WorldWideScience

Sample records for block irf3-mediated innate

  1. RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA: a new antiviral pathway

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    2016-11-01

    Full Text Available Abstract The innate immune response is the first line of host defense to eliminate viral infection. Pattern recognition receptors in the cytosol, such as RIG-I-like receptors (RLR and Nod-like receptors (NLR, and membrane bound Toll like receptors (TLR detect viral infection and initiate transcription of a cohort of antiviral genes, including interferon (IFN and interferon stimulated genes (ISGs, which ultimately block viral replication. Another mechanism to reduce viral spread is through RIPA, the RLR-induced IRF3-mediated pathway of apoptosis, which causes infected cells to undergo premature death. The transcription factor IRF3 can mediate cellular antiviral responses by both inducing antiviral genes and triggering apoptosis through the activation of RIPA. The mechanism of IRF3 activation in RIPA is distinct from that of transcriptional activation; it requires linear polyubiquitination of specific lysine residues of IRF3. Using RIPA-active, but transcriptionally inactive, IRF3 mutants, it was shown that RIPA can prevent viral replication and pathogenesis in mice.

  2. Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1

    Directory of Open Access Journals (Sweden)

    Nur Aziz

    2018-05-01

    Full Text Available Interferon regulatory factor (IRF-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN. Thymoquinone (TQ is a compound derived from black cumin (Nigella sativa L. and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB and activator protein-1 (AP-1. However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1, an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities.

  3. Innate lymphoid cells: the new kids on the block.

    Science.gov (United States)

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  4. IL-4 production by group 2 innate lymphoid cells promotes food allergy by blocking regulatory T-cell function.

    Science.gov (United States)

    Noval Rivas, Magali; Burton, Oliver T; Oettgen, Hans C; Chatila, Talal

    2016-09-01

    Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. We sought to investigate the role of ILC2s in food allergy. Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding.

    Science.gov (United States)

    Petrova, Penka S; Viller, Natasja Nielsen; Wong, Mark; Pang, Xinli; Lin, Gloria H Y; Dodge, Karen; Chai, Vien; Chen, Hui; Lee, Vivian; House, Violetta; Vigo, Noel T; Jin, Debbie; Mutukura, Tapfuma; Charbonneau, Marilyse; Truong, Tran; Viau, Stephane; Johnson, Lisa D; Linderoth, Emma; Sievers, Eric L; Maleki Vareki, Saman; Figueredo, Rene; Pampillo, Macarena; Koropatnick, James; Trudel, Suzanne; Mbong, Nathan; Jin, Liqing; Wang, Jean C Y; Uger, Robert A

    2017-02-15

    Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47-SIRPα axis by binding to human CD47 and enhancing phagocytosis of malignant cells. Blockade of this inhibitory axis using TTI-621 has emerged as a promising therapeutic strategy to promote tumor cell eradication. Experimental Design: The ability of TTI-621 to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy was evaluated in xenograft and syngeneic models and the role of the Fc region in antitumor activity was evaluated using SIRPαFc constructs with different Fc tails. Results: TTI-621 enhanced macrophage-mediated phagocytosis of both hematologic and solid tumor cells, while sparing normal cells. In vivo , TTI-621 effectively controlled the growth of aggressive AML and B lymphoma xenografts and was efficacious in a syngeneic B lymphoma model. The IgG1 Fc tail of TTI-621 plays a critical role in its antitumor activity, presumably by engaging activating Fcγ receptors on macrophages. Finally, TTI-621 exhibits minimal binding to human erythrocytes, thereby differentiating it from CD47 blocking antibodies. Conclusions: These data indicate that TTI-621 is active across a broad range of human tumors. These results further establish CD47 as a critical regulator of innate immune surveillance and form the basis for clinical development of TTI-621 in multiple oncology indications. Clin Cancer Res; 23(4); 1068-79. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity

    Science.gov (United States)

    Schoggins, John W.; MacDuff, Donna A.; Imanaka, Naoko; Gainey, Maria D.; Shrestha, Bimmi; Eitson, Jennifer L.; Mar, Katrina B.; Richardson, R. Blake; Ratushny, Alexander V.; Litvak, Vladimir; Dabelic, Rea; Manicassamy, Balaji; Aitchison, John D.; Aderem, Alan; Elliott, Richard M.; García-Sastre, Adolfo; Racaniello, Vincent; Snijder, Eric J.; Yokoyama, Wayne M.; Diamond, Michael S.; Virgin, Herbert W.; Rice, Charles M.

    2014-01-01

    The type I interferon (IFN) response protects cells from viral infection by inducing hundreds of interferon-stimulated genes (ISGs), some of which encode direct antiviral effectors. Recent screening studies have begun to catalogue ISGs with antiviral activity against several RNA and DNA viruses. However, antiviral ISG specificity across multiple distinct classes of viruses remains largely unexplored. Here we used an ectopic expression assay to screen a library of more than 350 human ISGs for effects on 14 viruses representing 7 families and 11 genera. We show that 47 genes inhibit one or more viruses, and 25 genes enhance virus infectivity. Comparative analysis reveals that the screened ISGs target positive-sense single-stranded RNA viruses more effectively than negative-sense single-stranded RNA viruses. Gene clustering highlights the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS, also known as MB21D1) as a gene whose expression also broadly inhibits several RNA viruses. In vitro, lentiviral delivery of enzymatically active cGAS triggers a STING-dependent, IRF3-mediated antiviral program that functions independently of canonical IFN/STAT1 signalling. In vivo, genetic ablation of murine cGAS reveals its requirement in the antiviral response to two DNA viruses, and an unappreciated contribution to the innate control of an RNA virus. These studies uncover new paradigms for the preferential specificity of IFN-mediated antiviral pathways spanning several virus families.

  7. Reclassifying Anaphylaxis to Neuromuscular Blocking Agents Based on the Presumed Patho-Mechanism: IgE-Mediated, Pharmacological Adverse Reaction or “Innate Hypersensitivity”?

    Directory of Open Access Journals (Sweden)

    David Spoerl

    2017-06-01

    Full Text Available Approximately 60% of perioperative anaphylactic reactions are thought to be immunoglobulin IgE mediated, whereas 40% are thought to be non-IgE mediated hypersensitivity reactions (both considered non-dose-related type B adverse drug reactions. In both cases, symptoms are elicited by mast cell degranulation. Also, pharmacological reactions to drugs (type A, dose-related may sometimes mimic symptoms triggered by mast cell degranulation. In case of hypotension, bronchospasm, or urticarial rash due to mast cell degranulation, identification of the responsible mechanism is complicated. However, determination of the type of the underlying adverse drug reaction is of paramount interest for the decision of whether the culprit drug may be re-administered. Neuromuscular blocking agents (NMBA are among the most frequent cause of perioperative anaphylaxis. Recently, it has been shown that NMBA may activate mast cells independently from IgE antibodies via the human Mas-related G-protein-coupled receptor member X2 (MRGPRX2. In light of this new insight into the patho-mechanism of pseudo-allergic adverse drug reactions, in which as drug-receptor interaction results in anaphylaxis like symptoms, we critically reviewed the literature on NMBA-induced perioperative anaphylaxis. We challenge the dogma that NMBA mainly cause IgE-mediated anaphylaxis via an IgE-mediated mechanism, which is based on studies that consider positive skin test to be specific for IgE-mediated hypersensitivity. Finally, we discuss the question whether MRGPRX2 mediated pseudo-allergic reactions should be re-classified as type A adverse reactions.

  8. Kidney and innate immunity.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2017-03-01

    Innate immune system is an important modulator of the inflammatory response during infection and tissue injury/repair. The kidney as a vital organ with high energy demand plays a key role in regulating the disease related metabolic process. Increasing research interest has focused on the immune pathogenesis of many kidney diseases. However, innate immune cells such as dendritic cells, macrophages, NK cells and a few innate lymphocytes, as well as the complement system are essential for renal immune homeostasis and ensure a coordinated balance between tissue injury and regeneration. The innate immune response provides the first line of host defense initiated by several classes of pattern recognition receptors (PRRs), such as membrane-bound Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), together with inflammasomes responsible for early innate immune response. Although the innate immune system is well studied, the research on the detailed relationship between innate immunity and kidney is still very limited. In this review, we will focus on the innate immune sensing system in renal immune homeostasis, as well as the corresponding pathogenesis of many kidney diseases. The pivotal roles of innate immunity in renal injury and regeneration with special emphasis on kidney disease related immunoregulatory mechanism are also discussed. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Skin innate immune system

    Directory of Open Access Journals (Sweden)

    Berna Aksoy

    2013-06-01

    Full Text Available All multicellular organisms protect themselves from external universe and microorganisms by innate immune sytem that is constitutively present. Skin innate immune system has several different components composed of epithelial barriers, humoral factors and cellular part. In this review information about skin innate immune system and its components are presented to the reader. Innate immunity, which wasn’t adequately interested in previously, is proven to provide a powerfull early protection system, control many infections before the acquired immunity starts and directs acquired immunity to develop optimally

  10. Human innate lymphoid cells

    NARCIS (Netherlands)

    Hazenberg, Mette D.; Spits, Hergen

    2014-01-01

    Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of

  11. MyD88 and STING signaling pathways are required for IRF3-mediated IFN-β induction in response to Brucella abortus infection.

    Directory of Open Access Journals (Sweden)

    Leonardo A de Almeida

    Full Text Available Type I interferons (IFNs are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis.

  12. MyD88 and STING Signaling Pathways Are Required for IRF3-Mediated IFN-β Induction in Response to Brucella abortus Infection

    Science.gov (United States)

    de Almeida, Leonardo A.; Carvalho, Natalia B.; Oliveira, Fernanda S.; Lacerda, Thais L. S.; Vasconcelos, Anilton C.; Nogueira, Lucas; Bafica, Andre; Silva, Aristóbolo M.; Oliveira, Sergio C.

    2011-01-01

    Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis. PMID:21829705

  13. Approaching archetypes: reconsidering innateness.

    Science.gov (United States)

    Goodwyn, Erik

    2010-09-01

    The question of innateness has hounded Jungian psychology since Jung originally postulated the archetype as an a priori structure within the psyche. During his life and after his death he was continually accused of Lamarckianism and criticized for his theory that the archetypes existed as prior structures. More recently, with the advent of genetic research and the human genome project, the idea that psychological structures can be innate has come under even harsher criticism even within Jungian thought. There appears to be a growing consensus that Jung's idea of innate psychological structures was misguided, and that perhaps the archetype-as-such should be abandoned for more developmental and 'emergent' theories of the psyche. The purpose of this essay is to question this conclusion, and introduce some literature on psychological innateness that appears relevant to this discussion. © 2010, The Society of Analytical Psychology.

  14. Human innate lymphoid cells.

    Science.gov (United States)

    Mjösberg, Jenny; Spits, Hergen

    2016-11-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune responses. As such, ILCs make up interesting therapeutic targets for several diseases. In patients with allergy and asthma, group 2 innate lymphoid cells produce high amounts of IL-5 and IL-13, thereby contributing to type 2-mediated inflammation. Group 3 innate lymphoid cells are implicated in intestinal homeostasis and psoriasis pathology through abundant IL-22 production, whereas group 1 innate lymphoid cells are accumulated in chronic inflammation of the gut (inflammatory bowel disease) and lung (chronic obstructive pulmonary disease), where they contribute to IFN-γ-mediated inflammation. Although the ontogeny of mouse ILCs is slowly unraveling, the development of human ILCs is far from understood. In addition, the growing complexity of the human ILC family in terms of previously unrecognized functional heterogeneity and plasticity has generated confusion within the field. Here we provide an updated view on the function and plasticity of human ILCs in tissue homeostasis and disease. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Human innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Spits, Hergen

    2016-01-01

    Innate lymphoid cells (ILCs) are increasingly acknowledged as important mediators of immune homeostasis and pathology. ILCs act as early orchestrators of immunity, responding to epithelium-derived signals by expressing an array of cytokines and cell-surface receptors, which shape subsequent immune

  16. Tick Innate Immunity.

    Czech Academy of Sciences Publication Activity Database

    Kopáček, Petr; Hajdušek, Ondřej; Burešová, Veronika; Daffre, S.

    2010-01-01

    Roč. 708, - (2010), 137-162 ISSN 0065-2598 R&D Projects: GA ČR GAP506/10/2136; GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : tick * pathogen transmission * innate immunity Subject RIV: EC - Immunology Impact factor: 1.379, year: 2010

  17. Nerve Blocks

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Nerve Blocks A nerve block is an injection to ... the limitations of Nerve Block? What is a Nerve Block? A nerve block is an anesthetic and/ ...

  18. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  19. Curating the innate immunity interactome.

    LENUS (Irish Health Repository)

    Lynn, David J

    2010-01-01

    The innate immune response is the first line of defence against invading pathogens and is regulated by complex signalling and transcriptional networks. Systems biology approaches promise to shed new light on the regulation of innate immunity through the analysis and modelling of these networks. A key initial step in this process is the contextual cataloguing of the components of this system and the molecular interactions that comprise these networks. InnateDB (http:\\/\\/www.innatedb.com) is a molecular interaction and pathway database developed to facilitate systems-level analyses of innate immunity.

  20. ID’ing Innate and Innate-like Lymphoid Cells

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C.; Kee, Barbara L.

    2014-01-01

    Summary The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. PMID:25123285

  1. ID'ing innate and innate-like lymphoid cells.

    Science.gov (United States)

    Verykokakis, Mihalis; Zook, Erin C; Kee, Barbara L

    2014-09-01

    The immune system can be divided into innate and adaptive components that differ in their rate and mode of cellular activation, with innate immune cells being the first responders to invading pathogens. Recent advances in the identification and characterization of innate lymphoid cells have revealed reiterative developmental programs that result in cells with effector fates that parallel those of adaptive lymphoid cells and are tailored to effectively eliminate a broad spectrum of pathogenic challenges. However, activation of these cells can also be associated with pathologies such as autoimmune disease. One major distinction between innate and adaptive immune system cells is the constitutive expression of ID proteins in the former and inducible expression in the latter. ID proteins function as antagonists of the E protein transcription factors that play critical roles in lymphoid specification as well as B- and T-lymphocyte development. In this review, we examine the transcriptional mechanisms controlling the development of innate lymphocytes, including natural killer cells and the recently identified innate lymphoid cells (ILC1, ILC2, and ILC3), and innate-like lymphocytes, including natural killer T cells, with an emphasis on the known requirements for the ID proteins. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Why Innate Lymphoid Cells?

    Science.gov (United States)

    Kotas, Maya E; Locksley, Richard M

    2018-06-19

    Innate lymphoid cells (ILCs) are positioned in tissues perinatally, constitutively express receptors responsive to their organ microenvironments, and perform an arsenal of effector functions that overlap those of adaptive CD4 + T cells. Based on knowledge regarding subsets of invariant-like lymphocytes (e.g., natural killer T [NKT] cells, γδ T cells, mucosal-associated invariant T [MAIT] cells, etc.) and fetally derived macrophages, we hypothesize that immune cells established during the perinatal period-including, but not limited to, ILCs-serve intimate roles in tissue that go beyond classical understanding of the immune system in microbial host defense. In this Perspective, we propose mechanisms by which the establishment of ILCs and the tissue lymphoid niche during early development may have consequences much later in life. Although definitive answers require better tools, efforts to achieve deeper understanding of ILC biology across the mammalian lifespan have the potential to lift the veil on the unknown breadth of immune cell functions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Innate lymphoid cells and asthma.

    Science.gov (United States)

    Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T

    2014-04-01

    Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  4. Innate ideas in Islamic philosophy

    Directory of Open Access Journals (Sweden)

    Halilović Tehran

    2017-01-01

    Full Text Available The human soul is the subject of debates in numerous scientific disciplines. Philosophical considerations encompass a special dimension of the human soul that is related to ontological truths. Among different philosophical questions raised regarding the human soul, the issue of innate ideas particularly stands out. Well-known points of disagreement between Plato and Aristotle regarding this question are usually focused on whether a person possesses knowledge and thoughts from their creation, i.e. birth, or they acquire them through time and experience. With the appearance of Cartesian scepticism and following the solutions Descartes offered for the problem of certain knowledge, the issue of innate ideas has remained the focal question for many prominent philosophers. In the Islamic philosophy, the rational explanation of the nature of innate ideas originates from the more comprehensive theory of the human soul and it states that a person, according to their nature, possesses already existent cognitive abilities they were born with. Innate cognitive abilities discussed in the Islamic philosophy do not refer just to theoretical, but to practical knowledge, as well. Therefore, the analysis of innate ideas in the works of Muslim philosophers is connected to a larger number of scientific disciplines than when it comes to most Western philosophers. The difference between the practical and theoretic intellect will serve as a cognitive basis for defining another aspect of innate ideas. The products of a practical intellect, the human will and his actions, are personal and particular and, therefore, can be connected to the everyday life of a person. Owing to the general presence of the practical intellect in all life spheres, the influence of innate ideas, which are determined in a human being, is recognizable in all most detailed moments of their life.

  5. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  6. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  7. Epidural block

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000484.htm Epidural block - pregnancy To use the sharing features on this page, please enable JavaScript. An epidural block is a numbing medicine given by injection (shot) ...

  8. Opinion: Interactions of innate and adaptive lymphocytes

    Science.gov (United States)

    Gasteiger, Georg; Rudensky, Alexander Y.

    2015-01-01

    Innate lymphocytes, including natural killer (NK) cells and the recently discovered innate lymphoid cells (ILCs) have crucial roles during infection, tissue injury and inflammation. Innate signals regulate the activation and homeostasis of innate lymphocytes. Less well understood is the contribution of the adaptive immune system to the orchestration of innate lymphocyte responses. We review our current understanding of the interactions between adaptive and innate lymphocytes, and propose a model in which adaptive T cells function as antigen-specific sensors for the activation of innate lymphocytes to amplify and instruct local immune responses. We highlight the potential role of regulatory and helper T cells in these processes and discuss major questions in the emerging area of crosstalk between adaptive and innate lymphocytes. PMID:25132095

  9. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  10. Role of Type 2 Innate Lymphoid Cells in Allergic Diseases.

    Science.gov (United States)

    Cosmi, Lorenzo; Liotta, Francesco; Maggi, Laura; Annunziato, Francesco

    2017-09-11

    The adaptive immune response orchestrated by type 2 T helper (Th2) lymphocytes, strictly cooperates with the innate response of group 2 innate lymphoid cells (ILC2), in the protection from helminths infection, as well as in the pathogenesis of allergic disease. The aim of this review is to explore the pathogenic role of ILC2 in different type 2-mediated disorders. Recent studies have shown that epithelial cell-derived cytokines and their responding cells, ILC2, play a pathogenic role in bronchial asthma, chronic rhinosinusitis, and atopic dermatitis. The growing evidences of the contribution of ILC2 in the induction and maintenance of allergic inflammation in such disease suggest the possibility to target them in therapy. Biological therapies blocking ILC2 activation or neutralizing their effector cytokines are currently under evaluation to be used in patients with type 2-dominated diseases.

  11. Innate Immune Responses in Leprosy

    Science.gov (United States)

    Pinheiro, Roberta Olmo; Schmitz, Veronica; Silva, Bruno Jorge de Andrade; Dias, André Alves; de Souza, Beatriz Junqueira; de Mattos Barbosa, Mayara Garcia; de Almeida Esquenazi, Danuza; Pessolani, Maria Cristina Vidal; Sarno, Euzenir Nunes

    2018-01-01

    Leprosy is an infectious disease that may present different clinical forms depending on host immune response to Mycobacterium leprae. Several studies have clarified the role of various T cell populations in leprosy; however, recent evidences suggest that local innate immune mechanisms are key determinants in driving the disease to its different clinical manifestations. Leprosy is an ideal model to study the immunoregulatory role of innate immune molecules and its interaction with nervous system, which can affect homeostasis and contribute to the development of inflammatory episodes during the course of the disease. Macrophages, dendritic cells, neutrophils, and keratinocytes are the major cell populations studied and the comprehension of the complex networking created by cytokine release, lipid and iron metabolism, as well as antimicrobial effector pathways might provide data that will help in the development of new strategies for leprosy management. PMID:29643852

  12. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  13. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  14. Innate Immunity and Breast Milk.

    Science.gov (United States)

    Cacho, Nicole Theresa; Lawrence, Robert M

    2017-01-01

    Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant's optimal growth and development. The growing infant's immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant's innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk's effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant's intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs) have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant's gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system and the developing infant.

  15. Innate Immunity and Breast Milk

    Directory of Open Access Journals (Sweden)

    Nicole Theresa Cacho

    2017-05-01

    Full Text Available Human milk is a dynamic source of nutrients and bioactive factors; unique in providing for the human infant’s optimal growth and development. The growing infant’s immune system has a number of developmental immune deficiencies placing the infant at increased risk of infection. This review focuses on how human milk directly contributes to the infant’s innate immunity. Remarkable new findings clarify the multifunctional nature of human milk bioactive components. New research techniques have expanded our understanding of the potential for human milk’s effect on the infant that will never be possible with milk formulas. Human milk microbiome directly shapes the infant’s intestinal microbiome, while the human milk oligosaccharides drive the growth of these microbes within the gut. New techniques such as genomics, metabolomics, proteomics, and glycomics are being used to describe this symbiotic relationship. An expanded role for antimicrobial proteins/peptides within human milk in innate immune protection is described. The unique milieu of enhanced immune protection with diminished inflammation results from a complex interaction of anti-inflammatory and antioxidative factors provided by human milk to the intestine. New data support the concept of mucosal-associated lymphoid tissue and its contribution to the cellular content of human milk. Human milk stem cells (hMSCs have recently been discovered. Their direct role in the infant for repair and regeneration is being investigated. The existence of these hMSCs could prove to be an easily harvested source of multilineage stem cells for the study of cancer and tissue regeneration. As the infant’s gastrointestinal tract and immune system develop, there is a comparable transition in human milk over time to provide fewer immune factors and more calories and nutrients for growth. Each of these new findings opens the door to future studies of human milk and its effect on the innate immune system

  16. Innate lymphoid cells and the skin

    OpenAIRE

    Salimi, Maryam; Ogg, Graham

    2014-01-01

    Innate lymphoid cells are an emerging family of effector cells that contribute to lymphoid organogenesis, metabolism, tissue remodelling and protection against infections. They maintain homeostatic immunity at barrier surfaces such as lung, skin and gut (Nature 464:1367?1371, 2010, Nat Rev Immunol 13: 145?149, 2013). Several human and mouse studies suggest a role for innate lymphoid cells in inflammatory skin conditions including atopic eczema and psoriasis. Here we review the innate lymphoid...

  17. Innate Immunity against Leishmania Infections

    Science.gov (United States)

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2015-01-01

    Leishmaniasis is a major health problem that affects more than 300 million people throughout the world. The morbidity associated with the disease causes serious economic burden in Leishmania endemic regions. Despite the morbidity and economic burden associated with Leishmaniasis, this disease rarely gets noticed and is still categorized under neglected tropical diseases. The lack of research combined with the ability of Leishmania to evade immune recognition has rendered our efforts to design therapeutic treatments or vaccines challenging. Herein, we review the literature on Leishmania from innate immune perspective and discuss potential problems as well as solutions and future directions that could aid in identifying novel therapeutic targets to eliminate this parasite. PMID:26249747

  18. Shaping Innate Lymphoid Cell Diversity

    Directory of Open Access Journals (Sweden)

    Qiutong Huang

    2017-11-01

    Full Text Available Innate lymphoid cells (ILCs are a key cell type that are enriched at mucosal surfaces and within tissues. Our understanding of these cells is growing rapidly. Paradoxically, these cells play a role in maintaining tissue integrity but they also function as key drivers of allergy and inflammation. We present here the most recent understanding of how genomics has provided significant insight into how ILCs are generated and the enormous heterogeneity present within the canonical subsets. This has allowed the generation of a detailed blueprint for ILCs to become highly sensitive and adaptive sensors of environmental changes and therefore exquisitely equipped to protect immune surfaces.

  19. Detection block

    International Nuclear Information System (INIS)

    Bezak, A.

    1987-01-01

    A diagram is given of a detection block used for monitoring burnup of nuclear reactor fuel. A shielding block is an important part of the detection block. It stabilizes the fuel assembly in the fixing hole in front of a collimator where a suitable gamma beam is defined for gamma spectrometry determination of fuel burnup. The detector case and a neutron source case are placed on opposite sides of the fixing hole. For neutron measurement for which the water in the tank is used as a moderator, the neutron detector-fuel assembly configuration is selected such that neutrons from spontaneous fission and neutrons induced with the neutron source can both be measured. The patented design of the detection block permits longitudinal travel and rotation of the fuel assembly to any position, and thus more reliable determination of nuclear fuel burnup. (E.S.). 1 fig

  20. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  1. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  2. Innate lymphoid cells in atherosclerosis.

    Science.gov (United States)

    Engelbertsen, Daniel; Lichtman, Andrew H

    2017-12-05

    The family of innate lymphoid cells (ILCs) consisting of NK cells, lymphoid tissue inducer cells and the 'helper'-like ILC subsets ILC1, ILC2 and ILC3 have been shown to have important roles in protection against microbes, regulation of inflammatory diseases and involved in allergic reactions. ILC1s produce IFN-γ upon stimulation with IL-12 and IL-18, ILC2s produce IL-5 and IL-13 responding to IL-33 and IL-25 while ILC3s produce IL-17 and IL-22 after stimulation with IL-23 or IL-1. Although few studies have directly investigated the role for ILCs in atherosclerosis, several studies have investigated transcription factors and cytokines shared by ILCs and T helper cells. In this review we summarize our current understanding of the role of ILC in atherosclerosis and discuss future directions. Copyright © 2017. Published by Elsevier B.V.

  3. Innate immune system and preeclampsia

    Directory of Open Access Journals (Sweden)

    Alejandra ePerez-Sepulveda

    2014-05-01

    Full Text Available Normal pregnancy is considered as a Th2 type immunological state that favors an immune-tolerance environment in order to prevent fetal rejection. PE has been classically described as a Th1/Th2 imbalance; however, the Th1/Th2 paradigm has proven insufficient to fully explain the functional and molecular changes observed during normal/pathological pregnancies. Recent studies have expanded the Th1/Th2 into a Th1⁄Th2⁄Th17 and regulatory T (Treg cells paradigm and where dendritic cells could have a crucial role. Recently, some evidence has emerged supporting the idea that mesenchymal stem cells might be part of the feto-maternal tolerance environment. This review will discuss the involvement of the innate immune system in the establishment of a physiological environment that favors pregnancy and possible alterations related to the development of preeclampsia.

  4. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses.

    Science.gov (United States)

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J

    2013-08-23

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse-transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus, and simian immunodeficiency virus. These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses.

  5. Addiction, adolescence, and innate immune gene induction

    Directory of Open Access Journals (Sweden)

    Fulton T Crews

    2011-04-01

    Full Text Available Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g. negative affect-anxiety and loss of frontal cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy.

  6. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  7. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  8. Antagonism of Innate Immunity by Paramyxovirus Accessory Proteins

    Directory of Open Access Journals (Sweden)

    Raychel Chambers

    2009-10-01

    Full Text Available Paramyxovirinae, a subfamily of Paramyxoviridae, are negative strand RNA viruses comprised of many important human and animal pathogens, which share a high degree of genetic and structural homology. The accessory proteins expressed from the P/V/C gene are major factors in the pathogenicity of the viruses, because of their ability to abrogate various facets of type I interferon (IFN induction and signaling. Most of the paramyxoviruses exhibit a commonality in their ability to antagonize innate immunity by blocking IFN induction and the Jak/STAT pathway. However, the manner in which the accessory proteins inhibit the pathway differs among viruses. Similarly, there are variations in the capability of the viruses to counteract intracellular detectors (RNA helicases, mda-5 and RIG-I. Furthermore, a functional specificity in the antagonism of the IFN response has been reported, suggesting that specificity in the circumvention of innate immunity restricts viral host range. Available evidence indicates that paramyxoviruses employ specific strategies to antagonize the IFN response of their specific hosts, which is one of the major factors that determine viral pathogenicity and host range.

  9. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  10. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An efficient, block-by-block algorithm for inverting a block tridiagonal, nearly block Toeplitz matrix

    International Nuclear Information System (INIS)

    Reuter, Matthew G; Hill, Judith C

    2012-01-01

    We present an algorithm for computing any block of the inverse of a block tridiagonal, nearly block Toeplitz matrix (defined as a block tridiagonal matrix with a small number of deviations from the purely block Toeplitz structure). By exploiting both the block tridiagonal and the nearly block Toeplitz structures, this method scales independently of the total number of blocks in the matrix and linearly with the number of deviations. Numerical studies demonstrate this scaling and the advantages of our method over alternatives.

  12. Analysis of Block OMP using Block RIP

    OpenAIRE

    Wang, Jun; Li, Gang; Zhang, Hao; Wang, Xiqin

    2011-01-01

    Orthogonal matching pursuit (OMP) is a canonical greedy algorithm for sparse signal reconstruction. When the signal of interest is block sparse, i.e., it has nonzero coefficients occurring in clusters, the block version of OMP algorithm (i.e., Block OMP) outperforms the conventional OMP. In this paper, we demonstrate that a new notion of block restricted isometry property (Block RIP), which is less stringent than standard restricted isometry property (RIP), can be used for a very straightforw...

  13. Self-consuming innate immunity in Arabidopsis

    DEFF Research Database (Denmark)

    Hofius, Daniel; Mundy, John; Petersen, Morten

    2009-01-01

    Programmed cell death (PCD) associated with the pathogen-induced hypersensitive response (HR) is a hallmark of plant innate immunity. HR PCD is triggered upon recognition of pathogen effector molecules by host immune receptors either directly or indirectly via effector modulation of host targets...

  14. The biology of human innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, J.H.J.

    2016-01-01

    In this thesis I performed studies to investigate the contribution of human innate lymphoid cells (ILCs) in maintaining the mucosal homeostasis, initiating and/or propagating inflammatory responses, but also - when not properly regulated - how these cells contribute to immunopathology. First I

  15. Innate lymphoid cells in inflammation and immunity

    NARCIS (Netherlands)

    McKenzie, Andrew N. J.; Spits, Hergen; Eberl, Gerard

    2014-01-01

    Innate lymphoid cells (ILCs) were first described as playing important roles in the development of lymphoid tissues and more recently in the initiation of inflammation at barrier surfaces in response to infection or tissue damage. It has now become apparent that ILCs play more complex roles

  16. Innate lymphoid cells in inflammatory bowel diseases

    NARCIS (Netherlands)

    Peters, C. P.; Mjösberg, J. M.; Bernink, J. H.; Spits, H.

    2016-01-01

    It is generally believed that inflammatory bowel diseases (IBD) are caused by an aberrant immune response to environmental triggers in genetically susceptible individuals. The exact contribution of the adaptive and innate immune system has not been elucidated. However, recent advances in treatments

  17. The biology of innate lymphoid cells

    NARCIS (Netherlands)

    Artis, David; Spits, Hergen

    2015-01-01

    The innate immune system is composed of a diverse array of evolutionarily ancient haematopoietic cell types, including dendritic cells, monocytes, macrophages and granulocytes. These cell populations collaborate with each other, with the adaptive immune system and with non-haematopoietic cells to

  18. Transcriptional control of innate lymphoid cells

    NARCIS (Netherlands)

    Mjösberg, Jenny; Bernink, Jochem; Peters, Charlotte; Spits, Hergen

    2012-01-01

    Cells that belong to the family of innate lymphoid cells (ILCs) not only form a first line of defense against invading microbes, but also play essential roles in tissue remodeling and immune pathology. Ror?t+ ILCs, producing the cytokines IL-22 and IL-17, include lymphoid tissue inducer (LTi) cells

  19. Biliary Innate Immunity: Function and Modulation

    Directory of Open Access Journals (Sweden)

    Kenichi Harada

    2010-01-01

    Full Text Available Biliary innate immunity is involved in the pathogenesis of cholangiopathies in patients with primary biliary cirrhosis (PBC and biliary atresia. Biliary epithelial cells possess an innate immune system consisting of the Toll-like receptor (TLR family and recognize pathogen-associated molecular patterns (PAMPs. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the biliary tree, but tolerance to double-stranded RNA (dsRNA is not found. In PBC, CD4-positive Th17 cells characterized by the secretion of IL-17 are implicated in the chronic inflammation of bile ducts and the presence of Th17 cells around bile ducts is causally associated with the biliary innate immune responses to PAMPs. Moreover, a negative regulator of intracellular TLR signaling, peroxisome proliferator-activated receptor-γ (PPARγ, is involved in the pathogenesis of cholangitis. Immunosuppression using PPARγ ligands may help to attenuate the bile duct damage in PBC patients. In biliary atresia characterized by a progressive, inflammatory, and sclerosing cholangiopathy, dsRNA viruses are speculated to be an etiological agent and to directly induce enhanced biliary apoptosis via the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Moreover, the epithelial-mesenchymal transition (EMT of biliary epithelial cells is also evoked by the biliary innate immune response to dsRNA.

  20. Is there an innate need for children

    NARCIS (Netherlands)

    R. Veenhoven (Ruut)

    1974-01-01

    textabstractABSTRACT It is commonly assumed that we have an innate need for children, in particular, that women have a 'mother instinct'. This belief lives in the general public as well as among scientists. In this paper that theory is criticized on two grounds: Firstly, it is argued that the theory

  1. Host Genetics: Fine-Tuning Innate Signaling

    OpenAIRE

    Fellay, Jacques; Goldstein, David B.

    2007-01-01

    A polymorphism modulating innate immunity signal transduction has recently been shown to influence human susceptibility to many different infections, providing one more indication of the potential of host genetics to reveal physiological pathways and mechanisms that influence resistance to infectious diseases.

  2. Innate immune signalling of the zebrafish embryo

    NARCIS (Netherlands)

    Stockhammer, Oliver W.

    2010-01-01

    In the last decade the study of the innate immune system has gained renewed scientific momentum as a result of the discovery of essential receptor families, such as the Toll-like receptor (TLR) family, that are required for pathogen recognition. These receptors detect specific molecular structures

  3. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  4. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  5. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  6. Innate lymphoid cells and the MHC.

    Science.gov (United States)

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Isolation of Human Innate Lymphoid Cells.

    Science.gov (United States)

    Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M

    2018-06-29

    Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  8. Salt, chloride, bleach, and innate host defense

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M.

    2015-01-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. PMID:26048979

  9. Salt, chloride, bleach, and innate host defense.

    Science.gov (United States)

    Wang, Guoshun; Nauseef, William M

    2015-08-01

    Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense. © Society for Leukocyte Biology.

  10. Neuromodulation of Innate Behaviors in Drosophila.

    Science.gov (United States)

    Kim, Susy M; Su, Chih-Ying; Wang, Jing W

    2017-07-25

    Animals are born with a rich repertoire of robust behaviors that are critical for their survival. However, innate behaviors are also highly adaptable to an animal's internal state and external environment. Neuromodulators, including biogenic amines, neuropeptides, and hormones, are released to signal changes in animals' circumstances and serve to reconfigure neural circuits. This circuit flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands, and physiological states. Aided by powerful genetic tools, researchers have made remarkable progress in Drosophila melanogaster to address how a myriad of contextual information influences the input-output relationship of hardwired circuits that support a complex behavioral repertoire. Here we highlight recent advances in understanding neuromodulation of Drosophila innate behaviors, with a special focus on feeding, courtship, aggression, and postmating behaviors.

  11. Innate and intrinsic antiviral immunity in skin.

    Science.gov (United States)

    Kawamura, Tatsuyoshi; Ogawa, Youichi; Aoki, Rui; Shimada, Shinji

    2014-09-01

    As the body's most exposed interface with the environment, the skin is constantly challenged by potentially pathogenic microbes, including viruses. To sense the invading viruses, various types of cells resident in the skin express many different pattern-recognition receptors (PRRs) such as C-type lectin receptors (CLRs), Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) and cytosolic DNA sensors, that can detect the pathogen-associated molecular patterns (PAMPs) of the viruses. The detection of viral PAMPs initiates two major innate immune signaling cascades: the first involves the activation of the downstream transcription factors, such as interferon regulatory factors (IRFs), nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1), which cooperate to induce the transcription of type I interferons and pro-inflammatory cytokines. The second signaling pathway involves the caspase-1-mediated processing of IL-1β and IL-18 through the formation of an inflammasome complex. Cutaneous innate immunity including the production of the innate cytokines constitutes the first line of host defence that limits the virus dissemination from the skin, and also plays an important role in the activation of adaptive immune response, which represents the second line of defence. More recently, the third immunity "intrinsic immunity" has emerged, that provides an immediate and direct antiviral defense mediated by host intrinsic restriction factors. This review focuses on the recent advances regarding the antiviral immune systems, highlighting the innate and intrinsic immunity against the viral infections in the skin, and describes how viral components are recognized by cutaneous immune systems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Innate Immunity Dysregulation in Myelodysplastic Syndromes

    Science.gov (United States)

    2013-10-01

    by the Regional Ministry of Education of Castilla-la Mancha, Spain, supported by the European Social Fund (ESF). We are thankful for the efforts...consistent with previous reports that aber rant activation of innate immune signals in MDS, including overcxpression of several TLRs (36) and loss...281: 1652- 1659. 14. Loiarro M, Set te C , Gallo G. Ciacc.i A, Fa nto N, et al. (2005) Peptide- media ted interference of T JR domain dimeri7.ation

  13. Innate lymphoid cells and their stromal microenvironments.

    Science.gov (United States)

    Kellermayer, Zoltán; Vojkovics, Dóra; Balogh, Péter

    2017-09-01

    In addition to the interaction between antigen presenting cells, T and B lymphocytes, recent studies have revealed important roles for a diverse set of auxiliary cells that profoundly influence the induction and regulation of immune responses against pathogens. Of these the stromal cells composed of various non-hematopoietic constituents are crucial for the creation and maintenance of specialized semi-static three-dimensional lymphoid tissue microenvironment, whereas the more recently described innate lymphoid cells are generated by the diversification of committed lymphoid precursor cells independently from clonally rearranged antigen receptor genes. Recent findings have revealed important contributions by innate lymphoid cells in inflammation and protection against pathogens in a tissue-specific manner. Importantly, lymphoid stromal cells also influence the onset of immune responses in tissue-specific fashion, raising the possibility of tissue-specific stromal - innate lymphoid cell collaboration. In this review we summarize the main features and interactions between these two cells types, with particular emphasis on ILC type 3 cells and their microenvironmental partners. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. Epigenomic Views of Innate Lymphoid Cells.

    Science.gov (United States)

    Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O'Shea, John J

    2017-01-01

    The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.

  15. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  16. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  17. Homogeneous bilateral block shifts

    Indian Academy of Sciences (India)

    Douglas class were classified in [3]; they are unilateral block shifts of arbitrary block size (i.e. dim H(n) can be anything). However, no examples of irreducible homogeneous bilateral block shifts of block size larger than 1 were known until now.

  18. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    Science.gov (United States)

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  19. Testing block subdivision algorithms on block designs

    Science.gov (United States)

    Wiseman, Natalie; Patterson, Zachary

    2016-01-01

    Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.

  20. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  1. Poly(ferrocenylsilane)-block-Polylactide Block Copolymers

    NARCIS (Netherlands)

    Roerdink, M.; van Zanten, Thomas S.; Hempenius, Mark A.; Zhong, Zhiyuan; Feijen, Jan; Vancso, Gyula J.

    2007-01-01

    A PFS/PLA block copolymer was studied to probe the effect of strong surface interactions on pattern formation in PFS block copolymer thin films. Successful synthesis of PFS-b-PLA was demonstrated. Thin films of these polymers show phase separation to form PFS microdomains in a PLA matrix, and

  2. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.

    Science.gov (United States)

    Matlung, Hanke L; Szilagyi, Katka; Barclay, Neil A; van den Berg, Timo K

    2017-03-01

    Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Effects of kefir fractions on innate immunity.

    Science.gov (United States)

    Vinderola, Gabriel; Perdigon, Gabriela; Duarte, Jairo; Thangavel, Deepa; Farnworth, Edward; Matar, Chantal

    2006-01-01

    Innate immunity that protects against pathogens in the tissues and circulation is the first line of defense in the immune reaction, where macrophages have a critical role in directing the fate of the infection. We recently demonstrated that kefir modulates the immune response in mice, increasing the number of IgA+ cells in the intestinal and bronchial mucosa and the phagocytic activity of peritoneal and pulmonary macrophages. The aim of this study was to further characterize the immunomodulating capacity of the two fractions of kefir (F1: solids including bacteria and F2: liquid supernatant), by studying the cytokines produced by cells from the innate immune system: peritoneal macrophages and the adherent cells from Peyer's patches. BALB/c mice were fed either kefir solid fraction (F1) or kefir supernatant (F2) for 2, 5 or 7 consecutive days. The number of cytokine (IL-1alpha, IFNgamma, TNFalpha, IL-6 and IL-10) producing cells was determined on peritoneal macrophages and adherent cells from Peyer's patches. Both kefir fractions (F1 and F2) induced similar cytokine profiles on peritoneal macrophages (only TNFalpha and IL-6 were up-regulated). All cytokines studied on adherent cells from Peyer's patches were enhanced after F1 and F2 feeding, except for IFNgamma after F2 administration. Moreover, the percentage of IL-10+cells induced by fraction F2 on adherent cells from Peyer's patches was significantly higher than the one induced by fraction F1. Different components of kefir have an in vivo role as oral biotherapeutic substances capable of stimulating immune cells of the innate immune system, to down-regulate the Th2 immune phenotype or to promote cell-mediated immune responses against tumours and also against intracellular pathogenic infections.

  4. Innate Lymphoid Cells in Tumor Immunity.

    Science.gov (United States)

    van Beek, Jasper J P; Martens, Anne W J; Bakdash, Ghaith; de Vries, I Jolanda M

    2016-02-25

    Innate lymphoid cells (ILCs) are a group of immune cells of the lymphoid lineage that do not possess antigen specificity. The group includes natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and the recently identified ILC1s, ILC2s and ILC3s. Although the role of NK cells in the context of cancer has been well established, the involvement of other ILC subsets in cancer progression and resistance is just emerging. Here, we review the literature on the role of the different ILC subsets in tumor immunity and discuss its implications for cancer treatment and monitoring.

  5. The Development of Adult Innate Lymphoid Cells

    Science.gov (United States)

    Yang, Qi; Bhandoola, Avinash

    2016-01-01

    Innate lymphoid cells (ILC) are a specialized family of effector lymphocytes that transcriptionally and functionally mirror effector subsets of T cells, but differ from T cells in that they lack clonally-distributed adaptive antigen receptors. Our understanding of this family of lymphocytes is still in its infancy. In this review, we summarize current understanding and discuss recent insights into the cellular and molecular events that occur during early ILC development in adult mice. We discuss how these events overlap and diverge with the early development of adaptive T cells, and how they may influence the molecular and functional properties of mature ILC. PMID:26871595

  6. Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells

    International Nuclear Information System (INIS)

    Feagins, Alicia R.; Basler, Christopher F.

    2015-01-01

    Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, and PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.

  7. Lloviu virus VP24 and VP35 proteins function as innate immune antagonists in human and bat cells

    Energy Technology Data Exchange (ETDEWEB)

    Feagins, Alicia R.; Basler, Christopher F., E-mail: chris.basler@mssm.edu

    2015-11-15

    Lloviu virus (LLOV) is a new member of the filovirus family that also includes Ebola virus (EBOV) and Marburg virus (MARV). LLOV has not been cultured; however, its genomic RNA sequence indicates the coding capacity to produce homologs of the EBOV and MARV VP24, VP35, and VP40 proteins. EBOV and MARV VP35 proteins inhibit interferon (IFN)-alpha/beta production and EBOV VP35 blocks activation of the antiviral kinase PKR. The EBOV VP24 and MARV VP40 proteins inhibit IFN signaling, albeit by different mechanisms. Here we demonstrate that LLOV VP35 suppresses Sendai virus induced IFN regulatory factor 3 (IRF3) phosphorylation, IFN-α/β production, and PKR phosphorylation. Additionally, LLOV VP24 blocks tyrosine phosphorylated STAT1 binding to karyopherin alpha 5 (KPNA5), STAT1 nuclear accumulation, and IFN-induced gene expression. LLOV VP40 lacks detectable IFN antagonist function. These activities parallel EBOV IFN inhibitory functions. EBOV and LLOV VP35 and VP24 proteins also inhibit IFN responses in bat cells. These data suggest that LLOV infection will block innate immune responses in a manner similar to EBOV. - Highlights: • Lloviu virus (LLOV) is a new member of the filovirus family. • LLOV VP35 blocks IRF3 phosphorylation, IFN-α/β production and PKR phosphorylation. • LLOV VP24 inhibits IFN responses by targeting phospho-STAT1 KPNA interaction. • Infection by LLOV may block innate immune responses in a manner similar to EBOV.

  8. Tweaking Innate Immunity: The Promise of Innate Immunologicals as Anti-Infectives

    Directory of Open Access Journals (Sweden)

    Kenneth L Rosenthal

    2006-01-01

    Full Text Available New and exciting insights into the importance of the innate immune system are revolutionizing our understanding of immune defense against infections, pathogenesis, and the treatment and prevention of infectious diseases. The innate immune system uses multiple families of germline-encoded pattern recognition receptors (PRRs to detect infection and trigger a variety of antimicrobial defense mechanisms. PRRs are evolutionarily highly conserved and serve to detect infection by recognizing pathogen-associated molecular patterns that are unique to microorganisms and essential for their survival. Toll-like receptors (TLRs are transmembrane signalling receptors that activate gene expression programs that result in the production of proinflammatory cytokines and chemokines, type I interferons and antimicrobial factors. Furthermore, TLR activation facilitates and guides activation of adaptive immune responses through the activation of dendritic cells. TLRs are localized on the cell surface and in endosomal/lysosomal compartments, where they detect bacterial and viral infections. In contrast, nucleotide-binding oligomerization domain proteins and RNA helicases are located in the cell cytoplasm, where they serve as intracellular PRRs to detect cytoplasmic infections, particularly viruses. Due to their ability to enhance innate immune responses, novel strategies to use ligands, synthetic agonists or antagonists of PRRs (also known as 'innate immunologicals' can be used as stand-alone agents to provide immediate protection or treatment against bacterial, viral or parasitic infections. Furthermore, the newly appreciated importance of innate immunity in initiating and shaping adaptive immune responses is contributing to our understanding of vaccine adjuvants and promises to lead to improved next-generation vaccines.

  9. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  10. Necroptotic signaling in adaptive and innate immunity.

    Science.gov (United States)

    Lu, Jennifer V; Chen, Helen C; Walsh, Craig M

    2014-11-01

    The vertebrate immune system is highly dependent on cell death for efficient responsiveness to microbial pathogens and oncogenically transformed cells. Cell death pathways are vital to the function of many immune cell types during innate, humoral and cellular immune responses. In addition, cell death regulation is imperative for proper adaptive immune self-tolerance and homeostasis. While apoptosis has been found to be involved in several of these roles in immunity, recent data demonstrate that alternative cell death pathways are required. Here, we describe the involvement of a programmed form of cellular necrosis called "necroptosis" in immunity. We consider the signaling pathways that promote necroptosis downstream of death receptors, type I transmembrane proteins of the tumor necrosis factor (TNF) receptor family. The involvement of necroptotic signaling through a "RIPoptosome" assembled in response to innate immune stimuli or genotoxic stress is described. We also characterize the induction of necroptosis following antigenic stimulation in T cells lacking caspase-8 or FADD function. While necroptotic signaling remains poorly understood, it is clear that this pathway is an essential component to effective vertebrate immunity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fish innate immunity against intestinal helminths.

    Science.gov (United States)

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A Role for PML in Innate Immunity

    Science.gov (United States)

    Lunardi, Andrea; Gaboli, Mirella; Giorgio, Marco; Rivi, Roberta; Bygrave, Anne; Antoniou, Michael; Drabek, Dubravka; Dzierzak, Elaine; Fagioli, Marta; Salmena, Leonardo; Botto, Marina; Cordon-Cardo, Carlos; Luzzatto, Lucio; Pelicci, Pier Giuseppe; Grosveld, Frank; Pandolfi, Pier Paolo

    2011-01-01

    The promyelocytic leukemia gene (PML) of acute promyelocytic leukemia is an established tumor suppressor gene with critical functions in growth suppression, induction of apoptosis, and cellular senescence. Interestingly, although less studied, PML seems to play a key role also in immune response to viral infection. Herein, we report that Pml −/− mice spontaneously develop an atypical invasive and lethal granulomatous lesion known as botryomycosis (BTM). In Pml −/− mice, BTM is the result of impaired function of macrophages, whereby they fail to become activated and are thus unable to clear pathogenic microorganisms. Accordingly, Pml −/− mice are resistant to lipopolysaccharide (LPS)–induced septic shock as a result of an ineffective production of cytokines and chemokines, suggesting a role for PML in the innate immune Toll-like receptor (TLR)/NF-κB prosurvival pathway. These results not only shed light on a new fundamental function of PML in innate immunity, but they also point to a proto-oncogenic role for PML in certain cellular and pathological contexts. PMID:21779477

  13. Innateness and the instinct to learn

    Directory of Open Access Journals (Sweden)

    Peter Marler

    2004-06-01

    Full Text Available Concepts of innateness were at the heart of Darwin's approach to behavior and central to the ethological theorizing of Lorenz and, at least to start with, of Tinbergen. Then Tinbergen did an about face, and for some twenty years the term 'innate' became highly suspect. He attributed the change to Lehrman's famous 1953 critique in which he asserted that classifying behaviors as innate tells us nothing about how they develop. Although Lehrman made many valid points, I will argue that this exchange also led to profound misunderstandings that were ultimately damaging to progress in research on the development of behavior. The concept of 'instincts to learn', receiving renewed support from current theorizing among geneticists about phenotypic plasticity, provides a potential resolution of some of the controversies that Lehrman created. Bioacoustical studies, particularly on song learning in birds, serve both to confirm some of Lehrman's anxieties about the term 'innate', but also to make a case that he threw out the genetic baby with the bathwater. The breathtaking progress in molecular and developmental genetics has prepared the way for a fuller understanding of the complexities underlying even the simplest notions of innate behavior, necessary before we can begin to comprehend the ontogeny of behavior.O conceito de inato estava no cerne da abordagem de Darwin ao comportamento assim como no das teorias etológicas de Lorenz e, pelo menos inicialmente, de Tinbergen. Depois, Tinbergen deu uma reviravolta e, durante mais ou menos vinte anos, o termo ''inato'' tornou-se altamente suspeito. Tinbergen atribuiu sua mudança à famosa crítica de Lehrman, em 1953, segundo a qual classificar comportamentos como inatos não traz informação alguma a respeito de seu desenvolvimento. Embora muitas das críticas de Lehrman sejam relevantes, tentarei mostrar que a mudança de enfoque também gerou sérios equívocos que acabaram prejudicando o progresso da

  14. Block That Pain!

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Block That Pain! Past Issues / Fall 2007 Table of ... contrast, most pain relievers used for surgical procedures block activity in all types of neurons. This can ...

  15. Bundle Branch Block

    Science.gov (United States)

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  16. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  17. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  18. Innate immunological function of TH2 cells in vivo

    Science.gov (United States)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  19. Innatism, Concept Formation, Concept Mastery and Formal Education

    Science.gov (United States)

    Winch, Christopher

    2015-01-01

    This article will consider the claim that the possession of concepts is innate rather than learned. Innatism about concept learning is explained through consideration of the work of Fodor and Chomsky. First, an account of concept formation is developed. Second the argument against the claim that concepts are learned through the construction of a…

  20. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  1. Generalized Block Failure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    2015-01-01

    Block tearing is considered in several codes as a pure block tension or a pure block shear failure mechanism. However in many situations the load acts eccentrically and involves the transfer of a substantial moment in combination with the shear force and perhaps a normal force. A literature study...... shows that no readily available tests with a well-defined substantial eccentricity have been performed. This paper presents theoretical and experimental work leading towards generalized block failure capacity methods. Simple combination of normal force, shear force and moment stress distributions along...... yield lines around the block leads to simple interaction formulas similar to other interaction formulas in the codes....

  2. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  3. Are innate immune signaling pathways in plants and animals conserved?

    Science.gov (United States)

    Ausubel, Frederick M

    2005-10-01

    Although adaptive immunity is unique to vertebrates, the innate immune response seems to have ancient origins. Common features of innate immunity in vertebrates, invertebrate animals and plants include defined receptors for microbe-associated molecules, conserved mitogen-associated protein kinase signaling cascades and the production of antimicrobial peptides. It is commonly reported that these similarities in innate immunity represent a process of divergent evolution from an ancient unicellular eukaryote that pre-dated the divergence of the plant and animal kingdoms. However, at present, data suggest that the seemingly analogous regulatory modules used in plant and animal innate immunity are a consequence of convergent evolution and reflect inherent constraints on how an innate immune system can be constructed.

  4. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  5. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuyo [Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD (United States); Adhikari, Rewati [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  6. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-01-01

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection

  7. Innate immune defences in the human endometrium

    Directory of Open Access Journals (Sweden)

    Kelly Rodney W

    2003-11-01

    Full Text Available Abstract The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.

  8. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  9. 31 CFR 595.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY TERRORISM SANCTIONS REGULATIONS General Definitions § 595.301 Blocked account; blocked property. The terms blocked account and blocked...

  10. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    Science.gov (United States)

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  11. Block Cipher Analysis

    DEFF Research Database (Denmark)

    Miolane, Charlotte Vikkelsø

    ensurethat no attack violatesthe securitybounds specifiedbygeneric attack namely exhaustivekey search and table lookup attacks. This thesis contains a general introduction to cryptography with focus on block ciphers and important block cipher designs, in particular the Advanced Encryption Standard(AES...... on small scale variants of AES. In the final part of the thesis we present a new block cipher proposal Present and examine its security against algebraic and differential cryptanalysis in particular....

  12. Innate Lymphoid Cells in Intestinal Inflammation

    Science.gov (United States)

    Geremia, Alessandra; Arancibia-Cárcamo, Carolina V.

    2017-01-01

    Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD) and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC) in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an increased risk of

  13. Innate Lymphoid Cells in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Alessandra Geremia

    2017-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic inflammatory disorder of the intestine that encompasses Crohn’s disease (CD and ulcerative colitis. The cause of IBD is unknown, but the evidence suggests that an aberrant immune response toward the commensal bacterial flora is responsible for disease in genetically susceptible individuals. Results from animal models of colitis and human studies indicate a role for innate lymphoid cells (ILC in the pathogenesis of chronic intestinal inflammation in IBD. ILC are a population of lymphocytes that are enriched at mucosal sites, where they play a protective role against pathogens including extracellular bacteria, helminthes, and viruses. ILC lack an antigen-specific receptor, but can respond to environmental stress signals contributing to the rapid orchestration of an early immune response. Several subsets of ILC reflecting functional characteristics of T helper subsets have been described. ILC1 express the transcription factor T-bet and are characterized by secretion of IFNγ, ILC2 are GATA3+ and secrete IL5 and IL13 and ILC3 depend on expression of RORγt and secrete IL17 and IL22. However, ILC retain a degree of plasticity depending on exposure to cytokines and environmental factors. IL23 responsive ILC have been implicated in the pathogenesis of colitis in several innate murine models through the production of IL17, IFNγ, and GM-CSF. We have previously identified IL23 responsive ILC in the human intestine and found that they accumulate in the inflamed colon and small bowel of patients with CD. Other studies have confirmed accumulation of ILC in CD with increased frequencies of IFNγ-secreting ILC1 in both the intestinal lamina propria and the epithelium. Moreover, IL23 driven IL22 producing ILC have been shown to drive bacteria-induced colitis-associated cancer in mice. Interestingly, our data show increased ILC accumulation in patients with IBD and primary sclerosing cholangitis, who carry an

  14. Related Drupal Nodes Block

    NARCIS (Netherlands)

    Van der Vegt, Wim

    2010-01-01

    Related Drupal Nodes Block This module exposes a block that uses Latent Semantic Analysis (Lsa) internally to suggest three nodes that are relevant to the node a user is viewing. This module performs three tasks. 1) It periodically indexes a Drupal site and generates a Lsa Term Document Matrix.

  15. Designers Block 2002

    DEFF Research Database (Denmark)

    Dickson, Thomas

    2002-01-01

    Artiklen indleder med: ved siden aaf Londons etablerede designmesse '100% Design', er der vokset et undergrundsmiljø af designudstillinger op. Det dominerende og mest kendte initiativ er Designers Block, der i år udstillede to steder i byen. Designers Block er et mere uformelt udstillingsforum...

  16. Innate lymphoid cells, precursors and plasticity.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  17. Innate lymphoid cells in secondary lymphoid organs.

    Science.gov (United States)

    Bar-Ephraïm, Yotam E; Mebius, Reina E

    2016-05-01

    The family of innate lymphoid cells (ILCs) has attracted attention in recent years as its members are important regulators of immunity, while they can also cause pathology. In both mouse and man, ILCs were initially discovered in developing lymph nodes as lymphoid tissue inducer (LTi) cells. These cells form the prototypic members of the ILC family and play a central role in the formation of secondary lymphoid organs (SLOs). In the absence of LTi cells, lymph nodes (LN) and Peyer's Patches (PP) fail to form in mice, although the splenic white pulp can develop normally. Besides LTi cells, the ILC family encompasses helper-like ILCs with functional distinctions as seen by T-helper cells, as well as cytotoxic natural killer (NK) cells. ILCs are still present in adult SLOs where they have been shown to play a role in lymphoid tissue regeneration. Furthermore, ILCs were implicated to interact with adaptive lymphocytes and influence the adaptive immune response. Here, we review the recent literature on the role of ILCs in secondary lymphoid tissue from the formation of SLOs to mature SLOs in adults, during homeostasis and pathology. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. TOX sets the stage for innate lymphoid cells

    NARCIS (Netherlands)

    Spits, Hergen

    2015-01-01

    Like T cells and B cells, innate lymphoid cells (ILCs) develop from common lymphoid progenitors, but how commitment to the ILC lineage is regulated has remained unclear. The transcriptional regulator TOX is important in this process

  19. Effects of engineered nanoparticles on the innate immune system.

    Science.gov (United States)

    Liu, Yuanchang; Hardie, Joseph; Zhang, Xianzhi; Rotello, Vincent M

    2017-12-01

    Engineered nanoparticles (NPs) have broad applications in industry and nanomedicine. When NPs enter the body, interactions with the immune system are unavoidable. The innate immune system, a non-specific first line of defense against potential threats to the host, immediately interacts with introduced NPs and generates complicated immune responses. Depending on their physicochemical properties, NPs can interact with cells and proteins to stimulate or suppress the innate immune response, and similarly activate or avoid the complement system. NPs size, shape, hydrophobicity and surface modification are the main factors that influence the interactions between NPs and the innate immune system. In this review, we will focus on recent reports about the relationship between the physicochemical properties of NPs and their innate immune response, and their applications in immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dissecting the hypothalamic pathways that underlie innate behaviors.

    Science.gov (United States)

    Zha, Xi; Xu, Xiaohong

    2015-12-01

    Many complex behaviors that do not require learning are displayed and are termed innate. Although traditionally the subject matter of ethology, innate behaviors offer a unique entry point for neuroscientists to dissect the physiological mechanisms governing complex behaviors. Since the last century, converging evidence has implicated the hypothalamus as the central brain area that controls innate behaviors. Recent studies using cutting-edge tools have revealed that genetically-defined populations of neurons residing in distinct hypothalamic nuclei and their associated neural pathways regulate the initiation and maintenance of diverse behaviors including feeding, sleep, aggression, and parental care. Here, we review the newly-defined hypothalamic pathways that regulate each innate behavior. In addition, emerging general principles of the neural control of complex behaviors are discussed.

  1. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  2. Innate immune functions of microglia isolated from human glioma patients

    Directory of Open Access Journals (Sweden)

    Grimm Elizabeth

    2006-03-01

    Full Text Available Abstract Background Innate immunity is considered the first line of host defense and microglia presumably play a critical role in mediating potent innate immune responses to traumatic and infectious challenges in the human brain. Fundamental impairments of the adaptive immune system in glioma patients have been investigated; however, it is unknown whether microglia are capable of innate immunity and subsequent adaptive anti-tumor immune responses within the immunosuppressive tumor micro-environment of human glioma patients. We therefore undertook a novel characterization of the innate immune phenotype and function of freshly isolated human glioma-infiltrating microglia (GIM. Methods GIM were isolated by sequential Percoll purification from patient tumors immediately after surgical resection. Flow cytometry, phagocytosis and tumor cytotoxicity assays were used to analyze the phenotype and function of these cells. Results GIM expressed significant levels of Toll-like receptors (TLRs, however they do not secrete any of the cytokines (IL-1β, IL-6, TNF-α critical in developing effective innate immune responses. Similar to innate macrophage functions, GIM can mediate phagocytosis and non-MHC restricted cytotoxicity. However, they were statistically less able to mediate tumor cytotoxicity compared to microglia isolated from normal brain. In addition, the expression of Fas ligand (FasL was low to absent, indicating that apoptosis of the incoming lymphocyte population may not be a predominant mode of immunosuppression by microglia. Conclusion We show for the first time that despite the immunosuppressive environment of human gliomas, GIM are capable of innate immune responses such as phagocytosis, cytotoxicity and TLR expression but yet are not competent in secreting key cytokines. Further understanding of these innate immune functions could play a critical role in understanding and developing effective immunotherapies to malignant human gliomas.

  3. Interplay between Candida albicans and the Mammalian Innate Host Defense

    Science.gov (United States)

    Cheng, Shih-Chin; Joosten, Leo A. B.; Kullberg, Bart-Jan

    2012-01-01

    Candida albicans is both the most common fungal commensal microorganism in healthy individuals and the major fungal pathogen causing high mortality in at-risk populations, especially immunocompromised patients. In this review, we summarize the interplay between the host innate system and C. albicans, ranging from how the host recognizes, responds, and clears C. albicans infection to how C. albicans evades, dampens, and escapes from host innate immunity. PMID:22252867

  4. Recognition Strategies of Group 3 Innate Lymphoid Cells

    OpenAIRE

    Killig, Monica; Glatzer, Timor; Romagnani, Chiara

    2014-01-01

    During the early phase of an inflammatory response, innate cells can use different strategies to sense environmental danger. These include the direct interaction of specific activating receptors (actR) with pathogen-encoded/danger molecules or the engagement of cytokine receptors by pro-inflammatory mediators produced by antigen presenting cells (APC) in the course of the infection. These general recognition strategies, which have been extensively described for innate myeloid cells, are share...

  5. What can the semantic properties of innate representations explain?

    OpenAIRE

    Jacob , Pierre

    1997-01-01

    Dretske has argued that, unlike the content of beliefs and desires (formed by learning), the contents of innate representations (depending directly on evolution by natural selection) cannot in principle play a role in the causal explanation of an individual's behavior. I examine this "asymmetry" and against it, I argue that the content of innate mental representations too can play a causal role in the explanation of behavior.

  6. Mechanism of Innate Resistance to Viral Encephalitis.

    Science.gov (United States)

    1976-12-01

    development of immunity (20). Although serum antibody was not detected in recipients of immune SC unless they were challenged wih virus, it is reasonable to...inununo- suppression, cytotoxicity 21. ASSIRACr m(nm -oel ab w noomeao aid Momlw by block nmbu) Factors that influence the phenotypic expression of...both strains of mice withstood IP challenge with virus. In contrast, only resistant mice (C3H/RV) were able to withstand IC challenge . Similarly, C3H

  7. Bruton's Tyrosine Kinase: An Emerging Key Player in Innate Immunity.

    Science.gov (United States)

    Weber, Alexander N R; Bittner, Zsofia; Liu, Xiao; Dang, Truong-Minh; Radsak, Markus Philipp; Brunner, Cornelia

    2017-01-01

    Bruton's tyrosine kinase (BTK) was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  8. Innate immune reconstitution with suppression of HIV-1.

    Science.gov (United States)

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  9. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    Directory of Open Access Journals (Sweden)

    Fangming Xiu

    2014-01-01

    Full Text Available Hyperglycemia (HG and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.

  10. Predictability of blocking

    International Nuclear Information System (INIS)

    Tosi, E.; Ruti, P.; Tibaldi, S.; D'Andrea, F.

    1994-01-01

    Tibaldi and Molteni (1990, hereafter referred to as TM) had previously investigated operational blocking predictability by the ECMWF model and the possible relationships between model systematic error and blocking in the winter season of the Northern Hemisphere, using seven years of ECMWF operational archives of analyses and day 1 to 10 forecasts. They showed that fewer blocking episodes than in the real atmosphere were generally simulated by the model, and that this deficiency increased with increasing forecast time. As a consequence of this, a major contribution to the systematic error in the winter season was shown to derive from the inability of the model to properly forecast blocking. In this study, the analysis performed in TM for the first seven winter seasons of the ECMWF operational model is extended to the subsequent five winters, during which model development, reflecting both resolution increases and parametrisation modifications, continued unabated. In addition the objective blocking index developed by TM has been applied to the observed data to study the natural low frequency variability of blocking. The ability to simulate blocking of some climate models has also been tested

  11. Systems-Biology Approaches to Discover Anti-Viral Effectors of the Human Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Andreas F.R. Sommer

    2011-07-01

    Full Text Available Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology “omics” methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1, Hepatitis C virus (HCV, West Nile virus (WNV, and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.

  12. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  13. 31 CFR 594.301 - Blocked account; blocked property.

    Science.gov (United States)

    2010-07-01

    ... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY GLOBAL TERRORISM SANCTIONS REGULATIONS General Definitions § 594.301 Blocked account; blocked property. The terms blocked account and...

  14. RX for Writer's Block.

    Science.gov (United States)

    Tompkins, Gail E.; Camp, Donna J.

    1988-01-01

    Describes four prewriting techniques that elementary and middle grade students can use to gather and organize ideas for writing, and by so doing, cure writer's block. Techniques discussed are: (1) brainstorming; (2) clustering; (3) freewriting; and (4) cubing.

  15. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  16. Blocking in Category Learning

    OpenAIRE

    Bott, Lewis; Hoffman, Aaron B.; Murphy, Gregory L.

    2007-01-01

    Many theories of category learning assume that learning is driven by a need to minimize classification error. When there is no classification error, therefore, learning of individual features should be negligible. We tested this hypothesis by conducting three category learning experiments adapted from an associative learning blocking paradigm. Contrary to an error-driven account of learning, participants learned a wide range of information when they learned about categories, and blocking effe...

  17. Early life innate immune signatures of persistent food allergy.

    Science.gov (United States)

    Neeland, Melanie R; Koplin, Jennifer J; Dang, Thanh D; Dharmage, Shyamali C; Tang, Mimi L; Prescott, Susan L; Saffery, Richard; Martino, David J; Allen, Katrina J

    2017-11-14

    Food allergy naturally resolves in a proportion of food-allergic children without intervention; however the underlying mechanisms governing the persistence or resolution of food allergy in childhood are not understood. This study aimed to define the innate immune profiles associated with egg allergy at age 1 year, determine the phenotypic changes that occur with the development of natural tolerance in childhood, and explore the relationship between early life innate immune function and serum vitamin D. This study used longitudinally collected PBMC samples from a population-based cohort of challenge-confirmed egg-allergic infants with either persistent or transient egg allergy outcomes in childhood to phenotype and quantify the functional innate immune response associated with clinical phenotypes of egg allergy. We show that infants with persistent egg allergy exhibit a unique innate immune signature, characterized by increased numbers of circulating monocytes and dendritic cells that produce more inflammatory cytokines both at baseline and following endotoxin exposure when compared with infants with transient egg allergy. Follow-up analysis revealed that this unique innate immune signature continues into childhood in those with persistent egg allergy and that increased serum vitamin D levels correlate with changes in innate immune profiles observed in children who developed natural tolerance to egg. Early life innate immune dysfunction may represent a key immunological driver and predictor of persistent food allergy in childhood. Serum vitamin D may play an immune-modulatory role in the development of natural tolerance. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. DMPD: Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antiviral innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17395579 Innate immunity minireview series: making biochemical sense of nucleic aci...007 Mar 29. (.png) (.svg) (.html) (.csml) Show Innate immunity minireview series: making biochemical sense o...itle Innate immunity minireview series: making biochemical sense of nucleic acidsensors that trigger antivir

  19. Postnatal Innate Immune Development: From Birth to Adulthood

    Directory of Open Access Journals (Sweden)

    Anastasia Georgountzou

    2017-08-01

    Full Text Available It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.

  20. Viral degradasome hijacks mitochondria to suppress innate immunity

    Science.gov (United States)

    Goswami, Ramansu; Majumdar, Tanmay; Dhar, Jayeeta; Chattopadhyay, Saurabh; Bandyopadhyay, Sudip K; Verbovetskaya, Valentina; Sen, Ganes C; Barik, Sailen

    2013-01-01

    The balance between the innate immunity of the host and the ability of a pathogen to evade it strongly influences pathogenesis and virulence. The two nonstructural (NS) proteins, NS1 and NS2, of respiratory syncytial virus (RSV) are critically required for RSV virulence. Together, they strongly suppress the type I interferon (IFN)-mediated innate immunity of the host cells by degrading or inhibiting multiple cellular factors required for either IFN induction or response pathways, including RIG-I, IRF3, IRF7, TBK1 and STAT2. Here, we provide evidence for the existence of a large and heterogeneous degradative complex assembled by the NS proteins, which we named “NS-degradasome” (NSD). The NSD is roughly ∼300-750 kD in size, and its degradative activity was enhanced by the addition of purified mitochondria in vitro. Inside the cell, the majority of the NS proteins and the substrates of the NSD translocated to the mitochondria upon RSV infection. Genetic and pharmacological evidence shows that optimal suppression of innate immunity requires mitochondrial MAVS and mitochondrial motility. Together, we propose a novel paradigm in which the mitochondria, known to be important for the innate immune activation of the host, are also important for viral suppression of the innate immunity. PMID:23877405

  1. Infectious Agents as Stimuli of Trained Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulina Rusek

    2018-02-01

    Full Text Available The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.

  2. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  3. Role of innate T cells in anti-bacterial immunity

    Directory of Open Access Journals (Sweden)

    Yifang eGao

    2015-06-01

    Full Text Available Innate T cells are a heterogeneous group of αβ and γδ T cells that respond rapidly (<2 hours upon activation. These innate T cells also share a non MHC class I or II restriction requirement for antigen recognition. Three major populations within the innate T cell group are recognized, namely Invariant NKT cells (iNKT; Mucosal associated invariant T cells (MAIT and gamma delta T cells. These cells recognize foreign/self-lipid presented by non-classical MHC molecules, such as CD1d, MR1 and CD1a.They are activated during the early stages of bacterial infection and act as a bridge between the innate and adaptive immune systems. In this review we focus on the functional properties of these 3 innate T cell populations and how they are purposed for antimicrobial defense. Furthermore we address the mechanisms through which their effector functions are targeted for bacterial control and compare this in human and murine systems. Lastly we speculate on future roles of these cell types in therapeutic settings such as vaccination.

  4. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Directory of Open Access Journals (Sweden)

    Amy Llewellyn

    2017-10-01

    Full Text Available There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology.

  5. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  6. Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events

    Science.gov (United States)

    Llewellyn, Amy; Foey, Andrew

    2017-01-01

    There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562

  7. Uniaxial backfill block compaction

    International Nuclear Information System (INIS)

    Koskinen, V.

    2012-05-01

    The main parts of the project were: to make a literature survey of the previous uniaxial compaction experiments; do uniaxial compaction tests in laboratory scale; and do industrial scale production tests. Object of the project was to sort out the different factors affecting the quality assurance chain of the backfill block uniaxial production and solve a material sticking to mould problem which appeared during manufacturing the blocks of bentonite and cruched rock mixture. The effect of mineralogical and chemical composition on the long term functionality of the backfill was excluded from the project. However, the used smectite-rich clays have been tested for mineralogical consistency. These tests were done in B and Tech OY according their SOPs. The objective of the Laboratory scale tests was to find right material- and compaction parameters for the industrial scale tests. Direct comparison between the laboratory scale tests and industrial scale tests is not possible because the mould geometry and compaction speed has a big influence for the compaction process. For this reason the selected material parameters were also affected by the previous compaction experiments. The industrial scale tests were done in summer of 2010 in southern Sweden. Blocks were done with uniaxial compaction. A 40 tons of the mixture of bentonite and crushed rock blocks and almost 50 tons of Friedland-clay blocks were compacted. (orig.)

  8. Impression block with orientator

    International Nuclear Information System (INIS)

    Brilin, V I; Ulyanova, O S

    2015-01-01

    Tool review, namely the impression block, applied to check the shape and size of the top of fish as well as to determine the appropriate tool for fishing operation was realized. For multiple application and obtaining of the impress depth of 3 cm and more, the standard volumetric impression blocks with fix rods are used. However, the registered impress of fish is not oriented in space and the rods during fishing are in the extended position. This leads to rods deformation and sinking due to accidental impacts of impression block over the borehole irregularity and finally results in faulty detection of the top end of fishing object in hole. The impression blocks with copy rods and fixed magnetic needle allow estimating the object configuration and fix the position of magnetic needle determining the position of the top end of object in hole. However, the magnetic needle fixation is realized in staged and the rods are in extended position during fishing operations as well as it is in standard design. The most efficient tool is the impression block with copy rods which directs the examined object in the borehole during readings of magnetic needles data from azimuth plate and averaging of readings. This significantly increases the accuracy of fishing toll direction. The rods during fishing are located in the body and extended only when they reach the top of fishing object

  9. Glycoconjugates as elicitors or suppressors of plant innate immunity

    DEFF Research Database (Denmark)

    Silipo, Alba; Erbs, Gitte; Shinya, Tomonori

    2010-01-01

    Innate immunity is the first line of defense against invading microorganisms in vertebrates and the only line of defense in invertebrates and plants. Bacterial glyco-conjugates, such as lipopolysaccharides (LPS) from the outer membrane of Gram-negative bacteria and peptidoglycan (PGN) from the cell...... walls of both Gram-positive and Gram-negative bacteria, and fungal and oomycete glycoconjugates such as oligosaccharides derived from the cell wall components ß-glucan, chitin and chitosan, have been found to act as elicitors of plant innate immunity. These conserved indispensable microbe......-specific molecules are also referred to as microbe-associated molecular patterns (MAMPs). Other glyco-conjugates such as bacterial extracellular polysaccharides (EPS) and cyclic glucan have been shown to suppress innate immune responses, thus conversely promoting pathogenesis. MAMPs are recognized by the plant...

  10. Cheetahs have a stronger constitutive innate immunity than leopards.

    Science.gov (United States)

    Heinrich, Sonja K; Hofer, Heribert; Courtiol, Alexandre; Melzheimer, Jörg; Dehnhard, Martin; Czirják, Gábor Á; Wachter, Bettina

    2017-03-23

    As a textbook case for the importance of genetics in conservation, absence of genetic variability at the major histocompatibility complex (MHC) is thought to endanger species viability, since it is considered crucial for pathogen resistance. An alternative view of the immune system inspired by life history theory posits that a strong response should evolve in other components of the immune system if there is little variation in the MHC. In contrast to the leopard (Panthera pardus), the cheetah (Acinonyx jubatus) has a relatively low genetic variability at the MHC, yet free-ranging cheetahs are healthy. By comparing the functional competence of the humoral immune system of both species in sympatric populations in Namibia, we demonstrate that cheetahs have a higher constitutive innate but lower induced innate and adaptive immunity than leopards. We conclude (1) immunocompetence of cheetahs is higher than previously thought; (2) studying both innate and adaptive components of immune systems will enrich conservation science.

  11. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases.

    Science.gov (United States)

    Xiong, Tingting; Turner, Jan-Eric

    2018-03-22

    Abnormal activation of the innate immune system is a common feature of autoimmune and chronic inflammatory diseases. Since their identification as a separate family of leukocytes, innate lymphoid cells (ILCs) have emerged as important effector cells of the innate immune system. Alterations in ILC function and subtype distribution have been observed in a variety of immune-mediated diseases in humans and evidence from experimental models suggests a subtype specific role of ILCs in the pathophysiology of autoimmune inflammation. In this review, we discuss recent advances in the understanding of ILC biology in autoimmune and chronic inflammatory disorders, including multiple sclerosis, inflammatory bowel diseases, psoriasis, and rheumatic diseases, with a special focus on the potential of ILCs as therapeutic targets for the development of novel treatment strategies in humans.

  12. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    Science.gov (United States)

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  13. Retinoic Acid and Its Role in Modulating Intestinal Innate Immunity

    Directory of Open Access Journals (Sweden)

    Paulo Czarnewski

    2017-01-01

    Full Text Available Vitamin A (VA is amongst the most well characterized food-derived nutrients with diverse immune modulatory roles. Deficiency in dietary VA has not only been associated with immune dysfunctions in the gut, but also with several systemic immune disorders. In particular, VA metabolite all-trans retinoic acid (atRA has been shown to be crucial in inducing gut tropism in lymphocytes and modulating T helper differentiation. In addition to the widely recognized role in adaptive immunity, increasing evidence identifies atRA as an important modulator of innate immune cells, such as tolerogenic dendritic cells (DCs and innate lymphoid cells (ILCs. Here, we focus on the role of retinoic acid in differentiation, trafficking and the functions of innate immune cells in health and inflammation associated disorders. Lastly, we discuss the potential involvement of atRA during the plausible crosstalk between DCs and ILCs.

  14. Integral-fuel blocks

    International Nuclear Information System (INIS)

    Cunningham, C.; Simpkin, S.D.

    1975-01-01

    A prismatic moderator block is described which has fuel-containing channels and coolant channels disposed parallel to each other and to edge faces of the block. The coolant channels are arranged in rows on an equilateral triangular lattice pattern and the fuel-containing channels are disposed in a regular lattice pattern with one fuel-containing channel between and equidistant from each of the coolant channels in each group of three mutually adjacent coolant channels. The edge faces of the block are parallel to the rows of coolant channels and the channels nearest to each edge face are disposed in two rows parallel thereto, with one of the rows containing only coolant channels and the other row containing only fuel-containing channels. (Official Gazette)

  15. Right bundle branch block

    DEFF Research Database (Denmark)

    Bussink, Barbara E; Holst, Anders Gaarsdal; Jespersen, Lasse

    2013-01-01

    AimsTo determine the prevalence, predictors of newly acquired, and the prognostic value of right bundle branch block (RBBB) and incomplete RBBB (IRBBB) on a resting 12-lead electrocardiogram in men and women from the general population.Methods and resultsWe followed 18 441 participants included...... in the Copenhagen City Heart Study examined in 1976-2003 free from previous myocardial infarction (MI), chronic heart failure, and left bundle branch block through registry linkage until 2009 for all-cause mortality and cardiovascular outcomes. The prevalence of RBBB/IRBBB was higher in men (1.4%/4.7% in men vs. 0.......5%/2.3% in women, P block was associated with significantly...

  16. ["Habitual" left branch block alternating with 2 "disguised" bracnch block].

    Science.gov (United States)

    Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R

    1976-10-01

    Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".

  17. E-Block: A Tangible Programming Tool with Graphical Blocks

    OpenAIRE

    Danli Wang; Yang Zhang; Shengyong Chen

    2013-01-01

    This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transfer...

  18. Interactions between the intestinal microbiota and innate lymphoid cells

    Science.gov (United States)

    Chen, Vincent L; Kasper, Dennis L

    2014-01-01

    The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells. PMID:24418741

  19. Linoleum Block Printing Revisited.

    Science.gov (United States)

    Chetelat, Frank J.

    1980-01-01

    The author discusses practical considerations of teaching linoleum block printing in the elementary grades (tool use, materials, motivation) and outlines a sequence of design concepts in this area for the primary, intermediate and junior high grades. A short list of books and audiovisual aids is appended. (SJL)

  20. Spice Blocks Melanoma Growth

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Curcumin, the pungent yellow spice found in both turmeric and curry powders, blocks a key biological pathway needed for development of melanoma and other cancers, according to a study that appears in the journal Cancer. Researchers from The University of Texas M. D. Anderson Cancer Center demonstrate how curcumin stops laboratory strains of…

  1. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  2. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  3. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling mediator

  4. Anthrax Lethal Toxin Impairs Innate Immune Functions of Alveolar Macrophages and Facilitates Bacillus anthracis Survival

    National Research Council Canada - National Science Library

    Ribot, Wilson J; Panchal, Rekha G; Brittingham, Katherine C; Ruthel, Gordon; Kenny, Tara A; Lane, Douglas; Curry, Bob; Hoover, Timothy A; Friedlander, Arthur M; Bavari, Sina

    2006-01-01

    Alveolar macrophages (AM) are very important for pulmonary innate immune responses against invading inhaled pathogens because they directly kill the organisms and initiate a cascade of innate and adaptive immune responses...

  5. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main

  6. The role of extracellular vesicles when innate meets adaptive.

    Science.gov (United States)

    Groot Kormelink, Tom; Mol, Sanne; de Jong, Esther C; Wauben, Marca H M

    2018-04-03

    Innate immune cells are recognized for their rapid and critical contribution to the body's first line of defense against invading pathogens and harmful agents. These actions can be further amplified by specific adaptive immune responses adapted to the activating stimulus. Recently, the awareness has grown that virtually all innate immune cells, i.e., mast cells, neutrophils, macrophages, eosinophils, basophils, and NK cells, are able to communicate with dendritic cells (DCs) and/or T and B cells, and thereby significantly contribute to the orchestration of adaptive immune responses. The means of communication that are thus far primarily associated with this function are cell-cell contacts and the release of a broad range of soluble mediators. Moreover, the possible contribution of innate immune cell-derived extracellular vesicles (EVs) to the modulation of adaptive immunity will be outlined in this review. EVs are submicron particles composed of a lipid bilayer, proteins, and nucleic acids released by cells in a regulated fashion. EVs are involved in intercellular communication between multiple cell types, including those of the immune system. A good understanding of the mechanisms by which innate immune cell-derived EVs influence adaptive immune responses, or vice versa, may reveal novel insights in the regulation of the immune system and can open up new possibilities for EVs (or their components) in controlling immune responses, either as a therapy, target, or as an adjuvant in future immune modulating treatments.

  7. Innate immunity in the lung regulates the development of asthma.

    Science.gov (United States)

    DeKruyff, Rosemarie H; Yu, Sanhong; Kim, Hye Young; Umetsu, Dale T

    2014-07-01

    The lung, while functioning as a gas exchange organ, encounters a large array of environmental factors, including particulate matter, toxins, reactive oxygen species, chemicals, allergens, and infectious microbes. To rapidly respond to and counteract these elements, a number of innate immune mechanisms have evolved that can lead to lung inflammation and asthma, which is the focus of this review. These innate mechanisms include a role for two incompletely understood cell types, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILCs), which together produce a wide range of cytokines, including interleukin-4 (IL-4), IL-5, IL-13, interferon-γ, IL-17, and IL-22, independently of adaptive immunity and conventional antigens. The specific roles of iNKT cells and ILCs in immunity are still being defined, but both cell types appear to play important roles in the lungs, particularly in asthma. As we gain a better understanding of these innate cell types, we will acquire great insight into the mechanisms by which allergic and non-allergic asthma phenotypes develop. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  9. Hypoxia, innate immunity and infection in the lung.

    LENUS (Irish Health Repository)

    Schaible, Bettina

    2012-02-01

    The mucosal surface of the lung is the key interface between the external atmosphere and the bloodstream. Normally, this well oxygenated tissue is maintained in state of sterility by a number of innate immune processes. These include a physical and dynamic mucus barrier, the production of microbiocidal peptides and the expression of specific pattern recognition receptors on alveolar epithelial cells and resident macrophages and dendritic cells which recognise microbial structures and initiate innate immune responses which promote the clearance of potentially infectious agents. In a range of diseases, the mucosal surface of the lung experiences decreased oxygen tension leading to localised areas of prominent hypoxia which can impact upon innate immune and subsequent infectious and inflammatory processes. Under these conditions, the lung is generally more susceptible to infection and subsequent inflammation. In the current review, we will discuss recent data pertaining to the role of hypoxia in regulating both host and pathogen in the lung during pulmonary disease and how this contributes to innate immunity, infection and inflammation.

  10. Innate lymphoid cells and parasites: Ancient foes with shared history.

    Science.gov (United States)

    Neill, D R; Fallon, P G

    2018-02-01

    This special issue of Parasite Immunology charts the rapid advances made in our understanding of the myriad interactions between innate lymphoid cells and parasites and how these interactions have shaped our evolutionary history. Here, we provide an overview of the issue and highlight key findings from studies in mice and man. © 2017 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  11. Innate immune factors associated with HIV-1 transmission

    NARCIS (Netherlands)

    Pollakis, Georgios; Stax, Martijn J.; Paxton, William A.

    2011-01-01

    Relatively little is known with regards to the mechanisms of HIV-1 transmission across a mucosal surface and more specifically what effects host factors have on influencing infection and early viral dissemination. The purpose of this review is to summarize which factors of the innate immune response

  12. Innate, adaptive and regulatory responses in schistosomiasis: Relationship to allergy

    NARCIS (Netherlands)

    Hartgers, F.C.; Smits, H.H.; Kleij, D. van der; Yazdanbakhsh, M.

    2006-01-01

    Helminth infections have profound effects on the immune system. Here, recent insights in the molecular interactions between schistosomes and the host are described with respect to adaptive but also with respect to innate immune responses. Furthermore, the different mechanisms of immune

  13. Developmental acquisition of regulomes underlies innate lymphoid cell functionality

    Science.gov (United States)

    Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis, and they mirror adaptive CD4+ T helper (Th) cell subtypes in both usages of effector molecules and ·transcription factors. To better understand ILC subsets and their relationship with Th cells, we measur...

  14. Innate lymphoid cells--a proposal for uniform nomenclature

    NARCIS (Netherlands)

    Spits, Hergen; Artis, David; Colonna, Marco; Diefenbach, Andreas; Di Santo, James P.; Eberl, Gerard; Koyasu, Shigeo; Locksley, Richard M.; McKenzie, Andrew N. J.; Mebius, Reina E.; Powrie, Fiona; Vivier, Eric

    2013-01-01

    Innate lymphoid cells (ILCs) are a family of developmentally related cells that are involved in immunity and in tissue development and remodelling. Recent research has identified several distinct members of this family. Confusingly, many different names have been used to characterize these newly

  15. MAMPs/PAMPs - elicitors of innate immunity in plants

    DEFF Research Database (Denmark)

    Erbs, Gitte; Newman, Mari-Anne

    2009-01-01

    Patterns (MAMPs or PAMPs), are recognised by the plant innate immune systems Pattern Recognition Receptors (PRRs). General bacterial elicitors, like lipopolysaccharides (LPS), flagellin (Flg), elongation factor Tu (EF-Tu), cold shock protein (CSP), peptidoglycan (PGN) and the enzyme superoxide dismutase...

  16. Innate lymphoid cells in autoimmunity: emerging regulators in rheumatic diseases

    NARCIS (Netherlands)

    Shikhagaie, Medya M.; Germar, Kristine; Bal, Suzanne M.; Ros, Xavier Romero; Spits, Hergen

    2017-01-01

    Innate lymphoid cells (ILCs) are important in the regulation of barrier homeostasis. These cells do not express T cell receptors but share many functional similarities with T helper cells and cytotoxic CD8(+) T lymphocytes. ILCs are divided into three groups, namely group 1 ILCs, group 2 ILCs and

  17. Potential of probiotics as biotherapeutic agents targeting the innate ...

    African Journals Online (AJOL)

    Potential of probiotics as biotherapeutic agents targeting the innate immune system. ... Some of the positive effects of probiotics are: growth promotion of farm animals, protection of host from intestinal infections, alleviation of lactose intolerance, relief of constipation, anticarcinogenic effect, anticholesterolaemic effects, ...

  18. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  19. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    NARCIS (Netherlands)

    Gao, Yuanqing; Vidal-Itriago, Andrés; Kalsbeek, Martin J; Layritz, Clarita; García-Cáceres, Cristina; Tom, Robby Zachariah; Eichmann, Thomas O; Vaz, Frédéric M; Houtkooper, Riekelt H; van der Wel, Nicole; Verhoeven, Arthur J; Yan, Jie; Kalsbeek, A.; Eckel, Robert H; Hofmann, Susanna M; Yi, Chun-Xia

    2017-01-01

    Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl) within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial

  20. Mycobacteria and innate cells: critical encounter for immunogenicity

    Indian Academy of Sciences (India)

    Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages. To date, many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive ...

  1. Abdominal wall blocks in adults

    DEFF Research Database (Denmark)

    Børglum, Jens; Gögenür, Ismail; Bendtsen, Thomas F

    2016-01-01

    been introduced with success. Future research should also investigate the effect of specific abdominal wall blocks on neuroendocrine and inflammatory stress response after surgery.  Summary USG abdominal wall blocks in adults are commonplace techniques today. Most abdominal wall blocks are assigned......Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research.......  Recent findings Ultrasound guidance is now considered the golden standard for abdominal wall blocks in adults, even though some landmark-based blocks are still being investigated. The efficiency of USG transversus abdominis plane blocks in relation to many surgical procedures involving the abdominal wall...

  2. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  3. SNUPPS power block engineering

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C A [Bechtel Power Corp., San Francisco, Calif. (USA)

    1975-11-01

    The Standard Power Block is based on a modular concept and consists of the following: turbine building, auxiliary building, fuel building, control building, radwaste building, diesel generators building, and outside storage tanks and transformers. Each power block unit includes a Westinghouse pressurized water reactor and has a thermal power rating of 3425 MW(t). The corresponding General Electric turbine generator net electrical output is 1188 MW(e). This standardization approach results in not only a reduction in the costs of engineering, licensing, procurement, and project planning, but should also result in additional savings by the application of experience gained in the construction of the first unit to the following units and early input of construction data to design.

  4. DMPD: Innate immune recognition of, and regulation by, DNA. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16979939 Innate immune recognition of, and regulation by, DNA. Ishii KJ, Akira S. T...rends Immunol. 2006 Nov;27(11):525-32. Epub 2006 Sep 18. (.png) (.svg) (.html) (.csml) Show Innate immune recognition... of, and regulation by, DNA. PubmedID 16979939 Title Innate immune recognition of, and regulation b

  5. DMPD: Innate immune responses: crosstalk of signaling and regulation of genetranscription. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16753195 Innate immune responses: crosstalk of signaling and regulation of genetran...l) (.csml) Show Innate immune responses: crosstalk of signaling and regulation of genetranscription. PubmedI...D 16753195 Title Innate immune responses: crosstalk of signaling and regulation o

  6. Functional differences between human NKp44(-) and NKp44(+) RORC+ innate lymphoid cells

    NARCIS (Netherlands)

    Hoorweg, Kerim; Peters, Charlotte P.; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M.; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC+ lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human

  7. Unravelling the nature of non-specific effects of vaccines-A challenge for innate immunologists

    DEFF Research Database (Denmark)

    Jensen, Kristoffer Jarlov; Benn, Christine Stabell; van Crevel, Reinout

    2016-01-01

    ) of vaccines, including heterologous T-cell reactivity and innate immune memory or 'trained innate immunity', which involves epigenetic reprogramming of innate immune cells. Here, we review the epidemiological evidence for NSE as well as human, animal and in vitro immunological data that could explain...

  8. Change Around the Block?

    Science.gov (United States)

    Berlin, Joey

    2017-04-01

    Proponents of a block grant or per-capita cap trumpet them as vehicles for the federal government to give the states a capped amount of funding for Medicaid that legislatures would effectively distribute how they see fit. Questions abound as to what capped Medicaid funding would look like, and what effect it would have on the current Medicaid-eligible population, covered services, and physician payments.

  9. SUPERFICIAL CERVICAL PLEXUS BLOCK

    Directory of Open Access Journals (Sweden)

    Komang Mega Puspadisari

    2014-01-01

    Full Text Available Superficial cervical plexus block is one of the regional anesthesia in  neck were limited to thesuperficial fascia. Anesthesia is used to relieve pain caused either during or after the surgery iscompleted. This technique can be done by landmark or with ultrasound guiding. The midpointof posterior border of the Sternocleidomastoid was identified and the prosedure done on thatplace or on the level of cartilage cricoid.

  10. E-Block: A Tangible Programming Tool with Graphical Blocks

    Directory of Open Access Journals (Sweden)

    Danli Wang

    2013-01-01

    Full Text Available This paper designs a tangible programming tool, E-Block, for children aged 5 to 9 to experience the preliminary understanding of programming by building blocks. With embedded artificial intelligence, the tool defines the programming blocks with the sensors as the input and enables children to write programs to complete the tasks in the computer. The symbol on the programming block's surface is used to help children understanding the function of each block. The sequence information is transferred to computer by microcomputers and then translated into semantic information. The system applies wireless and infrared technologies and provides user with feedbacks on both screen and programming blocks. Preliminary user studies using observation and user interview methods are shown for E-Block's prototype. The test results prove that E-Block is attractive to children and easy to learn and use. The project also highlights potential advantages of using single chip microcomputer (SCM technology to develop tangible programming tools for children.

  11. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  12. Block and sub-block boundary strengthening in lath martensite

    NARCIS (Netherlands)

    Du, C.; Hoefnagels, J.P.M.; Vaes, R.; Geers, M.G.D.

    2016-01-01

    Well-defined uniaxial micro-tensile tests were performed on lath martensite single block specimens and multi-block specimens with different number of block boundaries parallel to the loading direction. Detailed slip trace analyses consistently revealed that in the {110}<111> slip system with the

  13. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  14. Atrioventricular block, ECG tracing (image)

    Science.gov (United States)

    ... an abnormal rhythm (arrhythmia) called an atrioventricular (AV) block. P waves show that the top of the ... wave (and heart contraction), there is an atrioventricular block, and a very slow pulse (bradycardia).

  15. Fermion-scalar conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Kos, Filip [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University,217 Prospect Street, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, New Jersey 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States)

    2016-04-13

    We compute the conformal blocks associated with scalar-scalar-fermion-fermion 4-point functions in 3D CFTs. Together with the known scalar conformal blocks, our result completes the task of determining the so-called ‘seed blocks’ in three dimensions. Conformal blocks associated with 4-point functions of operators with arbitrary spins can now be determined from these seed blocks by using known differential operators.

  16. Powder wastes confinement block and manufacturing process of this block

    International Nuclear Information System (INIS)

    Dagot, L.; Brunel, G.

    1996-01-01

    This invention concerns a powder wastes containment block and a manufacturing process of this block. In this block, the waste powder is encapsulated in a thermo hardening polymer as for example an epoxy resin, the encapsulated resin being spread into cement. This block can contain between 45 and 55% in mass of wastes, between 18 and 36% in mass of polymer and between 14 and 32% in mass of cement. Such a containment block can be used for the radioactive wastes storage. (O.M.). 4 refs

  17. Building Curriculum during Block Play

    Science.gov (United States)

    Andrews, Nicole

    2015-01-01

    Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…

  18. Isotope heating block

    International Nuclear Information System (INIS)

    Wenk, E.

    1976-01-01

    A suggestion is made not to lead the separated nuclear 'waste' from spent nuclear fuel elements directly to end storage, but to make use of the heat produced from the remaining radiation, e.g. for seawater desalination. According to the invention, the activated fission products are to be processed, e.g. by calcination or vitrification, so that one can handle them. They should then be arranged in layers alternately with plate-shaped heat conducting pipes to form a homogeneous block; the heat absorbed by the thermal plates should be further passed on to evaporators or heat exchangers. (UWI) [de

  19. Blocking the Hawking radiation

    DEFF Research Database (Denmark)

    Autzen, M.; Kouvaris, C.

    2014-01-01

    grows after its formation (and eventually destroys the star) instead of evaporating. The fate of the black hole is dictated by the two opposite mechanics, i.e., accretion of nuclear matter from the center of the star and Hawking radiation that tends to decrease the mass of the black hole. We study how...... the assumptions for the accretion rate can in fact affect the critical mass beyond which a black hole always grows. We also study to what extent degenerate nuclear matter can impede Hawking radiation due to the fact that emitted particles can be Pauli blocked at the core of the star....

  20. Innate Immune Evasion Mediated by Flaviviridae Non-Structural Proteins.

    Science.gov (United States)

    Chen, Shun; Wu, Zhen; Wang, Mingshu; Cheng, Anchun

    2017-10-07

    Flaviviridae-caused diseases are a critical, emerging public health problem worldwide. Flaviviridae infections usually cause severe, acute or chronic diseases, such as liver damage and liver cancer resulting from a hepatitis C virus (HCV) infection and high fever and shock caused by yellow fever. Many researchers worldwide are investigating the mechanisms by which Flaviviridae cause severe diseases. Flaviviridae can interfere with the host's innate immunity to achieve their purpose of proliferation. For instance, dengue virus (DENV) NS2A, NS2B3, NS4A, NS4B and NS5; HCV NS2, NS3, NS3/4A, NS4B and NS5A; and West Nile virus (WNV) NS1 and NS4B proteins are involved in immune evasion. This review discusses the interplay between viral non-structural Flaviviridae proteins and relevant host proteins, which leads to the suppression of the host's innate antiviral immunity.

  1. Sublethal Heavy Metal Stress Stimulates Innate Immunity in Tomato

    Directory of Open Access Journals (Sweden)

    Nilanjan Chakraborty

    2015-01-01

    Full Text Available Effect of sublethal heavy metal stress as plant biotic elicitor for triggering innate immunity in tomato plant was investigated. Copper in in vivo condition induced accumulation of defense enzymes like peroxidase (PO, polyphenol oxidase (PPO, phenylalanine ammonia-lyase (PAL, and β-1,3 glucanase along with higher accumulation of total phenol, antioxidative enzymes (catalase and ascorbate peroxidase, and total chlorophyll content. Furthermore, the treatment also induced nitric oxide (NO production which was confirmed by realtime visualization of NO burst using a fluorescent probe 4,5-diaminofluorescein diacetate (DAF-2DA and spectrophotometric analysis. The result suggested that the sublethal dose of heavy metal can induce an array of plant defense responses that lead to the improvement of innate immunity in plants.

  2. Migration and Tissue Tropism of Innate Lymphoid Cells

    Science.gov (United States)

    Kim, Chang H.; Hashimoto-Hill, Seika; Kim, Myunghoo

    2016-01-01

    Innate lymphoid cell (ILCs) subsets differentially populate various barrier and non-barrier tissues, where they play important roles in tissue homeostasis and tissue-specific responses to pathogen attack. Recent findings have provided insight into the molecular mechanisms that guide ILC migration into peripheral tissues, revealing common features among different ILC subsets as well as important distinctions. Recent studies have also highlighted the impact of tissue-specific cues on ILC migration, and the importance of the local immunological milieu. We review these findings here and discuss how the migratory patterns and tissue tropism of different ILC subsets relate to the development and differentiation of these cells, and to ILC-mediated tissue-specific regulation of innate and adaptive immune responses. In this context we outline open questions and important areas of future research. PMID:26708278

  3. The Interface between Fungal Biofilms and Innate Immunity

    Directory of Open Access Journals (Sweden)

    John F. Kernien

    2018-01-01

    Full Text Available Fungal biofilms are communities of adherent cells surrounded by an extracellular matrix. These biofilms are commonly found during infection caused by a variety of fungal pathogens. Clinically, biofilm infections can be extremely difficult to eradicate due to their resistance to antifungals and host defenses. Biofilm formation can protect fungal pathogens from many aspects of the innate immune system, including killing by neutrophils and monocytes. Altered immune recognition during this phase of growth is also evident by changes in the cytokine profiles of monocytes and macrophages exposed to biofilm. In this manuscript, we review the host response to fungal biofilms, focusing on how these structures are recognized by the innate immune system. Biofilms formed by Candida, Aspergillus, and Cryptococcus have received the most attention and are highlighted. We describe common themes involved in the resilience of fungal biofilms to host immunity and give examples of biofilm defenses that are pathogen-specific.

  4. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  5. Characterization of innate immune activity in Phrynops geoffroanus (Testudines: Chelidae

    Directory of Open Access Journals (Sweden)

    Bruno O. Ferronato

    2009-12-01

    Full Text Available The innate immune activity of the freshwater turtle Phrynops geoffroanus (Schweigger, 1812 was investigated, using a sheep-red-blood cell hemolysis assay. The time- and concentration-dependent hemolytic activity of the turtle plasma was low compared to that reported for other reptiles. However the plasma of P. geoffroanus exhibited higher activity at elevated temperatures, resulting in temperature-dependent hemolysis. The sensitivity of turtle plasma to temperature could be interpreted as a mechanism by which freshwater turtles use basking behavior to elevate body temperature, thus enhancing the innate immune response. However, we cannot discard the possibility that environmental contaminants could be affecting the turtle's immune response, since the animals in this investigation were captured in a polluted watercourse.

  6. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  7. Beyond NK cells: the expanding universe of innate lymphoid cells.

    Science.gov (United States)

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  8. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  9. Boosting innate immunity to sustainably control diseases in crops.

    Science.gov (United States)

    Nicaise, Valerie

    2017-10-01

    Viruses cause epidemics in all major crops, threatening global food security. The development of efficient and durable resistance able to withstand viral attacks represents a major challenge for agronomy, and relies greatly on the understanding of the molecular dialogue between viral pathogens and their hosts. Research over the last decades provided substantial advances in the field of plant-virus interactions. Remarkably, the advent of studies of plant innate immunity has recently offered new strategies exploitable in the field. This review summarizes the recent breakthroughs that define the mechanisms underlying antiviral innate immunity in plants, and emphasizes the importance of integrating that knowledge into crop improvement actions, particularly by exploiting the insights related to immune receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bilingualism changes children's beliefs about what is innate.

    Science.gov (United States)

    Byers-Heinlein, Krista; Garcia, Bianca

    2015-03-01

    Young children engage in essentialist reasoning about natural kinds, believing that many traits are innately determined. This study investigated whether personal experience with second language acquisition could alter children's essentialist biases. In a switched-at-birth paradigm, 5- and 6-year-old monolingual and simultaneous bilingual children expected that a baby's native language, an animal's vocalizations, and an animal's physical traits would match those of a birth rather than of an adoptive parent. We predicted that sequential bilingual children, who had been exposed to a new language after age 3, would show greater understanding that languages are learned. Surprisingly, sequential bilinguals showed reduced essentialist beliefs about all traits: they were significantly more likely than other children to believe that human language, animal vocalizations, and animal physical traits would be learned through experience rather than innately endowed. These findings suggest that bilingualism in the preschool years can profoundly change children's essentialist biases. © 2014 John Wiley & Sons Ltd.

  11. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  12. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  13. Group 1 innate lymphoid cells in Toxoplasma gondii infection.

    Science.gov (United States)

    Dunay, I R; Diefenbach, A

    2018-02-01

    Innate lymphoid cells (ILCs) are a group of lymphocytes that carry out important functions in immunity to infections and in organ homeostasis at epithelial barrier surfaces. ILCs are innate immune cells that provide an early source of cytokines to initiate immune responses against pathogens. Cytotoxic ILCs (i.e. conventional (c)NK cells) and several subsets of helper-like ILCs are the major branches of the ILC family. Conventional NK cells and group 1 ILCs share several characteristics such as surface receptors and the ability to produce IFN-γ upon activation, but they differ in their developmental paths and in their dependence on specific transcription factors. Infection of mice with the intracellular parasite Toxoplasma gondii is followed by a strong Th1-mediated immune response. Previous studies indicate that NK1.1 + cells contribute to the production of IFN-γ and TNF and cytotoxicity during acute T. gondii infection. Upon oral infection, the parasite infects intestinal enterocytes, and within the lamina propria, innate immune responses lead to initial parasite control although the infection disseminates widely and persists long-term in immune privileged sites despite adaptive immunity. Upon parasite entry into the small intestine, during the acute stage, ILC1 produce high levels of IFN-γ and TNF protecting barrier surfaces, thus essentially contributing to early parasite control. We will discuss here the role of innate lymphocytes during T. gondii infection in the context of the only recently appreciated diversity of ILC subsets. © 2018 John Wiley & Sons Ltd.

  14. Trauma: the role of the innate immune system

    Directory of Open Access Journals (Sweden)

    Rijkers GT

    2006-05-01

    Full Text Available Abstract Immune dysfunction can provoke (multiple organ failure in severely injured patients. This dysfunction manifests in two forms, which follow a biphasic pattern. During the first phase, in addition to the injury by trauma, organ damage is caused by the immune system during a systemic inflammatory response. During the second phase the patient is more susceptible for sepsis due to host defence failure (immune paralysis. The pathophysiological model outlined in this review encompasses etiological factors and the contribution of the innate immune system in the end organ damage. The etiological factors can be divided into intrinsic (genetic predisposition and physiological status and extrinsic components (type of injury or "traumaload" and surgery or "intervention load". Of all the factors, the intervention load is the only one which, can be altered by the attending emergency physician. Adjustment of the therapeutic approach and choice of the most appropriate treatment strategy can minimize the damage caused by the immune response and prevent the development of immunological paralysis. This review provides a pathophysiological basis for the damage control concept, in which a staged approach of surgery and post-traumatic immunomonitoring have become important aspects of the treatment protocol. The innate immune system is the main objective of immunomonitoring as it has the most prominent role in organ failure after trauma. Polymorphonuclear phagocytes and monocytes are the main effector-cells of the innate immune system in the processes that lead to organ failure. These cells are controlled by cytokines, chemokines, complement factors and specific tissue signals. The contribution of tissue barrier integrity and its interaction with the innate immune system is further evaluated.

  15. The Role of Innate Immune System Receptors in Epilepsy Research.

    Science.gov (United States)

    Cordero-Arreola, Jessica; West, Rachel M; Mendoza-Torreblanca, Julieta; Mendez-Hernandez, Edna; Salas-Pacheco, Jose; Menendez-Gonzalez, Manuel; Freire, Rafael C; Machado, Sergio; Murillo-Rodriguez, Eric; Nardi, Antonio E; Arias-Carrion, Oscar

    2017-01-01

    Epilepsy is one of the most complex neurological disorders and its study requires a broad knowledge of neurology and neuroscience. It comprises a diverse group of neurological disorders that share the central feature of spontaneous recurrent seizures, and are often accompanied by cognitive deficits and mood disorder. This condition is one of the most common neurological disorders. Until recently, alterations of neuronal activities had been the focus of epilepsy research. This neurocentric emphasis did not address issues that arise in more complex models of epileptogenesis. An important factor in epilepsy that is not regulated directly by neurons is inflammation and the immune response of the brain. Recent evidence obtained in rodent epilepsy models supports the role of immune responses in the initiation and maintenance of epilepsy. Recognition of exogenous pathogens by the innate immune system is mediated by some pattern recognition receptors such as Toll-like receptors leading to cell activation and cytokine production. Currently, these receptors have been the focus of epilepsy studies looking to determine whether the innate immune activation is neuroprotective or neurotoxic for the brain. Here, we present the evidence in the literature of the involvement of key innate immune receptors in the development of epilepsy. We address some of the contradictory findings in these studies and also mention possible avenues for research into epilepsy treatments that target these receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  17. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  18. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Innate lymphoid cells in tissue homeostasis and diseases.

    Science.gov (United States)

    Ignacio, Aline; Breda, Cristiane Naffah Souza; Camara, Niels Olsen Saraiva

    2017-08-18

    Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. They are a part of the innate immune system, but develop from the lymphoid lineage. They lack pattern-recognition receptors and rearranged receptors, and therefore cannot directly mediate antigen specific responses. The progenitors specifically associated with the ILCs lineage have been uncovered, enabling the distinction between ILCs and natural killer cells. Based on the requirement of specific transcription factors and their patterns of cytokine production, ILCs are categorized into three subsets (ILC1, ILC2 and ILC3). First observed in mucosal surfaces, these cell populations interact with hematopoietic and non-hematopoietic cells throughout the body during homeostasis and diseases, promoting immunity, commensal microbiota tolerance, tissue repair and inflammation. Over the last 8 years, ILCs came into the spotlight as an essential cell type able to integrate diverse host immune responses. Recently, it became known that ILC subsets play a key role in immune responses at barrier surfaces, interacting with the microbiota, nutrients and metabolites. Since the liver receives the venous blood directly from the intestinal vein, the intestine and liver are essential to maintain tolerance and can rapidly respond to infections or tissue damage. Therefore, in this review, we discuss recent findings regarding ILC functions in homeostasis and disease, with a focus on the intestine and liver.

  20. Human innate lymphoid cells (ILCs) in filarial infections.

    Science.gov (United States)

    Bonne-Année, S; Nutman, T B

    2018-02-01

    Filarial infections are characteristically chronic and can cause debilitating diseases governed by parasite-induced innate and adaptive immune responses. Filarial parasites traverse or establish niches in the skin (migrating infective larvae), in nonmucosal tissues (adult parasite niche) and in the blood or skin (circulating microfilariae) where they intersect with the host immune response. While several studies have demonstrated that filarial parasites and their antigens can modulate myeloid cells (monocyte, macrophage and dendritic cell subsets), T- and B-lymphocytes and skin resident cell populations, the role of innate lymphoid cells during filarial infections has only recently emerged. Despite the identification and characterization of innate lymphoid cells (ILCs) in murine helminth infections, little is actually known about the role of human ILCs during parasitic infections. The focus of this review will be to highlight the composition of ILCs in the skin, lymphatics and blood; where the host-parasite interaction is well-defined and to examine the role of ILCs during filarial infections. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.

    Science.gov (United States)

    Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte

    2017-10-05

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.

  2. Emerging concepts and future challenges in innate lymphoid cell biology

    Science.gov (United States)

    Artis, David

    2016-01-01

    Innate lymphoid cells (ILCs) are innate immune cells that are ubiquitously distributed in lymphoid and nonlymphoid tissues and enriched at mucosal and barrier surfaces. Three major ILC subsets are recognized in mice and humans. Each of these subsets interacts with innate and adaptive immune cells and integrates cues from the epithelium, the microbiota, and pathogens to regulate inflammation, immunity, tissue repair, and metabolic homeostasis. Although intense study has elucidated many aspects of ILC development, phenotype, and function, numerous challenges remain in the field of ILC biology. In particular, recent work has highlighted key new questions regarding how these cells communicate with their environment and other cell types during health and disease. This review summarizes new findings in this rapidly developing field that showcase the critical role ILCs play in directing immune responses through their ability to interact with a variety of hematopoietic and nonhematopoietic cells. In addition, we define remaining challenges and emerging questions facing the field. Finally, this review discusses the potential application of basic studies of ILC biology to the development of new treatments for human patients with inflammatory and infectious diseases in which ILCs play a role. PMID:27811053

  3. Innate immune recognition and activation during HIV infection

    Directory of Open Access Journals (Sweden)

    Larsen Carsten S

    2010-06-01

    Full Text Available Abstract The pathogenesis of HIV infection, and in particular the development of immunodeficiency, remains incompletely understood. Whichever intricate molecular mechanisms are at play between HIV and the host, it is evident that the organism is incapable of restricting and eradicating the invading pathogen. Both innate and adaptive immune responses are raised, but they appear to be insufficient or too late to eliminate the virus. Moreover, the picture is complicated by the fact that the very same cells and responses aimed at eliminating the virus seem to play deleterious roles by driving ongoing immune activation and progressive immunodeficiency. Whereas much knowledge exists on the role of adaptive immunity during HIV infection, it has only recently been appreciated that the innate immune response also plays an important part in HIV pathogenesis. In this review, we present current knowledge on innate immune recognition and activation during HIV infection based on studies in cell culture, non-human primates, and HIV-infected individuals, and discuss the implications for the understanding of HIV immunopathogenesis.

  4. The wild tapered block bootstrap

    DEFF Research Database (Denmark)

    Hounyo, Ulrich

    In this paper, a new resampling procedure, called the wild tapered block bootstrap, is introduced as a means of calculating standard errors of estimators and constructing confidence regions for parameters based on dependent heterogeneous data. The method consists in tapering each overlapping block...... of the series first, the applying the standard wild bootstrap for independent and heteroscedastic distrbuted observations to overlapping tapered blocks in an appropriate way. Its perserves the favorable bias and mean squared error properties of the tapered block bootstrap, which is the state-of-the-art block......-order asymptotic validity of the tapered block bootstrap as well as the wild tapered block bootstrap approximation to the actual distribution of the sample mean is also established when data are assumed to satisfy a near epoch dependent condition. The consistency of the bootstrap variance estimator for the sample...

  5. Photovoltaic building blocks

    DEFF Research Database (Denmark)

    Hanberg, Peter Jesper; Jørgensen, Anders Michael

    2014-01-01

    efficiency of about 15% for commercial Silicon solar cells there is still much to gain. DTU Danchip provides research facilities, equipment and expertise for the building blocks that comprises fabricating the efficient solar cell. In order to get more of the sun light into the device we provide thin film......Photovoltaics (PV), better known as solar cells, are now a common day sight on many rooftops in Denmark.The installed capacity of PV systems worldwide is growing exponentially1 and is the third most importantrenewable energy source today. The cost of PV is decreasing fast with ~10%/year but to make...... it directcompetitive with fossil energy sources a further reduction is needed. By increasing the efficiency of the solar cells one gain an advantage through the whole chain of cost. So that per produced Watt of power less material is spent, installation costs are lower, less area is used etc. With an average...

  6. Celiac ganglia block

    International Nuclear Information System (INIS)

    Akinci, Devrim; Akhan, Okan

    2005-01-01

    Pain occurs frequently in patients with advanced cancers. Tumors originating from upper abdominal viscera such as pancreas, stomach, duodenum, proximal small bowel, liver and biliary tract and from compressing enlarged lymph nodes can cause severe abdominal pain, which do not respond satisfactorily to medical treatment or radiotherapy. Percutaneous celiac ganglia block (CGB) can be performed with high success and low complication rates under imaging guidance to obtain pain relief in patients with upper abdominal malignancies. A significant relationship between pain relief and degree of tumoral celiac ganglia invasion according to CT features was described in the literature. Performing the procedure in the early grades of celiac ganglia invasion on CT can increase the effectiveness of the CGB, which is contrary to World Health Organization criteria stating that CGB must be performed in patients with advanced stage cancer. CGB may also be effectively performed in patients with chronic pancreatitis for pain palliation

  7. Atomic Basic Blocks

    Science.gov (United States)

    Scheler, Fabian; Mitzlaff, Martin; Schröder-Preikschat, Wolfgang

    Die Entscheidung, einen zeit- bzw. ereignisgesteuerten Ansatz für ein Echtzeitsystem zu verwenden, ist schwierig und sehr weitreichend. Weitreichend vor allem deshalb, weil diese beiden Ansätze mit äußerst unterschiedlichen Kontrollflussabstraktionen verknüpft sind, die eine spätere Migration zum anderen Paradigma sehr schwer oder gar unmöglich machen. Wir schlagen daher die Verwendung einer Zwischendarstellung vor, die unabhängig von der jeweils verwendeten Kontrollflussabstraktion ist. Für diesen Zweck verwenden wir auf Basisblöcken basierende Atomic Basic Blocks (ABB) und bauen darauf ein Werkzeug, den Real-Time Systems Compiler (RTSC) auf, der die Migration zwischen zeit- und ereignisgesteuerten Systemen unterstützt.

  8. Some Blocks from Heliopolis

    Directory of Open Access Journals (Sweden)

    dr.Nageh Omar

    2005-01-01

    Full Text Available These group of Architectural Fragments have been discovered during Excavations at Souq el – Khamees Site at the end of Mostorod Street in el – Matarya Area by the Supreme Council of Antiquities Mission Season 2003 and none published before . The Site of Excavations is Situated about 500 metres to the west Obelisk of the King Senusert I According to the inscriptions on the block (pl.1.a,fig.1 represents the coronation name of the king Senusret III, the fifth king of the twelfth dynasty within the cartouche .Through This recent discover and his Sphinx statue we Suggest that the king Senusret III built a shrine or Temple at Heliopols which was possibly a part of the great Temple of the universal God of Heliopolis . For block dating to the king Akhenaten and many monuments are discovered in Heliopolis at the same period emphasized that the king Akhenaten built temple for the god Aten in Heliopolis and through Studies about the king Akhenaten, we suggest that the king Akhenaten take his new principles from Heliopolis . The king Ramesses II mentioned from stela which discovered at Manshyt el- Sader, in the second horizontal line that he erected oblesk and some statues at the great Temple in Heliopolis , this recent Discover about Statue of the king Ramesses II emphasized site of excavations perhaps a shrine or open court from temple of the king Ramesses II at the great Temple in Heliopolis For nbt – htpt, we could show that the goddess Hathor take a forward position in Heliopolis and become the Lady of Hetepet in Heliopolis since Eighteenth dynasty at least

  9. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β₂ to tumor cells.

    Science.gov (United States)

    Ma, Jingwei; Cai, Wenqian; Zhang, Yi; Huang, Chunmei; Zhang, Huafeng; Liu, Jing; Tang, Ke; Xu, Pingwei; Katirai, Foad; Zhang, Jianmin; He, Wei; Ye, Duyun; Shen, Guan-Xin; Huang, Bo

    2013-09-15

    Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.

  10. Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis

    Directory of Open Access Journals (Sweden)

    Jaya eVas

    2013-02-01

    Full Text Available The composition of the early immune repertoire is biased with prominent expression of spontaneously arising B-cell clones that produce IgM with recurrent and often autoreactive binding specificities. Amongst these naturally-arising antibodies (NAbs are IgM antibodies that specifically recognize damaged and senescent cells, often via oxidation-associated neo-determinants. These NAbs are present from birth and can be further boosted by apoptotic cell challenge. Recent studies have shown that IgM NAb to apoptotic cells can enhance phagocytic clearance, as well as suppress pro-inflammatory responses induced via Toll-like receptors, and block pathogenic IgG-immune complex (IC-mediated inflammatory responses. Specific antibody effector functions appear to be involved, as these anti-inflammatory properties are dependent on IgM-mediated recruitment of the early recognition factors of complement. Clinical surveys have suggested that anti-AC IgM NAbs may modulate disease activity in some patients with autoimmune disease. In mechanistic studies, anti-AC NAbs were shown to act in dendritic cells by inhibition of the Mitogen Activated Protein Kinase (MAPK pathway, a primary signal transduction pathway that controls inflammatory responses. This immunomodulatory pathway has an absolute requirement for the induction of MAPK Phosphatase-1. Taken together, recent studies have elucidated the novel properties of a class of protective NAbs, which may directly blunt inflammatory responses through a primitive pathway for regulation of the innate immune system.

  11. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L.

    Directory of Open Access Journals (Sweden)

    Frédéric Sorgeloos

    Full Text Available Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

  12. Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis.

    Science.gov (United States)

    Collins, Angela C; Cai, Haocheng; Li, Tuo; Franco, Luis H; Li, Xiao-Dong; Nair, Vidhya R; Scharn, Caitlyn R; Stamm, Chelsea E; Levine, Beth; Chen, Zhijian J; Shiloh, Michael U

    2015-06-10

    Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2.

    Science.gov (United States)

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X

    2008-05-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-kappaB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-kappaB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but not TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1), antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and triggers innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules.

  14. Common blocks for ASQS(12

    Directory of Open Access Journals (Sweden)

    Lorenzo Milazzo

    1997-05-01

    Full Text Available An ASQS(v is a particular Steiner system featuring a set of v vertices and two separate families of blocks, B and G, whose elements have a respective cardinality of 4 and 6. It has the property that any three vertices of X belong either to a B-block or to a G-block. The parameter cb is the number of common blocks in two separate ASQSs, both defined on the same set of vertices X . In this paper it is shown that cb ≤ 29 for any pair of ASQSs(12.

  15. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    Science.gov (United States)

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.

  16. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  17. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages.

    Science.gov (United States)

    Maler, Mareike D; Nielsen, Peter J; Stichling, Nicole; Cohen, Idan; Ruzsics, Zsolt; Wood, Connor; Engelhard, Peggy; Suomalainen, Maarit; Gyory, Ildiko; Huber, Michael; Müller-Quernheim, Joachim; Schamel, Wolfgang W A; Gordon, Siamon; Jakob, Thilo; Martin, Stefan F; Jahnen-Dechent, Willi; Greber, Urs F; Freudenberg, Marina A; Fejer, György

    2017-08-01

    The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. IMPORTANCE Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages

  18. Adductor Canal Block versus Femoral Nerve Block and Quadriceps Strength

    DEFF Research Database (Denmark)

    Jæger, Pia Therese; Nielsen, Zbigniew Jerzy Koscielniak; Henningsen, Lene Marianne

    2013-01-01

    : The authors hypothesized that the adductor canal block (ACB), a predominant sensory blockade, reduces quadriceps strength compared with placebo (primary endpoint, area under the curve, 0.5-6 h), but less than the femoral nerve block (FNB; secondary endpoint). Other secondary endpoints were...

  19. The block transfer system

    International Nuclear Information System (INIS)

    Bradish, G.J. III; Reid, A.E.

    1986-01-01

    The central instrumentation control and data acquisition (CICADA) computer system is comprised of a functionally distributed hierarchical network of thirteen (13) 32-bit mini-computers that are the heart of the control, monitoring, data collection and data analysis for the tokamak fusion test reactor (TFTR). The CICADA system was designed with the goal of providing complete control, monitoring, and data acquisition for TFTR, which includes the acquisition and storage of 20M points of data within a five-minute shot cycle. It was realized early in the system design that in order to meet this goal an ancillary system would have to be provided to supplement the subsystem CAMAC systems that, due to the relatively slow throughput of the serial highways and the overhead of relaying data to the central facilities within a star network, would not provide the necessary throughput. The authors discuss how the block transfer system provided a means of moving data directly from the CAMAC crate to the application running on the central facility computers

  20. FOXO-dependent regulation of innate immune homeostasis.

    Science.gov (United States)

    Becker, Thomas; Loch, Gerrit; Beyer, Marc; Zinke, Ingo; Aschenbrenner, Anna C; Carrera, Pilar; Inhester, Therese; Schultze, Joachim L; Hoch, Michael

    2010-01-21

    The innate immune system represents an ancient host defence mechanism that protects against invading microorganisms. An important class of immune effector molecules to fight pathogen infections are antimicrobial peptides (AMPs) that are produced in plants and animals. In Drosophila, the induction of AMPs in response to infection is regulated through the activation of the evolutionarily conserved Toll and immune deficiency (IMD) pathways. Here we show that AMP activation can be achieved independently of these immunoregulatory pathways by the transcription factor FOXO, a key regulator of stress resistance, metabolism and ageing. In non-infected animals, AMP genes are activated in response to nuclear FOXO activity when induced by starvation, using insulin signalling mutants, or by applying small molecule inhibitors. AMP induction is lost in foxo null mutants but enhanced when FOXO is overexpressed. Expression of AMP genes in response to FOXO activity can also be triggered in animals unable to respond to immune challenges due to defects in both the Toll and IMD pathways. Molecular experiments at the Drosomycin promoter indicate that FOXO directly binds to its regulatory region, thereby inducing its transcription. In vivo studies in Drosophila, but also studies in human lung, gut, kidney and skin cells indicate that a FOXO-dependent regulation of AMPs is evolutionarily conserved. Our results indicate a new mechanism of cross-regulation of metabolism and innate immunity by which AMP genes can be activated under normal physiological conditions in response to the oscillating energy status of cells and tissues. This regulation seems to be independent of the pathogen-responsive innate immunity pathways whose activation is often associated with tissue damage and repair. The sparse production of AMPs in epithelial tissues in response to FOXO may help modulating the defence reaction without harming the host tissues, in particular when animals are suffering from energy shortage

  1. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  2. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  3. Verneuil's disease, innate immunity and vitamin D: a pilot study.

    Science.gov (United States)

    Guillet, A; Brocard, A; Bach Ngohou, K; Graveline, N; Leloup, A-G; Ali, D; Nguyen, J-M; Loirat, M-J; Chevalier, C; Khammari, A; Dreno, B

    2015-07-01

    Verneuil's disease is a chronic inflammatory skin disease of the follicles in apocrine glands rich area of the skin (axillary, inguinal, anogenital) and is associated with a deficient skin innate immunity. It is characterized by the occurrence of nodules, abscesses, fistulas, scars. Recently, vitamin D has been shown to stimulate skin innate immunity. The primary objective of the study was to assess whether Verneuil's disease was associated with vitamin D deficiency. The secondary objective was to determine whether vitamin D supplementation could improve inflammatory lesions. First, 25(OH) vitamin D3 serum levels in patients with Verneuil's disease followed at Nantes University Hospital were compared to those of healthy donors from the French Blood Bank. Then, a pilot study was conducted in 14 patients supplemented with vitamin D according to their vitamin D level at baseline at months 3 and 6. The endpoints at 6 months were decreased by at least 20% in the number of nodules and in the frequency of flare-ups. Twenty-two patients (100%) had vitamin D deficiency (level vitamin D deficiency (91%) of whom 14% were severely deficient. In 14 patients, the supplementation significantly decreased the number of nodules at 6 months (P = 0.01133), and the endpoints were achieved in 79% of these patients. A correlation between the therapeutic success and the importance of the increase in vitamin D level after supplementation was observed (P = 0.01099). Our study shows that Verneuil's disease is associated with a major vitamin D deficiency, correlated with the disease severity. It suggests that vitamin D could significantly improve the inflammatory nodules, probably by stimulating the skin innate immunity. A larger randomized study is needed to confirm these findings. © 2014 European Academy of Dermatology and Venereology.

  4. Gut vagal afferents differentially modulate innate anxiety and learned fear.

    Science.gov (United States)

    Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs

    2014-05-21

    Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.

  5. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  7. Role of heat shock protein 70 in innate alloimmunity

    Directory of Open Access Journals (Sweden)

    Walter G. eLand

    2012-01-01

    Full Text Available This article briefly describes our own experience with the proven demonstration of heat shock protein 70 in reperfused renal allografts from brain-deaddonors and reflects about its potential role as a typical damage-associated molecular pattern (DAMP in the setting of innate alloimmunity. In fact, our group was able to demonstrate a dramatic up-regulation of heat shock protein 70 expression after postischemic reperfusion of renal allografts. Of note, up-regulation of this stress protein expression, although to a lesser extent, was already observed after cold storage of the organ indicating that this molecule is already induced in the stressed organism of a brain-dead donor. However, whether or not the dramatic up-regulation of heat shock protein 70 expression contributes to mounting an innate alloimmune response cannot be judged in view of these clinical findings.Nevertheless, heat shock protein 70, since generated in association with postischemic reperfusion-induced allograft injury, can be called a typical DAMP - as can everymolecule be termed a DAMP that is generated in associationwith any stressful tissue injury regardless of its final positive or negative regulatory function within the innate immune response elicited by it.In fact, as we discuss in this article, the context-dependent, even contradistinctive activities of heat shock protein 70 reflect the biological phenomenon that, throughout evolution, mammals have developed an elaborate network of positive and negative regulatory mechanisms, which provide balance between defensive and protective measures against unwarranted destruction of the host. In this sense, up-regulated expression of heat shock protein 70 in an injured allograft might reflect a pure protective response against the severe oxidative injury of a reperfused donor organ. On the other hand, up-regulated expression of this stress protein in an injured allograft might reflect a(futile attempt of the innate immune system to

  8. Isolation and characterization of mouse innate lymphoid cells.

    Science.gov (United States)

    Halim, Timotheus Y F; Takei, Fumio

    2014-08-01

    Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.

  9. Innate-Type and Acquired-Type Allergy Regulated by IL-33

    Directory of Open Access Journals (Sweden)

    Tomohiro Yoshimoto

    2014-01-01

    Full Text Available We propose two types of allergic response: IgE-dependent and IgE-independent, and designate these as 'acquired-type allergy' and 'innate-type allergy', respectively. IL-33 stimulates both innate (basophils, mast cells, or group 2 innate lymphoid cells and acquired (Th2 cells allergy-related cells to induce and/or augment Th2 cytokine production, which leads to eosinophilic inflammation in vivo. Thus, IL-33 is an essential regulator for both 'innate-type allergy' and 'acquired-type allergy', and might be an attractive therapeutic target for allergic diseases.

  10. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  11. Writing Blocks and Tacit Knowledge.

    Science.gov (United States)

    Boice, Robert

    1993-01-01

    A review of the literature on writing block looks at two kinds: inability to write in a timely, fluent fashion, and reluctance by academicians to assist others in writing. Obstacles to fluent writing are outlined, four historical trends in treating blocks are discussed, and implications are examined. (MSE)

  12. Block storage subsystem performance analysis

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    You feel that your service is slow because of the storage subsystem? But there are too many abstraction layers between your software and the raw block device for you to debug all this pile... Let's dive on the platters and check out how the block storage sees your I/Os! We can even figure out what those patterns are meaning.

  13. Region 9 Census Block 2010

    Science.gov (United States)

    Geography:The TIGER Line Files are feature classes and related database files (.) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census Blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by non visible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that data users think census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2010 Census blocks nest within every other 2010 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up t

  14. Determination of the Fate and Function of Innate Lymphoid Cells Following Adoptive Transfer of Innate Lymphoid Cell Precursors.

    Science.gov (United States)

    O'Sullivan, Timothy E; Sun, Joseph C

    2018-01-01

    Innate lymphoid cells are a heterogeneous family of tissue-resident and circulating lymphocytes that play an important role in host immunity. Recent studies have profiled the developmental pathways of mature ILCs and have identified ILC progenitors in the bone marrow through the use of transcription factor reporter mice. Here we describe methodology to identify and isolate bone marrow CHILP and ILC2 progenitor (ILC2P) cells based on cell surface marker expression for adoptive transfer into lymphopenic mice to track the fate of developing ILCs.

  15. Innate Immune Complexity in the Purple Sea Urchin: Diversity of the Sp185/333 System

    Science.gov (United States)

    Smith, L. Courtney

    2012-01-01

    The California purple sea urchin, Strongylocentrotus purpuratus, is a long-lived echinoderm with a complex and sophisticated innate immune system. There are several large gene families that function in immunity in this species including the Sp185/333 gene family that has ∼50 (±10) members. The family shows intriguing sequence diversity and encodes a broad array of diverse yet similar proteins. The genes have two exons of which the second encodes the mature protein and has repeats and blocks of sequence called elements. Mosaics of element patterns plus single nucleotide polymorphisms-based variants of the elements result in significant sequence diversity among the genes yet maintains similar structure among the members of the family. Sequence of a bacterial artificial chromosome insert shows a cluster of six, tightly linked Sp185/333 genes that are flanked by GA microsatellites. The sequences between the GA microsatellites in which the Sp185/333 genes and flanking regions are located, are much more similar to each other than are the sequences outside the microsatellites suggesting processes such as gene conversion, recombination, or duplication. However, close linkage does not correspond with greater sequence similarity compared to randomly cloned and sequenced genes that are unlikely to be linked. There are three segmental duplications that are bounded by GAT microsatellites and include three almost identical genes plus flanking regions. RNA editing is detectible throughout the mRNAs based on comparisons to the genes, which, in combination with putative post-translational modifications to the proteins, results in broad arrays of Sp185/333 proteins that differ among individuals. The mature proteins have an N-terminal glycine-rich region, a central RGD motif, and a C-terminal histidine-rich region. The Sp185/333 proteins are localized to the cell surface and are found within vesicles in subsets of polygonal and small phagocytes. The coelomocyte proteome shows full

  16. Neuronal basis of innate olfactory attraction to ethanol in Drosophila.

    Directory of Open Access Journals (Sweden)

    Andrea Schneider

    Full Text Available The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine - the invertebrate analogue of noradrenaline - in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b. Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse, the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.

  17. GSL-enriched membrane microdomains in innate immune responses.

    Science.gov (United States)

    Nakayama, Hitoshi; Ogawa, Hideoki; Takamori, Kenji; Iwabuchi, Kazuhisa

    2013-06-01

    Many pathogens target glycosphingolipids (GSLs), which, together with cholesterol, GPI-anchored proteins, and various signaling molecules, cluster on host cell membranes to form GSL-enriched membrane microdomains (lipid rafts). These GSL-enriched membrane microdomains may therefore be involved in host-pathogen interactions. Innate immune responses are triggered by the association of pathogens with phagocytes, such as neutrophils, macrophages and dendritic cells. Phagocytes express a diverse array of pattern-recognition receptors (PRRs), which sense invading microorganisms and trigger pathogen-specific signaling. PRRs can recognize highly conserved pathogen-associated molecular patterns expressed on microorganisms. The GSL lactosylceramide (LacCer, CDw17), which binds to various microorganisms, including Candida albicans, is expressed predominantly on the plasma membranes of human mature neutrophils and forms membrane microdomains together with the Src family tyrosine kinase Lyn. These LacCer-enriched membrane microdomains can mediate superoxide generation, migration, and phagocytosis, indicating that LacCer functions as a PRR in innate immunity. Moreover, the interactions of GSL-enriched membrane microdomains with membrane proteins, such as growth factor receptors, are important in mediating the physiological properties of these proteins. Similarly, we recently found that interactions between LacCer-enriched membrane microdomains and CD11b/CD18 (Mac-1, CR3, or αMβ2-integrin) are significant for neutrophil phagocytosis of non-opsonized microorganisms. This review describes the functional role of LacCer-enriched membrane microdomains and their interactions with CD11b/CD18.

  18. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  19. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  20. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  1. Innate Lymphoid Cells in HIV/SIV Infections

    Directory of Open Access Journals (Sweden)

    Spandan V. Shah

    2017-12-01

    Full Text Available Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  2. Innate resistance to myxomatosis in wild rabbits in England*

    Science.gov (United States)

    Ross, J.; Sanders, M. F.

    1977-01-01

    Wild rabbits (Oryctolagus cuniculus) from one study area in England have been used over a period of 11 years to investigate the possible appearance of innate resistance to myxomatosis. Rabbits of 4-6 weeks old were captured alive, retained in the laboratory until at least 4 months old, and then infected with a type of myxoma virus which kills 90-95% of laboratory rabbits. Observations were made of symptoms, mortality rate and survival times. In the first 4 years of the study (1966-9), mortality rates were not significantly different from those of laboratory rabbits, although survival times of wild rabbits were appreciably longer. In 1970, the mortality rate amongst wild rabbits was 59%, in 1974 it was 17%, and in 1976 it was 20%, thus showing that a considerable degree of inherited resistance to myxomatosis has developed. The types of myxoma virus most commonly isolated from wild rabbits in Great Britain in recent years have been those which cause 70-95% mortality in laboratory rabbits. Therefore, if the degree of innate resistance demonstrated is widespread in Great Britain, there are serious implications regarding the size of the rabbit population, because myxomatosis has been an important factor in holding rabbit numbers at a relatively low level. PMID:270526

  3. Innate resistance to myxomatosis in wild rabbits in England.

    Science.gov (United States)

    Ross, J; Sanders, M F

    1977-12-01

    Wild rabbits (Oryctolagus cuniculus) from one study area in England have been used over a period of 11 years to investigate the possible appearance of innate resistance to myxomatosis. Rabbits of 4-6 weeks old were captured alive, retained in the laboratory until at least 4 months old, and then infected with a type of myxoma virus which kills 90-95% of laboratory rabbits. Observations were made of symptoms, mortality rate and survival times.In the first 4 years of the study (1966-9), mortality rates were not significantly different from those of laboratory rabbits, although survival times of wild rabbits were appreciably longer. In 1970, the mortality rate amongst wild rabbits was 59%, in 1974 it was 17%, and in 1976 it was 20%, thus showing that a considerable degree of inherited resistance to myxomatosis has developed.The types of myxoma virus most commonly isolated from wild rabbits in Great Britain in recent years have been those which cause 70-95% mortality in laboratory rabbits. Therefore, if the degree of innate resistance demonstrated is widespread in Great Britain, there are serious implications regarding the size of the rabbit population, because myxomatosis has been an important factor in holding rabbit numbers at a relatively low level.

  4. John Stuart Mill, innate differences, and the regulation of reproduction.

    Science.gov (United States)

    Paul, Diane B; Day, Benjamin

    2008-06-01

    In this paper, we show that the question of the relative importance of innate characteristics and institutional arrangements in explaining human difference was vehemently contested in Britain during the first half of the nineteenth century. Thus Sir Francis Galton's work of the 1860s should be seen as an intervention in a pre-existing controversy. The central figure in these earlier debates-as well as many later ones-was the philosopher and economist John Stuart Mill. In Mill's view, human nature was fundamentally shaped by history and culture, factors that accounted for most mental and behavioral differences between men and women and among people of different classes, nationalities, and races. Indeed, Mill's whole program of social reform depended on the assumption that human differences were not fixed by nature. To identify the leading figures in these disputes about difference and the concrete context in which they occurred, we explore three debates in which Mill played a key role: over the capacities and rights of women, the viability of peasant proprietorship in India and Ireland, and the status of black labor in Jamaica. The last two draw our attention to the important colonial context of the nature-nurture debate. We also show that ideas that for us seem of a piece were not always linked for these earlier thinkers, nor did views on innateness necessarily have the political correlates that we now take for granted.

  5. Hematopoietic Stem and Progenitor Cells as Effectors in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Jennifer L. Granick

    2012-01-01

    Full Text Available Recent research has shed light on novel functions of hematopoietic stem and progenitor cells (HSPC. While they are critical for maintenance and replenishment of blood cells in the bone marrow, these cells are not limited to the bone marrow compartment and function beyond their role in hematopoiesis. HSPC can leave bone marrow and circulate in peripheral blood and lymph, a process often manipulated therapeutically for the purpose of transplantation. Additionally, these cells preferentially home to extramedullary sites of inflammation where they can differentiate to more mature effector cells. HSPC are susceptible to various pathogens, though they may participate in the innate immune response without being directly infected. They express pattern recognition receptors for detection of endogenous and exogenous danger-associated molecular patterns and respond not only by the formation of daughter cells but can themselves secrete powerful cytokines. This paper summarizes the functional and phenotypic characterization of HSPC, their niche within and outside of the bone marrow, and what is known regarding their role in the innate immune response.

  6. Cytokine Networks between Innate Lymphoid Cells and Myeloid Cells.

    Science.gov (United States)

    Mortha, Arthur; Burrows, Kyle

    2018-01-01

    Innate lymphoid cells (ILCs) are an essential component of the innate immune system in vertebrates. They are developmentally rooted in the lymphoid lineage and can diverge into at least three transcriptionally distinct lineages. ILCs seed both lymphoid and non-lymphoid tissues and are locally self-maintained in tissue-resident pools. Tissue-resident ILCs execute important effector functions making them key regulator in tissue homeostasis, repair, remodeling, microbial defense, and anti-tumor immunity. Similar to T lymphocytes, ILCs possess only few sensory elements for the recognition of non-self and thus depend on extrinsic cellular sensory elements residing within the tissue. Myeloid cells, including mononuclear phagocytes (MNPs), are key sentinels of the tissue and are able to translate environmental cues into an effector profile that instructs lymphocyte responses. The adaptation of myeloid cells to the tissue state thus influences the effector program of ILCs and serves as an example of how environmental signals are integrated into the function of ILCs via a tissue-resident immune cell cross talks. This review summarizes our current knowledge on the role of myeloid cells in regulating ILC functions and discusses how feedback communication between ILCs and myeloid cells contribute to stabilize immune homeostasis in order to maintain the healthy state of an organ.

  7. Innate Lymphoid Cells in HIV/SIV Infections.

    Science.gov (United States)

    Shah, Spandan V; Manickam, Cordelia; Ram, Daniel R; Reeves, R Keith

    2017-01-01

    Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.

  8. Innate lymphoid cells at the interface between obesity and asthma.

    Science.gov (United States)

    Everaere, Laetitia; Ait Yahia, Saliha; Bouté, Mélodie; Audousset, Camille; Chenivesse, Cécile; Tsicopoulos, Anne

    2018-01-01

    Obesity and asthma prevalence has dramatically and concomitantly increased over the last 25 years, and many epidemiological studies have highlighted obesity as an important risk factor for asthma. Although many studies have been performed, the underlying mechanisms remain poorly understood. Innate mechanisms have been involved in both diseases, in particular through the recently described innate lymphoid cells (ILCs). ILCs are subdivided into three groups that are defined by their cytokine production and by their master transcription factor expression, in sharp correlation with their T helper counterparts. However, unlike T helper cells, ILCs do not express antigen-specific receptors, but respond to damage-induced signals. ILCs have been found in target tissues of both diseases, and data have implicated these cells in the pathogenesis of both diseases. In particular group 2 ILCs (ILC2) are activated in both the adipose and lung tissues under the effect of interleukin-33 and interleukin-25 expression. However, counter-intuitively to the well-known association between obesity and asthma, ILC2 are beneficial for obesity but deleterious for asthma. This review will examine the roles of ILCs in each disease and recent data highlighting ILCs as a putative link between obesity and asthma. © 2017 John Wiley & Sons Ltd.

  9. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  10. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  11. Differential activity of innate defense antimicrobial peptides against Nocardia species.

    Science.gov (United States)

    Rieg, Siegbert; Meier, Benjamin; Fähnrich, Eva; Huth, Anja; Wagner, Dirk; Kern, Winfried V; Kalbacher, Hubert

    2010-02-23

    Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human alpha-defensins human neutrophil peptides (HNPs) 1-3, human beta-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine beta-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human alpha-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  12. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  13. Feliform carnivores have a distinguished constitutive innate immune response

    Directory of Open Access Journals (Sweden)

    Sonja K. Heinrich

    2016-05-01

    Full Text Available Determining the immunological phenotype of endangered and threatened populations is important to identify those vulnerable to novel pathogens. Among mammals, members of the order Carnivora are particularly threatened by diseases. We therefore examined the constitutive innate immune system, the first line of protection against invading microbes, of six free-ranging carnivore species; the black-backed jackal (Canis mesomelas, the brown hyena (Hyena brunnea, the caracal (Caracal caracal, the cheetah (Acinonyx jubatus, the leopard (Panthera pardus and the lion (Panthera leo using a bacterial killing assay. The differences in immune responses amongst the six species were independent of their foraging behaviour, body mass or social organisation but reflected their phylogenetic relatedness. The bacterial killing capacity of black-backed jackals, a member of the suborder Caniformia, followed the pattern established for a wide variety of vertebrates. In contrast, the five representatives of the suborder Feliformia demonstrated a killing capacity at least an order of magnitude higher than any species reported previously, with a particularly high capacity in caracals and cheetahs. Our results suggest that the immunocompetence of threatened felids such as the cheetah has been underestimated and its assessment ought to consider both innate and adaptive components of the immune system.

  14. Characteristic and functional analysis of toll-like receptors (TLRs in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    Full Text Available The evolution of TLR-mediated innate immunity is a fundamental question in immunology. Here, we report the characterization and functional analysis of four TLR members in the lophotrochozoans Crassostreagigas (CgTLRs. All CgTLRs bear a conserved domain organization and have a close relationship with TLRs in ancient non-vertebrate chordates. In HEK293 cells, every CgTLR could constitutively activate NF-κB responsive reporter, but none of the PAMPs tested could stimulate CgTLR-activated NF-κB induction. Subcellular localization showed that CgTLR members have similar and dual distribution on late endosomes and plasma membranes. Moreover, CgTLRs and CgMyD88 mRNA show a consistent response to multiple PAMP challenges in oyster hemocytes. As CgTLR-mediated NF-κB activation is dependent on CgMyD88, we designed a blocking peptide for CgTLR signaling that would inhibit CgTLR-CgMyD88 dependent NF-κB activation. This was used to demonstrate that a Vibrio parahaemolyticus infection-induced enhancement of degranulation and increase of cytokines TNF mRNA in hemocytes, could be inhibited by blocking CgTLR signaling. In summary, our study characterized the primitive TLRs in the lophotrocozoan C. gigas and demonstrated a fundamental role of TLR signaling in infection-induced hemocyte activation. This provides further evidence for an ancient origin of TLR-mediated innate immunity.

  15. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  16. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  17. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Sobko, Evgeny [Stockholm Univ. (Sweden); Nordita, Stockholm (Sweden); Isachenkov, Mikhail [Weizmann Institute of Science, Rehovoth (Israel). Dept. of Particle Physics and Astrophysics

    2016-12-07

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  18. Harmony of spinning conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, Volker [DESY Hamburg, Theory Group,Notkestraße 85, 22607 Hamburg (Germany); Sobko, Evgeny [Nordita and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Isachenkov, Mikhail [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot 7610001 (Israel)

    2017-03-15

    Conformal blocks for correlation functions of tensor operators play an increasingly important role for the conformal bootstrap programme. We develop a universal approach to such spinning blocks through the harmonic analysis of certain bundles over a coset of the conformal group. The resulting Casimir equations are given by a matrix version of the Calogero-Sutherland Hamiltonian that describes the scattering of interacting spinning particles in a 1-dimensional external potential. The approach is illustrated in several examples including fermionic seed blocks in 3D CFT where they take a very simple form.

  19. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice.

    Science.gov (United States)

    Verhoef, Philip A; Constantinides, Michael G; McDonald, Benjamin D; Urban, Joseph F; Sperling, Anne I; Bendelac, Albert

    2016-02-01

    The transcription factor promyelocytic leukemia zinc finger (PLZF) is transiently expressed during development of type 2 innate lymphoid cells (ILC2s) but is not present at the mature stage. We hypothesized that PLZF-deficient ILC2s have functional defects in the innate allergic response and represent a tool for studying innate immunity in a mouse with a functional adaptive immune response. We determined the consequences of PLZF deficiency on ILC2 function in response to innate and adaptive immune stimuli by using PLZF(-/-) mice and mixed wild-type:PLZF(-/-) bone marrow chimeras. PLZF(-/-) mice, wild-type littermates, or mixed bone marrow chimeras were treated with the protease allergen papain or the cytokines IL-25 and IL-33 or infected with the helminth Nippostrongylus brasiliensis to induce innate type 2 allergic responses. Mice were sensitized with intraperitoneal ovalbumin-alum, followed by intranasal challenge with ovalbumin alone, to induce adaptive TH2 responses. Lungs were analyzed for immune cell subsets, and alveolar lavage fluid was analyzed for ILC2-derived cytokines. In addition, ILC2s were stimulated ex vivo for their capacity to release type 2 cytokines. PLZF-deficient lung ILC2s exhibit a cell-intrinsic defect in the secretion of IL-5 and IL-13 in response to innate stimuli, resulting in defective recruitment of eosinophils and goblet cell hyperplasia. In contrast, the adaptive allergic inflammatory response to ovalbumin and alum was unimpaired. PLZF expression at the innate lymphoid cell precursor stage has a long-range effect on the functional properties of mature ILC2s and highlights the importance of these cells for innate allergic responses in otherwise immunocompetent mice. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  20. DMPD: Cytosolic DNA recognition for triggering innate immune responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280611 Cytosolic DNA recognition for triggering innate immune responses. Takaoka ...A, Taniguchi T. Adv Drug Deliv Rev. 2008 Apr 29;60(7):847-57. Epub 2007 Dec 31. (.png) (.svg) (.html) (.csml) Show Cytosol...ic DNA recognition for triggering innate immune responses. PubmedID 18280611 Title Cytosolic D

  1. MECHANISMS OF ANTIINFECTIOUS FUNCTIONS OF INNATE IMMUNITY: ROLE OF TOLL-LIKE RECEPTORS

    Directory of Open Access Journals (Sweden)

    S. I. Suskov

    2012-01-01

    Full Text Available This review describes the main role of toll-like receptors of innate immunity for pathogen recognition; signaling; production of inflammatory response. Also Interrelation of innate and adaptive Immunity in conditions of pathology and organ transplantation were considered. 

  2. S1P dependent inter organ trafficking of group 2 innate lymphoid cells suppots host defense

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are considered to be the innate counterparts of adaptive T lymphocytes and play important roles in host defense, tissue repair, metabolic homeostasis, and inflammatory diseases. ILCs are generally thought of as tissue-resident cells, but whether ILCs strictly behave in a...

  3. Th1- and Th2-like subsets of innate lymphoid cells

    NARCIS (Netherlands)

    Bernink, Jochem; Mjösberg, Jenny; Spits, Hergen

    2013-01-01

    Innate lymphoid cells (ILCs) constitute a family of effectors in innate immunity and regulators of tissue remodeling that have a cytokine and transcription factor expression pattern that parallels that of the T-helper (Th) cell family. Here, we discuss how ILCs can be categorized and summarize the

  4. Another Armament in Gut Immunity: Lymphotoxin-Mediated Crosstalk between Innate Lymphoid and Dendritic Cells

    NARCIS (Netherlands)

    Spits, H.

    2011-01-01

    Innate lymphoid cells (ILCs) are novel players in innate immunity. Tumanov et al. (Tumanov et al., 2011) demonstrate that crosstalk between ILCs and dendritic cells involving membrane-bound lymphotoxin in ILCs and its receptor is critical for protection against colitogenic bacteria

  5. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...ald C, Inohara N, Nunez G. J Biol Chem. 2005 May 27;280(21):20177-80. Epub 2005 Mar 31. (.png) (.svg) (.html) (.csml) Show Peptidog...lycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title Peptidog

  6. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  7. DMPD: Innate immune responses during infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available va Correia J. Vaccine. 2004 Dec 6;22 Suppl 1:S25-30. (.png) (.svg) (.html) (.csml) Show Innate immune responses during infection. Pub...medID 15576198 Title Innate immune responses during infection. Authors Ulevitch RJ,

  8. Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans

    NARCIS (Netherlands)

    Kox, M.; Eijk, L.T.G.J. van; Zwaag, J.; Wildenberg, J. van den; Sweep, F.C.; Hoeven, J.G. van der; Pickkers, P.

    2014-01-01

    Excessive or persistent proinflammatory cytokine production plays a central role in autoimmune diseases. Acute activation of the sympathetic nervous system attenuates the innate immune response. However, both the autonomic nervous system and innate immune system are regarded as systems that cannot

  9. Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory

    NARCIS (Netherlands)

    Kindrachuk, J.; Jenssen, H.; Elliott, M.; Breukink, E.J.; Hancock, R.E.W.; et al., [No Value

    2013-01-01

    Innate immunity is triggered by a variety of bacterial molecules, resulting in both protective and potentially harmful proinflammatory responses. Further, innate immunity also provides a mechanism for the maintenance of homeostasis between the host immune system and symbiotic or non-pathogenic

  10. The role of intracellular thyroid hormone metabolism in innate immune cells

    NARCIS (Netherlands)

    van der Spek, A.H.

    2018-01-01

    Innate immune cells have recently been identified as important thyroid hormone target cells. This thesis studies the role of intracellular thyroid hormone metabolism in the function of neutrophils and macrophages, two essential cell types of the innate immune system. Neutrophils, monocytes and

  11. The bovine spleen: Interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections

    Science.gov (United States)

    Over the past several years, innate immunity has been recognized as having an important role as a front-line defense mechanism and as an integral part of the adaptive immune response. Innate immunity in cattle exposed to hemoparasites is spleen-dependent and age-related. In this review, we discuss g...

  12. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  13. Early Subretinal Allograft Rejection Is Characterized by Innate Immune Activity.

    Science.gov (United States)

    Kennelly, Kevin P; Holmes, Toby M; Wallace, Deborah M; O'Farrelly, Cliona; Keegan, David J

    2017-06-09

    Successful subretinal transplantation is limited by considerable early graft loss despite pharmacological suppression of adaptive immunity. We postulated that early innate immune activity is a dominant factor in determining graft survival and chose a nonimmunosuppressed mouse model of retinal pigment epithelial (RPE) cell transplantation to explore this. Expression of almost all measured cytokines by DH01 RPE cells increased significantly following graft preparation, and the neutrophil chemoattractant KC/GRO/CINC was most significantly increased. Subretinal allografts of DH01 cells (C57BL/10 origin) into healthy, nonimmunosuppressed C57BL/6 murine eyes were harvested and fixed at 1, 3, 7, and 28 days postoperatively and subsequently cryosectioned and stained. Graft cells were detected using SV40 large T antigen (SV40T) immunolabeling and apoptosis/necrosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Sections were also immunolabeled for macrophage (CD11b and F4/80), neutrophil (Gr1 Ly-6G), and T-lymphocyte (CD3-ɛ) infiltration. Images captured with an Olympus FV1000 confocal microscope were analyzed using the Imaris software. The proportion of the subretinal bolus comprising graft cells (SV40T+) was significantly (p < 0.001) reduced between postoperative day (POD) 3 (90 ± 4%) and POD 7 (20 ± 7%). CD11b+, F4/80+, and Gr1 Ly-6G+ cells increased significantly (p < 0.05) from POD 1 and predominated over SV40T+ cells by POD 7. Colabeling confocal microscopic analysis demonstrated graft engulfment by neutrophils and macrophages at POD 7, and reconstruction of z-stacked confocal images confirmed SV40T inside Gr1 Ly-6G+ cells. Expression of CD3-ɛ was low and did not differ significantly between time points. By POD 28, no graft cells were detectable and few inflammatory cells remained. These studies reveal, for the first time, a critical role for innate immune mechanisms early in subretinal graft rejection. The future success

  14. Oxidative stress, innate immunity, and age-related macular degeneration

    Science.gov (United States)

    Shaw, Peter X.; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    2016-01-01

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  15. Rolling block mazes are PSPACE-complete

    NARCIS (Netherlands)

    Buchin, K.; Buchin, M.

    2012-01-01

    In a rolling block maze, one or more blocks lie on a rectangular board with square cells. In most mazes, the blocks have size k × m × n where k, m, n are integers that determine the size of the block in terms of units of the size of the board cells. The task of a rolling block maze is to roll a

  16. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  17. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages. Keywords: Macrophage, ATF7, Innate immune memory, Microarray

  18. The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes?

    Science.gov (United States)

    Wang, Weijun; Zhang, Yaxing; Yang, Ling; Li, Hongliang

    2017-02-28

    The innate immune system is responsible for sensing pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) by several types of germline-encoded pattern-recognition receptors (PRRs). It has the capacity to help the human body maintain homeostasis under normal conditions. However, in pathological conditions, PAMPs or DAMPs trigger aberrant innate immune and inflammatory responses and thus negatively or positively influence the progression of cancer and cardiometabolic diseases. Interestingly, we found that some elements of innate immune signaling are involved in these diseases partially via immune-independent manners, indicating a deeper understanding of the function of innate immune signaling in these diseases is urgent. In this review, we summarize the primary innate immune signaling pathways and their association with cancer and cardiometabolic diseases, with the aim of providing effective therapies for these diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma

    Science.gov (United States)

    Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba

    2012-01-01

    Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480

  20. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  1. Recursion Relations for Conformal Blocks

    CERN Document Server

    Penedones, João; Yamazaki, Masahito

    2016-09-12

    In the context of conformal field theories in general space-time dimension, we find all the possible singularities of the conformal blocks as functions of the scaling dimension $\\Delta$ of the exchanged operator. In particular, we argue, using representation theory of parabolic Verma modules, that in odd spacetime dimension the singularities are only simple poles. We discuss how to use this information to write recursion relations that determine the conformal blocks. We first recover the recursion relation introduced in 1307.6856 for conformal blocks of external scalar operators. We then generalize this recursion relation for the conformal blocks associated to the four point function of three scalar and one vector operator. Finally we specialize to the case in which the vector operator is a conserved current.

  2. Defying gravity using Jenga™ blocks

    Science.gov (United States)

    Tan, Yin-Soo; Yap, Kueh-Chin

    2007-11-01

    This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.

  3. Risking Aggression: Reply to Block

    Directory of Open Access Journals (Sweden)

    Kris Borer

    2010-05-01

    Full Text Available In his paper, “Is There an ‘Anomalous’ Section of the Laffer Curve?”, Walter Block describes some situations in which it appears that a libertarian should violate the non-aggression principle. To rectify this, Block proposes a different perspective on libertarianism which he calls punishment theory. This paper argues that no new theory is needed, as the non-aggression principle can be used to resolve theapparent conundrums.

  4. Risking Aggression: Reply to Block

    OpenAIRE

    Kris Borer

    2010-01-01

    In his paper, “Is There an ‘Anomalous’ Section of the Laffer Curve?”, Walter Block describes some situations in which it appears that a libertarian should violate the non-aggression principle. To rectify this, Block proposes a different perspective on libertarianism which he calls punishment theory. This paper argues that no new theory is needed, as the non-aggression principle can be used to resolve theapparent conundrums.

  5. A Novel Tetrathiafulvalene Building Block

    DEFF Research Database (Denmark)

    Jeppesen, Jan Oskar; Takimiya, Kazuo; Thorup, Niels

    1999-01-01

    Efficient synthesis of a novel tetrathiafulvalene building block. 2,3-bis(2-cyanoethylthio)-6,7-bis(thiocyanato-methyl)tetrathiafulv alene (7) useful for stepwise and asymmetrical bis-function-alization is reported.......Efficient synthesis of a novel tetrathiafulvalene building block. 2,3-bis(2-cyanoethylthio)-6,7-bis(thiocyanato-methyl)tetrathiafulv alene (7) useful for stepwise and asymmetrical bis-function-alization is reported....

  6. Viral evasion of DNA-stimulated innate immune responses

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769

  7. Identification of innate immunodeficiencies by whole genome sequencing

    DEFF Research Database (Denmark)

    Mogensen, Trine; Christiansen, Mette; Veirum, Jens Erik

    2014-01-01

    encephalitis or other herpes simplex virus (HSV) disease manifestations. The goal is to identify host factors in innate immunity which may explain the hitherto unknown mechanism underlying differential susceptibility to HSV infections between individuals. Such knowledge may have clinical and therapeutical...... implications. Methods: As part of a pilot study we performed WES on 4 patients with herpes encephalitis or mucocutaneous manifestations of HSV infection. WES was performed with Illumina technology (Illumina HiSeq/MiSeq) and analyzed PolyPhen-2 (Polymorphism Phenotyping v2) PhyloP, and SIFT prediction software......, TBK1 and Unc93B) may contribute to the development of herpes encephalitis. Common to these genetic defects is that they lead to reduced antiviral interferon (IFN) responses. In this study whole exome sequencing (WES) was performed to identify mutations associated with susceptibility to herpes...

  8. Viral evasion of DNA-stimulated innate immune responses.

    Science.gov (United States)

    Christensen, Maria H; Paludan, Søren R

    2017-01-01

    Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.

  9. Innate Lymphoid Cell Biology: Lessons Learnt from Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Yuhao Jiao

    2016-10-01

    Full Text Available Group 1 innate lymphoid cells (ILC comprise the natural killer (NK cells and ILC1 which reside within peripheral tissues. Several different ILC1 subsets have recently been characterised, however no unique markers to define these subsets have been identified. Whether ILC1 and NK cells are in fact distinct lineages, or alternately exhibit transitional molecular programs, that allow them to adapt to different tissue niches remains an open question. NK cells are the prototypic member of the Group 1 ILC and have been historically assigned the functions of what now appears to be a multi-subset family that are distributed throughout the body. This raises the question of whether each of these populations mediate distinct functions during infection and tumour immunosurveillance. Here, we review the diversity in the Group 1 ILC subsets with regards to their transcriptional regulation, localization, mobility and receptor expression and highlight the challenges in unraveling the individual functions of these different populations of cells.

  10. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells.

    Science.gov (United States)

    Melo-Gonzalez, Felipe; Hepworth, Matthew R

    2017-03-01

    Group 3 innate lymphoid cells (ILC3), defined by expression of the transcription factor retinoid-related orphan receptor γt, play key roles in the regulation of inflammation and immunity in the gastrointestinal tract and associated lymphoid tissues. ILC3 consist largely of two major subsets, NCR + ILC3 and LTi-like ILC3, but also demonstrate significant plasticity and heterogeneity. Recent advances have begun to dissect the relationship between ILC3 subsets and to define distinct functional states within the intestinal tissue microenvironment. In this review we discuss the ever-expanding roles of ILC3 in the context of intestinal homeostasis, infection and inflammation - with a focus on comparing and contrasting the relative contributions of ILC3 subsets. © 2016 The Authors. Immunology published by John Wiley & Sons Ltd.

  11. Innate Lymphoid Cells: a new paradigm in immunology

    Science.gov (United States)

    Eberl, Gérard; Colonna, Marco; Di Santo, James P.; McKenzie, Andrew N.J.

    2016-01-01

    Summary Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express acquired antigen receptors or undergo clonal selection and expansion when stimulated. Instead, ILCs react promptly to signals from infected or injured tissues and produce an array of secreted proteins termed cytokines that direct the developing immune response into one that is adapted to the original insult. The complex crosstalk between microenvironment, ILCs and adaptive immunity remains to be fully deciphered. Only by understanding these complex regulatory networks can the power of ILCs be controlled or unleashed to regulate or enhance immune responses in disease prevention and therapy. PMID:25999512

  12. New insights into innate immune control of systemic candidiasis

    Science.gov (United States)

    Lionakis, Michail S.

    2014-01-01

    Systemic infection caused by Candida species is the fourth leading cause of nosocomial bloodstream infection in modern hospitals and carries high morbidity and mortality despite antifungal therapy. A recent surge of immunological studies in the mouse models of systemic candidiasis and the parallel discovery and phenotypic characterization of inherited genetic disorders in antifungal immune factors that are associated with enhanced susceptibility or resistance to the infection have provided new insights into the cellular and molecular basis of protective innate immune responses against Candida. In this review, the new developments in our understanding of how the mammalian immune system responds to systemic Candida challenge are synthesized and important future research directions are highlighted. PMID:25023483

  13. Innate and Cultural Spatial Time: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Barbara Magnani

    2017-05-01

    Full Text Available We reviewed literature to understand when a spatial map for time is available in the brain. We carefully defined the concepts of metrical map of time and of conceptual representation of time as the mental time line (MTL in order to formulate our position. It is that both metrical map and conceptual representation of time are spatial in nature. The former should be innate, related to motor/implicit timing, it should represent all magnitudes with an analogic and bi-dimensional structure. The latter MTL should be learned, available at about 8–10 years-old and related to cognitive/explicit time. It should have uni-dimensional, linear and directional structure (left-to-right in Western culture. We bear the centrality of the development of number cognition, of time semantic concepts and of reading/writing habits for the development of ordinality and linearity of the MTL.

  14. BACH transcription factors in innate and adaptive immunity.

    Science.gov (United States)

    Igarashi, Kazuhiko; Kurosaki, Tomohiro; Roychoudhuri, Rahul

    2017-07-01

    BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4 + regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.

  15. Innate recognition of water bodies in echolocating bats.

    Science.gov (United States)

    Greif, Stefan; Siemers, Björn M

    2010-11-02

    In the course of their lives, most animals must find different specific habitat and microhabitat types for survival and reproduction. Yet, in vertebrates, little is known about the sensory cues that mediate habitat recognition. In free flying bats the echolocation of insect-sized point targets is well understood, whereas how they recognize and classify spatially extended echo targets is currently unknown. In this study, we show how echolocating bats recognize ponds or other water bodies that are crucial for foraging, drinking and orientation. With wild bats of 15 different species (seven genera from three phylogenetically distant, large bat families), we found that bats perceived any extended, echo-acoustically smooth surface to be water, even in the presence of conflicting information from other sensory modalities. In addition, naive juvenile bats that had never before encountered a water body showed spontaneous drinking responses from smooth plates. This provides the first evidence for innate recognition of a habitat cue in a mammal.

  16. Lipoprotein Lipase Maintains Microglial Innate Immunity in Obesity

    Directory of Open Access Journals (Sweden)

    Yuanqing Gao

    2017-09-01

    Full Text Available Consumption of a hypercaloric diet upregulates microglial innate immune reactivity along with a higher expression of lipoprotein lipase (Lpl within the reactive microglia in the mouse brain. Here, we show that knockdown of the Lpl gene specifically in microglia resulted in deficient microglial uptake of lipid, mitochondrial fuel utilization shifting to glutamine, and significantly decreased immune reactivity. Mice with knockdown of the Lpl gene in microglia gained more body weight than control mice on a high-carbohydrate high-fat (HCHF diet. In these mice, microglial reactivity was significantly decreased in the mediobasal hypothalamus, accompanied by downregulation of phagocytic capacity and increased mitochondrial dysmorphologies. Furthermore, HCHF-diet-induced POMC neuronal loss was accelerated. These results show that LPL-governed microglial immunometabolism is essential to maintain microglial function upon exposure to an HCHF diet. In a hypercaloric environment, lack of such an adaptive immunometabolic response has detrimental effects on CNS regulation of energy metabolism.

  17. Glucosinolate metabolites required for an Arabidopsis innate immune response.

    Science.gov (United States)

    Clay, Nicole K; Adio, Adewale M; Denoux, Carine; Jander, Georg; Ausubel, Frederick M

    2009-01-02

    The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity and is defined partly by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen-triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen-triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens.

  18. Glucosinolate Metabolites Required for an Arabidopsis Innate Immune Response*

    Science.gov (United States)

    Clay, Nicole K.; Adio, Adewale M.; Denoux, Carine; Jander, Georg; Ausubel, Frederick M.

    2008-01-01

    Summary The perception of pathogen or microbe-associated molecular pattern molecules by plants triggers a basal defense response analogous to animal innate immunity, and is defined in part by the deposition of the glucan polymer callose at the cell wall at the site of pathogen contact. Transcriptional and metabolic profiling in Arabidopsis mutants, coupled with the monitoring of pathogen triggered callose deposition, have identified major roles in pathogen response for the plant hormone ethylene and the secondary metabolite 4-methoxy-indol-3-ylmethylglucosinolate. Two genes, PEN2 and PEN3, are also necessary for resistance to pathogens and are required for both callose deposition and glucosinolate activation, suggesting that the pathogen triggered callose response is required for resistance to microbial pathogens. Our study shows that well-studied plant metabolites, previously identified as important in avoiding damage by herbivores, are also required as a component of the plant defense response against microbial pathogens. PMID:19095898

  19. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    Directory of Open Access Journals (Sweden)

    Cristina Cappelletti

    Full Text Available Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs. In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM, polymyositis (PM, dermatomyositis (DM and juvenile dermatomyositis (JDM. We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1. These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  20. Innate Immune Response to Rift Valley Fever Virus in Goats

    Science.gov (United States)

    Nfon, Charles K.; Marszal, Peter; Zhang, Shunzhen; Weingartl, Hana M.

    2012-01-01

    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings. PMID:22545170

  1. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  2. Comparative study between ultrasound guided TAP block and paravertebral block in upper abdominal surgeries

    Directory of Open Access Journals (Sweden)

    Ruqaya M Elsayed Goda

    2017-01-01

    Conclusion: We concluded that ultrasound guided transverses abdominis plane block and thoracic paravertebral block were safe and effective anesthetic technique for upper abdominal surgery with longer and potent postoperative analgesia in thoracic paravertebral block than transverses abdominis block.

  3. Rational modulation of the innate immune system for neuroprotection in ischemic stroke

    Directory of Open Access Journals (Sweden)

    Diana eAmantea

    2015-04-01

    Full Text Available The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs that contribute to blood–brain barrier (BBB disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF and interleukin (IL-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF-beta, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate towards several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13 or TGF-beta. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair.Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.

  4. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses.

    Directory of Open Access Journals (Sweden)

    Guido Moll

    Full Text Available Infusion of human third-party mesenchymal stromal cells (MSCs appears to be a promising therapy for acute graft-versus-host disease (aGvHD. To date, little is known about how MSCs interact with the body's innate immune system after clinical infusion. This study shows, that exposure of MSCs to blood type ABO-matched human blood activates the complement system, which triggers complement-mediated lymphoid and myeloid effector cell activation in blood. We found deposition of complement component C3-derived fragments iC3b and C3dg on MSCs and fluid-phase generation of the chemotactic anaphylatoxins C3a and C5a. MSCs bound low amounts of immunoglobulins and lacked expression of complement regulatory proteins MCP (CD46 and DAF (CD55, but were protected from complement lysis via expression of protectin (CD59. Cell-surface-opsonization and anaphylatoxin-formation triggered complement receptor 3 (CD11b/CD18-mediated effector cell activation in blood. The complement-activating properties of individual MSCs were furthermore correlated with their potency to inhibit PBMC-proliferation in vitro, and both effector cell activation and the immunosuppressive effect could be blocked either by using complement inhibitor Compstatin or by depletion of CD14/CD11b-high myeloid effector cells from mixed lymphocyte reactions. Our study demonstrates for the first time a major role of the complement system in governing the immunomodulatory activity of MSCs and elucidates how complement activation mediates the interaction with other immune cells.

  5. Regulatory T cells and type 2 innate lymphoid cell-dependent asthma.

    Science.gov (United States)

    Aron, J L; Akbari, O

    2017-08-01

    Group 2 innate lymphoid cells (ILC2s) are a recently identified group of cells with the potent capability to produce Th2-type cytokines such as interleukin (IL)-5 and IL-13. Several studies suggest that ILC2s play an important role in the development of allergic diseases and asthma. Activation of pulmonary ILC2s in murine models lacking T and B cells induces eosinophilia and airway hyper-reactivity (AHR), which are cardinal features of asthma. More importantly, numerous recent studies have highlighted the role of ILC2s in asthma persistence and exacerbation among human subjects, and thus, regulation of pulmonary ILC2s is a major area of investigation aimed at curbing allergic lung inflammation and exacerbation. Emerging evidence reveals that a group of regulatory T cells, induced Tregs (iTregs), effectively suppress the production of ILC2-driven, pro-inflammatory cytokines IL-5 and IL-13. The inhibitory effects of iTregs are blocked by preventing direct cellular contact or by inhibiting the ICOS-ICOS-ligand (ICOSL) pathway, suggesting that both direct contact and ICOS-ICOSL interaction are important in the regulation of ILC2 function. Also, cytokines such as IL-10 and TGF-β1 significantly reduce cytokine secretion by ILC2s. Altogether, these new findings uncover iTregs as potent regulators of ILC2 activation and implicate their utility as a therapeutic approach for the treatment of ILC2-mediated allergic asthma and respiratory disease. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response.

    Science.gov (United States)

    Malakhova, Oxana A; Zhang, Dong-Er

    2008-04-04

    Interferons regulate diverse immune functions through the transcriptional activation of hundreds of genes involved in anti-viral responses. The interferon-inducible ubiquitin-like protein ISG15 is expressed in cells in response to a variety of stress conditions like viral or bacterial infection and is present in its free form or is conjugated to cellular proteins. In addition, protein ubiquitination plays a regulatory role in the immune system. Many viruses modulate the ubiquitin (Ub) pathway to alter cellular signaling and the antiviral response. Ubiquitination of retroviral group-specific antigen precursors and matrix proteins of the Ebola, vesicular stomatitis, and rabies viruses by Nedd4 family HECT domain E3 ligases is an important step in facilitating viral release. We found that Nedd4 is negatively regulated by ISG15. Free ISG15 specifically bound to Nedd4 and blocked its interaction with Ub-E2 molecules, thus preventing further Ub transfer from E2 to E3. Furthermore, overexpression of ISG15 diminished the ability of Nedd4 to ubiquitinate viral matrix proteins and led to a decrease in the release of Ebola VP40 virus-like particles from the cells. These results point to a mechanistically novel function of ISG15 in the enhancement of the innate anti-viral response through specific inhibition of Nedd4 Ub-E3 activity. To our knowledge, this is the first example of a Ub-like protein with the ability to interfere with Ub-E2 and E3 interaction to inhibit protein ubiquitination.

  7. Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Ricardo S Ramiro

    2011-03-01

    Full Text Available Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction - that host immune responses have differential effects on the mating ability of males and females - have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely

  8. DMPD: Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15051069 Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Miy...ake K. Trends Microbiol. 2004 Apr;12(4):186-92. (.png) (.svg) (.html) (.csml) Show Innate recognition of lip...opolysaccharide by Toll-like receptor 4-MD-2. PubmedID 15051069 Title Innate recognition of lipopolysacchari

  9. DMPD: Glucocorticoids and the innate immune system: crosstalk with the toll-likereceptor signaling network. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17576036 Glucocorticoids and the innate immune system: crosstalk with the toll-like...07 May 13. (.png) (.svg) (.html) (.csml) Show Glucocorticoids and the innate immune system: crosstalk with t...nd the innate immune system: crosstalk with the toll-likereceptor signaling network. Authors Chinenov Y, Rog

  10. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  11. DMPD: Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18406369 Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins...svg) (.html) (.csml) Show Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins. ...PubmedID 18406369 Title Regulation of innate immunity by suppressor of cytokine signaling (SOCS)proteins

  12. DMPD: Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17275324 Innate immune sensing of pathogens and danger signals by cell surface Toll... Show Innate immune sensing of pathogens and danger signals by cell surface Toll-likereceptors. PubmedID 172...75324 Title Innate immune sensing of pathogens and danger signals by cell surface

  13. Various semiclassical limits of torus conformal blocks

    Energy Technology Data Exchange (ETDEWEB)

    Alkalaev, Konstantin [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of General and Applied Physics, Moscow Institute of Physics and Technology,Institutskiy per. 7, Dolgoprudnyi, Moscow region, 141700 (Russian Federation); Geiko, Roman [Mathematics Department, National Research University Higher School of Economics,Usacheva str. 6, Moscow, 119048 (Russian Federation); Rappoport, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky ave. 53, Moscow, 119991 (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, Moscow, 127994 (Russian Federation)

    2017-04-12

    We study four types of one-point torus blocks arising in the large central charge regime. There are the global block, the light block, the heavy-light block, and the linearized classical block, according to different regimes of conformal dimensions. It is shown that the blocks are not independent being connected to each other by various links. We find that the global, light, and heavy-light blocks correspond to three different contractions of the Virasoro algebra. Also, we formulate the c-recursive representation of the one-point torus blocks which is relevant in the semiclassical approximation.

  14. Human metapneumovirus M2-2 protein inhibits innate immune response in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Junping Ren

    Full Text Available Human metapneumovirus (hMPV is a leading cause of lower respiratory infection in young children, the elderly and immunocompromised patients. Repeated hMPV infections occur throughout life. However, immune evasion mechanisms of hMPV infection are largely unknown. Recently, our group has demonstrated that hMPV M2-2 protein, an important virulence factor, contributes to immune evasion in airway epithelial cells by targeting the mitochondrial antiviral-signaling protein (MAVS. Whether M2-2 regulates the innate immunity in human dendritic cells (DC, an important family of immune cells controlling antigen presenting, is currently unknown. We found that human DC infected with a virus lacking M2-2 protein expression (rhMPV-ΔM2-2 produced higher levels of cytokines, chemokines and IFNs, compared to cells infected with wild-type virus (rhMPV-WT, suggesting that M2-2 protein inhibits innate immunity in human DC. In parallel, we found that myeloid differentiation primary response gene 88 (MyD88, an essential adaptor for Toll-like receptors (TLRs, plays a critical role in inducing immune response of human DC, as downregulation of MyD88 by siRNA blocked the induction of immune regulatory molecules by hMPV. Since M2-2 is a cytoplasmic protein, we investigated whether M2-2 interferes with MyD88-mediated antiviral signaling. We found that indeed M2-2 protein associated with MyD88 and inhibited MyD88-dependent gene transcription. In this study, we also identified the domains of M2-2 responsible for its immune inhibitory function in human DC. In summary, our results demonstrate that M2-2 contributes to hMPV immune evasion by inhibiting MyD88-dependent cellular responses in human DC.

  15. A leukocyte activation test identifies food items which induce release of DNA by innate immune peripheral blood leucocytes.

    Science.gov (United States)

    Garcia-Martinez, Irma; Weiss, Theresa R; Yousaf, Muhammad N; Ali, Ather; Mehal, Wajahat Z

    2018-01-01

    Leukocyte activation (LA) testing identifies food items that induce a patient specific cellular response in the immune system, and has recently been shown in a randomized double blinded prospective study to reduce symptoms in patients with irritable bowel syndrome (IBS). We hypothesized that test reactivity to particular food items, and the systemic immune response initiated by these food items, is due to the release of cellular DNA from blood immune cells. We tested this by quantifying total DNA concentration in the cellular supernatant of immune cells exposed to positive and negative foods from 20 healthy volunteers. To establish if the DNA release by positive samples is a specific phenomenon, we quantified myeloperoxidase (MPO) in cellular supernatants. We further assessed if a particular immune cell population (neutrophils, eosinophils, and basophils) was activated by the positive food items by flow cytometry analysis. To identify the signaling pathways that are required for DNA release we tested if specific inhibitors of key signaling pathways could block DNA release. Foods with a positive LA test result gave a higher supernatant DNA content when compared to foods with a negative result. This was specific as MPO levels were not increased by foods with a positive LA test. Protein kinase C (PKC) inhibitors resulted in inhibition of positive food stimulated DNA release. Positive foods resulted in CD63 levels greater than negative foods in eosinophils in 76.5% of tests. LA test identifies food items that result in release of DNA and activation of peripheral blood innate immune cells in a PKC dependent manner, suggesting that this LA test identifies food items that result in release of inflammatory markers and activation of innate immune cells. This may be the basis for the improvement in symptoms in IBS patients who followed an LA test guided diet.

  16. Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse.

    Directory of Open Access Journals (Sweden)

    Naphak Modhiran

    Full Text Available BACKGROUND: The phenomenon of antibody dependent enhancement as a major determinant that exacerbates disease severity in DENV infections is well accepted. While the detailed mechanism of antibody enhanced disease severity is unclear, evidence suggests that it is associated with both increased DENV infectivity and suppression of the type I IFN and pro-inflammatory cytokine responses. Therefore, it is imperative for us to understand the intracellular mechanisms altered during ADE infection to decipher the mechanism of severe pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: In this present work, qRT-PCR, immunoblotting and gene array analysis were conducted to determine whether DENV-antibody complex infection exerts a suppressive effect on the expression and/or function of the pathogen recognition patterns, focusing on the TLR-signaling pathway. We show here that FcγRI and FcγRIIa synergistically facilitated entry of DENV-antibody complexes into monocytic THP-1 cells. Ligation between DENV-antibody complexes and FcR not only down regulated TLRs gene expression but also up regulated SARM, TANK, and negative regulators of the NF-κB pathway, resulting in suppression of innate responses but increased viral production. These results were confirmed by blocking with anti-FcγRI or anti-FcγRIIa antibodies which reduced viral production, up-regulated IFN-β synthesis, and increased gene expression in the TLR-dependent signaling pathway. The negative impact of DENV-ADE infection on the TLR-dependent pathway was strongly supported by gene array screening which revealed that both MyD88-dependent and -independent signaling molecules were down regulated during DENV-ADE infection. Importantly, the same phenomenon was seen in PBMC of secondary DHF/DSS patients but not in PBMC of DF patients. CONCLUSIONS/SIGNIFICANCE: Our present work demonstrates the mechanism by which DENV uses pre-existing immune mediators to defeat the principal activating pathway of innate

  17. Innate immunity and the sensing of infection, damage and danger in the female genital tract.

    Science.gov (United States)

    Sheldon, Iain Martin; Owens, Siân-Eleri; Turner, Matthew Lloyd

    2017-02-01

    Tissue homeostasis in the female genital tract is challenged by infection, damage, and even physiological events during reproductive cycles. We propose that the evolutionarily ancient system of innate immunity is sufficient to sense and respond to danger in the non-pregnant female genital tract. Innate immunity produces a rapidly inducible, non-specific response when cells sense danger. Here we provide a primer on innate immunity and discuss what is known about how danger signals are sensed in the endometrium and ovary, the impact of inflammatory responses on reproduction, and how endocrinology and innate immunity are integrated. Endometrial epithelial and stromal cells, and ovarian granulosa cells express pattern recognition receptors, similar to cells of the innate immune system. These pattern recognition receptors, such as the Toll-like receptors, bind pathogen-associated or damage-associated molecular patterns. Activation of pattern recognition receptors leads to inflammation, recruitment of immune cells from the peripheral circulation, and phagocytosis. Although the inflammatory response helps maintain or restore endometrial health, there may also be negative consequences for fertility, including perturbation of oocyte competence. The intensity of the inflammatory response reflects the balance between the level of danger and the systems that regulate innate immunity, including the endocrine environment. Understanding innate immunity is important because disease and inappropriate inflammatory responses in the endometrium or ovary cause infertility. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Climatological features of blocking anticyclones

    International Nuclear Information System (INIS)

    Lupo, A.R.; Smith, P.J.; Oglesby, R.J.

    1994-01-01

    Several climatological studies have been previously performed using large observational data sets (i.e., 10 years or longer) in order to determine the predominant characteristics of blocking anticyclones, including favored development regions, duration, preferred seasonal occurrence, and frequency of occurrence. These studies have shown that blocking anticyclones occur most frequently from October to April over the eastern Atlantic and Pacific oceans downstream from both the North American and Asian continental regions and the storm track regions to the east of these continents. Some studies have also revealed the presence of a third region block formation in western Russia near 40 degrees E which is associated with another storm track region over the Mediterranean and western Asia

  19. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    Science.gov (United States)

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  20. Block ground interaction of rockfalls

    Science.gov (United States)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  1. The role of innate lymphoid cells in healthy and inflamed skin

    DEFF Research Database (Denmark)

    Bonefeld, Charlotte M.; Geisler, Carsten

    2016-01-01

    system. During the last years, it has become clear that innate lymphoid cells play a role in homeostasis and inflammation of the skin in humans and mice. In this review, we will discuss the role of innate lymphoid cells in healthy and inflamed skin with special focus on their role in atopic dermatitis.......The skin constitutes the interface between the organism and the environment, and it protects the body from harmful substances in the environment via physical, chemical and immunological barriers. The immunological barrier of the skin comprises both cells from the innate and the adaptive immune...

  2. Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans.

    Science.gov (United States)

    Kim, Dennis H; Ausubel, Frederick M

    2005-02-01

    Genetic and functional genomic approaches have begun to define the molecular determinants of pathogen resistance in Caenorhabditis elegans. Conserved signal transduction components are required for pathogen resistance, including a Toll/IL-1 receptor domain adaptor protein that functions upstream of a conserved p38 MAP kinase pathway. We suggest that this pathway is an ancestral innate immune signaling pathway present in the common ancestor of nematodes, arthropods and vertebrates, which is likely to predate the involvement of canonical Toll signaling pathways in innate immunity. We anticipate that the study of pathogen resistance in C. elegans will continue to provide evolutionary and mechanistic insights into the signal transduction and physiology of innate immunity.

  3. Cryptanalysis of Selected Block Ciphers

    DEFF Research Database (Denmark)

    Alkhzaimi, Hoda A.

    , pseudorandom number generators, and authenticated encryption designs. For this reason a multitude of initiatives over the years has been established to provide a secure and sound designs for block ciphers as in the calls for Data Encryption Standard (DES) and Advanced Encryption Standard (AES), lightweight...... ciphers initiatives, and the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR). In this thesis, we first present cryptanalytic results on different ciphers. We propose attack named the Invariant Subspace Attack. It is utilized to break the full block cipher...

  4. Asymmetric PS-block-(PS-co-PB)-block-PS block copolymers: morphology formation and deformation behaviour

    International Nuclear Information System (INIS)

    Adhikari, Rameshwar; Huy, Trinh An; Buschnakowski, Matthias; Michler, Goerg H; Knoll, Konrad

    2004-01-01

    Morphology formation and deformation behaviour of asymmetric styrene/butadiene triblock copolymers (total polystyrene (PS) content ∼70%) consisting of PS outer blocks held apart by a styrene-co-butadiene random copolymer block (PS-co-PB) each were investigated. The techniques used were differential scanning calorimetry, transmission electron microscopy, uniaxial tensile testing and Fourier-transform infrared spectroscopy. A significant shift of the phase behaviour relative to that of a neat symmetric triblock copolymer was observed, which can be attributed to the asymmetric architecture and the presence of PS-co-PB as a soft block. The mechanical properties and the microdeformation phenomena were mainly controlled by the nature of their solid-state morphology. Independent of morphology type, the soft phase was found to deform to a significantly higher degree of orientation when compared with the hard phase

  5. Main-chain supramolecular block copolymers.

    Science.gov (United States)

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  6. Smart ampholytic ABC block copolypeptide

    Czech Academy of Sciences Publication Activity Database

    Schlaad, H.; Sun, J.; Černoch, Peter; Ruokolainen, J.

    2017-01-01

    Roč. 254, 20 August (2017), s. 79 ISSN 0065-7727. [ACS National Meeting & Exposition /254./. 20.08.2017-24.08.2017, Washington] Institutional support: RVO:61389013 Keywords : block copolypeptide * smart ampholytic Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  7. First Degree Pacemaker Exit Block

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2016-10-01

    Full Text Available Usually atrial and ventricular depolarizations follow soon after the pacemaker stimulus (spike on the ECG. But there can be an exit block due to fibrosis at the electrode - tissue interface at the lead tip. This can increase the delay between the spike and atrial or ventricular depolarization.

  8. Building Blocks for Personal Brands

    Science.gov (United States)

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  9. Thermo-responsive block copolymers

    NARCIS (Netherlands)

    Mocan Cetintas, Merve

    2017-01-01

    Block copolymers (BCPs) are remarkable materials because of their self-assembly behavior into nano-sized regular structures and high tunable properties. BCPs are in used various applications such as surfactants, nanolithography, biomedicine and nanoporous membranes. In these thesis, we aimed to

  10. Cervical plexus block for thyroidectomy

    African Journals Online (AJOL)

    Adele

    RESEARCH. Southern African Journal of Anaesthesia & Analgesia - November 2003 ... Cervical plexus block has also been found useful for thy- .... lar, transverse cervical and supraclavicular nerves. ... administration of midazolam and pentazocine as required. ... find out if there were postoperative complications specific to.

  11. Blocking sets in Desarguesian planes

    NARCIS (Netherlands)

    Blokhuis, A.; Miklós, D.; Sós, V.T.; Szönyi, T.

    1996-01-01

    We survey recent results concerning the size of blocking sets in desarguesian projective and affine planes, and implications of these results and the technique to prove them, to related problemis, such as the size of maximal partial spreads, small complete arcs, small strong representative systems

  12. Indispensable Role of Proteases in Plant Innate Immunity.

    Science.gov (United States)

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  13. Malarial Pigment Hemozoin and the Innate Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Martin eOlivier

    2014-02-01

    Full Text Available Malaria is a deadly infectious disease caused by the intraerythrocytic protozoan parasite Plasmodium. The four species of Plasmodium known to affect humans all produce an inorganic crystal called hemozoin (HZ during the heme detoxification process. HZ is released from the food vacuole into circulation during erythrocyte lysis, while the released parasites further infect additional naive red blood cells. Once in circulation, HZ is rapidly taken up by circulating monocytes and tissue macrophages, inducing the production of pro-inflammatory mediators, such as interleukin-1β (IL-1β. Over the last few years, it has been reported that HZ, similar to uric acid crystals, asbestos and silica, is able to trigger IL-1β production via the activation of the NOD-like receptor containing pyrin domain 3 (NLRP3 inflammasome complex. Additionally, recent findings have shown that host factors, such as fibrinogen, have the ability to adhere to free HZ and modify its capacity to activate host immune cells. Although much has been discovered regarding NLRP3 inflammasome induction, the mechanism through which this intracellular multimolecular complex is activated remains unclear. In the present review, the most recent discoveries regarding the capacity of HZ to trigger this innate immune complex will be discussed, as well as the impact of HZ on several other inflammatory signalling pathways.

  14. The image schema and innate archetypes: theoretical and clinical implications.

    Science.gov (United States)

    Merchant, John

    2016-02-01

    Based in contemporary neuroscience, Jean Knox's 2004 JAP paper 'From archetypes to reflective function' honed her position on image schemas, thereby introducing a model for archetypes which sees them as 'reliably repeated early developmental achievements' and not as genetically inherited, innate psychic structures. The image schema model is used to illustrate how the analyst worked with a patient who began life as an unwanted pregnancy, was adopted at birth and as an adult experienced profound synchronicities, paranormal/telepathic phenomena and visions. The classical approach to such phenomena would see the intense affectivity arising out of a ruptured symbiotic mother-infant relationship constellating certain archetypes which set up the patient's visions. This view is contrasted with Knox's model which sees the archetype an sich as a developmentally produced image schema underpinning the emergence of later imagery. The patient's visions can then be understood to arise from his psychoid body memory related to his traumatic conception and birth. The contemporary neuroscience which supports this view is outlined and a subsequent image schema explanation is presented. Clinically, the case material suggests that a pre-birth perspective needs to be explored in all analytic work. Other implications of Knox's image schema model are summarized. © 2016, The Society of Analytical Psychology.

  15. The Innate Immune System in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Allal Boutajangout

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloid β (Aβ peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT. Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4 (Potter and Wisniewski (2012, and Verghese et al. (2011. Recently, it has been reported by two groups independently that a rare functional variant (R47H of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs and are the resident macrophages of the central nervous system (CNS. In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

  16. Role of innate lymphoid cells in obesity and metabolic disease

    Science.gov (United States)

    Saetang, Jirakrit; Sangkhathat, Surasak

    2018-01-01

    The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti-obese immune regulators by secreting anti-inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon-γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity-associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions. PMID:29138853

  17. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    Science.gov (United States)

    Li, Shiyang; Bostick, John W.; Zhou, Liang

    2018-01-01

    With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs) represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin) at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr) is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease. PMID:29354125

  18. Innate lymphoid cells in normal and disease: An introductory overview.

    Science.gov (United States)

    Moretta, Lorenzo; Locatelli, Franco

    2016-11-01

    Innate lymphoid cells (ILC) represent a novel group of lymphocytes that, different from T and B-lymphocytes lack recombinant activating genes (RAG-1 or RAG-2) and thus do not express rearranged antigen-specific receptors. Members of this family, i.e. NK cells, have been known since long time, while the other ILCs have been discovered only in recent years, possibly because of their predominant localization in tissues, primarily in mucosal tissues, skin and mucosa-associated lymphoid organs. ILC have been grouped in three major subsets on the basis of their phenotypic and functional features as well as of their dependency on given transcription factors (TF). Briefly, ILC-1 are dependent on T-bet TF and produce interferon (IFN)-γ. Group 2 ILC (ILC2) express GATA-3 TF and produce IL-5, IL-4 and IL-13 (Type 2) cytokines while group 3 ILC (ILC3) express RORγt TF and produce IL-17 and IL-22. ILC provide early defenses against pathogens and intervene in the repair of damaged tissues. ILC activation is mediated by cytokines (specifically acting on different ILC groups) and/or by activating receptors that are, at least in part, the same that had been previously identified in NK cells [1]. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-01-01

    Full Text Available With striking similarity to their adaptive T helper cell counterparts, innate lymphoid cells (ILCs represent an emerging family of cell types that express signature transcription factors, including T-bet+ Eomes+ natural killer cells, T-bet+ Eomes− group 1 ILCs, GATA3+ group 2 ILCs, RORγt+ group 3 ILCs, and newly identified Id3+ regulatory ILC. ILCs are abundantly present in barrier tissues of the host (e.g., the lung, gut, and skin at the interface of host–environment interactions. Active research has been conducted to elucidate molecular mechanisms underlying the development and function of ILCs. The aryl hydrocarbon receptor (Ahr is a ligand-dependent transcription factor, best known to mediate the effects of xenobiotic environmental toxins and endogenous microbial and dietary metabolites. Here, we review recent progresses regarding Ahr function in ILCs. We focus on the Ahr-mediated cross talk between ILCs and other immune/non-immune cells in host tissues especially in the gut. We discuss the molecular mechanisms of the action of Ahr expression and activity in regulation of ILCs in immunity and inflammation, and the interaction between Ahr and other pathways/transcription factors in ILC development and function with their implication in disease.

  20. The Yin and Yang of Innate Lymphoid Cells in Cancer.

    Science.gov (United States)

    Carrega, Paolo; Campana, Stefania; Bonaccorsi, Irene; Ferlazzo, Guido

    2016-11-01

    The recent appreciation of novel subsets of innate lymphoid cells (ILCs) as important regulators of tissue homeostasis, inflammation and repair, raise questions regarding the presence and role of these cells in cancer tissues. In addition to natural killer and fetal lymphoid tissue inducer (LTi) cells, the ILC family comprises non-cytolytic, cytokine-producing cells that are classified into ILC1, ILC2 and ILC3 based on phenotypic and functional characteristics. Differently from natural killer cells, which are the prototypical members of ILC1 and whose role in tumors is better established, the involvement of other ILC subsets in cancer progression or resistance is still fuzzy and in several instances controversial, since current studies indicate both context-dependent beneficial or pathogenic effects. Here, we review the current knowledge regarding the involvement of these novel ILC subsets in the context of tumor immunology, highlighting how ILC subsets might behave either as friends or foes. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification.

    Science.gov (United States)

    Malliaras, Konstantinos; Vakrou, Styliani; Kapelios, Chris J; Nanas, John N

    2016-11-01

    The -once viewed as heretical- concept of the adult mammalian heart as a dynamic organ capable of endogenous regeneration has recently gained traction. However, estimated rates of myocyte turnover vary wildly and the underlying mechanisms of cardiac plasticity remain controversial. It is still unclear whether the adult mammalian heart gives birth to new myocytes through proliferation of resident myocytes, through cardiomyogenic differentiation of endogenous progenitors or through both mechanisms. In this review, the authors discuss the cellular origins of postnatal mammalian cardiomyogenesis and touch upon therapeutic strategies that could potentially amplify innate cardiac regeneration. The adult mammalian heart harbors a limited but detectable capacity for spontaneous endogenous regeneration. During normal aging, proliferation of pre-existing cardiomyocytes is the dominant mechanism for generation of new cardiomyocytes. Following myocardial injury, myocyte proliferation increases modestly, but differentiation of endogenous progenitor cells appears to also contribute to cardiomyogenesis (although agreement on the latter point is not universal). Since cardiomyocyte deficiency underlies almost all types of heart disease, development of therapeutic strategies that amplify endogenous regeneration to a clinically-meaningful degree is of utmost importance.

  2. Arthropod Innate Immune Systems and Vector-Borne Diseases.

    Science.gov (United States)

    Baxter, Richard H G; Contet, Alicia; Krueger, Kathryn

    2017-02-21

    Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.

  3. Innate lymphoid cells and their role in immune response regulation

    Directory of Open Access Journals (Sweden)

    Bibiana Patricia Ruiz-Sánchez

    2017-10-01

    Full Text Available Innate lymphoid cells (ILCs are lymphocytes lacking antigen recognition receptors and become activated in response to cytokines and through microbe-associated molecular pattern (MAMP receptors. ILCs are found mainly in mucosal tissues and participate in the immune response against infections and in chronic inflammatory conditions. ILCs are divided in ILC-1, ILC-2 and ILC-3, and these cells have analogue functions to those of immune adaptive response lymphocytes Th1, Th2 and Th17. ILC-1 express T-bet, produce IFNγ, protect against infections with intracellular microorganisms and are related to inflammatory bowel disease immunopathology. ILC-2 express GATA3, produce IL-4, IL-5, IL-13 and amphiregulin, protect against parasitic infections and related to allergy and obesity immunopathology. ILC-3 express ROR(γt, produce IL-17 and IL-22, protect against fungal infections and contribute to tolerance to intestinal microbiota and intestinal repair. They are related to inflammatory bowel disease and psoriasis immunopathology. In general terms, ILCs maintain homeostasis and coadjuvate in the protection against infections.

  4. Meningococcal outer membrane vesicle composition-dependent activation of the innate immune response

    NARCIS (Netherlands)

    Zariri, Afshin; Beskers, Joep; van de Waterbeemd, Bas; Hamstra, Hendrik Jan; Bindels, Tim H E; van Riet, Elly; van Putten, Jos P M; van der Ley, Peter

    2016-01-01

    Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen associated molecular patterns including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an

  5. Innate and discretionary accruals quality and corporate governance: A case study of Tehran Stock Exchange

    Directory of Open Access Journals (Sweden)

    Hossein Panahian

    2012-09-01

    Full Text Available In this paper, we present an empirical study to find the relationship between discretionary accruals quality as well as innate accruals quality and portion of non-executive board of directors, concentration of ownership ratio and board size in Tehran Stock Exchange. The survey selects 118 qualified stocks from this exchange and using a random technique chooses 42 firms. The study implements two linear regression techniques to estimate the first part of the information and then using structural equation modeling examines six hypotheses. Based on the results of this survey we can conclude that an increase on non-executive members positively influences on discretionary accruals quality and negatively influences innate accruals quality. Concentration of ownership ratio positively influences on discretionary accruals quality and negatively impacts on innate accruals quality. Finally, size of board of directors negatively impacts discretionary accruals quality and positively influences on innate accruals quality.

  6. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines

    DEFF Research Database (Denmark)

    Blok, Bastiaan A; Arts, Rob J W; van Crevel, Reinout

    2015-01-01

    An increasing body of evidence shows that the innate immune system has adaptive characteristics that involve a heterologous memory of past insults. Both experimental models and proof-of-principle clinical trials show that innate immune cells, such as monocytes, macrophages, and NK cells, can...... provide protection against certain infections in vaccination models independently of lymphocytes. This process is regulated through epigenetic reprogramming of innate immune cells and has been termed "trained immunity." It has been hypothesized that induction of trained immunity is responsible...... for the protective, nonspecific effects induced by vaccines, such as BCG, measles vaccination, and other whole-microorganism vaccines. In this review, we will present the mechanisms of trained immunity responsible for the long-lasting effects of vaccines on the innate immune system....

  7. γ-Oryzanol-Rich Black Rice Bran Extract Enhances the Innate Immune Response.

    Science.gov (United States)

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Lim, Yoongho; Kim, Jung-Bong; Lee, Young Han

    2017-09-01

    The innate immune response is an important host primary defense system against pathogens. γ-Oryzanol is one of the nutritionally important phytoceutical components in rice bran oil. The goal of this study was to investigate the effect of γ-oryzanol-rich extract from black rice bran (γORE) on the activation of the innate immune system. In this study, we show that γORE increased the expression of CD14 and Toll-like receptor 4 and enhanced the phagocytic activity of RAW264.7 macrophages. Furthermore, γORE and its active ingredient γ-oryzanol promoted the secretion of innate cytokines, interleukin-8, and CCL2, which facilitate phagocytosis by RAW264.7 cells. These findings suggest that γ-oryzanol in the γORE enhances innate immune responses.

  8. SUMO-, MAPK- and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity

    NARCIS (Netherlands)

    Burg, van den H.A.; Takken, F.L.W.

    2010-01-01

    Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we

  9. SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity

    NARCIS (Netherlands)

    van den Burg, H.A.; Takken, F.L.W.

    2010-01-01

    Upon pathogen perception plant innate immune receptors activate various signaling pathways that trigger host defenses. PAMP-triggered defense signaling requires mitogen-activated protein kinase (MAPK) pathways, which modulate the activity of transcription factors through phosphorylation. Here, we

  10. Silencing the alarms: innate immune antagonism by rotavirus NSP1 and VP3

    Science.gov (United States)

    Morelli, Marco; Ogden, Kristen M.; Patton, John T.

    2016-01-01

    The innate immune response involves a broad array of pathogen sensors that stimulate the production of interferons (IFN) to induce an antiviral state. Rotavirus, a significant cause of childhood gastroenteritis and a member of the Reoviridae family of segmented, double-stranded RNA viruses, encodes at least two direct antagonists of host innate immunity: NSP1 and VP3. NSP1, a putative E3 ubiquitin ligase, mediates the degradation of cellular factors involved in both IFN induction and downstream signaling. VP3, the viral capping enzyme, utilizes a 2H-phosphodiesterase domain to prevent activation of the cellular oligoadenylate synthase (OAS)-RNase L pathway. Computational, molecular, and biochemical studies have provided key insights into the structural and mechanistic basis of innate immune antagonism by NSP1 and VP3 of group A rotaviruses (RVA). Future studies with non-RVA isolates will be essential to understand how other RV species evade host innate immune responses. PMID:25724417

  11. MicroRNAs, Innate Immunity and Ventricular Rupture in Human Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Nina Zidar

    2011-01-01

    Full Text Available MicroRNAs are non-coding RNAs, functionioning as post-transcriptional regulators of gene expression. Some microRNAs have been demonstrated to play a role in regulation of innate immunity. After myocardial infarction (MI, innate immunity is activated leading to an acute inflammatory reaction. There is evidence that an intense inflammatory reaction might contribute to the development of ventricular rupture (VR after MI.

  12. The participation of cortical amygdala in innate, odor-driven behavior

    OpenAIRE

    Root, Cory M.; Denny, Christine A.; Hen, Ren?; Axel, Richard

    2014-01-01

    Innate behaviors are observed in na?ve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined 1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that ...

  13. What a hawkmoth remembers after hibernation depends on innate preferences and conditioning situation

    OpenAIRE

    Almut Kelber

    2010-01-01

    Nectar-feeding insects find flowers by 2 means, innate preferences and learned associations. When insects that hibernate as imagos (i.e., adults) start foraging after a long winter break, what guides them to new nectar rewards? Are innate preferences kept over such a long period? And are learned associations useful after long breaks? In a series of experiments I show here that, depending on previous experience, the European hummingbird hawkmoth, Macroglossum stellatarum can use both types of ...

  14. Age-dependent changes in innate immune phenotype and function in rhesus macaques (Macaca mulatta

    Directory of Open Access Journals (Sweden)

    Mark Asquith

    2012-06-01

    Full Text Available Aged individuals are more susceptible to infections due to a general decline in immune function broadly referred to as immune senescence. While age-related changes in the adaptive immune system are well documented, aging of the innate immune system remains less well understood, particularly in nonhuman primates. A more robust understanding of age-related changes in innate immune function would provide mechanistic insight into the increased susceptibility of the elderly to infection. Rhesus macaques have proved a critical translational model for aging research, and present a unique opportunity to dissect age-dependent modulation of the innate immune system. We examined age-related changes in: (i innate immune cell frequencies; (ii expression of pattern recognition receptors (PRRs and innate signaling molecules; (iii cytokine responses of monocytes and dendritic cells (DC following stimulation with PRR agonists; and (iv plasma cytokine levels in this model. We found marked changes in both the phenotype and function of innate immune cells. This included an age-associated increased frequency of myeloid DC (mDC. Moreover, we found toll-like receptor (TLR agonists lipopolysaccharide (TLR4, fibroblast stimulating ligand-1 (TLR2/6, and ODN2006 (TLR7/9 induced reduced cytokine responses in aged mDC. Interestingly, with the exception of the monocyte-derived TNFα response to LPS, which increased with age, TNFα, IL-6, and IFNα responses declined with age. We also found that TLR4, TLR5, and innate negative regulator, sterile alpha and TIR motif containing protein (SARM, were all expressed at lower levels in young animals. By contrast, absent in melanoma 2 and retinoic acid-inducible gene I expression was lowest in aged animals. Together, these observations indicate that several parameters of innate immunity are significantly modulated by age and contribute to differential immune function in aged macaques.

  15. Regulation of Aeroallergen Immunity by the Innate Immune System: Laboratory Evidence for a New Paradigm

    OpenAIRE

    Horner, Anthony A.

    2009-01-01

    Over the last decade, it has become increasingly clear that innate responses to microbes are mediated largely by toll-like receptors (TLRs), which recognize a diverse family of molecules produced by viruses, bacteria and fungi. This article will present evidence that TLRs also play a dominant role in innate responses to non-infectious immunostimulatory materials present in house dust extracts (HDEs) and the living environments they represent. However, our investigations challenge the commonly...

  16. Cutaneous Sensory Block Area, Muscle-Relaxing Effect, and Block Duration of the Transversus Abdominis Plane Block

    DEFF Research Database (Denmark)

    Støving, Kion; Rothe, Christian; Rosenstock, Charlotte V

    2015-01-01

    BACKGROUND AND OBJECTIVES: The transversus abdominis plane (TAP) block is a widely used nerve block. However, basic block characteristics are poorly described. The purpose of this study was to assess the cutaneous sensory block area, muscle-relaxing effect, and block duration. METHODS: Sixteen...... healthy volunteers were randomized to receive an ultrasound-guided unilateral TAP block with 20 mL 7.5 mg/mL ropivacaine and placebo on the contralateral side. Measurements were performed at baseline and 90 minutes after performing the block. Cutaneous sensory block area was mapped and separated...... into a medial and lateral part by a vertical line through the anterior superior iliac spine. We measured muscle thickness of the 3 lateral abdominal muscle layers with ultrasound in the relaxed state and during maximal voluntary muscle contraction. The volunteers reported the duration of the sensory block...

  17. Unveiling the Dual Role of the Dopaminergic System on Locomotion and the Innate Value for an Aversive Olfactory Stimulus in Drosophila.

    Science.gov (United States)

    Fuenzalida-Uribe, Nicolás; Campusano, Jorge M

    2018-02-10

    The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Bruton’s Tyrosine Kinase: An Emerging Key Player in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Alexander N. R. Weber

    2017-11-01

    Full Text Available Bruton’s tyrosine kinase (BTK was initially discovered as a critical mediator of B cell receptor signaling in the development and functioning of adaptive immunity. Growing evidence also suggests multiple roles for BTK in mononuclear cells of the innate immune system, especially in dendritic cells and macrophages. For example, BTK has been shown to function in Toll-like receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. Most recently, BTK was additionally identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome. BTK has thus attracted interest not only for gaining a more thorough basic understanding of the human innate immune system but also as a target to therapeutically modulate innate immunity. We here review the latest developments on the role of BTK in mononuclear innate immune cells in mouse versus man, with specific emphasis on the sensing of infectious agents and the induction of inflammation. Therapeutic implications for modulating innate immunity and critical open questions are also discussed.

  19. MicroRNA in innate immunity and autophagy during mycobacterial infection.

    Science.gov (United States)

    Kim, Jin Kyung; Kim, Tae Sung; Basu, Joyoti; Jo, Eun-Kyeong

    2017-01-01

    The fine-tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non-coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host-directed anti-mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections. © 2016 John Wiley & Sons Ltd.

  20. Fish Lymphocytes: An Evolutionary Equivalent of Mammalian Innate-Like Lymphocytes?

    Directory of Open Access Journals (Sweden)

    Giuseppe Scapigliati

    2018-05-01

    Full Text Available Lymphocytes are the responsible of adaptive responses, as they are classically described, but evidence shows that subpopulations of mammalian lymphocytes may behave as innate-like cells, engaging non-self rapidly and without antigen presentation. The innate-like lymphocytes of mammals have been mainly identified as γδT cells and B1-B cells, exert their activities principally in mucosal tissues, may be involved in human pathologies and their functions and tissue(s of origin are not fully understood. Due to similarities in the morphology and immunobiology of immune system between fish and mammals, and to the uniqueness of having free-living larval stages where the development can be precisely monitored and engineered, teleost fish are proposed as an experimental model to investigate human immunity. However, the homology between fish lymphocytes and mammalian innate-like lymphocytes is an issue poorly considered in comparative immunology. Increasing experimental evidence suggests that fish lymphocytes could have developmental, morphological, and functional features in common with innate-like lymphocytes of mammals. Despite such similarities, information on possible links between conventional fish lymphocytes and mammalian innate-like lymphocytes is missing. The aim of this review is to summarize and describe available findings about the similarities between fish lymphocytes and mammalian innate-like lymphocytes, supporting the hypothesis that mammalian γδT cells and B1-B cells could be evolutionarily related to fish lymphocytes.

  1. The Role of TOX in the Development of Innate Lymphoid Cells.

    Science.gov (United States)

    Seehus, Corey R; Kaye, Jonathan

    2015-01-01

    TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4(+) T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  2. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    Science.gov (United States)

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  3. The Role of TOX in the Development of Innate Lymphoid Cells

    Directory of Open Access Journals (Sweden)

    Corey R. Seehus

    2015-01-01

    Full Text Available TOX, an evolutionarily conserved member of the HMG-box family of proteins, is essential for the development of various cells of both the innate and adaptive immune system. TOX is required for the development of CD4+ T lineage cells in the thymus, including natural killer T and T regulatory cells, as well as development of natural killer cells and fetal lymphoid tissue inducer cells, the latter required for lymph node organogenesis. Recently, we have identified a broader role for TOX in the innate immune system, demonstrating that this nuclear protein is required for generation of bone marrow progenitors that have potential to give rise to all innate lymphoid cells. Innate lymphoid cells, classified according to transcription factor expression and cytokine secretion profiles, derive from common lymphoid progenitors in the bone marrow and require Notch signals for their development. We discuss here the role of TOX in specifying CLP toward an innate lymphoid cell fate and hypothesize a possible role for TOX in regulating Notch gene targets during innate lymphoid cell development.

  4. The participation of cortical amygdala in innate, odor-driven behavior

    Science.gov (United States)

    Root, Cory M.; Denny, Christine A.; Hen, René; Axel, Richard

    2014-01-01

    Innate behaviors are observed in naïve animals without prior learning or experience, suggesting that the neural circuits that mediate these behaviors are genetically determined and stereotyped. The neural circuits that convey olfactory information from the sense organ to the cortical and subcortical olfactory centers have been anatomically defined1-3 but the specific pathways responsible for innate responses to volatile odors have not been identified. We have devised genetic strategies that demonstrate that a stereotyped neural circuit that transmits information from the olfactory bulb to cortical amygdala is necessary for innate aversive and appetitive behaviors. Moreover, we have employed the promoter of the activity-dependent gene, arc, to express the photosensitive ion channel, channelrhodopsin, in neurons of the cortical amygdala activated by odors that elicit innate behaviors. Optical activation of these neurons leads to appropriate behaviors that recapitulate the responses to innate odors. These data indicate that the cortical amygdala plays a critical role in the generation of innate odor-driven behaviors but do not preclude the participation of cortical amygdala in learned olfactory behaviors. PMID:25383519

  5. On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.

  6. Emplacement of small and large buffer blocks

    International Nuclear Information System (INIS)

    Saari, H.; Nikula, M.; Suikki, M.

    2010-05-01

    The report describes emplacement of a buffer structure encircling a spent fuel canister to be deposited in a vertical hole. The report deals with installability of various size blocks and with an emplacement gear, as well as evaluates the achieved quality of emplacement and the time needed for installing the buffer. Two block assembly of unequal size were chosen for examination. A first option involved small blocks, the use of which resulted in a buffer structure consisting of small sector blocks 200 mm in height. A second option involved large blocks, resulting in a buffer structure which consists of eight blocks. In these tests, the material chosen for both block options was concrete instead of bentonite. The emplacement test was a three-phase process. A first phase included stacking a two meter high buffer structure with small blocks for ensuring the operation of test equipment and blocks. A second phase included installing buffer structures with both block options to a height matching that of a canister-encircling cylindrical component. A third phase included testing also the installability of blocks to be placed above the canister by using small blocks. In emplacement tests, special attention was paid to the installability of blocks as well as to the time required for emplacement. Lifters for both blocks worked well. Due to the mass to be lifted, the lifter for large blocks had a more heavy-duty frame structure (and other lifting gear). The employed lifters were suspended in the tests on a single steel wire rope. Stacking was managed with both block sizes at adequate precision and stacked-up towers were steady. The stacking of large blocks was considerably faster. Therefore it is probably that the overall handling of the large blocks will be more convenient at a final disposal site. From the standpoint of reliability in lifting, the small blocks were safer to install above the canister. In large blocks, there are strict shape-related requirements which are

  7. Dobrava-Belgrade hantavirus from Germany shows receptor usage and innate immunity induction consistent with the pathogenicity of the virus in humans.

    Directory of Open Access Journals (Sweden)

    Elena Popugaeva

    Full Text Available BACKGROUND: Dobrava-Belgrade virus (DOBV is a European hantavirus causing hemorrhagic fever with renal syndrome (HFRS in humans with fatality rates of up to 12%. DOBV-associated clinical cases typically occur also in the northern part of Germany where the virus is carried by the striped field mouse (Apodemus agrarius. However, the causative agent responsible for human illness has not been previously isolated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report on characterization of a novel cell culture isolate from Germany obtained from a lung tissue of "spillover" infected yellow necked mouse (A. flavicollis trapped near the city of Greifswald. Phylogenetic analyses demonstrated close clustering of the new strain, designated Greifswald/Aa (GRW/Aa with the nucleotide sequence obtained from a northern German HFRS patient. The virus was effectively blocked by specific antibodies directed against β3 integrins and Decay Accelerating Factor (DAF indicating that the virus uses same receptors as the highly pathogenic Hantaan virus (HTNV. In addition, activation of selected innate immunity markers as interferon β and λ and antiviral protein MxA after viral infection of A549 cells was investigated and showed that the virus modulates the first-line antiviral response in a similar way as HTNV. CONCLUSIONS/SIGNIFICANCE: In summary, our study reveals novel data on DOBV receptor usage and innate immunity induction in relationship to virus pathogenicity and underlines the potency of German DOBV strains to act as human pathogen.

  8. The Behavioural Biogeosciences: Moving Beyond Evolutionary Adaptation and Innate Reasoning

    Science.gov (United States)

    Glynn, P. D.

    2014-12-01

    Human biases and heuristics reflect adaptation over our evolutionary past to frequently experienced situations that affected our survival and that provided sharp distinguished feedbacks at the level of the individual. Human behavior, however, is not well adapted to the more diffusely experienced (i.e. less immediately/locally acute) problems and issues that scientists and society often seek to address today. Several human biases are identified that affect how science is conducted and used. These biases include an innate discounting of less visible phenomena/systems and of long-term perspectives; as well as a general lack of consideration of the coupling between the resources that we use and the waste that we consequently produce. Other biases include strong beliefs in human exceptionalism and separatedness from "nature". Francis Bacon (The New Organon, 1620) provided a classification of the factors, of the "idols of the mind", that bias pursuit of greater knowledge. How can we address these biases and the factors that affect behaviour and pursuit of knowledge; and ultimately impact the sustainability and resilience of human societies, resources and environments? A process for critical analysis is proposed that solicits explicit accounting and cognizance of these potential human biases and factors. Seeking a greater diversity of independant perspectives is essential: in both the conduct of science and in its application to the management of natural resources and environments. Accountability, traceability and structured processes are critical in this endeavor. The scientific methods designed during the industrial revolution are necessary, but insufficient, in addressing the issues of today. A new area of study in "the behavioral biogeosciences" is suggested that counters, or at least closely re-evaluates, our normal (i.e. adapted) human priorities of observation and study, as well as our judgements and decision-making.

  9. Evidence of the innate antiviral and neuroprotective properties of progranulin.

    Directory of Open Access Journals (Sweden)

    Hyeon-Sook Suh

    Full Text Available Compelling data exist that show that normal levels of progranulin (PGRN are required for successful CNS aging. PGRN production is also modulated by inflammation and infection, but no data are available on the production and role of PGRN during CNS HIV infection.To determine the relationships between PGRN and HIV disease, neurocognition, and inflammation, we analyzed 107 matched CSF and plasma samples from CHARTER, a well-characterized HIV cohort. Levels of PGRN were determined by ELISA and compared to levels of several inflammatory mediators (IFNγ, IL-6, IL-10, IP-10, MCP-1, TNFα, IL-1β, IL-4 and IL-13, as well as clinical, virologic and demographic parameters. The relationship between HIV infection and PGRN was also examined in HIV-infected primary human microglial cultures.In plasma, PGRN levels correlated with the viral load (VL, p<0.001. In the CSF of subjects with undetectable VL, lower PGRN was associated with neurocognitive impairment (p = 0.046. CSF PGRN correlated with CSF IP-10, TNFα and IL-10, and plasma PGRN correlated with plasma IP-10. In vitro, microglial HIV infection increased PGRN production and PGRN knockdown increased HIV replication, demonstrating that PGRN is an innate antiviral protein.We propose that PGRN plays dual roles in people living with HIV disease. With active HIV replication, PGRN is induced in infected macrophages and microglia and functions as an antiviral protein. In individuals without active viral replication, decreased PGRN production contributes to neurocognitive dysfunction, probably through a diminution of its neurotrophic functions. Our results have implications for the pathogenesis, biomarker studies and therapy for HIV diseases including HIV-associated neurocognitive dysfunction (HAND.

  10. Mechanisms by which Porphyromonas gingivalis evades innate immunity.

    Directory of Open Access Journals (Sweden)

    Kaveh Abdi

    Full Text Available The oral cavity is home to unique resident microbial communities whose interactions with host immunity are less frequently studied than those of the intestinal microbiome. We examined the stimulatory capacity and the interactions of two oral bacteria, Porphyromonas gingivalis (P. gingivalis and Fusobacterium nucleatum (F. nucleatum, on Dendritic Cell (DC activation, comparing them to the effects of the well-studied intestinal microbe Escherichia coli (E. coli. Unlike F. nucleatum and E. coli, P. gingivalis failed to activate DCs, and in fact silenced DC responses induced by F. nucleatum or E. coli. We identified a variant strain of P. gingivalis (W50 that lacked this immunomodulatory activity. Using biochemical approaches and whole genome sequencing to compare the two substrains, we found a point mutation in the hagA gene. This protein is though to be involved in the alteration of the PorSS/gingipain pathway, which regulates protein secretion into the extracellular environment. A proteomic comparison of the secreted products of the two substrains revealed enzymatic differences corresponding to this phenotype. We found that P. gingivalis secretes gingipain(s that inactivate several key proinflammatory mediators made by DCs and/or T cells, but spare Interleukin-1 (IL-1 and GM-CSF, which can cause capillary leaks that serve as a source of the heme that P. gingivalis requires for its survival, and GM-CSF, which can cause epithelial-cell growth. Taken together, our results suggest that P. gingivalis has evolved potent mechanisms to modulate its virulence factors and dampen the innate immune response by selectively inactivating most proinflammatory cytokines.

  11. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization

    Science.gov (United States)

    Andrade, Priscila Ribeiro; Ferreira, Helen; Nery, José Augusto da Costa; Côrte-Real, Suzana; da Silva, Gilberto Marcelo Sperandio; Rosa, Patricia Sammarco; Fabri, Mario; Sarno, Euzenir Nunes

    2017-01-01

    Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. PMID:28056107

  12. Targeting the innate repair receptor to treat neuropathy

    Directory of Open Access Journals (Sweden)

    Albert Dahan

    2016-07-01

    Full Text Available Abstract. The innate repair receptor (IRR is a heteromer of the erythropoietin receptor and the β-common (CD131 receptor, which simultaneously activates anti-inflammatory and tissue repair pathways. Experimental data suggest that after peripheral nerve injury, the IRR is upregulated in the spinal cord and modulates the neurogenic inflammatory response. The recently introduced selective IRR agonist ARA290 is an 11-amino acid peptide initially tested in animal models of neuropathy. After sciatic nerve injury, ARA290 produced a rapid and long-term relief of mechanical and cold allodynia in normal mice, but not in animals with a β-common receptor knockout phenotype. In humans, ARA290 has been evaluated in patients with small fiber neuropathy associated with sarcoidosis or type 2 diabetes (T2D mellitus. In patients with sarcoidosis, ARA290 significantly improved neuropathic and autonomic symptoms, as well as quality of life as assessed by the small fiber neuropathy screening list questionnaire. In addition, ARA290 treatment for 28 days initiated a regrowth of small nerve fibers in the cornea, but not in the epidermis. In patients with T2D, the results were similar to those observed in patients with sarcoidosis along with an improved metabolic profile. In both populations, ARA290 lacked significant adverse effects. These experimental and clinical studies show that ARA290 effectively reprograms a proinflammatory, tissue-damaging milieu into one of healing and tissue repair. Further clinical trials with long-term treatment and follow-up are needed to assess the full potential of IRR activation by ARA290 as a disease-modifying therapy in neuropathy of various etiologies.

  13. Of pheromones and kairomones: what receptors mediate innate emotional responses?

    Science.gov (United States)

    Fortes-Marco, Lluis; Lanuza, Enrique; Martinez-Garcia, Fernando

    2013-09-01

    Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation. Copyright © 2013 Wiley Periodicals, Inc.

  14. Innate Synchronous Oscillations in Freely-Organized Small Neuronal Circuits

    Science.gov (United States)

    Shein Idelson, Mark; Ben-Jacob, Eshel; Hanein, Yael

    2010-01-01

    Background Information processing in neuronal networks relies on the network's ability to generate temporal patterns of action potentials. Although the nature of neuronal network activity has been intensively investigated in the past several decades at the individual neuron level, the underlying principles of the collective network activity, such as the synchronization and coordination between neurons, are largely unknown. Here we focus on isolated neuronal clusters in culture and address the following simple, yet fundamental questions: What is the minimal number of cells needed to exhibit collective dynamics? What are the internal temporal characteristics of such dynamics and how do the temporal features of network activity alternate upon crossover from minimal networks to large networks? Methodology/Principal Findings We used network engineering techniques to induce self-organization of cultured networks into neuronal clusters of different sizes. We found that small clusters made of as few as 40 cells already exhibit spontaneous collective events characterized by innate synchronous network oscillations in the range of 25 to 100 Hz. The oscillation frequency of each network appeared to be independent of cluster size. The duration and rate of the network events scale with cluster size but converge to that of large uniform networks. Finally, the investigation of two coupled clusters revealed clear activity propagation with master/slave asymmetry. Conclusions/Significance The nature of the activity patterns observed in small networks, namely the consistent emergence of similar activity across networks of different size and morphology, suggests that neuronal clusters self-regulate their activity to sustain network bursts with internal oscillatory features. We therefore suggest that clusters of as few as tens of cells can serve as a minimal but sufficient functional network, capable of sustaining oscillatory activity. Interestingly, the frequencies of these

  15. Dissecting Phaseolus vulgaris innate immune system against Colletotrichum lindemuthianum infection.

    Directory of Open Access Journals (Sweden)

    Paula Rodrigues Oblessuc

    develop a model of the molecular components of the bean innate immune system regulated upon pathogen attack.

  16. UAV PHOTOGRAMMETRY: BLOCK TRIANGULATION COMPARISONS

    Directory of Open Access Journals (Sweden)

    R. Gini

    2013-08-01

    Full Text Available UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord", useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey, allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma, Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points.

  17. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  18. Ebola virus VP35 blocks stress granule assembly.

    Science.gov (United States)

    Le Sage, Valerie; Cinti, Alessandro; McCarthy, Stephen; Amorim, Raquel; Rao, Shringar; Daino, Gian Luca; Tramontano, Enzo; Branch, Donald R; Mouland, Andrew J

    2017-02-01

    Stress granules (SGs) are dynamic cytoplasmic aggregates of translationally silenced mRNAs that assemble in response to environmental stress. SGs appear to play an important role in antiviral innate immunity and many viruses have evolved to block or subvert SGs components for their own benefit. Here, we demonstrate that intracellular Ebola virus (EBOV) replication and transcription-competent virus like particles (trVLP) infection does not lead to SG assembly but leads to a blockade to Arsenite-induced SG assembly. Moreover we show that EBOV VP35 represses the assembly of canonical and non-canonical SGs induced by a variety of pharmacological stresses. This SG blockade requires, at least in part, the C-terminal domain of VP35. Furthermore, results from our co-immunoprecipitation studies indicate that VP35 interacts with multiple SG components, including G3BP1, eIF3 and eEF2 through a stress- and RNA-independent mechanism. These data suggest a novel function for EBOV VP35 in the repression of SG assembly. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [THE TECHNOLOGY "CELL BLOCK" IN CYTOLOGICAL PRACTICE].

    Science.gov (United States)

    Volchenko, N N; Borisova, O V; Baranova, I B

    2015-08-01

    The article presents summary information concerning application of "cell block" technology in cytological practice. The possibilities of implementation of various modern techniques (immune cytochemnical analysis. FISH, CISH, polymerase chain reaction) with application of "cell block" method are demonstrated. The original results of study of "cell block" technology made with gelatin, AgarCyto and Shadon Cyoblock set are presented. The diagnostic effectiveness of "cell block" technology and common cytological smear and also immune cytochemical analysis on samples of "cell block" technology and fluid cytology were compared. Actually application of "cell block" technology is necessary for ensuring preservation of cell elements for subsequent immune cytochemical and molecular genetic analysis.

  20. Minimum description length block finder, a method to identify haplotype blocks and to compare the strength of block boundaries.

    Science.gov (United States)

    Mannila, H; Koivisto, M; Perola, M; Varilo, T; Hennah, W; Ekelund, J; Lukk, M; Peltonen, L; Ukkonen, E

    2003-07-01

    We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the significance of each block boundary. We have applied the method to the published data of Daly and colleagues. The results expose some problems that exist in the current methods for the evaluation of the significance of predicted block boundaries. Our method, MDL block finder, can be used to compare block borders in different sample sets, and we demonstrate this by applying the MDL-based method to define the block structure in chromosomes from population isolates.

  1. Adductor canal block versus femoral nerve block for analgesia after total knee arthroplasty

    DEFF Research Database (Denmark)

    Jaeger, Pia; Zaric, Dusanka; Fomsgaard, Jonna Storm

    2013-01-01

    Femoral nerve block (FNB), a commonly used postoperative pain treatment after total knee arthroplasty (TKA), reduces quadriceps muscle strength essential for mobilization. In contrast, adductor canal block (ACB) is predominately a sensory nerve block. We hypothesized that ACB preserves quadriceps...

  2. ICOS:ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity.

    Science.gov (United States)

    Maazi, Hadi; Patel, Nisheel; Sankaranarayanan, Ishwarya; Suzuki, Yuzo; Rigas, Diamanda; Soroosh, Pejman; Freeman, Gordon J; Sharpe, Arlene H; Akbari, Omid

    2015-03-17

    Allergic asthma is caused by Th2-cell-type cytokines in response to allergen exposure. Type 2 innate lymphoid cells (ILC2s) are a newly identified subset of immune cells that, along with Th2 cells, contribute to the pathogenesis of asthma by producing copious amounts of IL-5 and IL-13, which cause eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. ILC2s express ICOS, a T cell costimulatory molecule with a currently unknown function. Here we showed that a lack of ICOS on murine ILC2s and blocking the ICOS:ICOS-ligand interaction in human ILC2s reduced AHR and lung inflammation. ILC2s expressed both ICOS and ICOS-ligand, and the ICOS:ICOS-ligand interaction promoted cytokine production and survival in ILC2s through STAT5 signaling. Thus, ICOS:ICOS-ligand signaling pathway is critically involved in ILC2 function and homeostasis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Characterization of Ixodes ricinus Fibrinogen-Related Proteins (Ixoderins Discloses Their Function in the Tick Innate Immunity

    Directory of Open Access Journals (Sweden)

    Helena Honig Mondekova

    2017-12-01

    Full Text Available Ticks are important vectors of serious human and animal disease-causing organisms, but their innate immunity can fight invading pathogens and may have the ability to reduce or block transmission to mammalian hosts. Lectins, sugar-binding proteins, can distinguish between self and non-self-oligosaccharide motifs on pathogen surfaces. Although tick hemolymph possesses strong lectin activity, and several lectins have already been isolated and characterized, little is known about the implementation of these molecules in tick immunity. Here, we have described and functionally characterized fibrinogen-related protein (FReP lectins in Ixodes ticks. We have shown that the FReP family contains at least 27 genes (ixoderins, ixo that could, based on phylogenetic and expression analyses, be divided into three groups with differing degrees of expansion. By using RNA interference-mediated gene silencing (RNAi we demonstrated that IXO-A was the main lectin in tick hemolymph. Further, we found that ixoderins were important for phagocytosis of Gram-negative bacteria and yeasts by tick hemocytes and that their expression was upregulated upon injection of microbes, wounding, or after blood feeding. However, although the tick hemocytes could swiftly phagocytose Borrelia afzelii spirochetes, their transmission and burst of infection in mice was not altered. Our results demonstrate that tick ixoderins are crucial immune proteins that work as opsonins in the tick hemolymph, targeting microbes for phagocytosis or lysis.

  4. Infection and depletion of CD4+ group-1 innate lymphoid cells by HIV-1 via type-I interferon pathway.

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhao

    2018-01-01

    Full Text Available Innate lymphoid cells (ILCs are severely depleted during chronic HIV-1 infection by unclear mechanisms. We report here that human ILC1s comprising of CD4+ and CD4- subpopulations were present in various human lymphoid organs but with different transcription programs and functions. Importantly, CD4+ ILC1s expressed HIV-1 co-receptors and were productively infected by HIV-1 in vitro and in vivo. Furthermore, chronic HIV-1 infection activated and depleted both CD4+ and CD4- ILC1s, and impaired their cytokine production activity. Highly active antiretroviral (HAART therapy in HIV-1 patients efficiently rescued the ILC1 numbers and reduced their activation, but failed to restore their functionality. We also found that blocking type-I interferon (IFN-I signaling during HIV-1 infection in vivo in humanized mice prevented HIV-1 induced depletion or apoptosis of ILC1 cells. Therefore, we have identified the CD4+ ILC1 cells as a new target population for HIV-1 infection, and revealed that IFN-I contributes to the depletion of ILC1s during HIV-1 infection.

  5. Innate immune activation by inhaled lipopolysaccharide, independent of oxidative stress, exacerbates silica-induced pulmonary fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    David M Brass

    Full Text Available Acute exacerbations of pulmonary fibrosis are characterized by rapid decrements in lung function. Environmental factors that may contribute to acute exacerbations remain poorly understood. We have previously demonstrated that exposure to inhaled lipopolysaccharide (LPS induces expression of genes associated with fibrosis. To address whether exposure to LPS could exacerbate fibrosis, we exposed male C57BL/6 mice to crystalline silica, or vehicle, followed 28 days later by LPS or saline inhalation. We observed that mice receiving both silica and LPS had significantly more total inflammatory cells, more whole lung lavage MCP-1, MIP-2, KC and IL-1β, more evidence of oxidative stress and more total lung hydroxyproline than mice receiving either LPS alone, or silica alone. Blocking oxidative stress with N-acetylcysteine attenuated whole lung inflammation but had no effect on total lung hydroxyproline. These observations suggest that exposure to innate immune stimuli, such as LPS in the environment, may exacerbate stable pulmonary fibrosis via mechanisms that are independent of inflammation and oxidative stress.

  6. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  7. Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex.

    Science.gov (United States)

    Ramírez-Lugo, Leticia; Peñas-Rincón, Ana; Ángeles-Durán, Sandybel; Sotres-Bayon, Francisco

    2016-10-12

    The ability to select an appropriate behavioral response guided by previous emotional experiences is critical for survival. Although much is known about brain mechanisms underlying emotional associations, little is known about how these associations guide behavior when several choices are available. To address this, we performed local pharmacological inactivations of several cortical regions before retrieval of an aversive memory in choice-based versus no-choice-based conditioned taste aversion (CTA) tasks in rats. Interestingly, we found that inactivation of the orbitofrontal cortex (OFC), but not the dorsal or ventral medial prefrontal cortices, blocked retrieval of choice CTA. However, OFC inactivation left retrieval of no-choice CTA intact, suggesting its role in guiding choice, but not in retrieval of CTA memory. Consistently, OFC activity increased in the choice condition compared with no-choice, as measured with c-Fos immunolabeling. Notably, OFC inactivation did not affect choice behavior when it was guided by innate taste aversion. Consistent with an anterior insular cortex (AIC) involvement in storing taste memories, we found that AIC inactivation impaired retrieval of both choice and no-choice CTA. Therefore, this study provides evidence for OFC's role in guiding choice behavior and shows that this is dissociable from AIC-dependent taste aversion memory. Together, our results suggest that OFC is required and recruited to guide choice selection between options of taste associations relayed from AIC. Survival and mental health depend on being able to choose stimuli not associated with danger. This is particularly important when danger is associated with stimuli that we ingest. Although much is known about the brain mechanisms that underlie associations with dangerous taste stimuli, very little is known about how these stored emotional associations guide behavior when it involves choice. By combining pharmacological and immunohistochemistry tools with taste

  8. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  9. Innate recognition of pheromone and food odors in moths: a common mechanism in the antennal lobe?

    Directory of Open Access Journals (Sweden)

    Joshua P Martin

    2010-09-01

    Full Text Available The survival of an animal often depends on an innate response to a particular sensory stimulus. For an adult male moth, two categories of odors are innately attractive: pheromone released by conspecific females, and the floral scents of certain, often co-evolved, plants. These odors consist of multiple volatiles in characteristic mixtures. Here, we review evidence that both categories of odors are processed as sensory objects, and we suggest a mechanism in the primary olfactory center, the antennal lobe (AL, that encodes the configuration of these mixtures and may underlie recognition of innately attractive odors. In the pheromone system, mixtures of two or three volatiles elicit upwind flight. Peripheral changes are associated with behavioral changes in speciation, and suggest the existence of a pattern recognition mechanism for pheromone mixtures in the AL. Moths are similarly innately attracted to certain floral scents. Though floral scents consist of multiple volatiles that activate a broad array of receptor neurons, only a smaller subset, numerically comparable to pheromone mixtures, is necessary and sufficient to elicit behavior. Both pheromone and floral scent mixtures that produce attraction to the odor source elicit synchronous action potentials in particular populations of output (projection neurons (PNs in the AL. We propose a model in which the synchronous output of a population of PNs encodes the configuration of an innately attractive mixture, and thus comprises an innate mechanism for releasing odor-tracking behavior. The particular example of olfaction in moths may inform the general question of how sensory objects trigger innate responses.

  10. Induction of innate immune genes in brain create the neurobiology of addiction.

    Science.gov (United States)

    Crews, F T; Zou, Jian; Qin, Liya

    2011-06-01

    Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Organ system view of the hepatic innate immunity in HCV infection.

    Science.gov (United States)

    Bang, Bo-Ram; Elmasry, Sandra; Saito, Takeshi

    2016-12-01

    An orchestration of innate and adaptive immunity determines the infection outcome and whether the host achieves clearance or allows the pathogen to establish persistent infection. The robust activation of the innate immune response plays the most critical role in both limiting viral replication and halting the spread of the pathogen immediately after infection. The magnitude of innate immune activation is coupled with the efficient mounting of the adaptive immunity. Although immunity against HCV infection is known to be inadequate as most cases transitions to chronicity, approximately 25% of acute infection cases result in spontaneous clearance. The exact immune mechanisms that govern the infection outcome remain largely unknown; recent discoveries suggest that the innate immune system facilitates this event. Both infected hepatocytes and local innate immune cells trigger the front line defense program of the liver as well as the recruitment of diverse adaptive immune cells to the site of infection. Although hepatocyte is the target of HCV infection, nearly all cell types that exist in the liver are involved in the innate defense and contribute to the pathophysiology of hepatic inflammation. The main focus of this comprehensive review is to discuss the current knowledge on how each hepatic cell type contributes to the organ system level innate immunity against HCV infection as well as interplays with the viral evasion program. Furthermore, this review article also aims to synchronize the observations from both molecular biological studies and clinical studies with the ultimate goal of improving our understanding of HCV mediated hepatitis. J. Med. Virol. 88:2025-2037, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Blocking device especially for circulating pumps

    International Nuclear Information System (INIS)

    Susil, J.; Vychodil, V.; Lorenc, P.

    1976-01-01

    The claim of the invention is a blocking device which blocks reverse flow occurring after the shutdown of circulating pumps, namely in the operation of nuclear power plants or in pumps with a high delivery head. (F.M.)

  13. Reversible chronic acquired complete atrioventricular block.

    Science.gov (United States)

    Rakovec, P; Milcinski, G; Voga, G; Korsic, L

    1982-01-01

    The return of atrioventricular conduction is reported in a case after nearly four years of complete acquired heart block. After recovery from atrioventricular block, right bundle branch block persisted, but P-R interval and H-V interval were normal. Three months later a relapse of second degree infranodal atrioventricular block was noted. A short review of similar cases from the literature is given.

  14. 'Omics investigations of HIV and SIV pathogenesis and innate immunity.

    Science.gov (United States)

    Palermo, Robert E; Fuller, Deborah H

    2013-01-01

    investigations as applied to understanding of HIV pathogenesis and innate immunity, drawing from our own research as well as the literature examples that utilized in vitro cell-based models or studies in nonhuman primates. We will also discuss the potential for systems biology to help guide strategies for HIV vaccines that offer significant protection by either preventing acquisition or strongly suppressing viral replication levels post-infection.

  15. MARINE BOTTOM COMMUNITIES OF BLOCK ISLAND WATERS

    Science.gov (United States)

    The sea has long been an integral part of Block Island's natural history, beginning when the rising sea surrounded the high spot on a Pleistocene terminal moraine that became Block Island. The southern New England continental shelf, which lies around Block Island, and the Great S...

  16. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  17. Bullet-Block Science Video Puzzle

    Science.gov (United States)

    Shakur, Asif

    2015-01-01

    A science video blog, which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a…

  18. 49 CFR 236.708 - Block.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block. 236.708 Section 236.708 Transportation... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.708 Block. A length of track of defined limits, the use of which by trains is governed by block signals, cab signals, or both. ...

  19. 49 CFR 236.804 - Signal, block.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Signal, block. 236.804 Section 236.804 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Signal, block. A roadway signal operated either automatically or manually at the entrance to a block. ...

  20. Block Play: Practical Suggestions for Common Dilemmas

    Science.gov (United States)

    Tunks, Karyn Wellhousen

    2009-01-01

    Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…

  1. Naming Block Structures: A Multimodal Approach

    Science.gov (United States)

    Cohen, Lynn; Uhry, Joanna

    2011-01-01

    This study describes symbolic representation in block play in a culturally diverse suburban preschool classroom. Block play is "multimodal" and can allow children to experiment with materials to represent the world in many forms of literacy. Combined qualitative and quantitative data from seventy-seven block structures were collected and analyzed.…

  2. 21 CFR 882.5070 - Bite block.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Bite block. 882.5070 Section 882.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5070 Bite block. (a) Identification. A bite block...

  3. Large block test status report

    International Nuclear Information System (INIS)

    Wilder, D.G.; Lin, W.; Blair, S.C.

    1997-01-01

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved

  4. Block-conjugate-gradient method

    International Nuclear Information System (INIS)

    McCarthy, J.F.

    1989-01-01

    It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum

  5. PKA/KIN-1 mediates innate immune responses to bacterial pathogens in Caenorhabditis elegans.

    Science.gov (United States)

    Xiao, Yi; Liu, Fang; Zhao, Pei-Ji; Zou, Cheng-Gang; Zhang, Ke-Qin

    2017-11-01

    The genetically tractable organism Caenorhabditis elegans is a powerful model animal for the study of host innate immunity. Although the intestine and the epidermis of C. elegans that is in contact with pathogens are likely to function as sites for the immune function, recent studies indicate that the nervous system could control innate immunity in C. elegans. In this report, we demonstrated that protein kinase A (PKA)/KIN-1 in the neurons contributes to resistance against Salmonella enterica infection in C. elegans. Microarray analysis revealed that PKA/KIN-1 regulates the expression of a set of antimicrobial effectors in the non-neuron tissues, which are required for innate immune responses to S. enterica. Furthermore, PKA/KIN-1 regulated the expression of lysosomal genes during S. enterica infection. Our results suggest that the lysosomal signaling molecules are involved in autophagy by controlling autophagic flux, rather than formation of autophagosomes. As autophagy is crucial for host defense against S. enterica infection in a metazoan, the lysosomal pathway also acts as a downstream effector of the PKA/KIN-1 signaling for innate immunity. Our data indicate that the PKA pathway contributes to innate immunity in C. elegans by signaling from the nervous system to periphery tissues to protect the host against pathogens.

  6. Injury to Allografts: innate immune pathways to acute and chronic rejection

    International Nuclear Information System (INIS)

    Land, W. G.

    2005-01-01

    An emerging body of evidence suggests that innate immunity, as the first line of host defense against invading pathogens or their components [pathogen-associated molecular patterns, (PAMPs)], plays also a critical role in acute and chronic allograft rejection. Injury to the donor organ induces an inflammatory milieu in the allograft, which appears to be the initial key event for activation of the innate immune system. Injury-induced generation of putative endogenous molecular ligand, in terms of damaged/danger-associated molecular patterns (DAMPs) such as heat shock proteins, are recognized by Toll-like receptors (TLRs), a family of pattern recognition receptors on cells of innate immunity. Acute allograft injury (e.g. oxidative stress during donor brain-death condition, post-ischemic reperfusion injury in the recipient) includes DAMPs which may interact with, and activate, innate TLR-bearing dendritic cells (DCs) which, in turn, via direct allo-recognition through donor-derived DCs and indirect allo-recogntion through recipient-derived DCs, initiate the recipient's adaptive alloimmune response leading to acute allograft rejection. Chronic injurious events in the allograft (e.g. hypertension, hyperlipidemia, CMV infection, administration of cell-toxic drugs [calcineurin-inhibitors]) induce the generation of D AMPs , which may interact with and activate innate TLR-bearing vascular cells (endothelial cells, smooth muscle cells) which, in turn, contribute to the development of atherosclerosis of donor organ vessels (alloatherosclerosis), thus promoting chronic allograft rejection. (author)

  7. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  8. Innate Immune Cytokines, Fibroblast Phenotypes, and Regulation of Extracellular Matrix in Lung.

    Science.gov (United States)

    Richards, Carl D

    2017-02-01

    Chronic inflammation can be caused by adaptive immune responses in autoimmune and allergic conditions, driven by a T lymphocyte subset balance (TH1, TH2, Th17, Th22, and/or Treg) and skewed cellular profiles in an antigen-specific manner. However, several chronic inflammatory diseases have no clearly defined adaptive immune mechanisms that drive chronicity. These conditions include those that affect the lung such as nonatopic asthma or idiopathic pulmonary fibrosis comprising significant health problems. The remodeling of extracellular matrix (ECM) causes organ dysfunction, and it is largely generated by fibroblasts as the major cell controlling net ECM. As such, these are potential targets of treatment approaches in the context of ECM pathology. Fibroblast phenotypes contribute to ECM and inflammatory cell accumulation, and they are integrated into chronic disease mechanisms including cancer. Evidence suggests that innate cytokine responses may be critical in nonallergic/nonautoimmune disease, and they enable environmental agent exposure mechanisms that are independent of adaptive immunity. Innate immune cytokines derived from macrophage subsets (M1/M2) and innate lymphoid cell (ILC) subsets can directly regulate fibroblast function. We also suggest that STAT3-activating gp130 cytokines can sensitize fibroblasts to the innate cytokine milieu to drive phenotypes and exacerbate existing adaptive responses. Here, we review evidence exploring innate cytokine regulation of fibroblast behavior.

  9. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth

    Science.gov (United States)

    Goyret, Joaquín; Pfaff, Michael; Raguso, Robert A.; Kelber, Almut

    2008-06-01

    Flower colour is an important signal used by flowering plants to attract pollinators. Many anthophilous insects have an innate colour preference that is displayed during their first foraging bouts and which could help them locate their first nectar reward. Nevertheless, learning capabilities allow insects to switch their colour preferences with experience and thus, to track variation in floral nectar availability. Manduca sexta, a crepuscular hawkmoth widely studied as a model system for sensory physiology and behaviour, visits mostly white, night-blooming flowers lacking UV reflectance throughout its range in the Americas. Nevertheless, the spectral sensitivity of the feeding behaviour of naïve moths shows a narrow peak around 450 nm wavelengths, suggesting an innate preference for the colour blue. Under more natural conditions (i.e. broader wavelength reflectance) than in previous studies, we used dual choice experiments with blue- and white-coloured feeders to investigate the innate preference of naïve moths and trained different groups to each colour to evaluate their learning capabilities. We confirmed the innate preference of M. sexta for blue and found that these moths were able to switch colour preferences after training experience. These results unequivocally demonstrate that M. sexta moths innately prefer blue when presented against white flower models and offer novel experimental evidence supporting the hypothesis that learning capabilities could be involved in their foraging preferences, including their widely observed attraction to white flowers in nature.

  10. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.

    Science.gov (United States)

    Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael

    2018-04-17

    Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Innate immune system still works at diapause, a physiological state of dormancy in insects

    International Nuclear Information System (INIS)

    Nakamura, Akihiro; Miyado, Kenji; Takezawa, Youki; Ohnami, Naoko; Sato, Masahiro; Ono, Chihiro; Harada, Yuichirou; Yoshida, Keiichi; Kawano, Natsuko; Kanai, Seiya; Miyado, Mami; Umezawa, Akihiro

    2011-01-01

    Highlights: → Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. → Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. → Such behavior by these cells was still observed even when pupae were continuously chilled at 4 o C. → Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allows insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 o C. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.

  12. Innate immune system still works at diapause, a physiological state of dormancy in insects

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Akihiro [Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535 (Japan); Miyado, Kenji, E-mail: kmiyado@nch.go.jp [Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535 (Japan); Takezawa, Youki; Ohnami, Naoko [Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535 (Japan); Sato, Masahiro [Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 1-21-20 Korimoto, Kagoshima 890-0065 (Japan); Ono, Chihiro; Harada, Yuichirou; Yoshida, Keiichi; Kawano, Natsuko; Kanai, Seiya; Miyado, Mami; Umezawa, Akihiro [Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535 (Japan)

    2011-07-01

    Highlights: {yields} Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. {yields} Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. {yields} Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. {yields} Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allows insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.

  13. Alcohol resistance in Drosophila is modulated by the Toll innate immune pathway.

    Science.gov (United States)

    Troutwine, B R; Ghezzi, A; Pietrzykowski, A Z; Atkinson, N S

    2016-04-01

    A growing body of evidence has shown that alcohol alters the activity of the innate immune system and that changes in innate immune system activity can influence alcohol-related behaviors. Here, we show that the Toll innate immune signaling pathway modulates the level of alcohol resistance in Drosophila. In humans, a low level of response to alcohol is correlated with increased risk of developing an alcohol use disorder. The Toll signaling pathway was originally discovered in, and has been extensively studied in Drosophila. The Toll pathway is a major regulator of innate immunity in Drosophila, and mammalian Toll-like receptor signaling has been implicated in alcohol responses. Here, we use Drosophila-specific genetic tools to test eight genes in the Toll signaling pathway for effects on the level of response to ethanol. We show that increasing the activity of the pathway increases ethanol resistance whereas decreasing the pathway activity reduces ethanol resistance. Furthermore, we show that gene products known to be outputs of innate immune signaling are rapidly induced following ethanol exposure. The interaction between the Toll signaling pathway and ethanol is rooted in the natural history of Drosophila melanogaster. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    Science.gov (United States)

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  15. A key requirement for CD300f in innate immune responses of eosinophils in colitis.

    Science.gov (United States)

    Moshkovits, I; Reichman, H; Karo-Atar, D; Rozenberg, P; Zigmond, E; Haberman, Y; Ben Baruch-Morgenstern, N; Lampinen, M; Carlson, M; Itan, M; Denson, L A; Varol, C; Munitz, A

    2017-01-01

    Eosinophils are traditionally studied in the context of type 2 immune responses. However, recent studies highlight key innate immune functions for eosinophils especially in colonic inflammation. Surprisingly, molecular pathways regulating innate immune activities of eosinophil are largely unknown. We have recently shown that the CD300f is highly expressed by colonic eosinophils. Nonetheless, the role of CD300f in governing innate immune eosinophil activities is ill-defined. RNA sequencing of 162 pediatric Crohn's disease patients revealed upregulation of multiple Cd300 family members, which correlated with the presence of severe ulcerations and inflammation. Increased expression of CD300 family receptors was also observed in active ulcerative colitis (UC) and in mice following induction of experimental colitis. Specifically, the expression of CD300f was dynamically regulated in monocytes and eosinophils. Dextran sodium sulfate (DSS)-treated Cd300f -/- mice exhibit attenuated disease activity and histopathology in comparison with DSS-treated wild type (WT). Decreased disease activity in Cd300f -/- mice was accompanied with reduced inflammatory cell infiltration and nearly abolished production of pro-inflammatory cytokines. Monocyte depletion and chimeric bone marrow transfer experiments revealed a cell-specific requirement for CD300f in innate immune activation of eosinophils. Collectively, we uncover a new pathway regulating innate immune activities of eosinophils, a finding with significant implications in eosinophil-associated gastrointestinal diseases.

  16. Hepatitis B virus polymerase blocks pattern recognition receptor signaling via interaction with DDX3: implications for immune evasion.

    Directory of Open Access Journals (Sweden)

    Haifeng Wang

    Full Text Available Viral infection leads to induction of pattern-recognition receptor signaling, which leads to interferon regulatory factor (IRF activation and ultimately interferon (IFN production. To establish infection, many viruses have strategies to evade the innate immunity. For the hepatitis B virus (HBV, which causes chronic infection in the liver, the evasion strategy remains uncertain. We now show that HBV polymerase (Pol blocks IRF signaling, indicating that HBV Pol is the viral molecule that effectively counteracts host innate immune response. In particular, HBV Pol inhibits TANK-binding kinase 1 (TBK1/IkappaB kinase-epsilon (IKKepsilon, the effector kinases of IRF signaling. Intriguingly, HBV Pol inhibits TBK1/IKKepsilon activity by disrupting the interaction between IKKepsilon and DDX3 DEAD box RNA helicase, which was recently shown to augment TBK1/IKKepsilon activity. This unexpected role of HBV Pol may explain how HBV evades innate immune response in the early phase of the infection. A therapeutic implication of this work is that a strategy to interfere with the HBV Pol-DDX3 interaction might lead to the resolution of life-long persistent infection.

  17. Isostatic compression of buffer blocks. Middle scale

    International Nuclear Information System (INIS)

    Ritola, J.; Pyy, E.

    2012-01-01

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  18. Isostatic compression of buffer blocks. Middle scale

    Energy Technology Data Exchange (ETDEWEB)

    Ritola, J.; Pyy, E. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-01-15

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  19. Coastal protection using topological interlocking blocks

    Science.gov (United States)

    Pasternak, Elena; Dyskin, Arcady; Pattiaratchi, Charitha; Pelinovsky, Efim

    2013-04-01

    The coastal protection systems mainly rely on the self-weight of armour blocks to ensure its stability. We propose a system of interlocking armour blocks, which form plate-shape assemblies. The shape and the position of the blocks are chosen in such a way as to impose kinematic constraints that prevent the blocks from being removed from the assembly. The topological interlocking shapes include simple convex blocks such as platonic solids, the most practical being tetrahedra, cubes and octahedra. Another class of topological interlocking blocks is so-called osteomorphic blocks, which form plate-like assemblies tolerant to random block removal (almost 25% of blocks need to be removed for the assembly to loose integrity). Both classes require peripheral constraint, which can be provided either by the weight of the blocks or post-tensioned internal cables. The interlocking assemblies provide increased stability because lifting one block involves lifting (and bending) the whole assembly. We model the effect of interlocking by introducing an equivalent additional self-weight of the armour blocks. This additional self-weight is proportional to the critical pressure needed to cause bending of the interlocking assembly when it loses stability. Using beam approximation we find an equivalent stability coefficient for interlocking. It is found to be greater than the stability coefficient of a structure with similar blocks without interlocking. In the case when the peripheral constraint is provided by the weight of the blocks and for the slope angle of 45o, the effective stability coefficient for a structure of 100 blocks is 33% higher than the one for a similar structure without interlocking. Further increase in the stability coefficient can be reached by a specially constructed peripheral constraint system, for instance by using post-tension cables.

  20. Ganglion block. When and how?

    International Nuclear Information System (INIS)

    Bale, R.

    2015-01-01

    Increasing understanding of the anatomy and physiology of neural structures has led to the development of surgical and percutaneous neurodestructive methods in order to target and destroy various components of afferent nociceptive pathways. The dorsal root ganglia and in particular the ganglia of the autonomous nervous system are targets for radiological interventions. The autonomous nervous system is responsible for the regulation of organ functions, sweating, visceral and blood vessel-associated pain. Ganglia of the sympathetic chain and non-myelinized autonomous nerves can be irreversibly destroyed by chemical and thermal ablation. Computed tomography (CT)-guided sympathetic nerve blocks are well established interventional radiological procedures which lead to vasodilatation, reduction of sweating and reduction of pain associated with the autonomous nervous system. Sympathetic blocks are applied for the treatment of various vascular diseases including critical limb ischemia. Other indications for thoracic and lumbar sympathectomy include complex regional pain syndrome (CRPS), chronic tumor associated pain and hyperhidrosis. Neurolysis of the celiac plexus is an effective palliative pain treatment particularly in patients suffering from pancreatic cancer. Percutaneous dorsal root ganglion rhizotomy can be performed in selected patients with radicular pain that is resistant to conventional pharmacological and interventional treatment. (orig.) [de

  1. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita; Richtarik, Peter

    2018-01-01

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\cal O}(1/\\epsilon)$, ${\\cal O}(1/\\sqrt{\\epsilon})$ and ${\\cal O}(\\log (1/\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  2. Randomized Block Cubic Newton Method

    KAUST Repository

    Doikov, Nikita

    2018-02-12

    We study the problem of minimizing the sum of three convex functions: a differentiable, twice-differentiable and a non-smooth term in a high dimensional setting. To this effect we propose and analyze a randomized block cubic Newton (RBCN) method, which in each iteration builds a model of the objective function formed as the sum of the natural models of its three components: a linear model with a quadratic regularizer for the differentiable term, a quadratic model with a cubic regularizer for the twice differentiable term, and perfect (proximal) model for the nonsmooth term. Our method in each iteration minimizes the model over a random subset of blocks of the search variable. RBCN is the first algorithm with these properties, generalizing several existing methods, matching the best known bounds in all special cases. We establish ${\\\\cal O}(1/\\\\epsilon)$, ${\\\\cal O}(1/\\\\sqrt{\\\\epsilon})$ and ${\\\\cal O}(\\\\log (1/\\\\epsilon))$ rates under different assumptions on the component functions. Lastly, we show numerically that our method outperforms the state-of-the-art on a variety of machine learning problems, including cubically regularized least-squares, logistic regression with constraints, and Poisson regression.

  3. Thyroid blocking after nuclear accidents

    International Nuclear Information System (INIS)

    Rendl, J.; Reiners, C.

    1999-01-01

    Following the Chernobyl accident a marked increase in thyroid cancer incidence among the children in Belarus, the Ukraine and Russia has been detected, strongly suggesting a causal relationship to the large amounts of radioactive iodine isotopes in the resulting fallout. Taking into account the Chernobyl experience the German Committee on Radiation Protection decided to reduce the intervention levels on the basis of the 1989 WHO recommendations and adopted a new concept concerning thyroid blocking in response to nuclear power plant accidents. Experimental animal studies and theoretical considerations show that thyroid blocking with potassium iodide (KI) in a dose of about 1.4 mg per kg body weight is most effective in reducing irradiation to the thyroid from the intake of radioiodine nuclides, provided KI is given within 2 hours after exposure. According to the new concept, persons over 45 years of age should not take iodine tablets because the drug could cause a greater health risk due to prevalent functional thyroid autonomy in this age group than the radioactive iodine averted by KI. On the basis of accident analysis and the new philosophy suitable distribution strategies and logistics are proposed and discussed. (orig.) [de

  4. [Complete atrioventricular block in Duchenne muscular dystrophy].

    Science.gov (United States)

    Kuru, Satoshi; Tanahashi, Tamotsu; Matsumoto, Shinjirou; Kitamura, Tetsuya; Konagaya, Masaaki

    2012-01-01

    We report a case of complete atrioventricular (AV) block in a 40-year-old patient with Duchenne muscular dystrophy (DMD). While he was bed-ridden and required mechanical ventilation, his cardiac involvement was mild. He had the deletion of exon 45-52 in the dystrophin gene. He underwent transient complete AV block and came to require pacemaker implantation due to recurrence of complete AV block ten days after the first attack. Electrophysiological study revealed mild prolonged AH and HV interval. Although DMD patients with AV block have been rarely reported so far, attention should be paid to AV block for patients who prolonged their lives.

  5. ALS insertion device block measurement and inspection

    International Nuclear Information System (INIS)

    Marks, S.; Carrieri, J.; Cook, C.; Hassenzahl, W.V.; Hoyer, E.; Plate, D.

    1991-05-01

    The performance specifications for ALS insertion devices require detailed knowledge and strict control of the Nd-Fe-B permanent magnet blocks incorporated in these devices. This paper describes the measurement and inspection apparatus and the procedures designed to qualify and characterize these blocks. A detailed description of a new, automated Helmholtz coil facility for measurement of the three components of magnetic moment is included. Physical block inspection and magnetic moment measurement procedures are described. Together they provide a basis for qualifying blocks and for specifying placement of blocks within an insertion devices' magnetic structures. 1 ref., 4 figs

  6. How to block and tackle the face.

    Science.gov (United States)

    Zide, B M; Swift, R

    1998-03-01

    Regional blocking techniques as noted in dentistry, anesthesia, and anatomy texts may result in inconsistent and imperfect analgesia when needed for facial aesthetic surgery. The advent of laser facial surgery and more complicated aesthetic facial procedures has thus increased the demand for anesthesia support. Surgeons should know a fail-safe method of nerve blocks. Fresh cadaver dissections are used to demonstrate a series of eight regional nerve-blocking routes. This sequence of bilateral blocks will routinely provide profound full facial anesthesia. Certain groupings of blocks are effective for perioral or periorbital laser surgery.

  7. Interleukin 37 limits monosodium urate crystal-induced innate immune responses in human and murine models of gout.

    Science.gov (United States)

    Liu, Lei; Xue, Yu; Zhu, Yingfeng; Xuan, Dandan; Yang, Xue; Liang, Minrui; Wang, Juan; Zhu, Xiaoxia; Zhang, Jiong; Zou, Hejian

    2016-11-18

    Interleukin (IL)-37 has emerged as a fundamental inhibitor of innate immunity. Acute gout is a self-limiting inflammatory response to monosodium urate (MSU) crystals. In the current study, we assessed the preventive and therapeutic effect of recombinant human IL-37 (rhIL-37) in human and murine gout models. We investigated the expression of IL-37 in patients with active and inactive gouty arthritis and assessed the effect of rhIL-37 in human and murine gout models: a human monocyte cell line (THP-1) and human synovial cells (containing macrophage-like and fibroblast-like synoviocytes) exposed to MSU crystals, a peritoneal murine model of gout and a murine gouty arthritis model. After inhibition of Mer receptor tyrosine kinase (Mertk), levels of IL-1β, IL-8 and chemokine (C-C motif) ligand 2 (CCL-2) were detected by ELISA and expression of mammalian homologs of the drosophila Mad gene 3 (Smad), suppressor of cytokine signaling 3 (SOCS3), NACHT-LRR-PYD-containing protein 3 (NLRP3), and IL-8R of THP-1 were assessed by qPCR and western blot to explore the molecular mechanisms. Our studies strongly indicated that rhIL-37 played a potent immunosuppressive role in the pathogenesis of experimental gout models both in vitro and in vivo, by downregulating proinflammatory cytokines and chemokines, markedly reducing neutrophil and monocyte recruitment, and mitigating pathological joint inflammation. In our studies, rhIL-37 suppressed MSU-induced innate immune responses by enhancing expression of Smad3 and IL-1R8 to trigger multiple intracellular switches to block inflammation, including inhibition of NLRP3 and activation of SOCS3. Mertk signaling participated in rhIL-37 inhibitory pathways in gout models. By inhibition of Mertk, the anti-inflammatory effect of rhIL-37 was partly abrogated, and IL-1R8, Smad3 and S​OCS3 expression were suppressed, whereas NLRP3 expression was reactivated. Our studies reveal that IL-37 limits runaway inflammation initiated by MSU crystal

  8. Influence of anchor block size on the thickness of adsorbed block copolymer layers

    NARCIS (Netherlands)

    Belder, G.F; ten Brinke, G.; Hadziioannou, G

    1997-01-01

    We present surface force data on three different polystyrene/poly(2-vinylpyridine) block copolymers (PS/P2VP) with a fixed size of the nonadsorbing PS block but widely varying sizes of the adsorbing P2VP block. With respect to the sizes of the two blocks, they range from moderately to highly

  9. Backfilling of deposition tunnels, block alternative

    International Nuclear Information System (INIS)

    Keto, P.; Roennqvist, P.-E.

    2007-03-01

    This report presents a preliminary process description of backfilling the deposition tunnels with pre-compacted blocks consisting of a mixture of bentonite and ballast (30:70). The process was modified for the Finnish KBS-3V type repository assuming that the amount of spent fuel canisters disposed of yearly is 40. Backfilling blocks (400 x 300 x 300 mm) are prepared in a block production plant with a hydraulic press with an estimated production capacity of 840 blocks per day. Some of the blocks are modified further to fit the profile of the tunnel roof. Prior to the installation of the blocks, the deposition tunnel floor is levelled with a mixture of bentonite and ballast (15:85). The blocks are placed in the tunnel with a modified reach truck. Centrifugal pellet throwing equipment is used to fill the gap between the blocks and the rock surface with bentonite pellets. Based on a preliminary assessment, the average dry density achieved with block backfill is sufficient to fulfil the criteria set for the backfill in order to ensure long-term safety and radiation protection. However, there are uncertainties concerning saturation, homogenisation, erosion, piping and self-healing of the block backfill that need to be studied further with laboratory and field tests. In addition, development efforts and testing concerning block manufacturing and installation are required to verify the technical feasibility of the concept. (orig.)

  10. Innate immune responses to obesity in cloned and wild-type domestic pig

    DEFF Research Database (Denmark)

    Højbøge, Tina Rødgaard; Skovgaard, Kerstin; Stagsted, Jan

    as a refined pig model for obesity-induced innate host responses by reducing pig-to-pig biological variation compared to wild-type (WT) pigs (n=19). Pigs were fed ad libitum with a high fat/high sucrose diet to induce obesity or kept lean on a restricted diet (60% of ad libitum intake) beginning at three...... months of age. mRNA expression levels were determined for 39 innate immune factors on a high-throughput qPCR system in samples from liver, abdominal fat, mesenteric fat and subcutaneous fat. Previous findings have suggested that cloning may affect certain phenotypic traits of pigs including basic...... concentrations and responsiveness of components of the innate immune system. Terminal body weights at 7½ - 9½ months of age were significantly higher for both (WT and cloned) obese groups compared to the lean groups. However, obese WT pigs weighed significantly more than obese cloned pigs (P

  11. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection.

    Science.gov (United States)

    Huang, Fu-Chen

    2017-08-07

    Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella , a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.

  12. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    Science.gov (United States)

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  13. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update).

    Science.gov (United States)

    Yazdani, Reza; Sharifi, Mehri; Shirvan, Aylar Saba; Azizi, Gholamreza; Ganjalikhani-Hakemi, Mazdak

    2015-01-01

    Innate lymphoid cells (ILCs) are a novel family of hematopoietic effectors and regulators of innate immunity. Although these cells are morphologically similar to B cells and T cells, however they do not express antigen receptors. ILCs seems to have emerging roles in innate immune responses against infectious or non-infectious microorganisms, protection of the epithelial barrier, lymphoid organogenesis and inflammation, tissue remodeling and regulating homeostasis of tissue stromal cells. In addition, it has recently been reported that ILCs have a crucial role in several disorders such as allergy and autoimmunity. Based on their phenotype and functions, ILCs are classified into three major groups called ILCs1, ILCs2, and ILCs3. Here we reviewed the most recent data concerning diverse ILC phenotypes, subclasses, functions in immune responses as well as in immune mediated disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Lymphotoxin organizes contributions to host defense and metabolic illness from innate lymphoid cells.

    Science.gov (United States)

    Upadhyay, Vaibhav; Fu, Yang-Xin

    2014-04-01

    The lymphotoxin (LT)-pathway is a unique constituent branch of the Tumor Necrosis Superfamily (TNFSF). Use of LT is a critical mechanism by which fetal innate lymphoid cells regulate lymphoid organogenesis. Within recent years, adult innate lymphoid cells have been discovered to utilize this same pathway to regulate IL-22 and IL-23 production for host defense. Notably, genetic studies have linked polymorphisms in the genes encoding LTα to several phenotypes contributing to metabolic syndrome. The role of the LT-pathway may lay the foundation for a bridge between host immune response, microbiota, and metabolic syndrome. The contribution of the LT-pathway to innate lymphoid cell function and metabolic syndrome will be visited in this review. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Transcription Factor Networks Directing the Development, Function, and Evolution of Innate Lymphoid Effectors

    Science.gov (United States)

    Kang, Joonsoo; Malhotra, Nidhi

    2015-01-01

    Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity. PMID:25650177

  16. Morphological and Cellular Features of Innate Immune Reaction in Helicobacter pylori Gastritis: A Brief Review

    Directory of Open Access Journals (Sweden)

    Antonio Ieni

    2016-01-01

    Full Text Available Innate and adaptive immunity are both involved in acute and chronic inflammatory processes. The main cellular players in the innate immune system are macrophages, mast cells, dendritic cells, neutrophils, eosinophils, and natural killer (NK, which offer antigen-independent defense against infection. Helicobacter pylori (H. pylori infection presents peculiar characteristics in gastric mucosa infrequently occurring in other organs; its gastric colonization determines a causal role in both gastric carcinomas and mucosa-associated lymphoid tissue lymphoma. In contrast, an active role for Epstein-Barr virus (EBV has been identified only in 9% of gastric carcinomas. The aim of the present review is to discuss the role of cellular morphological effectors in innate immunity during H. pylori infection and gastric carcinogenesis.

  17. Atg5 Is Essential for the Development and Survival of Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Timothy E. O’Sullivan

    2016-05-01

    Full Text Available Autophagy is an essential cellular survival mechanism that is required for adaptive lymphocyte development; however, its role in innate lymphoid cell (ILC development remains unknown. Furthermore, the conditions that promote lymphocyte autophagy during homeostasis are poorly understood. Here, we demonstrate that Atg5, an essential component of the autophagy machinery, is required for the development of mature natural killer (NK cells and group 1, 2, and 3 innate ILCs. Although inducible ablation of Atg5 was dispensable for the homeostasis of lymphocyte precursors and mature lymphocytes in lymphoreplete mice, we found that autophagy is induced in both adaptive and innate lymphocytes during homeostatic proliferation in lymphopenic hosts to promote their survival by limiting cell-intrinsic apoptosis. Induction of autophagy through metformin treatment following homeostatic proliferation increased lymphocyte numbers through an Atg5-dependent mechanism. These findings highlight the essential role for autophagy in ILC development and lymphocyte survival during lymphopenia.

  18. Evolution and integration of innate immune systems from fruit flies to man: lessons and questions.

    Science.gov (United States)

    Martinelli, Cosimo; Reichhart, Jean-Marc

    2005-01-01

    Despite broad differences in morphology, ecology and behavior, the fruit fly Drosophila melanogaster and humans show a remarkably high degree of conservation for many molecular, cellular, and developmental aspects of their biology. During the last decade, similarities have also been discovered in some of the mechanisms regulating their innate immune system. These parallels regard mainly the Toll-like receptor family and the intracellular signaling pathways involved in the control of the immune response. However, if the overall similarities are important, the detailed pathogen recognition mechanisms differ significantly between fly and humans, highlighting a complicated evolutionary history of the metazoan innate defenses. In this review, we will discuss the main similarities and differences between the two types of organisms. We hope that this current knowledge will be used as a starting point for a more comprehensive view of innate immunity within the broad variety of metazoan phyla.

  19. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lenz

    2018-04-01

    Full Text Available Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer’s disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  20. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    Science.gov (United States)

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  1. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer.

    Science.gov (United States)

    Garlanda, Cecilia; Bottazzi, Barbara; Magrini, Elena; Inforzato, Antonio; Mantovani, Alberto

    2018-04-01

    Innate immunity includes a cellular and a humoral arm. PTX3 is a fluid-phase pattern recognition molecule conserved in evolution which acts as a key component of humoral innate immunity in infections of fungal, bacterial, and viral origin. PTX3 binds conserved microbial structures and self-components under conditions of inflammation and activates effector functions (complement, phagocytosis). Moreover, it has a complex regulatory role in inflammation, such as ischemia/reperfusion injury and cancer-related inflammation, as well as in extracellular matrix organization and remodeling, with profound implications in physiology and pathology. Finally, PTX3 acts as an extrinsic oncosuppressor gene by taming tumor-promoting inflammation in murine and selected human tumors. Thus evidence suggests that PTX3 is a key homeostatic component at the crossroad of innate immunity, inflammation, tissue repair, and cancer. Dissecting the complexity of PTX3 pathophysiology and human genetics paves the way to diagnostic and therapeutic exploitation.

  2. In vivo Ebola virus infection leads to a strong innate response in circulating immune cells.

    Science.gov (United States)

    Caballero, Ignacio S; Honko, Anna N; Gire, Stephen K; Winnicki, Sarah M; Melé, Marta; Gerhardinger, Chiara; Lin, Aaron E; Rinn, John L; Sabeti, Pardis C; Hensley, Lisa E; Connor, John H

    2016-09-05

    Ebola virus is the causative agent of a severe syndrome in humans with a fatality rate that can approach 90 %. During infection, the host immune response is thought to become dysregulated, but the mechanisms through which this happens are not entirely understood. In this study, we analyze RNA sequencing data to determine the host response to Ebola virus infection in circulating immune cells. Approximately half of the 100 genes with the strongest early increases in expression were interferon-stimulated genes, such as ISG15, OAS1, IFIT2, HERC5, MX1 and DHX58. Other highly upregulated genes included cytokines CXCL11, CCL7, IL2RA, IL2R1, IL15RA, and CSF2RB, which have not been previously reported to change during Ebola virus infection. Comparing this response in two different models of exposure (intramuscular and aerosol) revealed a similar signature of infection. The strong innate response in the aerosol model was seen not only in circulating cells, but also in primary and secondary target tissues. Conversely, the innate immune response of vaccinated macaques was almost non-existent. This suggests that the innate response is a major aspect of the cellular response to Ebola virus infection in multiple tissues. Ebola virus causes a severe infection in humans that is associated with high mortality. The host immune response to virus infection is thought to be an important aspect leading to severe pathology, but the components of this overactive response are not well characterized. Here, we analyzed how circulating immune cells respond to the virus and found that there is a strong innate response dependent on active virus replication. This finding is in stark contrast to in vitro evidence showing a suppression of innate immune signaling, and it suggests that the strong innate response we observe in infected animals may be an important contributor to pathogenesis.

  3. Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression

    Directory of Open Access Journals (Sweden)

    Chong-Sheng Chen

    2014-01-01

    Full Text Available Metronomic chemotherapy using cyclophosphamide (CPA is widely associated with antiangiogenesis; however, recent studies implicate other immune-based mechanisms, including antitumor innate immunity, which can induce major tumor regression in implanted brain tumor models. This study demonstrates the critical importance of drug schedule: CPA induced a potent antitumor innate immune response and tumor regression when administered intermittently on a 6-day repeating metronomic schedule but not with the same total exposure to activated CPA administered on an every 3-day schedule or using a daily oral regimen that serves as the basis for many clinical trials of metronomic chemotherapy. Notably, the more frequent metronomic CPA schedules abrogated the antitumor innate immune and therapeutic responses. Further, the innate immune response and antitumor activity both displayed an unusually steep dose-response curve and were not accompanied by antiangiogenesis. The strong recruitment of innate immune cells by the 6-day repeating CPA schedule was not sustained, and tumor regression was abolished, by a moderate (25% reduction in CPA dose. Moreover, an ~20% increase in CPA dose eliminated the partial tumor regression and weak innate immune cell recruitment seen in a subset of the every 6-day treated tumors. Thus, metronomic drug treatment must be at a sufficiently high dose but also sufficiently well spaced in time to induce strong sustained antitumor immune cell recruitment. Many current clinical metronomic chemotherapeutic protocols employ oral daily low-dose schedules that do not meet these requirements, suggesting that they may benefit from optimization designed to maximize antitumor immune responses.

  4. Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats.

    Science.gov (United States)

    Vincenz, Daniel; Wernecke, Kerstin E A; Fendt, Markus; Goldschmidt, Jürgen

    2017-08-14

    Fear is an important behavioral system helping humans and animals to survive potentially dangerous situations. Fear can be innate or learned. Whereas the neural circuits underlying learned fear are already well investigated, the knowledge about the circuits mediating innate fear is still limited. We here used a novel, unbiased approach to image in vivo the spatial patterns of neural activity in odor-induced innate fear behavior in rats. We intravenously injected awake unrestrained rats with a 99m-technetium labeled blood flow tracer (99mTc-HMPAO) during ongoing exposure to fox urine or water as control, and mapped the brain distribution of the trapped tracer using single-photon emission computed tomography (SPECT). Upon fox urine exposure blood flow increased in a number of brain regions previously associated with odor-induced innate fear such as the amygdala, ventromedial hypothalamus and dorsolateral periaqueductal grey, but, unexpectedly, decreased at higher significance levels in the interpeduncular nucleus (IPN). Significant flow changes were found in regions monosynaptically connected to the IPN. Flow decreased in the dorsal tegmentum and entorhinal cortex. Flow increased in the habenula (Hb) and correlated with odor effects on behavioral defensive strategy. Hb lesions reduced avoidance of but increased approach to the fox urine while IPN lesions only reduced avoidance behavior without approach behavior. Our study identifies a new component, the IPN, of the neural circuit mediating odor-induced innate fear behavior in mammals and suggests that the evolutionarily conserved Hb-IPN system, which has recently been implicated in cued fear, also forms an integral part of the innate fear circuitry. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Rorγt+ innate lymphoid cells in intestinal homeostasis and immunity.

    Science.gov (United States)

    Aparicio-Domingo, Patricia; Cupedo, Tom

    2011-01-01

    Innate lymphoid cells (ILC) combine innate and adaptive immune functions and are part of the first line of defense against mucosal infections. ILC are set apart from adaptive lymphocytes by their independence on RAG genes and the resulting absence of specific antigen receptors. In this review, we will discuss the biology and function of intestinal ILC that express the nuclear hormone receptor Rorγt (encoded by the Rorc gene) and highlight their role in intestinal homeostasis and immunity. Copyright © 2011 S. Karger AG, Basel.

  6. An innately dangerous balancing act: intestinal homeostasis, inflammation, and colitis-associated cancer

    Science.gov (United States)

    2010-01-01

    Inflammatory bowel disease (IBD) is characterized by dysregulated immune responses to the intestinal microbiota, and by chronic intestinal inflammation. Several recent studies demonstrate the importance of innate microbial recognition by immune and nonimmune cells in the gut. Paradoxically, either diminished or exacerbated innate immune signaling may trigger the breakdown of intestinal homeostasis, leading to IBD and colitis-associated cancer (CAC). This dichotomy may reflect divergent functional roles for immune sensing in intestinal epithelial cells and leukocytes, which may vary with distinct disease mechanisms. PMID:20679404

  7. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  8. Immune modules shared by innate lymphoid cells and T cells.

    Science.gov (United States)

    Robinette, Michelle L; Colonna, Marco

    2016-11-01

    In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila.

    Science.gov (United States)

    Su, Chih-Ying; Wang, Jing W

    2014-12-01

    Remarkable advances have been made in recent years in our understanding of innate behavior and the underlying neural circuits. In particular, a wealth of neuromodulatory mechanisms have been uncovered that can alter the input-output relationship of a hereditary neural circuit. It is now clear that this inbuilt flexibility allows animals to modify their behavioral responses according to environmental cues, metabolic demands and physiological states. Here, we discuss recent insights into how modulation of neural circuits impacts innate behavior, with a special focus on how environmental cues and internal physiological states shape different aspects of feeding behavior in Drosophila. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates.

    Science.gov (United States)

    Irazoqui, Javier E; Urbach, Jonathan M; Ausubel, Frederick M

    2010-01-01

    The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in identifying the host response pathways that are involved in its defence against infection. Strikingly, C. elegans seems to detect, and respond to, infection without the involvement of its homologue of Toll-like receptors, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans and what can they tell us about innate immunity in higher organisms?

  11. Evolution of host innate defence: insights from C. elegans and primitive invertebrates

    Science.gov (United States)

    Irazoqui, Javier E.; Urbach, Jonathan M.; Ausubel, Frederick M.

    2010-01-01

    Preface The genetically tractable model organism Caenorhabditis elegans was first used to model bacterial virulence in vivo a decade ago. Since then, great strides have been made in the identification of host response pathways that are involved in the defence against infection. Strikingly, C. elegans seems to detect and respond to infection without the involvement of its Toll-like receptor homologue, in contrast to the well-established role for these proteins in innate immunity in mammals. What, therefore, do we know about host defence mechanisms in C. elegans, and what can they tell us about innate immunity in higher organisms? PMID:20029447

  12. Exercising with blocked muscle glycogenolysis

    DEFF Research Database (Denmark)

    Nielsen, Tue L; Pinós, Tomàs; Brull, Astrid

    2018-01-01

    BACKGROUND: McArdle disease (glycogen storage disease type V) is an inborn error of skeletal muscle metabolism, which affects glycogen phosphorylase (myophosphorylase) activity leading to an inability to break down glycogen. Patients with McArdle disease are exercise intolerant, as muscle glycogen......-derived glucose is unavailable during exercise. Metabolic adaptation to blocked muscle glycogenolysis occurs at rest in the McArdle mouse model, but only in highly glycolytic muscle. However, it is unknown what compensatory metabolic adaptations occur during exercise in McArdle disease. METHODS: In this study, 8......-week old McArdle and wild-type mice were exercised on a treadmill until exhausted. Dissected muscles were compared with non-exercised, age-matched McArdle and wild-type mice for histology and activation and expression of proteins involved in glucose uptake and glycogenolysis. RESULTS: Investigation...

  13. Used, Blocking and Sleeping Patents

    DEFF Research Database (Denmark)

    Torrisi, Salvatore; Gambardella, Alfonso; Giuri, Paola

    2016-01-01

    This paper employs data from a large-scale survey (InnoS&T) of inventors in Europe, the USA, and Japan who were listed in patent applications filed at the European Patent Office with priority years between 2003 and 2005. We provide evidence regarding the reasons for patenting and the ways in which...... patents are being utilized. A substantial share of patents is neither used internally nor for market transactions, which confirms the importance of strategic patenting and inefficiency in the management of intellectual property. We investigate different types of unused patents—unused blocking patents...... and sleeping patents. We also examine the association between used and unused patents and their characteristics such as family size, scope, generality and overlapping claims, technology area, type of applicant, and the competitive environment from where these patents originate. We discuss our results...

  14. LARGE BLOCK TEST STATUS REPORT

    International Nuclear Information System (INIS)

    D.G. WILDER, W. LIN, S.C. BLAIR, T. BUSCHECK, R.C. CARLSON, K. LEE, A. MEIKE, A.L. RAMIREZ, J.L. WAGONER, AND J. WANG

    1997-01-01

    This report is intended to serve as a status report, which essentially transmits the data that have been collected to date on the Large Block Test (LBT). The analyses of data will be performed during FY98, and then a complete report will be prepared. This status report includes introductory material that is not needed merely to transmit data but is available at this time and therefore included. As such, this status report will serve as the template for the future report, and the information is thus preserved. The United States Department of Energy (DOE) is investigatinq the suitability of Yucca Mountain (YM) as a potential site for the nation's first high-level nuclear waste repository. As shown in Fig. 1-1, the site is located about 120 km northwest of Las Vegas, Nevada, in an area of uninhabited desert

  15. Vagal Blocking for Obesity Control

    DEFF Research Database (Denmark)

    Johannessen, Helene; Revesz, David; Kodama, Yosuke

    2017-01-01

    : VBLOC reduced body weight and food intake, which was associated with increased satiety but not with decreased hunger. Brain activities in response to VBLOC included increased gene expression of leptin and CCKb receptors, interleukin-1β, tumor necrosis factor, and transforming growth factor β1......BACKGROUND: Recently, the US FDA has approved "vagal blocking therapy or vBLoc® therapy" as a new treatment for obesity. The aim of the present study was to study the mechanism-of-action of "VBLOC" in rat models. METHODS: Rats were implanted with VBLOC, an intra-abdominal electrical device...... with leads placed around gastric vagal trunks through an abdominal incision and controlled by wireless device. Body weight, food intake, hunger/satiety, and metabolic parameters were monitored by a comprehensive laboratory animal monitoring system. Brain-gut responses were analyzed physiologically. RESULTS...

  16. TANK-Binding Kinase 1 (TBK1 Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Yi Wei Hu

    2018-01-01

    Full Text Available TANK-binding kinase 1 (TBK1 is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I and mitochondria antiviral-signaling protein (MAVS. However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1. Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.

  17. Minimum Description Length Block Finder, a Method to Identify Haplotype Blocks and to Compare the Strength of Block Boundaries

    OpenAIRE

    Mannila, H.; Koivisto, M.; Perola, M.; Varilo, T.; Hennah, W.; Ekelund, J.; Lukk, M.; Peltonen, L.; Ukkonen, E.

    2003-01-01

    We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the ...

  18. GENETIC SUSCEPTIBILITY TO RESPIRATORY SYNCYTIAL VIRUS BRONCHIOLITIS IN PRETERM CHILDREN IS ASSOCIATED WITH AIRWAY REMODELING GENES AND INNATE IMMUNE GENES

    NARCIS (Netherlands)

    Siezen, Christine L. E.; Bont, Louis; Hodemaekers, Hennie M.; Ermers, Marieke J.; Doornbos, Gerda; van't Slot, Ruben; Wijmenga, Ciska; van Hottwelingen, Hans C.; Kimpen, Jan L. L.; Kimman, Tjeerd G.; Hoebee, Barbara; Janssen, Riny

    Prematurity is a risk factor for severe respiratory syncytial virus bronchiolitis. We show that genetic factors in innate immune genes (IFNA13, IFNAR2, STAT2. IL27, NFKBIA, C3, IL1RN, TLR5), in innate and adaptive immunity (IFNG), and in airway remodeling genes (ADAM33 and TGFBR1), affect disease

  19. DMPD: Innate immunity and toll-like receptors: clinical implications of basic scienceresearch. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15069387 Innate immunity and toll-like receptors: clinical implications of basic science...te immunity and toll-like receptors: clinical implications of basic scienceresearch. PubmedID 15069387 Title... Innate immunity and toll-like receptors: clinical implications of basic sciencer

  20. I-L-C-2 it: type 2 immunity and group 2 innate lymphoid cells in homeostasis.

    Science.gov (United States)

    von Moltke, Jakob; Locksley, Richard M

    2014-12-01

    Innate type 2 immune cells are activated in response to helminths, allergens, and certain types of proteases and particulates. Recently, innate type 2 immune pathways have also been implicated in protective host responses to homeostatic perturbations, such as metabolic dysfunction, atherosclerosis, and tissue injury. In this context, innate type 2 cytokines stimulate local tissues, recruit eosinophils, and alternatively activate macrophages to restore homeostasis. As the major source of innate interleukin (IL)-5 and IL-13, group 2 innate lymphoid cells are positioned to initiate and maintain homeostatic type 2 responses. The absence of exogenous stimuli in these processes implicates endogenous pathways in the activation of type 2 immunity and suggests an alternative evolutionary trajectory for type 2 immunity, apart from its role in response to helminths and allergens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A PMT-Block test bench

    International Nuclear Information System (INIS)

    Adragna, P.; Antonaki, A.

    2006-01-01

    The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is housed in a unit, called PMT-Block. The PMT-Block is a compact instrument comprising a light mixer, a PMT together with its divider and a 3-in-1 card, which provides shaping, amplification and integration for the signals. This instrument needs to be qualified before being assembled on the detector. A PMT-Block test bench has been developed for this purpose. This test bench is a system which allows fast, albeit accurate enough, measurements of the main properties of a complete PMT-Block. The system, both hardware and software, and the protocol used for the PMT-Blocks characterization are described in detail in this report. The results obtained in the test of about 10 000 PMT-Blocks needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile Calorimeter are also reported

  2. A PMT-Block test bench

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Dipartimento di Fisica ' E.Fermi' , Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, Pisa 56127 (Italy); Universita degli studi di Siena, via Roma 56, 53100 Siena (Italy); Antonaki, A [Institute of Accelerating Systems and Applications, P.O. Box 17214, Athens 10024 (Greece); National Capodistrian University of Athens, 30 Panepistimiou st., Athens 10679 (Greece)] (and others)

    2006-08-01

    The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is housed in a unit, called PMT-Block. The PMT-Block is a compact instrument comprising a light mixer, a PMT together with its divider and a 3-in-1 card, which provides shaping, amplification and integration for the signals. This instrument needs to be qualified before being assembled on the detector. A PMT-Block test bench has been developed for this purpose. This test bench is a system which allows fast, albeit accurate enough, measurements of the main properties of a complete PMT-Block. The system, both hardware and software, and the protocol used for the PMT-Blocks characterization are described in detail in this report. The results obtained in the test of about 10 000 PMT-Blocks needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile Calorimeter are also reported.

  3. Inferior alveolar nerve block: Alternative technique

    OpenAIRE

    Thangavelu, K.; Kannan, R.; Kumar, N. Senthil

    2012-01-01

    Background: Inferior alveolar nerve block (IANB) is a technique of dental anesthesia, used to produce anesthesia of the mandibular teeth, gingivae of the mandible and lower lip. The conventional IANB is the most commonly used the nerve block technique for achieving local anesthesia for mandibular surgical procedures. In certain cases, however, this nerve block fails, even when performed by the most experienced clinician. Therefore, it would be advantageous to find an alternative simple techni...

  4. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors.

    Science.gov (United States)

    Bliska, James B; Wang, Xiaoying; Viboud, Gloria I; Brodsky, Igor E

    2013-10-01

    The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences. © 2013 John Wiley & Sons Ltd.

  5. John Calvin and John Locke on the Sensus Divinitatis and Innatism

    Directory of Open Access Journals (Sweden)

    J. Caleb Clanton

    2017-02-01

    Full Text Available Inheritors of the Calvinist Reformed tradition have long disagreed about whether knowledge of God’s nature and existence can be or need be acquired inferentially by means of the standard arguments of natural theology. Nonetheless, they have traditionally coalesced around the thought that some sense or awareness of God is naturally implanted or innate in human beings. A root of this orientation can be found in John Calvin’s discussion of the sensus divinitatis in the first book of The Institutes of the Christian Religion. This paper outlines a pedagogical strategy for organizing and evaluating Calvin’s treatment of the sensus divinitatis, chiefly by putting it in tension with John Locke’s polemic against innatism in Book I of An Essay concerning Human Understanding. I begin by reconstructing Calvin’s depiction of the sensus divinitatis, as well as his case for thinking that it is innate. I then explain how Locke’s critique of innatism offers a fairly direct response to Calvin and, hence, a useful framework for exploring the limits of Calvin’s treatment of the sensus divinitatis.

  6. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine.

    NARCIS (Netherlands)

    Wells, J.; Loonen, L.M.P.; Karczewski, J.

    2010-01-01

    In the intestine innate recognition of microbes is achieved through pattern recognition receptor (PRR) families expressed in immune cells and different cell lineages of the intestinal epithelium. Toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-like receptor (NLR) families

  7. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Hide‐and‐seek by Epstein‐Barr virus: evasion of innate immunity

    NARCIS (Netherlands)

    Gent, M. van

    2015-01-01

    The human herpesvirus Epstein-Barr virus (EBV) is a large DNA virus that infects over 90% of the adult world population. While often present without obvious symptoms, EBV is causally involved in infectious mononucleosis and various malignancies of lymphoid and epithelial origin. The host innate

  9. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells.

    Science.gov (United States)

    Gaya, Mauro; Barral, Patricia; Burbage, Marianne; Aggarwal, Shweta; Montaner, Beatriz; Warren Navia, Andrew; Aid, Malika; Tsui, Carlson; Maldonado, Paula; Nair, Usha; Ghneim, Khader; Fallon, Padraic G; Sekaly, Rafick-Pierre; Barouch, Dan H; Shalek, Alex K; Bruckbauer, Andreas; Strid, Jessica; Batista, Facundo D

    2018-01-25

    B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  11. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    Science.gov (United States)

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  12. Xanthomonas campestris lipooligosaccharides trigger innate immunity and oxidative burst in Arabidopsis

    NARCIS (Netherlands)

    Proietti, S; Giangrande, C; Amoresano, A; Pucci, P; Molinaro, A; Bertini, L; Caporale, C; Caruso, C

    2014-01-01

    Plants lack the adaptive immunity mechanisms of jawed vertebrates, so they rely on innate immune responses to defense themselves from pathogens. The plant immune system perceives the presence of pathogens by recognition of molecules known as pathogen-associated molecular patterns (PAMPs). PAMPs have

  13. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  14. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  15. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  16. Fungal innate immunity induced by bacterial microbe-associated molecular patterns (MAMPs)

    DEFF Research Database (Denmark)

    Ip Cho, Simon; Sundelin, Thomas; Erbs, Gitte

    2016-01-01

    Plants and animals detect bacterial presence through Microbe-Associated Molecular Patterns (MAMPs) which induce an innate immune response. The field of fungal-bacterial interaction at the molecular level is still in its infancy and little is known about MAMPs and their detection by fungi. Exposin...

  17. The Synthesis of of Empiricism and Innatism in Berkeley's Doctrine of Notions

    Czech Academy of Sciences Publication Activity Database

    Hill, James

    2010-01-01

    Roč. 21, č. 21 (2010), s. 3-15 ISSN 1947-3737 R&D Projects: GA ČR(CZ) GAP401/10/1504 Institutional research plan: CEZ:AV0Z90090514 Keywords : empiricism * innatism * notions Subject RIV: AA - Philosophy ; Religion http://people.hsc.edu/berkeleystudies/issues/BS%20No%20021/BS_021_Hill_Article.pdf

  18. Salivary innate defense system in type 1 diabetes mellitus in children with mixed and permanent dentition.

    Science.gov (United States)

    Zalewska, Anna; Knaś, Małgorzata; Kuźmiuk, Anna; Waszkiewicz, Napoleon; Niczyporuk, Marek; Waszkiel, Danuta; Zwierz, Krzysztof

    2013-11-01

    It should be expected that type 1 diabetes mellitus may disturb innate and acquired immunity. There are no data on type 1 diabetes mellitus-related changes in the salivary flow and the protein output responsible for the innate immunity of saliva depending on the quality of dentition reflecting the age of child. The aim of this work was the evaluation of parameters responsible for the innate immunity of saliva in children and adolescents with type 1 diabetes mellitus. In diabetic children, adolescent and healthy volunteers, the salivary flow, the output and the concentration of the activity of peroxidase (colorimetry), lysozyme (radial immunodiffusion) and lactoferrin (ELISA) were determined. In children with mixed and permanent dentition, type 1 diabetes mellitus significantly decreases (as compared with the appropriate controls) the unstimulated salivary flow, the output, concentration of peroxidase and the output of the lysozyme and lactoferrin. In conclusion, it may be stated that type 1 diabetes mellitus causes functional changes in the salivary glands, resulting in a decrease of the salivary flow and weakening of the salivary innate defense system, thus creating a threat to the oral and general health of type 1 diabetes mellitus children. The results showed that the salivary glands of younger children, when compared to adolescents with type 1 diabetes mellitus, are more susceptible to the injurious effects of the disease.

  19. Innate immunity based cancer immunotherapy: B16-F10 murine melanoma model

    Czech Academy of Sciences Publication Activity Database

    Caisová, V.; Vieru, A.; Kumžáková, Z.; Glaserová, S.; Husniková, H.; Vácová, N.; Krejčová, G.; Paďouková, L.; Jochmanová, I.; Wolf, K. I.; Chmelař, J.; Kopecký, Jan; Ženka, J.

    2016-01-01

    Roč. 16, č. 1 (2016), č. článku 940. ISSN 1471-2407 Institutional support: RVO:60077344 Keywords : cancer immunotherapy * innate immunity * melanoma * neutrophils * resiquimod * mannan * phagocytosis Subject RIV: EC - Immunology Impact factor: 3.288, year: 2016

  20. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Barbara C. Mindt

    2018-04-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.