Inhibitors and Immune Checkpoint Blockade

    Science.gov (United States)

    Marchini, Antonio; Scott, Eleanor M.; Rommelaere, Jean

    2016-01-01

    Oncolytic viruses (OVs) target and destroy cancer cells while sparing their normal counterparts. These viruses have been evaluated in numerous studies at both pre-clinical and clinical levels and the recent Food and Drug Administration (FDA) approval of an oncolytic herpesvirus-based treatment raises optimism that OVs will become a therapeutic option for cancer patients. However, to improve clinical outcome, there is a need to increase OV efficacy. In addition to killing cancer cells directly through lysis, OVs can stimulate the induction of anti-tumour immune responses. The host immune system thus represents a “double-edged sword” for oncolytic virotherapy: on the one hand, a robust anti-viral response will limit OV replication and spread; on the other hand, the immune-mediated component of OV therapy may be its most important anti-cancer mechanism. Although the relative contribution of direct viral oncolysis and indirect, immune-mediated oncosuppression to overall OV efficacy is unclear, it is likely that an initial period of vigorous OV multiplication and lytic activity will most optimally set the stage for subsequent adaptive anti-tumour immunity. In this review, we consider the use of histone deacetylase (HDAC) inhibitors as a means of boosting virus replication and lessening the negative impact of innate immunity on the direct oncolytic effect. We also discuss an alternative approach, aimed at potentiating OV-elicited anti-tumour immunity through the blockade of immune checkpoints. We conclude by proposing a two-phase combinatorial strategy in which initial OV replication and spread is maximised through transient HDAC inhibition, with anti-tumour immune responses subsequently enhanced by immune checkpoint blockade. PMID:26751469

  9. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  10. Mineralocorticoid receptor blockade prevents stress-induced modulation of multiple memory systems in the human brain.

    Science.gov (United States)

    Schwabe, Lars; Tegenthoff, Martin; Höffken, Oliver; Wolf, Oliver T

    2013-12-01

    Accumulating evidence suggests that stress may orchestrate the engagement of multiple memory systems in the brain. In particular, stress is thought to favor dorsal striatum-dependent procedural over hippocampus-dependent declarative memory. However, the neuroendocrine mechanisms underlying these modulatory effects of stress remain elusive, especially in humans. Here, we targeted the role of the mineralocorticoid receptor (MR) in the stress-induced modulation of dorsal striatal and hippocampal memory systems in the human brain using a combination of event-related functional magnetic resonance imaging and pharmacologic blockade of the MR. Eighty healthy participants received the MR antagonist spironolactone (300 mg) or a placebo and underwent a stressor or control manipulation before they performed, in the scanner, a classification task that can be supported by the hippocampus and the dorsal striatum. Stress after placebo did not affect learning performance but reduced explicit task knowledge and led to a relative increase in the use of more procedural learning strategies. At the neural level, stress promoted striatum-based learning at the expense of hippocampus-based learning. Functional connectivity analyses showed that this shift was associated with altered coupling of the amygdala with the hippocampus and dorsal striatum. Mineralocorticoid receptor blockade before stress prevented the stress-induced shift toward dorsal striatal procedural learning, same as the stress-induced alterations of amygdala connectivity with hippocampus and dorsal striatum, but resulted in significantly impaired performance. Our findings indicate that the stress-induced shift from hippocampal to dorsal striatal memory systems is mediated by the amygdala, required to preserve performance after stress, and dependent on the MR. © 2013 Society of Biological Psychiatry.

  11. Bilateral sphenopalatine ganglion blockade improves postoperative analgesia after endoscopic sinus surgery.

    Science.gov (United States)

    DeMaria, Samuel; Govindaraj, Satish; Chinosorvatana, Nina; Kang, Stanley; Levine, Adam I

    2012-01-01

    Endoscopic sinus surgery (ESS) is a common procedure preferably done with an anesthetic technique ensuring effective postoperative analgesia while speeding discharge home. Although anesthesia administered locally in conjunction with vasoconstricting agents is known to minimize intraoperative bleeding, its usefulness in providing postoperative analgesia has not been well characterized. The results supporting the use of regional anesthesia for sinus surgery have also been limited. Using a randomized, double-blinded and placebo-controlled design, we evaluated recovery times, opioid consumption, and nausea and vomiting after ESS when patients were randomized to either general anesthesia (GA) alone or with regional blockade. Subjects were 70 adults scheduled for sinus surgery. All participants underwent propofol/remifentanil/nitrous oxide anesthesia and similar intraoperative care. Patients received either GA alone or with sphenopalatine ganglion (SPG) blocks in a double-masked study design. Independent observers recorded readiness for discharge, incidence of nausea/vomiting, and pain scores every 15 minutes until discharge. Overall opioid use in the recovery area was also a secondary end point. Twenty-four hours later, patients were called and asked to rate their pain and overall satisfaction with their pain control. Block group participants were considered ready for discharge after 45 minutes and discharged from the hospital ∼40 minutes sooner than GA group participants. The block group required less total fentanyl in the recovery room than did the GA group. The incidences of nausea and vomiting did not differ significantly. Data at 24 hours postoperatively did not differ significantly between groups but trended toward increased satisfaction in the block group. No lasting adverse events were observed. Regional anesthesia using targeted nerve blocks is effective in ESS. The combination of GA and SPG blockade appears to shorten hospital stay and reduce narcotic

  12. Cell penetrating synthetic antimicrobial peptides (SAMPs) exhibiting potent and selective killing of mycobacterium by targeting its DNA.

    Science.gov (United States)

    Sharma, Aashish; Pohane, Amol Arunrao; Bansal, Sandhya; Bajaj, Avinash; Jain, Vikas; Srivastava, Aasheesh

    2015-02-23

    Naturally occurring antimicrobial peptides (AMPs) are powerful defence tools to tackle pathogenic microbes. However, limited natural production and high synthetic costs in addition to poor selectivity limit large-scale use of AMPs in clinical settings. Here, we present a series of synthetic AMPs (SAMPs) that exhibit highly selective and potent killing of Mycobacterium (minimum inhibitory concentration <20 μg mL(-1)) over E. coli or mammalian cells. These SAMPs are active against rapidly multiplying as well as growth saturated Mycobacterium cultures. These SAMPs are not membrane-lytic in nature, and are readily internalized by Mycobacterium and mammalian cells; whereas in E. coli, the lipopolysaccharide layer inhibits their cellular uptake, and hence, their antibacterial action. Upon internalization, these SAMPs interact with the unprotected genomic DNA of mycobacteria, and impede DNA-dependent processes, leading to bacterial cell death. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Berry-Phase Blockade in Single-Molecule Magnets

    Science.gov (United States)

    González, Gabriel; Leuenberger, Michael N.

    2007-06-01

    We formulate the problem of electron transport through a single-molecule magnet (SMM) in the Coulomb blockade regime taking into account topological interference effects for the tunneling of the large spin of a SMM. The interference originates from spin Berry phases associated with different tunneling paths. We show that, in the case of incoherent spin states, it is essential to place the SMM between oppositely spin-polarized source and drain leads in order to detect the spin tunneling in the stationary current, which exhibits topological zeros as a function of the transverse magnetic field.

  14. Precipitated withdrawal during maintenance opioid blockade with extended release naltrexone.

    Science.gov (United States)

    Fishman, Marc

    2008-08-01

    Background There has been increasing interest in the use of extended release injectable naltrexone for the treatment of opioid dependence. Case description We report a case of precipitated withdrawal in a 17-year-old adolescent female receiving extended release naltrexone (Vivitrol) for opioid dependence, following her third serial monthly dose of the medication, several days after using oxycodone with mild intoxication. Conclusions This case suggests that, in some circumstances, the opioid blockade may be overcome when naltrexone levels drop towards the end of the dosing interval, producing vulnerability to subsequent naltrexone-induced withdrawal. This may provide cautionary guidance for clinical management and dosing strategies.

  15. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    Science.gov (United States)

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  16. Small and Dim Target Detection via Lateral Inhibition Filtering and Artificial Bee Colony Based Selective Visual Attention

    Science.gov (United States)

    Duan, Haibin; Deng, Yimin; Wang, Xiaohua; Xu, Chunfang

    2013-01-01

    This paper proposed a novel bionic selective visual attention mechanism to quickly select regions that contain salient objects to reduce calculations. Firstly, lateral inhibition filtering, inspired by the limulus’ ommateum, is applied to filter low-frequency noises. After the filtering operation, we use Artificial Bee Colony (ABC) algorithm based selective visual attention mechanism to obtain the interested object to carry through the following recognition operation. In order to eliminate the camera motion influence, this paper adopted ABC algorithm, a new optimization method inspired by swarm intelligence, to calculate the motion salience map to integrate with conventional visual attention. To prove the feasibility and effectiveness of our method, several experiments were conducted. First the filtering results of lateral inhibition filter were shown to illustrate its noise reducing effect, then we applied the ABC algorithm to obtain the motion features of the image sequence. The ABC algorithm is proved to be more robust and effective through the comparison between ABC algorithm and popular Particle Swarm Optimization (PSO) algorithm. Except for the above results, we also compared the classic visual attention mechanism and our ABC algorithm based visual attention mechanism, and the experimental results of which further verified the effectiveness of our method. PMID:23991033

  17. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations

    Science.gov (United States)

    Gammage, Payam A; Rorbach, Joanna; Vincent, Anna I; Rebar, Edward J; Minczuk, Michal

    2014-01-01

    We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the “common deletion” (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild-type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof-of-principle that, through heteroplasmy manipulation, delivery of site-specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species. PMID:24567072

  18. High-resolution profiling of NMD targets in yeast reveals translational fidelity as a basis for substrate selection.

    Science.gov (United States)

    Celik, Alper; Baker, Richard; He, Feng; Jacobson, Allan

    2017-05-01

    Nonsense-mediated mRNA decay (NMD) plays an important role in eukaryotic gene expression, yet the scope and the defining features of NMD-targeted transcripts remain elusive. To address these issues, we reevaluated the genome-wide expression of annotated transcripts in yeast cells harboring deletions of the UPF1 , UPF2 , or UPF3 genes. Our new RNA-seq analyses confirm previous results of microarray studies, but also uncover hundreds of new NMD-regulated transcripts that had escaped previous detection, including many intron-containing pre-mRNAs and several noncoding RNAs. The vast majority of NMD-regulated transcripts are normal-looking protein-coding mRNAs. Our bioinformatics analyses reveal that this set of NMD-regulated transcripts generally have lower translational efficiency and higher ratios of out-of-frame translation. NMD-regulated transcripts also have lower average codon optimality scores and higher transition probability to nonoptimal codons. Collectively, our results generate a comprehensive catalog of yeast NMD substrates and yield new insights into the mechanisms by which these transcripts are targeted by NMD. © 2017 Celik et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients

    NARCIS (Netherlands)

    Slagman, Maartje C. J.; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D.

    2012-01-01

    Background. Renin angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both

  20. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients

    NARCIS (Netherlands)

    Slagman, Maartje C. J.; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D.

    Background. Renin angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both

  1. Toward a mechanistic understanding of vulnerability to hook-and-line fishing: Boldness as the basic target of angling-induced selection.

    Science.gov (United States)

    Klefoth, Thomas; Skov, Christian; Kuparinen, Anna; Arlinghaus, Robert

    2017-12-01

    In passively operated fishing gear, boldness-related behaviors should fundamentally affect the vulnerability of individual fish and thus be under fisheries selection. To test this hypothesis, we used juvenile common-garden reared carp ( Cyprinus carpio ) within a narrow size range to investigate the mechanistic basis of behavioral selection caused by angling. We focused on one key personality trait (i.e., boldness), measured in groups within ponds, two morphological traits (body shape and head shape), and one life-history trait (juvenile growth capacity) and studied mean standardized selection gradients caused by angling. Carp behavior was highly repeatable within ponds. In the short term, over seven days of fishing, total length, not boldness, was the main predictor of angling vulnerability. However, after 20 days of fishing, boldness turned out to be the main trait under selection, followed by juvenile growth rate, while morphological traits were only weakly related to angling vulnerability. In addition, we found juvenile growth rate to be moderately correlated with boldness. Hence, direct selection on boldness will also induce indirect selection on juvenile growth and vice versa, but given that the two traits are not perfectly correlated, independent evolution of both traits is also possible. Our study is among the first to mechanistically reveal that energy-acquisition-related behaviors, and not growth rate per se, are key factors determining the probability of capture, and hence, behavioral traits appear to be the prime targets of angling selection. We predict an evolutionary response toward increased shyness in intensively angling-exploited fish stocks, possibly causing the emergence of a timidity syndrome.

  2. Testing of Auxotrophic Selection Markers for Use in the Moss Physcomitrella Provides New Insights into the Mechanisms of Targeted Recombination

    Directory of Open Access Journals (Sweden)

    Mikael Ulfstedt

    2017-11-01

    Full Text Available The moss Physcomitrella patens is unique among plants in that homologous recombination can be used to knock out genes, just like in yeast. Furthermore, transformed plasmids can be rescued from Physcomitrella back into Escherichia coli, similar to yeast. In the present study, we have tested if a third important tool from yeast molecular genetics, auxotrophic selection markers, can be used in Physcomitrella. Two auxotrophic moss strains were made by knocking out the PpHIS3 gene encoding imidazoleglycerol-phosphate dehydratase, and the PpTRP1 gene encoding phosphoribosylanthranilate isomerase, disrupting the biosynthesis of histidine and tryptophan, respectively. The resulting PpHIS3Δ and PpTRP1Δ knockout strains were unable to grow on medium lacking histidine or tryptophan. The PpHIS3Δ strain was used to test selection of transformants by complementation of an auxotrophic marker. We found that the PpHIS3Δ strain could be complemented by transformation with a plasmid expressing the PpHIS3 gene from the CaMV 35S promoter, allowing the strain to grow on medium lacking histidine. Both linearized plasmids and circular supercoiled plasmids could complement the auxotrophic marker, and plasmids from both types of transformants could be rescued back into E. coli. Plasmids rescued from circular transformants were identical to the original plasmid, whereas plasmids rescued from linearized transformants had deletions generated by recombination between micro-homologies in the plasmids. Our results show that cloning by complementation of an auxotrophic marker works in Physcomitrella, which opens the door for using auxotrophic selection markers in moss molecular genetics. This will facilitate the adaptation of shuttle plasmid dependent methods from yeast molecular genetics for use in Physcomitrella.

  3. Deep Brain Stimulation Target Selection in an Advanced Parkinson's Disease Patient with Significant Tremor and Comorbid Depression

    Directory of Open Access Journals (Sweden)

    Amar S. Patel

    2017-04-01

    Full Text Available Clinical Vignette: A 67-year-old female with advanced Parkinson's disease (PD, medically refractory tremor, and a history of significant depression presents for evaluation of deep brain stimulation (DBS candidacy.  Clinical Dilemma: Traditionally, stimulation of the subthalamic nucleus (STN has been the preferred target for patients with significant PD tremor. However, STN stimulation is avoided in patients with a significant pre-surgical history of mood disorder.  Clinical Solution: Bilateral DBS of the globus pallidus interna led to significant short term improvement in PD motor symptoms, including significant tremor reduction.  Gap in Knowledge: There is insufficient evidence to support or refute clinicians' traditional preference for STN stimulation in treating refractory PD tremor. Similarly, the available evidence for risk of worsening depression and/or suicidality after STN DBS is mixed. Both questions require further clarification to guide patient and clinician decision-making.

  4. Long-Gradient Separations Coupled with Selected Reaction Monitoring for Highly Sensitive, Large Scale Targeted Protein Quantification in a Single Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin; Fillmore, Thomas L.; Gao, Yuqian; Zhao, Rui; He, Jintang; Schepmoes, Athena A.; Nicora, Carrie D.; Wu, Chaochao; Chambers, Justin L.; Moore, Ronald J.; Kagan, Jacob; Srivastava, Sudhir; Liu, Alvin Y.; Rodland, Karin D.; Liu, Tao; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2013-10-01

    Long-gradient separations coupled to tandem MS were recently demonstrated to provide a deep proteome coverage for global proteomics; however, such long-gradient separations have not been explored for targeted proteomics. Herein, we investigate the potential performance of the long-gradient separations coupled with selected reaction monitoring (LG-SRM) for targeted protein quantification. Direct comparison of LG-SRM (5 h gradient) and conventional LC-SRM (45 min gradient) showed that the long-gradient separations significantly reduced background interference levels and provided an 8- to 100-fold improvement in LOQ for target proteins in human female serum. Based on at least one surrogate peptide per protein, an LOQ of 10 ng/mL was achieved for the two spiked proteins in non-depleted human serum. The LG-SRM detection of seven out of eight endogenous plasma proteins expressed at ng/mL or sub-ng/mL levels in clinical patient sera was also demonstrated. A correlation coefficient of >0.99 was observed for the results of LG-SRM and ELISA measurements for prostate-specific antigen (PSA) in selected patient sera. Further enhancement of LG-SRM sensitivity was achieved by applying front-end IgY14 immunoaffinity depletion. Besides improved sensitivity, LG-SRM offers at least 3 times higher multiplexing capacity than conventional LC-SRM due to ~3-fold increase in average peak widths for a 300-min gradient compared to a 45-min gradient. Therefore, LG-SRM holds great potential for bridging the gap between global and targeted proteomics due to its advantages in both sensitivity and multiplexing capacity.

  5. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep.

    Directory of Open Access Journals (Sweden)

    Asma Guellouz

    Full Text Available We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a "filtration" procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×10(9 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.

  6. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets.

    Science.gov (United States)

    Romero, Angel H; López, Simón E

    2017-09-01

    Recently, a series of 4-phthalazinyl-hydrazones under its E-configuration have exhibited excellent in vitro antichagasic and antileishmanial profiles. Preliminary assays on both parasites suggested that the most active derivatives act through oxidative and nitrosative stress mechanisms; however, their exact mode of actions as anti-trypanosomal and anti-leishmanial agents have not been completely elucidated. This motivated to perform a molecular docking study on essential trypanosomatid enzymes such as superoxide dismutase (SOD), trypanothione reductase (TryR), cysteine-protease (CP) and pteridine reductase 1 (PTR1). In addition, to understand the experimental results of nitric oxide production obtained for infected macrophages with Leishmania parasite, a molecular docking was evaluated on nitric oxide synthase (iNOS) enzyme of Rattus norvegicus. Both diastereomers (E and Z) of the 4-phthalazinyl-hydrazones were docked on the mentioned targets. In general, molecular docking on T. cruzi enzymes revealed that the E-diastereomers exhibited lower binding energies than Z-diastereomers on the Fe-SOD and CP enzymes, while Z-diastereomers showed lower docking energies than E-isomers on TryR enzyme. For the Leishmania docking studies, the Z-isomers exhibited the best binding affinities on the PTR1 and iNOS enzymes, while the TryR enzyme showed a minor dependence with the stereoselectivity of the tested phthalazines. However, either the structural information of the ligand-enzyme complexes or the experimental data suggest that the significant antitrypanosomatid activity of the most active derivatives is not associated to the inhibition of the SOD, CP and PTR1 enzymes, while the TryR inhibition and nitric oxide generation in host cells emerge as interesting antitrypanosomatid therapeutic targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Differential Expression of FosB Proteins and Potential Target Genes in Select Brain Regions of Addiction and Depression Patients.

    Directory of Open Access Journals (Sweden)

    Paula A Gajewski

    Full Text Available Chronic exposure to stress or drugs of abuse has been linked to altered gene expression throughout the body, and changes in gene expression in discrete brain regions are thought to underlie many psychiatric diseases, including major depressive disorder and drug addiction. Preclinical models of these disorders have provided evidence for mechanisms of this altered gene expression, including transcription factors, but evidence supporting a role for these factors in human patients has been slow to emerge. The transcription factor ΔFosB is induced in the prefrontal cortex (PFC and hippocampus (HPC of rodents in response to stress or cocaine, and its expression in these regions is thought to regulate their "top down" control of reward circuitry, including the nucleus accumbens (NAc. Here, we use biochemistry to examine the expression of the FosB family of transcription factors and their potential gene targets in PFC and HPC postmortem samples from depressed patients and cocaine addicts. We demonstrate that ΔFosB and other FosB isoforms are downregulated in the HPC but not the PFC in the brains of both depressed and addicted individuals. Further, we show that potential ΔFosB transcriptional targets, including GluA2, are also downregulated in the HPC but not PFC of cocaine addicts. Thus, we provide the first evidence of FosB gene expression in human HPC and PFC in these psychiatric disorders, and in light of recent findings demonstrating the critical role of HPC ΔFosB in rodent models of learning and memory, these data suggest that reduced ΔFosB in HPC could potentially underlie cognitive deficits accompanying chronic cocaine abuse or depression.

  8. Yol082p, a novel CVT protein involved in the selective targeting of aminopeptidase I to the yeast vacuole.

    Science.gov (United States)

    Leber, R; Silles, E; Sandoval, I V; Mazón, M J

    2001-08-03

    The yeast vacuolar enzyme aminopeptidase I (API) is synthesized in the cytoplasm as a precursor (pAPI). Upon its assembly into dodecamers, pAPI is wrapped by double-membrane saccular structures for its further transport within vesicles that fuse with the vacuolar membrane and release their content in the vacuolar lumen. Targeting of API to the vacuole occurs by two alternative transport routes, the cvt and the autophagy pathways, which although mechanistically similar specifically operate under vegetative growth or nitrogen starvation conditions, respectively. We have studied the role of Yol082p, a protein identified by its ability to interact with API, in the transport of its precursor to the vacuole. We show that Yol082p interacts with mature API, an interaction that is strengthened by the amino extension of the API protein. Yol082p is required for targeting of pAPI to the vacuole, both under growing and short term nitrogen starvation conditions. Absence of Yol082p does not impede the assembly of pAPI into dodecamers, but precludes the enclosure of pAPI within transport vesicles. Microscopy studies show that during vegetative growth Yol082p is distributed between a cytoplasmic pool and a variable number of 0.13--0.27-microm round, mobile structures, which are no longer observed under conditions of nitrogen starvation, and become larger in cells expressing the inactive Yol082 Delta C32p, or lacking Apg12p. In contrast to the autophagy mutants involved in API transport, a Delta yol082 strain does not lose viability under nitrogen starvation conditions, indicating normal function of the autophagy pathway. The data are consistent with a role of Yol082p in an early step of the API transport, after its assembly into dodecamers. Because Yol082p fulfills the functional requisites that define the CVT proteins, we propose to name it Cvt19.

  9. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade...

  10. The effect of beta-adrenergic blockade after encoding on memory of an emotional event.

    Science.gov (United States)

    van Stegeren, Anda H; Everaerd, Walter; Gooren, Louis J G

    2002-09-01

    Animal and human studies lend support to the hypothesis that enhanced memory associated with emotional experiences involves activation of the beta-adrenergic system. Evidence for the role of noradrenaline in emotional memory in humans has been gathered from experimental studies where blockade of the beta-adrenergic system with a beta-blocker selectively impaired long-term memory for an emotionally arousing story (a slide show), when the beta-blocker was given before subjects were confronted with the emotional stimuli. The purpose of this study was to test whether effective beta-adrenergic blockade occurring only after the stage of encoding has a similar impairing effect on memory. In a double blind experimental design, 60 healthy adult subjects received randomly one tablet of either propranolol (Inderal, 40 mg) or placebo. Drugs were administered just before the slide show begun and (in view of its pharmacokinetics) propranolol reaches peak levels 1 h after drug intake. Physiological arousal was monitored by heart rate and blood pressure. Half of the beta-blocker and placebo groups watched either a neutral or an arousal version of an 11-slide presentation. Memory performance was tested with a surprise free recall and recognition test 1 week later. Memory performance, specifically for the second phase in which emotional elements were introduced, was better in subjects who viewed the arousal version than subjects who saw the neutral version of the slide show. However, no effect of the beta-blocker condition was found. This experiment does not support a role for noradrenaline in the post-encoding phase and on the later processes of consolidation and retrieval. Although it remains possible that with a different dosage or timing protocol a post-treatment effect of noradrenaline in humans can be found, this experiment could not find support for it.

  11. Blockade of central nicotine acetylcholine receptor signaling attenuate ghrelin-induced food intake in rodents.

    Science.gov (United States)

    Dickson, S L; Hrabovszky, E; Hansson, C; Jerlhag, E; Alvarez-Crespo, M; Skibicka, K P; Molnar, C S; Liposits, Z; Engel, J A; Egecioglu, E

    2010-12-29

    Here we sought to determine whether ghrelin's central effects on food intake can be interrupted by nicotine acetylcholine receptor (nAChR) blockade. Ghrelin regulates mesolimbic dopamine neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens, partly via cholinergic VTA afferents originating in the laterodorsal tegmental area (LDTg). Given that these cholinergic projections to the VTA have been implicated in natural as well as drug-induced reinforcement, we sought to investigate the role of cholinergic signaling in ghrelin-induced food intake as well as fasting-induced food intake, for which endogenous ghrelin has been implicated. We found that i.p. treatment with the non-selective centrally active nAChR antagonist, mecamylamine decreased fasting-induced food intake in both mice and rats. Moreover, central administration of mecamylamine decreased fasting-induced food intake in rats. I.c.v. ghrelin-induced food intake was suppressed by mecamylamine i.p. but not by hexamethonium i.p., a peripheral nAChR antagonist. Furthermore, mecamylamine i.p. blocked food intake following ghrelin injection into the VTA. Expression of the ghrelin receptor, the growth hormone secretagogue receptor 1A, was found to co-localize with choline acetyltransferase, a marker of cholinergic neurons, in the LDTg. Finally, mecamylamine treatment i.p. decreased the ability of palatable food to condition a place preference. These data suggest that ghrelin-induced food intake is partly mediated via nAChRs and that nicotinic blockade decreases the rewarding properties of food. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    International Nuclear Information System (INIS)

    Li, Hongmei; Wang, Cuiling; She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng; Liu, Ping; Wang, Yaoyu; Li, Jianli

    2015-01-01

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H + in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  13. Assessing the impact of a targeted plyometric training on changes in selected kinematic parameters of the swimming start.

    Science.gov (United States)

    Rejman, Marek; Bilewski, Marek; Szczepan, Stefan; Klarowicz, Andrzej; Rudnik, Daria; Maćkała, Krzysztof

    2017-01-01

    The aim of this study was to analyse changes taking place within selected kinematic parameters of the swimming start, after completing a six-week plyometric training, assuming that the take-off power training improves its effectiveness. The experiment included nine male swimmers. In the pre-test the swimmers performed three starts focusing on the best performance. Next, a plyometric training programme, adapted from sprint running, was introduced in order to increase a power of the lower extremities. The programme entailed 75 minute sessions conducted twice a week. Afterwards, a post-test was performed, analogous to the pre-test. Spatio-temporal structure data of the swimming start were gathered from video recordings of the swimmer above and under water. Impulses triggered by the plyometric training contributed to a shorter start time (the main measure of start effectiveness) and glide time as well as increasing average take-off, flight and glide velocities including take-off, entry and glide instantaneous velocities. The glide angle decreased. The changes in selected parameters of the swimming start and its confirmed diagnostic values, showed the areas to be susceptible to plyometric training and suggested that applied plyometric training programme aimed at increasing take-off power enhances the effectiveness of the swimming start.

  14. Quantitative assessment of differential sensory blockade after lumbar epidural lidocaine.

    Science.gov (United States)

    Tay, B; Wallace, M S; Irving, G

    1997-05-01

    A cutaneous current perception threshold (CPT) sensory testing device measures both large and small diameter sensory nerve fiber function and may be useful in evaluating differential neural blockade. Eight subjects received both lumbar epidural saline and lumbar epidural lidocaine. Five milliliters of normal saline was administered and the CPTs were measured. After the saline, 10 mL of 2% plain lidocaine was administered. CPTs, and sensation to touch, pinprick, and cold were subsequently measured. Saline had no effect on any measurements. Lidocaine caused an increase in all CPTs at the umbilicus and the knee reaching a statistical significance at 5 Hz for the umbilicus only. The great toe showed a slight increase of the 5 Hz stimulus and no increase of the 2000 or 250 Hz stimulus. There was a significant decrease in touch, pinprick, and cold sensation at the umbilicus and knee and a significant decrease in the cold sensation at the great toe. There was no effect on any measurements made at the mastoid. Epidural lidocaine resulted in a differential neural blockade as measured by a CPT monitor but not with crude sensory measurements.

  15. Interleukin-6 blockade Improves Autonomic Dysfunction in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Ashit Syngle

    2015-01-01

    Full Text Available Autonomic nervous system (ANS involvement in rheumatoid arthritis (RA is well recognised and contributes to arrhythmia and sudden death. However, there is no study documented the therapeutic efficacy on autonomic neuropathy (AN in RA. This is the first reported observation of improvement in AN with interleukin-6 (IL-6 blockade with tocilizumab in RA. We report a case of 61-year old female with seropositive RA with severe disease activity, investigated for autonomic neuropathy. A battery of non invasive tests was used for accurate assessment of AN function based on assessment of peripheral sympathetic autonomic function and cardiovascular reflex tests. Tocilizumab 8mg/kg intravenous infusion at weeks 0, 4 and 8 was added to her treatment regimen. Cardiovascular autonomic function tests at baseline showed marked abnormalities of parasympathetic cardiovascular reflexes. After the first dose of tocilizumab there was a rapid improvement with normalization of parasympathetic autonomic activity with subsequent doses. IL-6 blockade with tocilizumab seems to have the potential to improve the vagus nerve mediated parasympathetic neuropathy and hence has the potential to restore cholinergic anti-inflammatory pathway.

  16. Immunomodulation by gadolinium chloride-induced Kupffer cell phagocytosis blockade

    International Nuclear Information System (INIS)

    Lazar, G.; Husztik, E.; Kiss, I.; Szakacs, J.; Olah, J.

    1998-01-01

    Gadolinium chloride (GdCl 3 ), a rare earth metal salt, depresses macrophage activity, and is commonly used to study the physiology of the reticuloendothelial system. In the present work, the effect of GdCl 3 -induced Kupffer cell blockade on the humoral immune response in mice to sheep red blood cells (SRBC) was investigated. Kupffer cell phagocytosis blockade was found to increase both the primary and secondary immune responses to SRBC. The primary immune response was significantly augmented in animals injected intravenously with GdCl 3 2, 3 or 4 days before injection of the cellular antigen, but GdCl 3 injected 7 days before the antigen did not modify the immune response. Increased secondary humoral immune responses were also observed. When GdCl 3 was injected 2 days before the second dose of antigen, the numbers of both IgM and IgG-producing plaque forming cells were augmented. GdCl 3 injected 2 days before the first dose of SRBC did not modify the humoral immune response. Earlier studies with 51 Cr-labelled foreign red blood cells suggested that the augmentation of the humoral immune response in GdCl 3 -pretreated mice is a consequence of the spillover of the antigen from the liver into the spleen and other extrahepatic reticuloendothelial organs. (orig.)

  17. Zea mays (L. P1 locus for cob glume color identified as a post-domestication selection target with an effect on temperate maize genomes

    Directory of Open Access Journals (Sweden)

    Chuanxiao Xie

    2013-10-01

    Full Text Available Artificial selection during domestication and post-domestication improvement results in loss of genetic diversity near target loci. However, the genetic locus associated with cob glume color and the nature of the genomic pattern surrounding it was elusive and the selection effect in that region was not clear. An association mapping panel consisting of 283 diverse modern temperate maize elite lines was genotyped by a chip containing over 55,000 evenly distributed SNPs. Ten-fold resequencing at the target region on 40 of the panel lines and 47 tropical lines was also undertaken. A genome-wide association study (GWAS for cob glume color confirmed the P1 locus, which is located on the short arm of chromosome 1, with a − log10P value for surrounding SNPs higher than the Bonferroni threshold (α/n, α < 0.001 when a mixed linear model (MLM was implemented. A total of 26 markers were identified in a 0.78 Mb region surrounding the P1 locus, including 0.73 Mb and 0.05 Mb upstream and downstream of the P1 gene, respectively. A clear linkage disequilibrium (LD block was found and LD decayed very rapidly with increasing physical distance surrounding the P1 locus. The estimates of π and Tajima's D were significantly (P < 0.001 lower at both ends compared to the locus. Upon comparison of temperate and tropical lines at much finer resolution by resequencing (180-fold finer than chip SNPs, a more structured LD block pattern was found among the 40 resequenced temperate lines. All evidence indicates that the P1 locus in temperate maize has not undergone neutral evolution but has been subjected to artificial selection during post-domestication selection or improvement. The information and analytical results generated in this study provide insights as to how breeding efforts have affected genome evolution in crop plants.

  18. Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib).

    Science.gov (United States)

    Germann, Ursula A; Furey, Brinley F; Markland, William; Hoover, Russell R; Aronov, Alex M; Roix, Jeffrey J; Hale, Michael; Boucher, Diane M; Sorrell, David A; Martinez-Botella, Gabriel; Fitzgibbon, Matthew; Shapiro, Paul; Wick, Michael J; Samadani, Ramin; Meshaw, Kathryn; Groover, Anna; DeCrescenzo, Gary; Namchuk, Mark; Emery, Caroline M; Saha, Saurabh; Welsch, Dean J

    2017-11-01

    Aberrant activation of signaling through the RAS-RAF-MEK-ERK (MAPK) pathway is implicated in numerous cancers, making it an attractive therapeutic target. Although BRAF and MEK-targeted combination therapy has demonstrated significant benefit beyond single-agent options, the majority of patients develop resistance and disease progression after approximately 12 months. Reactivation of ERK signaling is a common driver of resistance in this setting. Here we report the discovery of BVD-523 (ulixertinib), a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and ERK1/2 selectivity. In vitro BVD-523 treatment resulted in reduced proliferation and enhanced caspase activity in sensitive cells. Interestingly, BVD-523 inhibited phosphorylation of target substrates despite increased phosphorylation of ERK1/2. In in vivo xenograft studies, BVD-523 showed dose-dependent growth inhibition and tumor regression. BVD-523 yielded synergistic antiproliferative effects in a BRAF V600E -mutant melanoma cell line xenograft model when used in combination with BRAF inhibition. Antitumor activity was also demonstrated in in vitro and in vivo models of acquired resistance to single-agent and combination BRAF/MEK-targeted therapy. On the basis of these promising results, these studies demonstrate BVD-523 holds promise as a treatment for ERK-dependent cancers, including those whose tumors have acquired resistance to other treatments targeting upstream nodes of the MAPK pathway. Assessment of BVD-523 in clinical trials is underway (NCT01781429, NCT02296242, and NCT02608229). Mol Cancer Ther; 16(11); 2351-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Improving the efficacy of RAAS blockade in patients with chronic kidney disease

    NARCIS (Netherlands)

    Lambers Heerspink, Hiddo J.; de Borst, Martin H.; Bakker, Stephan J. L.; Navis, Gerjan J.

    I Reduction of blood pressure and proteinuria by blockade of the renin-angiotensin-aldosterone system (RAAS) has been the cornerstone of renoprotective intervention for patients with chronic kidney disease (CKD) for many years. Despite the proven efficacy of RAAS blockade, however, the reduction in

  20. Effects of axillary blockade on regional cerebral blood flow during dynamic hand contractions

    DEFF Research Database (Denmark)

    Friedman, D B; Friberg, L; Payne, G

    1992-01-01

    Regional cerebral blood flow (rCBF) was measured at orbitomeatal (OM) plane +5.0 and +9.0 cm in 10 subjects at rest and during dynamic hand contractions before and after axillary blockade. Handgrip strength was significantly reduced, and rating of perceived exertion increased after blockade. During...

  1. Epidural anaesthesia with levobupivacaine and ropivacaine : effects of age on the pharmacokinetics, neural blockade and haemodynamics

    NARCIS (Netherlands)

    Simon, Mischa J.G.

    2006-01-01

    Epidural neural blockade results from processes after the administration of a local anaesthetic in the epidural space until the uptake in neural tissue. The pharmacokinetics, neural blockade and haemodynamics after epidural anaesthesia may be influenced by several factors, with age as the most

  2. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man

    DEFF Research Database (Denmark)

    Galbo, H; Holst, Janett; Christensen, N J

    1976-01-01

    Seven men ran at 60% of individual maximal oxygen uptake to exhaustion during beta-adrenergic blockade with propranolol (P), during lipolytic blockade with nicotinic acid (N), or without drugs (C). The total work times (83 +/- 9 (P), 122 +/- 8 (N), 166 +/- 10 (C) min, mean and SE) differed...

  3. Glucagon and plasma catecholamines during beta-receptor blockade in exercising man

    DEFF Research Database (Denmark)

    Galbo, H; Holst, Janett; Christensen, N J

    1976-01-01

    Seven men ran at 60% of individual maximal oxygen uptake to exhaustion during beta-adrenergic blockade with propranolol (P), during lipolytic blockade with nicotinic acid (N), or without drugs (C). The total work times (83 +/- 9 (P), 122 +/- 8 (N), 166 +/- 10 (C) min, mean and SE) differed signif...

  4. Selected issues relating to target companies and their boards in the context of merger and acquisition transactions

    International Nuclear Information System (INIS)

    Allen, F.R.

    1998-01-01

    Some of the practical, legal and regulatory issues which the board of directors of a target company should bear in mind in their deliberations concerning a take-over bid are reviewed. Directors of such companies will require compliance with and adherence to standard legal and regulatory rules of conduct. Developing a team to deal with the myriad details of a take-over, acquisition or merger, preparing and compiling and maintaining a manual of relevant information are highly recommended. Fiduciary duties of directors and its relevance to mergers and acquisitions are illustrated by reference to a number of recent actual court cases involving these issues. Relevant Canadian and U.S. Case Law is reviewed. It is emphasized throughout the paper that take-over transactions, mergers and acquisitions are complex and time consuming processes. It is essential and customary for senior management to be active participants in most merger and acquisition matters to provide the strategic input which drives the efforts of all involved. Equally important is to establish appropriate governance practices and to prepare and equip the corporation's mergers and acquisitions team in advance, should such events arise on short notice by design or otherwise. 38 refs

  5. The Importance of Target Market Selection for More Profitable Olive Oil Exports by Turkey: A Case Study

    Directory of Open Access Journals (Sweden)

    Mustafa METE

    2015-12-01

    Full Text Available In this study, the quotas and taxes implemented by EU to Turkey were examined and it was observed that these policies have negative effects on Turkey’s olive oil exports. Due to the restrictive policies and low profitability in the entry to the EU market, it was determined that Turkey should be directed to the markets that have higher profitability compared with the exports to EU countries. These detections were carried out in accordance with the information obtained from International Trade Center (ITC and Market Access Database (MAD. As a result of the detections it has been found that exports to the EU countries are more profitable and the entry to the market is easier than to the US. As a result of the researches in ITC and MAD databases, actual companies in oil imports in the US market have been determined and it has shown by examining a bill of loading sample that the firms that make olive oils exports in Turkey easily enter new target markets if they know the usage of the databases

  6. Elevated N-terminal pro-brain natriuretic peptide levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of dietary sodium restriction and diuretics, but not angiotensin receptor blockade, in proteinuric renal patients.

    Science.gov (United States)

    Slagman, Maartje C J; Waanders, Femke; Vogt, Liffert; Damman, Kevin; Hemmelder, Marc; Navis, Gerjan; Laverman, Gozewijn D

    2012-03-01

    Renin-angiotensin aldosterone system (RAAS) blockade only partly reduces blood pressure, proteinuria and renal and cardiovascular risk in chronic kidney disease (CKD) but often requires sodium targeting [i.e. low sodium diet (LS) and/or diuretics] for optimal efficacy. However, both under- and overtitration of sodium targeting can easily occur. We evaluated whether N-terminal pro-brain natriuretic peptide (NT-proBNP), a biomarker of volume expansion, predicts the benefits of sodium targeting in CKD patients. In a cross-over randomized controlled trial, 33 non-diabetic CKD patients (proteinuria 3.8 ± 0.4 g/24 h, blood pressure 143/86 ± 3/2 mmHg, creatinine clearance 89 ± 5 mL/min) were treated during 6-week periods with placebo, angiotensin receptor blockade (ARB; losartan 100 mg/day) and ARB plus diuretics (losartan 100 mg/day plus hydrochlorothiazide 25 mg/day), combined with LS (93 ± 52 mmol Na(+)/24 h) and regular sodium diet (RS; 193 ± 62 mmol Na(+)/24 h, P diuretics and was normalized by ARB + diuretic + LS [39 (26-59) pg/mL, P = 0.65 versus controls]. NT-proBNP levels above the upper limit of normal (>125 pg/mL) predicted a larger reduction of blood pressure and proteinuria by LS and diuretics but not by ARB, during all steps of the titration regimen. Elevated NT-proBNP levels predict an enhanced anti-hypertensive and anti-proteinuric benefit of sodium targeting, but not RAAS blockade, in proteinuric CKD patients. Importantly, this applies to the untreated condition, as well as to the subsequent treatment steps, consisting of RAAS blockade and even RAAS blockade combined with diuretics. NT-proBNP can be a useful tool to identify CKD patients in whom sodium targeting can improve blood pressure and proteinuria.

  7. Deep neuromuscular blockade leads to a larger intraabdominal volume during laparoscopy

    DEFF Research Database (Denmark)

    Lindekaer, Astrid Listov; Halvor Springborg, Henrik; Istre, Olav

    2013-01-01

    for measuring the intra-abdominal space available to the surgeon during laproscopy, in order to examine whether the relaxation produced by deep neuromuscular blockade can increase the working surgical space sufficiently to permit a reduction in the CO2 insufflation pressure. Using the laproscopic grasper......, the distance from the promontory to the skin is measured at two different insufflation pressures: 8 mm Hg and 12 mm Hg. After the initial measurements, a neuromuscular blocking agent (rocuronium) is administered to the patient and the intra-abdominal volume is measured again. Pilot data collected from 15...... patients shows that the intra-abdominal space at 8 mm Hg with blockade is comparable to the intra-abdominal space measured at 12 mm Hg without blockade. The impact of neuromuscular blockade was not correlated with patient height, weight, BMI, and age. Thus, using neuromuscular blockade to maintain a steady...

  8. Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Karunaratne SHP Parakrama

    2008-08-01

    Full Text Available Abstract Background The current status of insecticide resistance and the underlying resistance mechanisms were studied in the major vector of malaria, Anopheles culicifacies, and the secondary vector, Anopheles subpictus in five districts (Anuradhapura, Kurunegala, Moneragala, Puttalam and Trincomalee of Sri Lanka. Eight other anophelines, Anopheles annularis, Anopheles barbirostris, Anopheles jamesii, Anopheles nigerrimus, Anopheles peditaeniatus, Anopheles tessellatus, Anopheles vagus and Anopheles varuna from Anuradhapura district were also tested. Methods Adult females were exposed to the WHO discriminating dosages of DDT, malathion, fenitrothion, propoxur, λ-cyhalothrin, cyfluthrin, cypermethrin, deltamethrin, permethrin and etofenprox. The presence of metabolic resistance by esterase, glutathione S-transferase (GST and monooxygenase-based mechanisms, and the sensitivity of the acetylcholinesterase target site were assessed using synergists, and biochemical, and metabolic techniques. Results All the anopheline species had high DDT resistance. All An. culicifacies and An. subpictus populations were resistant to malathion, except An. culicifacies from Kurunegala, where there was no malathion carboxylesterase activity. Kurunegala and Puttalam populations of An. culicifacies were susceptible to fenitrothion. All the An. culicifacies populations were susceptible to carbamates. Both species were susceptible to the discriminating dosages of cypermethrin and cyfluthrin, but had different levels of resistance to other pyrethroids. Of the 8 other anophelines, only An. nigerrimus and An. peditaeniatus were resistant to all the insecticides tested, probably due to their high exposure to the insecticides used in agriculture. An. vagus showed some resistance to permethrin. Esterases, GSTs and monooxygenases were elevated in both An. culicifacies and An. subpictus. AChE was most sensitive to insecticides in Kurunegala and Trincomalee An. culicifacies

  9. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model.

    Science.gov (United States)

    Mercurio, Laura; Ajmone-Cat, Maria Antonietta; Cecchetti, Serena; Ricci, Alessandro; Bozzuto, Giuseppina; Molinari, Agnese; Manni, Isabella; Pollo, Bianca; Scala, Stefania; Carpinelli, Giulia; Minghetti, Luisa

    2016-03-25

    The CXCL12/CXCR4 pathway regulates tumor cell proliferation, metastasis, angiogenesis and the tumor-microenvironment cross-talk in several solid tumors, including glioblastoma (GBM), the most common and fatal brain cancer. In the present study, we evaluated the effects of peptide R, a new specific CXCR4 antagonist that we recently developed by a ligand-based approach, in an in vitro and in vivo model of GBM. The well-characterized CXCR4 antagonist Plerixafor was also included in the study. The effects of peptide R on CXCR4 expression, cell survival and migration were assessed on the human glioblastoma cell line U87MG exposed to CXCL12, by immunofluorescence and western blotting, MTT assay, flow cytometry and transwell chamber migration assay. Peptide R was then tested in vivo, by using U87MG intracranial xenografts in CD1 nude mice. Peptide R was administered for 23 days since cell implantation and tumor volume was assessed by magnetic resonance imaging (MRI) at 4.7 T. Glioma associated microglia/macrophage (GAMs) polarization (anti-tumor M1 versus pro-tumor M2 phenotypes) and expressions of vascular endothelial growth factor (VEGF) and CD31 were assessed by immunohistochemistry and immunofluorescence. We found that peptide R impairs the metabolic activity and cell proliferation of human U87MG cells and stably reduces CXCR4 expression and cell migration in response to CXCL12 in vitro. In the orthotopic U87MG model, peptide R reduced tumor cellularity, promoted M1 features of GAMs and astrogliosis, and hindered intra-tumor vasculature. Our findings suggest that targeting CXCR4 by peptide R might represent a novel therapeutic approach against GBM, and contribute to the rationale to further explore in more complex pre-clinical settings the therapeutic potential of peptide R, alone or in combination with standard therapies of GBM.

  10. Capture efficiency and size selectivity of sampling gears targeting red-swamp crayfish in several freshwater habitats

    Directory of Open Access Journals (Sweden)

    Paillisson J.-M.

    2011-05-01

    Full Text Available The ecological importance of the red-swamp crayfish (Procambarus clarkii in the functioning of freshwater aquatic ecosystems is becoming more evident. It is important to know the limitations of sampling methods targeting this species, because accurate determination of population characteristics is required for predicting the ecological success of P. clarkii and its potential impacts on invaded ecosystems. In the current study, we addressed the question of trap efficiency by comparing population structure provided by eight trap devices (varying in number and position of entrances, mesh size, trap size and construction materials in three habitats (a pond, a reed bed and a grassland in a French marsh in spring 2010. Based on a large collection of P. clarkii (n = 2091, 272 and 213 respectively in the pond, reed bed and grassland habitats, we found that semi-cylindrical traps made from 5.5 mm mesh galvanized steel wire (SCG were the most efficient in terms of catch probability (96.7–100% compared to 15.7–82.8% depending on trap types and habitats and catch-per-unit effort (CPUE: 15.3, 6.0 and 5.1 crayfish·trap-1·24 h-1 compared to 0.2–4.4, 2.9 and 1.7 crayfish·trap-1·24 h-1 by the other types of fishing gear in the pond, reed bed and grassland respectively. The SCG trap was also the most effective for sampling all size classes, especially small individuals (carapace length \\hbox{$\\leqslant 30$} ⩽ 30 mm. Sex ratio was balanced in all cases. SCG could be considered as appropriate trapping gear to likely give more realistic information about P. clarkii population characteristics than many other trap types. Further investigation is needed to assess the catching effort required for ultimately proposing a standardised sampling method in a large range of habitats.

  11. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    Science.gov (United States)

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  12. Cytosolic Accumulation of L-Proline Disrupts GABA-Ergic Transmission through GAD Blockade

    Directory of Open Access Journals (Sweden)

    Gregg W. Crabtree

    2016-10-01

    Full Text Available Proline dehydrogenase (PRODH, which degrades L-proline, resides within the schizophrenia-linked 22q11.2 deletion suggesting a role in disease. Supporting this, elevated L-proline levels have been shown to increase risk for psychotic disorders. Despite the strength of data linking PRODH and L-proline to neuropsychiatric diseases, targets of disease-relevant concentrations of L-proline have not been convincingly described. Here, we show that Prodh-deficient mice with elevated CNS L-proline display specific deficits in high-frequency GABA-ergic transmission and gamma-band oscillations. We find that L-proline is a GABA-mimetic and can act at multiple GABA-ergic targets. However, at disease-relevant concentrations, GABA-mimesis is limited to competitive blockade of glutamate decarboxylase leading to reduced GABA production. Significantly, deficits in GABA-ergic transmission are reversed by enhancing net GABA production with the clinically relevant compound vigabatrin. These findings indicate that accumulation of a neuroactive metabolite can lead to molecular and synaptic dysfunction and help to understand mechanisms underlying neuropsychiatric disease.

  13. Oncogenic pathways that affect antitumor immune response and immune checkpoint blockade therapy.

    Science.gov (United States)

    Zhao, Xianda; Subramanian, Subbaya

    2018-01-01

    Mechanistic insights of cancer immunology have led to the development of immune checkpoint blockade therapy (ICBT), which has elicited a remarkable clinical response in some cancer patients. Increasing evidence suggests that activation of oncogenic pathways, such as RAS/RAF/MAPK and PI3K signaling, impairs the antitumor immune response. Such oncogenic signaling, in turn, activates many inhibitory factors, including expression of immune checkpoint genes-allowing active infiltration of immunosuppressive cells into the tumor environment and inducing resistance against T-cell killing. In preclinical tumor models, effective targeting of oncogenic pathways has enhanced the response to ICBT. Ongoing clinical trials are now evaluating combination therapy (i.e., the use of oncogenic pathway inhibitors in combination with ICBT). However, more translational and clinical research is needed, to optimize ICBT doses and sequence, minimize toxicity, and assess the impact on study participants of certain genetic backgrounds. Also, it is crucial to understand whether wild-type tumors with elevated oncogenic signaling will respond to combination therapy. Insights gained through current and future translational studies will provide the scientific premise and rationale to target 1 or more oncogenic pathways in ICBT-resistant tumors, thus enabling more human patients to benefit from combination therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Biologic effects of platelet-derived growth factor receptor α blockade in uterine cancer.

    Science.gov (United States)

    Roh, Ju-Won; Huang, Jie; Hu, Wei; Yang, XiaoYun; Jennings, Nicholas B; Sehgal, Vasudha; Sohn, Bo Hwa; Han, Hee Dong; Lee, Sun Joo; Thanapprapasr, Duangmani; Bottsford-Miller, Justin; Zand, Behrouz; Dalton, Heather J; Previs, Rebecca A; Davis, Ashley N; Matsuo, Koji; Lee, Ju-Seog; Ram, Prahlad; Coleman, Robert L; Sood, Anil K

    2014-05-15

    Platelet-derived growth factor receptor α (PDGFRα) expression is frequently observed in many kinds of cancer and is a candidate for therapeutic targeting. This preclinical study evaluated the biologic significance of PDGFRα and PDGFRα blockade (using a fully humanized monoclonal antibody, 3G3) in uterine cancer. Expression of PDGFRα was examined in uterine cancer clinical samples and cell lines, and biologic effects of PDGFRα inhibition were evaluated using in vitro (cell viability, apoptosis, and invasion) and in vivo (orthotopic) models of uterine cancer. PDGFRα was highly expressed and activated in uterine cancer samples and cell lines. Treatment with 3G3 resulted in substantial inhibition of PDGFRα phosphorylation and of downstream signaling molecules AKT and mitogen-activated protein kinase (MAPK). Cell viability and invasive potential of uterine cancer cells were also inhibited by 3G3 treatment. In orthotopic mouse models of uterine cancer, 3G3 monotherapy had significant antitumor effects in the PDGFRα-positive models (Hec-1A, Ishikawa, Spec-2) but not in the PDGFRα-negative model (OVCA432). Greater therapeutic effects were observed for 3G3 in combination with chemotherapy than for either drug alone in the PDGFRα-positive models. The antitumor effects of therapy were related to increased apoptosis and decreased proliferation and angiogenesis. These findings identify PDGFRα as an attractive target for therapeutic development in uterine cancer. ©2014 American Association for Cancer Research.

  15. Gene-targeted embryonic stem cells: real-time PCR assay for estimation of the number of neomycin selection cassettes

    Directory of Open Access Journals (Sweden)

    Mancini Cecilia

    2011-10-01

    Full Text Available Abstract In the preparation of transgenic murine ES cells it is important to verify the construct has a single insertion, because an ectopic neomycin phosphortransferase positive selection cassette (NEO may cause a position effect. During a recent work, where a knockin SCA28 mouse was prepared, we developed two assays based on Real-Time PCR using both SYBR Green and specific minor groove binder (MGB probes to evaluate the copies of NEO using the comparative delta-delta Ct method versus the Rpp30 reference gene. We compared the results from Southern blot, routinely used to quantify NEO copies, with the two Real-Time PCR assays. Twenty-two clones containing the single NEO copy showed values of 0.98 ± 0.24 (mean ± 2 S.D., and were clearly distinguishable from clones with two or more NEO copies. This method was found to be useful, easy, sensitive and fast and could substitute for the widely used, but laborious Southern blot method.

  16. Modular Approach to Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to Children Suffering With Cystic Fibrosis

    Science.gov (United States)

    Krylov, Victor; Shaburova, Olga; Pleteneva, Elena; Bourkaltseva, Maria; Krylov, Sergey; Kaplan, Alla; Chesnokova, Elena; Kulakov, Leonid; Magill, Damian; Polygach, Olga

    2016-01-01

    This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well-studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants. PMID:27790211

  17. Selection of Bacillus species for targeted in situ release of prebiotic galacto-rhamnogalacturonan from potato pulp in piglets.

    Science.gov (United States)

    Jers, Carsten; Strube, Mikael L; Cantor, Mette D; Nielsen, Bea K K; Sørensen, Ole B; Boye, Mette; Meyer, Anne S

    2017-05-01

    We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase but no or limited secretion of galactanase and β-galactosidase. By screening a library of 158 Bacillus species isolated from feces and soil, we demonstrated that especially strains of Bacillus amyloliquefaciens, Bacillus subtilis, and Bacillus mojavensis have the necessary enzyme profile and thus the capability to degrade polygalacturonan. Using an in vitro porcine gastrointestinal model system, we revealed that specifically strains of B. mojavensis were able to efficiently release galacto-rhamnogalacturonan from potato pulp under simulated gastrointestinal conditions. The work thus demonstrated the feasibility of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets.

  18. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation.

    Science.gov (United States)

    Ochiai, Tomoki; Saito, Shigeru; Yamanaka, Futoshi; Shishido, Koki; Tanaka, Yutaka; Yamabe, Tsuyoshi; Shirai, Shinichi; Tada, Norio; Araki, Motoharu; Naganuma, Toru; Watanabe, Yusuke; Yamamoto, Masanori; Hayashida, Kentaro

    2018-04-01

    The persistence of left ventricular (LV) hypertrophy is associated with poor clinical outcomes after transcatheter aortic valve implantation (TAVI) for aortic stenosis. However, the optimal medical therapy after TAVI remains unknown. We investigated the effect of renin-angiotensin system (RAS) blockade therapy on LV hypertrophy and mortality in patients undergoing TAVI. Between October 2013 and April 2016, 1215 patients undergoing TAVI were prospectively enrolled in the Optimized CathEter vAlvular iNtervention (OCEAN)-TAVI registry. This cohort was stratified according to the postoperative usage of RAS blockade therapy with angiotensin-converting enzyme (ACE) inhibitors or angiotensin-receptor blockers (ARBs). Patients with at least two prescriptions dispensed 180 days apart after TAVI and at least a 6-month follow-up constituted the RAS blockade group (n=371), while those not prescribed any ACE inhibitors or ARBs after TAVI were included in the no RAS blockade group (n=189). At 6 months postoperatively, the RAS blockade group had significantly greater LV mass index regression than the no RAS blockade group (-9±24% vs -2±25%, p=0.024). Kaplan-Meier analysis revealed a significantly lower cumulative 2-year mortality in the RAS blockade than that in the no RAS blockade group (7.5% vs 12.5%; log-rank test, p=0.031). After adjusting for confounding factors, RAS blockade therapy was associated with significantly lower all-cause mortality (HR, 0.45; 95% CI 0.22 to 0.91; p=0.025). Postoperative RAS blockade therapy is associated with greater LV mass index regression and reduced all-cause mortality. These data need to be confirmed by a prospective randomised controlled outcome trial. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. CD28 Blockade Ex Vivo Induces Alloantigen-Specific Immune Tolerance but Preserves T-Cell Pathogen Reactivity

    Directory of Open Access Journals (Sweden)

    Barbara Dillinger

    2017-09-01

    Full Text Available Donor T-cells contribute to reconstitution of protective immunity after allogeneic hematopoietic stem cell transplantation (HSCT but must acquire specific tolerance against recipient alloantigens to avoid life-threatening graft-versus-host disease (GvHD. Systemic immunosuppressive drugs may abrogate severe GvHD, but this also impedes memory responses to invading pathogens. Here, we tested whether ex vivo blockade of CD28 co-stimulation can enable selective T-cell tolerization to alloantigens by facilitating CD80/86-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4 signaling. Treatment of human allogeneic dendritic cell/T-cell co-cultures with a human CD28 blocking antibody fragment (α-huCD28 significantly abrogated subsequent allospecific immune responses, seen by decreased T-cell proliferation and of type 1 cytokine (IFN-γ and IL-2 expression. Allo-tolerization persisted after discontinuation of CD28 blockade and secondary alloantigen stimulation, as confirmed by enhanced CTLA-4 and PD-1 immune checkpoint signaling. However, T-cells retained reactivity to pathogens, supported by clonotyping of neo-primed and cross-reactive T-cells specific for Candida albicans or third-party antigens using deep sequencing analysis. In an MHC-mismatched murine model, we tolerized C57BL/6 T-cells by ex vivo exposure to a murine single chain Fv specific for CD28 (α-muCD28. Infusion of these cells, after α-muCD28 washout, into bone marrow-transplanted BALB/c mice caused allo-tolerance and did not induce GvHD-associated hepatic pathology. We conclude that selective CD28 blockade ex vivo can allow the generation of stably allo-tolerized T-cells that in turn do not induce graft-versus-host reactions while maintaining pathogen reactivity. Hence, CD28 co-stimulation blockade of donor T-cells may be a useful therapeutic approach to support the immune system after HSCT.

  20. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin.

    Science.gov (United States)

    Sidhu, Amar Bir Singh; Sun, Qingan; Nkrumah, Louis J; Dunne, Michael W; Sacchettini, James C; Fidock, David A

    2007-01-26

    Azithromycin (AZ), a broad-spectrum antibacterial macrolide that inhibits protein synthesis, also manifests reasonable efficacy as an antimalarial. Its mode of action against malarial parasites, however, has remained undefined. Our in vitro investigations with the human malarial parasite Plasmodium falciparum document a remarkable increase in AZ potency when exposure is prolonged from one to two generations of intraerythrocytic growth, with AZ producing 50% inhibition of parasite growth at concentrations in the mid to low nanomolar range. In our culture-adapted lines, AZ displayed no synergy with chloroquine (CQ), amodiaquine, or artesunate. AZ activity was also unaffected by mutations in the pfcrt (P. falciparum chloroquine resistance transporter) or pfmdr1 (P. falciparum multidrug resistance-1) drug resistance loci, as determined using transgenic lines. We have selected mutant, AZ-resistant 7G8 and Dd2 parasite lines. In the AZ-resistant 7G8 line, the bacterial-like apicoplast large subunit ribosomal RNA harbored a U438C mutation in domain I. Both AZ-resistant lines revealed a G76V mutation in a conserved region of the apicoplast-encoded P. falciparum ribosomal protein L4 (PfRpl4). This protein is predicted to associate with the nuclear genome-encoded P. falciparum ribosomal protein L22 (PfRpl22) and the large subunit rRNA to form the 50 S ribosome polypeptide exit tunnel that can be occupied by AZ. The PfRpl22 sequence remained unchanged. Molecular modeling of mutant PfRpl4 with AZ suggests an altered orientation of the L75 side chain that could preclude AZ binding. These data imply that AZ acts on the apicoplast bacterial-like translation machinery and identify Pfrpl4 as a potential marker of resistance.