WorldWideScience

Sample records for block copolymer micelles

  1. Skin delivery by block copolymer nanoparticles (block copolymer micelles).

    Science.gov (United States)

    Laredj-Bourezg, Faiza; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Valour, Jean-Pierre; Rovère, Marie-Rose; Smatti, Batoule; Chevalier, Yves

    2015-12-30

    Block copolymer nanoparticles often referred to as "block copolymer micelles" have been assessed as carriers for skin delivery of hydrophobic drugs. Such carriers are based on organic biocompatible and biodegradable materials loaded with hydrophobic drugs: poly(lactide)-block-poly(ethylene glycol) copolymer (PLA-b-PEG) nanoparticles that have a solid hydrophobic core made of glassy poly(d,l-lactide), and poly(caprolactone)-block-poly(ethylene glycol) copolymer (PCL-b-PEG) nanoparticles having a liquid core of polycaprolactone. In vitro skin absorption of all-trans retinol showed a large accumulation of retinol in stratum corneum from both block copolymer nanoparticles, higher by a factor 20 than Polysorbate 80 surfactant micelles and by a factor 80 than oil solution. Additionally, skin absorption from PLA-b-PEG nanoparticles was higher by one order of magnitude than PCL-b-PEG, although their sizes (65nm) and external surface (water-swollen PEG layer) were identical as revealed by detailed structural characterizations. Fluorescence microscopy of histological skin sections provided a non-destructive picture of the storage of Nile Red inside stratum corneum, epidermis and dermis. Though particle cores had a different physical states (solid or liquid as measured by (1)H NMR), the ability of nanoparticles for solubilization of the drug assessed from their Hildebrand solubility parameters appeared the parameter of best relevance regarding skin absorption.

  2. Chain exchange in block copolymer micelles

    Science.gov (United States)

    Lu, Jie; Bates, Frank; Lodge, Timothy

    2014-03-01

    Block copolymer micelles are aggregates formed by self-assembly of amphiphilic copolymers dispersed in a selective solvent, driven by unfavorable interactions between the solvent and the core-forming block. Due to the relatively long chains being subject to additional thermodynamic and dynamic constraints (e.g., entanglements, crystallinity, vitrification), block copolymer micelles exhibit significantly slower equilibration kinetics than small molecule surfactants. As a result, details of the mechanism(s) of equilibration in block copolymer micelles remain unclear. This present works focuses on the chain exchange kinetics of poly(styrene-b-ethylenepropylene) block copolymers in squalane (C30H62) using time-resolved small angle neutron scattering (TR-SANS). A mixture of h-squalane and d-squalane is chosen so that it contrast matches a mixed 50/50 h/d polystyrene micelle core. When the temperature is appropriate and isotopically labeled chains undergo mixing, the mean core contrast with respect to the solvent decreases, and the scattering intensity is therefore reduced. This strategy allows direct probing of chain exchange rate from the time dependent scattering intensity I(q, t).

  3. Molecular Exchange Dynamics in Block Copolymer Micelles

    Science.gov (United States)

    Bates, Frank; Lu, Jie; Choi, Soohyung; Lodge, Timothy

    2012-02-01

    Poly(styrene-b-ethylene propylene) (PS-PEP) diblock copolymers were mixed with squalane (C30H62) at 1% by weight resulting in the formation of spherical micelles. The structure and dynamics of molecular exchange were characterized by synchrotron small-angle x-ray scattering (SAXS) and time resolved small-angle neutron scattering (TR-SANS), respectively, between 100 C and 160 C. TR-SANS measurements were performed with solutions initially containing deuterium labeled micelle cores and normal cores dispersed in a contrast matched squalane. Monitoring the reduction in scattering intensity as a function of time at various temperatures revealed molecular exchange dynamics highly sensitive to the core molecular weight and molecular weight distribution. Time-temperature superposition of data acquired at different temperatures produced a single master curve for all the mixtures. Experiments conducted with isotopically labeled micelle cores, each formed from two different but relatively mondisperse PS blocks, confirmed a simple dynamical model based on first order kinetics and core Rouse single chain relaxation. These findings demonstrate a dramatic transition to nonergodicity with increasing micelle core molecular weight and confirm the origins of the logarithmic exchange kinetics in such systems.

  4. Multicompartment Micelles From π-Shaped ABC Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    XIA Jun; ZHONG Chong-Li

    2007-01-01

    Dissipative particle dynamics simulations were performed on the morphology and structure of multicompartment micelles formed from n-shaped ABC block copolymers in water. The influences of chain architectures were studied in a systematic way, and a rich variety of morphologies were observed, such as spherical, wormlike,X-shaped, Y-shaped, ribbon-like, layered rod-like, layered disk-like, as well as network morphologies. The simulations show that the distance between the two grafts plays an important role in control of the morphology. Since π-shaped ABC block copolymers can be reduced to linear ABC and star ABC block copolymers, they are good model copolymers for studying the self-assembly of complex block copolymers into micelles. The knowledge obtained in this work as well as the new morphologies identified provide useful information for future rational design and synthesis of novel multicompartment micelles.

  5. Chain exchange kinetics of block copolymer micelles in ionic liquids

    Science.gov (United States)

    Ma, Yuanchi; Lodge, Timothy

    The chain exchange kinetics of block copolymer micelles has been studied using time-resolved small-angle neutron scattering (TR-SANS), a key tool in determining the average micelle composition in contrast-matched solvents. In this work, PMMA-block-PnBMA was selected as the model block copolymer, which has a LCST behavior in the common ionic liquids, [EMIM][TFSI] and [BMIM][TFSI]. We examined the chain exchange kinetics of three PMMA-block-PnBMA copolymers, with identical PMMA block length (MPMMA = 25000) and different PnBMA block lengths (MPnBMA = 24000, 35000 and 53000); the Flory-Huggins interaction parameter (χ) between the core (PnBMA) and the solvent were varied by mixing [EMIM][TFSI] and [BMIM][TFSI] in different ratios. We found that the relaxation of the initial segregation of h- and d- micelles followed the same form with the time as previously developed by our group. Assuming that single chain expulsion is the rate limiting step, the thermal barrier was found to depend linearly on the core block length (Ncore) . Furthermore, the effect of χ on the chain exchange kinetics will also be discussed.

  6. Dynamics of Chain Exchange in Block Copolymer Micelles

    Science.gov (United States)

    Lodge, Timothy

    Block copolymer micelles are rarely at equilibrium. The primary reason is the large number of repeat units in the insoluble block, Ncore, which makes the thermodynamic penalty for extracting a single chain (``unimer exchange'') substantial. As a consequence, the critical micelle concentration (CMC) is rarely accessed experimentally; however, in the proximity of a critical micelle temperature (CMT), equilibration is possible. We have been using time-resolved small angle neutron scattering (TR-SANS) to obtain a detailed picture of the mechanisms and time scales for chain exchange, at or near equilibrium. Our model system is poly(styrene)-block-poly(ethylene-alt-propylene)) (PS-PEP), in the PEP-selective solvent squalane (C30H62) . Equivalent micelles with either normal (hPS) or perdeuterated (dPS) cores are initially mixed in a blend of isotopically substituted squalane, designed to contrast-match a 50:50 hPS:dPS core. Samples are then annealed at a target temperature, and chain exchange is revealed quantitatively by the temporal decay in scattered intensity. The rate of exchange as function of concentration, temperature, Ncore, Ncorona, and chain architecture (diblock versus triblock) will be discussed.

  7. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  8. Molecular exchange in block copolymer micelles: when corona chains overlap

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank; Choi, Soohyung

    2013-03-01

    The chain exchange kinetics of poly(styrene-b-ethylenepropylene) (PS-PEP) diblock copolymer micelles in squalane (C30H62) was investigated using time-resolved small angle neutron scattering (TR-SANS). The solvent is a mixture of h-squalane and d-squalane that contrast-matches a mixed 50/50 h/d PS micelle core. As isotope labeled chains exchange, the core contrast decreases, leading to a reduction in scattering intensity. This strategy therefore allows direct probing of the chain exchange rate. Separate copolymer micellar solutions containing either deuterium labeled (dPS) or normal (hPS) poly(styrene) core blocks were prepared and mixed at room temperature, below the core glass transition temperature. The samples were heated to several temperatures (around 100 °C) and monitored by TR-SANS every 5 min. As polymer concentration was increased from 1% to 15% by volume, we observed a significant slowing down of chain exchange rate. Similar retarded kinetics was found when part of the solvent in the 1% solution was replaced by homopolymer PEP (comparable size as corona block). Furthermore, if all the solvent is replaced with PEP, no exchange was detected for up to 3hr at 200 °C. These results will be discussed in terms of a molecular model for chain exchange Infineum, Iprime, NIST, ORNL

  9. Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles

    Science.gov (United States)

    Xiao, Longxi

    Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared

  10. ADVANCES IN MICROEMULSION PHASE ON SELF-ASSEMBLY AND MICELLE EXTRACTION WITH BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Chen Guo; Hao Wen; Huizhou Liu

    2005-01-01

    In this paper we review our work on self-assembly of the system, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers, which is a kind of macromolecular complex fluids. The control of self-assembly could be obtained by adding inorganic salts or aliphatic alcohols. By self-assembly of amphiphilic block copolymers, a microemulsion phase is formed, which could be applied in micelle extraction, such as hollow-fiber membrane micelle extraction, magnetic micelle extraction and immobilized micelle extraction.

  11. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core...... micelles. Shell cross-linking on PEG-b-PAEMA-b-PS micelles was performed by amidation reactions between the amino groups of PAEMA blocks using a di-carboxylic acid cross-linker. Also a dendritic cross-linker based click chemistry was used to stabilize the PEG-b-PAEMA-b-PES micelle having click readied PES...

  12. Block copolymer micelles as nanocontainers for controlled release of proteins from biocompatible oil phases.

    Science.gov (United States)

    Miller, Andrew C; Bershteyn, Anna; Tan, Wuisiew; Hammond, Paula T; Cohen, Robert E; Irvine, Darrell J

    2009-04-13

    Biocompatible oils are used in a variety of medical applications ranging from vaccine adjuvants to vehicles for oral drug delivery. To enable such nonpolar organic phases to serve as reservoirs for delivery of hydrophilic compounds, we explored the ability of block copolymer micelles in organic solvents to sequester proteins for sustained release across an oil-water interface. Self-assembly of the block copolymer, poly(-caprolactone)-block-poly(2-vinyl pyridine) (PCL-b-P2VP), was investigated in toluene and oleic acid, a biocompatible naturally occurring fatty acid. Micelle formation in toluene was characterized by dynamic light scattering (DLS) and atomic force microscopy (AFM) imaging of micelles cast onto silicon substrates. Cryogenic transmission electron microscopy confirmed a spherical morphology in oleic acid. Studies of homopolymer solubility implied that micelles in oleic acid consist of a P2VP corona and a PCL core, while P2VP formed the core of micelles assembled in toluene. The loading of two model proteins (ovalbumin (ova) and bovine serum albumin (BSA)) into micelles was demonstrated with loadings as high as 7.8% wt of protein per wt of P2VP in oleic acid. Characterization of block copolymer morphology in the two solvents after protein loading revealed spherical particles with similar size distributions to the as-assembled micelles. Release of ova from micelles in oleic acid was sustained for 12-30 h upon placing the oil phase in contact with an aqueous bath. Unique to the situation of micelle assembly in an oily phase, the data suggest protein is sequestered in the P2VP corona block of PCL-b-P2VP micelles in oleic acid. More conventionally, protein loading occurs in the P2VP core of micelles assembled in toluene.

  13. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles.

    Science.gov (United States)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B; Borgens, Richard B; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(d,l-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  14. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles

    Science.gov (United States)

    Shi, Yunzhou; Kim, Sungwon; Huff, Terry B.; Borgens, Richard B.; Park, Kinam; Shi, Riyi; Cheng, Ji-Xin

    2010-01-01

    Spinal cord injury results in immediate disruption of neuronal membranes, followed by extensive secondary neurodegenerative processes. A key approach for repairing injured spinal cord is to seal the damaged membranes at an early stage. Here, we show that axonal membranes injured by compression can be effectively repaired using self-assembled monomethoxy poly(ethylene glycol)-poly(D,L-lactic acid) di-block copolymer micelles. Injured spinal tissue incubated with micelles (60 nm diameter) showed rapid restoration of compound action potential and reduced calcium influx into axons for micelle concentrations much lower than the concentrations of polyethylene glycol, a known sealing agent for early-stage spinal cord injury. Intravenously injected micelles effectively recovered locomotor function and reduced the volume and inflammatory response of the lesion in injured rats, without any adverse effects. Our results show that copolymer micelles can interrupt the spread of primary spinal cord injury damage with minimal toxicity.

  15. Cooperative catalysis with block copolymer micelles: A combinatorial approach

    KAUST Repository

    Bukhryakov, Konstantin V.

    2015-02-09

    A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.

  16. Cooperative catalysis with block copolymer micelles: a combinatorial approach.

    Science.gov (United States)

    Bukhryakov, Konstantin V; Desyatkin, Victor G; O'Shea, John-Paul; Almahdali, Sarah R; Solovyeva, Vera; Rodionov, Valentin O

    2015-02-09

    A rapid approach to identifying complementary catalytic groups using combinations of functional polymers is presented. Amphiphilic polymers with "clickable" hydrophobic blocks were used to create a library of functional polymers, each bearing a single functionality. The polymers were combined in water, yielding mixed micelles. As the functional groups were colocalized in the hydrophobic microphase, they could act cooperatively, giving rise to new modes of catalysis. The multipolymer "clumps" were screened for catalytic activity, both in the presence and absence of metal ions. A number of catalyst candidates were identified across a wide range of model reaction types. One of the catalytic systems discovered was used to perform a number of preparative-scale syntheses. Our approach provides easy access to a range of enzyme-inspired cooperative catalysts.

  17. Small angle neutron scattering study of doxorubicin–surfactant complexes encapsulated in block copolymer micelles

    Indian Academy of Sciences (India)

    Jayita Bhattacharjee; Gunjan Verma; V K Aswal; P A Hassan

    2008-11-01

    Self-assembling behaviour of block copolymers and their ability to evade the immune system through polyethylene oxide stealth makes it an attractive candidate for drug encapsulation. Micelles formed by polyethylene oxide–polypropylene oxide–polyethylene oxide triblock copolymers (PEO–PPO–PEO), pluronic P123, have been employed for encapsulating the anti-cancer drug doxorubicin hydrochloride. The binding affinity of doxorubicin within the micelle carrier is enhanced through complex formation of drug and anionic surfactant, aerosol OT (AOT). Electrostatic binding of doxorubicin with negatively charged surfactants leads to the formation of hydrophobic drug–surfactant complexes. Surfactant-induced partitioning of the anti-cancer drug into nonpolar solvents such as chloroform is investigated. SANS measurements were performed on pluronic P123 mi-celles in the presence of drug–surfactant complex. No significant changes in the structure of the micelles are observed upon drug encapsulation. This demonstrates that surfactant–drug complexes can be encapsulated in block copolymer micelles without disrupting the structure of aggregates.

  18. Ultraporous films with uniform nanochannels by block copolymer micelles assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2010-10-12

    Films with high pore density and regularity that are easy to manufacture by conventional large-scale technology are key components aimed for fabrication of new generations of magnetic arrays for storage media, medical scaffolds, and artificial membranes. However, potential manufacture strategies like the self-assembly of block copolymers, which lead to amazing regular patterns, could be hardly reproduced up to now using commercially feasible methods. Here we report a unique production method of nanoporous films based on the self-assembly of copper(II) ion-polystyrene-b-poly(4-vinylpyridine) complexes and nonsolvent induced phase separation. Extremely high pore densities and uniformity were achieved. Water fluxes of 890 L m-2 h-1 bar-1 were obtained, which are at least 1 order of magnitude higher than those of commercially available membranes with comparable pore size. The pores are also stimuli (pH)-responsive. © 2010 American Chemical Society.

  19. Histological study on side effects and tumor targeting of a block copolymer micelle on rats.

    Science.gov (United States)

    Kawaguchi, Takanori; Honda, Takashi; Nishihara, Masamichi; Yamamoto, Tatsuhiro; Yokoyama, Masayuki

    2009-06-19

    Histological examinations were performed with polymeric micelle-injected rats for evaluations of possible toxicities of polymeric micelle carriers. Weight of major organs as well as body weight of rats was measured after multiple intravenous injections of polymeric micelles forming from poly(ethylene glycol)-b-poly(aspartate) block copolymer. No pathological toxic side effects were observed at two different doses, followed only by activation of the mononuclear phagocyte system (MPS) in the spleen, liver, lung, bone marrow, and lymph node. This finding confirms the absence of--or the very low level of--in vivo toxicity of the polymeric micelle carriers that were reported in previous animal experiments and clinical results. Then, immunohistochemical analyses with a biotinylated polymeric micelle confirmed specific accumulation of the micelle in the MPS. The immunohistochemical analyses also revealed, first, very rapid and specific accumulation of the micelle in the vasculatures of tumor capsule of rat ascites hepatoma AH109A, and second, the micelle's scanty infiltration into tumor parenchyma. This finding suggests a unique tumor-accumulation mechanism that is very different from simple EPR effect-based tumor targeting.

  20. Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K. (UW)

    2013-09-26

    The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observe the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.

  1. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  2. Micelles and gels of oxyethylene-oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length

    DEFF Research Database (Denmark)

    Derici, L.; Ledger, S.; Mai, S.M.

    1999-01-01

    Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water and in aq......Block copolymer E(90)B(10) (E = oxyethylene, B = oxybutylene) was synthesised and characterised by gel permeation chromatography and (13)C NMR spectroscopy. Dynamic light scattering (DLS) and static light scattering (SLS) were used to characterise the micelles in solution (both in water.......e., the association number, the hard-sphere radius, the micelle volume fraction and the corresponding expansion factors. A comparison of the appropriate quantities showed good agreement between the two techniques. SANS gave additional information e.g., volume fraction profiles for the micelles and volume fraction...... of water in the micelle core. Moderately concentrated solutions of copolymer E(90)B(10) were studied in the gel state by small-angle X-ray scattering (SAXS) in tandem with rheology (oscillatory shear). Values for the dynamic elastic modulus (G') of the gels significantly exceeded 10(4) Pa across the range...

  3. PEE-PEO block copolymer exchange rate between micelles is detergent and temperature activated

    Science.gov (United States)

    Schantz, Allen; Saboe, Patrick; Lee, Hee-Young; Sines, Ian; Butler, Paul; Bishop, Kyle; Maranas, Janna; Kumar, Manish

    We examine the kinetics of polymer chain exchange between polymer/detergent micelles, a system relevant to the synthesis of protein-containing biomimetic membranes. Although chain exchange between polymer aggregates in water is too slow to observe, adding detergent allows us to determine chain exchange rates using time-resolved small-angle neutron scattering (TR-SANS). We examine a membrane-protein-relevant, vesicle-forming ultra-short polymer, Poly(ethyl ethylene)20-Poly(ethylene oxide)18 (PEE20-PEO18). PEE20-PEO18 is solubilized in mixed micelles with the membrane-protein-compatible non-ionic detergent octyl- β -D-glucoside (OG). We show that OG activates block copolymer exchange, and obtain rate constants at two detergent concentrations above the CMC (critical micellar concentration) of OG. We find that chain exchange increases two orders of magnitude when temperature increases from 308 to 338 K, and that even a 1 mg/mL increase in OG concentration leads to a noticeable increase in exchange rate. We also calculate the activation energy for chain exchange and find that it is much higher than for lipid exchange. These findings explain the need for high detergent concentration and/or temperature to synthesize densely packed polymer/protein membranes.

  4. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly.

    Science.gov (United States)

    Nunes, Suzana P; Behzad, Ali Reza; Hooghan, Bobby; Sougrat, Rachid; Karunakaran, Madhavan; Pradeep, Neelakanda; Vainio, Ulla; Peinemann, Klaus-Viktor

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10(14) pores per m(2)), reproducible in m(2) scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments.

  5. Switchable pH-responsive polymeric membranes prepared via block copolymer micelle assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2011-05-24

    A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10 14 pores per m2), reproducible in m2 scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments. © 2011 American Chemical Society.

  6. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery.

    Science.gov (United States)

    Zhang, Can Yang; Yang, You Qiang; Huang, Tu Xiong; Zhao, Bin; Guo, Xin Dong; Wang, Ju Fang; Zhang, Li Juan

    2012-09-01

    A series of amphiphilic pH-responsive poly (ethylene glycol) methyl ether-b-(poly lactic acid-co-poly (β-amino esters)) (MPEG-b-(PLA-co-PAE)) block copolymers with different PLA/PAE ratios were designed and synthesized via a Michael-type step polymerization. The molecular structures of the copolymers were confirmed with (1)H NMR and gel permeation chromatography (GPC). These amphiphilic copolymers were shown to self-assemble into core/shell micelles in aqueous solution at low concentrations, and their critical micelle concentrations (CMC) in water were 1.2-9.5 mg/L. The pH-responsive PAE segment was insoluble at pH 7.4, but it became positively charged and soluble via protonation of amino groups at pH lower than 6.5. The average particle size and zeta potential of micelles increased from 180 nm and 15 mV to 220 nm and 40 mV, respectively, when the pH decreased from 7.4 to 5.0. Doxorubicin (DOX) was loaded into the core of these micelles with a high drug loading of 18%. The in vitro DOX release from the micelles was significantly accelerated when solution pH decreased from 7.4 to 5.0. DOX release in the first 10 h appeared to follow Fickian diffusion mechanism. Toxicity test showed that the copolymers had low toxicity whereas the DOX-loaded micelles remained high cytotoxicity for HepG2 cells. The results indicate the pH-sensitive MPEG-b-(PLA-co-PAE) micelle may be a potential hydrophobic drug delivery carrier for cancer targeting therapy with sustained release.

  7. Hemin-block copolymer micelle as an artificial peroxidase and its applications in chromogenic detection and biocatalysis.

    Science.gov (United States)

    Qu, Rui; Shen, Liangliang; Chai, Zhihua; Jing, Chen; Zhang, Yufeng; An, Yingli; Shi, Linqi

    2014-01-01

    Following an inspiration from the fine structure of natural peroxidases, such as horseradish peroxidase (HRP), an artificial peroxidase was constructed through the self-assembly of diblock copolymers and hemin, which formed a functional micelle with peroxidase-like activity. The pyridine moiety in block copolymer poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP) can coordinate with hemin, and thus hemin is present in a five-coordinate complex with an open site for binding substrates, which mimics the microenvironment of heme in natural peroxidases. The amphiphilic core-shell structure of the micelle and the coordination interaction of the polymer to the hemin inhibit the formation of hemin μ-oxo dimers, and thereby enhance the stability of hemin in the water phase. Hemin-micelles exhibited excellent catalytic performance in the oxidation of phenolic and azo compounds by H2O2. In comparison with natural peroxidases, hemin-micelles have higher catalytic activity and better stability over wide temperature and pH ranges. Hemin-micelles can be used as a detection system for H2O2 with chromogenic substrates, and they anticipate the possibility of constructing new biocatalysts tailored to specific functions.

  8. Effect of polyoxypropylene chain length on the critical micelle concentration of propylene oxide-ethylene oxide block copolymers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-guo; YIN Hong

    2005-01-01

    In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A), surface tension at CMC (yCMC). A linear decrease of ln[CMC] vs number of oxypropylene units in copolymer molecule was observed. The change in the work of cohesion per oxypropylene group when passing from molecular into micellar state, calculated from the Shinoda equation, was 0.43kT for the studied compounds.

  9. pH-responsive layer-by-layer films of zwitterionic block copolymer micelles

    OpenAIRE

    Demirel, Adem Levent; Yusan, Pelin; Tuncel, İrem; Bütün, Vural; Erel-Goktepe, İrem

    2014-01-01

    We report a strategy to incorporate micelles of poly[3-dimethyl (methacryloyloxyethyl) ammonium propane sulfonate]-block-poly[2-(diisopropylamino) ethyl methacrylate] (beta PDMA-b-PDPA) into electrostatic layer-by-layer (LbL) films. We obtained micelles with pH-responsive PDPA-cores and zwitterionic bPDMA-coronae at pH 8.5 through pH-induced self-assembly of bPDMA-b-PDPA in aqueous solution. To incorporate bPDMA-b-PDPA micelles into LbL films, we first obtained a net electrical charge on bPDM...

  10. From charge-mosaic to micelle self-assembly: Block copolymer membranes in the last 40 years

    KAUST Repository

    Nunes, Suzana Pereira

    2013-01-23

    Different strategies for membrane preparation based on block copolymers are reviewed in this paper, starting from early papers on charge-mosaic membranes and following with dense membranes for gas separation for applications like CO2 separation, pervaporation of aqueous solutions containing organic pollutants, low-fouling surfaces and finally tailoring porous membranes with very sharp pore size distribution. The approaches for manufacture of nanoporous films are summarized, including etching and preferential dissolution. The advantages of a new process based on micelle assembly and phase inversion are emphasized, confirming its perspective of up-scale and application at large scale. © 2012 American Chemical Society.

  11. Preparation and Characterization of Polymeric Micelles from Poly(D,L-lactide) and Methoxypolyethylene Glycol Block Copolymers as Potential Drug Carriers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amphiphilic diblock copolymers composed of methoxy polyethylene glycol (MePEG) and poly(D,L-lactide) (PDLLA) were prepared for the preparation of polymeric micelles. The use of MePEG-PDLLA as drug carriers has been reported in the open literature, but there are only few data on the application of a series of MePEG-PDLLA copolymers with different lengths in the medical field. The shape of the polymeric micelles is also important in drug delivery. Studies on in vitro drug release profiles require a good sink condition. The critical micelle concentration of a series of MePEG-PDLLA has a significant role in drug release. To estimate their feasibility as a drug carrier, polymeric micelles made of MePEG-PDLLA block copolymer were prepared by the oil in water (O/W) emulsion method. From dynamic light scattering (DLS) measurements,the size of the micelle formed was less than 200 nm. The critical micelle concentration of polymeric micelles with various compositions was determined using pyrene as a fluorescence probe. The critical micelle concentration decreased with increasing number of hydrophobic segments. MePEG-PDLLA micelles have a considerably low critical micelle concentration (0.4-0.5 μg/mL), which is apparently an advantage in utilizing these micelles as drug carriers. The morphology of the polymeric micelles was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micelles were found to be nearly spherical. The yield of the polymeric micelles obtained from the ONV method is as high as 85%.

  12. Influence of formulation variables on the biodistribution of multifunctional block copolymer micelles.

    Science.gov (United States)

    Fonge, Humphrey; Huang, Huang; Scollard, Deborah; Reilly, Raymond M; Allen, Christine

    2012-02-10

    The physico-chemical characteristics and composition of block copolymer micelles (BCMs) may influence the pharmacokinetics and consequently, the desired delivery characteristics. In this study the influence of formulation variables such as size, density of targeting ligand [i.e. epidermal growth factor (hEGF)] and the bifunctional chelator (BFC) used for labelling the BCMs with (111)In, on the pharmacokinetics and biodistribution in mice were evaluated. BCMs were prepared from Me-PEG(x)-b-PCL(y) (x=2.5 k, y=1.2 k for 15 nm BCMs and x=5 k, y=5 k for 60 nm BCMs) with (targeted, 1 or 5 mol% hEGF) or without (non-targeted) hEGF-PEG(x)-b-PCL(y). To investigate the effect of the BFC on the pharmacokinetics, the BCMs were labelled with (111)In using p-SCN-Bn-DOTA (Bn-DOTA-PEG(x)-b-PCL(y)), H(2)N-DOTA (DOTA-PEG(x)-b-PCL(y)), DTPA anhydride (DTPA-PEG(x)-b-PCL(y)) or p-SCN-Bn-DTPA (Bn-DTPA-PEG(x)-b-PCL(y)). The resulting 15 nm or 60 nm non-targeted or targeted (1 or 5 mol% hEGF) were injected via a tail vein to mice bearing MDA-MB-468 human breast cancer xenograft that overexpress EGFR, followed by pharmacokinetics and biodistribution studies. Pharmacokinetic parameters were determined by fitting the blood concentration vs time data using a two compartment model with i.v. bolus input. Pharmacokinetic parameters were found to depend on BCM size, the BFC used as well as the density of hEGF on the surface of the BCMs. BCMs labelled with p-SCN-Bn-DTPA ((111)In-Bn-BCMs) showed improved pharmacokinetics (i.e. extended circulation lifetime) and tumor uptake compared to those labelled with DOTA-PEG(x)-b-PCL(y), p-SCN-Bn-DOTA or DTPA dianhydride. Formulations with a high density of hEGF (5 mol% hEGF) had short circulation half-lives. BCMs labelled with (111)In via p-SCN-Bn-DTPA showed highest accumulation in the liver and spleen and slower whole body elimination. Smaller sized BCMs were rapidly cleared from the circulation. Increasing the density of hEGF on the surface did not

  13. Mechanism of Molecular Exchange in Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  14. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity.

    Science.gov (United States)

    Batrakova, E V; Dorodnych, T Y; Klinskii, E Y; Kliushnenkova, E N; Shemchukova, O B; Goncharova, O N; Arjakov, S A; Alakhov, V Y; Kabanov, A V

    1996-11-01

    The chemosensitising effects of poly(ethylene oxide)-poly(propylene oxide)-poly-(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronic) in multidrug-resistant cancer cells has been described recently (Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV 1996, Biocon. Chem., 7, 209). This paper presents initial studies on in vivo evaluation of Pluronic copolymers in the treatment of cancer. The anti-tumour activity of epirubicin (EPI) and doxorubicin (DOX), solubilised in micelles of Pluronic L61, P85 and F108, was investigated using murine leukaemia P388 and daunorubicin-sensitive Sp2/0 and -resistant Sp2/0(DNR) myeloma cells grown subcutaneously (s.c.). The study revealed that the lifespan of the animals and inhibition of tumour growth were considerably increased in mice treated with drug/copolymer compositions compared with animals treated with the free drugs. The anti-tumour activity of the drug/copolymer compositions depends on the concentration of the copolymer and its hydrophobicity, as determined by the ratio of the lengths of hydrophilic PEO and hydrophobic PPO segments. The data suggest that higher activity is associated with more hydrophobic copolymers. In particular, a significant increase in lifespan (T/C> 150%) and tumour growth inhibition (> 90%) was observed in animals with Sp2/0 tumours with EPI/P85 and DOX/L61 compositions. The effective doses of these compositions caused inhibition of Sp2/0 tumour growth and complete disappearance of tumour in 33-50% of animals. Future studies will focus on the evaluation of the activity of Pluronic-based compositions against human drug-resistant tumours.

  15. Micellization and Dynamics of a Block Copolymer

    DEFF Research Database (Denmark)

    Hvidt, Søren

    2006-01-01

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are industrially important copolymers often called Pluronics or Poloxamers. EPE copolymers form micelles with a core of P blocks and different micellar shapes depending on block leng...

  16. Large amplitude oscillatory shear of block copolymer spheres on a body-centered cubic lattice: are micelles like metals?

    Science.gov (United States)

    Torija, Maria A; Choi, Soo-Hyung; Lodge, Timothy P; Bates, Frank S

    2011-05-19

    Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C(30)H(62)), an EP selective solvent, at a concentration of 10 wt%. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.

  17. Large Amplitude Oscillatory Shear of Block Copolymer Spheres on a Body-Centered Cubic Lattice: Are Micelles Like Metals?

    Energy Technology Data Exchange (ETDEWEB)

    Torija, Maria A.; Choi, Soo-Hyung; Lodge, Timothy P.; Bates, Frank S. (UMM)

    2013-03-07

    Small-angle X-ray diffraction experiments have uncovered a remarkable mechanism of grain alignment during plastic deformation of ordered sphere-forming diblock copolymer micelles when subjected to large amplitude dynamic shearing. A nearly monodisperse poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymer with block molecular weights of 42,000 and 60,000 was mixed with squalane (C{sub 30}H{sub 62}), an EP selective solvent, at a concentration of 10 wt %. After high temperature annealing, the sample formed an ordered polydomain morphology containing glassy S cores at room temperature. SAXS powder patterns confirm body-centered cubic (BCC) symmetry and reveal the development of a complex array of two-dimensionally resolved Bragg reflections following the application, and cessation, of oscillatory shearing. These diffraction results are interpreted on the basis of the classic mechanism of crystalline slip, which accounts for plastic deformation of ductile materials such as metals. Four distinct slip systems are shown to be active in this work, suggesting a robust basis for deforming and mixing of soft ordered solids.

  18. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    Science.gov (United States)

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.

  19. Dissipative particle dynamics simulation on paclitaxel loaded PEO-PPO-PEO block copolymer micelles.

    Science.gov (United States)

    Wang, Zhigao; Jiang, Jie

    2014-03-01

    Self-assembly behavior of the polymer drug loading micelle PEO-PPO-PEO was studied using dissipative particle dynamics (DPD) simulation method with various simulation steps. The distributions of drugs in polymer carriers were also investigated with different drug feed ratios. Polymer carriers distributed on the surface of the spherical micelle, and drugs were almost encapsulated in the inner of the micelle. Our simulation work demonstrates that the DPD simulation is effective to study the drug loaded systems and can give useful guidance on the design and preparation of new drug carriers with tailored properties.

  20. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles.

    Science.gov (United States)

    Lu, Lu; Zheng, Yan; Weng, Shuqiang; Zhu, Wenwei; Chen, Jinhong; Zhang, Xiaomin; Lee, Robert J; Yu, Bo; Jia, Huliang; Qin, Lunxiu

    2016-06-01

    7-Ethyl-10-hydroxy-comptothecin (SN38) is an active metabolite of irinotecan (CPT-11) and the clinical application of SN38 is limited by its hydrophobicity and instability. To address these issues, a series of novel amphiphilic mPEG-PLA-SN38-conjugates were synthesized by linking SN38 to mPEG-PLA-SA, and they could form micelles by self-assembly. The effects of mPEG-PLA composition were studied in vitro and in vivo. The mean diameters of mPEG2K-PLA-SN38 micelles and mPEG4K-PLA-SN38 micelles were 10-20nm and 120nm, respectively, and mPEG2K-PLA-SN38 micelles showed greater antitumor efficacy than mPEG4K-PLA-SN38 micelles both in vitro and in vivo. These data suggest that the lengths of mPEG and PLA chains had a major impact on the physicochemical characteristics and antitumor activity of SN38-conjugate micelles.

  1. The structure of P85 pluronic block copolymer micelles determined by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Pedersen, J.S.; Gerstenberg, M.C.

    2003-01-01

    independent at the conditions studied. The micelles are slightly polydisperse in the aggregation number and have aggregation numbers in the range 40 - 50. The core contains about 40% water and has a radius of about 40 Angstrom. The corona extends out to about 80-100 Angstrom and has a fairly low volume...

  2. Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells.

    Science.gov (United States)

    Hoang, Bryan; Reilly, Raymond M; Allen, Christine

    2012-02-13

    Intracellular trafficking of Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. In the present study, block copolymer micelles (BCMs) were labeled with the Auger electron emitter indium-111 ((111)In) and loaded with the radiosensitizer methotrexate. HER2 specific antibodies (trastuzumab fab) and nuclear localization signal (NLS; CGYGPKKKRKVGG) peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake and intracellular distribution of the multifunctional BCMs were evaluated in a panel of breast cancer cell lines with different levels of HER2 expression. Indeed cell uptake was found to be HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS peptides to the surface of BCMs was found to result in a significant increase in nuclear uptake of the radionuclide (111)In. Successful nuclear targeting was shown to improve the antipoliferative effect of the Auger electrons as measured by clonogenic assays. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and (111)In in all breast cancer cell lines evaluated.

  3. Novel 4-Arm Poly(Ethylene Glycol-Block-Poly(Anhydride-Esters Amphiphilic Copolymer Micelles Loading Curcumin: Preparation, Characterization, and In Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    Li Lv

    2013-01-01

    Full Text Available A novel 4-arm poly(ethylene glycol-block-poly(anhydride-esters amphiphilic copolymer (4-arm PEG-b-PAE was synthesized by esterization of 4-arm poly(ethylene glycol and poly(anhydride-esters which was obtained by melt polycondensation of α-, ω-acetic anhydride terminated poly(L-lactic acid. The obtained 4-arm PEG-b-PAE was characterized by 1H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL. The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  4. Structures of PEP–PEO Block Copolymer Micelles: Effects of Changing Solvent and PEO Length and Comparison to a Thermodynamic Model

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Deen, G. Roshan;

    2012-01-01

    Structures of poly(ethylene propylene)–poly(ethylene oxide) (PEP–PEO) block copolymer micelles were determined from small-angle X-ray scattering and static light scattering and compared to predictions from a thermodynamic model. Both the corona block length and the solvent water–ethanol ratio were...... changed, leading to a thorough test of this model. With increasing ethanol fraction, the PEP core–solvent interfacial tension decreases, and the solvent quality for PEO changes. The weight-average block masses were 5.0 kDa for PEP and 2.8–49 kDa for PEO. For the lowest PEO molar mass and samples in pure...... water (except for the highest PEO molar mass), the micelles were cylindrical; for other conditions they were spherical. The structural parameters can be reasonably well described by the thermodynamic model by Zhulina et al. [Macromolecules2005, 38 (12), 5330–5351]; however, they have a stronger...

  5. Chain exchange in triblock copolymer micelles

    Science.gov (United States)

    Lu, Jie; Lodge, Timothy; Bates, Frank

    2015-03-01

    Block polymer micelles offer a host of technological applications including drug delivery, viscosity modification, toughening of plastics, and colloidal stabilization. Molecular exchange between micelles directly influences the stability, structure and access to an equilibrium state in such systems and this property recently has been shown to be extraordinarily sensitive to the core block molecular weight in diblock copolymers. The dependence of micelle chain exchange dynamics on molecular architecture has not been reported. The present work conclusively addresses this issue using time-resolved small-angle neutron scattering (TR-SANS) applied to complimentary S-EP-S and EP-S-EP triblock copolymers dissolved in squalane, a selective solvent for the EP blocks, where S and EP refer to poly(styrene) and poly(ethylenepropylene), respectively. Following the overall SANS intensity as a function of time from judiciously deuterium labelled polymer and solvent mixtures directly probes the rate of molecular exchange. Remarkably, the two triblocks display exchange rates that differ by approximately ten orders of magnitude, even though the solvophobic S blocks are of comparable size. This discovery is considered in the context of a model that successfully explains S-EP diblock exchange dynamics.

  6. Micellization and Characterization of Block Copolymer Detergents

    DEFF Research Database (Denmark)

    Hvidt, Søren

    Triblock copolymers of the type EPE, where E and P denote ethylene oxide and propylene oxide blocks, respectively, are used widely in industry as emulsifiers, anti-foaming agents, and in delayed drug release. EPE copolymers form micelles with a core of P blocks and different micellar shapes depen...

  7. Effects of copolymer component on the properties of phosphorylcholine micelles

    Directory of Open Access Journals (Sweden)

    Wu Z

    2017-01-01

    Full Text Available Zhengzhong Wu,1 Mengtan Cai,1 Jun Cao,2 Jiaxing Zhang,1 Xianglin Luo1,3 1College of Polymer Science and Engineering, 2National Engineering Research Center for Biomaterials, 3State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People’s Republic of China Abstract: Zwitterionic polymers have unique features, such as good compatibility, and show promise in the application of drug delivery. In this study, the zwitterionic copolymers, poly(ε-caprolactone-b-poly(2-methacryloyloxyethyl phosphorylcholine with disulfide (PCL-ss-PMPC or poly(ε-caprolactone-b-poly(2-methacryloyloxyethyl phosphorylcholine or without disulfide (PCL-PMPC and with different block lengths in PCL-ss-PMPC, were designed. The designed copolymers were obtained by a combination of ring-opening polymerization and atom transferring radical polymerization. The crystallization properties of these polymers were investigated. The micelles were prepared based on the obtained copolymers with zwitterionic phosphorylcholine as the hydrophilic shell and PCL as the hydrophobic core. The size distributions of the blank micelles and the doxorubicin (DOX-loaded micelles were uniform, and the micelle diameters were <100 nm. In vitro drug release and intracellular drug release results showed that DOX-loaded PCL-ss-PMPC micelles could release drugs faster responding to the reduction condition and the intracellular microenvironment in contrast to PCL-PMPC micelles. Moreover, in vitro cytotoxicity evaluation revealed that the designed copolymers possessed low cell toxicity, and the inhibiting effect of DOX-loaded phosphorylcholine micelles to tumor cells was related to the components of these copolymers. These results reveal that the reduction-responsive phosphorylcholine micelles with a suitable ratio of hydrophilic/hydrophobic units can serve as promising drug carriers. Keywords: zwitterionic, reduction-sensitive, disulfide, phosphorylcholine

  8. Multicompartmental Microcapsules from Star Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ikjun; Malak, Sidney T.; Xu, Weinan; Heller, William T.; Tsitsilianis, Constantinos; Tsukruk, Vladimir V.

    2013-02-26

    We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into the LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic

  9. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery.

    Science.gov (United States)

    Zhang, Can Yang; Xiong, Di; Sun, Yao; Zhao, Bin; Lin, Wen Jing; Zhang, Li Juan

    2014-01-01

    A novel amphiphilic triblock pH-sensitive poly(β-amino ester)-g-poly(ethylene glycol) methyl ether-cholesterol (PAE-g-MPEG-Chol) was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation-deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX) was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy.

  10. Self-assembled materials from thermosensitive and biohybrid block copolymers

    NARCIS (Netherlands)

    de Graaf, A.J.

    2012-01-01

    In this research, several block copolymers were synthesized and characterized with regard to possible pharmaceutical applications. All block copolymers were thermosensitive and self-assembled at 37 °C into structures like micelles and hydrogels, which can be used for innovative drug delivery purpose

  11. Formation of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  12. Self-assembled micelles based on pH-sensitive PAE-g-MPEG-cholesterol block copolymer for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Zhang CY

    2014-10-01

    Full Text Available Can Yang Zhang, Di Xiong, Yao Sun, Bin Zhao, Wen Jing Lin, Li Juan Zhang School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China Abstract: A novel amphiphilic triblock pH-sensitive poly(ß-amino ester-g-poly(ethylene glycol methyl ether-cholesterol (PAE-g-MPEG-Chol was designed and synthesized via the Michael-type step polymerization and esterification condensation method. The synthesized copolymer was determined with proton nuclear magnetic resonance and gel permeation chromatography. The grafting percentages of MPEG and cholesterol were determined as 10.93% and 62.02%, calculated from the area of the characteristic peaks, respectively. The amphiphilic copolymer was confirmed to self-assemble into core/shell micelles in aqueous solution at low concentrations. The critical micelle concentrations were 6.92 and 15.14 mg/L at pH of 7.4 and 6.0, respectively, obviously influenced by the changes of pH values. The solubility of pH-responsive PAE segment could be transformed depending on the different values of pH because of protonation–deprotonation of the amino groups, resulting in pH sensitivity of the copolymer. The average particle size of micelles increased from 125 nm to 165 nm with the pH decreasing, and the zeta potential was also significantly changed. Doxorubicin (DOX was entrapped into the polymeric micelles with a high drug loading level. The in vitro DOX release from the micelles was distinctly enhanced with the pH decreasing from 7.4 to 6.0. Toxicity testing proved that the DOX-loaded micelles exhibited high cytotoxicity in HepG2 cells, whereas the copolymer showed low toxicity. The results demonstrated how pH-sensitive PAE-g-MPEG-Chol micelles were proved to be a potential vector in hydrophobic drug delivery for tumor therapy. Keywords: micelle, pH-sensitive, cholesterol, poly(ß-amino ester, drug delivery

  13. Block copolymer battery separator

    Science.gov (United States)

    Wong, David; Balsara, Nitash Pervez

    2016-04-26

    The invention herein described is the use of a block copolymer/homopolymer blend for creating nanoporous materials for transport applications. Specifically, this is demonstrated by using the block copolymer poly(styrene-block-ethylene-block-styrene) (SES) and blending it with homopolymer polystyrene (PS). After blending the polymers, a film is cast, and the film is submerged in tetrahydrofuran, which removes the PS. This creates a nanoporous polymer film, whereby the holes are lined with PS. Control of morphology of the system is achieved by manipulating the amount of PS added and the relative size of the PS added. The porous nature of these films was demonstrated by measuring the ionic conductivity in a traditional battery electrolyte, 1M LiPF.sub.6 in EC/DEC (1:1 v/v) using AC impedance spectroscopy and comparing these results to commercially available battery separators.

  14. Non-Equilibrium Dynamics of Vesicles and Micelles by Self-Assembly of Block Copolymers with Double Thermoresponsivity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yu-Hang; Li, Zhen; Li, Xuejin; Deng, Mingge; Karniadakis, George Em

    2016-04-12

    We present a mesoscopic simulation study of doubly thermoresponsive self-assemblies, revealing previously unknown dynamic behavior and proving experimental hypotheses. By explicitly modeling internal energy as a degree of freedom of coarse-grained particles, we simulated the thermally induced self assembly process triggered by the evolution of temperature over time and space. We found that both external and intrinsic factors are responsible for altering the assembly pathway of thermoresponsive micelles and hence determining the final aggregate morphology. We identified a frequency regime where thermoresponsive unilamellar vesicles can sustain repeated heating cooling cycles in a thermal loading test, and we quantified the collapse probability and half-life of the vesicles under frequencies that cause vesicle destruction. Two molecular movement modes dominate, namely flip and slip, in thermoresponsive bilayer membranes during the inversion of composition. We demonstrated that doubly thermoresponsive micelles and vesicles, as potential drug delivery vehicles, exhibit distinct hydrodynamic behavior when flowing through capillaries whose temperature spans across the inversion temperature of the carriers.

  15. Molecular Exchange in Ordered Diblock Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  16. Nanopatterning of Co/Pt-multilayers via self-assembled block-copolymer micelles; Magnetische Nanostrukturen basierend auf Co/Pt-Multilagen, hergestellt mittels selbstorganisierter Masken aus Blockcopolymer-Micellen

    Energy Technology Data Exchange (ETDEWEB)

    Stillrich, H.

    2007-07-01

    The production and characterization of magnetic nanostructures based on Co/Ptmultilayers are described in this thesis. Nanostructure arrays of Co/Pt multilayer films are generated utilizing the self-assembly of block copolymer micelles with a few 10nm diameter. For an understanding of the magnetic properties of nanostructures the properties of Co/Pt-multilayer films are examined first. The films are grown via different sputter techniques. The structural and magnetic properties are investigated depending on the deposition technique. The sources of magnetic anisotropy are discussed based on these investigations. One major topic concerning Co/Pt-multilayers is the reorientation of the easy axis of magnetization from perpendicular to in-plane as a function of the cobalt and platinum layer thicknesses. Combining averaging magnetization measurements and high resolution magnetic imaging, the canting of magnetization within the reorientation transition and a canted domain structure were found. The basis for magnetic nanostructures are Co/Pt-multilayers that were optimized for strong magnetic anisotropy. Magnetic antidot and dot arrays are generated from Co/Pt-multilayers via novel methods utilizing block copolymer micelle masks and ion milling. The generation of nanostructure arrays is proven by the morphologic and topographic properties, combined with the evolution of magneto-optic signals. Two different approaches for the generation of antidot arrays are shown. The magnetic properties of antidot arrays with perpendicular and in-plane easy magnetization are investigated. Magnetic dot arrays are produced utilizing the cores of SiO{sub 2} filled block copolymer micelles. The dot arrays consist of single domain particles. The switching field distribution of the dot arrays is analysed and described using the size distribution of the magnetic particles. Magnetic nanostructures in the region of the superparamagnetic limit are investigated. (orig.)

  17. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.

    Science.gov (United States)

    Moroishi, Hitomi; Yoshida, Chikara; Murakami, Yoshihiko

    2013-02-01

    Sheet-shaped materials with a large contact area relative to the drug targeting site lead to advantages over conventional particle-shaped drug carriers and have several advantages for their biomedical applications. The present study proposes a methodology for preparing a novel sheet-shaped "hydrophobic" and biocompatible biomaterial in which polymeric micelles are uniformly dispersed for the incorporation of "hydrophilic" compounds into the sheet. The methoxy-terminated poly(ethylene glycol)-block-poly(lactic acid) block copolymer (CH(3)O-PEG-b-PLA) was successfully synthesized by means of the anionic ring-opening polymerization of both ethylene oxide and dl-lactide. CH(3)O-PEG-b-PLA was self-assembled and formed stable micelle-like w/o emulsion with a hydrophilic inner core in organic solvents. A sheet-shaped material containing a hydrophilic inner space for incorporating hydrophilic compounds was obtained by spin-coating both the micelle solution and a sheet-forming polymer. Fluorescent images of the sheet proved that polymeric micelles providing hydrophilic spaces were uniformly dispersed in the hydrophobic sheet. The facile technique presented in this paper can be a tool for fabricating sheet-shaped biomaterials that have a hydrophilic inner core and, consequently, that are suitable for the sustained release of hydrophilic compounds.

  18. Structure of PEP-PEO block copolymer micelles: Exploiting the complementarity of small-angle X-ray scattering and static light scattering

    DEFF Research Database (Denmark)

    Jensen, Grethe Vestergaard; Shi, Qing; Hernansanz, María J.;

    2011-01-01

    )-b-poly(ethylene oxide) (PEP-PEO) in a 70% ethanol solution are investigated. The polymers have identical PEP blocks of 5.0 kDa and varying PEO blocks of 2.8-49 kDa. The SLS contrasts of PEP and PEO are similar, providing a homogeneous contrast, making SLS ideal for determining the overall micelle morphology. The SAXS...... contrasts of the two components are very different, allowing for resolution of the internal micelle structure. A core-shell model with a PEP core and PEO corona is fitted simultaneously to the SAXS and SLS data using the different contrasts of the two blocks for each technique. With increasing PEO molecular...

  19. Self-assembling Characteristics of Amphiphilic Star Block Copolymers with a Polyelectrolyte Shell

    Institute of Scientific and Technical Information of China (English)

    S.Strandman; A.Zarembo; V.Aseyev; S.J.Butcher; H.Tenhu

    2007-01-01

    1 Results Amphiphilic block copolymers are capable of forming supramolecular assemblies resembling those observed in nature,such as spherical micelles,worm micelles,and vesicles.Changing the solvent composition,ionic strength or pH of the polymer solution may induce the self-assembly of block copolymers or trigger the transition between the geometries of noncovalent assemblies.In the current work,we have synthesised starlike amphiphilic block copolymers having hydrophobic poly(methyl methacrylate),PMMA,...

  20. Structure of Poly(styrene-b-ethylene-alt-propylene) Diblock Copolymer Micelles in Squalane

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo-Hyung; Bates, Frank S.; Lodge, Timothy P.; (UMM)

    2009-11-04

    The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R{sub h}, and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R{sub c}, the equivalent hard sphere radius, R{sub hs}, and an estimate of the aggregation number, N{sub agg}. In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

  1. Structure of poly(styrene-b-ethylene-alt-propylene) diblock copolymer micelles in squalane.

    Science.gov (United States)

    Choi, Soo-Hyung; Bates, Frank S; Lodge, Timothy P

    2009-10-22

    The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R(h), and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R(c), the equivalent hard sphere radius, R(hs), and an estimate of the aggregation number, N(agg). In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

  2. Structural and Mechanical Hysteresis at the Order-Order Transition of Block Copolymer Micellar Crystals

    Directory of Open Access Journals (Sweden)

    Theresa A. LaFollette

    2011-01-01

    Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.

  3. Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene

    NARCIS (Netherlands)

    Brzozowska, Agata M.; de Keizer, Arie; Norde, Willem; Detrembleur, Christophe; Stuart, Martien Cohen

    2010-01-01

    We have studied the formation and the stability of grafted block complex coacervate core micelles (C3Ms) in solution and the influence of grafted block C3M coatings on the adsorption of the proteins beta-lactoglobulin, bovine serum albumin, and lysozyme. The C3Ms consist of a grafted block copolymer

  4. Controlling Structure in Sulfonated Block Copolymer Membranes

    Science.gov (United States)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  5. Controlling block copolymer phase behavior using ionic surfactant

    Science.gov (United States)

    Ray, D.; Aswal, V. K.

    2016-05-01

    The phase behavior of poly(ethylene oxide)-poly(propylene oxide-poly(ethylene oxide) PEO-PPO-PEO triblock copolymer [P85 (EO26PO39EO26)] in presence of anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solution as a function of temperature has been studied using dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations (1 wt%) of block copolymer and surfactants. Each of the individual components (block copolymer and surfactant) and the nanoparticle-surfactant mixed system have been examined at varying temperature. The block copolymer P85 forms spherical micelles at room temperature whereas shows sphere-to-rod like micelle transition at higher temperatures. On the other hand, SDS surfactant forms ellipsoidal micelles over a wide temperature range. Interestingly, it is found that phase behavior of mixed micellar system (P85 + SDS) as a function of temperature is drastically different from that of P85, giving the control over the temperature-dependent phase behavior of block copolymers.

  6. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo, E-mail: akiba@env.kitakyu-u.ac.jp

    2010-11-15

    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  7. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    Science.gov (United States)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo

    2010-11-01

    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  8. Nanostructured Polysulfone-Based Block Copolymer Membranes

    KAUST Repository

    Xie, Yihui

    2016-05-01

    The aim of this work is to fabricate nanostructured membranes from polysulfone-based block copolymers through self-assembly and non-solvent induced phase separation. Block copolymers containing polysulfone are novel materials for this purpose providing better mechanical and thermal stability to membranes than polystyrene-based copolymers, which have been exclusively used now. Firstly, we synthesized a triblock copolymer, poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) through polycondensation and reversible addition-fragmentation chain-transfer polymerization. The obtained membrane has a highly porous interconnected skin layer composed of elongated micelles with a flower-like arrangement, on top of the graded finger-like macrovoids. Membrane surface hydrolysis was carried out in a combination with metal complexation to obtain metal-chelated membranes. The copper-containing membrane showed improved antibacterial capability. Secondly, a poly(acrylic acid)-b-polysulfone-b-poly(acrylic acid) triblock copolymer obtained by hydrolyzing poly(tert-butyl acrylate)-b-polsulfone-b-poly(tert-butyl acrylate) formed a thin film with cylindrical poly(acrylic acid) microdomains in polysulfone matrix through thermal annealing. A phase inversion membrane was prepared from the same polymer via self-assembly and chelation-assisted non-solvent induced phase separation. The spherical micelles pre-formed in a selective solvent mixture packed into an ordered lattice in aid of metal-poly(acrylic acid) complexation. The space between micelles was filled with poly(acrylic acid)-metal complexes acting as potential water channels. The silver0 nanoparticle-decorated membrane was obtained by surface reduction, having three distinct layers with different particle sizes. Other amphiphilic copolymers containing polysulfone and water-soluble segments such as poly(ethylene glycol) and poly(N-isopropylacrylamide) were also synthesized through coupling reaction and copper0-mediated

  9. Block coordination copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2014-11-11

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  10. Block coordination copolymers

    Science.gov (United States)

    Koh, Kyoung Moo; Wong-Foy, Antek G; Matzger, Adam J; Benin, Annabelle I; Willis, Richard R

    2012-11-13

    The present invention provides compositions of crystalline coordination copolymers wherein multiple organic molecules are assembled to produce porous framework materials with layered or core-shell structures. These materials are synthesized by sequential growth techniques such as the seed growth technique. In addition, the invention provides a simple procedure for controlling functionality.

  11. THERMOSENSITIVE POLYION COMPLEX MICELLES PREPARED BY SELF-ASSEMBLY OF TWO OPPOSITELY CHARGED DIBLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Pan He; Chang-wen Zhao; Chun-sheng Xiao; Zhao-hui Tang; Xue-si Chen

    2013-01-01

    Polyion complex (PIC) micelles were spontaneously formed in aqueous solutions through electrostatic interaction between two oppositely charged block copolymers,poly(N-isopropylacrylamide)-b-poly(L-glutamic acid) and poly(N-isopropylacrylamide)-b-poly(L-lysine).Their controlled synthesis was achieved via the ring opening polymerization of N-carboxyanhydrides (NCA),ε-benzyloxycarbonyl-L-lysine (Lys(Z)-NCA) or γ-benzyl-L-glutamate (BLG-NCA) with amino-terminated poly(N-isopropylacrylamide) macroinitiator and the subsequent deprotection reaction.The formation of PIC micelles was confirmed by dynamic light scattering and transmission electron microscopy.Turbidimetric characterization suggested that the formed PIC micelles had a concentration-dependent thermosensitivity and their phase transition behaviors could be easily adjusted either by the block length of coplymers or the concentration of micelles.

  12. DEFORMATION OF COPOLYMER MICELLES INDUCED BY AMPHIPHILIC DIMER PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren

    2012-01-01

    Combining self-consistent-field theory and density-functional theory,we systematically study the deformation of copolymer micelles induced by the presence of amphiphilic dimer particles.Due to the amphiphilic nature,dimer particles tend to accumulate onto the interface of the copolymer micelle.With increasing concentration of the symmetric dimer particles,which are made of two identical spherical particles,the micelle deforms from the initial sphere to ellipse,dumbbell,and finally separates into two micelles.Furthermore,asymmetric dimer particles,composed by two particles with different sizes,are considered to investigate the influence of geometry of dimer particles on the deformation of the micelle.It is found that the micelle inclines to deform into dumbbell due to the additional curvature originating in the gathering of asymmetric dimer particles onto the interface of the micelle.The present study on the deformation of micelles is useful to understand the possible shape variation in the course of cell division/fusion.

  13. Crystalline free energies of micelles of diblock copolymer solutions

    CERN Document Server

    D'Adamo, Giuseppe; 10.1063/1.3509391

    2012-01-01

    We report a characterization of the relative stability and structural behavior of various micellar crystals of an athermal model of AB-diblock copolymers in solution. We adopt a previously devel- oped coarse-graining representation of the chains which maps each copolymer on a soft dumbbell. Thanks to this strong reduction of degrees of freedom, we are able to investigate large aggregated systems, and for a specific length ratio of the blocks f = MA/(MA + MB) = 0.6, to locate the order-disorder transition of the system of micelles. Above the transition, mechanical and thermal properties are found to depend on the number of particles per lattice site in the simulation box, and the application of a recent methodology for multiple occupancy crystals (B.M. Mladek et al., Phys. Rev. Lett. 99, 235702 (2007)) is necessary to correctly define the equilibrium state. Within this scheme we have performed free energy calculations at two reduced density {\\rho}/{\\rho}\\ast = 4,5 and for several cubic structures as FCC,BCC,A1...

  14. Structure and thermorheology of concentrated pluronic copolymer micelles in the presence of laponite particles.

    Science.gov (United States)

    Boucenna, Imane; Royon, Laurent; Colinart, Pierre; Guedeau-Boudeville, Marie-Alice; Mourchid, Ahmed

    2010-09-21

    Small-angle neutron scattering and thermorheology techniques are used to investigate in detail the effect of laponite particles in aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEO-PPO-PEO, block copolymers in the concentrated regime. At high polymer concentration or temperature, the micellar solutions exhibit a phase transition from fluid to crystal due to crowding of the micelles. The addition of laponite is found to disturb this phase transition. The adsorption of the copolymer unimers onto laponite in large amounts describes these findings. It is shown that the preferred adsorption of the copolymer chains results in a sufficient increase in free volume for the remaining micelles to yield the observed enhancement of the structural disorder.

  15. 温度/pH双敏感嵌段共聚物胶束的体外性质研究%The characterisitics of temperature/pH sensitive block copolymer micelles in vitro

    Institute of Scientific and Technical Information of China (English)

    贾莉; 乔明曦; 胡海洋; 赵秀丽; 陈大为

    2011-01-01

    The dialysis method was employed to prepare blank and doxorubicin (DOX) loaded micelles formed by temperature- and pH- sensitive polyhistidine-co-polyDL-lactide-co-glycolide-co-polyethyleneglycol-co-polyDL-lactide-co-glycolide-co-polyhistidine (PHis-b-PLGA-b-PEG-b-PLGA-b-PHis). The critical micelle concentrations (CMC) of the copolymers were measured with Pyrene Fluorescent Probe Technique. The temperature- and pH- sensitive properties of the blank micelles solution were investigated by optical transmittance measurement. The morphology and diameter of DOX micelles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The entrapment rate and drug-loading rate were determined with dialysis method. The in vitro release study was further performed to examine the temperature-and pH-responsive drug release behavior from DOX-loaded micelles. The results indicated that the CMC, entrapment efficiency and drug-loaded amount of the micelles were 7.5 × 10-3 gL-1, 85.2±3.1% and 10.4±4.5%, respectively. The DOX micelle was globular-shaped with a mean diameter of 91.1 ± 15.8 nm. The transmittance of micelle solution consistently increased with the increasing temperature or decreasing pH. In comparison to the drug release profile at physiological conditions (37 °C, pH 7.4), the DOX-loaded micelles showed fester drug release rate at higher temperature (41 ℃), lower pH (pH 7.0, pH 6.5, pH 5.0) or higher temperature and lower pH (41 ℃, pH 5.0). This indicated that the micelles showed a temperature and pH-triggered drug release pattern. Base on the above results, it can be concluded that PHis-b-PLGA-b-PEG-b-PLGA-b-PHis block copolymer micelles which respond to temperature and pH stimuli are promising smart carriers for anti-tumor drugs with the advantages of temperature- and pH- triggered drug release.%本文采用透析法制备了新型温度/pH双敏感聚组氨酸-聚乳酸羟基乙酸-聚乙二醇-聚乳酸羟基乙酸-聚组

  16. How to Place Block Copolymer Molecules at the Interface of a Binary Blend

    Science.gov (United States)

    Chen, Zhong-Ren; Xu, Yuci; Zhong, Shuo

    2015-03-01

    Block copolymers have been used to reduce the domain size of immiscible polymer blends and thus improve the mechanical and other properties. The effectiveness of this method, however, depends on the percentage of these polymeric surfactants residing at the interface of the blend. In fact, theoretical as well as experimental work indicate that a large percentage of block copolymers form micelles in the bulk of one or both of the component polymers. These micelles may serve as weak spots initiating crack propagation. Previous work have been focused on the design of molecular architecture and synthesis of new block copolymers to address this problem. In this presentation, a simple mixing strategy is applied to make each block copolymer molecule stay at the interface. As one example, when this strategy is used to mix natural rubber (NR) with butadiene rubber (BR), a small amount of low molecular weight block copolymer (LIR) improves both processing characteristics such as melt viscosity and mechanical properties of cured samples, such as crack resistance. AFM micrographs show the much smaller domain size; and an original real-time monitoring system reveals the lowest crack growth rate. Using a model A/B/A-B binary blend, we have witnessed by microscopy that all block copolymer molecules form micelles at the first mixing step, and all of these micelles are disappeared and all block copolymer molecules stay at the interface after the second mixing step.

  17. Influence of solvent on micellar morphologies of semifluorinated block copolymers.

    Science.gov (United States)

    Lee, Min Young; Kim, Sang Jae; Jeong, Yeon Tae; Kim, Joo Hyun; Gal, Yeong-Soon; Lim, Kwon Taek

    2009-12-01

    The influence of solvents on micellar architectures of block copolymers composed of poly(1H,1H-dihydroperfluorooctyl methacrylate) and poly(ethylene oxide) was investigated. In this study, binary solvents with desired proportions were chosen, which had remarkable influence on the morphology of the resulting micelles. With simple adjusting the composition of the binary solvent of chloroform and trichlorofluoromethane, interesting shapes of micelle-like aggregates, such as core-shell, cylinder, worm-like and inverted micelles were formed with sizes of 15, 70, 30 and 250 nm, respectively. In the case of methanol/water system, core-shell spheres and vesicles were produced by varying the proportion of the contents. The morphologies were also tuned to honeycomb-like and bowl-shaped micelles as well as large planar lamellae with holes in DMF and water binary solvent.

  18. Multifunctional nanoassemblies of block copolymers for future cancer therapy

    Directory of Open Access Journals (Sweden)

    Horacio Cabral and Kazunori Kataoka

    2010-01-01

    Full Text Available Nanoassemblies from amphiphilic block copolymers are promising nanomedicine platforms for cancer diagnosis and therapy due to their relatively small size, high loading capacity of drugs, controlled drug release, in vivo stability and prolonged blood circulation. Recent clinical trials with self-assembled polymeric micelles incorporating anticancer drugs have shown improved antitumor activity and decreased side effects encouraging the further development of nanoassemblies for drug delivery. This review summarizes recent approaches considering stimuli-responsive, multifunctionality and more advanced architectures, such as vesicles or worm-like micelles, for tumor-specific drug and gene delivery.

  19. NANOSTRUCTURES OF FUNCTIONAL BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Guojun Liu

    2000-01-01

    Nanostructure fabrication from block copolymers in my group normally involves polymer design, synthesis, selfassembly, selective domain crosslinking, and sometimes selective domain removal. Preparation of thin films with nanochannels was used to illustrate the strategy we took. In this particular case, a linear triblock copolymer polyisopreneblock-poly(2-cinnamoylethyl methacrylate)-block-poly(t-butyl acrylate), PI-b-PCEMA-b-PtBA, was used. Films, 25 to50μm thick, were prepared from casting on glass slides a toluene solution of PI-b-PCEMA-b-PtBA and PtBA homopolymer,hPtBA, where hPtBA is shorter than the PtBA block. At the hPtBA mass fraction of 20% relative to the triblock or the total PtBA (hPtBA and PtBA block) volume fraction of 0.44, hPtBA and PtBA formed a seemingly continuous phase in the matrix of PCEMA and PI. Such a block segregation pattern was locked in by photocrosslinking the PCEMA domain. Nanochannels were formed by extracting out hPtBA with solvent. Alternatively, larger channels were obtained from extracting out hPtBA and hydrolyzing the t-butyl groups of the PtBA block. Such membranes were not liquid permeable but had gas permeability constants ~6 orders of magnitude higher than that of low-density polyethylene films.

  20. Magnetothermally responsive star-block copolymeric micelles for controlled drug delivery and enhanced thermo-chemotherapy.

    Science.gov (United States)

    Deng, Li; Ren, Jie; Li, Jianbo; Leng, Junzhao; Qu, Yang; Lin, Chao; Shi, Donglu

    2015-06-07

    Magnetothermally responsive drug-loaded micelles were designed and prepared for cancer therapy. These specially designed micelles are composed of the thermo-responsive star-block copolymer poly(ε-caprolactone)-block-poly(2-(2-methoxyethoxy)ethyl methacrylate-co-oligo(ethylene glycol)methacrylate) and Mn, Zn doped ferrite magnetic nanoparticles (MZF-MNPs). The thermo-responses of 6sPCL-b-P(MEO2MA-co-OEGMA) copolymers were shown to be dependent on the MEO2MA to OEGMA ratio. The lower critical solution temperature (LCST) of the star-block copolymers was controlled at 43 °C by adjusting the feed molar ratios of MEO2MA/OEGMA at 92 : 8. With the anti-tumor drug doxorubicin (DOX) self-assembling into the carrier system, the thermo-responsive micelles exhibited excellent temperature-triggered drug release behavior. In vitro cytotoxicity results showed high biocompatibility of the polymer micelles. Efficient cellular proliferation inhibition by the drug-loaded micelles was found on the HepG2 cells under different treatments. The thermo-responsive polymer micelles are promising for controlled drug delivery in tumor therapy under an alternating magnetic field.

  1. Block copolymer/homopolymer dual-layer hollow fiber membranes

    KAUST Repository

    Hilke, Roland

    2014-12-01

    We manufactured the first time block copolymer dual-layer hollow fiber membranes and dual layer flat sheet membranes manufactured by double solution casting and phase inversion in water. The support porous layer was based on polystyrene and the selective layer with isopores was formed by micelle assembly of polystyrene-. b-poly-4-vinyl pyridine. The dual layers had an excellent interfacial adhesion and pore interconnectivity. The dual membranes showed pH response behavior like single layer block copolymer membranes with a low flux for pH values less than 3, a fast increase between pH4 and pH6 and a constant high flux level for pH values above 7. The dry/wet spinning process was optimized to produce dual layer hollow fiber membranes with polystyrene internal support layer and a shell block copolymer selective layer.

  2. A neutron scattering study of triblock copolymer micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gerstenberg, M.C.

    1997-11-01

    The thesis describes the neutron scattering experiments performed on poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer micelles in aqueous solution. The studies concern the non-ionic triblock copolymer P85 which consists of two outer segments of 25 monomers of ethylene oxide attached to a central part of 40 monomers of propylene oxide. The amphiphilic character of P85 leads to formation of various structures in aqueous solution such as spherical micelles, rod-like structures, and a BCC liquid-crystal mesophase of spherical micelles. The present investigations are centered around the micellar structures. In the first part of this thesis a model for the micelle is developed for which an analytical scattering form factor can be calculated. The micelle is modeled as a solid sphere with tethered Gaussian chains. Good agreement was found between small-angle neutron scattering experiments and the form factor of the spherical P85 micelles. Above 60 deg. C some discrepancies were found between the model and the data which is possibly due to an elongation of the micelles. The second part focuses on the surface-induced ordering of the various micellar aggregates in the P85 concentration-temperature phase diagram. In the spherical micellar phase, neutron reflection measurements indicated a micellar ordering at the hydrophilic surface of quartz. Extensive modeling was performed based on a hard sphere description of the micellar interaction. By convolution of the distribution of hard spheres at a hard wall, obtained from Monte Carlo simulations, and the projected scattering length density of the micelle, a numerical expression was obtained which made it possible to fit the data. The hard-sphere-hard-wall model gave an excellent agreement in the bulk micellar phase. However, for higher concentrations (25 wt % P85) close to the transition from the micellar liquid into a micellar cubic phase, a discrepancy was found between the model and the

  3. Nanostructure of PEO-polyurethane-PEO triblock copolymer micelles in water.

    Science.gov (United States)

    Caba, Beth L; Zhang, Qian; Carroll, Matthew R J; Woodward, Robert C; St Pierre, Timothy G; Gilbert, Elliot P; Riffle, Judy S; Davis, Richey M

    2010-04-01

    Novel hydrophilic triblock copolymers which form micelles in aqueous solution were studied by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS) and densitometry. The polymers were symmetric A-B-A block copolymers having two poly(ethylene oxide) (PEO) tail blocks and a polyurethane (PU) center segment that contained pendant carboxylic acids. The aggregation number of the micelles decreased with increasing PEO mass content. When attempting to fit the SANS data it was found that no single model was suitable over the entire range of block lengths and PEO mass concentrations investigated here. For the polymer with the highest aggregation number, the data were fitted with a triblock model consisting of a homogeneous core with a corona of non-interacting Gaussian chains for which only two free parameters were required: the radius of the core and the radius of gyration of the corona. In this case, the core was found to be effectively dry. At lower aggregation numbers, a star polymer model generated significantly better fits, suggesting the absence of any identifiable central core structure. Good agreement was found between the sizes measured by DLS, SANS and theoretical predictions of micelle size from a density distribution theory. These results show that when significant changes in aggregation number occur, the nanostructure of the micelle can change substantially even for polymers that are remarkably similar.

  4. Micellization of symmetric PEP-PEO block copolymers in water molecular weight dependence

    CERN Document Server

    Kaya, H; Allgaier, J; Stellbrink, J; Richter, D

    2002-01-01

    The micellar behaviour of the amphiphilic block copolymer poly-(ethylene-propylene)-poly-(ethylene oxide) (PEP-PEO) in aqueous solution has been studied with small-angle neutron scattering. The polymer was studied over a wide range of molecular weights, always keeping the volume of the blocks equal. The scattering behaviour of the solutions showed that a morphological transition takes place upon lowering the molecular weight. The high molecular weight block copolymers all build spherical, monodisperse micelles with large aggregation numbers. At low molecular weights, however, cylindrical micelles are formed. An interesting intermediate case is represented by the PEP2-PEO2 system, in which a morphological transition occurs upon dilution. (orig.)

  5. Design of block copolymer membranes using segregation strength trend lines

    KAUST Repository

    Sutisna, Burhannudin

    2016-05-18

    Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.

  6. PEO-related block copolymer surfactants

    DEFF Research Database (Denmark)

    Mortensen, K.

    2001-01-01

    Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems ...

  7. STUDY ON POLYSULFONE-POLYESTER BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    DING Youjun; QI Daquan

    1988-01-01

    Synthesis and characterization of a series of Polysulfone (PSF)-Polyester (PEs) block copolymers were studied.The degree of randomness (B) of these block copolymers was calculated from the intensities of their proton signals in 1H NMR spectra and lies in the region of 0 < B < 1. It was shown that the degree of randomness (B) and the average sequence length (L) in block copolymers were relatively dependent on the reaction conditions, various feed ratios and structure of diols.The phenomenon was observed, when the PSF-PEs block copolymers dissolved in different solvents they had different viscosities and molecular conformations.The PSF-PEs block copolymers had better solvent resistance than homo-polysulfone.

  8. Inhibition of Growth and Metastasis of Colon Cancer by Delivering 5-Fluorouracil-loaded Pluronic P85 Copolymer Micelles

    Science.gov (United States)

    Zhu, Pengxi; Zhao, Naping; Sheng, Dandan; Hou, Jing; Hao, Chong; Yang, Xue; Zhu, Bing; Zhang, Shanshan; Han, Zhipeng; Wei, Lixin; Zhang, Li

    2016-01-01

    Hepatic metastasis is the leading cause of mortality of colon cancer, which is still lack of an effective therapy. A new delivery system, pluronic P85 block copolymers, conveying chemotherapeutic agent 5-fluorouracil (5-Fu) for inhibiting growth and metastasis of colon cancer was designed and developed. In this study, we demonstrated that 5-Fu produce strong pesticide effect at lower doses in the present of pluronic P85 compared with control groups. The migration and invasion of HCT116 cells and RKO cells were examined and the results showed that migration and invasion capacities of HCT116 cells and RKO cells were reduced by administering 5-Fu/P85 copolymer micelles in vitro and in vivo which indicating an effectively activity. Interestingly, the content of CD133 + CXCR4+ cells in HCT116 cancer cells and RKO cells treated by 5-Fu/P85 copolymer micelles was decreased. Importantly, the epithelial-mesenchymal transition (EMT) of CD133 + CXCR4+ cells, which was strongly associated with liver metastasis of colon cancer, was also suppressed by giving 5-Fu/P85 copolymer micelles. The results indicated that 5-Fu/P85 copolymer micelles could inhibit the growth and metastasis of colon cancer, which could be attributed to the decrease of the content of CD133 + CXCR4+ cells and suppression of EMT of CD133 + CXCR4+ cells. PMID:26864651

  9. Hydrophilic block azidation of PCL-b-PEO block copolymers from epichlorohydrin.

    Science.gov (United States)

    Liu, Junjie; Gan, Zhihua

    2014-05-01

    Amphiphilic diblock copolymers poly(ϵ-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) with well-controlled pendant azido groups along the hydrophilic PEO block, that is, poly(ϵ-caprolactone)-b-poly(ethylene oxide-co-glycidyl azide) (PCL-b-P(EO-co-GA)), are synthesized from poly(ϵ-caprolactone)-b-poly(ethylene oxide-co-epichlorohydrin) (PCL-b-P(EO-co-ECH)). The further conversion of those azido groups along the hydrophilic block of copolymers into amino or carboxyl groups via click chemistry is studied. The micelles self-assembled from PCL-b-P(EO-co-GA) with azido groups on the shell are crosslinked by the dialkynyl-PEO. The micelles with crosslinked shell show better stability, higher drug loading capacities, subsequent faster drug release rate, and higher cytotoxicity to cancer cells. The introduction of azido groups into PCL-b-PEO amphiphilic diblock copolymers from epichlorohydrin in PEO hydrophilic block in this work provides a new method for biofunctionalization of micelles via mild click chemistry.

  10. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    Science.gov (United States)

    Hoarfrost, Megan Lane

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene- b-2-vinyl pyridine) (PS-b-P2VP). In contrast to block copolymer/molecular solvent mixtures, the interfacial area occupied by each PS-b-P2VP chain decreases upon the addition of [Im][TFSI], indicating a considerable increase in the effective segregation strength of the PS-b-P2VP copolymer with ionic liquid addition. The relationship between membrane structure and ionic conductivity is illuminated through the development of scaling relationships that describe the ionic conductivity of block copolymer/ionic liquid mixtures as a function of membrane composition and temperature. It is shown that the dominant variable influencing conductivity is the overall volume fraction of ionic liquid in the mixture, which means there is incredible freedom in designing the block copolymer architecture

  11. Block copolymer membranes for aqueous solution applications

    KAUST Repository

    Nunes, Suzana Pereira

    2016-03-22

    Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on non-porous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and non-solvent induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions and macrophase separation by solvent-non-solvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids.

  12. Self-assembled micelles composed of doxorubicin conjugated Y-shaped PEG-poly(glutamic acid)2 copolymers via hydrazone linkers.

    Science.gov (United States)

    Sui, Bowen; Xu, Hui; Jin, Jian; Gou, Jingxin; Liu, Jingshuo; Tang, Xing; Zhang, Yu; Xu, Jinghua; Zhang, Hongfeng; Jin, Xiangqun

    2014-08-11

    In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin)2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and drug release of the micelles were determined. Alterations in size and DLC of the micelles could be achieved by varying the hydrophobic block lengths. Moreover, at fixed DLCs, YMs showed a smaller diameter than micelles composed of linear copolymers (LMs). Also, all prepared micelles showed sustained release behaviors under physiological conditions over 72 h. DOX loaded in YMs was released more completely, with 30% more drug released in acid. The anti-tumor efficacy of the micelles against HeLa cells was evaluated by MTT assays, and YMs exhibited stronger cytotoxic effects than LMs in a dose- and time-dependent manner. Cellular uptake studied by CLSM indicated that YMs and LMs were readily taken up by HeLa cells. According to the results of this study, doxorubicin-conjugated Y-shaped PEG-(polypeptide)2 copolymers showed advantages over linear copolymers, like assembling into smaller nanoparticles, faster drug release in acid, which may correspond to higher cellular uptake and enhanced extracellular/intracellular drug release, indicating their potential in constructing nano-sized drug delivery systems.

  13. Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water.

    Science.gov (United States)

    Ohno, Sayaka; Ishihara, Kazuhiko; Yusa, Shin-Ichi

    2016-04-26

    A random copolymer (p(A/MaU)) of sodium 2-(acrylamido)-2-methylpropanesulfonate (AMPS) and sodium 11-methacrylamidoundecanate (MaU) was prepared via conventional radical polymerization, which formed a unimer micelle under acidic conditions due to intramolecular hydrophobic interactions between the pendant undecanoic acid groups. Under basic conditions, unimer micelles were opened up to an expanded chain conformation by electrostatic repulsion between the pendant sulfonate and undecanoate anions. A cationic diblock copolymer (P163M99) consisting of poly(3-(methacrylamido)propyl)trimethylammonium chloride (PMAPTAC) and hydrophilic polybetaine, 2-(methacryloyloxy)ethylphosphorylcholine (MPC), blocks was prepared via controlled radical polymerization. Mixing of p(A/MaU) and P163M99 in 0.1 M aqueous NaCl under acidic conditions resulted in the formation of spherical polyion complex (PIC) micelles and vesicles, depending on polymer concentration before mixing. Shapes of the PIC micelles and vesicles changed under basic conditions due to collapse of the charge balance between p(A/MaU) and P163M99. The PIC vesicles can incorporate nonionic hydrophilic guest molecules, and the PIC micelles and vesicles can accept hydrophobic guest molecules in the hydrophobic core formed from p(A/MaU).

  14. Rapid self-assembly of block copolymers to photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  15. Block copolymer self-assembly and co-assembly : shape function and application

    NARCIS (Netherlands)

    Li, F.

    2009-01-01

    Amphiphilic block copolymers can, in selective solvents such as water, assemble into various shapes and architectures. Among those, polymer vesicles, polymer micelles and polymer fibers are very popular structures in current nanotechnology. These objects each have their own particular properties and

  16. Time-resolved GISAXS and cryo-microscopy characterization of block copolymer membrane formation

    KAUST Repository

    Marques, Debora S.

    2014-03-01

    Time-resolved grazing-incidence small-angle X-ray scattering (GISAXS) and cryo-microscopy were used for the first time to understand the pore evolution by copolymer assembly, leading to the formation of isoporous membranes with exceptional porosity and regularity. The formation of copolymer micelle strings in solution (in DMF/DOX/THF and DMF/DOX) was confirmed by cryo field emission scanning electron microscopy (cryo-FESEM) with a distance of 72 nm between centers of micelles placed in different strings. SAXS measurement of block copolymer solutions in DMF/DOX indicated hexagonal assembly with micelle-to-micelle distance of 84-87 nm for 14-20 wt% copolymer solutions. GISAXS in-plane peaks were detected, revealing order close to hexagonal. The d-spacing corresponding to the first peak in this case was 100-130 nm (lattice constant 115-150 nm) for 17 wt% copolymer solutions evaporating up to 100 s. Time-resolved cryo-FESEM showed the formation of incipient pores on the film surface after 4 s copolymer solution casting with distances between void centers of 125 nm. © 2014 Elsevier Ltd. All rights reserved.

  17. 载紫杉醇pH敏感嵌段共聚物胶束的制备和体外药效%Preparation and in vitro anti-cancer effect of paclitaxel-loaded pH-sensitive block copolymer micelles

    Institute of Scientific and Technical Information of China (English)

    李秋; 李淼; 金义光; 杜丽娜; 苏畅; 董俊兴

    2013-01-01

    目的 制备载紫杉醇pH敏感嵌段共聚物胶束,评价抗肿瘤细胞药效.方法 用ATRP和click反应合成聚己内酯-聚甲基丙烯酸-N,N-二乙氨基乙酯-聚乙二醇嵌段共聚物(PDC),制备聚合物胶束,测定不同pH条件下胶束粒径和zeta电位;包载紫杉醇,测定包封率和载药量;透析法考察胶束的体外释药行为;MTT法评价胶束对人乳腺癌细胞MCF-7的细胞毒性.结果 聚合物胶束的粒径和zeta电位随pH增大而减小.紫杉醇的包封率为92.0%,载药量为8.36%.中性环境中胶束粒径为100.3 nm,zeta电位接近零.在低pH值(pH 6.5)环境中胶束的释药速率比中性环境中快,累积释放率高,对肿瘤细胞生长抑制效果好.结论 pH敏感嵌段共聚物胶束有良好的pH敏感释药特点和抗肿瘤细胞药效,有望成为理想的抗肿瘤药物靶向载体.%Objective To prepare paclitaxel-loaded pH-sensitive block copolymer micelles and evaluate the in vitro anti-cancer effect. Methods A block copolymer, poly (e-caprolactone)-poly (N,N-diethylamino-2-ethylmethacrylate)-poly (ethylene glycol) (PDC) , was prepared by ATRP and click reactions and polymeric micelles were prepared. The sizes and zeta potentials of micelles were determined under varied pH values. Paclitaxel was encapsulated in the micelles. The encapsulation efficiency and loading efficiency were measured. Drug release was investigated using dialysis method. Human breast cancer MCF-7 cells were used to evaluate the anti-cancer effect of drug-loaded micelles by MTT method. Results The sizes and zeta potentials of micelles decreased with the increase of pH values. The drug encapsulation efficiency was 92. 0% and the loading efficiency was 8. 36% . Under neutral environment, the mean size was 100. 3 ran, and the zeta potential was close to zero. The micelles showed faster drug release, higher accumulation release, and better anti-cancer effect in the low pH (6.5) media than in the neutral media. Conclusion

  18. Conjugation of Lectin to Poly(ε-caprolactone-block-glycopolymer Micelles for In Vitro Intravesical Drug Delivery

    Directory of Open Access Journals (Sweden)

    Ning Ning Li

    2016-10-01

    Full Text Available Amphiphilic poly(ε-caprolactone-block-poly[2-(α-d-mannopyranosyloxy ethyl acrylamide] (PCL-b-PManEA block copolymers were synthesized via a combination of ring-opening polymerization (ROP, reversible addition-fragmentation chain transfer (RAFT polymerization and reactive ester-amine reaction. The PCL-b-PManEA block copolymers can self-assemble into micelles and encapsulate anticancer drug doxorubicin (DOX. To enhance mucoadhesive property of the resulting DOX-loaded PCL-b-PManEA micelles, Concanavalin A (ConA lectin was further conjugated with the micelles. Turbidimetric assay using mucin shows that the DOX-loaded PCL-b-PManEA@ConA micelles are mucoadhesive. DOX release from the DOX-loaded PCL-b-PManEA@ConA micelles in artificial urine at 37 °C exhibits an initial burst release, followed by a sustained and slow release over three days. Confocal laser scanning microscope (CLSM images indicate that the DOX-loaded PCL-b-PManEA@ConA micelles can be effectively internalized by UMUC3 human urothelial carcinoma cells. The DOX-loaded PCL-b-PManEA@ConA micelles exhibit significant cytotoxicity to these cells.

  19. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    KAUST Repository

    Yu, Haizhou

    2015-10-16

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  20. Hollow ZIF-8 Nanoworms from Block Copolymer Templates

    Science.gov (United States)

    Yu, Haizhou; Qiu, Xiaoyan; Neelakanda, Pradeep; Deng, Lin; Khashab, Niveen M.; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2015-10-01

    Recently two quite different types of “nano-containers” have been recognized as attractive potential drug carriers; these are wormlike filamenteous micelles (“filomicelles”) on the one hand and metal organic frameworks on the other hand. In this work we combine these two concepts. We report for the first time the manufacturing of metal organic framework nanotubes with a hollow core. These worm-like tubes are about 200 nm thick and several μm long. The preparation is simple: we first produce long and flexible filament-shaped micelles by block copolymer self-assembly. These filomicelles serve as templates to grow a very thin layer of interconnected ZIF-8 crystals on their surface. Finally the block copolymer is removed by solvent extraction and the hollow ZIF-8 nanotubes remain. These ZIF-NTs are surprisingly stable and withstand purification by centrifugation. The synthesis method is straightforward and can easily be applied for other metal organic framework materials. The ZIF-8 NTs exhibit high loading capacity for the model anti cancer drug doxorubicin (DOX) with a pH-triggered release. Hence, a prolonged circulation in the blood stream and a targeted drug release behavior can be expected.

  1. Functionalization of Block Copolymer Vesicle Surfaces

    Directory of Open Access Journals (Sweden)

    Wolfgang Meier

    2011-01-01

    Full Text Available In dilute aqueous solutions certain amphiphilic block copolymers self-assemble into vesicles that enclose a small pool of water with a membrane. Such polymersomes have promising applications ranging from targeted drug-delivery devices, to biosensors, and nanoreactors. Interactions between block copolymer membranes and their surroundings are important factors that determine their potential biomedical applications. Such interactions are influenced predominantly by the membrane surface. We review methods to functionalize block copolymer vesicle surfaces by chemical means with ligands such as antibodies, adhesion moieties, enzymes, carbohydrates and fluorophores. Furthermore, surface-functionalization can be achieved by self-assembly of polymers that carry ligands at their chain ends or in their hydrophilic blocks. While this review focuses on the strategies to functionalize vesicle surfaces, the applications realized by, and envisioned for, such functional polymersomes are also highlighted.

  2. CONJUGATED BLOCK-COPOLYMERS FOR ELECTROLUMINESCENT DIODES

    NARCIS (Netherlands)

    Hilberer, A; Gill, R.E; Herrema, J.K; Malliaras, G.G; Wildeman, J.; Hadziioannou, G

    1995-01-01

    In this article we review results obtained in our laboratory on the design and study of new light-emitting polymers. We are interested in the synthesis and characterisation of block copolymers with regularly alternating conjugated and non conjugated sequences. The blocks giving rise to luminescence

  3. On the Use of Self-Assembling Block Copolymers to Toughen A Model Epoxy

    Science.gov (United States)

    Chen, Yilin

    Block copolymers have been receiving considerable attention in toughening epoxy due to their ability to form a wide variety of nanostructures. This study focuses on using both triblock and diblock copolymers to improve the fracture toughness of an aromatic-amine cured epoxy system. The curing system consisted of 1,3- phenylenediamine (mPDA) as curing agent and aniline as a chain extender. Three triblock copolymers and three diblock copolymers were incorporated in the same lightly crosslinked model epoxy system, which was chosen to mimic an underfill material in flip-chip packaging for the microelectronics industry. In this research, rubber particles were formed in situ using self-assembling block copolymers. Mechanical, thermal and microscopic studies were conducted with the main goal to study the relationship between the block parameters and the final morphologies and their effects on static and dynamic mechanical properties of the toughened resin, especially fracture toughness. In these block-copolymer-modified epoxies, spherical micelles and wormlike micelles were obtained by varying block lengths, molecular weight, polarities and compositions. It was found that miscibility of the epoxy-miscible block played a crucial role in the formation of different types of morphologies. At a low loading level, diblock copolymers were able to toughen the model epoxy as effectively as triblock copolymers. The fracture toughness was improved to almost three times with respect to that of the neat resin with addition of 10 phr AM*-27. At the same time, other mechanical properties, such as yield strength and modulus, were well retained. Incorporation of block copolymers did not have a significant effect on glass transition temperature but caused an increase in coefficient of thermal expansion (CTE) of the modified epoxy. Particle cavitation and matrix void growth were proved to be the toughening mechanisms for SBM-Modified epoxies. However, these typical toughening mechanisms for

  4. Additive-driven assembly of block copolymers

    Science.gov (United States)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.

  5. Solvent Property Induced Morphological Changes of ABA Amphiphilic Triblock Copolymer Micelles in Dilute Solution: A Self-consistent Field Simulation Study

    Institute of Scientific and Technical Information of China (English)

    Juan-juan Fan; Yuan-yuan Han; Jie Cui

    2014-01-01

    The morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution were systematically studied by tuning the solvent property using self-consistent field simulation.The solvent property was tuned by changing the Flory-Huggins interaction parameters between each type of blocks and solvent,respectively.The simulation results show that by changing the solvent properties,a series of micelle morphologies such as vesicle,cage-like,ring-shaped,rod-like and spherical micelle morphologies can be obtained.Variations of the free energy of the solution system and the surface area of micelles with the Flory-Huggins interaction parameters were calculated to better understand the effect of solvent property on micelle morphologies.In addition,a phase diagram showing the morphological changes of micelles with the Flory-Huggins interaction parameters is provided.

  6. Charge Transport in Conjugated Block Copolymers

    Science.gov (United States)

    Smith, Brandon; Le, Thinh; Lee, Youngmin; Gomez, Enrique

    Interest in conjugated block copolymers for high performance organic photovoltaic applications has increased considerably in recent years. Polymer/fullerene mixtures for conventional bulk heterojunction devices, such as P3HT:PCBM, are severely limited in control over interfaces and domain length scales. In contrast, microphase separated block copolymers self-assemble to form lamellar morphologies with alternating electron donor and acceptor domains, thereby maximizing electronic coupling and local order at interfaces. Efficiencies as high as 3% have been reported in solar cells for one block copolymer, P3HT-PFTBT, but the details concerning charge transport within copolymers have not been explored. To fill this gap, we probed the transport characteristics with thin-film transistors. Excellent charge mobility values for electron transport have been observed on aluminum source and drain contacts in a bottom gate, bottom contact transistor configuration. Evidence of high mobility in ordered PFTBT phases has also been obtained following thermal annealing. The insights gleaned from our investigation serve as useful guideposts, revealing the significance of the interplay between charge mobility, interfacial order, and optimal domain size in organic block copolymer semiconductors.

  7. Helical Ordering in Chiral Block Copolymers

    Science.gov (United States)

    Zhao, Wei; Hong, Sung Woo; Chen, Dian; Grason, Gregory; Russell, Thomas

    2012-02-01

    Introducing molecular chirality into the segments of block copolymers can influence the nature of the resultant morphology. Such an effect was found for poly(styrene-b-L-lactide) (PS-b-PLLA) diblock copolymers where hexagonally packed PLLA helical microdomains (H* phase) form in a PS matrix. However, molecular ordering of PLLA within the helical microdomains and the transfer of chirality from the segmental level to the mesoscale is still not well understood. We developed a field theoretic model to describe the interactions between segments of chiral blocks, which have the tendency to form a ``cholesteric'' texture. Based on the model, we calculated the bulk morphologies of chiral AB diblock copolymers using self-consistent field theory (SCFT). Experiments show that the H* phase only forms when microphase separation between PS and PLLA block happens first and crystallization of PLLA block is suppressed or happens within confined microdomain. Hence, crystalline ordering is not necessary for H* phase formation. The SCFT offers the chance to explore the range of thermodynamic stability of helical structures in the phase diagram of chiral block copolymer melts, by tuning parameters not only like the block segregation strength and composition, but also new parameters such as the ratio between preferred helical pitch to the radius of gyration and the Frank elastic constant for inter-segment distortions.

  8. Facile synthesis and characterization of novel biodegradable amphiphilic block copolymers bearing pendant hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Gaicen; Fan, Xiaoshan; Xu, Bingcan; Zhang, Delong; Hu, Zhiguo, E-mail: zghu@htu.cn

    2014-10-01

    Novel amphiphilic block copolymers bearing pendant hydroxyl groups polylactide-b–poly(3,3-bis(Hydroxymethyl–triazolylmethyl) oxetane)-b–polylactide (PLA-b–PHMTYO-b–PLA) were synthesized via a facile and efficient method. First, the block copolymer intermediates polylactide-b–poly(3,3-Diazidomethyloxetane)-b–polylactide (PLA-b–PBAMO-b–PLA) were synthesized through ring-opening polymerization of lactide using PBAMO as a macroinitiator. Following “Click” reaction of PLA-b–PBAMO-b–PLA with propargyl alcohol provided the targeted amphiphilic block copolymers PLA-b–PHMTYO-b–PLA with pendant hydroxyl groups. The composition and structure of prepared copolymers were characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) spectroscopy, Fourier transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behavior of the copolymers in water was investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and static light scattering (SLS). The results showed that the novel copolymers PLA-b–PHMTYO-b–PLA self-assembled into spherical micelles with diameters ranging from 100 nm to 200 nm in aqueous solution. These copolymers also exhibited low critical micellar concentrations (CMC: 6.9 × 10{sup −4} mg/mL and 3.9 × 10{sup −5} mg/mL, respectively). In addition, the in vitro cytotoxicity of these copolymers was determined in the presence of L929 cells. The results showed that the block copolymers PLA-b–PHMTYO-b–PLA exhibited better biocompatibility. Therefore, these well-defined copolymers are expected to find some applications in drug delivery or tissue engineering. - Highlights: • The method to synthesize PLA-b–PHMTYO-b–PLA is relatively facile and efficient. • PLA-b–PHMTYO-b–PLA self-assembles into spherical micelles with low CMC in water. • PLA-b–PHMTYO-b–PLA exhibits better biocompatibility and biodegradability.

  9. Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers.

    Science.gov (United States)

    Krogstad, Daniel V; Choi, Soo-Hyung; Lynd, Nathaniel A; Audus, Debra J; Perry, Sarah L; Gopez, Jeffrey D; Hawker, Craig J; Kramer, Edward J; Tirrell, Matthew V

    2014-11-13

    A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse core-shell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %.

  10. Micellization kinetics in block copolymer solutions : Scaling model

    NARCIS (Netherlands)

    Dormidontova, EE

    1999-01-01

    The kinetics of micelle evolution of diblock copolymers from unimers toward the equilibrium state is studied analytically on the basis of consideration of the kinetic equations. The association/dissociation rate constants for unimer insertion/expulsion and micelle fusion/fission are calculated by ap

  11. DNA block copolymers: functional materials for nanoscience and biomedicine.

    Science.gov (United States)

    Schnitzler, Tobias; Herrmann, Andreas

    2012-09-18

    We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorable properties, these materials have fueled the invention of new techniques and goods, from the yogurt cup to the car seat belts. To fulfill the requirements of modern life, polymers and their composites have become increasingly complex. One strategy for altering polymer properties is to combine different polymer segments within one polymer, known as block copolymers. The microphase separation of the individual polymer components and the resulting formation of well defined nanosized domains provide a broad range of new materials with various properties. Block copolymers facilitated the development of innovative concepts in the fields of drug delivery, nanomedicine, organic electronics, and nanoscience. Block copolymers consist exclusively of organic polymers, but researchers are increasingly interested in materials that combine synthetic materials and biomacromolecules. Although many researchers have explored the combination of proteins with organic polymers, far fewer investigations have explored nucleic acid/polymer hybrids, known as DNA block copolymers (DBCs). DNA as a polymer block provides several advantages over other biopolymers. The availability of automated synthesis offers DNA segments with nucleotide precision, which facilitates the fabrication of hybrid materials with monodisperse biopolymer blocks. The directed functionalization of modified single-stranded DNA by Watson-Crick base-pairing is another key feature of DNA block copolymers. Furthermore, the appropriate selection of DNA sequence and organic polymer gives control over the material properties and their self-assembly into supramolecular structures. The introduction of a hydrophobic polymer into DBCs

  12. Asymmetrical Self-assembly From Fluorinated and Sulfonated Block Copolymers in Aqueous Media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun [ORNL; Hong, Kunlun [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK); Goswami, Monojoy [ORNL; Sumpter, Bobby G [ORNL; Mays, Jimmy [ORNL

    2011-01-01

    Block copolymers of fluorinated isoprene and partially sulfonated styrene form novel tapered rods and ribbon-like micelles in aqueous media due to a distribution of sulfonation sites and a large Flory-Huggins interaction parameter. A combination of microscopy, light scattering, and simulation demonstrates the presence of these unique nanostructures. This study sheds light on the micellization behavior of amphiphilic block polymers by revealing a new mechanism of self-assembly.

  13. Chiral Block Copolymer Structures for Metamaterial Applications

    Science.gov (United States)

    2015-01-27

    MONITOR’S REPORT NUMBER(S) AOARD-114078 12. DISTRIBUTION/AVAILABILITY STATEMENT Distribution A: Approved for public release. Distribtion is...researchers focused o synthesis and processing, morphology and physical characterization of chiral block copolymer (BCP) materials. Such materials a...developed a platform process technology that can fabricate novel netwo morphologies from initial bicontinuous cubic phases through supergroup/subgroup

  14. Nylon 46-polytetramethylene oxide segmented block copolymers

    NARCIS (Netherlands)

    Gaymans, R.J.; Schwering, P.; Haan, de J.L.

    1989-01-01

    Block copolymers were synthesized from amine-terminated polytetramethylene oxide (PMTO) (Mw 800 and 1130) and polyamide 4,6 salt. First prepolymers were prepared at 200–210°C in the presence of a solvent (pyrrolidone). The prepolymers were postcondensed at 255°C (where possible in the solid state) t

  15. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  16. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, T. P., E-mail: tlg@ineos.ac.ru; Timofeeva, G. I.; Lependina, O. L.; Shandintsev, V. A. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Matyushin, A. A. [Ministry of Public Health of the Russian Federation, First Moscow State Medical University (Russian Federation); Khotina, I. A. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Shtykova, E. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    Magnetite nanoparticles have been formed for the first time in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate in water by ultrasonic treatment at room temperature. An analysis by small-angle X-ray scattering and transmission electron microscopy (TEM) showed that magnetite nanoparticles in hybrid micelles of block copolymer and sodium dodecyl sulfate are polydesperse (have sizes from 0.5 to 20 nm). The specific magnetization of solid samples has been measured.

  17. Preparation of stable spherical micelles with rigid backbones based on polyaryletherketone copolymers containing lateral pyridyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuling; Liu, Lingzhi; Guo, Yunliang; Jiang, Zhenhua; Wang, Guibin, E-mail: wgb@jlu.edu.cn

    2013-07-15

    A new bisphenol monomer, 3-(3,4-dihydroxyphenylimine) pyridine (PYPH), was synthesized via a deoxidization reaction of an amine. A series of novel polyaryletherketone copolymers containing lateral pyridyl groups (PY-PAEKs) based on PYPH, 2,2-di(4-hydroxyphenyl)propane and 4,4′-difluorobenzophenone were prepared by nucleophilic aromatic substitution polycondensation reactions. Furthermore, spherical micelles with rigid PY-PAEKs as the inner cores and flexible polyacrylic acid (PAA) as the outer shells were obtained in a selective solvent (H{sub 2}O) successfully. The formation of the spherical micelles was confirmed by scanning electron and transmission electron microscopy as well as by surface tension measurements. The formation and size of the spherical micelles depended on the weight ratio of PAA/PY-PAEK, the concentration and pH value of the mixed solution containing the PY-PAEK and PAA, and the number of pyridyl groups in the PY-PAEK. The structure of the spherical micelles could be stabilized by a cross-linking reaction between the pyridyl groups of the PY-PAEKs and 1,4-dibromobutane. The diameter of the spherical micelles decreased because of the removal of the PAA shell from the PY-PAEK core after the cross-linking reaction. The resulting stable spherical micelles with rigid backbones did not dissolve in a number of polar solvents and remained unaffected by changes in the pH values. - Graphical abstract: Display Omitted - Highlights: • Polyaryletherketone copolymers containing lateral pyridyl groups were synthesized. • Spherical micelles were prepared using these copolymers and polyacrylic acid. • The copolymers and polyacrylic acid formed the core and the shell of the micelles, respectively. • The obtained micelles were stabilized by a cross-linking reaction. • The cross-linked micelles had rigid backbones, independent of solvents and pH values.

  18. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian

    2016-02-29

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  19. Rapid ordering of block copolymer thin films

    Science.gov (United States)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  20. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-22

    A series of well-defined amphiphilic polymethylene-b-poly(ethylene glycol) (PM-b-PEG) diblock copolymers, with different hydrophobic chain length, were synthesized by combining Diels-Alder reaction with polyhomologation. The successful synthetic procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined by fluorescence spectroscopy using pyrene as a probe. Measurements of the micelle hydrodynamic diameters, performed by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM), revealed a direct dependence of the micelle size from the polymethylene block length.

  1. Surface functionalization of carbon nanotubes by direct encapsulation with varying dosages of amphiphilic block copolymers

    Science.gov (United States)

    Yao, Xueping; Li, Jie; Kong, Liang; Wang, Yong

    2015-08-01

    Encapsulation of carbon nanotubes (CNTs) by amphiphilic block copolymers is an efficient way to stabilize CNTs in solvents. However, the appropriate dosages of copolymers and the assembled structures are difficult to predict and control because of the insufficient understanding on the encapsulation process. We encapsulate multiwalled CNTs with polystyrene-block-poly (4-vinyl pyridine) (PS-b-P4VP) by directly mixing them in acetic acid under sonication. The copolymer forms a lamellar structure along the surface of CNTs with the PS blocks anchoring on the tube wall and the P4VP blocks exposed to the outside. The encapsulated CNTs achieve good dispersibility in polar solvents over long periods. To increase our understanding of the encapsulation process we investigate the assembled structures and stability of copolymer/CNTs mixtures with changing mass ratios. Stable dispersions are obtained at high mass ratios between the copolymer and CNTs, i.e. 2 or 3, with the presence of free spherical micelles. Transmission electron microscopy and thermal gravimetric analysis determine that the threshold for the complete coverage of CNTs by the copolymer occurs at the mass ratio of 1.5. The coated copolymer layer activates the surface of CNTs, enabling further functionalization of CNTs. For instance, atomic layer deposition of TiO2 produces conformal thin layers on the encapsulated CNTs while isolated TiO2 bumps are produced on the pristine, inert CNTs.

  2. Block copolymer morphologies confined by square-shaped particle: Hard and soft confinement

    Science.gov (United States)

    Zhang, Qiyi; Yang, Wenyan; Hu, Kaiyan

    2016-11-01

    The self-assembly of diblock copolymers confined around one square-shaped particle is studied systematically within two-dimensional self-consistent field theory (SCFT). In this model, we assume that the thin block copolymer film is confined in the vicinity of a square-shaped particle by a homopolymer melt, which is equivalent to the poor solvents. Multiple sequences of square-shaped particle-induced copolymer aggregates with different shapes and self-assembled internal morphologies are predicted as functions of the particle size, the structural portion of the copolymer, and the volume fraction of the copolymer. A rich variety of aggregates are found with complex internal self-assembled morphologies including complex structures of the vesicle, with one or several inverted micelle surrounded by the outer monolayer with the particle confined in the core. These results demonstrate that the assemblies of diblock copolymers formed around the square-shaped particle in poor solvents are of immediate interest to the assembly of copolymer and the morphology of biomembrane in the confined environment, as well as to the transitions of vesicles to micelles. Project supported by the National Natural Science Foundation of China (Grant No. 20804060) and the Research Foundation of Chongqing University of Science and Technology, China (Grant No. CK2013B16).

  3. Meso-scale Modeling of Block Copolymers Self-Assembly in Casting Solutions for Membrane Manufacture

    KAUST Repository

    Moreno Chaparro, Nicolas

    2016-05-01

    Isoporous membranes manufactured from diblock copolymer are successfully produced at laboratory scale under controlled conditions. Because of the complex phenomena involved, membrane preparation requires trial and error methodologies to find the optimal conditions, leading to a considerable demand of resources. Experimental insights demonstrate that the self-assembly of the block copolymers in solution has an effect on the final membrane structure. Nevertheless, the complete understanding of these multi-scale phenomena is elusive. Herein we use the coarse-grained method Dissipative Particle Dynamics to study the self-assembly of block copolymers that are used for the preparation of the membranes. To simulate representative time and length scales, we introduce a framework for model reduction of polymer chain representations for dissipative particle dynamics, which preserves the properties governing the phase equilibria. We reduce the number of degrees of freedom by accounting for the correlation between beads in fine-grained models via power laws and the consistent scaling of the simulation parameters. The coarse-graining models are consistent with the experimental evidence, showing a morphological transition of the aggregates as the polymer concentration and solvent affinity change. We show that hexagonal packing of the micelles can occur in solution within different windows of polymer concentration depending on the solvent affinity. However, the shape and size dispersion of the micelles determine the characteristic arrangement. We describe the order of crew-cut micelles using a rigid-sphere approximation and propose different phase parameters that characterize the emergence of monodisperse-spherical micelles in solution. Additionally, we investigate the effect of blending asymmetric diblock copolymers (AB/AC) over the properties of the membranes. We observe that the co-assembly mechanism localizes the AC molecules at the interface of A and B domains, and induces

  4. Block copolymer/ferroelectric nanoparticle nanocomposites

    Science.gov (United States)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  5. Dynamics of Block Copolymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We also carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.

  6. Hybrid, Nanoscale Phospholipid/Block Copolymer Vesicles

    Directory of Open Access Journals (Sweden)

    Bo Liedberg

    2013-09-01

    Full Text Available Hybrid phospholipid/block copolymer vesicles, in which the polymeric membrane is blended with phospholipids, display interesting self-assembly behavior, incorporating the robustness and chemical versatility of polymersomes with the softness and biocompatibility of liposomes. Such structures can be conveniently characterized by preparing giant unilamellar vesicles (GUVs via electroformation. Here, we are interested in exploring the self-assembly and properties of the analogous nanoscale hybrid vesicles (ca. 100 nm in diameter of the same composition prepared by film-hydration and extrusion. We show that the self-assembly and content-release behavior of nanoscale polybutadiene-b-poly(ethylene oxide (PB-PEO/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC hybrid phospholipid/block copolymer vesicles can be tuned by the mixing ratio of the amphiphiles. In brief, these hybrids may provide alternative tools for drug delivery purposes and molecular imaging/sensing applications and clearly open up new avenues for further investigation.

  7. TOPICAL REVIEW: Multifunctional nanoassemblies of block copolymers for future cancer therapy

    Science.gov (United States)

    Cabral, Horacio; Kataoka, Kazunori

    2010-02-01

    Nanoassemblies from amphiphilic block copolymers are promising nanomedicine platforms for cancer diagnosis and therapy due to their relatively small size, high loading capacity of drugs, controlled drug release, in vivo stability and prolonged blood circulation. Recent clinical trials with self-assembled polymeric micelles incorporating anticancer drugs have shown improved antitumor activity and decreased side effects encouraging the further development of nanoassemblies for drug delivery. This review summarizes recent approaches considering stimuli-responsive, multifunctionality and more advanced architectures, such as vesicles or worm-like micelles, for tumor-specific drug and gene delivery.

  8. Contrast variation SANS experiments to the study of detergent-induced micellization of block copolymers

    Indian Academy of Sciences (India)

    V K Aswal; J Kohlbrecher

    2004-08-01

    PEO-PPO-PEO triblock copolymer P85 [(EO)26 (PO)39 (EO)26] dissolves as unimers and detergent sodium dodecyl sulfate (SDS) forms micelles in aqueous solution at 20°C. The mixing of detergent with triblock copolymer induces the micellization of triblock copolymers. Contrast variation small-angle neutron scattering measurements show that triblock copolymer forms mixed micelles with detergent and the mixing of two components in the mixed micelles is uniform.

  9. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    Science.gov (United States)

    2015-06-30

    biofouling program contractors. 15. SUBJECT TERMS antifouling; coatings; block copolymers; IR nanoscale imaging ; biocides 16. SECURITY CLASSIFICATION OF...diagnostics and drug delivery. In our scanned probe microscopy studies on collaborator coatings and marine organisms, we have provided teamwork . We have...Studies of Organisms on model fouiants: • H. elegans studies 3. Testing of other contractor materials 4. Imaging technology. We applied our organic

  10. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  11. Self-Assembled Polymeric Micelles Based on Hyaluronic Acid-g-Poly(d,l-lactide-co-glycolide Copolymer for Tumor Targeting

    Directory of Open Access Journals (Sweden)

    Gyung Mo Son

    2014-09-01

    Full Text Available Graft copolymer composed hyaluronic acid (HA and poly(d,l-lactide-co-glycolide (PLGA (HAgLG was synthesized for antitumor targeting via CD44 receptor of tumor cells. The carboxylic end of PLGA was conjugated with hexamethylenediamine (HMDA to have amine end group in the end of chain (PLGA-amine. PLGA-amine was coupled with carboxylic acid of HA. Self-assembled polymeric micelles of HAgLG have spherical morphologies and their sizes were around 50–200 nm. Doxorubicin (DOX-incorporated polymeric micelles were prepared by dialysis procedure. DOX was released over 4 days and its release rate was accelerated by the tumoric enzyme hyaluronidase. To assess targetability of polymeric micelles, CD44-positive HepG2 cells were employed treated with fluorescein isothiocyanate (FITC-labeled polymeric micelles. HepG2 cells strongly expressed green fluorescence at the cell membrane and cytosol. However, internalization of polymeric micelles were significantly decreased when free HA was pretreated to block the CD44 receptor. Furthermore, the CD44-specific anticancer activity of HAgLG polymeric micelles was confirmed using CD44-negative CT26 cells and CD44-positive HepG2 cells. These results indicated that polymeric micelles of HaLG polymeric micelles have targetability against CD44 receptor of tumor cells. We suggest HAgLG polymeric micelles as a promising candidate for specific drug targeting.

  12. Structure-rheology relationship in weakly amphiphilic block copolymer Langmuir monolayers.

    Science.gov (United States)

    Li Destri, Giovanni; Miano, Fausto; Marletta, Giovanni

    2014-04-01

    The linear viscoelastic behavior in the low-frequency regime at the water/air interface of three different polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) copolymer monolayers, with block length ratio varying from 66-33 to 50-50 and 25-75 in molecular units, was studied and related to the interfacial behavior, characterized by means of Langmuir isotherms, and their structure, characterized by means of the atomic force microscopy technique. The two monolayers with the highest PMMA amount showed a single phase transition at about 12 mN/m, the viscoelastic behavior changing from a predominantly elastic to a viscoelastic one. This change in the viscoelastic properties was ascribed to the beginning of entanglement among the PMMA coronas of the predominantly circular quasi-2D micelles formed by the two copolymer systems. Conversely, the polymer with the lowest PMMA amount, despite having the same PMMA block length of the PS-PMMA 50-50 block copolymer, was found to behave as a viscoelastic system at any surface pressure value. This characteristic behavior cannot therefore be simply related to the molecular weight difference, but it has been put in connection to the irregular micelle structure observed in this case, consisting of a mixture of spherical and wormlike micelles, and to the different conformation adopted by the PMMA block. By blending this copolymer with an immiscible elastic homopolymer, namely poly(2-vinylpyridine), it was possible to tune the micelle nanostructure, obtaining regular circular quasi-2D micelles, with viscoelastic properties as expected for the PMMA-rich copolymer monolayers. To the best of our knowledge, this study shows for the first time the explicit dependence upon the relative block length and, in turn, upon the nanostructure of the quasi-2D micelles, of the viscoelastic properties of Langmuir monolayers and suggests that molecular weight and intermolecular interactions are not the only parameters governing the polymer conformation and

  13. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I [' Materials-Technologies' Group, Departamento Ingenieria Quimica y Medio Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: inaki.mondragon@ehu.es

    2008-04-16

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO{sub 2}/SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO{sub 2}/SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO{sub 2}/PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO{sub 2} nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO{sub 2}, as evaluated by UV-vis spectroscopy.

  14. A concise review of dynamical processes in polymorphic environments of a block copolymer: Rotational diffusion and photoisomerization

    Indian Academy of Sciences (India)

    K S Mali; G B Dutt

    2007-03-01

    This article describes our ongoing efforts to understand dynamical processes such as rotational diffusion and photoisomerization in polymorphic environments of a block copolymer. The objective is to explore how the typical properties of a block copolymer solution such as critical micelle temperature (CMT) and temperature-induced sol-gel transition influence the rotational diffusion of hydrophobic solute molecules. Rotational diffusion of solute molecules differs significantly below and above the CMT of a block copolymer solution, while there is no influence of sol-gel transition on solute rotation. This is rationalized on the basis of the site of solubilization of the solute molecules which is the palisade layer of the micelles in both phases and unaffected by gelation. A similar result has been obtained in case of photoisomerization studies carried out with a carbocyanine derivative in the sol and gel phases of the block copolymer. The isomerization studies have been extended to the reverse phases (sol and gel phases) of the block copolymer to explore the nature of the water present in the cores of the reverse micelles. Our results provide evidence for the existence of water droplets with properties resembling bulk water. In essence, we show that despite having vastly differing bulk properties, both the solution and gel phases (normal as well as reverse) offer identical microscopic environment.

  15. Hierarchical self-assembly of spider silk-like block copolymers

    Science.gov (United States)

    Krishnaji, Sreevidhya; Huang, Wenwen; Cebe, Peggy; Kaplan, David

    2011-03-01

    Block copolymers provide an attractive venue to study well-defined nano-structures that self-assemble to generate functionalized nano- and mesoporous materials. In the present study, a novel family of spider silk-like block copolymers was designed, bioengineered and characterized to study the impact of sequence chemistry, secondary structure and block length on assembled morphology. Genetic variants of native spider dragline silk (major ampullate spidroin I, Nephila clavipes) were used as polymer building blocks. Characterization by FTIR revealed increased ?-sheet content with increasing hydrophobic A blocks; SEM revealed spheres, rod-like structures, bowl-shaped and giant compound micelles. Langmuir Blodgett monolayers were prepared at the air-water interface at different surface pressures and monolayer films analyzed by AFM revealed oblate to prolate structures. Circular micelles, rod-like, densely packed circular structures were observed for HBA6 at increasing surface pressure. Exploiting hierarchical assembly provide a promising approach to rationale designs of protein block copolymer systems, allowing comparison to traditional synthetic systems.

  16. Sphere-to-rod transition of triblock copolymer micelles at room temperature

    Indian Academy of Sciences (India)

    R Ganguly; V K Aswal; P A Hassan; I K Gopalakrishnan; J V Yakhmi

    2004-08-01

    A room temperature sphere-to-rod transition of the polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymer, (PEO)20 (PPO)70 (PEO)20 micelles have been observed in aqueous medium under the influence of ethanol and sodium chloride. Addition of 5-10% ethanol induces a high temperature sphere-to-rod transition of the micelles, which is brought to room temperature upon addition of NaCl. The inference about the change in the shape of the micelles has been drawn from small-angle neutron scattering (SANS) and viscosity studies.

  17. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed...... functional nanoporous polymers based on nanoporous 1,2- polybuatdiene 1,2-PB, which is derived from a 1,2-PB-b-PDMS diblock copolymer precursor. As a result, nanoporous 1,2-PB with pores decorated of polyacrylates, sulfonated polymers and poly(ethylene glycol) are created. A method of vapor phase deposition...... has also been generated to obtain nanoporous polymers with functional coatings on pore walls. Vapor phase polymerization of pyrrole is performed to incorporate an ultra thin film of polypyrrole into nanoporous 1,2-PB. The preliminary test shows that nanoporous 1,2-PB gains conductivity. Generally...

  18. Concentration Dependent Structure of Block Copolymer Solutions

    Science.gov (United States)

    Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2015-03-01

    Addition of solvent molecules into block copolymer can induce additional interactions between the solvent and both blocks, and therefore expands the range of accessible self-assembled morphologies. In particular, the distribution of solvent molecules plays a key role in determining the microstructure and its characteristic domain spacing. In this study, concentration dependent structures formed by poly(styrene-b-ethylene-alt-propylene) (PS-PEP) solution in squalane are investigated using small-angle X-ray scattering. This reveals that squalane is essentially completely segregated into the PEP domains. In addition, the conformation of the PS block changes from stretched to nearly fully relaxed (i.e., Gaussian conformation) as amounts of squalane increases. NRF

  19. From Block Copolymers to Nano-porous Materials

    DEFF Research Database (Denmark)

    Vigild, Martin Etchells; Ndoni, Sokol; Berg, Rolf Henrik

    2003-01-01

    Quantitative etching of the polydimethylsiloxane block in a series of polystyrene-polydimethylsiloxane (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride (HF) renders a nanoporous material with the remaining PS maintaining the original morphology...

  20. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    Science.gov (United States)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  1. Formation and Properties of Vesicles from Cyclic Amphiphilic PS-PEO Block Copolymers.

    Science.gov (United States)

    Baba, Eisuke; Yatsunami, Toshiaki; Tezuka, Yasuyuki; Yamamoto, Takuya

    2016-10-11

    Linear polystyrene-poly(ethylene oxide)-polystyrene (PS-PEO-PS) block copolymers and corresponding cyclized PS-PEO counterparts with three different PS molecular weights were synthesized and self-assembled to investigate the effects arising from the topology. Linear PS5-PEO45-PS5 (L1) and cyclic PS10-PEO45 (C1) formed micelles. As previously reported for poly(n-butyl acrylate) and PEO block copolymers, the micelles from C1 showed more than 30 °C higher phase transition temperature (cloud point, Tc) than those from L1. Linear PS10-PEO45-PS10 (L2) and cyclic PS20-PEO45 (C2) resulted in the formation of a structure called large compound micelles. Self-assembly of linear PS40-PEO48-PS40 (L3) and cyclic PS86-PEO48 (C3) lead to the formation of vesicles. The vesicles were characterized by TEM, DLS, and SLS. Remarkably, the vesicles from L3 (Tc = 69, 59, and 48 °C in the presence of 1, 5, and 10 wt % of NaCl, respectively) were found to be somewhat more thermally stable than those from C3 (Tc = 62, 52, and 43 °C in the presence of 1, 5, and 10 wt % of NaCl, respectively). This trend of the thermal stability was counterintuitively opposed to the case of the micelles. Moreover, Tc of the vesicles was controlled by the ratio of L3 and C3.

  2. Tunable Morphologies from Charged Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Monojoy [ORNL; Sumpter, Bobby G [ORNL; Mays, Jimmy [ORNL; Messman, Jamie M [ORNL

    2010-01-01

    The bulk morphologies formed by a new class of charged block copolymers, 75 vol % fluorinated polyisoprene (FPI) 25 vol% sulfonated polystyrene (PSS) with 50% sulfonation, are characterized, and the fundamental underlying forces that promote the self-assembly processes are elucidated. The results show how the bulk morphologies are substantially different from their uncharged diblock counterparts (PS-PI) and also how morphology can be tuned with volume fraction of the charged block and the casting solvent. A physical understanding based on the underlying strong electrostatic interactions between the charged block and counterions is obtained using Monte Carlo (MC) and Molecular Dynamics (MD) simulations. The 75/25 FPI-PSS shows hexagonal morphologies with the minority blocks (PSS) forming the continuous phase due to charge percolation and the FPI blocks arranged in hexagonal cylinders. Some long-range order can be sustained even if lipophobicity is increased (addition of water), albeit with lower dimensional structures. However, thermal annealing provides sufficient energy to disrupt the percolated charges and promotes aggregation of ionic sites which leads to a disordered system. Diverse and atypical morphologies are readily accessible by simply changing the number distribution of the charges on PSS block.

  3. Structural properties of self-assembled polymeric micelles

    DEFF Research Database (Denmark)

    Mortensen, K.

    1998-01-01

    At present, the thermodynamic understanding of complex copolymer systems is undergoing important developments. Block copolymers aggregate in selective solvents into micelles of various form and size depending on molecular architecture and interaction parameters. The micelles constitute the basis...... for a variety of novel mesophases, including biocontinuous phases and networks of ordered cross-linking micelles. Research has focused on structural studies of block copolymer systems, using small-angle scattering of X-rays and neutrons....

  4. Association of a multifunctional ionic block copolymer in a selective solvent

    Science.gov (United States)

    Etampawala, Thusitha N.; Aryal, Dipak; Osti, Naresh C.; He, Lilin; Heller, William T.; Willis, Carl L.; Grest, Gary S.; Perahia, Dvora

    2016-11-01

    The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shell micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. In dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration.

  5. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  6. Organisation and shape of micellar solutions of block-copolymers

    NARCIS (Netherlands)

    Gaspard, J.P.; Creutz, S.; Bouchat, P.; Jerome, R.; Cohen Stuart, M.A.

    1997-01-01

    Diblock copolymers of polymethacrylic acid sodium salt, forming the hair, and styrene derivatives have been studied in aqueous solutions by SANS and SAXS. The influence of both the chemical nature and the length of the hydrophobic bloxk on the size and shape of micelles have been investigated. The m

  7. Complex coacervate core micelles.

    Science.gov (United States)

    Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2009-01-01

    In this review we present an overview of the literature on the co-assembly of neutral-ionic block, graft, and random copolymers with oppositely charged species in aqueous solution. Oppositely charged species include synthetic (co)polymers of various architectures, biopolymers - such as proteins, enzymes and DNA - multivalent ions, metallic nanoparticles, low molecular weight surfactants, polyelectrolyte block copolymer micelles, metallo-supramolecular polymers, equilibrium polymers, etcetera. The resultant structures are termed complex coacervate core/polyion complex/block ionomer complex/interpolyelectrolyte complex micelles (or vesicles); i.e., in short C3Ms (or C3Vs) and PIC, BIC or IPEC micelles (and vesicles). Formation, structure, dynamics, properties, and function will be discussed. We focus on experimental work; theory and modelling will not be discussed. Recent developments in applications and micelles with heterogeneous coronas are emphasized.

  8. Hierarchical structure formation in supramolecular comb-shaped block copolymers

    NARCIS (Netherlands)

    Hofman, Anton; ten Brinke, Gerrit; Loos, Katja

    2016-01-01

    Block copolymers are known to spontaneously form ordered structures at the nano-to mesoscale. Although the number of different morphologies is rather limited in diblock copolymer systems, their phase behavior becomes increasingly more complex with each additional building block. Synthesis of such al

  9. Micelles of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-lutidine and water.

    Science.gov (United States)

    Tuzar, Z; Kadlec, P; Stepánek, P; Kríz, J; Nallet, F; Noirez, L

    2008-12-16

    We studied the micelle formation of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-dimethylpyridine (2,6-lutidine) and water. Micelles are formed in a broad solvent composition range with a volume fraction of water ranging from 0.05 to 0.85, where neither polystyrene nor polyethylene oxide homopolymers are soluble. The diffusion behavior of pure solvent mixtures and in solutions of copolymer micelles is reported. In LTD/water mixtures, two diffusive processes corresponding to self-difusion and two modes belonging to mutual diffusion and diffusion of solvent clusters have been found. In copolymer solutions, the mode of copolymer micelle diffusion replaces the mode of solvent cluster diffusion. Quasielastic light scattering, small-angle neutron scattering, and pulsed-field gradient NMR have been employed in our study.

  10. Drug governs the morphology of polyalkylated block copolymer aggregates.

    Science.gov (United States)

    Le Dévédec, F; Her, S; Vogtt, K; Won, A; Li, X; Beaucage, G; Yip, C; Allen, C

    2017-02-16

    Polyalkylated copolymers based on mPEG-b-(AGE-C6,12 or 18)25 have been used to formulate clinically relevant concentrations of doxorubicin (DOX) and the impact of drug incorporation on copolymer aggregation behaviour was examined. The copolymer aggregates were analyzed by various microscopy techniques (TEM, cryo-TEM and AFM) and scattering methods (SANS, DLS). In the absence of the drug, the copolymers formed largely non-spherical aggregates (i.e. cylinders, vesicles). Drug incorporation during copolymer aggregate formation directed the formation of only spherical aggregates. As well, the nature of the core-forming block was found to influence drug release and cytotoxicity of the formulations.

  11. Block copolymer templated etching on silicon.

    Science.gov (United States)

    Qiao, Yinghong; Wang, Dong; Buriak, Jillian M

    2007-02-01

    The use of self-assembled polymer structures to direct the formation of mesoscopic (1-100 nm) features on silicon could provide a fabrication-compatible means to produce nanoscale patterns, supplementing conventional lithographic techniques. Here we demonstrate nanoscale etching of silicon, applying standard aqueous-based fluoride etchants, to produce three-dimensional nanoscale features with controllable shapes, sizes, average spacing, and chemical functionalization. The block copolymers serve to direct the silicon surface chemistry by controlling the spatial location of the reaction as well as concentration of reagents. The interiors of the resulting etched nanoscale features may be selectively functionalized with organic monolayers, metal nanoparticles, and other materials, leading to a range of ordered arrays on silicon.

  12. Complexation-tailored morphology of asymmetric block copolymer membranes

    KAUST Repository

    Madhavan, Poornima

    2013-08-14

    Hydrogen-bond formation between polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) and -OH/-COOH functionalized organic molecules was used to tune morphology of asymmetric nanoporous membranes prepared by simultaneous self-assembly and nonsolvent induced phase separation. The morphologies were characterized by field emmision scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Hydrogen bonds were confirmed by infrared (IR), and the results were correlated to rheology characterization. The OH-functionalized organic molecules direct the morphology into hexagonal order. COOH-functionalized molecules led to both lamellar and hexagonal structures. Micelle formation in solutions and their sizes were determined using dynamic light scattering (DLS) measurements and water fluxes of 600-3200 L/m 2·h·bar were obtained. The pore size of the plain BCP membrane was smaller than with additives. The following series of additives led to pores with hexagonal order with increasing pore size: terephthalic acid (COOH-bifunctionalized) < rutin (OH-multifunctionalized) < 9-anthracenemethanol (OH-monofunctionalized) < 3,5-dihydroxybenzyl alcohol (OH-trifunctionalized). © 2013 American Chemical Society.

  13. Heparin-containing block copolymers, Part I: Surface characterization

    NARCIS (Netherlands)

    Vulić, I.; Pijpers, A.P.; Okano, T.; Kim, S.W.; Feijen, J.

    1993-01-01

    Newly synthesized heparin-containing block copolymers, consisting of a hydrophobic block of polystyrene (PS), a hydrophilic spacer-block of poly(ethylene oxide) (PEO) and covalently bound heparin (Hep) as bioactive block, were coated on aluminium, glass, polydimethylsiloxane (PDMS), PS or Biomer sub

  14. Morphological studies on block copolymer modified PA 6 blends

    Science.gov (United States)

    Poindl, M.; Bonten, C.

    2014-05-01

    Recent studies show that compounding polyamide 6 (PA 6) with a PA 6 polyether block copolymers made by reaction injection molding (RIM) or continuous anionic polymerization in a reactive extrusion process (REX) result in blends with high impact strength and high stiffness compared to conventional rubber blends. In this paper, different high impact PA 6 blends were prepared using a twin screw extruder. The different impact modifiers were an ethylene propylene copolymer, a PA PA 6 polyether block copolymer made by reaction injection molding and one made by reactive extrusion. To ensure good particle matrix bonding, the ethylene propylene copolymer was grafted with maleic anhydride (EPR-g-MA). Due to the molecular structure of the two block copolymers, a coupling agent was not necessary. The block copolymers are semi-crystalline and partially cross-linked in contrast to commonly used amorphous rubbers which are usually uncured. The combination of different analysis methods like atomic force microscopy (AFM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) gave a detailed view in the structure of the blends. Due to the partial cross-linking, the particles of the block copolymers in the blends are not spherical like the ones of ethylene propylene copolymer. The differences in molecular structure, miscibility and grafting of the impact modifiers result in different mechanical properties and different blend morphologies.

  15. Micellar Self-Assembly of Block Copolymers for Fabrication of Nanostructured Membranes

    KAUST Repository

    Marques, Debora S.

    2013-11-01

    This research work examines the process of block copolymer membrane fabrication by self-assembly combined by non-solvent induced phase separation. Self-assembly takes place from the preparation of the primordial solution until the moment of immersion in a non-solvent bath. These mechanisms are driven thermodynamically but are limited by kinetic factors. It is shown in this work how the ordering of the assembly of micelles is improved by the solution parameters such as solvent quality and concentration of block copolymer. Order transitions are detected, yielding changes in the morphology. The evaporation of the solvents after casting is demonstrated to be essential to reach optimum membrane structure. The non-solvent bath stops the phase separation at an optimum evaporation time.

  16. Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn H40 core,poly(L-lactide) (PLA) inner-shell,and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction.The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR),Fourier transform infrared (FTIR),gel permeation chromatography (GPC),differential scanning calorimeter (DSC),and thermal gravimetric analysis (TGA).Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm.Interestingly,these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT),most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds.As a hydrophobic anticancer model drug,doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles.In vitro release studies revealed that under the reduction-stimulus,the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release.Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells.Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX.All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.

  17. Preparation of amphiphilic block copolymer containing triazene moieties and fluorescence study

    Indian Academy of Sciences (India)

    Emil C Buruiana; Andreea L Chibac; Violeta Melinte; Tinca Buruiana

    2013-01-01

    The present study describes the synthesis via microwave accelerated reversible additionfragmentation chain transfer (RAFT) polymerization of an amphiphilic block copolymer poly(acrylic acid)-b-poly(dodecylacrylamide-co-1-(phenyl)-3-(2-methacryloyloxyethyl carbamoyloxyethyl)-3-methyltriazene-1) [PAA-b-(PDA-co-PUMA-T)]. The structure and the chemical composition of the block copolymer were confirmed by spectral/thermal analysis. The photoreactivity of the triazene sequences from PAA-b-(PDA-co-PUMA-T) was quantified by UV/vis irradiation in chloroform/dimethylformamide solutions and in thin film, indicating that the solvent polarity modifies with an order of magnitude the rate constant values. The lower rate constant in film state (film = 1.3 × 10−3 s-1), shows that the higher mobility of polymeric chains in solution allow a more rapid orientation, favourable to the triazene bond cleavage. The capability of block copolymer to form micelles in aqueous environment and implicitly, its critical micelle concentration (CMC) was evidenced through fluorescence measurements using pyrene probe (10-6 M), the CMC value being of 4.64 × 10−3 g L-1 PAA--(PDA--PUMA-T) (3.27 × 10−7 M). Experiments of fluorescence quenching with various metal cations (UO$^{2+}_{2}$, Fe2+, Fe3+, Ni2+, Cu2+, Co2+, Pb2+ and Hg2+) suggested that such a block copolymer could find applications as fluorescence-based chemosensor for the detection of iron cations in homogeneous organic solutions or aqueous environments by thin films.

  18. DNA Island Formation on Binary Block Copolymer Vesicles.

    Science.gov (United States)

    Luo, Qingjie; Shi, Zheng; Zhang, Yitao; Chen, Xi-Jun; Han, Seo-Yeon; Baumgart, Tobias; Chenoweth, David M; Park, So-Jung

    2016-08-17

    Here, we report DNA-induced polymer segregation and DNA island formation in binary block copolymer assemblies. A DNA diblock copolymer of polymethyl acrylate-block-DNA (PMA-b-DNA) and a triblock copolymer of poly(butadiene)-block-poly(ethylene oxide)-block-DNA (PBD-b-PEO-b-DNA) were synthesized, and each was coassembled with a prototypical amphiphilic polymer of poly(butadiene)-block-poly(ethylene oxide) (PBD-b-PEO). The binary self-assembly of PMA-b-DNA and PBD-b-PEO resulted in giant polymersomes with DNA uniformly distributed in the hydrophilic PEO shell. When giant polymersomes were connected through specific DNA interactions, DNA block copolymers migrated to the junction area, forming DNA islands within polymersomes. These results indicate that DNA hybridization can induce effective lateral polymer segregation in mixed polymer assemblies. The polymer segregation and local DNA enrichment have important implications in DNA melting properties, as mixed block copolymer assemblies with low DNA block copolymer contents can still exhibit useful DNA melting properties that are characteristic of DNA nanostructures with high DNA density.

  19. Structure of Block Copolymer Hydrogel Formed by Complex Coacervate Process

    Science.gov (United States)

    Choi, Soohyung; Ortony, Julia; Krogstad, Daniel; Spruell, Jason; Lynd, Nathaniel; Han, Songi; Kramer, Edward

    2012-02-01

    Complex coacervation occurs when oppositely charged polyelectrolytes associate in solution, forming dense micron-sized droplets. Hydrogels with coacervate block domains were formed by mixing two ABA and A'BA' triblock copolymer solutions in water where the A and A' blocks are oppositely charged. Small-angle neutron scattering (SANS) was used to investigate the structure of hydrogels formed by ABA triblock copolymers (A block: poly(allyl glycidyl ether) functionalized with guanidinium (A) or sulfonate (A'), B block: poly(ethylene oxide)). By using an appropriate fitting model, structural information such as coacervate core block radius and water volume fraction w can be extracted from SANS data. The results reveal that w in the coacervate core block was significantly higher than in conventional triblock copolymer hydrogels where microphase separation is driven by the hydrophobicity of the core-forming blocks.

  20. Nanopatterned articles produced using surface-reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  1. Self-assembled Structures of a Multifunctional, Structured Block Copolymer in Solution; A SANS Study

    Science.gov (United States)

    Etampawala, Thusitha; Senanayake, Manjula; Osti, Naresh; He, Lilin; Heller, William; Perahia, Dvora

    2014-03-01

    The self-assembly of multi block copolymer in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interactions of the individual blocks with the solvent. We investigated the association of ABCBA penta-block copolymers, in solution using Small angle neutron scattering (SANS). The ABCBA penta-block comprises of centered randomly sulfonated polystyrene block to which rubbery polyisoprene is connected, terminated by blocks of polystyrene decorated with tertiary butyl group, kindly provided by Kraton LLC. The SANS studies have shown that the penta-block forms ellipsoidal core-shell structures with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen polyisoprene and tertiary butyl polystyrene in the corona. The size of the micelle, the thickness of the corona and the aggregation number increased with increasing the solution concentration and temperature, while the solvent fraction in the core decreased. The dilute solutions promptly responded to thermal fluctuations. However, the temperature effects disappeared with increasing the solution concentration.

  2. Thin Film Assembly of Spider Silk-like Block Copolymers

    Science.gov (United States)

    2011-01-01

    Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of...bioengineered variants of the spider silks , and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers

  3. Theory for dynamical self arrest and gelation in microemulsions and the block copolymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangwook [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The main purpose of this work is to investigate the glassy behavior of microemulsions and block copolymers. The origin of glassy behavior in microemulsions and block copolymers is frustration due to a competition between short-range interaction and long range interaction. According to the charge frustrated Ising model, the competition between ferromagnetic interaction and antiferromagnetic interaction is the origin of frustration in microemulsions. The competition between entropic effects and stoichiometric constraints responsible for the formation of micelles in microemulsions can lead to the emergence of a self generated glassy behavior in these systems. In the block copolymer, the competition between the repulsive short range interaction between monomers in polymer chains and the long range interaction by chemical bonds can lead to the emergence of a self generated glassy behavior. The criteria for the fluctuation induced first order transition and our microemulsion and block copolymer glasses are essentially the same. Both are a consequence of the large phase space of low energy excitations (14) (62) (all states with momenta q which fulfill |q| = qm) and are of at the most a moderate supercooling of the liquid state is required. This is strongly supported by the observation in Ref. (14) that the metastable states which are first to appear at a fluctuation induced first order transition are the ones build by a superposition of large amplitude waves of wavenumber qm, but with random orientations and phases, i.e. just the ones which form the metastable states of our microemulsion and block copolymer glass. (38)

  4. Theory for dynamical self arrest and gelation in microemulsions and the block copolymer systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangwook

    2005-05-01

    The main purpose of this work is to investigate the glassy behavior of microemulsions and block copolymers. The origin of glassy behavior in microemulsions and block copolymers is frustration due to a competition between short-range interaction and long range interaction. According to the charge frustrated Ising model, the competition between ferromagnetic interaction and antiferromagnetic interaction is the origin of frustration in microemulsions. The competition between entropic effects and stoichiometric constraints responsible for the formation of micelles in microemulsions can lead to the emergence of a self generated glassy behavior in these systems. In the block copolymer, the competition between the repulsive short range interaction between monomers in polymer chains and the long range interaction by chemical bonds can lead to the emergence of a self generated glassy behavior. The criteria for the fluctuation induced first order transition and our microemulsion and block copolymer glasses are essentially the same. Both are a consequence of the large phase space of low energy excitations (14) (62) (all states with momenta q which fulfill |q| = q{sub m}) and are of at the most a moderate supercooling of the liquid state is required. This is strongly supported by the observation in Ref. (14) that the metastable states which are first to appear at a fluctuation induced first order transition are the ones build by a superposition of large amplitude waves of wavenumber q{sub m}, but with random orientations and phases, i.e. just the ones which form the metastable states of our microemulsion and block copolymer glass. (38)

  5. New adhesive systems based on functionalized block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  6. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye.

    Science.gov (United States)

    Maiti, Chiranjit; Banerjee, Rakesh; Maiti, Saikat; Dhara, Dibakar

    2015-01-01

    The ability to regulate the formation of nanostructures through self-assembly of amphiphilic block copolymers is of immense significance in the field of biology and medicine. In this work, a new block copolymer synthesized by using reversible addition-fragmentation chain transfer (RAFT) polymerization technique from poly(ethylene glycol) monomethyl ether acrylate (PEGMA) and Boc-l-tryptophan acryloyloxyethyl ester (Boc-l-trp-HEA) was found to spontaneously form pH-responsive water-soluble nanostructures after removal of the Boc group. While polymer vesicles or polymerosomes were formed at physiological pH, the micelles were formed at acidic pH (transition. Formation of these nanostructures was confirmed by different characterization techniques, viz. transmission electron microscopy, dynamic light scattering, and steady-state fluorescence measurements. Further, these vesicles were successfully utilized to reduce HAuCl4 and stabilize the resulting gold nanoparticles (AuNPs). These AuNPs, confined within the hydrophobic shell of the vesicles, could participate in energy transfer process with fluorescent dye molecules encapsulated in the core of the vesicles, thus forming a nanometal surface energy transfer (NSET) pair. Subsequently, following the efficiency of energy transfer between this pair, it was possible to monitor the process of transition from vesicles to micelles. Thus, in this work, we have successfully demonstrated that NSET can be used to follow the transition between nanostructures formed by amphiphilic block copolymers.

  7. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  8. Block Copolymers of Ethylene Oxide and Styrene Oxide.New Copolymer Surfactants(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yang; David Attwood; Colin Booth

    2003-01-01

    @@ 3.2. Association Number Figure 5 shows the dependence of the weight-average association number (Nw,measured by static light scattering, solution temperature 30 °C) on hydrophobe block length for ES and ESEblock copolymers.

  9. New routes to the synthesis of amylose-block-polystyrene rod-coil block copolymers

    NARCIS (Netherlands)

    Loos, Katja; Müller, Axel H.E.

    2002-01-01

    Hybrid block copolymers amylose-block-polystyrene were synthesized by covalent attachment of maltoheptaose derivatives to end-functionalized polystyrene and subsequent enzymatic grafting from polymerization. The maltoheptaose derivatives were attached by reductive amination or hydrosilation to amino

  10. Phase Behavior and Micellar Packing of Impurity-Free Pluronic Block Copolymers in Water

    Science.gov (United States)

    Ryu, Chang Yeol; Park, Hanjin

    We have investigated the impacts of the non-micellizable polymeric impurities on the micellar packing and solution phase behavior of Pluronic block copolymers in water. In particular, small angle x-ray scattering, rheology and dynamic light scattering techniques have been employed to elucidate how the low MW impurities affect the micellar packing and solution phase diagram in water, when ordered cubic structures of spherical micelles are formed. A silica slurry method has been developed using the competitive adsorption of the PEO-PPO-PEO triblock copolymers over the low MW polymeric impurities for a large scale purification of Pluronics and it purity of Pluronics has been assessed by interaction chromatography. Based on the comparative studies on micellar packing between As-Received (AR) and Purified (Pure) Pluronic F108 solutions, we found experimental evidence to support the hypothesis that the inter-micellar distance of Pluronic cubic structures in aqueous solution is governed by the effective polymer concentration in terms of PEO-PPO-PEO triblock copolymers. Removal of the impurities in AR F108 offers an important clue on window into the onset of BCC ordering via hydrodynamic contact between micelles in solution. NSF DMR Polymers.

  11. Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier.

    Science.gov (United States)

    Min, Wenfeng; Zhao, Daohui; Quan, Xuebo; Sun, Delin; Li, Libo; Zhou, Jian

    2017-04-01

    In this work, dissipative particle dynamics (DPD) simulations were performed to study the self-assembled microstructures and doxorubicin (DOX) loading/release properties of pH-sensitive amphiphilic triblock copolymer: poly(ε-caprolactone)-b-poly(diethylaminoethyl methacrylate)-b-poly(sulfobetaine methacrylate) or poly (ethylene glycol methacrylate) (PCL-PDEA-PSBMA/PEGMA). Our results show that both copolymers can self-assemble into core-shell-corona micelles in aqueous environment. However, the corona structures are quite different for the two copolymer micelles. The shell layers formed by PEGMA have heterogeneous sizes while the shell layers in PCL-PDEA-PSBMA micelles are homogenous. This is mainly attributed to the stronger hydrophilicity of PSBMA than PEGMA. As the mole concentration of copolymer is increased from 10% to 50%, the microstructures formed by PCL-PDEA-PSBMA and DOX remains spherical micelles whereas PCL-PDEA-PEGMA undergoes structural transition from spherical to cylindrical and finally to lamellar micelles. Interestingly, the studied micelles have a pH-responsive drug release property, owing to the protonation of the PDEA block. The drug release process follows a "swelling-demicellization-release" mode. The multi-scale simulations demonstrate an avenue to the optimal design of nanomaterials for drug delivery with desired properties.

  12. Synthesis and Characterization of Biodegradable Amphiphilic Star and Y-Shaped Block Copolymers as Potential Carriers for Vinorelbine

    Directory of Open Access Journals (Sweden)

    Fatemeh Bahadori

    2014-01-01

    Full Text Available Two amphiphilic block copolymers using hydrophobic poly(ε-caprolactone (PCL and hydrophilic poly(ethylene glycol (PEG were successfully synthesized. One of them is an (A-b-B4 type star polymer [(PCL-b-PEG4] and the other one is a Y-shaped PEG–(PCL2. A star-shaped polymer (PCL-b-PEG4 was prepared by ring-opening polymerization (ROP of ε-caprolactone continued by click reaction of (PCL-azide4 and PEG-alkyne. The synthesis of Y-shaped PEG–(PCL2 block copolymer was carried out via Diels-Alder click reaction of a furan protected maleimide end-functionalized PEG (PEG-MI with an anthracene end-functionalized PCL following the ROP of ε-caprolactone. The characterization of micelles is carried out using both materials in aqueous media as drug delivery vehicles, which showed satisfying results and enhanced the cytotoxic effect of the anti-cancer drug vinorelbine (VLB. However, micelles consisted of Y-shaped unimers were found to be more convenient for delivery of hydrophobic drugs such as VLB because they formed in lower concentration, carrying a higher amount of drugs and owing a monomodal distribution. We concluded that the free tails of hydrophobic chains in Y-shaped block copolymer facilitate the assembly of amphiphilic material in water to form micelles.

  13. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    Science.gov (United States)

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  14. Synthesis and characterization of an elastin-mimetic amphiphilic block copolymer protein

    Science.gov (United States)

    Lee, Terrence Anita-Talley

    2000-10-01

    The overall goal in material science is to be able to control the molecular architecture of a material and thus its end properties. There is no method that offers greater control than the biological synthesis of proteins. From the DNA sequence to the final synthesized protein, the entire process is finitely controlled. This present work describes methods developed and used to synthesize protein polymers by manipulating this process. From the initial DNA sequence chosen, the end properties that the protein polymer will have are dictated. An amphiphilic diblock copolymer was designed based on environmentally responsive elastin-mimetic peptide sequences [(Val/Ile)-Pro-Gly-Xaa-Gly] (Xaa = Ala or Glu for the hydrophilic block, Val or Phe for the hydrophobic block) and synthesized using a genetic engineering approach. Differential scanning calorimetry measurements in aqueous solution revealed that reversible hydrophobic folding and assembly of the copolymer occurs above the inverse temperature transition, Tt, of the hydrophobic block. This process results in the formation of 50 nm protein-based micellar aggregates, which were characterized by electron microscopy and temperature-dependent dynamic light scattering techniques. The distribution of micellar aggregates can be altered reproducibly through variation of environmental conditions including pH and temperature. The uniform and defined macromolecular architecture of this protein copolymer permits greater control over the physical properties of the micelles, which therefore may facilitate applications in controlled release of small molecules.

  15. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    Science.gov (United States)

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  16. Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, Arun; Ganesan, Venkat

    2012-02-01

    We apply self-consistent Brownian dynamics simulations to study the self-assembly behavior of semiflexible-flexible block copolymers. A Maier-Saupe interaction model was applied for the orientational interactions between the semiflexible polymers, while the enthalpic interactions between semiflexible and flexible polymers were modeled through a standard Flory-Huggins approach. To develop a physical understanding of the phases and their regimes of occurrence as a function of varying persistence length of the semiflexible block, we computed the 2D phase diagram for our model. We quantify the progression of the self-assembly morphologies in transitioning from coil-coil block copolymers on the one hand to rod-coil block copolymers on the other hand. The results obtained are in qualitative agreement with the existing experimental and numerical results.

  17. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  18. Metal nanoparticle - block copolymer composite assembly and disassembly

    NARCIS (Netherlands)

    Li, Z.H.; Sai, H.; Warren, S.C.; Kamperman, M.M.G.; Arora, H.; Gruner, S.M.; Wiesner, U.

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-

  19. Synthesis and characterization of ferrocene containing block copolymers

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Wang, Zhongli; Kirkensgaard, Jacob Judas Kain

    2017-01-01

    Narrowly dispersed diblock copolymers containing poly(methyl methacrylate) [PMMA] or poly(nonafluorohexyl methacrylate) [PF9MA] as the first block and poly(ferrocenylmethyl methacrylate) [PFMMA] as the second block, were prepared by anionic polymerization for the first time. Disordered bulk morph...

  20. Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water

    Institute of Scientific and Technical Information of China (English)

    Fa Bao Zhao; Zhi Lei Liu; Jian Ping Sun; Liang Feng; Ji Wen Hu

    2009-01-01

    Reported here is fabrication of optically active micelles with broad range of morphologies in water,such as spheres,cylinders,and vesicles,from self-assembly of poly(ethylene glycol)monomethyl ether-b-poly-(methacryloyl-L-leacine methyl ester)(MPEG-b-PMALM)copolymer,which was prepared via atom transfer radical polymerization(ATRP)from vinyl monomer bearing chiral amino acid moieties,N-methacryloyl L-leucine methyl ester(MALM),using bromine(Br)end-capped poly(ethylene golycol)monomethylether(MPEG-Br)as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.

  1. 新型药物载体聚乙醇-聚丙交酯载药颗粒的制备及表征%Preparation and characterization of biodegradable nanoparticles from methoxy poly(ethylene glycol)-poly(D,L-lactide)block copolymers as novel drug carriers

    Institute of Scientific and Technical Information of China (English)

    姜维; 王运东; 张建铮; 甘泉; 张汉威; 贝建中; 赵秀文; 费维扬

    2006-01-01

    Methoxy poly(ethylene glycol)-poly(D,L-lactide) block copolymers (PEG-PLA) were prepared through ring-opening polymerization.The oil in water suspension method was used to prepare block copolymer micelles. The critical micelle concentration (CMC) by fluorescence spectroscopy was 0.0056 mg·ml-1. The physical state of the inner core region of micelles was characterized with 1HNMR. The size of indomethacin (IMC) loaded micelles measured by dynamic light scattering (DLS) showed narrow monodisperse size distribution and the average diameters were less than 50 nm. In addition, the nanoparticles with relatively high drug loading content (DLC) were obtained.

  2. Selective enzymatic degradation of self-assembled particles from amphiphilic block copolymers obtained by the combination of N-carboxyanhydride and nitroxide-mediated polymerization.

    Science.gov (United States)

    Habraken, Gijs J M; Peeters, Marloes; Thornton, Paul D; Koning, Cor E; Heise, Andreas

    2011-10-10

    Combining controlled radical polymerizations and a controlled polypeptide synthetic technique, such as N-carboxyanhydride (NCA) ring-opening polymerization, enables the generation of well-defined block copolymers to be easily accessible. Here we combine NCA polymerization with the nitroxide-mediated radical polymerization of poly(n-butyl acrylate) (PBA) and polystyrene (PS), using a TIPNO and SG1-based bifunctional initiator to create a hybrid block copolymer. The polypeptide block consists of (block) copolymers of poly(L-glutamic acid) embedded with various quantities of L-alanine. The formed superstructures (vesicles and micelles) of the block copolymers possessed varying degrees of enzyme responsiveness when exposed to elastase and thermolysin, resulting in controlled enzymatic degradation dictated by the polypeptide composition. The PBA containing block copolymers possessing 50% L-alanine in the polypeptide block showed a high degradation response compared to polymers containing lower L-alanine quantities. The particles stabilized by copolypeptides with L-alanine near the hydrophobic block showed full degradation within 4 days. Particles containing polystyrene blocks revealed no appreciable degradation under the same conditions, highlighting the specificity of the system and the importance of synthetic polymer selection. However, when the degradation temperature was increased to 70 °C, degradation could be achieved due to the higher block copolymer exchange between the particle and the solution. A number of novel biohybrid structures are disclosed that show promise as enzyme-responsive materials with potential use as payload release vehicles, following their controlled degradation by specific, target, enzymes.

  3. Amphiphilic block copolymers bearing six-membered ortho ester ring in side chains as potential drug carriers: synthesis, characterization, and in vivo toxicity evaluation.

    Science.gov (United States)

    Luo, Shi; Tao, Yangyang; Tang, Rupei; Wang, Rui; Ji, Weihang; Wang, Chun; Zhao, Youliang

    2014-07-01

    A new type of amphiphilic block copolymers, poly(ethylene glycol)-block-poly(2-methyl-acrylicacid 2-methoxy-5-methyl-[1,3]dioxin-5-ylmethyl ester) (PEG-b-PMME), bearing acid-labile six-membered ortho ester rings in side chains was synthesized by reversible addition-fragmentation chain-transfer polymerization, and the influence of chain length of the hydrophobic PMME block on micelle properties was investigated. The PEG-b-PMME micelles were stable in aqueous buffer at physiological pH with a low critical micelle concentration. Nile Red as a model drug was encapsulated into the micelles to explore the release profiles. The Nile Red-loaded polymeric micelles showed rapid release of Nile Red in weakly acidic environments (pH 5) but slow release under physiological condition (pH 7.4), due to different hydrolysis rate of ortho ester side chains of PEG-b-PMME. The Paclitaxel (PTX)-loaded micelles retained potency in killing lung cancer cells (A549), compared with the free PTX. No obvious toxicity was found in vitro and in vivo after intraperitoneal injection of the micelles, which confirms that the PEG-b-PMME micelles with unique acid-labile characteristic have great potential as nano-scaled carriers for drug delivery.

  4. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers.

    Science.gov (United States)

    Mao, Jing; Gan, Zhihua

    2009-11-10

    An amphiphilic diblock copolymer PG-b-PCL with well-controlled structure and pendant hydroxyl groups along hydrophilic block was synthesized by sequential anionic ring-opening polymerization. The micellization and drug release of PG-b-PCL copolymers using pyrene as a fluorescence probe were investigated for determining the influences of copolymer composition and lipase concentration on drug loading capacity and controlled release behavior. The biodegradation of PG-b-PCL copolymers was studied with microspheres as research samples. It has been concluded that the polar hydroxyl groups along each repeat unit of hydrophilic PG block in PG-b-PCL copolymer have great influences on drug encapsulation, drug release, and enzymatic degradation of micelles and microspheres.

  5. Substrate tolerant direct block copolymer nanolithography

    DEFF Research Database (Denmark)

    Li, Tao; Wang, Zhongli; Schulte, Lars

    2016-01-01

    simplifies the main stream BC lithography process, showing a broad substrate tolerance and allowing for efficient pattern transfer over wafer scale. PDMS-rich poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) copolymers are directly applied on substrates including polymers, silicon and graphene. A single oxygen...

  6. LEDs based on conjugated PPV block copolymers

    NARCIS (Netherlands)

    Brouwer, H.J.; Hilberer, A.; Krasnikov, V.V.; Werts, M.; Wildeman, J.; Hadziioannou, G.

    1997-01-01

    A way to control the bandgap in semi-conducting polymers is by preparing polymers with a partially conjugated backbone. In our laboratory, three conjugated copolymers containing PPV trimers as light emitting chromophores have been synthesized, which emit in the blue, green and orange wavelength regi

  7. Mechanism for Rapid Self-Assembly of Block Copolymer Nanoparticles

    Science.gov (United States)

    Johnson, Brian K.; Prud'Homme, Robert K.

    2003-09-01

    Amphiphilic block copolymers in solution spontaneously self-assemble when the solvent quality for one block is selectively decreased. We demonstrate that, for supersaturation ratio changes [d(S)/dt] over 105 per second from equilibrium, nanoparticles are obtained with a formation mechanism and size dependent on the jumping rate and magnitude. The threshold rate for homogeneous precipitation is determined by the induction time of a particle, equivalent to the diffusion limited fusion of copolymer chains to form a corona of overlapping soluble brushes. Via determination of the induction time with a novel confined impinging jets mixer and use of a scaling relation, the interfacial free energy of a block copolymer nanoparticle was measured for the first time.

  8. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations.

    Science.gov (United States)

    Gavrilov, Alexey A; Kudryavtsev, Yaroslav V; Chertovich, Alexander V

    2013-12-14

    Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D∕N(1∕2) ~ (χN)(1∕6), whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.

  9. Dual hydrophilic and salt responsive schizophrenic block copolymers – synthesis and study of self-assembly

    NARCIS (Netherlands)

    Vasantha, Vivek Arjunan; Jana, Satyasankar; Lee, Serina Siew Chen; Lim, Chin-Sing; Teo, Serena Lay Ming; Parthiban, Anbanandam; Vancso, Julius G.

    2015-01-01

    A new class of dual hydrophilic diblock copolymers (BCPs) possessing poly(ethylene glycol) (PEG) and zwitterionic polysulfabetaine (PSB) was synthesized by reversible addition–fragmentation chain transfer (RAFT) polymerization. These BCPs formed schizophrenic micelles undergoing core–shell transitio

  10. Biodegradable amphiphilic block copolymers containing functionalized PEO blocks:Controlled synthesis and biomedical potentials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of controllable amphiphilic block copolymers composed of poly(ethylene oxide)(PEO) as the hydrophilic block and poly(ε-caprolactone)(PCL) as the hydrophobic block with the amino terminal group at the end of the PEO chain(PCL-b-PEO-NH2) were synthesized.Based on the further reaction of reactive amino groups,diblock copolymers with functional carboxyl groups(PCL-b-PEO-COOH) and functional compounds RGD(PCL-b-PEO-RGD) as well as the triblock copolymers with thermosensitive PNIPAAm blocks(PCL-b-PEO-b-PNIPAAM) were synthesized.The well-controlled structures of these copolymers with functional groups and blocks were characterized by gel permeation chromatography(GPC) and 1H NMR spectroscopy.These copolymers with functionalized hydrophilic blocks were fabricated into microspheres for the examination of biofunctions via cell culture experiments and in vitro drug release.The results indicated the significance of introducing functional groups(e.g.,NH2,COOH and RGD) into the end of the hydrophilic block of amphiphilic block copolymers for biomedical potentials in tissue engineering and controlled drug release.

  11. Nanoporous Crosslinked Polyisoprene from Polyisoprene-Polydimethylsiloxane Block Copolymer

    DEFF Research Database (Denmark)

    Hansen, Michael Steffen; Vigild, Martin Etchells; Berg, Rolf Henrik;

    2004-01-01

    The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride or tetrabut......The polyisoprene block of a polyisoprene-polydimethylsiloxane (PI-PDMS) diblock copolymer with 0.68 volume fraction of PI was tightly crosslinked with dicumylperoxide. The PDMS part of the obtained glassy material was subsequently quantitatively etched with anhydrous hydrogen fluoride...

  12. Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Frka-Petesic, Bruno [UPMC Univ Paris 6, Lab. des Liquides Ioniques et Interfaces Chargees (LI2C), CNRS-ESPCI UMR 7612 case 51, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Fresnais, Jerome; Berret, Jean-Francois [Laboratoire Matiere et Systemes Complexes (MSC), UMR 7057 CNRS and Universite Paris Diderot, Batiment Condorcet 10 rue Alice Domon et Leonie Duquet, F-75205 Paris Codex 13 (France); Dupuis, Vincent [UPMC Univ Paris 6, Lab. des Liquides Ioniques et Interfaces Chargees (LI2C), CNRS-ESPCI UMR 7612 case 51, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Perzynski, Regine [UPMC Univ Paris 6, Lab. des Liquides Ioniques et Interfaces Chargees (LI2C), CNRS-ESPCI UMR 7612 case 51, 4 place Jussieu, F-75252 Paris Cedex 05 (France)], E-mail: regine.perzynski@upmc.fr; Sandre, Olivier [UPMC Univ Paris 6, Lab. des Liquides Ioniques et Interfaces Chargees (LI2C), CNRS-ESPCI UMR 7612 case 51, 4 place Jussieu, F-75252 Paris Cedex 05 (France)

    2009-04-15

    Mixing in aqueous solutions polyelectrolyte-neutral block copolymers with oppositely charged species, spontaneously forms stable core-shell complexes, which are electrostatically driven. We report here on the structural and orientational properties of such mixed magnetic nanoclusters made of magnetic iron oxide nanoparticles (MNPs) and polyelectrolyte-neutral block copolymers. Small angle neutron scattering and transmission electron microscopy experiments allows to probe the inner-core nanoparticle organization, leading to an average interparticle distance and confirming the hierarchical internal structure of the clusters. Thanks to the MNP optical anisotropy, we also probe the under-magnetic field orientational properties of the core-shell clusters and their dynamical rotational relaxation.

  13. Novel block, graft and random copolymers for biomedical applications

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Jankova Atanasova, Katja; Tanaka, Masaru;

    roles for this [2]. An artificial lung (oxygenator), already in use, is coated with high MW PMEA prepared by radical polymerization with AIBN [2]. To broaden the possibilities for designing biomedical devices [3] and inspired from these findings we first prepared homo polymers of MEA and their block...... copolymers with MMA [4] utilizing ATRP. Here we present other block, graft and random copolymers of MEA intended for biomedical applications. These macromolecular architectures have been constructed by employing controlled radical polymerization methods such as RAFT and ATRP....

  14. Self-Assembly of Amphiphilic Block Copolypeptoids – Micelles, Worms and Polymersomes

    Science.gov (United States)

    Fetsch, Corinna; Gaitzsch, Jens; Messager, Lea; Battaglia, Giuseppe; Luxenhofer, Robert

    2016-01-01

    Polypeptoids are an old but recently rediscovered polymer class with interesting synthetic, physico-chemical and biological characteristics. Here, we introduce new aromatic monomers, N-benzyl glycine N-carboxyanhydride and N-phenethyl glycine N-carboxyanhydride and their block copolymers with the hydrophilic polysarcosine. We compare their self-assembly in water and aqueous buffer with the self-assembly of amphiphilic block copolypeptoids with aliphatic side chains. The aggregates in water were investigated by dynamic light scattering and electron microscopy. We found a variety of morphologies, which were influenced by the polymer structure as well as by the preparation method. Overall, we found polymersomes, worm-like micelles and oligo-lamellar morphologies as well as some less defined aggregates of interconnected worms and vesicles. Such, this contribution may serve as a starting point for a more detailed investigation of the self-assembly behavior of the rich class of polypeptoids and for a better understanding between the differences in the aggregation behavior of non-uniform polypeptoids and uniform peptoids. PMID:27666081

  15. Block and Graft Copolymers of Polyhydroxyalkanoates

    Science.gov (United States)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  16. Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers.

    Science.gov (United States)

    Hu, Yanfei; Darcos, Vincent; Monge, Sophie; Li, Suming; Zhou, Yang; Su, Feng

    2014-12-10

    Thermo-responsive micelles are prepared by self-assembly of amphiphilic triblock copolymers composed of a poly(l-lactide) (PLLA) central block and two poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (P(NIPAAm-co-DMAAm)) lateral blocks, using solvent evaporation/film hydration method. The resulting micelles exhibit very low critical micelle concentration (CMC) which slightly increases from 0.0113 to 0.0144 mg mL(-1) while the DMAAm content increases from 31.8 to 39.4% in the hydrophilic P(NIPAAm-co-DMAAm) blocks. The lower critical solution temperatures (LCST) of copolymers varies from 44.7 °C to 49.4 °C in water as determined by UV spectroscopy, and decreases by ca. 3.5 °C in phosphate buffered saline (PBS). Curcumin was encapsulated in the core of micelles. High drug loading up to 20% is obtained with high loading efficiency (>94%). The LCST of drug loaded micelles ranges from 37.5 to 38.0 °C with drug loading increasing from 6.0 to 20%. The micelles with diameters ranging from 47.5 to 88.2 nm remain stable over one month due to the negative surface charge as determined by zeta potential (-12.4 to -18.7 mV). Drug release studies were performed under in vitro conditions at 37 °C and 40 °C, i.e. below and above the LCST, respectively. Initial burst release is observed in all cases, followed by a slower release. The release rate is higher at 40 °C than that at 37 °C due to thermo-responsive release across the LCST. On the other hand, micelles with lower drug loading exhibit higher release rate than those with higher drug loading, which is assigned to the solubility effect. Peppas' theory was applied to describe the release behaviors. Moreover, the in vitro cytotoxicity of copolymers was evaluated using MTT assay. The results show that the copolymers present good cytocompatibility. Therefore, the nano-scale size, low CMC, high drug loading and stability, as well as good biocompatibility indicate that these thermo-responsive triblock copolymer micelles

  17. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery.

    Science.gov (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang

    2011-01-01

    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.

  18. STRUCTURE OF CRYSTALLINE DOMAINS IN SEMICRYSTALLINE BLOCK COPOLYMER THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Guo-dong Liang; Jun-ting Xu; Zhi-qiang Fan

    2006-01-01

    Thin film morphology of a symmetric semicrystalline oxyethylene/oxybutylene diblock copolymer (E76B38) on silicon was investigated by tapping mode atomic force microscopy (AFM). It is found that the nascent thin film is composed of multiple polymer layers having mixed thicknesses of L ≈ L0 and L ≈ L0/2 (L0 is the long period of the block copolymer in bulk) besides the first layer near the substrate. This shows that the crystalline domain in the block copolymer consists of double poly(oxyethylene) layers. Annealing leads to disappearance of the polymer layers with thickness L ≈ L0/2, indicating that such polymer layers are metastable.

  19. Stability of ordered phases in block copolymer melts and solutions

    Indian Academy of Sciences (India)

    Kell Mortensen

    2008-11-01

    Block copolymer melts and solutions assemble into nanosized objects that order into a variety of phases, depending on molecular parameters and mutual interactions. Beyond the classical phases of lamella ordered sheets, hexagonally ordered cylinders and cubic ordered spheres, the complex bicontinuous gyroid phase and the modulated lamellar phase are observed near the phase boundaries. The stability of these phases has been discussed on the basis of theoretical calculations. Here, we will discuss new experimental results showing that the given ordered phase depends critically on both molecular purity and mechanical treatment of the sample. While a variety of block copolymer micellar systems have been shown to undergo the liquid-to-bcc-to-fcc phase sequence upon varying micellar parameters (or temperature), we find for a purified system a different sequence, namely liquid-to-fcc-to-bcc [1]. The latter sequence is by the way the one predicted for pure block copolymer melts. External fields like shear or stress may also affect the ordered phase. Applying well-controlled large-amplitude oscillatory shear can be used to effectively control the texture of soft materials in the ordered states. As an example, we present results on a body-centred-cubic phase of a block copolymer system, showing how a given texture can be controlled with the application of specific shear rate and shear amplitude [2,3]. Shear may however also affect the thermodynamic ground state, causing shear-induced ordering and disordering (melting), and shear-induced order–order transitions. We will present data showing that the gyroid state of diblock copolymer melts is unstable when exposed to large amplitude/frequency shear, transforming into the hexagonal cylinder phase [4]. The transformation is completely reversible. With the rather slow kinetics in the transformation of copolymer systems, it is possible in detail to follow the complex transformation process, where we find transient ordered

  20. Communication: Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, N. Arun; Ganesan, Venkat

    2012-03-01

    We apply the methodology of self-consistent Brownian dynamics simulations to study the self-assembly behavior in melts of semiflexible-flexible diblock copolymers as a function of the persistence length of the semiflexible block. Our results reveal a novel progression of morphologies in transitioning from the case of flexible-coil to rod-coil copolymers. At even moderate persistence lengths, the morphologies in the semiflexible-block rich region of the phase diagram transform to liquid crystalline phases. In contrast, the phases in the flexible-block rich region of the phase diagram persist up to much larger persistence lengths. Our analysis suggests that the development of orientational order in the semiflexible block to be a critical factor influencing the morphologies of self-assembly.

  1. Characterization and micellization of a poloxamer block copolymer

    DEFF Research Database (Denmark)

    Hvidt, S.; Pedersen, Walther Batsberg

    2007-01-01

    Several poloxamers that are symmetrical EPE block copolymers (E and P are ethylene and propylene oxide, respectively) have been characterized by size exclusion chromatography on Superose columns in water. The poloxamers contain between 12 and 26 wt% of smaller-size UV-absorbing impurities...

  2. Control of Block Copolymer Morphology through End-functional Groups

    Science.gov (United States)

    Jo, Gyuha; Park, Moon Jeong

    2014-03-01

    Recently, poly(ethylene oxide) (PEO)-containing polymer electrolytes have attracted significant attention to be applied for lithium batteries. As the realization of high mechanical strength from the polymer electrolyte becomes of critical importance in high-energy lithium batteries, much effort has been devoted to developing PEO-based block copolymers comprising mechanically robust polymer chains. Interest in this topic has been further stimulated by multiple observations of significant electrolytic conductivity enhancement imparted by microphase separation of block copolymers. In the present study, we report an intriguing methodology for modulating the morphology of poly(styrene-ethylene oxide) (PS-PEO) block copolymers with a single ionic group tethered at the chain end of PEO. Unique intra- and inter-chain interactions deduced from the end functional group afforded enriched nanostructures, i.e. disorder, lamellae, hexagonal cylinder, and gyroid, with significant differences in conductivities depending on lithium salt concentration. In particular, a gyorid morphology with a twofold-enhanced lithium ion transport efficiency was found for the end-functionalized PS-PEO block copolymer, attributed to the structural advantages of the gyroid having co-continuous ionic channels.

  3. Block copolymer libraries: modular versatility of the macromolecular Lego system.

    Science.gov (United States)

    Lohmeijer, Bas G G; Wouters, Daan; Yin, Zhihui; Schubert, Ulrich S

    2004-12-21

    The synthesis and characterization of a new 4 x 4 library of block copolymers based on polystyrene and poly(ethylene oxide) connected by an asymmetrical octahedral bis(terpyridine) ruthenium complex at the block junction are described, while initial studies on the thin film morphology of the components of the library are presented by the use of Atomic Force Microscopy, demonstrating the impact of a library approach to derive structure-property relationships.

  4. Polystyrene-b-polyethylene oxide block copolymer membranes, methods of making, and methods of use

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-04-16

    Embodiments of the present disclosure provide for polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer nanoporous membranes, methods of making a PS-b-PEO block copolymer nanoporous membrane, methods of using PS-b-PEO block copolymer nanoporous membranes, and the like.

  5. SYNTHESIS OF STYRENE-METHYL METHACRYLATE BLOCK COPOLYMER BY POLYAZOAMIDE AS INITIATOR

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongyi; WEI Jeqing

    1996-01-01

    Polyazoamide(PAA) was used as initiator to prepare block copolymer P(MMA-b-St) by free radical polymerization. The fraction of block copolymer was about 50%. The structure of the block-copolymer was characterized by IR and the results of 1H-NMR and GPC showed that the content of the block and the molecular weight (-Mw) of the prepolymer and block copolymer could be controlled by varying the mol ratio of styrene/PAA and MMA/prepolymer. DSC and TEM results revealed that the block copolymer has two separated glass transition temperatures and phase separation within the domain structure.

  6. The micellization and dissociation transitions of thermo-, pH- and sugar-sensitive block copolymer investigated by laser light scattering

    Directory of Open Access Journals (Sweden)

    Y. C. Tang

    2012-08-01

    Full Text Available A triple-stimuli responsive polymer, poly(3-acrylamidophenylboronic acid-b-poly(N-isopropylacrylamide (PAAPBA-b-PNIPAM, has been synthesized by reversible addition-fragmentation chain transfer polymerization. Temperature, pH, and fructose induced micellization and dissociation transition of block copolymer was investigated by a combination of static and dynamic laser light scattering. PAAPBA-b-PNIPAM copolymer self-assembles into micelles with PAAPBA block as core and PNIPAM as shell in lower pH aqueous solution at room temperature. Increasing the temperature causes the micelle to shrink due to the dehydration of PNIPAM segments at pH 6.2. After the elevation of solution pH from 6.2 to 10.0, the increase in the hydrophilicity of PAAPBA block leads to an expulsion of unimers from micelles. In addition, the fructose addition further enhances the dissociation of micelles. Our experiments demonstrate that the micelle to unimer transition process proceeds via the step-by-step sequential expulsion of individual chains.

  7. Polymers and block copolymers of fluorostyrenes by ATRP

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Borkar, Sachin; Abildgaard, Lillian;

    2002-01-01

    Fully or partly fluorinated polymers have many desirable and intriguing properties. In the framework of a larger program on design and control of new functional block copolymers we recently employed the Atom Transfer Radical Polymerization (ATRP) protocol on 2,3,4,5,6-pentafluorostyrene (FS). We...... materials based on 2,3,5,6-tetrafiuoro-4-methoxy-styrene (TFMS). TFMS homopolymers as well as diblock copolymers with FS are produced by ATRP. Both types of novel polymers were subsequently demethylated and different side chains introduced on the resulting hydroxy sites....

  8. Block copolymer-nanoparticle hybrid self-assembly

    KAUST Repository

    Hoheisel, Tobias N.

    2015-01-01

    © 2014 Published by Elsevier Ltd. Polymer-inorganic hybrid materials provide exciting opportunities as they may display favorable properties from both constituents that are desired in applications including catalysis and energy conversion and storage. For the preparation of hybrid materials with well-defined morphologies, block copolymer-directed nanoparticle hybrids present a particularly promising approach. As will be described in this review, once the fundamental characteristics for successful nanostructure formation at or close to the thermodynamic equilibrium of these nanocomposites are identified, the approach can be generalized to various materials classes. In addition to the discussion of recent materials developments based on the use of AB diblock copolymers as well as ABC triblock terpolymers, this review will therefore emphasize progress in the fundamental understanding of the underlying formation mechanisms of such hybrid materials. To this end, critical experiments for, as well as theoretical progress in the description of these nanostructured block copolymer-based hybrid materials will be discussed. Rather than providing a comprehensive overview, the review will emphasize work by the Wiesner group at Cornell University, US, on block copolymer-directed nanoparticle assemblies as well as their use in first potential application areas. The results provide powerful design criteria for wet-chemical synthesis methodologies for the generation of functional nanomaterials for applications ranging from microelectronics to catalysis to energy conversion and storage.

  9. Design and Application of Nanoscale Actuators Using Block-Copolymers

    Directory of Open Access Journals (Sweden)

    Paul D. Topham

    2010-10-01

    Full Text Available Block copolymers are versatile designer macromolecules where a “bottom-up” approach can be used to create tailored materials with unique properties. These simple building blocks allow us to create actuators that convert energy from a variety of sources (such as chemical, electrical and heat into mechanical energy. In this review we will discuss the advantages and potential pitfalls of using block copolymers to create actuators, putting emphasis on the ways in which these materials can be synthesised and processed. Particular attention will be given to the theoretical background of microphase separation and how the phase diagram can be used during the design process of actuators. Different types of actuation will be discussed throughout.

  10. Gas Permeation through Polystyrene-Poly(ethylene oxide) Block Copolymers

    Science.gov (United States)

    Hallinan, Daniel, Jr.; Minelli, Matteo; Giacinti-Baschetti, Marco; Balsara, Nitash

    2013-03-01

    Lithium air batteries are a potential technology for affordable energy storage. They consist of a lithium metal anode and a porous air cathode separated by a solid polymer electrolyte membrane, such as PEO/LiTFSI (PEO = poly(ethylene oxide), LiTFSI = lithium bis-trifluoromethane sulfonimide). For extended operation of such a battery, the polymer electrolyte must conduct lithium ions while blocking electrons and gases present in air. In order to maintain a pressure difference the membrane must be mechanically robust, which can be achieved by incorporating the PEO into a block copolymer with a glassy block such as PS (PS = polystyrene). To protect the lithium electrode, the membrane must have low permeability to gases in air such as CO2, N2, and O2. We have therefore studied the permeation of pure gases through a PS-PEO block copolymer. A high molecular weight, symmetric block copolymer with a lamellar morphology was used to cast free-standing membranes. Gas permeability was measured through these membranes with a standard, pressure-based technique. A model was developed to account for transport through the polymer membrane consisting of semi-crystalline PEO lamellae and amorphous PS lamellae. PEO crystallinity was extracted from the permeation model and compares well with values from differential scanning calorimetry measurements.

  11. Thermal Analysis, Structural Studies and Morphology of Spider Silk-like Block Copolymers

    Science.gov (United States)

    Huang, Wenwen

    both the bound water removal induced conformational change and the hydrophobicity of the protein sequences, while the high temperature glass transition, Tg( 2), above 130 °C is the now dry protein glass transition. Real-time Fourier transform infrared spectroscopy (FTIR) confirmed that conformational change occurred during the two glass transition, with a random coils to beta turns transition during Tg(1) and alpha helices to beta turns transition during Tg( 2). Due to the hydrophobic and hydrophilic nature of the blocks, the spider silk block copolymers tend to self-assemble into various microstructures. To study the morphological features, the spider silk-like block copolymers were treated with hexafluoroisopropanol or methanol, or subjected to thermal treatment. Using scanning electron microscopies, micelles were observed in thermally treated films. Fibrillar networks and hollow vesicles were observed in methanol-cast samples, while no micro-structures were formed in HFIP-cast films, indicating that morphology and crystallinity can be tuned by thermal treatments. Results indicate when we increase the number of repeating unit of A-block in the protein, sample films crystallize more easily and are more thermally stable. Moreover, when samples crystallize, the secondary structure of A-block and B-block become different, thus it will be easier to form bilayer structures which could fold into vesicles or tube structures during drying.

  12. Synthesis of three-arm block copolymer poly(lactic-co-glycolic acid)–poly(ethylene glycol) with oxalyl chloride and its application in hydrophobic drug delivery

    Science.gov (United States)

    Zhu, Xiaowei; Liu, Chao; Duan, Jianwei; Liang, Xiaoyu; Li, Xuanling; Sun, Hongfan; Kong, Deling; Yang, Jing

    2016-01-01

    Purpose Synthesis of star-shaped block copolymer with oxalyl chloride and preparation of micelles to assess the prospect for drug-carrier applications. Materials and methods Three-arm star block copolymers of poly(lactic-co-glycolic acid) (3S-PLGA)–polyethylene glycol (PEG) were synthesized by ring-opening polymerization, then PEG as the hydrophilic block was linked to the terminal hydroxyl of 3S-PLGA with oxalyl chloride. Fourier-transform infrared (FT-IR) spectroscopy, gel-permeation chromatography (GPC), hydrogen nuclear magnetic resonance (1H-NMR) spectra, and differential scanning calorimetry were employed to identify the structure and properties of 3S-PLGA-PEG. Rapamycin (RPM)-loaded micelles were prepared by solvent evaporation, and pyrene was used as the fluorescence probe to detect the critical micelle concentration of the copolymer. The particle size, distribution, and ζ-potential of the micelles were determined by dynamic light scattering, and the morphology of the RPM-loaded micelles was analyzed by transmission electron microscopy. High-performance liquid chromatography was conducted to analyze encapsulation efficiency and drug-loading capacity, as well as the release behavior of RPM-loaded micelles. The biocompatibility of material and the cytostatic effect of RPM-loaded micelles were investigated by Cell Counting Kit 8 assay. Results FT-IR, GPC, and 1H-NMR suggested that 3S-PLGA-PEG was successfully synthesized. The RPM-loaded micelles prepared with the 3S-PLGA-PEG possessed good properties. The micelles had good average diameter and encapsulation efficiency. For in vitro release, RPM was released slowly from 3S-PLGA-PEG micelles, showing that 3S-PLGA-PEG-RPM exhibited a better and longer antiproliferative effect than free RPM. Conclusion In this study, we first used oxalyl chloride as the linker to synthesize 3S-PLGA-PEG successfully, and compared with reported literature, this method shortened the reaction procedure and improved the reaction

  13. Ordered nanoscale domains by infiltration of block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Seth B.; Elam, Jeffrey; Tseng, Yu-Chih; Peng, Qing

    2016-11-08

    A method of preparing tunable inorganic patterned nanofeatures by infiltration of a block copolymer scaffold having a plurality of self-assembled periodic polymer microdomains. The method may be used sequential infiltration synthesis (SIS), related to atomic layer deposition (ALD). The method includes selecting a metal precursor that is configured to selectively react with the copolymer unit defining the microdomain but is substantially non-reactive with another polymer unit of the copolymer. A tunable inorganic features is selectively formed on the microdomain to form a hybrid organic/inorganic composite material of the metal precursor and a co-reactant. The organic component may be optionally removed to obtain an inorganic features with patterned nanostructures defined by the configuration of the microdomain.

  14. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    KAUST Repository

    Yu, Haizhou

    2014-06-17

    The design of micro-or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances. © 2014 Macmillan Publishers Limited.

  15. Block copolymer hollow fiber membranes with catalytic activity and pH-response.

    Science.gov (United States)

    Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.

  16. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  17. Dissipative Particle Dynamics Study on Aggregation of MPEG- PAE-PLA Block Polymer Micelles Loading Doxorubicine

    Institute of Scientific and Technical Information of China (English)

    杨楚芬; 孙尧; 章莉娟; 朱国典; 张灿阳; 钱宇

    2012-01-01

    To guide the molecular design of the pH-sensitive triblock amphiphilic polymer MPEG-PAE-PLA and the for- mula design of its doxorubicine (DOX)-loaded micelles, dissipative particle dynamics (DPD) simulations are em- ployed to investigate the aggregation behaviors of the DOX-loaded micelles. The simulation results showed that the aggregate morphologies of micelles and DOX distribution are influenced by degree of polymerization of blocks, and the proposed structure of polymer is MPEG44-PAE3-PLA4. With different contents of polymer or DOX, differ- ent aggregate morphologies of the micelles, like microsphere, spindle/column, reticulation or lamella are observed. To prepare the micro-spherical DOX-loaded micelles, the polymer content is proposed as 10%--15%, and the DOX content less than 10%.

  18. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles.

    Science.gov (United States)

    Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na

    2017-02-09

    In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment.

  19. Synthesis and characterization of amphiphilc block copolymer poly(methyl acrylic acid)-block-polytetrahydrofuran

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Under the specially designated condition the polymerization of both tetrahydrofuran (THF) and tert-butyl methacrylate (tBMA) is a living one. The diblock copolymer, poly(tert-butyl methacrylate)-block-polytetrahydrofuran (PtBMA-b-PTHF), was successfully synthesized by means of the coupling reaction of living cationic PTHF+, SbF6- with living anionic PtBMA-, Li+. LiCl, which has a beneficial effect on the molecular weight distribution (MWD) in the anionic polymerization of (meth)acrylates, hinders the coupling reaction of living chains and cannot be used in the preparation of tBMA precursor. The hydrolysis of the aforementioned diblock copolymer under acid condition results in the amphiphilic diblock copolymer, i.e. poly(methyl acrylic acid)-block-polytetra- hydrofuran (PMAA-b-PTHF). The diblock copolymers were characterized with GPC and IR.

  20. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane-polyacrylate block copolymers

    Science.gov (United States)

    Li, Xiaohui; Zhao, Yunhui; Li, Hui; Yuan, Xiaoyan

    2014-10-01

    Five polymethyltrifluoropropylsiloxane (PMTFPS)-polyacrylate block copolymers (PMTFPS-b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10-50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at -15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS-b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  1. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    Science.gov (United States)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  2. STUDIES ON MICELLE BEHAVIORS OF STYRENE-BUTADIENE-STYRENE (SBS) TRIBLOCK COPOLYMERS IN METHYL ETHYL KETONE (MEK) BY POSITRON ANNIHILATION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    YANG Rongjie; YE Meiling; SHI Lianghe; WANG Yunyu

    1992-01-01

    Positron annihilation technique was used to study the micelle behaviors of two SBS triblock copolymers in MEK solvent at different temperatures. Annihilation lifetime τ3 of ortho-positronium(o-Ps) exhibited an obvious transition from shorter lifetime to longer lifetime with temperature. It was attributed to the change of micelle behavior of SBS copolymer molecules in the solution. Experimental results of sedimentation velocity of ultracentrifuge were also reported.

  3. Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene.

    Science.gov (United States)

    Brzozowska, Agata M; de Keizer, Arie; Norde, Willem; Detrembleur, Christophe; Cohen Stuart, Martien A

    2010-07-01

    We have studied the formation and the stability of grafted block complex coacervate core micelles (C3Ms) in solution and the influence of grafted block C3M coatings on the adsorption of the proteins beta-lactoglobulin, bovine serum albumin, and lysozyme. The C3Ms consist of a grafted block copolymer PAA(21)-b-PAPEO(14) (poly(acrylic acid)-b-poly(acrylate methoxy poly(ethylene oxide)), with a negatively charged PAA block and a neutral PAPEO block and a positively charged homopolymer P2MVPI (poly(N-methyl 2-vinyl pyridinium iodide). In solution, these C3Ms partly disintegrate at salt concentrations between 50 and 100 mM NaCl. Adsorption of C3Ms and proteins has been studied with fixed-angle optical reflectometry, at salt concentrations ranging from 1 to 100 mM NaCl. In comparison with the adsorption of PAA(21)-b-PAPEO(14) alone adsorption of C3Ms significantly increases the amount of PAA(21)-b-PAPEO(14) on the surface. This results in a higher surface density of PEO chains. The stability of the C3M coatings and their influence on protein adsorption are determined by the composition and the stability of the C3Ms in solution. A C3M-PAPEO(14)/P2MVPI(43) coating strongly suppresses the adsorption of all proteins on silica and polystyrene. The reduction of protein adsorption is the highest at 100 mM NaCl (>90%). The adsorbed C3M-PAPEO(14)/P2MVPI(43) layer is partly removed from the surface upon exposure to an excess of beta-lactoglobulin solution, due to formation of soluble aggregates consisting of beta-lactoglobulin and P2MVPI(43). In contrast, C3M-PAPEO(14)/P2MVPI(228) which has a fivefold longer cationic block enhances adsorption of the negatively charged proteins on both surfaces at salt concentrations above 1 mM NaCl. A single PAA(21)-b-PAPEO(14) layer causes only a moderate reduction of protein adsorption.

  4. Functional materials derived from block copolymer self-assembly

    DEFF Research Database (Denmark)

    Li, Tao

    is to fabricate interconnected and highly ordered metal oxide films by using a nano-porous polymer with gyroid morphology as the template. This unique structure is ideal for the solar cell application where a mesoscopic metal oxide scaffold functions as the electron collection and transport material. Two......The main objective of this project is to explore block copolymer self-assembly for generating functional materials with well-defined morphology on sub-20 nanometer length scale, which can be utilized in many important applications such as solar cells and nanolithography. One of the specific targets......-casting, the block copolymer self-organizes into monolayer packed sphere pattern, without any surface treatment of the substrate and annealing process. Arrays of nano-pillars and nanowells of various materials are fabricated in dry etch processes over wafer scale without defects. We also show an in situ Al2O3 hard...

  5. New Fluorinated and Sulfonated Block Copolymers Final Report

    Science.gov (United States)

    2009-04-23

    serves as a plasticizer even in the hydrophobic FI domain. Similar glass transition reduction effects observed in other ionomer systems have been...Sulfonated Ionomer : Thermal Annealing and Solvent Effects.” American Physical Society National Meeting. Los Angeles, CA. March 21, 2005. 4. Akinbode...optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block-copolymer ionomers of fluorinated poly

  6. Solid-supported biomimetic membranes based on amphiphilic block copolymers

    OpenAIRE

    Kowal, Justyna

    2015-01-01

    Planar artificial membranes based on amphiphilic block copolymers are of high interest due to their potential applications in catalysis, drug screening, sensing, etc. Such polymeric membranes can successfully mimic biological membranes, providing high robustness and stability, which makes them good candidates to be developed in direction of applications. Even though solid-supported polymer membranes have been already investigated to a certain extent, it is still an emerging area. This thesis ...

  7. Modification of isotactic polypropylene with styrene block-copolymers

    OpenAIRE

    DENAC, Matjaž; Musil, Vojko; Makarovič, Matjaž

    2015-01-01

    With a modification the current properties of polymeric material can be improved, and even some new properties can be obtained. The success of polymeric modifiers mostly depend on the interaction intensity at the phase boundary of the polymer/modifier. The influence of polymeric modifiers on polypropylene matrices were investigated. Different sorts and types of styrene block-copolymers were used in a concentration range up to 20 vol.%. Samples were prepared by melt-mixing in a Brabender knead...

  8. Polystyrene-Polylactide Bottlebrush Block Copolymer at the Air/Water Interface

    Science.gov (United States)

    Zhao, Lei; Byun, Myunghwan; Rzayev, Javid; Lin, Zhiqun

    2010-03-01

    Hydrophobic ultrahigh molecular weight bottlebrush block copolymer and linear block copolymer of polystyrene-polylactide (PS-PLA) were shown to be capable of forming Langmuir monolayers and exhibiting unique assembly behaviors at the air/water interface, which cannot be addressed by the classic theory of Langmuir monolayer of amphiphilic copolymers. New models were proposed to illustrate these intriguing surface behaviors. The self-assembled structure of Langmuir monolayer of bottlebrush block copolymer was determined by a combination of AFM measurement, thermal annealing, and enzymatic degradation experiment. To the best of our knowledge, this is among few studies on hydrophobic block copolymers at the air/water interface. As such, it not only complements the well-known models of self-assembly of amphiphilic block copolymers at the air/water interface but also expands the use of Langmuir-Blodgett (LB) technique to hydrophobic block copolymers.

  9. Electrically Tunable Soft-Solid Block Copolymer Structural Color.

    Science.gov (United States)

    Park, Tae Joon; Hwang, Sun Kak; Park, Sungmin; Cho, Sung Hwan; Park, Tae Hyun; Jeong, Beomjin; Kang, Han Sol; Ryu, Du Yeol; Huh, June; Thomas, Edwin L; Park, Cheolmin

    2015-12-22

    One-dimensional photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid (IL) swollen block copolymer (BCP) films. Placement of a polymer/ionic liquid film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2-vinylpyridine) (PS-b-QP2VP) copolymer SC film allowed the development of red (R), green (G), and blue (B) full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3 to +6 V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.

  10. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  11. Preparation and icephobic properties of polymethyltrifluoropropylsiloxane–polyacrylate block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohui; Zhao, Yunhui [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China); Li, Hui [School of Chemistry and Chemical Engineering, Shandong Key Laboratory of Fluorine Chemistry and Chemical Engineering Materials, University of Jinan, Jinan 250022 (China); Yuan, Xiaoyan, E-mail: xyuan28@yahoo.com [School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072 (China)

    2014-10-15

    Highlights: • PMTFPS–b-polyacrylate copolymers in five different compositions were synthesized. • Enrichment of PMTFPS amounts at the surface made high F/Si value. • Icing delay time was related to the surface roughness. • Ice shear strength was decreased by the synergistic effect of silicone and fluorine. - Abstract: Five polymethyltrifluoropropylsiloxane (PMTFPS)–polyacrylate block copolymers (PMTFPS–b-polyacrylate) were synthesized by free radical polymerization of methyl methacrylate, n-butyl acrylate and hydroxyethyl methacrylate using PMTFPS macroazoinitiator (PMTFPS-MAI) in range of 10–50 mass percentages. The morphology, surface chemical composition and wettability of the prepared copolymer films were investigated by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and water contact angle measurement. Delayed icing time and ice shear strength of the films were also detected for the icephobic purpose. The surface morphologies of the copolymers were different from those of the bulk because of the migration of the PMTFPS segments to the air interface during the film formation. Maximal delayed icing time (186 s at −15 °C) and reduction of the ice shear strength (301 ± 10 kPa) which was significantly lower than that of polyacrylates (804 ± 37 kPa) were achieved when the content of PMTFPS-MAI was 20 wt%. The icephobicity of the copolymers was attributed primarily to the enrichment of PMTFPS on the film surface and synergistic effect of both silicone and fluorine. Thus, the results show that the PMTFPS–b-polyacrylate copolymer can be used as icephobic coating materials potentially.

  12. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    Science.gov (United States)

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins.

  13. The effect of PEO block lengths on the size and stability of complex coacervate core micelles.

    Science.gov (United States)

    Adams, Dave J; Rogers, Sue H; Schuetz, Peter

    2008-06-15

    We report on a series of polyion complexes from mixtures of poly(ethylene oxide)-block-poly(N,N-diethylaminoethylmethacrylate) (PEO-PDEAMA) and poly(ethylene oxide)-block-poly(aspartic acid) (PEO-PAsp). As expected, the micelle size, polydispersity and stability are dependant on the relative and absolute lengths of the polyelectrolyte chains. However, we also demonstrate that whilst the length of the charged polyelectrolyte blocks is important, the length of the PEO chains is an equally relevant variable in determining both the size and stability of the final micelles as well as the degree of charge neutralisation at which micellisation occurs. We also show that the kinetics of formation can result in very different stability of the final micelles.

  14. Terminal groups control self-assembly of amphiphilic block copolymers in solution

    Science.gov (United States)

    Grzelakowski, M.; Kita-Tokarczyk, K.

    2016-03-01

    The terminal groups of amphiphilic block copolymers are shown to control macromolecular self-assembly in aqueous solutions, in the micellar/lamellar region of the phase diagram. At the same concentration and using the same self-assembly conditions, dramatic differences are observed in polymer hydration and the resulting nano-/microstructure for two series of polymers with identical block chemistry and hydrophilic-lipophilic balance (HLB). This suggests a strong contribution from end groups to the hydration as the initial step of the self-assembly process, and could be conveniently used to guide the particle morphology and size. Additionally, for polymers with those head groups which drive vesicular structures, differences in membrane organization affect their physical properties, such as permeability.The terminal groups of amphiphilic block copolymers are shown to control macromolecular self-assembly in aqueous solutions, in the micellar/lamellar region of the phase diagram. At the same concentration and using the same self-assembly conditions, dramatic differences are observed in polymer hydration and the resulting nano-/microstructure for two series of polymers with identical block chemistry and hydrophilic-lipophilic balance (HLB). This suggests a strong contribution from end groups to the hydration as the initial step of the self-assembly process, and could be conveniently used to guide the particle morphology and size. Additionally, for polymers with those head groups which drive vesicular structures, differences in membrane organization affect their physical properties, such as permeability. Electronic supplementary information (ESI) available: Fig. S1: Particle diameters for hydrated NH2-ABA-NH2 polymers with different degrees of functionalization; Fig. S2: TEM characterization of compound micelles from BA-OH polymer after extrusion; Fig. S3: Cryo-TEM and stopped flow characterization of lipid vesicles; Fig. S4 and S5: NMR spectra for ABA and BA polymers

  15. Synthesis of segmented (pb(ps-block-pb)(n)) and (pb(san-block- pb)(n)) block-copolymers via polymeric thermal iniferters

    NARCIS (Netherlands)

    Kroeze, E; ten Brinke, G.; Hadziioannou, G

    1995-01-01

    A technique is described for the synthesis of segmented poly(butadiene-block-styrene) block copolymers and segmented poly(butadiene-block-(styrene-co-acrylonitrile)) block copolymers through polybutadiene-based thermal iniferters. Dihydroxy- and dicarboxy-terminated polybutadienes were transformed i

  16. Nanoparticle formation by block copolymer directed rapid precipitations---Flash NanoPrecipitaiton

    Science.gov (United States)

    Prud'Homme, Robert

    2011-03-01

    With widespread interest in the generic ``nano'' attention has been focused on strategies of making small particles. High-value applications that drive new process innovation include very hydrophobic pharmaceutical actives, dyes and pigments for ink jet printing, or the dispersal of highly toxic insecticides on carriers. While it is relatively easy to make inorganic nano-particles, for example CdS particles, it is much more challenging to make nanoparticles from low surface energy organic solids. Strategies for forming nano particles vary from supercritical spraying, supercritical freezing, milling, solvent exchange precipitation, and imbibing into polymeric micelles. The solute and process combine to give differences in crystalline/amorphous products, individual particles/agglomerates, and uniformity/polydispersity of sizes. We will give an overview of the techniques and the classes of products that each addresses. We have developed a new technology that has two components: (1) rapid and tailored micromxing in an impinging jet, and (2) novel block copolymer stabilizers. The impinging jet process allows the production of nano-particles by: 1) elimination of mass transfer limitations and compositional gradients within 10 ms as determined by independent measurements with competitive-parallel reactions, 2) production of high supersaturations and solute concentrations so that high production rates can be obtained, and 3) control of particle size by stabilization of the particle using block copolymer self-assembly. The process depends critically on control of three time scales: particle nucleation and growth, block copolymer micellization, and polymer adsorption on the particle to produce steric stabilization. We present data on characterization of the mixing times using competitive reactions, data on polymer micellization kinetics, and results on the successful production of β -carotene and taxol particles with control of the particle size between 40 nm to 600 nm. A

  17. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Science.gov (United States)

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  18. Complex self-assembly of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) triblock copolymers with long hydrophobic and extremely lengthy hydrophilic blocks.

    Science.gov (United States)

    Cambón, Adriana; Figueroa-Ochoa, Edgar; Juárez, Josué; Villar-Álvarez, Eva; Pardo, Alberto; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo; Mosquera, Víctor

    2014-05-15

    Amphiphilic block copolymers have emerged during last years as a fascinating substrate material to develop micellar nanocontainers able to solubilize, protect, transport, and release under external or internal stimuli different classes of cargos to diseased cells or tissues. However, this class of materials can also induce biologically relevant actions, which complement the therapeutic activity of their cargo molecules through their mutual interactions with biologically relevant entities (cellular membranes, proteins, organelles...); these interactions at the same time, are regulated by the nature, conformation, and state of the copolymeric chains. For these reasons, in this paper we investigated the self-assembly process and physico-chemcial properties of two reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BO14EO378BO14 and BO21EO385BO21, which have been recently found to be very useful as drug delivery nanovehicles and biological response modifiers under certain conditions (A. Cambón et al. Int. J. Pharm. 2013, 445, 47-57) in order to obtain a clear picture of the solution behavior of this class or block copolymers and to understand their biological activity. These block copolymers are characterized by possessing long BO blocks and extremely lengthy central EO ones, which provide them with a rich rheological behavior characterized by the formation of flowerlike micelles with sizes ranging from 20 to 40 nm in aqueous solution and the presence of intermicellar bridging even at low copolymers concentrations as denoted by atomic force microscopy. Bridging is also clearly observed by analyzing the rheological response of these block copolymers both storage and loss moduli upon changes on time, temperature, and or concentration. Strikingly, the relatively wide Poisson distribution of the polymeric chains make the present copolymers behave rather distinctly to conventional associative thickeners. The observed rich

  19. Synthesis of polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile triblock copolymers via RAFT polymerization

    Institute of Scientific and Technical Information of China (English)

    Zheng Yue; Deng Xu Wang; Jing Quan Liu; Jie Zhang; Sheng Yu Feng

    2012-01-01

    A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile (PAN-b-PDMS-b-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesized for the first time via reversible addition-fragmentation chain transfer polymerization.Reaction kinetics was investigated.PAN-b-PDMS-b-PAN films were prepared by spin-coating on glass chips.Significant order on the film surface morphologies was observed.(C) 2012 Jie Zhang.Published by Elsevier B.V.on behalf of Chinese Chemical Society.All rights reserved.

  20. Shear induced order in SEP diblock copolymer micelles: multiple BCC slip systems

    Science.gov (United States)

    Torija, Maria A.; Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2010-03-01

    Poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers are solvated by squalane leading to glassy poly(styrene) domains dispersed in a viscoelastic medium. For diblocks containing less than about 50% by weight poly(styrene) and at SEP concentrations greater than 6 w. % these mixtures self-assemble into glassy spherical microdomains that order on a body centered cubic (BCC) lattice. We have investigated how polycrystalline configurations respond to large amplitude oscillatory shear as a function of shear rate, strain amplitude and block copolymer composition. Structure was characterized by small-angle X-ray scattering measurements while simultaneously deforming the mixtures with an in-situ rheometer. All three slip systems associated with plastic deformation in BCC metals110,211,321, were identified with the x-ray beam oriented perpendicular to the shear plane. Higher shear rates and larger strain amplitudes produced more slip within the 211 system. These results represent one of the most comprehensive assessments of BCC structure in solvated copolymers and will be discussed within the context of the associated linear viscoelastic behavior.

  1. A tri-block copolymer templated synthesis of gold nanostructures.

    Science.gov (United States)

    Falletta, Ester; Ridi, Francesca; Fratini, Emiliano; Vannucci, Chiara; Canton, Patrizia; Bianchi, Sabrina; Castelvetro, Valter; Baglioni, Piero

    2011-05-01

    Stable ultra-small gold nanoparticles have been synthesized in aqueous phase by using a tri-block copolymer (BMB) as a templating agent consisting of two PEG-methylacrylate chains (B blocks) anchored to a poly(methacrylic) moiety containing a trithiocarbonate unit (M block). The effect of the BMB/Au molar ratios on the final particle size, shape and monodispersity has been investigated. The synthesized nanosols have been characterized by means of Visible Absorption, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Results clearly indicate that the polymer plays a key role in determining the size and shape of gold particles, from fractal-like structures to monodisperse spherical particles with a mean diameter of about 3 nm. The aggregation behavior of these nanostructures has been characterized both in solution (SAXS) as well as on mica substrate (AFM) and has been proven to be driven by the polymer to gold concentration ratio.

  2. Block copolymer route towards poly(vinylidene fluoride)/poly(methacrylic acid)/nickel nanocomposites

    NARCIS (Netherlands)

    Voet, V.S.D.; Hermida-Merino, D.; Brinke, G. ten; Loos, K.

    2013-01-01

    PVDF-based block copolymers have been employed as precursors for the construction of PVDF/PMAA/Ni nanocomposites. New poly(tert-butyl methacrylate)-block-poly(vinylidene fluoride)-block-poly(tert-butyl methacrylate) (PtBMA-b-PVDF-b-PtBMA) triblock copolymers were synthesized via atom transfer radica

  3. Effect of sequence features on assembly of spider silk block copolymers.

    Science.gov (United States)

    Tokareva, Olena S; Lin, Shangchao; Jacobsen, Matthew M; Huang, Wenwen; Rizzo, Daniel; Li, David; Simon, Marc; Staii, Cristian; Cebe, Peggy; Wong, Joyce Y; Buehler, Markus J; Kaplan, David L

    2014-06-01

    Bioengineered spider silk block copolymers were studied to understand the effect of protein chain length and sequence chemistry on the formation of secondary structure and materials assembly. Using a combination of in vitro protein design and assembly studies, we demonstrate that silk block copolymers possessing multiple repetitive units self-assemble into lamellar microstructures. Additionally, the study provides insights into the assembly behavior of spider silk block copolymers in concentrated salt solutions.

  4. Block copolymers : controlling nanostructure to generate functional materials : synthesis, characterization, and engineering

    OpenAIRE

    Epps, Thomas H.; O'Reilly, Rachel K.

    2016-01-01

    n this perspective, we survey recent advances in the synthesis and characterization of block copolymers, discuss several key materials opportunities enabled by block copolymers, and highlight some of the challenges that currently limit further realization of block copolymers in promising nanoscale applications. One significant challenge, especially as the complexity and functionality of designer macromolecules increases, is the requirement of multiple complementary techniques to fully charact...

  5. "Schizophrenic"嵌段共聚物多重胶束化的研究%Schizophrenic Micellization of Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    张晓晖; 艾长军; 马敬红; 徐坚

    2011-01-01

    The schizophrenic micellization of block copolymers who can self-assembled into well-defined structures in aqueous solution in response to specific stimuli such as temperature, pH, ionic strength and light has draw much attention due to the attractive protential applications. A typical case in this new sub-field involved environmental-sensitive AB diblock copolymer synthesized by group transfer polymerization (GTP) or living radical polymerisation (ATRP or RAFT), allowing the formation of two distinct types of micelle structures ( A-core / Bcorona and B-core / A-corona structures) in response to external stimuli and the two structures can be reversibly converted into each other. This remarkable property was introduced by Armes and coworkers for ‘ smart' pHdependent micelles of poly [ 2- (diethylamino) ethyl methacrylate ] -block- poly [ 2- (N-morpholino) ethyl methacrylate]. Recent progress in synthesis and environmental-induced schizophrenic micellization of block copolymers,the morphology of aggregations self-assembled from schizophrenic block copolymers and fixed structure of micelles by crosslinker have been reviewed. Technical problems in synthesis and characterization of schizophrenic micellization are also discussed, including 1H-NMR spectra, zeta potential, light scattering, transmittance of the solution and stopped-flow spectrophotometric techniques. Furthermore, the problems in schizophrenic micellization those still should be resolved are pointed out ,and the direction of this research field is discussed.%在不同环境刺激下自组装形成多重胶束的"schizophrenic"嵌段共聚物由于诱人的潜在应用而引起广泛的关注.本文综述了各种刺激诱导形成多重胶束的"schizophrenic"嵌段共聚物研究情况,介绍了多重胶束化不同形态的影响因素和胶束稳定方面的进展.并对"schizophrenic"嵌段共聚物的合成与表征技巧进行了总结,最后讨论了当前研究中仍需解决的问题,并对其应用前景做了展望.

  6. Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems.

    Science.gov (United States)

    George, Sajeev Martin; Puglia, Debora; Kenny, Josè M; Parameswaranpillai, Jyotishkumar; Vijayan P, Poornima; Pionteck, Jűrgen; Thomas, Sabu

    2015-05-21

    Styrene-block-butadiene-block-styrene (SBS) copolymers epoxidised at different epoxidation degrees were used as modifiers for diglycidyl ether of the bisphenol A-diamino diphenyl methane (DGEBA-DDM) system. Epoxy systems containing modified epoxidised styrene-block-butadiene-block-styrene (eSBS) triblock copolymer with compositions ranging from 0 to 30 wt% were prepared and the curing reaction was monitored in situ using rheometry and pressure-volume-temperature (PVT) analysis. By controlling the mole percent of epoxidation, we could generate vesicles, worm-like micelles and core-shell nanodomains. At the highest mole percent of epoxidation, the fraction of the epoxy miscible component in the triblock copolymer (epoxidised polybutadiene (PB)) was maximum. This gave rise to core-shell nanodomains having a size of 10-15 nm, in which the incompatible polystyrene (PS) becomes the core, the unepoxidised PB becomes the shell and the epoxidised PB interpenetrates with the epoxy phase. On the other hand, the low level of epoxidation gave rise to bigger domains having a size of ∼1 μm and the intermediate epoxidation level resulted in a worm-like structure. This investigation specifically focused on the importance of cure rheology on nanostructure formation, using rheometry. The reaction induced phase separation of the PS phase in the epoxy matrix was carefully explored through rheological measurements. PVT measurements during curing were carried out to understand the volume shrinkage of the blend, confirming that shrinkage behaviour is related to the block copolymer phase separation process during curing. The volume shrinkage was found to be maximum in the case of blends with unmodified SBS, where a heterogeneous morphology was observed, while a decrease in the shrinkage was evidenced in the case of SBS epoxidation. It could be explained by two effects: (1) solubility of the epoxidised block copolymer in the DGEBA leads to the formation of nanoscopic domains upon

  7. Designing block copolymer architectures for targeted membrane performance

    KAUST Repository

    Dorin, Rachel Mika

    2014-01-01

    Using a combination of block copolymer self-assembly and non-solvent induced phase separation, isoporous ultrafiltration membranes were fabricated from four poly(isoprene-b-styrene-b-4-vinylpyridine) triblock terpolymers with similar block volume fractions but varying in total molar mass from 43 kg/mol to 115 kg/mol to systematically study the effect of polymer size on membrane structure. Small-angle X-ray scattering was used to probe terpolymer solution structure in the dope. All four triblocks displayed solution scattering patterns consistent with a body-centered cubic morphology. After membrane formation, structures were characterized using a combination of scanning electron microscopy and filtration performance tests. Membrane pore densities that ranged from 4.53 × 1014 to 1.48 × 1015 pores/m 2 were observed, which are the highest pore densities yet reported for membranes using self-assembly and non-solvent induced phase separation. Hydraulic permeabilities ranging from 24 to 850 L m-2 h-1 bar-1 and pore diameters ranging from 7 to 36 nm were determined from permeation and rejection experiments. Both the hydraulic permeability and pore size increased with increasing molar mass of the parent terpolymer. The combination of polymer characterization and membrane transport tests described here demonstrates the ability to rationally design macromolecular structures to target specific performance characteristics in block copolymer derived ultrafiltration membranes. © 2013 Elsevier Ltd. All rights reserved.

  8. PEGYLATED SINGLE-WALLED CARBON NANOTUBES WITH GELABLE BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhang; Wen Zhu; Lei Gao; Yong-ming Chen

    2011-01-01

    Functional amphiphilic block copolymer poly(ethylene glycol)-block-poly[(3-(triethoxysilyl)propyl methacrylate)-co-(1-pyrene-methyl) methacrylate], PEG113-b-P(TEPM26-co-PyMMA4),was synthesized via atom transfer radical polymerization (ATRP) initiated by monomethoxy capped poly(ethylene glycol) bromoisobutyrate.This polymer exhibited strong ability to disperse and exfoliate single-walled carbon nanotubes (SWNTs) in different solvents due to the adhesion of pyrene units to surface of SWNTs.In aqueous solution,the PTEPM segments that were located on the nanotube surfaces with the pyrene units could be gelated and,as a result,the silica oxide networks with PEG coronas were formed on the surface of nanotubes,which ensured the composites with a good dispersibility and stability.Furthermore,functional silane coupling agents,3-mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane,were introduced during dispersion of SWNTs using the block copolymers.They were co-gelated with PTEPM segments,and the -SH and -NH2 functionalitieswere introduced into the silica oxide coats respectively.

  9. Perfluorocyclobutyl-containing Amphiphilic Block Copolymers Synthesized by RAFT Polymerization

    Institute of Scientific and Technical Information of China (English)

    LI, Yongjun; ZHANG, Sen; FENG, Chun; ZHANG, Yaqin; LI, Qingnuan; LI, Wenxin; HUANG, Xiaoyu

    2009-01-01

    Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl-based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition-fragmentation chain transfer (RAP-T) polymerization. The PFCB-containing acrylate monomer, p-(2-(p-tolyloxy)perfluorocyclobutoxy)phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2'-azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number-average molecular weights (M_n) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (M_w/M_n≤1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4-cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG-CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB-based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.

  10. Self-assembly of block copolymers on topographically patterned polymeric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  11. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery.

    Science.gov (United States)

    He, Chaoliang; Kim, Sung Wan; Lee, Doo Sung

    2008-05-08

    Stimuli-sensitive block copolymer hydrogels, which are reversible polymer networks formed by physical interactions and exhibit a sol-gel phase-transition in response to external stimuli, have great potential in biomedical and pharmaceutical applications, especially in site-specific controlled drug-delivery systems. The drug may be mixed with a polymer solution in vitro and the drug-loaded hydrogel can form in situ after the in vivo administration, such as injection; therefore, stimuli-sensitive block copolymer hydrogels have many advantages, such as simple drug formulation and administration procedures, no organic solvent, site-specificity, a sustained drug release behavior, less systemic toxicity and ability to deliver both hydrophilic and hydrophobic drugs. Among the stimuli in the biomedical applications, temperature and pH are the most popular physical and chemical stimuli, respectively. The temperature- and/or pH-sensitive block copolymer hydrogels for biomedical applications have been extensively developed in the past decade. This review focuses on recent development of the preparation and application for drug delivery of the block copolymer hydrogels that respond to temperature, pH or both stimuli, including poly(N-substituted acrylamide)-based block copolymers, poloxamers and their derivatives, poly(ethylene glycol)-polyester block copolymers, polyelectrolyte-based block copolymers and the polyelectrolyte-modified thermo-sensitive block copolymers. In addition, the hydrogels based on other stimuli-sensitive block copolymers are discussed.

  12. Gamma radiation induced degradation in PE-PP block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, H. R.; Sreepad, H. R.; Ahmed, Khaleel; Govindaiah, T. N. [P.G. Department of Physics, Government College (Autonomous), Mandya - 571401, Karnataka State (India)

    2012-06-05

    In the present investigation, effect of gamma irradiation on the PP-PE block copolymer has been studied. The polymer has been subjected to gamma irradiation from 100 to 500 Mrad dosages. Characterization of the polymer using XRD and FTIR was done both before irradiation and after irradiation in each step. Effect of irradiation on the electrical properties of the material has also been studied. FTIR study shows that the sample loses C - C stretching mode of vibration but gains C=C stretching mode of vibration after irradiation. Present investigation clearly indicates that though the electrical conductivity increases in the material, it undergoes degradation and shows brittleness due to irradiation.

  13. Self-assembly in casting solutions of block copolymer membranes

    KAUST Repository

    Marques, Debora S.

    2013-01-01

    Membranes with exceptional pore regularity and high porosity were obtained from block copolymer solutions. We demonstrate by small-angle X-ray scattering that the order which gives rise to the pore morphology is already incipient in the casting solution. Hexagonal order was confirmed in PS-b-P4VP 175k-b-65k solutions in DMF/THF/dioxane with concentrations as high as 24 wt%, while lamellar structures were obtained in more concentrated solutions in DMF or DMF/dioxane. The change in order has been understood with the support of dissipative particle dynamic modeling. © 2013 The Royal Society of Chemistry.

  14. Low molecular weight block copolymers as plasticizers for polystyrene

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Karsten; Nielsen, Charlotte Juel; Hvilsted, Søren

    2005-01-01

    Polystyrene-b-alkyl, polystyrene-b-polybutadiene-b-polystyrene, and polystyrene-b-poly(propylene glycol)monotridecyl ether were synthesized using macro initiators and atom transfer radical polymerization or by esterifications of homopolymers. The aim was a maximum molecular weight of 4 kg...... for polystyrene-b-polyisoprene-b-polystyrene (SIS) block copolymers. The end use properties of SIS plasticized with polystyrene-b-alkyl, measured as tensile strength, is higher than for SIS plasticized with dioctyl adipate. The polystyrene-b-polybutadiene-b-polystyrene and polystyrene-bpoly(propylene glycol...

  15. PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations

    Science.gov (United States)

    Li, Yuan; Qi, Xian Rong; Maitani, Yoshie; Nagai, Tsuneji

    2009-02-01

    The purpose of this study was to characterize the properties in vitro, i.e. release, degradation, hemolytic potential and anticancer activity, and in vivo disposition of all-trans-retinoic acid (ATRA) in rats after administration of ATRA-loaded micelle-like nanoparticles. The amphiphilic block copolymers consisted of a micellar shell-forming mPEG block and a core-forming PLA block. The mPEG-PLA nanoparticles prepared by an acetone volatilization dialysis procedure were identified as having core-shell structure by 1H NMR spectroscopy. Critical association concentration, drug contents, loading efficiency, particle size and ξ potential were evaluated. The release of ATRA from the nanoparticles and the degradation of PLA were found to be mostly associated with the compositions of the nanoparticles. ATRA release was faster at smaller molecular weight of copolymer and lower drug contents. In vitro, the incorporation of ATRA in mPEG-PLA nanoparticles reduced the hemolytic potential of ATRA. Furthermore, anticancer activity of ATRA against HepG2 cell was increased by encapsulation, which showed an enhancement of tumor treatment of ATRA. In vivo, after intravenous injection to rats, the levels of ATRA in the blood stream and the bioavailability were higher for ATRA-loaded mPEG-PLA nanoparticles than those for ATRA solution. In conclusion, the structure of the mPEG-PLA diblock copolymer could be modulated to fit the demand of in vitro and in vivo characterizations of nanoparticles. The mPEG-PLA nanoparticles' loading ATRA have a promising future for injection administration.

  16. Poly(L-histidine) based copolymers: Effect of the chemically substituted L-histidine on the physio-chemical properties of the micelles and in vivo biodistribution.

    Science.gov (United States)

    Zhang, Xiaojun; Chen, Dawei; Ba, Shuang; Chang, Jing; Zhou, Jiaying; Zhao, Haixia; Zhu, Jia; Zhao, Xiuli; Hu, Haiyang; Qiao, Mingxi

    2016-04-01

    Even though the Poly(l-histidine) (PHis) based copolymers have been well studied, the effect of the chemically substituted l-histidine on the physio-chemical and biological properties of the micelles has never been elucidated to date. To address this issue, triblock copolymer of poly(ethylene glycol)-poly(D,L-lactide)-poly(2,4-dinitrophenol-L-histidine)(mPEG-b-PLA-b-DNP-PHis) with DNP group substituted to the saturated nitrogen of l-histidine were synthesized. The pH sensitive properties of the copolymer micelles were characterized using an acid-base titration method, fluorescene probe technique, DLS observation, in vitro drug release and cytotoxicity against MCF-7 cells under different pH conditions, respectively. The results suggest that mPEG-b-PLA-b-DNP-PHis copolymers showed similar micellar stability for DOX loaded micelles, increased particle size, and similar pH responsive properties with mPEG-b-PLA-b-PHis copolymers. The subcellular distribution observation demonstrated that mPEG-b-PLA-b-DNP-PHis micelles showed a slightly compromised endo-lysosmal escape of doxorubicin as compared to mPEG-b-PLA-b-PHis micelles. The mPEG-b-PLA-b-DNP-PHis micelles showed higher cellular uptake by MCF-7 cells than mPEG-b-PLA-b-PHis micelles due to the different uptake pathways. Effect of DNP substitution on the in vivo distribution of the copolymer micelles was studied using non-invasive near-infrared fluorescence (NIRF) imaging with mPEG-b-PLA-b-PHis micelles as control. The results indicate that the mPEG-b-PLA-b-DNP-PHis micelles showed a reduced passive targeting to the tumor due to the larger particle size. These results suggest that saturated nitrogen of PHis may serve as a valuable site for chemical modification of the PHis based copolymers because of the little effect on the pH responsive properties. However, selection of the substitution group needs to be considered due to the possible increase of micellar particle size of the micelles, leading to compromised passive

  17. Structure and Stability of Complex Coacervate Core Micelles with Lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; Vries, de Renko; Norde, Willem; Cohen Stuart, Martien A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and th

  18. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, Saskia; de Vries, Renko; Norde, Willem; Cohen Stuart, Martien A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA(42)PAAm(417) an

  19. Structure and stability of complex coacervate core micelles with lysozyme

    NARCIS (Netherlands)

    Lindhoud, S.; Vries, de R.J.; Norde, W.; Cohen Stuart, M.A.

    2007-01-01

    Encapsulation of enzymes by polymers is a promising method to influence their activity and stability. Here, we explore the use of complex coacervate core micelles for encapsulation of enzymes. The core of the micelles consists of negatively charged blocks of the diblock copolymer PAA42PAAm417 and th

  20. Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles

    NARCIS (Netherlands)

    Shi, Yang; Cardoso, Renata M.; Van Nostrum, Cornelus F.; Hennink, Wim E.

    2015-01-01

    An anthracene-functionalized thermosensitive block copolymer was synthesized, which formed micelles by heating its aqueous solution above the lower critical solution temperature (LCST). The micelles were subsequently crosslinked by UV illumination at 365 nm with a normal handheld UV lamp. The micell

  1. Tough Block Copolymer Organogels and Elastomers as Short Fiber Composites

    Science.gov (United States)

    Kramer, Edward J.

    2012-02-01

    The origins of the exceptional toughness and elastomeric properties of gels and elastomers from block copolymers with semicrystalline syndiotactic polypropylene blocks will be discussed. Using synchrotron X-radiation small angle (SAXS) and wide angle X-ray scattering (WAXS) experiments were simultaneously performed during step cycle tensile deformation of these elastomers and gels. From these results the toughness can be attributed to the formation, orientation and elongation of the crystalline fibrils along the tensile direction. The true stress and true strain ɛH during each cycle were recorded, including the true strain at zero load ɛH,p after each cycle that resulted from the plastic deformation of the sPP crystals in the gel or elastomer. The initial Young's modulus Einit and maximum tangent modulus Emax in each cycle undergo dramatic changes as a function of ɛH,p, with Einit decreasing for ɛH,p 100 to 1000 at the highest maximum (nominal) strain. Based on SAXS patterns from the deformed and relaxed gels, as well as on previous results on deformation of semicrystalline random copolymers by Strobl and coworkers, we propose that the initial decrease in Einit and increase in Emax with ɛH,p are due to a breakup of the network of the original sPP crystal lamellae and the conversion of the sPP lamellae into fibrils whose aspect ratio increases with further plastic deformation, respectively. The gel elastic properties can be understood quantitatively as those of a short fiber composite with a highly deformable matrix. At zero stress the random copolymer midblock chains that connect the fibrils cause these to make all angles to the tensile axis (low Einit), while at the maximum strain the stiff, crystalline sPP fibrils align with the tensile axis producing a strong, relatively stiff gel. The evolution of the crystalline structure during deformation is confirmed by WAXS and FTIR measurements.

  2. Functional Block Copolymers as Compatibilizers for Nanoclays in Polypropylene Nanocomposites

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Daugaard, Anders Egede; Stribeck, Norbert;

    With the aim of creating tough nanocomposits (NC) [1] based on polypropylene (PP) and nanoclay (NCl) in the framework of the 7th EU program NANOTOUGH we have designed amphiphilic block copolymers utilizing Atom Transfer Radical Polymerization (ATRP) [2]. They consist of a hydrophobic block of Kra...... crystallites) is replaced by alien-reinforcement (of the MMT). Furthermore, the results from the impact strength and cyclic test of the prepared PP nanocomposites [3] are promicing....... to the structural data derived from SAXS [4] the MMT acts like a nucleating agent to the PP that starts competitive nucleation of crystallites in the PP during manufacturing. Consequently, the PP crystallites in the composites are small and imperfect. This means that the self-reinforcement of the PP (by its...

  3. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  4. Non-liftoff block copolymer nanolithography of magnetic nanodot arrays

    Science.gov (United States)

    Baruth, A.; Rodwogin, M. D.; Shankar, A.; Torija, M. A.; Erickson, M. J.; Hillmyer, M. A.; Leighton, C.

    2011-03-01

    Nanolithographic techniques based on self-assembled block copolymer templates offer exceptional potential for fabrication of large-area nanostructure arrays from a wide variety of functional materials. Despite significant progress with control of the template ordering, and development of pattern transfer schemes, significant issues exist with common techniques such as lift-off and etching. Here, we demonstrate successful execution of a nanolithographic process based on climate-controlled solvent annealing of easily degradable cylinder-forming poly(styrene- b -lactide) block copolymer films that avoids both lift-off and the most challenging aspects of etching. Essentially, we use an overfill/planarize/etch-back ``Damascene-type'' process, exploiting the large Ar ion beam etch rate contrast between polystyrene and typical metals. The process is demonstrated via formation of a large-area array of 12 nm thick, 25 +/- 3 nm diameter Ni 80 Fe 20 nanodots (~ 0.4 x 1012 dots/ in 2) with hexagonally-close-packed local order. Extensive microscopy, magnetometry, and electrical measurements provide detailed characterization of the pattern formation and fidelity. We argue that this generic approach can be applied to a wide variety of materials and is scalable to even smaller feature sizes. Funded by NSF MRSEC.

  5. Transport of Water in Semicrystalline Block Copolymer Membranes

    Science.gov (United States)

    Hallinan, Daniel; Oparaji, Onyekachi

    Poly(styrene)-block-poly(ethylene oxide) (PS- b-PEO) is a semicrystalline block copolymer (BCP) with interesting properties. It is mechanically tough, amphiphilic, and has a polar phase. The mechanical toughness is due to the crystallinity of PEO and the high glass transition temperature of PS, as well as the morphological structure of the BCP. The polymer has high CO2, water, and salt solubility that derive from the polar PEO component. Potential applications include CO2 separation, water purification, and lithium air batteries. In all of the aforementioned applications, water transport is an important parameter. The presence of water can also affect thermal and mechanical properties. Water transport and thermal and mechanical properties of a lamellar PS- b-PEO copolymer have been measured as a function of water activity. Water transport can be affected by the heterogeneous nature of a semicrystalline BCP. Therefore, Fourier transform infrared - attenuated total reflectance (FTIR-ATR) spectroscopy has been employed, because water transport and polymer swelling can be measured simultaneously. The effect of BCP structure on transport has been investigated by comparing water transport in PS- b-PEO to a PEO homopolymer. The crystalline content of the PEO and the presence of glassy PS lamellae will be used to explain the transport results.

  6. Water distributions in polystyrene-block-poly[styrene-g-poly(ethylene oxide)] block grafted copolymer system in aqueous solutions revealed by contrast variation small angle neutron scattering study

    Science.gov (United States)

    Li, Xin; Hong, Kunlun; Liu, Yun; Shew, Chwen-Yang; Liu, Emily; Herwig, Kenneth W.; Smith, Gregory S.; Zhao, Junpeng; Zhang, Guangzhao; Pispas, Stergios; Chen, Wei-Ren

    2010-10-01

    We develop an experimental approach to analyze the water distribution around a core-shell micelle formed by polystyrene-block-poly[styrene-g-poly(ethylene oxide (PEO)] block copolymers in aqueous media at a fixed polymeric concentration of 10 mg/ml through contrast variation small angle neutron scattering (SANS) study. Through varying the D2O/H2O ratio, the scattering contributions from the water molecules and the micellar constituent components can be determined. Based on the commonly used core-shell model, a theoretical coherent scattering cross section incorporating the effect of water penetration is developed and used to analyze the SANS I(Q ). We have successfully quantified the intramicellar water distribution and found that the overall micellar hydration level increases with the increase in the molecular weight of hydrophilic PEO side chains. Our work presents a practical experimental means for evaluating the intramacromolecular solvent distributions of general soft matter systems.

  7. Synthesis of hyperbranched polypeptide and PEO block copolymer by consecutive thiol-yne chemistry.

    Science.gov (United States)

    Chang, Xiao; Dong, Chang-Ming

    2013-09-09

    Hyperbranched poly(ε-benzyloxycarbonyl-L-lysine) (HPlys) with multiple alkyne peripheries was synthesized through the click polycondensation of an AB2 type Plys macromonomer with α-thiol and ω-alkyne terminal groups (thiol is the A unit, and each π bond in alkyne is the B unit), and the resulting HPlys was further conjugated with thiol-termined poly(ethylene oxide) (PEO) to generate HPlys-b-PEO block copolymer by consecutive thiol-yne chemistry. Their molecular structures and physical properties were characterized in detail by FT-IR, (1)H NMR, gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and polarized optical microscopy. HPlys and HPlys-b-PEO mainly assumed an α-helix conformation similar to the linear precursors, while the liquid crystalline phase transition of Plys segment disappeared within HPlys and HPlys-b-PEO. HPlys-b-PEO self-assembled into nearly spherical micelles in aqueous solution, while it gave a 5-fold lower critical aggregation concentration (8.9 × 10(-3) mg/mL) than a linear counterpart (4.5 × 10(-2) mg/mL), demonstrating a dendritic topology effect. Compared with a linear counterpart, HPlys-b-PEO gave a higher drug-loading capacity and efficiency for the anticancer drug doxorubicin (DOX) and a slower drug-release rate with an improved burst-release profile, enabling them useful for drug delivery systems. Importantly, this work provides a versatile strategy for the synthesis of hyperbranched polypeptides and related block copolymers by utilizing thiol-yne chemistry.

  8. Topology and Shape Control for Assemblies of Block Copolymer Blends in Solution

    KAUST Repository

    Moreno, Nicolas

    2015-10-27

    We study binary blends of asymmetric diblock copolymers (AB/AC) in selective solvents with a mesoscale model. We investigate the morphological transitions induced by the concentration of the AC block copolymer and the difference in molecular weight between the AB and AC copolymers, when segments B and C exhibit hydrogen-bonding interactions. To the best of our knowledge, this is the first work modeling mixtures of block copolymers with large differences in molecular weight. The coassembly mechanism localizes the AC molecules at the interface of A and B domains and induces the swelling of the B-rich domains. The coil size of the large molecular weight block copolymer depends only on the concentration of the short block copolymer (AC or AB), regardless of the B–C interactions. However, the B–C interactions control the morphological transitions that occur in these blends.

  9. Polymeric micelles based on poly(ethylene oxide) and α-carbon substituted poly(ɛ-caprolactone): An in vitro study on the effect of core forming block on polymeric micellar stability, biocompatibility, and immunogenicity.

    Science.gov (United States)

    Garg, Shyam M; Vakili, Mohammad Reza; Lavasanifar, Afsaneh

    2015-08-01

    A series of block copolymers based on methoxy poly(ethylene oxide)-block-poly(ɛ-caprolactone) (PEO-b-PCL), PEO-b-PCL bearing side groups of benzyl carboxylate (PEO-b-PBCL), or free carboxyl (PEO-b-PCCL) on the PCL backbone with increasing degrees of polymerization of the PCL backbone were synthesized. Prepared block copolymers assembled to polymeric micelles by co-solvent evaporation. The physical stability of prepared micelles was assessed by measuring their tendency toward aggregation over time using dynamic light scattering (DLS). The resistance of micelles against dissociation in the presence of a micelle destabilizing agent, i.e., sodium dodecyl sulfate (SDS), was also investigated using DLS. The rate of micellar core degradation was determined using (1)H NMR for polymer molecular weight measurement upon incubation of micelles in PBS (pH=7.4) at 37°C followed by dialysis of the remaining polymer at different time intervals. The effect of pendent group chemistry in the micellar core on the adsorption of serum proteins to micellar structure was then evaluated using Bradford Protein assay kit. Finally, the effect of micellar core structure on the induction of bone marrow derived dendritic cell (BMDC) maturation and secretion of IL-12 was studied as a measure of micellar immunogenicity. The results showed micelle structures from polymers with higher degree of polymerization in the hydrophobic block and/or those with more hydrophobic substituents on the core-forming block, to be more stable. This was reflected by a decreased tendency for micellar aggregation, reduced dissociation of micelles in the presence of SDS, and diminished core degradation. All micelles were shown to have insignificant adsorption of serum protein suggesting that the hydrophilic PEO shell provided sufficient protection of the core. However, the protein adsorption increased with increase in the hydrophobicity and molecular weight of the core-forming block. Irrespective of the micellar core

  10. PRECISE SYNTHESIS OF OLEFIN BLOCK COPOLYMERS USING A SYNDIOSPECIFIC LIVING POLYMERIZATION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zheng-guo Cai; Hai-hui Su; Takeshi Shiono

    2013-01-01

    This feature article summarizes the synthesis of novel olefin block copolymers using fast syndiospecific living homo-and copolymerization of propylene,higher 1-alkene,and norbomene with ansa-fluorenylamidodimethyltitaniumbased catalyst according to the authors' recent results.The catalytic synthesis of monodisperse polyolefin and olefin block copolymer was also described using this living system.

  11. Adsorption of charged di-block copolymers : effect on colloidal stability.

    NARCIS (Netherlands)

    Israëls, R.

    1994-01-01

    In this thesis we present Scheutjens-Fleer (SF) calculations on the adsorption of diblock copolymers. More specifically, we restrict ourselves to adsorption at uncharged surfaces, while the specific type of block copolymers we consider have one uncharged adsorbing "anchor" block and one non-adsorbin

  12. Structure–property relations of segmented block copolymers with liquid–liquid demixed morphologies

    NARCIS (Netherlands)

    Schuur, van der Martijn; Heide, van der Evert; Feijen, Jan; Gaymans, Reinoud J.

    2005-01-01

    Poly(propylene oxide) based polyether(ester-amide)s (PEEA) with non-crystallisable amide segments were synthesized and their structure–property relations studied. These model segmented block copolymers were used to gain insight in the structure–property relations of block copolymers with liquid–liqu

  13. Effect of nanoscale morphology on selective ethanol transport through block copolymer membranes

    Science.gov (United States)

    We report on the effect of block copolymer domain size on transport of liquid mixtures through the membranes by presenting pervaporation data of an 8 wt% ethanol/water mixture through A-B-A and B-A-B triblock copolymer membranes. The A-block was chosen to facilitate ethanol transport while the B-blo...

  14. Nanopatterned block copolymers for use as vascular biomaterials

    Science.gov (United States)

    Silverstein, Joshua S.

    Manipulation of surface topography or chemistry has been a growing trend in efforts to enhance the properties of medical devices. Understanding the interactions of biomolecules with nanoengineered surfaces is vital to assess the safety and efficacy of devices that incorporate these structures. In this dissertation, a model block copolymer (BCP) system based on poly(styrene)-block-poly(1,2-butadiene) was systematically modified using photochemical thiol-ene chemistry. Poly(1,2-butadiene) molecular weight and thiol-ene ratios were systematically varied based on a model monomer, boc-cysteamine, to determine the efficiency of the reaction. The results demonstrate the polydispersity index of modified BCPs significantly increased when low thiol-ene ratios were employed and sometimes induced gelation of the reacted polymers. Using a tenfold excess of thiol, functionalizations between 60-90% were obtained for an acid, amine, amide, and a pharmaceutical with a pendant thiol. Calorimetry showed a 30-60 °C increase in the glass transition temperature of the daughter polymers. Subsequently, films were cast from solvents found suitable to forming self-assembled BCP thin films. The synthetic and processing approach allows for the formation of nanopatterned block copolymer films with controlled chemistries from a single source material. The BCPs were further characterized using water contact angle measurements and atomic force microscopy in liquid. Significantly decreased contact angles were caused by selective swelling of charged BCP domains. Protein (fibrinogen, albumin, cytochrome C, immunoglobulin G) adsorption experiments were conducted under static and dynamic conditions with a quartz crystal microbalance with dissipation. The results indicate that nanopatterned chemistry and experimental conditions strongly impact adsorption dynamics. Adsorption behavior was dependent both on protein structure and the characteristics of the surface. Depending on the structural stability

  15. Synthesis of Nitrogen-Doped Mesoporous Carbon Spheres with Extra-Large Pores through Assembly of Diblock Copolymer Micelles

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jing [Waseda University, Tokyo, Japan; Liu, Jiang [Curtin University of Technology, Perth, Australia; Li, Cuiling [KEK, Tsukuba, Ibaraki, Japan; Li, Yunqi [Waseda University, Tokyo, Japan; Tade, Moses O. [Curtin University of Technology, Perth, Australia; Dai, Sheng [ORNL; Yamauchi, Yusuke [Waseda University, Tokyo, Japan

    2015-01-01

    In this study, the synthesis of highly nitrogen-doped mesoporous carbon spheres (NMCS) is reported. The large pores of the NMCS were obtained through self-polymerization of dopamine (DA) and spontaneous co-assembly of diblock copolymer micelles. The resultant narrowly dispersed NMCS possess large mesopores (ca. 16 nm) and small particle sizes (ca. 200 nm). Lastly, the large pores and small dimensions of the N-heteroatom-doped carbon spheres contribute to the mass transportation by reducing and smoothing the diffusion pathways, leading to high electrocatalytic activity.

  16. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  17. Novel fluorescent amphiphilic block copolymers: photophysics behavior and interactions with DNA

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available In this study, novel amphiphilic fluorescent copolymers poly(N-vinylpyrrolidone-b-poly(N-methacryloyl-N'-(α-naphthylthiourea (PVP-b-PNT were synthesized via ATRP with poly(N-vinylpyrrolidone-Cl as macroinitiator and N-methacryloyl-N'-α-naphthylthiourea (NT as hydrophobic segment. PVP-b-PNT copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The aggregation behavior of PVP-b-PNT in water was investigated by transmission electron microscope (TEM and dynamic light scattering (DLS measurement. The photophysics behavior of PVP-b-PNT showed that block copolymer formed strong excimer. The interaction of DNA with the block copolymer made the excimer of block copolymer quench. The cytotoxicity result of PVP-b-PNT in cell culture in vitro indicated that this copolymer PVP-b-PNT had good biocompatibility.

  18. Improved compositional analysis of block copolymers using diffusion ordered NMR spectroscopy.

    Science.gov (United States)

    Viel, Stéphane; Mazarin, Michaël; Giordanengo, Rémi; Phan, Trang N T; Charles, Laurence; Caldarelli, Stefano; Bertin, Denis

    2009-11-03

    Block copolymers constitute a fascinating class of polymeric materials that are used in a broad range of applications. The performance of these materials is highly coupled to the physical and chemical properties of the constituting block copolymers. Traditionally, the composition of block copolymers is obtained by 1H NMR spectroscopy on purified copolymer fractions. Specifically, the integrals of a properly selected set of 1H resonances are compared and used to infer the number average molecular weight (M(n)) of one of the block from the (typically known) M(n) value of the other. As a corollary, compositional determinations achieved on imperfectly purified samples lead to serious errors, especially when isolation of the block copolymer from the initial macro initiator is tedious. This investigation shows that Diffusion Ordered NMR Spectroscopy (DOSY) can be used to provide a way to assess the advancement degree of the copolymerization purification/reaction, in order to optimize it and hence contribute to an improved compositional analysis of the resulting copolymer. To this purpose, a series of amphiphilic polystyrene-b-poly(ethylene oxide) block copolymers, obtained by controlled free-radical nitroxide mediated polymerization, were analyzed and it is shown that, under proper experimental conditions, DOSY allows for an improved compositional analysis of these block copolymers.

  19. Synthesis and Surface Tension Properties of Polyethyleneimine—Polyethylene Oxide Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    张剑; LONNIE,Bryant

    2003-01-01

    This peper describes the synthesis,surface tension and dispersancy properties of block copolymer nonionic surfactants comprised of polyethyleneimine(PEI) and polyethlene oxide(PEO) blocks of selected lengths.These block copolymers were prepared by a threestep synthetic sequence.Firstly,PEO glycol was converted to its dimethanesulphonylester (dimesyl) derivative by reacting with methanesulphonyl chloride.Then a tri-block polymer was preparaed by the ring-opening polymerization of 2-methly-2-oxazoline(MeOZO)with the dimesyl PEO derivative.Lastly,linear PEI blocks were obtained by subsequent hydrolysis and purification.1H NMR spectra confirmed the structures of the intermediate,final products and their purities(>99%).The utility of these block copolymers is described in terms of their surface tension and clay dispersancy measurements as a function of copolymer chain and block length.

  20. Surface energies and self-assembly of block copolymers on grafted surfaces.

    Science.gov (United States)

    Trombly, David M; Pryamitsyn, Victor; Ganesan, Venkat

    2011-09-30

    We present a theoretical analysis of the self-assembly of diblock copolymers on surfaces grafted with random copolymers. Our results demonstrate that the surface energies of homopolymeric components on grafted surfaces differ from the corresponding values for self-assembled morphologies. Moreover, grafted random copolymers are shown to adapt their conformations in response to the morphology of the overlaying block copolymer film to create chemical inhomogeneities which modulate the interfacial interactions. Consequently, the surface energy differences between the different components on the grafted substrate do not serve as a useful measure to predict the stability of self-assembly of the diblock copolymer film.

  1. Extensible collagen in mussel byssus: a natural block copolymer.

    Science.gov (United States)

    Coyne, K J; Qin, X X; Waite, J H

    1997-09-19

    To adhere to solid surfaces, marine mussels produce byssal threads, each of which is a stiff tether at one end and a shock absorber with 160 percent extensibility at the other end. The elastic extensibility of proximal byssus is extraordinary given its construction of collagen and the limited extension (less than 10 percent) of most collagenous materials. From the complementary DNA, we deduced that the primary structure of a collagenous protein (preCol-P) predominating in the extensible proximal portion of the threads encodes an unprecedented natural block copolymer with three major domain types: a central collagen domain, flanking elastic domains, and histidine-rich terminal domains. The elastic domains have sequence motifs that strongly resemble those of elastin and the amorphous glycine-rich regions of spider silk fibroins. Byssal thread extensibility may be imparted by the elastic domains of preCol-P.

  2. Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

    Directory of Open Access Journals (Sweden)

    Benjamin Pollard

    2016-04-01

    Full Text Available Intermolecular interactions and nanoscale phase separation govern the properties of many molecular soft-matter systems. Here, we combine infrared vibrational scattering scanning near-field optical microscopy (IR s-SNOM with force–distance spectroscopy for simultaneous characterization of both nanoscale optical and nanomechanical molecular properties through hybrid imaging. The resulting multichannel images and correlative analysis of chemical composition, spectral IR line shape, modulus, adhesion, deformation, and dissipation acquired for a thin film of a nanophase separated block copolymer (PS-b-PMMA reveal complex structural variations, in particular at domain interfaces, not resolved in any individual signal channel alone. These variations suggest that regions of multicomponent chemical composition, such as the interfacial mixing regions between microdomains, are correlated with high spatial heterogeneity in nanoscale material properties.

  3. Reinvestigation of the Block Copolymer Modulated Lamellar Structure

    DEFF Research Database (Denmark)

    Mortensen, K.; Vigild, Martin Etchells

    2009-01-01

    We report extended crystallographic studies on shear-aligned block copolymer systems within the metastable modulated lamellae (ML) state. With studies limited to the "classical" orientations parallel and perpendicular to shear plane, the apparent modulated state would likely have been assigned...... simple lamellar. Surprisingly, upon rotating the sample to intermediate angles additional scattering reflections appear, which reveal the apparent ML phase much beyond what was expected. The modulated structure is a slightly distorted fcc structure. With the sample sheared at relatively low temperature......, presumably below the stable gyroid phase. we find a very well resolved ML texture corresponding to a simple twin structure of the distorted fcc structure. When shear-aligned within the hexagonal cylinder phase, and quenced to the gyroid phase or slightly below. we find ML alignment into a two...

  4. Directed Nanorod Assembly Using Block Copolymer-Based Supramolecules

    Science.gov (United States)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2013-03-01

    Nanorods display many unique electrical, mechanical, and optical properties unavailable in traditional bulk materials, and are attractive building blocks toward functional materials. The collective properties of anisotropic building blocks often depend strongly on their spatial arrangements, interparticle ordering, and macroscopic alignment. We have systematically investigated the phase behavior of nanocomposites composed of nanorods and block copolymer (BCP)-based supramolecules forming spherical, cylindrical and lamellar morphologies. Initial exploration showed that the nanorods can be readily dispersed in polymeric matrix and the overall morphology of nanorod-containing supramolecular nanocomposite depends on the nanorod-polymer interactions, inter-rod interactions and entropy associated with polymer chain deformation. The energetic contributions from the components of the system can be tailored to disperse nanorods with control over inter-rod ordering and the alignment of nanorods within BCP microdomains. By varying the supramolecular morphology and composition, arrays, sheets, and interconnected networks of nanorods are demonstrated that may prove useful for fabrication of optically and electrically active nanodevices.

  5. Fluorinated polyphenylenevinylene (PPV) block co-polymers for nanophotonics

    Science.gov (United States)

    Sun, Sam-Shajing; Nguyen, Thuong; Brooks, Jaleesa

    2013-09-01

    Polymer based optoelectronic materials and thin film devices exhibit great potential in future space applications due to their flexibility, light weight, large light absorption coefficient, and promising radiation tolerance in space environment as compared to their inorganic semiconductor counterparts. Since carbon-fluorine (C-F) chemical bonds are much stronger than the carbon-hydrogen (C-H) bonds, fluorinated polymer films offer great potential for space applications due their expected resistance to oxidation, thermal stability, excellent wear properties, and low coefficients of friction. Their use in a space environment is extremely attractive since they are expected to retain their lubricating characteristics in vacuum, unlike many solid lubricants. Current existing polymer photovoltaic materials and devices suffer low photoelectric power conversion efficiencies due to a number factors including poor morphologies at nano scale that hinder the charge separation and transport. This paper reports our recent work on a fluorinated DBfA type block copolymer system where the donor (D) block contains a donor substituted and hydrocarbon based polyphenylenevinylene (PPV), acceptor (fA) block contains a fluorinated and a sulfone acceptor substituted polyphenylenevinylene (f-PPV), and B is a non-conjugated and flexible bridge unit. Preliminary studies reveal DBfA exhibits better nano phase morphologies and over 100 times more efficient optoelectronic conversion efficiencies as compared to D/fA blend.

  6. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Hoppe, E T; Jaksch, S

    2011-01-01

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the subs......We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular...

  7. Poly(lactide)-block-poly([epsilon]-caprolactone-co-[epsilon]-decalactone)-block-poly(lactide) copolymer elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Schneiderman, Deborah K.; Hill, Erin M.; Martello, Mark T.; Hillmyer, Marc A. (UMM)

    2015-08-28

    Batch ring opening transesterification copolymerization of ε-caprolactone and ε-decalactone was used to generate statistical copolymers over a wide range of compositions and molar masses. Reactivity ratios determined for this monomer pair, rCL = 5.9 and rDL = 0.03, reveal ε-caprolactone is added preferentially regardless of the propagating chain end. Relative to poly(ε-caprolactone) the crystallinity and melting point of these statistical copolymers were depressed by the addition of ε-decalactone; copolymers containing greater than 31 mol% (46 wt%) ε-decalactone were amorphous. Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) triblock polymers were also prepared and used to explore the influence of midblock composition on the temperature dependent Flory-Huggins interaction parameter (χ). In addition, uniaxial extension tests were used to determine the effects of midblock composition, poly(lactide) content, and molar mass on the mechanical properties of these new elastomeric triblocks.

  8. Using click chemistry to modify block copolymers and their morphologies

    Science.gov (United States)

    Wollbold, Johannes

    Microphase separated block copolymers (BCPs) are emerging as promising templates and scaffolds for the fabrication of nanostructured materials. To achieve the desired nanostructures, it is necessary to establish convenient approaches to control the morphology of BCPs. It remains challenging to induce morphological transitions of BCPs via external fields. Click chemistry, especially alkyne/azide click chemistry, has been widely used to synthesize novel functionalized materials. Here, we demonstrate that alkyne/azide click chemistry can be used as an efficient approach to chemically modify BCPs and therefore induce morphological transitions. Alkyne-functionalized diblock copolymers (di-BCPs) poly(ethylene oxide)- block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) have been successfully synthesized. When the di-BCP is blended with an azide additive Rhodamine B azide and annealed at elevated temperatures, click reaction occurs between the two components. With the Rhodamine B structure attached to the polymer backbone, the di-BCP shows dramatic change in the interactions between the two blocks and the volume fraction of each block. As a result, morphological transitions, such as disorder-to-order transitions (DOTs) and order-to-order transitions (OOTs), are observed. The reaction kinetics and morphology evolution during the click chemistry induced DOTs have been investigated by in-situ and ex-situ characterizations, and fast kinetics properties are observed. Microphase separated morphologies after the DOTs or OOTs are dictated by the composition of neat di-BCPs and the mole ratio between the alkyne and azide groups. The DOTs of PEO-b-P(nBMA-r-PgMA) di-BCPs induced by alkyne/azide click chemistry have also been achieved in thin film geometries, with comparable kinetics to bulk samples. The orientation of the microdomains is dependent on the grafting density of Rhodamine B structure as well as film thickness. At higher grafting densities

  9. Study of matrix micro-cracking in nano clay and acrylic tri-block-copolymer modified epoxy/basalt fiber-reinforced pressure-retaining structures

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available In fiber-reinforced polymer pressure-retaining structures, such as pipes and vessels, micro-level failure commonly causes fluid permeation due to matrix cracking. This study explores the effect of nano-reinforcements on matrix cracking in filament-wound basalt fiber/epoxy composite structures. The microstructure and mechanical properties of bulk epoxy nanocomposites and hybrid fiber-reinforced composite pipes modified with acrylic tri-block-copolymer and organophilic layered silicate clay were investigated. In cured epoxy, the tri-block-copolymer phase separated into disordered spherical micelle inclusions; an exfoliated and intercalated structure was observed for the nano-clay. Block-copolymer addition significantly enhanced epoxy fracture toughness by a mechanism of particle cavitation and matrix shear yielding, whereas toughness remained unchanged in nano-clay filled nanocomposites due to the occurrence of lower energy resistance phenomena such as crack deflection and branching.Tensile stiffness increased with nano-clay content, while it decreased slightly for block-copolymer modified epoxy. Composite pipes modified with either the organic and inorganic nanoparticles exhibited moderate improvements in leakage failure strain (i.e. matrix cracking strain; however, reductions in functional and structural failure strength were observed.

  10. Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Alok Chaurasia

    2015-01-01

    Full Text Available We report a supramolecular process for the synthesis of well-defined fullerene (C60/polymer colloid nanocomposites in an aqueous solution via complex formation. A biocompatible triblock poly(4-vinylpyridine-b-polyethylene-b-poly(4-vinylpyridine, P4VP8-b-PEO105-b-P4VP8, was synthesized by atom transfer radical polymerization. The block copolymer formed complexes with C60 in toluene and resulted in fullerene assembly in cluster form. Nanocomposite dispersion in an aqueous solution could be obtained using an aged solution of the polymer/C60/toluene solution by a solvent evaporation technique. The UV-Vis and FTIR spectroscopy confirmed the complex formation of fullerene with the polymer which plays a significant role in controlling the PDI and size of polymer/C60 micelles in the toluene solution. The particle size and morphology of P4VP8-b-PEO105-b-P4VP8 and P4VP8-b-PEO105-b-P4VP8/C60 mixture were studied by dynamic light scattering (DLS and transmission electron microscopy (TEM. In a cytotoxicity test, both pure polymer and the resulting polymer/C60 composite in water showed more than 90% cell viability at 1 mg/mL concentration.

  11. Research on Influence Factors of Surfactivity of Polyester Polyether Block Copolymer

    Institute of Scientific and Technical Information of China (English)

    WU Ming-hua; LIN He-ming

    2008-01-01

    Polyester polyether block copolymer (PPBC) was synthesized by ester-exchange and polycodensation reactions using dimethyl terephthalate (DMT), ethylene glycol (EG) and polyethylene glycol (PEG) as monomer. The effects of PEG molecular weight, mol ratio of DMT to PEG (nDMT/nPEG), temperature and time of polycondensation reaction and vacuum degree in the reaction system on the surface tension and critical micelle concentration (CMC) of PPBC aqueous solution were studied. It was found that both the molecular weight and the concentration of PEG can affect PPBC'S surface activity obviously, and the optimum synthesis condition of PPBC used as surfactant is as follows: PEG molecular weight is 1500, mol ratio of DMT to PEG is 3, temperature and time of polycondensation reaction is 260°C×1h, vacuum degree of condensation reaction is 0.03-0.05 MPa. It was proved by surface tension measurement of PPBC aqueous solution that the PPBC synthesized in this condition is a good surfactant with excellent surfactivity.

  12. Molecular transport through nanoporous silicon nitride membranes produced from self-assembling block copolymers.

    Science.gov (United States)

    Montagne, Franck; Blondiaux, Nicolas; Bojko, Alexandre; Pugin, Raphaël

    2012-09-28

    To achieve fast and selective molecular filtration, membrane materials must ideally exhibit a thin porous skin and a high density of pores with a narrow size distribution. Here, we report the fabrication of nanoporous silicon nitride membranes (NSiMs) at the full wafer scale using a versatile process combining block copolymer (BCP) self-assembly and conventional photolithography/etching techniques. In our method, self-assembled BCP micelles are used as templates for creating sub-100 nm nanopores in a thin low-stress silicon nitride layer, which is then released from the underlying silicon wafer by etching. The process yields 100 nm thick free-standing NSiMs of various lateral dimensions (up to a few mm(2)). We show that the membranes exhibit a high pore density, while still retaining excellent mechanical strength. Permeation experiments reveal that the molecular transport rate across NSiMs is up to 16-fold faster than that of commercial polymeric membranes. Moreover, using dextran molecules of various molecular weights, we also demonstrate that size-based separation can be achieved with a very good selectivity. These new silicon nanosieves offer a relevant technological alternative to commercially available ultra- and microfiltration membranes for conducting high resolution biomolecular separations at small scales.

  13. Fluorosilicone multi-block copolymers tethering quaternary ammonium salt groups for antimicrobial purpose

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Fang; Qin, Xiaoshuai; Li, Yancai; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-08-30

    Highlights: • QAS-containing fluorosilicone multi-block copolymers were synthesized. • The block length of PHFBMA in the copolymers was tailored via RAFT polymerization. • Surface roughness of the copolymers decreased with the increased PHFBMA content. • A certain length of PHFBMA block enhanced C−N{sup +} percentage on the surface. - Abstract: Symmetrically structured fluorosilicone multi-block copolymers containing poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(hexafluorobutyl methacrylate) (PHFBMA) were sequentially synthesized via reversible addition–fragmentation chain transfer polymerization, using a polydimethylsiloxane (PDMS) chain transfer agent with dithiocarbonate groups at both ends. Then, the CBABC-type block copolymers were quaternized with n-octyliodide to tether quaternary ammonium salt (QAS) groups in the PDMAEMA blocks for the antimicrobial use. The obtained fluorosilicone copolymers showed clear variations in the C-N{sup +} composition and surface morphology on their films depending on the content of the PHFBMA blocks, which were characterized by X-ray photoelectron spectroscopy and atomic force microscopy, respectively. The results indicated that the symmetrical CBABC structure favored PDMS and QAS tethered blocks migrating to the film surface. With the mass percentage of the PHFBMA increased from 0 to 32.5%, the surface roughness of the copolymer film decreased gradually with a tendency to form a smooth surface. Owing to the surface properties, fluorosilicone multi-block copolymers containing a certain amount of PHFBMA with higher C-N{sup +} content and relatively smooth morphology demonstrated obvious antimicrobial activity against Gram-positive bacteria, Bacillus subtilis and Gram-negative bacteria, Escherichia coli. The functionalized multi-block copolymers based on fluorosilicone and QAS groups would have potential applications in antimicrobial coatings.

  14. Compatibilization of low-density polyethylene/polystyrene blends by segmented EB(PS-block-EB)(n) block copolymers

    NARCIS (Netherlands)

    Kroeze, E; ten Brinke, G.; Hadziioannou, G

    1997-01-01

    Hydrogenated segmented poly[butadiene-block-(styrene-block-butadiene)(n)] block copolymers, which were developed by use of a polymeric iniferter technique, were tested on their compatibilizing effectiveness for (10/90) LDPE/PS blends. They were found to be effective compatibilizers for this mixture,

  15. CAVITATION PROPERTIES OF BLOCK COPOLYMER STABILIZED PHASE-SHIFT NANOEMULSIONS USED AS DRUG CARRIERS

    OpenAIRE

    Rapoport, Natalya; Christensen, Douglas A.; KENNEDY, ANNE M.; NAM, KWEONHO

    2010-01-01

    Cavitation properties of block copolymer stabilized perfluoropentane nanoemulsions have been investigated. The nanoemulsions were stabilized by two biodegradable amphiphilic block copolymers differing in the structure of the hydrophobic block, poly(ethylene oxide)-co-poly(L-lactide) (PEG-PLLA) and poly(ethylene oxide)-co-polycaprolactone (PEG-PCL). Cavitation parameters were measured in liquid emulsions and gels as a function of ultrasound pressure for unfocused or focused 1-MHz ultrasound. A...

  16. Investigating self-assembly and metal nanoclusters in aqueous di-block copolymers solutions

    CERN Document Server

    Lo Celso, F; Triolo, R; Triolo, A; Strunz, P; Bronstein, L; Zwanziger, J; Lin, J S

    2002-01-01

    Self-assembling properties of di-block copolymers/ surfactant hybrids in aqueous solution can be exploited to obtain metal nanoparticles stable dispersion. Results will be presented here for polystyrene-block-poly(ethylene oxide) solutions. A SANS structural investigation has been performed over different molecular weights of both hydrophilic and hydrophobic block, by varying temperature and concentration of the copolymer. A SAXS characterization of micellar systems containing Pt nanoparticles is reported. (orig.)

  17. Improved synthesis of polystyrene-poly(ethylene oxide)-heparin block copolymers

    NARCIS (Netherlands)

    Vulic, I.; Loman, A.J.B.; Feijen, J.; Okano, T.; Kim, S.W.

    1990-01-01

    A novel procedure for the synthesis of block copolymers composed of a hydrophobic block of polystyrene, a hydrophilic block of poly(ethylene oxide) and a bioactive block of nitrous acid-degraded heparin was developed. Amino-semitelechelic polystyrene was prepared by anionic polymerization of styrene

  18. Fabrication of Bioactive Surfaces by Functionalization of Electroactive and Surface-Active Block Copolymers

    Directory of Open Access Journals (Sweden)

    Omotunde Olubi

    2014-08-01

    Full Text Available Biofunctional block copolymers are becoming increasingly attractive materials as active components in biosensors and other nanoscale electronic devices. We have described two different classes of block copolymers with biofuctional properties. Biofunctionality for block copolymers is achieved through functionalization with appropriate biospecific ligands. We have synthesized block copolymers of electroactive poly(3-decylthiophene and 2-hydroxyethyl methacrylate by atom transfer radical polymerization. The block copolymers were functionalized with the dinitrophenyl (DNP groups, which are capable of binding to Immunoglobulin E (IgE on cell surfaces. The block copolymers were shown to be redox active. Additionally, the triblock copolymer of α, ω-bi-biotin (poly(ethylene oxide-b-poly (styrene-b-poly(ethylene oxide was also synthesized to study their capacity to bind fluorescently tagged avidin. The surface-active property of the poly(ethylene oxide block improved the availability of the biotin functional groups on the polymer surfaces. Fluorescence microscopy observations confirm the specific binding of biotin with avidin.

  19. Micellar structure of amphiphilic poly(2-oxazoline) diblock copolymers

    DEFF Research Database (Denmark)

    Papadakis, C.M.; Ivanova, R.; Lüdtke, K.

    2007-01-01

    Amphiphilic diblock copolymers from poly(2-oxazoline)s in aqueous solution can form micelles. By means of small-angle neutron scattering, we have found that poly[(n-nonyl-2-oxazoline)-b-(methyl-2-oxazoline)] {P[(NOx)-b-(MOx)]} diblock copolymers in aqueous solution form micelles of core-shell type....... We have determined the core radius and the shell thickness of the micelles. Comparing the values obtained to the stretched lengths of the blocks leads to the conclusion that the P(NOx) core blocks are stretched, whereas the P(MOx) shell blocks are coiled....

  20. Supramolecular Assemblies from Poly(styrene-block-poly(4-vinylpyridine Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid

    Directory of Open Access Journals (Sweden)

    Jean-François Gohy

    2013-06-01

    Full Text Available Supramolecular assemblies involving interaction of a small organic molecule, 2-hydroxy-6-Naphthoic acid (HNA, with poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP diblock copolymers are utilized to obtain micellar structures in solution, nanostructured thin films on flat substrates and, finally, nanoporous thin films. The formation of hydrogen bonds between HNA and the poly(4-vinylpyridine (P4VP blocks is confirmed by spectroscopic measurements. The accordingly P4VP/HNA hydrogen-bonded complexes are poorly soluble in 1,4-dioxane, resulting in the formation of micellar structures with a P4VP/HNA core and a polystyrene (PS corona. Those micelles have been spin-coated onto silicon wafers, resulting in nanostructured thin films consisting of P4VP/HNA dot-like features embedded in a PS matrix. The morphology of those films has been tuned by solvent annealing. Selective dissolution of HNA by methanol results in the formation of a nanoporous thin film. The P4VP/HNA nanodomains have been also cross-linked by borax, and the thin films have been further dissolved in a good solvent for PS, leading to micelles with a structure reminiscent of the thin films.

  1. Anti-Biofouling Effect of PEG-Grafted Block Copolymer Synthesized by RAFT Polymerization.

    Science.gov (United States)

    Kim, Seon-Mi; Han, Sang Suk; Kim, A Young; Choi, Beom-Jin; Paik, Hyun-Jong; Lee, Inwon; Park, Hyun; Chun, Ho Hwan; Cho, Youngjin; Hwang, Do-Hoon

    2015-10-01

    Poly(glycidyl methadrylate-block-styrene) (PGMA-b-PS), a block copolymer consisting of glycidyl methacrylate and styrene, was synthesized via reversible addition-fragmentation chain transfer living polymerization. The synthesized PGMA-b-PS was then grafted with low-molecular-weight polyethylene glycol (PEG) via epoxy ring opening to give PGMA-g-PEG-b-PS, which was evaluated as an anti-biofouling coating material. As a preliminary test for the anti-biofouling effect, a protein adsorption experiment was performed on the synthesized block copolymer surface. The block copolymers were spin-coated onto silicon wafers, and protein adsorption experiments were carried out using fluorescein isothiocyanate conjugate-labeled bovine serum albumin. The fluorescence intensity of the protein adsorbed on the block copolymer surface was compared with that of a polystyrene film as a reference. The synthesized PGMA-g-PEG-b-PS film showed much lower fluorescence intensity than that of the PS film.

  2. Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Mulder, M.H.V.; Wessling, M.

    2004-01-01

    This paper reports the gas-permeation properties of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) segmented multiblock copolymers. These block copolymers allow a precise structural modification by the amount of PBT and the PEO segment length, enabling a systematic study of the relati

  3. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Hvilsted, Søren

    2005-01-01

    Block copolymers based on poly(pentafluorostyrene), PFS, in various numbers and of different lengths, and polystyrene are prepared by atom transfer radical polymerization (ATRP). Di- and triblock copolymers with varying amounts of PFS were synthesized employing either I phenylethylbromide or 1,4-...

  4. Formation of nanophases in epoxy thermosets containing amphiphilic block copolymers with linear and star-like topologies.

    Science.gov (United States)

    Wang, Lei; Zhang, Chongyin; Cong, Houluo; Li, Lei; Zheng, Sixun; Li, Xiuhong; Wang, Jie

    2013-07-11

    In this work, we investigated the effect of topological structures of block copolymers on the formation of the nanophase in epoxy thermosets containing amphiphilic block copolymers. Two block copolymers composed of poly(ε-caprolactone) (PCL) and poly(2,2,2-trifluoroethyl acrylate) (PTFEA) blocks were synthesized to possess linear and star-shaped topologies. The star-shaped block copolymer composed a polyhedral oligomeric silsesquioxane (POSS) core and eight poly(ε-caprolactone)-block-poly(2,2,2-trifluoroethyl acrylate) (PCL-b-PTFEA) diblock copolymer arms. Both block copolymers were synthesized via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process; they were controlled to have identical compositions of copolymerization and lengths of blocks. Upon incorporating both block copolymers into epoxy thermosets, the spherical PTFEA nanophases were formed in all the cases. However, the sizes of PTFEA nanophases from the star-like block copolymer were significantly lower than those from the linear diblock copolymer. The difference in the nanostructures gave rise to the different glass transition behavior of the nanostructured thermosets. The dependence of PTFEA nanophases on the topologies of block copolymers is interpreted in terms of the conformation of the miscible subchain (viz. PCL) at the surface of PTFEA microdomains and the restriction of POSS cages on the demixing of the thermoset-philic block (viz. PCL).

  5. Synthesis and Characterization of ABBA Block Copolymer of Glycolide and ε-Caprolactone

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Xue-si; DENG Ming-xiao; JING Xia-bin

    2005-01-01

    A biodegradable ABBA block copolymer was synthesized via the ring-opening co-polymerization of ε-caprolactone(CL, B) and glycolide(A) by means of step polymerization in the presence of ethylene glycol as an initiator and stannous octanoate as a catalyst at 110 ℃ for 48 h. The molecular length of the PCL pre-polymer(BB) could be adjusted by controlling the molar ratio of the ethylene glycol initiator to ε-caprolactone monomer. The structure and the composition of the block copolymer were determined by the weight ratio of the monomer glycolide(A) to PCL pre-polymer(BB). The block copolymers were characterized by 1H NMR, GPC, DSC and X-ray. The results confirm the successful synthesis of an ABBA block copolymer.

  6. Synthesis, Thermal Processing, and Thin Film Morphology of Poly(3-hexylthiophene)-Poly(styrenesulfonate) Block Copolymers

    NARCIS (Netherlands)

    Erothu, Harikrishna; Kolomanska, Joanna; Johnston, Priscilla; Schumann, Stefan; Deribew, Dargie; Toolan, Daniel T. W.; Gregori, Alberto; Dagron-Lartigau, Christine; Portale, Giuseppe; Bras, Wim; Arnold, Thomas; Distler, Andreas; Hiorns, Roger C.; Mokarian-Tabari, Parvaneh; Collins, Timothy W.; Howse, Jonathan R.; Topham, Paul D.

    2015-01-01

    A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This

  7. Photoinduced optical anisotropy in azobenzene methacrylate block copolymers: Influence of molecular weight and irradiation conditions

    DEFF Research Database (Denmark)

    Gimeno, Sofia; Forcen, Patricia; Oriol, Luis;

    2009-01-01

    The photoinduced anisotropy in a series of azomethacrylate block copolymers with different Molecular weights and azo contents has been investigated under several irradiation conditions. Depending on molecular weight and composition, different microstructures (disordered, lamellar, spherical) appe...

  8. Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold.

    Science.gov (United States)

    Kim, Bong Hoon; Lee, Duck Hyun; Kim, Ju Young; Shin, Dong Ok; Jeong, Hu Young; Hong, Seonki; Yun, Je Moon; Koo, Chong Min; Lee, Haeshin; Kim, Sang Ouk

    2011-12-15

    Mussel-inspired interfacial engineering is synergistically integrated with block copolymer (BCP) lithography for the surface nanopatterning of low surface energy substrate materials, including, Teflon, graphene, and gold. The image shows the Teflon nanowires and their excellent superhydrophobicity.

  9. Polymeric micelles as carriers of diagnostic agents.

    Science.gov (United States)

    Trubetskoy

    1999-04-01

    This review deals with diagnostic applications of polymeric micelles composed of amphiphilic block-copolymers. In aqueous solutions these polymers spontaneously form particles with diameter 20-100 nm. A variety of diagnostic moieties can be incorporated covalently or non-covalently into the particulates with high loads. Resulting particles can be used as particulate agents for diagnostic imaging using three major imaging modalities: gamma-scintigraphy, magnetic resonance imaging and computed tomography. The use of polyethyleneoxide-diacyllipid micelles loaded with chelated (111)In/Gd(3+) as well as iodine-containing amphiphilic copolymer in percutaneous lymphography and blood pool/liver imaging are discussed as specific examples.

  10. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    Energy Technology Data Exchange (ETDEWEB)

    Perego, Michele, E-mail: michele.perego@mdm.imm.cnr.it; Andreozzi, Andrea; Seguini, Gabriele [IMM-CNR, Laboratorio MDM (Italy); Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard [Université de Toulouse, nMat Group, CEMES-CNRS (France)

    2014-12-15

    Asymmetric polystyrene-b-polymethylmethacrylate (PS-b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin (h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter (d < 20 nm), density (1.2 × 10{sup 11} cm{sup −2}), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO{sub 2} and high temperature annealing (1050 °C, N{sub 2}), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals (d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

  11. Direct Nanorod Assembly Using Block Copolymer-Based Supramolecules

    Science.gov (United States)

    Thorkelsson, Kari; Mastroianni, Alexander; Ercius, Peter; Xu, Ting

    2012-02-01

    One-dimensional nanomaterials with high aspect ratios, such as nanorods, exhibit unique and useful anisotropic optical, magnetic, and electrical properties. The collective properties of 1-D nanomaterials depend on their spatial arrangements, interparticle ordering, and macroscopic alignment. Developing routes to control their organization with high precision is critical to generate functional materials. We have investigated the co-assemblies of nanorods and block copolymer (BCP)-based supramolecules that self-assemble into spherical, lamellar and cylindrical morphologies. By varying energetic contributions from the rod-rod interactions and the deformation of the supramolecule, a wide library of nanorod assemblies including highly aligned arrays, continuous networks, and clusters can be readily accessed. Since macroscopic alignment of BCP microdomains can be obtained by application of external fields, present studies open up a new route to manipulate macroscopic alignments of nanorods. Fundamentally, these studies have demonstrated that in these blends, the energetic contributions from the polymer chain deformation and rod-rod interactions are comparable and can be tailored to disperse nanorods with control over inter-rod ordering and their relative alignment.

  12. Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors

    NARCIS (Netherlands)

    Voet, V.S.D.; Tichelaar, M.; Tanase, S.; Mittelmeijer-Hazeleger, M.C.; ten Brinke, G.; Loos, K.

    2013-01-01

    The fabrication of nanoporous poly(vinylidene fluoride) (PVDF) and PVDF/nickel nanocomposites from semicrystalline block copolymer precursors is reported. Polystyrene-block-poly(vinylidene fluoride)-block-polystyrene (PS-b-PVDF-b-PS) is prepared through functional benzoyl peroxide initiated polymeri

  13. Block-Copolymer-Assisted Solubilization of Carbon Nanotubes and Exfoliation Monitoring Through Viscosity

    NARCIS (Netherlands)

    Cotiuga, Irina; Picchioni, Francesco; Agarwal, Uday S.; Wouters, Daan; Loos, Joachim; Lemstra, Piet J.

    2006-01-01

    The use of the block copolymers polystyrene-block-poly(ethylene oxide) and poly(methyl methacrylate)-block-poly(ethylene oxide) is described to assist the direct solubilization of single-walled carbon nanotubes (SWNTs) into water under ultrasonic irradiation. As compared to surfactants and homopolym

  14. Synthesis and characterization of poly(phthalazinone ether nitrile)(PPEN)-polydimethylsiloxane (PDMS)block copolymers

    Institute of Scientific and Technical Information of China (English)

    Li Ming Dong; Gong Xiong Liao; Ming Jing Wang; Xi Gao Jian

    2008-01-01

    Block copolymers with different backbone compositions have been prepared by the condensation of dimethylamino terminated poly(dimethylsiloxane)(PDMS)and hydroquinone terminated poly(phthalazinone ether nitrile)(PPEN)in the presence of chlorobenzene/N-methyl pyrrolidone (NMP)as solvents.The products were characterized by FTIR,1H NMR and gel permeation chromatography.Differential scanning calorimetry analysis indicated that the block copolymers showed separated microphase.

  15. Photocatalytic Nanostructuring of Graphene Guided by Block Copolymer Self-Assembly

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Schulte, Lars

    2016-01-01

    graphene nanomesh was fabricated by photocatalysis of single-layer graphene suspended on top of TiO2-covered nanopillars, which were produced by combining block copolymer nanolithography with atomic layer deposition. Graphene nanoribbons were also prepared by the same method applied to a line-forming block...... copolymer template. This mask-free and nonchemical/nonplasma route offers an exciting platform for nanopatterning of graphene and other UV-transparent materials for device engineering....

  16. Ionic Liquids As Self-Assembly Guide for the Formation of Nanostructured Block Copolymer Membranes

    KAUST Repository

    Madhavan, Poornima

    2015-04-30

    Nanostructured block copolymer membranes were manufactured by water induced phase inversion, using ionic liquids (ILs) as cosolvents. The effect of ionic liquids on the morphology was investigated, by using polystyrene-b-poly(4-vinyl pyridine) (PS-b-PV4P) diblock as membrane copolymer matrix and imidazolium and pyridinium based ILs. The effect of IL concentration and chemical composition was evident with particular interaction with P4VP blocks. The order of block copolymer/ILs solutions previous to the membrane casting was confirmed by cryo scanning electron microscopy and the morphologies of the manufactured nanostructured membranes were characterized by transmission and scanning electron microscopy. Non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ILs led to a lamella-structured membrane. The rheology of the IL/block copolymer solutions was investigated, evaluating the storage and loss moduli. Most membranes prepared with ionic liquid had higher water flux than pure block copolymer membranes without additives.

  17. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  18. Non-random crosslinking of polysulphone-polysiloxane alternating block copolymers under irradiation

    Science.gov (United States)

    Xinfang, Chen; Chunshan, Zhang

    In this paper the effects of radiation on polysulphone-polysiloxane segmented copolymers have been investigated. The experimental observations indicate that the crosslinking reaction occurs primarily between siloxane segments and the intermolecular crosslinking of isopropylidene groups of adjacent polysulphone segments also takes place after the irradiation of higher doses. From the non-randon radiation crosslinking model which the block copolymer follows, the relationship between sol fraction and crosslink density is derived by a statistical method. The radiation crosslinking structure of block copolymers prepared by polycondensation of prepolymers, polysulphone and polysiloxane, can be controled by changing the average molecular weights of two prepolymers and the ratio of one component to the other.

  19. Synthesis of an amphiphilic dendrimer-like block copolymer and its application on drug delivery

    KAUST Repository

    Wang, Shuaipeng

    2014-10-27

    Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were characterized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation efficiency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.

  20. COMPARISON OF DRUG DELIVERY PROPERTIES OF PEG-b-PDHPC MICELLES WITH DIFFERENT COMPOSITIONS

    Institute of Scientific and Technical Information of China (English)

    Chun-yan Long; Ming-ming Sheng; Bin He; Yao Wu; Gang Wang; Zhong-wei Gu

    2012-01-01

    An anti-tumor drug doxombicin was encapsulated in micelles of poly(ethylene glycol)-b-poly(2,2-dihydroxyl-methyl propylene carbonate) (PEG-b-PDHPC) diblock copolymers.The morphology of both blank micelles and drug loaded micelles was characterized by TEM.The in vitro drug release profiles of micelles were investigated.The cytotoxicity of the micelles was evaluated by incubating with Hela tumor cells and 3T3 fibroblasts.The drug loaded micelles were co-cultured with HepG2 cells to evaluate the in vitro anti-tumor efficacies.The results showed that the mean sizes of both micelles with different copolymer compositions increased after being loaded with drugs.The drug release rate of PEG45-b-PDHPC34 micelles was faster than that of rnPEG114-b-PDHPC26 micelles.Both of the two block copolymers were non-toxic.The confocal laser scanning microscopy and flow cytometry results showed that both the drug loaded micelles could be internalized efficiently in HepG2 cells.The PEG45-b-PDHPC34 micelles exhibited higher anti-tumor activity comparing to mPEG114-b-PDHPC26 micelles.

  1. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  2. Block Copolymer Compatibilizers for Morphological Control on the Equilibrium Structural Characteristics of Polymer/Fullerene Blends

    Science.gov (United States)

    Kipp, Dylan; Ganesan, Venkat

    2014-03-01

    We develop a single chain in mean field model for the equilibrium morphologies of solar cells based on the homopolymer/block copolymer/fullerene blend. Using our model, we study the ability of the block copolymer compatibilizer to provide morphological control on the domain and interfacial characteristics of the equilibrium structures. We focus our efforts on the case of a semiflexible homopolymer and a semiflexible/flexible diblock copolymer as these are emblematic of the kinds of molecules used in photovoltaic applications. Our results reveal a novel progression of morphologies in transitioning the ternary composition space, the rigidity of the semiflexible chains, and the flexible block ratio of the diblock copolymer. To elucidate the morphologies, we first present a series of ternary phase diagrams and then use a simple morphological characterization scheme to evaluate the domain sizes and interfacial quantities characterizing our equilibrium structures.

  3. Preparation of Pickering double emulsions using block copolymer worms.

    Science.gov (United States)

    Thompson, Kate L; Mable, Charlotte J; Lane, Jacob A; Derry, Mathew J; Fielding, Lee A; Armes, Steven P

    2015-04-14

    The rational formulation of Pickering double emulsions is described using a judicious combination of hydrophilic and hydrophobic block copolymer worms as highly anisotropic emulsifiers. More specifically, RAFT dispersion polymerization was utilized to prepare poly(lauryl methacrylate)-poly(benzyl methacrylate) worms at 20% w/w solids in n-dodecane and poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) worms at 13% w/w solids in water by polymerization-induced self-assembly (PISA). Water-in-oil-in-water (w/o/w) double emulsions can be readily prepared with mean droplet diameters ranging from 30 to 80 μm using a two-stage approach. First, a w/o precursor emulsion comprising 25 μm aqueous droplets is prepared using the hydrophobic worms, followed by encapsulation within oil droplets stabilized by the hydrophilic worms. The double emulsion droplet diameter and number of encapsulated water droplets can be readily varied by adjusting the stirring rate employed during the second stage. For each stage, the droplet volume fraction is relatively high at 0.50. The double emulsion nature of the final formulation was confirmed by optical and fluorescence microscopy studies. Such double emulsions are highly stable to coalescence, with little or no change in droplet diameter being detected over storage at 20 °C for 10 weeks as judged by laser diffraction. Preliminary experiments indicate that the complementary o/w/o emulsions can also be prepared using the same pair of worms by changing the order of homogenization, although somewhat lower droplet volume fractions were required in this case. Finally, we demonstrate that triple and even quadruple emulsions can be formulated using these new highly anisotropic Pickering emulsifiers.

  4. Low-Temperature Processable Block Copolymers That Preserve the Function of Blended Proteins.

    Science.gov (United States)

    Iwasaki, Yasuhiko; Takemoto, Kyohei; Tanaka, Shinya; Taniguchi, Ikuo

    2016-07-11

    Low-temperature processable polymers have attracted increasing interest as ecological materials because of their reduced energy consumption during processing and suitability for making composites with heat-sensitive biomolecules at ambient temperature. In the current study, low-temperature processable biodegradable block copolymers were synthesized by ring-opening polymerization of l-lactide (LLA) using polyphosphoester as a macroinitiator. The polymer films could be processed under a hydraulic pressure of 35 MPa. The block copolymer films swelled in water because the polyphosphoester block was partially hydrated. Interestingly, the swelling ratio of the films changed with temperature. The pressure-induced order-to-disorder transition of the block copolymers was characterized by small-angle X-ray scattering; a crystallinity reduction in the block copolymers was observed after application of pressure. The crystallinity of the block copolymers was recovered after removing the applied pressure. The Young's modulus of the block copolymer films increased as the LLA unit content increased. Moreover, the modulus did not change after multiple processing cycles and the recyclability of the block copolymers was also confirmed. Finally, polymer films with embedded proteinase K as a model protein were prepared. The activity of catalase loaded into the polymer films was evaluated after processing at different temperatures. The activity of catalase was preserved when the polymer films were processed at room temperature but was significantly reduced after high-temperature processing. The suitability of low-temperature processable biodegradable polymers for making biofunctional composites without reducing protein activity was clarified. These materials will be useful for biomedical and therapeutic applications.

  5. Thermosensitive Polymer Nanocontainers Prepared by Self-Assembly of Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    Chen Xiangrong; Ding Xiaobing; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    In recent years, considerable effort has been devoted to the preparation of polymer nanocontainers because of their unique advantages. Compared to polymer microspheres or micelles,polymer nanocontainers are hollow-sphere structures and can encapsulate large quantities of guest molecules or large-sized guests within the "empty" core domain. Compared to polymer vesicles,polymer nanocontainers have enough mechanical stability to prevent them from structure changes due to covalent or ionic interactions responsible for their formation. Therefore, polymer nanocontainers have many potential applications such as confined reaction vesicles, drug carriers,protective shells for cells or enzymes, artificial cells and so on. However, most of polymer nanocontainers reported by now, load and release guest molecules from their interior only through diffuse mechanism. It is rather difficult to control intelligently the process based on demands. In order to solve this problem, one promising strategy is to design intelligent polymer nanocontainers.They can undergo reversible structural transitions from a closed to an open state with the help of external stimuli.In this paper, we report on our preliminary study of the thermosensitive polymer nanocontainers formed by self-assembly of the block copolymers PCEMA-b-PNIPAM and sequent photo-crosslinking of PCEMA shells.Block copolymers PCEMA-b-PNIPAM were prepared by reacting PHEMA-b-PNIPAM with excess cinnamoyl chloride in pyridine at room temperature, where PHEMA-b-PNIPAM was prepared by reacting succinimidyl ester of PHEMA-COOH with PNIPAAm-NH2, similar to the method of the literature. The block copolymers were characterized by FTIR and 1H-NMR and GPC.To obtain polymer vesicles, deionized water, as a precipitant, was added at a rate of 0.3wt%/10s with vigorous stirring to the PCEMA-b-PNIPAM solution in THE After the formation of polymer vesicles, more water was added until the water content reached ca.50wt%. The hollow structure of the

  6. Binary-component micelle and vesicle: Free energy and asymmetric distributions of amphiphiles between vesicle monolayers

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi-Yi; Xiang Xun

    2013-01-01

    The real-space two-dimensional self-consistent field theory (SCFT) is employed to study the free energies of micelles and vesicles constituted by binary amphiphilic diblock copolymer AB in homopolymer A.With an increasing volume fraction of copolymer AB,there are morphological transitions from circle micelles to oblate circle-like micelles,to a compound structure with inverted micelles in the inner center and micelles outer layer,and to vesicles.Special attention is paid to the role of the copolymer AB in controlling the free energies of the micelles and vesicles by examining the effect of the length ratio of A/B with the fixed whole chain length of the AB copolymer,the length effect of A or B block with the corresponding fixed length of B or A block,for one component of copolymer,and the effect of different amphiphile compositions for a binary-component copolymer system.The quantity η is provided to describe the asymmetric density distribution of amphiphiles between the inner and outer monolayers of vesicles,and to quantify the relative asymmetric extent of the density distribution between two species of copolymers in binary component vesicles.

  7. Design and Synthesis of Novel Block Copolymers for Efficient Opto-Electronic Applications

    Science.gov (United States)

    Sun, Sam-Shajing; Fan, Zhen; Wang, Yiqing; Taft, Charles; Haliburton, James; Maaref, Shahin

    2002-01-01

    It has been predicted that nano-phase separated block copolymer systems containing electron rich donor blocks and electron deficient acceptor blocks may facilitate the charge carrier separation and migration in organic photovoltaic devices due to improved morphology in comparison to polymer blend system. This paper presents preliminary data describing the design and synthesis of a novel Donor-Bridge-Acceptor (D-B-A) block copolymer system for potential high efficient organic optoelectronic applications. Specifically, the donor block contains an electron donating alkyloxy derivatized polyphenylenevinylene (PPV), the acceptor block contains an electron withdrawing alkyl-sulfone derivatized polyphenylenevinylene (PPV), and the bridge block contains an electronically neutral non-conjugated aliphatic hydrocarbon chain. The key synthetic strategy includes the synthesis of each individual block first, then couple the blocks together. While the donor block stabilizes and facilitates the transport of the holes, the acceptor block stabilizes and facilitates the transport of the electrons, the bridge block is designed to hinder the probability of electron-hole recombination. Thus, improved charge separation and stability are expected with this system. In addition, charge migration toward electrodes may also be facilitated due to the potential nano-phase separated and highly ordered block copolymer ultra-structure.

  8. Opto-electronic devices from block copolymers and their oligomers.

    NARCIS (Netherlands)

    Hadziioannou, G

    1997-01-01

    This paper presents research activities towards the development of polymer materials and devices for optoelectronics, An approach to controlling the conjugation length and transferring the luminescence properties of organic molecules to polymers through black copolymers containing well-defined conju

  9. Fluctuations, conformational asymmetry and block copolymer phase behaviour

    DEFF Research Database (Denmark)

    Bates, F.S.; Schulz, M.F.; Khandpur, A.K.;

    1994-01-01

    Phase behaviour near the order-disorder transition (ODT) of 58 model hydrocarbon diblock copolymers, representing four different systems, is summarized. Six distinct ordered-state microstructures are reported, including hexagonally modulated lamellae (HML), hexagonally perforated layers (HPL) and...

  10. Correlating self-assembly of block copolymers for their application in synthesis of gold nanoparticles.

    Science.gov (United States)

    Ray, Debes; Aswall, Vinod Kumar; Srivastava, Dinesh

    2011-03-01

    We report the role of self-assembly of polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) block copolymers for the synthesis of gold nanoparticles from hydrogen tetrachloroaureate (III) hydrate (HAuCl4 x 3H2O) in aqueous solution. The synthesis has been carried out using three different block copolymers P85 [EO26PO39EO26], F88 [EO103PO39EO103] and P105 [EO37PO56EO37], which not only have varying molecular weight but also differ in hydrophobicity to hydrophilicity ratio. The formation of gold nanoparticles is confirmed by the UV-Visible Spectroscopy. Transmission electron microscopy (TEM) provides the sizes of the nanoparticles formed in these systems. Small-Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques are used to correlate the self-assembly of block copolymer to their propensity to form gold nanoparticles. The yield is found to be in the order P105 > P85 > F88 and is related to the higher tendency of block copolymer to self-assemble to give greater yield of gold nanoparticles. For all the block copolymers, SANS and DLS results suggests that the yield in the synthesis does not always increases with the salt concentration and is limited due to the fact that most of the block copolymers remain unassociated with the gold nanoparticles. By making use of these unassociated block copolymers, we propose two methods (i) step addition method and (ii) additional reductant method, where the synthesis yield of gold nanoparticles can be enhanced by manifold.

  11. Experimental investigation of the behaviour and fate of block copolymers in fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller

    in the worsening of the fouling-inhibition properties of these complex systems, specially focusing on the behaviour and fate of the block copolymers used as additives. The development of various methods to visualize and quantify processes involving these copolymers are presented. Chapter 1 provides an overview......-release coatings. A coating based on a PDMS binder has been employed as model system in the thesis. The effect of the addition of various PEG-based surfactants and copolymers (i.e. amphiphiles) was investigated by a novel method developed in this project, and the diffusion coefficient and biofouling...... coatings. Images obtained by confocal microscopy proved that the copolymer molecules assemble in spherical domains inside the PDMS coating. The domains are smaller close to the surface and larger in the bulk of the film (with domains as large as 7 µm in diameter). The diffusion of copolymer from the bulk...

  12. Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for X-ray computed tomography.

    Science.gov (United States)

    Trubetskoy, V S; Gazelle, G S; Wolf, G L; Torchilin, V P

    1997-01-01

    In order to obtain small, polymer-stabilized particulate carriers for organic iodine to serve as a contrast agent for X-ray computed tomography (CT) an attempt was made to design a carrier based on polymeric micelles. Here we describe the synthesis of an iodine-containing amphiphilic block-copolymer which can micellize in aqueous solutions. The two blocks of the copolymer consisted of methoxypoly(ethyleneglycol) and poly[epsilon,N-(triiodobenzoyl)-L-lysine]. Upon dispersion in water, the block copolymer formed particles with average diameter 80 nm and iodine content up to 44.7%. The particles start to dissociate to the individual polymeric chains in the concentration range of 0.05-0.5 microM in water at 23 degrees C. Upon intravenous injection at 250 mg of iodine/kg (570 mg of the agent/kg) in rabbits the medium demonstrated exceptional 24 hr half-life in the blood substantiating corona/core structure of the particles with PEG chains protecting the iodine-containing core. The possible use of these particulates as contrast medium for X-ray computed tomography is discussed.

  13. New Strategies for Constructing Polymeric Micelles and Hollow Spheres Via Self-Assembly

    Institute of Scientific and Technical Information of China (English)

    Ming Jiang

    2005-01-01

    @@ 1Introduction In recent years, self-assembly of block copolymers leading to micelles in selective solvents, which dissolve only one of the blocks, has developed rapidly because the micelles are very strong candidates for potential applications in advanced technologies. The micelles usually have core-shell structure which are connected by covalent bonds. Based on our long-term research on interpolymer complexation due to hydrogen bonding, where we noticed that the complexation often led to the formation of irregular aggregates, we succeeded recently in developing a series of new approaches to polymeric micelles and hollow spheres via specific intermolecular interactions. As in these approaches, a variety of polymers with interacting groups i.e. homopolymers, random copolymers, graft copolymers as well as low mass compounds (LMC), can be used as building blocks, our research strategies have substantially extended the field of self-assembly.

  14. Monte Carlo simulations of self-assembling star-block copolymers in dilute solutions

    NARCIS (Netherlands)

    patti, A

    2010-01-01

    Computer simulations have been performed to analyze the aggregation behavior in dilute solutions of star-block copolymers of the type (AB)n in a selective solvent for the B block. We found spontaneous aggregation of single stars and formation of roughly spherical aggregates. By changing the solvopho

  15. Block copolymers of styrene, isoprene, and ethylene oxide prepared by anionic polymerization. I. Synthesis and characterization

    NARCIS (Netherlands)

    Koetsier, D.W.; Bantjes, A.; Feijen, J.

    1978-01-01

    Anionic polymerization has been used as a technique for the synthesis of five-block copolymers of polystyrene (PS), polyisoprene (PI), and poly(ethylene oxide) (PEO). Two types of such polymers, PEO-PI-PS-PI-PEO and PEO-PS-PI-PS-PEO with varying PEO block length, have been prepared, using potassium

  16. Emulsions stabilized with PEO–PPO–PEO block copolymers and silica

    NARCIS (Netherlands)

    Gosa, Kristiana-Lisette; Uricanu, Violeta

    2002-01-01

    The specific behavior of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) tri-block copolymers in aqueous solutions was studied in the presence of vinyl acetate (VAc) and colloidal silica. Several factors controlling specific interactions were investigated, the block cop

  17. Synthesis and properties of lyotropic poly(amide-block-aramid) copolymers

    NARCIS (Netherlands)

    De Ruijter, C.

    2006-01-01

    This thesis describes the synthesis and properties of liquid crystalline block copolymers comprised of alternating rigid and flexible blocks for the preparation of self-reinforcing materials. The incentive for this work was the expectation that the rigid segments would phase separate on a microscopi

  18. DETERMINATION OF THE CRYSTALLINITY IN DIFFERENT TYPE POLY (OXYETHYLENE -STYRENE )BLOCK COPOLYMERS BY X- RAY DIFFRACTION METHOD

    Institute of Scientific and Technical Information of China (English)

    YAO Ning

    1989-01-01

    By means of the intensity theory of X- ray scattering and the two - phase concept of high polymer, the basic formula of the crystallinity in block copolymers has been proposed after the corrections of atomic, temperature, absorption, Lorentz and polarization factor. Application of this method to different type poly (oxyethylene - styrene) block copolymers and the same type block copolymers with different EO contents indicates that the crystallinity in poly (oxyethylene - styrene) block copolymers increases with the increase of the EO content and decreases in the order: PEO - PS - PEO > PEO - PS > PS - PEO - PS.

  19. An Observation on the Microphase Separation of Poly(methyl methacrylate)-block-Polystyrene Copolymer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The phase behavior of a well-defined poly(methyl methacrylate)-b-polystyrene block copolymer was studied by transmission electron microscope.The results show that a microphase transition may have occurred in the copolymer film.A kind of lamellae and an ordered bicontinuous double-diamond morphology are observed clearly.The lamellar morphology reveals a larger period of about 400 nm.

  20. Toward a Block-Copolymer-Emulsified, Tough Blend of Isotactic Polystyrene and Polybutadiene: HIiPS.

    Science.gov (United States)

    1991-02-14

    OFFICE OF NAVAL RESEARCH Contract N00014-91-J-1045 R&T Code 4132047 --- 02-1 TECNICA RPORT NO. 2 Toward a Block-Copolymer-Emulsified, Tough Blend of... molecular weight polydispersities in the final materials (>6) due to the continuous restructuring of the catalytic sites; some chains break off and die...presented an opportunity to mix and match different molecular weight polystyrenes and polybutadienes so as to tailor-make diblock copolymers of varying

  1. Synthesis of manganese oxide supported on mesoporous titanium oxide: Influence of the block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, F. [Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Bât. Berthollet, Université Claude Bernard—Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne (France); IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon (UMR 5256 CNRS/Université Lyon 1), Lyon (France); Bois, L., E-mail: laurence.bois@univ-lyon1.fr [Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Bât. Berthollet, Université Claude Bernard—Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne (France); Chiriac, R.; Toche, F.; Chassagneux, F. [Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Bât. Berthollet, Université Claude Bernard—Lyon 1, 43 Bd 11 novembre 1918, 69622 Villeurbanne (France); Besson, M.; Descorme, C. [IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon (UMR 5256 CNRS/Université Lyon 1), Lyon (France); Khrouz, L. [ENS LYON Laboratoire de Chimie (LR6, site Monod), 46, allée d’Italie, 69364 Lyon Cedex 07 (France)

    2015-01-15

    Manganese oxides supported on mesoporous titanium oxides were synthesized via a sol–gel route using block copolymer self-assembly. The oxides were characterized by X-ray diffraction, infrared spectroscopy, thermal analyses, nitrogen adsorption/desorption, electron microscopy and electronic paramagnetic resonance. A mesoporous anatase containing amorphous manganese oxide particles could be obtained with a 0.2 Mn:Ti molar ratio. At higher manganese loading (0.5 Mn:Ti molar ratio), segregation of crystalline manganese oxide occurred. The influence of block copolymer and manganese salt on the oxide structure was discussed. The evolution of the textural and structural characteristics of the materials upon hydrothermal treatment was also investigated. - Graphical abstract: One-pot amorphous MnO{sub 2} supported on mesoporous anataseTiO{sub 2}. - Highlights: • Mesoporous manganese titanium oxides were synthesized using block copolymer. • Block copolymers form complexes with Mn{sup 2+} from MnCl{sub 2}. • With block copolymer, manganese oxide can be dispersed around the titania crystallites. • With Mn(acac){sub 2}, manganese is dispersed inside titania. • MnOOH crystallizes outside mesoporous titania during hydrothermal treatment.

  2. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Joonwon, E-mail: joonwonbae@gmail.com [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of); Kim, Jungwook [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Jongnam, E-mail: jnpark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2014-07-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO{sub 2}) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids.

  3. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui, E-mail: zhaoyunhui@tju.edu.cn; Yuan, Xiaoyan

    2015-02-15

    Highlights: • A series of PDMS-b-QPDMAEMA block copolymers were synthesized via RAFT polymerization. • The composition and morphology of the copolymer films strongly depended on the content of QPDMAEMA. • Migration of QPDMAEMA blocks toward surface was promoted when contacting with water. • Heterogeneous film surfaces with higher N{sup +} content exhibited more obvious antimicrobial activity. - Abstract: Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N{sup +} content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  4. Multiple ordered phases in a block copolymer melt

    DEFF Research Database (Denmark)

    Almdal, K.; Koppi, K.A.; Bates, F.S.;

    1992-01-01

    A poly(ethylenepropylene)-poly(ethylethylene) (PEP-PEE) diblock copolymer containing 65% by volume PEP was investigated using small-angle neutron scattering (SANS) and rheological measurements. Four distinct phases have been identified as a function of temperature: three ordered phases at low tem...

  5. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    Science.gov (United States)

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  6. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    Science.gov (United States)

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

  7. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    Science.gov (United States)

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  8. Efficient Synthesis of Cyclic Block Copolymers by Rotaxane Protocol by Linear/Cyclic Topology Transformation.

    Science.gov (United States)

    Valentina, Stephanie; Ogawa, Takahiro; Nakazono, Kazuko; Aoki, Daisuke; Takata, Toshikazu

    2016-06-20

    High-yielding synthesis of cyclic block copolymer (CBC) using the rotaxane protocol by linear-cyclic polymer topology transformation was first demonstrated. Initial complexation of OH-terminated sec-ammonium salt and a crown ether was followed by the successive living ring-opening polymerizations of two lactones to a linear block copolymer having a rotaxane structure by the final capping of the propagation end. CBC was obtained in a high yield by an exploitation of the mechanical linkage through the translational movement of the rotaxane component to transform polymer structure from linear to cyclic. Furthermore, the change of the polymer topology was translated into a macroscopic change in crystallinity of the block copolymer.

  9. AMPHIPHILIC STAR-BLOCK COPOLYMERS BY IODIDE-MEDIATED RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodidemediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.

  10. Tuning of Block Copolymer Membrane Morphology through Water Induced Phase Inversion Technique

    KAUST Repository

    Madhavan, Poornima

    2016-06-01

    Isoporous membranes are attractive for the regulation and detection of transport at the molecular level. A well-defined asymmetric membranes from diblock copolymers with an ordered nanoporous membrane morphologies were fabricated by the combination of block copolymer self-assembly and non-solvent-induced phase separation (NIPS) technique. This is a straightforward and fast one step procedure to develop integrally anisotropic (“asymmetric”) membranes having isoporous top selective layer. Membranes prepared via this method exhibit an anisotropic cross section with a thin separation layer supported from underneath a macroporous support. These membrane poses cylindrical pore structure with ordered nanopores across the entire membrane surfaces with pore size in the range from 20 to 40 nm. Tuning the pore morphology of the block copolymer membranes before and after fabrication are of great interest. In this thesis, we first investigated the pore morphology tuning of asymmetric block copolymer membrane by complexing with small organic molecules. We found that the occurrence of hydrogen-bond formation between PS-b-P4VP block copolymer and –OH/ –COOH functionalized organic molecules significantly tunes the pore morphology of asymmetric nanoporous membranes. In addition, we studied the complexation behavior of ionic liquids with PS-b-P4VP block copolymer in solutions and investigated their effect on final membrane morphology during the non-solvent induced phase separation process. We found that non-protic ionic liquids facilitate the formation of hexagonal nanoporous block copolymer structure, while protic ionic liquids led to a lamella-structured membrane. Secondly, we demonstrated the catalytic activity of the gold nanoparticle-enhanced hollow fiber membranes by the reduction of nitrophenol. Also, we systematically investigated the pore morphology of isoporous PS-b-P4VP using 3D imaging technique. Thirdly, we developed well-distributed silver nanoparticles on the

  11. Synthesis of photolabile fluorescent polymeric micelles.

    Science.gov (United States)

    Park, Teahoon; You, Jungmok; Oikawa, Hidetoshi; Kim, Eunkyoung

    2014-11-01

    A new amphiphilic block copolymers were synthesized with the atom transfer radical polymerization (ATRP) method. Then, the micelle structures were fabricated with a self-assembly method for application in nanocarriers and sensing. The fluorescent intensity was increased by a factor of 4 in the micelle solution due to more stacked pyrene moieties. The core-shell structure of the micelle was confirmed by HR-TEM images. The pyrene moieties were positioned in the core of the micelle, and the surface consisted of hydrophilic PMMA blocks. The ester bond of the polymer backbone was breakable by irradiation with UV light. Therefore, the micelle structure was deformed after UV irradiation, and the excimer peak was drastically reduced as the monomer peak appeared. The deformation of micelle structures was clearly confirmed by FE-SEM and NMR analysis. These photolabile polymeric micelles may be widely useful for photo-stimulative nanocarriers as well as for the design of new functional micelles with many other chromophores.

  12. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Rissanou, Anastassia N., E-mail: rissanou@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete, GR-71003 Heraklion Crete, Greece and Archimedes Center for Analysis, Modeling and Computation, University of Crete, P.O. Box 2208, GR-71003 Heraklion Crete (Greece); Tzeli, Despoina S. [Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion Crete (Greece); Anastasiadis, Spiros H. [Department of Chemistry, University of Crete, P.O. Box 2208, 710 03 Heraklion Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-71110 Heraklion Crete (Greece); Bitsanis, Ioannis A. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-71110 Heraklion Crete (Greece)

    2014-05-28

    Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (A{sub n}B{sub n}){sub m} consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500–5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.

  13. Azidated Ether-Butadiene-Ether Block Copolymers as Binders for Solid Propellants

    Science.gov (United States)

    Cappello, Miriam; Lamia, Pietro; Mura, Claudio; Polacco, Giovanni; Filippi, Sara

    2016-07-01

    Polymeric binders for solid propellants are usually based on hydroxyl-terminated polybutadiene (HTPB), which does not contribute to the overall energy output. Azidic polyethers represent an interesting alternative but may have poorer mechanical properties. Polybutadiene-polyether copolymers may combine the advantages of both. Four different ether-butadiene-ether triblock copolymers were prepared and azidated starting from halogenated and/or tosylated monomers using HTPB as initiator. The presence of the butadiene block complicates the azidation step and reduces the storage stability of the azidic polymer. Nevertheless, the procedure allows modifying the binder properties by varying the type and lengths of the energetic blocks.

  14. Synthesis by ATRP of triblock copolymers with densely grafted styrenic end blocks from a polyisobutylene macroinitiator

    DEFF Research Database (Denmark)

    Truelsen, Jens Høg; Kops, Jørgen; Pedersen, Walther Batsberg

    2000-01-01

    A macroinitiator was prepared from a triblock copolymer of polyisobutylene (PIB) with end blocks of poly(p-methylstyrene) (P(p-MeS)) by bromination to obtain initiating bromomethyl groups for atom transfer radical polymerization (ATRP). Controlled polymerization of styrene and p-acetoxystyrene yi......A macroinitiator was prepared from a triblock copolymer of polyisobutylene (PIB) with end blocks of poly(p-methylstyrene) (P(p-MeS)) by bromination to obtain initiating bromomethyl groups for atom transfer radical polymerization (ATRP). Controlled polymerization of styrene and p...

  15. Living cationic polymerization and polyhomologation: an ideal combination to synthesize functionalized polyethylene–polyisobutylene block copolymers

    KAUST Repository

    Zhang, Hefeng

    2015-12-17

    A series of hydroxyl-terminated polyisobutylene-b-polyethylene (PIB-b-PE-OH) copolymers were synthesized by combining living cationic polymerization and polyhomologation. Allyl-terminated PIBs, synthesized by living cationic polymerization, were hydroborated with BH3·THF to produce 3-arm boron-linked stars, PIB3B, which served as macroinitiators for the in situ polyhomologation of dimethylsulfoxonium methylide. The resulting 3-arm star block copolymers, (PIB-b-PE)3B, were oxidized/hydrolysed to afford PIB-b-PE-OH. Characterization of all intermediates and final products by high temperature gel permeation chromatography (HT-GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR) revealed the well-defined character of the copolymers. The thermal properties of the copolymers were studied by differential scanning calorimetry (DSC).

  16. Synthesis And Properties Of Functional Ultra-High Molecular Weight Transparent Styrene-Butadiene Block Copolymer

    Institute of Scientific and Technical Information of China (English)

    GONG Guang-bi; ZHAO Xu-tao; WANG Gui-lun

    2004-01-01

    Functional ultra-high molecular weight transparent styrene-butadiene block copolymer possesses both high transparency and impact resistance and has excellent comprehensive properties prior to other transparent resins. In this paper we not only use anionic polymerization process which includes 1 time addition of initiator and 3 time addition of monomers, but also introduce functional coupling agent for the fist time to prepare mentioned functional block copolymer.The typical preparation process is described as the following: (a) Adding cyclohexane, styrene and initiator to the polymerizer, the polymerization is carried out at 50~75℃; (b) adding a mixture of styrene, butadiene and cyclohexane, the polymerization is carried out at 50~70℃ ;(c) adding a mixture of butadiene and cyclohexane, the polymerization is finished at 60~70℃ ;(d) adding coupling agent which is a substituted trimethoxysilane being expressed as N-silane, O-silane and being converted into a functional group (-NH, -OH) of mentioned block copolymer, coupling at 75~90℃ for 1 hr; (e) The amounts of coupling agent are about one sixth to one third of the initiator; (f) treating the prepared copolymer solution with some water and Carbon dioxide at 50~70℃ for 15 min.The copolymer is from three-arm to six-arm mono-modal radial block copolymer having 75~90%styrene, 10~25% butadiene and functional group of-NH or-OH. of the copolymer, Mw is from 30×104 to 120×104, Mw/Mn from 2.0 to 2.5, Izod notched impact strength 50~65 J/m,light transmission not less 87.5%, tensile strength not less 45 Mpa.The exploratory research shows that the mole ratio and feed rate of the random copolymerized styrene-butadiene, as well as the total ratio of styrene-butadiene have greater influence on the properties of the copolymer. The following model is established:Y=bo +∑3j=1 bjxj+∑3j=1bkjxkxj+∑3j=1bjjx2j (k<j)Where: Y is the light transmission, tensile strength, elongation, Izod notched impact

  17. Modeling the Heat Capacity of Spider Silk Inspired Di-block Copolymers

    Science.gov (United States)

    Huang, W.; Krishnaji, S.; Kaplan, D.; Cebe, P.

    2011-03-01

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1-6), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. Using temperature modulated differential scanning calorimetry (TMDSC), we captured the effect of bound water acting as a plasticizer for copolymer films which had been cast from water solution and dried. We determined the water content by thermogravimetry and used the weight loss vs. temperature to correct the mass in TMDSC experiments. Our result shows that non-freezing bound water has a strong plasticization effect which lowers the onset of the glass transition by about 10circ; C. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition were also characterized by TMDSC. We then calculated the solid state heat capacities of our novel block copolymers below the glass transition (Tg) based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known from the ATHAS Data Bank. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this model can serve as a standard method to predict the solid state Cp for other biologically inspired block copolymers. Support was provided from the NSF CBET-0828028 and the MRI Program under DMR-0520655 for thermal analysis instrumentation.

  18. Dissipative Particle Dynamics Simulation of Onion Phase in Star-block Copolymer

    Institute of Scientific and Technical Information of China (English)

    WU Shao-gui; DU Ting-ting

    2013-01-01

    A dissipative particle dynamics simulation technique was used to investigate the effect of molecular architecture of star-block copolymer on the patterned structure in a nanodroplet.With increasing the ratio of solvophilic to block length to solvophobic block length(RH/T),solvophobic sphere,ordered hexagonal phase,onion phase,perforated onion phase and flocculent phase are formed,respectively.Since onion phase has potential application in controlled drug release,it has received wide attention experimentally and theoretically.Our simulation indicates onion phase forms at a certain RH/T(close to but less than 1).A star-block copolymer molecule has two conformations in onion phase:either fully located in a shell or shared by two neighboring shells.Central structure affects onion's final shape.The molecular number of the copolymer in each shell is a quadratic function of the shell's radius.The arm number of star-block copolymer has little influence on onion's structure,but slightly affects the solvent content.Additionally,we studied the influence of arm length on onion's structure.

  19. Effect of Macromolecular Architecture on the Morphology of Polystyrene Polyisoprene Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev [ORNL; Goswami, Monojoy [ORNL; Mays, Jimmy [ORNL; Sides, Scott [ORNL; Sumpter, Bobby G [ORNL; Dadmun, Mark D [ORNL; Dyer, Caleb W [ORNL; Driva, Paraskevi [ORNL; Chen, Jihua [ORNL

    2013-01-01

    The impact of block connectivity on the morphologies of four block copolymers of varying architecture containing polystyrene (PS) and polyisoprene (PI) has been studied. The volume fraction of PS and molecular weight are held constant while varying the architecture from a linear PS-PI diblock copolymer to three different miktoarm star architectures: PS2PI, PSPI2, and PS2PI2. Morphologies of the PS2PI and PSPI2 miktoarm stars are different from those observed for the linear copolymer and dependent on the connectivity of the copolymer blocks. The change in morphology with connectivity indicates that combining two chains at a junction point leads to chain crowding, where subsequent excluded volume effects drive the change in morphology for each sample. The PS2PI2 miktoarm star exhibits the same morphology as the linear diblock but with a reduction in the size of the domains. The extent of the decrease in domain size indicates that chain stretching impacts the formation of this morphology. Experimentally observed morphologies for different chain architectures are generally consistent with three-dimensional self-consistent field theory simulations, taking into account conformational asymmetry and experimental uncertainty in the copolymer composition. Furthermore, these results generally agree with analytical theory predictions that account for architectural and conformational asymmetry.

  20. Discovery of a Frank-Kasper sigma phase in sphere-forming block copolymer melts.

    Science.gov (United States)

    Lee, Sangwoo; Bluemle, Michael J; Bates, Frank S

    2010-10-15

    Sphere-forming block copolymers are known to self-assemble into body-centered cubic crystals near the order-disorder transition temperature. Small-angle x-ray scattering and transmission electron microscopy experiments on diblock and tetrablock copolymer melts have revealed an equilibrium phase characterized by a large tetragonal unit cell containing 30 microphase-separated spheres. This structure, referred to as the sigma (σ) phase by Frank and Kasper more than 50 years ago, nucleates and grows from the body-centered cubic phase similar to its occurrence in metal alloys and is a crystal approximant to dodecagonal quasicrystals. Formation of the σ phase in undiluted linear block copolymers (and certain branched dendrimers) appears to be mediated by macromolecular packing frustration, an entropic contribution to the interparticle interactions that control the sphere-packing geometry.

  1. Enhanced thermal stability of monodispersed silver cluster arrays assembled on block copolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Xu, C H; Chen, X; Liu, Y J; Xie, B; Han, M [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Song, F Q; Wang, G H, E-mail: sjhanmin@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-05-14

    Triblock copolymer poly(styrene-b-butadiene-b-styrene) (SBS) films with long-range ordered self-assembled nanopatterns are used as templates to selectively adsorb soft-landing silver clusters. Closely spaced cluster arrays with high monodispersity are formed through the confinement of the block copolymer scaffolds, and show a much enhanced thermal stability as compared with the cluster assemblies on the surfaces of covalent amorphous solids, or even on the disordered SBS films. Their morphologies are barely influenced by long time thermal annealing at a temperature as high as 180 deg. C, while in the latter case intense aggregations and coalescences of silver clusters are commonly observed upon annealing. The different thermal stabilities of the cluster assemblies also induce different evolutions of their optical extinction spectra under annealing. This promises a simple way to control the monodispersity and thermal stability of metal cluster assembly via self-assembled block copolymer template.

  2. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

    KAUST Repository

    Yu, Haizhou

    2015-09-21

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.

  3. Study of the interface solid/solutions containing PEO-PPO block copolymers and asphaltenes by FTIR/ATR; Estudo de solucoes de copolimeros em bloco de PEO-PPO contendo asfaltenos por FTIR/DTA

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Janaina I.S.; Neto, Jessica S.G.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], E-mails: janaina_333@hotmail.com, kinha_dac_dm@hotmail.com; celias@ima.ufrj.br

    2011-07-01

    The formation of water/oil emulsions can cause problems in various stages of production, processing and refining of petroleum. In this study, the technique of Fourier transform infrared spectroscopy (FTIR) using the method of attenuated total reflectance (ATR) was applied to study the solid-solutions of block copolymers based on poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) interface and its interaction in this interface with asphaltenic fractions of petroleum. The solid is the crystal of the ATR. Initially, we determined the critical micelle concentration values of the copolymers, which were consistent those obtained by a tensiometer. Bottle Test was also performed to correlate the efficiency of PEO-PPO copolymers in the breaking of water/oil emulsions with its adsorption at the interfaces solutions. (author)

  4. Factors affecting the stability of drug-loaded polymeric micelles and strategies for improvement

    Science.gov (United States)

    Zhou, Weisai; Li, Caibin; Wang, Zhiyu; Zhang, Wenli; Liu, Jianping

    2016-09-01

    Polymeric micelles (PMs) self-assembled by amphiphilic block copolymers have been used as promising nanocarriers for tumor-targeted delivery due to their favorable properties, such as excellent biocompatibility, prolonged circulation time, favorable particle sizes (10-100 nm) to utilize enhanced permeability and retention effect and the possibility for functionalization. However, PMs can be easily destroyed due to dilution of body fluid and the absorption of proteins in system circulation, which may induce drug leakage from these micelles before reaching the target sites and compromise the therapeutic effect. This paper reviewed the factors that influence stability of micelles in terms of thermodynamics and kinetics consist of the critical micelle concentration of block copolymers, glass transition temperature of hydrophobic segments and polymer-polymer and polymer-cargo interaction. In addition, some effective strategies to improve the stability of micelles were also summarized.

  5. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid

  6. Gold-Loaded Polymeric Micelles with Temperature-Modulated Catalytic Activity

    Institute of Scientific and Technical Information of China (English)

    HU Na; SHI Dongjian; LI Jihang; LI Junfeng; CHEN Mingqing

    2015-01-01

    Four-armed amphiphilic block copolymers, polystyrene-b-poly(N-isopropylacrylamide) (PS-b-PNIPAM)4, were synthesized by atom transfer radical polymerization (ATRP). (PS-b-PNIPAM)4 self-assembled into micelles with PS block as core and thermoresponsive PNIPAM block as corona. The gold nanoparticles (Au NPs) with average diameter about 5.8 nm were immobilized on the surfaces of the micelles by the reduction of the corresponding ions. The micelle-supported gold nanoparticles (Au-micelles) were applied to catalyze the reduction ofp-nitrophenol. Moreover, the activity of the Au-micelle catalyst could be modulated by the temperature and the Au-micelles could be easily recovered by changing the temperature and recycled four times with high catalytic activity.

  7. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    Science.gov (United States)

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials.

  8. Surface charge-specific cytotoxicity and cellular uptake of tri-block copolymer nanoparticles

    NARCIS (Netherlands)

    Bhattacharjee, S.; Ershov, D.S.; Gucht, van der J.; Alink, G.M.; Rietjens, I.; Zuilhof, H.; Marcelis, A.T.M.

    2013-01-01

    A series of monodisperse (45 ± 5 nm) fluorescent nanoparticles from tri-block copolymers (polymeric nanoparticles (PNPs)) bearing different surface charges were synthesised and investigated for cytotoxicity in NR8383 and Caco-2 cells. The positive PNPs were more cytotoxic and induced a higher intrac

  9. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer, elect

  10. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  11. First observation of an ordered microphase in melts of poly(oxyethylene)-poly(oxypropylene) block copolymers

    DEFF Research Database (Denmark)

    Patrick, J.; Fairclough, J.P.A.; Yu, G.E.;

    2000-01-01

    , a triblock copolymer with perdeuterated P blocks, E(33)dP(42)E(33), was synthesised and studied in the melt phase by small-angle neutron scattering. This allowed determination of the temperature dependence of the Flory-Huggins interaction parameter for the poly(oxyethylene)-poly(oxypropylene) system, i...

  12. Anionic polymerization and polyhomologation: An ideal combination to synthesize polyethylene-based block copolymers

    KAUST Repository

    Zhang, H.

    2013-08-07

    A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts with the "bridge" molecule to afford a 3-arm star (trimacromolecular borane) which serves as an initiator for the polyhomologation. 2013 The Royal Society of Chemistry.

  13. Restructuring in block copolymer thin films: In situ GISAXS investigations during solvent vapor annealing

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.;

    2016-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP ...

  14. Synthesis and properties of poly(butylene terephthalate)-b-polyisobutylene segmented block copolymers

    NARCIS (Netherlands)

    Walch, E.; Gaymans, R.J.

    1994-01-01

    Segmented block copolymers of polyisobutylene (PIB) and poly(butylene terephthalate) (PBT) were made by condensation polymerization of α,θ-di-anhydride telechelic PIB, with 1,4-butanediol and dimethyl terephthalate. The inherent viscosity of the polymers was between 0.35 and 2.0 dl g−1. The extracta

  15. Composition and solution properties of fluorinated block copolymers and their surface structures in the solid state

    Institute of Scientific and Technical Information of China (English)

    NI HuaGang; XUE DongWu; WANG XiaoFang; ZHANG Wei; WANG XinPing; SHEN ZhiQuan

    2009-01-01

    A series of diblock copolymers composed of methyl methacrylate and 2-perfluorooctylethyl methacry-late (PMMA144-b-PFMAn) with various PFMA block lengths were prepared by atom transfer radical po-lymerization (ATRP). The surface structures and properties of these polymers in the solid state and in solution were investigated using contact angle measurement, X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy, surface tension and dynamic laser light scattering (DLS). It was found that with increasing PFMA block length, water and oil repellency de-creased, the ratio of F/C increased with increasing film depth, and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased. When the number of PFMA block units reached 10, PMMA segments were detected at the copolymer surface, which was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interfacial structure at the air/liquid interface, which in turn affects surface structure formation during solution solidification. The results suggest that copolymer solution properties play an important role in struc-ture formation on the solid surface.

  16. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  17. DNA Block Copolymer Doing It All : From Selection to Self-Assembly of Semiconducting Carbon Nanotubes

    NARCIS (Netherlands)

    Kwak, Minseok; Gao, Jia; Prusty, Deepak K.; Musser, Andrew J.; Markov, Vladimir A.; Tombros, Nikolaos; Stuart, Marc C.A.; Browne, Wesley R.; Boekema, Egbert J.; Brinke, Gerrit ten; Jonkman, Harry T.; Wees, Bart J. van; Loi, Maria A.; Herrmann, Andreas

    2011-01-01

    A potentially scalable self-assembly method for single-walled carbon nanotubes (SWNTs) involves the use of amphiphilic DNA block copolymers. One such hybrid is able to cover the entire area of solution-based SWNT technologies, from selective dispersion to nondestructive functionalization to high-yie

  18. Composition and solution properties of fluorinated block copolymers and their surface structures in the solid state

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of diblock copolymers composed of methyl methacrylate and 2-perfluorooctylethyl methacry-late(PMMA144-b-PFMAn) with various PFMA block lengths were prepared by atom transfer radical po-lymerization(ATRP).The surface structures and properties of these polymers in the solid state and in solution were investigated using contact angle measurement,X-ray photoelectron spectroscopy(XPS),sum frequency generation(SFG) vibrational spectroscopy,surface tension and dynamic laser light scattering(DLS).It was found that with increasing PFMA block length,water and oil repellency de-creased,the ratio of F/C increased with increasing film depth,and the degree of ordered packing of the perfluoroalkyl side chains at the surface decreased.When the number of PFMA block units reached 10,PMMA segments were detected at the copolymer surface,which was attributed to the PFMA block length affecting molecular aggregation structure of the copolymer in the solution and the interfacial structure at the air/liquid interface,which in turn affects surface structure formation during solution solidification.The results suggest that copolymer solution properties play an important role in struc-ture formation on the solid surface.

  19. Synthesis of Dendritic-Linear Block Copolymers by Atom Transfer Radical Polymerization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dendritic polyarylether 2-bromoisobutyrate as the macromolecular initiator for the controlled free radical polymerization of styrene was investigated. The polymerization was carried out with CuBr/2,2′-bipyridine catalyst at 110℃. It is found that the hybrid dendritic-linear block copolymers possess well-defined molecular weights and low polydispersities.

  20. Adsorption of polyelectrolytes and charged block copolymers on oxides. Consequences for colloidal stability.

    NARCIS (Netherlands)

    Hoogeveen, N.G.

    1996-01-01

    The aim of the study described in this thesis was to examine the adsorption properties of polyelectrolytes and charged block copolymers on oxides, and the effect of these polymers on the colloidal stability of oxidic dispersions. For this purpose the interaction of some well-characterised polyelectr

  1. Poly(dimethylsiloxane)-poly(ethyleneoxide)-heparin block copolymers. I. Synthesis and characterization

    NARCIS (Netherlands)

    Grainger, D.W.; Kim, S.W.; Feijen, J.

    1988-01-01

    Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), and heparin (PDMS-PEO-Hep) have been prepared via a series of coupling reactions using functionalized prepolymers, diisocyanates, and derivatized heparins. All intermediate steps of the synthesis yield quantifiable

  2. Self-assembled block copolymer membranes: From basic research to large-scale manufacturing

    KAUST Repository

    Nunes, Suzana Pereira

    2013-09-24

    Order and porosity of block copolymer membranes have been controlled by solution thermodynamics, self-assembly, and macrophase separation. We have demonstrated how the film manufacture with long-range order can be up-scaled with the use of conventional membrane production technology.

  3. (PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers

    Science.gov (United States)

    2015-07-08

    on Google Scholar citations as of June 24, 2015 1. [17] Roy, R.; Park, J. K.; Young, W.; Mastroianni, S.; Tureau, M. S.; Epps, T. H., III...accepted Patents and Patent Applications Wei-Fan Kuan and Thomas H. Epps, III, “Tapered Block Copolymer Electrolytes.” U.S. Pat. Appl. 14592441 filed on

  4. Lamellar Microdomains of Block-Copolymer-Based Ionic Supramolecules Exhibiting a Hierarchical Self-Assembly

    DEFF Research Database (Denmark)

    Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng;

    2014-01-01

    Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl ...

  5. Stability of the fcc structure in block copolymer systems.

    Science.gov (United States)

    Nonomura, Makiko

    2008-11-19

    The stability of the face-centered cubic (fcc) structure in microphase separated copolymers is investigated by a coarse-grained approach. Direct simulations of the equation for the microphase separation in three dimensions indicate that there is a narrow area above a certain degree of segregation in the phase diagram, where the fcc structure is the most stable structure. By employing the mode expansion, we have confirmed that the fcc structure can form as a metastable structure even in the weak segregation regime.

  6. Platform Approach to Produce Polymer Nanoparticles with Modular Functionality from Amphiphilic Block Copolymer Stabilizers

    Science.gov (United States)

    2014-04-01

    functionality, an amphiphilic BCP scaffold was devised to serve as an emulsion polymerization stabilizer. The PS-b-P(EO-co-AGE) BCP contained a PS...synthesized via emulsion polymerization using an amphiphilic block copolymer (BCP) surfactant. The polystyrene-block-poly(ethylene oxide-co-allyl...glycidyl ether) BCPs with various lengths and functional monomer incorporation were synthesized using anionic polymerization . Modification of the allyl

  7. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers.

    Science.gov (United States)

    Alvarez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Tejero, Rubén; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2016-04-01

    New amphiphilic block copolymers with antimicrobial properties were obtained by atom transfer radical polymerization (ATRP) and copper catalyzed cycloaddition following two approaches, a simultaneous strategy or a two-step synthesis, which were proven to be very effective methods. These copolymers were subsequently quaternized using two alkyl chains, methyl and butyl, to amplify their antimicrobial properties and to investigate the effect of alkyl length. Antimicrobial experiments in solution were performed with three types of bacteria, two gram-positive and one gram-negative, and a fungus. Those copolymers quaternized with methyl iodide showed better selectivities on gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, against red blood cells, demonstrating the importance of the quaternizing agent chosen. Once the solution studies were performed, we prepared poly(butyl methacrylate) latex particles functionalized with the antimicrobial copolymers by emulsion polymerization of butyl methacrylate using such copolymers as surfactants. The characterization by various techniques served to test their effectiveness as surfactants. Finally, films were prepared from these emulsions, and their antimicrobial activity was studied against the gram-positive bacteria. The results indicate that the antimicrobial efficiency of the films depends not only on the copolymer activity but also on other factors such as the surface segregation of the antimicrobial agent to the interface.

  8. Micellar Packing in Aqueous Solutions of As-Received and Pure Pluronic Block Copolymers

    Science.gov (United States)

    Ryu, Chang; Park, Han Jin

    2013-03-01

    Pluronic block copolymers (Pluronics) are produced on a commercial scale to enable wide range of novel applications from emulsification and colloidal stabilization as nonionic surfactants. While the Pluronic block copolymers offer the advantages of being readily available for such applications, it contains non-micellizable low molecular weight (MW) impurities that would interfere with the self-assembly and micellar packing of PEO-PPO-PEO triblock copolymers in aqueous solutions. The impacts of the low MW impurities will be discussed on the micellar packing of Pluronics F108 and F127 solutions, which form BCC and FCC. While as-received Pluronic samples typically contain about 20 wt.% low MW impurities, we were able to reduce the impurity level to less than 2 wt.% using our large scale purification technique. Comparative studies on small angle x-ray scattering (SAXS) experiments on as-received and purified Pluronics solutions revealed that the contents of triblock copolymers in solutions essentially governs the inter-micellar distance of Pluronic cubic structures. A universal relationship between triblock copolymer concentration and SAXS-based domain spacing has been finally discussed. Funding from Agency for Defense Development, Korea.

  9. Surface Modification for Controlling the Orientation of Block Copolymers in thin film and in Cylindrical Nanopores

    Science.gov (United States)

    Lin, Xin-Guan; Lin, Feng-Cheng; Tung, Shih-Huang

    2012-02-01

    A series of benzocyclobutene-functionalized random copolymers of styrene and 4-vinylpyridine were synthesized by nitroxide-mediated controlled radical polymerization with BPO and TEMPO. Our research was to use these random copolymers of P(S-r-BCB-r-4VP) to control the orientation of microdomains in block copolymers(BCPs) of poly(styrene-b-4-vinylpyridine)(PS-b-P4VP) thin films and in cylindrical nanopores of anodized aluminum oxide (AAO) membranes. On P(S-r-BCB-r-4VP)-modified substrate,we found that in some particular compositions of random copolymer ,the parallel orientation of the microdomains is switched to be perpendicular in PS-b-P4VP thin film. We also introduced P(S-r-BCB-r-4VP) solution into the nanopores of the AAO and nanotubes formed after solvent evaporation and pyrolysis. And then BCPs of PS-b-P4VP were drawn into the P(S-r-BCB-r-4VP)-modified nanopores in the melt via capillary action to form P(S-r-BCB-r-4VP) coated nanorods of PS-b-P4VP.Similarly,in some particular compositions of random copolymer, we observed that the interactions of the blocks with the walls are not strong or if the interactions are balanced, then the orientation of the microdomains will change from being parallel to being perpendicular to the confining walls.

  10. Synthesis of Inorganic Nanocomposites by Selective Introduction of Metal Complexes into a Self-Assembled Block Copolymer Template

    Directory of Open Access Journals (Sweden)

    Hiroaki Wakayama

    2015-01-01

    Full Text Available Inorganic nanocomposites have characteristic structures that feature expanded interfaces, quantum effects, and resistance to crack propagation. These structures are promising for the improvement of many materials including thermoelectric materials, photocatalysts, and structural materials. Precise control of the inorganic nanocomposites’ morphology, size, and chemical composition is very important for these applications. Here, we present a novel fabrication method to control the structures of inorganic nanocomposites by means of a self-assembled block copolymer template. Different metal complexes were selectively introduced into specific polymer blocks of the block copolymer, and subsequent removal of the block copolymer template by oxygen plasma treatment produced hexagonally packed porous structures. In contrast, calcination removal of the block copolymer template yielded nanocomposites consisting of metallic spheres in a matrix of a metal oxide. These results demonstrate that different nanostructures can be created by selective use of processes to remove the block copolymer templates. The simple process of first mixing block copolymers and magnetic nanomaterial precursors and then subsequently removing the block copolymer template enables structural control of magnetic nanomaterials, which will facilitate their applicability in patterned media, including next-generation perpendicular magnetic recording media.

  11. Compatibilization of blends of low density polyethylene and poly(vinyl chloride) by segmented EB(SAN-block-EB)n block copolymers

    NARCIS (Netherlands)

    Kroeze, E.; Brinke, G. ten; Hadziioannou, G.

    1997-01-01

    Hydrogenated segmented poly[butadiene-block-((styrene-co-acrylonitrile)-block-butadiene)n] block copolymers, which were developed by use of the polymeric iniferter technique, were tested for their compatibilizing capacities for (10/90) LDPE/PVC blends. The acrylonitrile content of the SAN blocks of

  12. Compatibilization of blends of low density polyethylene and poly(vinyl chloride) by segmented EB(SAN-block-EB)(n) block copolymers

    NARCIS (Netherlands)

    Kroeze, E; ten Brinke, G.; Hadziioannou, G

    1997-01-01

    Hydrogenated segmented poly[butadiene-block-((styrene-co-acrylonitrile)-block-butadiene)(n)] block copolymers, which were developed by use of the polymeric iniferter technique, were tested for their compatibilizing capacities for (10/90) LDPE/PVC blends. The acrylonitrile content of the SAN blocks o

  13. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    Science.gov (United States)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  14. Antibacterial modification of an injectable, biodegradable, non-cytotoxic block copolymer-based physical gel with body temperature-stimulated sol-gel transition and controlled drug release.

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Wang, Wenyi; Lee, Ka I; Gao, Chang; He, Liang; Wang, Yuanfeng; Lai, Chuilin; Fei, Bin; Xin, John H

    2016-07-01

    Biomaterials are being extensively used in various biomedical fields; however, they are readily infected with microorganisms, thus posing a serious threat to the public health care. We herein presented a facile route to the antibacterial modification of an important A-B-A type biomaterial using poly (ethylene glycol) methyl ether (mPEG)- poly(ε-caprolactone) (PCL)-mPEG as a typical model. Inexpensive, commercial bis(2-hydroxyethyl) methylammonium chloride (DMA) was adopted as an antibacterial unit. The effective synthesis of the antibacterial copolymer mPEG-PCL-∼∼∼-PCL-mPEG (where ∼∼∼ denotes the segment with DMA units) was well confirmed by FTIR and (1)H NMR spectra. At an appropriate modification extent, the DMA unit could render the copolymer mPEG-PCL-∼∼∼-PCL-mPEG highly antibacterial, but did not largely alter its fascinating intrinsic properties including the thermosensitivity (e.g., the body temperature-induced sol-gel transition), non-cytotoxicity, and controlled drug release. A detailed study on the sol-gel-sol transition behavior of different copolymers showed that an appropriate extent of modification with DMA retained a sol-gel-sol transition, despite the fact that a too high extent caused a loss of sol-gel-sol transition. The hydrophilic and hydrophobic balance between mPEG and PCL was most likely broken upon a high extent of quaternization due to a large disturbance effect of DMA units at a large quantity (as evidenced by the heavily depressed PCL segment crystallinity), and thus the micelle aggregation mechanism for the gel formation could not work anymore, along with the loss of the thermosensitivity. The work presented here is highly expected to be generalized for synthesis of various block copolymers with immunity to microorganisms. Light may also be shed on understanding the phase transition behavior of various multiblock copolymers.

  15. Effect of Surfactants on Association Characteristics of Di- and Triblock Copolymers of Oxyethylene and Oxybutylene in Aqueous Solutions: Dilute Solution Phase Diagrams, SANS, and Viscosity Measurements at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Sanjay H. Punjabi

    2011-01-01

    Full Text Available The interactions in poly(oxyethylene (E – poly(oxybutylene (B of EB or EBE type block copolymers-sodium dodoecyl sulfate (SDS or dodecyltrimethylammonium bromide (DTAB and/or t-octylphenoxy polyethoxyethanol, (TX-100 have been monitored as a function of surfactant concentration and temperature. The addition of ionic surfactants to copolymer micellar solutions in general induced not only shape transition from spherical to prolate ellipsoids at 30∘C in the copolymer micelles but also destabilize them and even suppress the micelle formation at high surfactant loading. DTAB destabilizes the copolymer micelles more than SDS. TX-100, being nonionic, however, forms stable mixed micelles. The block copolymer-surfactant complexes are hydrophilic in nature and are characterized by high turbid and cloud points. Triblock copolymer micelles got easily destabilized than the diblock copolymer ones, indicating the importance of the interaction between the hydrophilic E chains and surfactants. The effects of destabilization of the copolymer micelles are more dominating than the micellar growth at elevated temperatures, which is otherwise predominant in case of copolymer micelles alone.

  16. SYNTHESIS OF POLY(ETHYLENE TEREPHTHALATE)-POLYCAPROLACTONE BLOCK COPOLYMER BY DIRECT COPOLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Shen-guo Wang; Kai Tang

    1999-01-01

    Poly(ethylene terephthalate)-polycaprolactone block copolymer (PCL-b-PET) is a polyester with improved biodegradability. In the present paper, a new direct copolymerization method of ε-caprolactone (ε-CL) and bishydroxyethylene terephthalate (BHET) in the presence of Ti(OBu)4 was proposed for the synthesis of PCL-b-PET. The PCL-b-PET copolymer was characterized by IR, GPC and 1H-NMR techniques, and the effects of synthesis conditions, such as temperature, reaction time and concentration of catalyst on the copolymerization were discussed.

  17. Characterization of the paclitaxel loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer targeting HER-2 overexpressing breast cancer cells

    Science.gov (United States)

    Thach Nguyen, Kim; Nguyen, Thu Ha; Do, Dinh Ho; Huan Le, Quang

    2017-03-01

    In this work we report the isolation of DNA aptamer that is specifically bound to a HER-2 overexpressing SK-BR-3 human breast cancer cell line, using SELEX strategy. Paclitaxel (PTX) loaded chitosan graft Pluronic F127 copolymer micelles conjugate with a DNA aptamer was synthesized and its structure was confirmed by TEM image. This binary mixed system consisting of DNA aptamer modified Pluronic F127 and chitosan could enhance PTX loading capacity and increase micelle stability. Morphology images confirmed the existence of PTX micelles, with an average size of approximately 86.22 ± 1.45 nm diameters. Drug release profile showed that the PTX conjugate maintained a sustained PTX release. From in vitro cell experiment it was shown that 89%–93%, 50%–58%, 55%–62%, 24%–28% and 2%–7% of the SK-BR-3, NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31, respectively, were dead after 6–48 h. These results demonstrated a novel DNA aptamer-micelle assembly for efficient detection and a system for the delivery of PTX targeting specific HER-2 overexpressing. We have also successfully cultivated cancer tissues of explants from Vietnamese patients on a type I collagen substrate. The NS-VN-67, LH-VN-48, HT-VN-26 and NV-VN-31cell lines were used as cellular model sources for the study of chemotherapy drug in cancer.

  18. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanapathipillai, Mathumai [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable

  19. Polypeptoids: A model system for exploring sequence and shape effects on block copolymer self-assembly

    Science.gov (United States)

    Segalman, Rachel

    2015-03-01

    While our ability to understand the detailed relationship between block copolymer chemistry and mesoscopic self-assembly has made remarkable progress over the last many years, yet we are still limited to a relatively small number of blocks in terms of structure-property understanding. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence specific polymers that offer the opportunity to probe the effect of sequence on self-assembly with much simpler molecular interactions and more scalable synthesis than traditional polypeptides. In this talk, I will discuss the use of this model system to understand the role of sequence on chain collapse and globule formation in solution, polymer crystallization, and block copolymer self-assembly. I will then discuss potential application as surface active agents for anti-fouling.

  20. PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery.

    Science.gov (United States)

    Cerritelli, Simona; Velluto, Diana; Hubbell, Jeffrey A

    2007-06-01

    Under appropriate conditions, block copolymeric macroamphiphiles will self-assemble in water to form vesicles, referred to as polymersomes. We report here polymersomes that can protect biomolecules in the extracellular environment, are taken up by endocytosis, and then suddenly burst within the early endosome, releasing their contents prior to exposure to the harsh conditions encountered after lysosomal fusion. Specifically, block copolymers of the hydrophile poly(ethylene glycol) (PEG) and the hydrophobe poly(propylene sulfide) (PPS) were synthesized with an intervening disulfide, PEG17-SS-PPS30. Polymersomes formed from this block copolymer were demonstrated to disrupt in the presence of intracellular concentrations of cysteine. In cellular experiments, uptake, disruption, and release were observed within 10 min of exposure to cells, well within the time frame of the early endosome of endolysosomal processing. This system may be useful in cytoplasmic delivery of biomolecular drugs such as peptides, proteins, oligonucleotides, and DNA.

  1. Responsive Hydrogels from Associative Block Copolymers: Physical Gelling through Polyion Complexation

    Directory of Open Access Journals (Sweden)

    Christine M. Papadakis

    2017-01-01

    Full Text Available The present review article highlights a specific class of responsive polymer-based hydrogels which are formed through association of oppositely charged polyion segments. The underpinning temporary three-dimensional network is constituted of hydrophilic chains (either ionic or neutral physically crosslinked by ion pair formation arising from intermolecular polyionic complexation of oppositely charged repeating units (polyacid/polybase ionic interactions. Two types of hydrogels are presented: (i hydrogels formed by triblock copolymers bearing oppositely charged blocks (block copolyampholytes, forming self-assembled networks; and (ii hydrogels formed by co-assembly of oppositely charged polyelectrolyte segments belonging to different macromolecules (either block copolymers or homopolyelectrolytes. Due to the weak nature of the involved polyions, these hydrogels respond to pH and are sensitive to the presence of salts. Discussing and evaluating their solution, rheological and structural properties in dependence on pH and ionic strength, it comes out that the hydrogel properties are tunable towards potential applications.

  2. Molecular transport into and out of ionic-liquid filled block copolymer vesicles in water

    Science.gov (United States)

    Lodge, Timothy; Yao, Letitia; So, Soonyong

    We have developed a method to prepare stable, size-controlled block copolymer vesicles that contain ionic liquid in the interior, but that are dispersed in water. Such nanoemulsions are of interest as nanoreactors, because the mass transfer and cost limitations of ionic liquids are circumvented. However, a crucial question is whether target molecules (e . g ., reagents and products) can enter and leave the vesicles, respectively, on a useful time scale (i . e ., seconds or shorter). In this talk we will briefly describe methods to prepare such vesicles with narrow size distributions, using poly(styrene)-block-poly(ethylene oxide) and poly(butadiene)-block-poly(ethylene oxide) copolymers of various compositions. We will then present results of pulsed-field gradient NMR measurements of probe diffusion that yield independent measurements of the entry and escape rates for selected small molecules, as a function of membrane thickness and temperature.

  3. Self-assembled Block Copolymers with Various Architectures Designed by ATRP

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja

    /L do to hydrophobic association of the PS blocks in the corona. Effect of the hydrophobe length and polymer topology has been additionally investigated (6). iv. Hydrophilic nanoporous polymers with various morphologies and pore size (7) have been mastered by novel synthetic strategies using two...... of the macromolecular building blocks they self assemble in attractive morphologies and exhibit interesting rheology. The designed at the Danish Polymer Centre by ATRP self-assembling block copolymers will be demonstrated by several examples: i. Diblock copolymers of PMMA with side chain liquid crystalline (LC...... methodologies, which will be discussed. In contact with water, they showed spontaneous water uptake (8). References (1). Hansen, N.M.L.; Jankova, K.; Hvilsted, S. European Polymer Journal 43(2), pp 255-293 (2007); Bednarek, M.; Jankova, K.; Hvilsted, S. J. Polym. Sci., Part A: Polym. Chem. 45, pp 333-340 (2007...

  4. PVP-b-PEO block copolymers for stable aqueous and ethanolic graphene dispersions.

    Science.gov (United States)

    Perumal, Suguna; Park, Kyung Tae; Lee, Hyang Moo; Cheong, In Woo

    2016-02-15

    The ability to disperse pristine (unfunctionalized) graphene is important for various applications, coating, nanocomposites, and energy related systems. Herein we report that amphiphilic copolymers of poly(4-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) are able to disperse graphene with high concentrations about 2.6mg/mL via sonication and centrifugation. Ethanolic and aqueous highly-ordered pyrolytic graphite (HOPG) dispersions with block copolymers were prepared and they were compared with the dispersions stabilized by P-123 Pluronic® (P123) and poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO) synthesized. Transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman and UV-visible spectroscopic studies confirmed that PVP-b-PEO block copolymers are better stabilizers for HOPG graphene than P123 and PS-b-PEO. X-ray photoelectron spectroscopy and force-distance (F-d) curve analyses revealed that the nitrogen of vinyl pyridine plays a vital role in better attractive interaction with surface of graphene sheet. Thermogravimetric analysis showed that larger amount of PVP-b-PEO was adsorbed onto graphene with longer poly(4-vinyl pyridine) (PVP) block length and in aqueous medium, respectively, and which was consistent with electrical conductivity decreases. This study presents the dispersion efficiency of graphene using PVP-b-PEO varies substantially depending on the lengths of their hydrophobic (PVP) domains.

  5. Molecular weight determination of block copolymers by pulsed gradient spin echo NMR.

    Science.gov (United States)

    Barrère, Caroline; Mazarin, Michaël; Giordanengo, Rémi; Phan, Trang N T; Thévand, André; Viel, Stéphane; Charles, Laurence

    2009-10-01

    Matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) is the technique of choice to achieve molecular weight data for synthetic polymers. Because the success of a MALDI-MS analysis critically depends on a proper matrix and cation selection, which in turn relates closely to the polymer chemical nature and size, prior estimation of the polymer size range strongly helps in rationalizing MALDI sample preparation. We recently showed how pulsed gradient spin echo (PGSE) nuclear magnetic resonance could be used as an advantageous alternative to size exclusion chromatography, to rationalize MALDI sample preparation and confidently interpret MALDI mass spectra for homopolymers. Our aim here is to extend this methodology to the demanding case of amphiphilic block copolymers, for which obtaining prior estimates on the Mw values appears as an even more stringent prerequisite. Specifically, by studying poly(ethylene oxide) polystyrene block copolymers of distinct molecular weights and relative block weight fractions, we show how PGSE data can be used to derive the block Mw values. In contrast to homopolymers, such determination requires not only properly recorded calibration curves for each of the polymers constituting the block copolymers but also an appropriate hydrodynamic model to correctly interpret the diffusion data.

  6. Morphology And Local Mechanical Properties Of A Block Copolymer Cell Substrate

    Science.gov (United States)

    Wall, Craig; Yermolenko, Ivan; Krishnan, G. Rajesh; Sarkar, Debanjan; Alexander, John

    2014-03-01

    Atomic force microscopy (AFM) was applied for the characterization of morphology and mechanical properties of a block copolymer coating designed for biomaterials applications. The material is a block-copolymer with poly(ethylene glycol) as one block and a peptide as second block, which are connected through urethane bonds. The AFM images obtained in amplitude modulation mode revealed the morphology is characterized by micron-scale sheaf-like structures embedded in a more homogeneous and, presumably, amorphous matrix. The self-assembly of the peptide segments is responsible for the formation of the ordered sheaf structures and this phenomenon was common for different variations of the components. Maps of elastic modulus and work of adhesion of the block copolymer, which also differentiate the matrix and ordered regions, were obtained with Hybrid mode at different tip-force levels. The quantitative estimates show that elastic modulus varies in the MPa range and work of adhesion in the hundreds of mJ/m2 range. These data are compared with AFM-based nanoindentation that was performed at higher tip-force level. The results indicate that material surface is more complicated and they suggest in-depth morphology variations. A tentative model of the structural organization is proposed.

  7. Synthesis and Characterization of All-Conjugated Block Copolymers Prepared via Click Chemistry

    Science.gov (United States)

    Verduzco, Rafael; Smith, Kendall

    2012-02-01

    All-conjugated block copolymers with both hole-conducting and electron-conducting polymer blocks can be used to address fundamental questions regarding the structure, optoelectronic properties, and photovoltaic performance of organic photovoltaic blends, but synthetic challenges have precluded comprehensive studies on such systems. Here, we present a novel synthetic approach for preparing all-conjugated block copolymers and detailed studies of their nanoscale structure and optical properties. Our synthetic approach is based on copper-catalyzed azide-alkyne ``click'' chemistry and enables us to prepare block copolymers with a poly(3-alkylthiophene) block covalently linked to a conjugated polymer prepared by Suzuki polycondensation polymerization, including poly(9,9-dioctyl fluorene), poly(9,9-dioctyl fluorene-alt-benzothiadiazole) and poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFOTBT). A combination of x-ray diffraction, grazing-incidence x-ray scattering, atomic force microscopy, and fluorescence quenching measurements give insight into their microstructure and potential for use in high-performance all-polymer photovoltaics.

  8. Tailor-made polyfluoroacrylate and its block copolymer by RAFT polymerization in miniemulsion; improved hydrophobicity in the core-shell block copolymer.

    Science.gov (United States)

    Chakrabarty, Arindam; Singha, Nikhil K

    2013-10-15

    Controlled/living radical polymerization (CRP) of a fluoroacrylate was successfully carried out in miniemulsion by Reversible Addition Fragmentation chain Transfer (RAFT) process. In this case, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (HFBA) was polymerized using 2-cyanopropyl dodecyl trithiocarbonate (CPDTC) as RAFT agent, Triton X-405 and sodium dodecyl sulfonate (SDS) as surfactant, and potassium persulphate (KPS) or 2,2'-azobis isobutyronitrile (AIBN) as initiator. Being compatible with hydrophobic fluoroacrylate, this RAFT agent offered very high conversion and good control over the molecular weight of the polymer. The miniemulsion was stable without any costabilizer. The long chain dodecyl group (-C12H25) (Z-group in the RAFT agent) had beneficial effect in stabilizing the miniemulsion. When 2-cyano 2-propyl benzodithioate (CPBD) (Z=-C6H5) was used as RAFT agent, the conversion was less and particle size distribution was very broad. Block copolymerization with butyl acrylate (BA) using PHFBA as macro-RAFT agent showed core-shell morphology with the aggregation of PHFBA segment in the shell. GPC as well as DSC analysis confirmed the formation of block copolymer. The core-shell morphology was confirmed by TEM analysis. The block copolymers (PHFBA-b-PBA) showed significantly higher water contact angle (WCA) showing much better hydrophobicity compared to PHFBA alone.

  9. Modular synthesis of a block copolymer with a cleavable linkage via “click” chemistry

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A diblock copolymer poly(ethylene glycol)-block-polystyrene or PEG-b-PS with an olefinic double bond at the PEG and PS junction has been prepared by modular synthesis via"click"chemistry.This involved the synthesis of PS by atom transfer radical polymerization and the nucleophilic substitution of the terminal bromide group with azide to yield azide-terminated PS. PEG with an alkynyl terminal group was prepared from reacting carboxyl-end-functionalized PEG with 4-hydroxybut-2-enyl prop-2-ynyl succinate,which contained an alkynyl group as well as an olefin group.The PS and PEG polymers were linked via the 1,3-dipolar cycloaddition of the end azide and alkyne groups.The obtained copolymer was characterized by 1H NMR spectroscopy and size exclusion chromatography(SEC).SEC analysis indicated that the diblock copolymer produced could be readily cleaved by ozonolysis to regenerate the constituent homopolymers.

  10. Application of Block Copolymer in Three-Liquid-Phase Extraction System

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel three-liquid-phase extraction system (TES) composed of butyl acetate, block copolymer polyethylene oxide-polypropylene oxide-polyethylene oxide and ammonium sulphate aqueous solution [(NH4)2SO4] as top, middle, and bottom phase, respectively, has been developed. The copolymer recycling and partitioning behavior of penicillin V has been studied in this system. Results show that the copolymer could be purified and recycled and penicillin V of the filtrated ferment broth could be partitioned unevenly among the phases and purified in the top phase of this TES. About 90 wt.% of penicillin V could be distributed into the top phase around pH 2.5 and only less than 0.1 wt.% left in the bottom phase.

  11. Comparative Fluorescence Resonance Energy-Transfer Study in Pluronic Triblock Copolymer Micelle and Niosome Composed of Biological Component Cholesterol: An Investigation of Effect of Cholesterol and Sucrose on the FRET Parameters.

    Science.gov (United States)

    Roy, Arpita; Kundu, Niloy; Banik, Debasis; Sarkar, Nilmoni

    2016-01-14

    The formation of pluronic triblock copolymer (F127)-cholesterol-based niosome and its interaction with sugar (sucrose) molecules have been investigated. The morphology of F127-cholesterol -based niosome in the presence of sucrose has been successfully demonstrated using dynamic light scattering (DLS) and transmission electron microscopic (TEM) techniques. The DLS profiles and TEM images clearly suggest that the size of the niosome aggregates increases significantly in the presence of sucrose. In addition to structural characterization, a detailed comparative fluorescence resonance energy transfer (FRET) study has been carried out in these F127-containing aggregates, involving coumarin 153 (C153) as donor (D) and rhodamine 6G (R6G) as an acceptor (A) to monitor the dynamic heterogeneity of the systems. Besides, time-resolved anisotropy and fluorescence correlation spectroscopy measurements have been carried out to monitor the rotational and lateral diffusion motion in these F127-cholesterol-based aggregates using C153 and R6G, respectively. During the course of FRET study, we have observed multiple time constants of FRET inside the F127-cholesterol-based niosomes in contrast with the F127 micelle. This corresponds to the presence of more than one preferential donor-acceptor (D-A) distance in niosomes than in F127 micelle. FRET has also been successfully used to probe the effect of sucrose on the morphology of F127-cholesterol-based niosome. In the presence of sucrose, the time constant of FRET further increases as the D-A distances increase in sucrose-decorated niosome. Finally, the excitation-wavelength-dependent FRET studies have indicated that as the excitation of donor molecules varies from 408 to 440 nm the contribution of the faster rise component of the acceptor enhances considerably, which clearly establishes the dynamics heterogeneity of both systems. Our findings also indicate that FRET is completely intravesicular in nature in these block copolymer

  12. Morphological Studies on Sn-O Coordination Driving Self-assembly of Well-defined Organotin-containing Block Copolymers

    Institute of Scientific and Technical Information of China (English)

    Jian Jiang; Wei Yan; Ling-yan Liu; Wei-xing Chang; Jing Li

    2014-01-01

    A tin-oxygen coordination driving self-assembly was developed in the block copolymers containing organotin,which were prepared by the radical addition-fraction transfer (RAFT) method and characterized by the gel-permeation chromatography (GPC) and 1H-NMR.And the self-assemblies of these block copolymers with various chain length ratios in the different concenaations in CHCl3 were stable according to the results of DLS and TEM.Additionally,it was also given an insight investigation on the regulation of self-assembly of the block copolymers by adding dibutyltin dichloride and a possible mechanism was proposed.

  13. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  14. Preparation, Stability, and Bio-Compatability of Block Copolymer Vesicles

    Science.gov (United States)

    Discher, Dennis; Lee, James C.-M.; Bermudez, Harry; Bates, Frank; Discher, Bohdana

    2001-03-01

    Vesicles made completely from diblock copolymers polymersomes can be stably prepared by a wide range of techniques common to liposomes. Processes such as film rehydration, sonication, and extrusion can generate many micron giants as well as monodisperse, 100 nm vesicles of PEO-PEE (polyethyleneoxide polyethylethylene) or PEO PBD (polyethyleneoxide polybutadiene). These thick-walled vesicles of polymer can encapsulate macromolecules just as liposomes can, but, unlike many pure liposome systems, these polymersomes exhibit no in-surface thermal transitions and a sub-population even survive autoclaving. Suspension in blood plasma has no immediate ill-effect on vesicle stability, and neither adhesion nor stimulation of phagocytes are apparent when giant polymersomes are held in direct, protracted contact. Proliferating cells, in addition, are unaffected when cultured for an extended time with an excess of polymersomes, and several injections of 10 mg doses into rats show no ill-effect. The results are consistent with the steric stabilization that PEG-lipid can impart to liposomes, but the present single-component polymersomes are far more stable mechanically and are not limited by PEG driven micellization.

  15. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.

    Science.gov (United States)

    Samanta, Susruta; Roccatano, Danilo

    2013-03-21

    Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water.

  16. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    Science.gov (United States)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  17. Water vapor and gas transport through PEO PBT block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Potreck, J.; Mulder, M.H.V.; Wessling, M.

    2002-01-01

    Introduction At the bore well natural gas is saturated with water. Downstream the presence of water may cause: formation of methane hydrates (blocking eventually the pipeline), condensation of water in the pipeline and corrosion effects. A process used for the dehydration of natural gas is glycol ab

  18. Poly(dimethylsiloxane)-poly(ethylene oxide)-heparin block copolymers II: Surface characterization and in vitro assessments

    NARCIS (Netherlands)

    Grainger, D.W.; Knutson, K.; Kim, S.W.; Feijen, J.

    1990-01-01

    Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), as well as heparin-coated glass beads and tubes were evaluated for the amounts and activities of surface-immobilized heparin. Because the amphiphilic copolymer system is thermodynanmcally predicted to demonstrate l

  19. Block Copolymers of Ethylene Oxide and Styrene Oxide:New Copolymer Surfactants(Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    Zhuo Yang; David Attwood; Colin Booth

    2003-01-01

    @@ 1 Introduction The range and application, actual and potential, of water-soluble block-copoly (oxyalkylene)s have beenextensively reviewed in recent compilations by edited by Nace[1] and by Alexandridis and Lindman[2].

  20. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  1. Iron Oxide Arrays Prepared from Ferrocene- and Silsesquioxane-Containing Block Copolymers

    Directory of Open Access Journals (Sweden)

    Raita Goseki

    2012-01-01

    Full Text Available Arrays of iron oxides as precursors of iron clusters were prepared by oxygen plasma treatment of block copolymer microphase-separated nanostructures in thin films. Block copolymers composed of ferrocene-containing and silsesquioxane-containing polymethacrylate (PMAPOSS-b-PMAHFC were successfully prepared, with different molecular weights and compositions and narrow molecular weight distributions, by living anionic polymerization. The formed microphase-separated nanostructures in the bulk were characterized by wide- and small-angle X-ray scattering (WAXS and SAXS, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. Thin films were prepared from a solution of PMAPOSS-b-PMAHFC in tetrahydrofuran by spin coating onto silicon wafers. Fingerprint-type line nanostructures were formed in the PMAPOSS-b-PMAHFCs thin films after solvent annealing with carbon disulfide. Oxygen plasma treatment provided the final line arrays of iron oxides based on the formed nanostructural patterns.

  2. Structure-Properties Relationship in Proton Conductive Sulfonated Polystyrene-Polymethyl Methacrylate Block Copolymers.

    Science.gov (United States)

    Rubatat, Laurent; Li, Chaoxu; Dietsch, Herve; Nykainen, Antti; Ruokolainen, Janne; Mezzenga, Raffaele

    2009-03-01

    We report on the dependence of proton conductivity on the morphologies of sulfonated polystyrene-poly(methyl methacrylate) (sPS-PMMA) diblock copolymers. Three diblock copolymers of varying molecular weight and block volume fraction were studied, for each one several sulfonation degrees of the PS block were considered. The investigation of the morphologies of the self-assembled sPS-PMMA diblocks was carried out by means of small angle neutron scattering and transmission electron microscopy. Depending on molecular weight and sulfonation degrees, isotropic phase (ISO), lamellar phase (LAM), cylindrical hexagonal phase (HEX) and hexagonally perforated lamellae (HPL) were observed. Proton conductivity, normalized by the volume fraction of the conductive domains (formed by PS, sPS and water), was shown to rise monotonically with the following sequence of morphologies: ISO to HEX to HPL to LAM.

  3. Amphiphilic block copolymers as efficiency boosters in microemulsions a SANS investigation of the role of polymers

    CERN Document Server

    Endo, H; Mihailescu, M; Monkenbusch, M; Gompper, G; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    The effect of amphiphilic block copolymers on ternary microemulsions (water, oil and non-ionic surfactant) is investigated. Small amounts of PEP-PEO block copolymer lead to a dramatic expansion of the one-phase region where water and oil can be solubilized by the mediation of surfactant molecules. Small-angle neutron-scattering experiments employing a high-precision two-dimensional contrast-variation technique demonstrate that the polymer is distributed uniformly on the surfactant membrane, where it modifies the membrane curvature elasticity. Furthermore, a new approach to determine the bending rigidity of an amphiphilic membrane is proposed, which is precise enough to measure the logarithmic scale dependence of the bending rigidity and its universal prefactor in bicontinuous microemulsions. (orig.)

  4. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers

    Science.gov (United States)

    Osuji, Chinedum

    2014-03-01

    Magnetic fields provide a facile approach to direct the self-assembly of magnetically anisotropic block copolymer nanostructures in a scalable manner. Here we combine such field-based processing with materials design to enable the fabrication of polymer films with highly aligned stimuli-responsive nanopores. Etch removal of a poly(D,L-lactide) (PLA) brush that is the minority component of a liquid crystalline block copolymer is used to produce nanopores of ~ 8 nm diameter. The pores can be reversibly closed and opened while retaining their alignment by appropriate heating and cooling. We present TEM and temperture resolved scattering data during pore closure and re-opening to explore the mechanism and kinetics of pore collapse. NSF DMR-0847534; DMR-1119826.

  5. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    KAUST Repository

    Tan, Kwan Wee

    2014-04-11

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  6. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    Science.gov (United States)

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

  7. Functionalization of carbon nanofibers with elastomeric block copolymer using carbodiimide chemistry

    Science.gov (United States)

    Mapkar, Javed A.; Iyer, Ganesh; Coleman, Maria R.

    2009-02-01

    Surface functionalization of carbon nanofibers (CNFs) with aminopropyl terminated polydimethylsiloxane [(PDMS-NH 2)] and other organic diamines was achieved using carbodiimide chemistry. The carbodiimide chemistry provides faster reaction rate so that the reaction occurs at lower temperature compared to amidation and acylation-amidation chemistry. CNF functionalized with PDMS-NH 2 fibers were further functionalized with oligomer of polyimide (6FDA-BisP) using imidization reaction. The formation of block copolymer on the surface of CNF is proposed as an effective method to engineer the interphase between the fiber and the polymer, which is essential to modulate and enhance the properties of the nanocomposite. The efficiency of the carbodiimide chemistry to functionalize amine terminated groups on CNF and the functionalization of block copolymer was characterized using thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and UV-vis spectroscopy.

  8. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells.

    Science.gov (United States)

    Tan, Kwan Wee; Moore, David T; Saliba, Michael; Sai, Hiroaki; Estroff, Lara A; Hanrath, Tobias; Snaith, Henry J; Wiesner, Ulrich

    2014-05-27

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI(3-x)Cl(x)) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI(3-x)Cl(x) material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance.

  9. Role of Polyalanine Domains in -Sheet Formation in Spider Silk Block Copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Rabotyagova, O.; Cebe, P; Kaplan, D

    2010-01-01

    Genetically engineered spider silk-like block copolymers were studied to determine the influence of polyalanine domain size on secondary structure. The role of polyalanine block distribution on {beta}-sheet formation was explored using FT-IR and WAXS. The number of polyalanine blocks had a direct effect on the formation of crystalline {beta}-sheets, reflected in the change in crystallinity index as the blocks of polyalanines increased. WAXS analysis confirmed the crystalline nature of the sample with the largest number of polyalanine blocks. This approach provides a platform for further exploration of the role of specific amino acid chemistries in regulating the assembly of {beta}-sheet secondary structures, leading to options to regulate material properties through manipulation of this key component in spider silks.

  10. Vertically oriented hexagonal mesoporous zirconia thin films by block copolymer templating

    OpenAIRE

    Miko, Annamaria ; Demirel, A. Levent ; Somer, Mehmet

    2012-01-01

    We report the synthesis of vertically oriented, long-range ordered hexagonal mesoporous zirconia thin ?lms. The orientation of hexagonally ordered cylindrical mesopores in thin ?lms was effectively controlled by taking advantage of the temperature dependent hydrophobicity of the templating block copolymer PEO–PPO–PEO. Vertical orientation was obtained when temperature was 30 C or above throughout the process. Dehydration and enhanced chemical incompatibility between the PEO and PPO b...

  11. Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication.

    Science.gov (United States)

    Lee, Ashlynn L Z; Ng, Victor W L; Wang, Weixin; Hedrick, James L; Yang, Yi Yan

    2013-12-01

    Current antimicrobial strategies have mostly been developed to manage infections due to planktonic cells. However, microbes in their nature state will tend to exist by attaching to and growing on living and inanimate surfaces that result in the formation of biofilms. Conventional therapies for treating biofilm-related infections are likely to be insufficient due to the lower susceptibility of microbes that are embedded in the biofilm matrix. In this study, we report the development of biodegradable hydrogels from vitamin E-functionalized polycarbonates for antimicrobial applications. These hydrogels were formed by incorporating positively-charged polycarbonates containing propyl and benzyl side chains with vitamin E moiety into physically cross-linked networks of "ABA"-type polycarbonate and poly(ethylene glycol) triblock copolymers. Investigations of the mechanical properties of the hydrogels showed that the G' values ranged from 1400 to 1600 Pa and the presence of cationic polycarbonate did not affect the stiffness of the hydrogels. Shear-thinning behavior was observed as the hydrogels displayed high viscosity at low shear rates that dramatically decreased as the shear rate increased. In vitro antimicrobial studies revealed that the more hydrophobic VE/BnCl(1:30)-loaded hydrogels generally exhibited better antimicrobial/antifungal effects compared to the VE/PrBr(1:30) counterpart as lower minimum biocidal concentrations (MBC) were observed in Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and Candida albicans (fungus) (156.2, 312.5, 312.5 mg/L for VE/BnCl(1:30) and 312.5, 2500 and 625 mg/L for VE/PrBr(1:30) respectively). Similar trends were observed for the treatment of biofilms where VE/BnCl(1:30)-loaded hydrogels displayed better efficiency with regards to eradication of biomass and reduction of microbe viability of the biofilms. Furthermore, a high degree of synergistic antimicrobial effects was also observed through the co

  12. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    Science.gov (United States)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  13. Electrically and chemically tunable soft-solid block copolymer structural color (Conference Presentation)

    Science.gov (United States)

    Park, Cheolmin

    2016-09-01

    1D photonic crystals based on the periodic stacking of two different dielectric layers have been widely studied due to their potential use in low-power reflective mode displays, e-books and sensors, but the fabrication of mechanically flexible polymer structural color (SC) films, with electro-active color switching, remains challenging. Here, we demonstrate free-standing electric field tunable ionic liquid swollen block copolymer films. Placement of a polymer/ionic liquid (IL) film-reservoir adjacent to a self-assembled poly(styrene-block-quaternized 2vinyl pyridine) (PS-b-QP2VP) copolymer SC film allowed the development of R, G and B full-color SC block copolymer films by swelling of the QP2VP domains by the ionic liquid associated with water molecules. The IL-polymer/BCP SC film is mechanically flexible with excellent color stability over several days at ambient conditions. The selective swelling of the QP2VP domains could be controlled by both the ratio of the IL to a polymer in the gel-like IL reservoir layer and by an applied voltage in the range of -3V to +6V using a metal/IL reservoir/SC film/IL reservoir/metal capacitor type device.

  14. Amphiphilic Spider Silk-Like Block Copolymers with Tunable Physical Properties and Morphology for Biomedical Applications

    Science.gov (United States)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2013-03-01

    Silk-based materials are important candidates for biomedical applications because of their excellent biocompatibility and biodegradability. To generate silk amphiphilic biopolymers with potential use in guided tissue repair and drug delivery, a novel family of spider silk-like block copolymers was synthesized by recombinant DNA technology. Block copolymer thermal properties, structural conformations, protein-water interactions, and self-assembly morphologies were studied with respect to well controlled protein amino acid sequences. A theoretical model was used to predict the heat capacity of the protein and protein-water complex. Using thermal analysis, two glass transitions were observed: Tg1 is related to conformational changes caused by bound water removal, while Tg2 (>Tg1) is the glass transition of dry protein. Real-time infrared spectroscopy and X-ray diffraction confirmed that different secondary structural changes occur during the two Tg relaxations. Using scanning electron microscopy, fibrillar networks and hollow vesicles are observed, depending on protein block copolymer sequence. This study provides a deeper understanding of the relationship between protein physical properties and amino acid sequence, with implications for design of other protein-based materials. Support was provided from the NSF CBET-0828028 and the MRI Program under DMR-0520655 for thermal analysis instrumentation.

  15. Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.

    Science.gov (United States)

    Sarkar, Biswajit; Alexandridis, Paschalis

    2012-11-13

    The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.

  16. Triazene UV-triggered photogeneration of silver/gold nanoparticles in block copolymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Melinte, Violeta; Chibac, Andreea; Buruiana, Tinca; Hitruc, Gabriela; Buruiana, Emil C., E-mail: emilbur@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Polyaddition and Photochemistry Department (Romania)

    2015-10-15

    This article describes an attractive way to in situ create noble metal nanoparticles in block copolymer matrixes through the UV-triggered photodecomposition of the photolabile triazene units without the use of any conventional reducing agent. The poly(isodecyl methacrylate-co-triazene urethane methacrylate) random copolymer containing pendent photocleavable triazene junctions (COP-1) was synthesized under RAFT conditions and subsequently employed as macroinitiator to obtain a block copolymer, namely poly(isodecyl methacrylate-co-triazene urethane methacrylate)-block-poly(acrylic acid) (COP-2). The photogeneration of silver/gold metal nanoparticles (NPs) from noble metal precursors (1 wt% AgNO{sub 3} or AuBr{sub 3} metal salts) induced through the UV decomposition of triazene units with the formation of some radical active species was monitored in solution and thin films. The in situ growth of Ag/Au nanostructures into polymer matrixes for which the light is a key element has been confirmed by UV spectroscopy and TEM analysis. The TEM images allowed the visualization of the silver NPs (sizes of 4–16 nm in COP-1 and of 2–6 nm in COP-2) as well as of the gold NPs (sizes between 10 and 20 nm in COP-1 and from 15 to 25 nm in COP-2), which are mainly spherical in shape, even though there is some triangular or hexagonal gold nanoparticles.

  17. Sequential Block Copolymer Self-Assemblies Controlled by Metal-Ligand Stoichiometry.

    Science.gov (United States)

    Yin, Liyuan; Wu, Hongwei; Zhu, Mingjie; Zou, Qi; Yan, Qiang; Zhu, Liangliang

    2016-06-28

    While numerous efforts have been devoted to developing easy-to-use probes based on block copolymers for detecting analytes due to their advantages in the fields of self-assembly and sensing, a progressive response on block copolymers in response to a continuing chemical event is not readily achievable. Herein, we report the self-assembly of a 4-piperazinyl-1,8-naphthalimide based functional block copolymer (PS-b-PN), whose self-assembly and photophysics can be controlled by the stoichiometry-dependent metal-ligand interaction upon the side chain. The work takes advantages of (1) stoichiometry-controlled coordination-structural transformation of the piperazinyl moiety on PS-b-PN toward Fe(3+) ions, thereby resulting in a shrinkage-expansion conversion of the self-assembled nanostructures in solution as well as in thin film, and (2) stoichiometry-controlled competition between photoinduced electron transfer and spin-orbital coupling process upon naphthalimide fluorophore leading to a boost-decline emission change of the system. Except Fe(3+) ions, such a stoichiometry-dependent returnable property cannot be observed in the presence of other transition ions. The strategy for realizing the dual-channel sequential response on the basis of the progressively alterable nanomorphologies and emissions might provide deeper insights for the further development of advanced polymeric sensors.

  18. Biosynthesis and characterization of diblock copolymer of p(3-hydroxypropionate)-block-p(4-hydroxybutyrate) from recombinant Escherichia coli

    DEFF Research Database (Denmark)

    Tripathi, Lakshmi; Wu, Linping; Meng, Dechuan

    2013-01-01

    Poly(4-hydroxybutyrate) (P4HB) is a highly elastic polymer, whereas poly(3-hydroxypropionate) (P3HP) is a polymer with enormous tensile strength. This study aimed to biosynthesize a block copolymer consisting of soft P4HB block with a strong P3HP block to gain unique and excellent material...

  19. Photoresponsive Azopolyester–PMMA Block Copolymers Obtained by Combination of ATRP, Polycondensation, and “Click” Chemistry

    DEFF Research Database (Denmark)

    Berges, Cristina; Javakhishvili, Irakli; Hvilsted, Søren

    2012-01-01

    Novel azobenzene‐containing block copolymers (BCs) with a polyester block bearing azobenzene moieties in the side chain and a poly (methyl methacrylate) (PMMA) block have been synthesized by the combination of atom transfer radical polymerization (ATRP), polycondensation, and “click” chemistry. T...

  20. Thermo Stability of Highly Sulfonated Poly(Styrene-Isobutylene-Styrene) Block Copolymers: Effects of Sulfonation and Counter-Ion Substitution

    Science.gov (United States)

    2008-01-01

    poly(styrene-isobutylene- styrene) (SIBS) tri-block co-polymer (2, 3). The major component of the tri-block co-polymer is polyisobutylene ( PIB ...which comprises 70% by weight of the base polymer. The PIB gives the material low temperature flexibility as well as excellent barrier properties. The... PIB matrix (4). The fraction of PS controls the resultant morphology, which can be for example cylinders, lamellae, spheres, or a complex mixture

  1. Micellization of quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) copolymers in water

    OpenAIRE

    2001-01-01

    Micellization of a series of amphiphilic quaternized poly(2-(dimethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) (PQDMAEMA-b-PMMA) copolymers has been studied in water. The alkyl halide used for the quaternization of the aminated block has an effect on the solution properties of the diblocks, that have been investigated by dynamic light scattering and surface tension measurements. When a short length alkyl halide is used, the diblock copolymers behave like traditional amphiphile...

  2. Structure-property relationships in multilayered polymeric system and olefinic block copolymers

    Science.gov (United States)

    Khariwala, Devang

    Chapter 1. The effect of tie-layer thickness on delamination behavior of polypropylene/tie-layer/Nylon-6 multilayers is examined in this study. Various maleated polypropylene resins were compared for their effectiveness as tie-layers. Delamination failure occurred cohesively in all the multilayer systems. Two adhesion regimes were defined based on the change in slope of the linear relationship between the delamination toughness and the tie-layer thickness. The measured delamination toughness of the various tie-layers was quantitatively correlated to the damage zone length formed at the crack tip. In addition, the effect of tie-layer thickness on the multilayer tensile properties was correlated with the delamination behavior. The fracture strain of the multilayers decreased with decreasing tie-layer thickness. Examination of the prefracture damage mechanism of stretched multilayers revealed good correlation with the delamination toughness of the tie-layers. In thick tie-layers (>2microm) the delamination toughness of the tie-layers was large enough to prevent delamination of multilayers when they were stretched. In the thin tie-layers (organized lamellar crystals with the orthorhombic unit cell and high melting temperature. The lamellae are organized into space-filling spherulites in all compositions even in copolymers with only 18 wt% hard block. The morphology is consistent with crystallization from a miscible melt. Crystallization of the hard blocks forces segregation of the noncrystallizable soft blocks into the interlamellar regions. Good separation of hard and soft blocks in the solid state is confirmed by distinct and separate beta- and alpha-relaxations in all the block copolymers. Compared to statistical ethylene-octene copolymers, the blocky architecture imparts a substantially higher crystallization temperature, a higher melting temperature and a better organized crystalline morphology, while maintaining a lower glass transition temperature. The

  3. Vertical vs Lateral Macrophase Separation in Thin Films of Block Copolymer Mixtures: Computer Simulations and GISAXS Experiments.

    Science.gov (United States)

    Berezkin, Anatoly V; Jung, Florian; Posselt, Dorthe; Smilgies, Detlef M; Papadakis, Christine M

    2017-03-20

    Mixtures of two diblock copolymers of very different lengths may feature both macro- and microphase separation; however, not much is known about the mechanisms of separation in diblock copolymer thin films. In the present work, we study thin films of mixtures of two compositionally symmetric block copolymers, both in the one-phase and in the two-phase state, combining coarse-grained molecular simulations (dissipative particle dynamics, DPD) with scattering experiments (grazing-incidence small-angle X-ray scattering, GISAXS). We reveal that the film thickness and selective adsorption of different blocks to the substrate control the distribution of macrophases within the film as well as the orientation of the lamellae therein. In thick films, the mixtures separate in the vertical direction into three layers: Two layers being rich in short copolymers are formed near the film interfaces, whereas a layer being rich in long copolymers is located in the film core. The lamellar orientation in the layers rich in short copolymers is dictated by the surface selectivity, and this orientation only weakly affects the vertical orientation of lamellae in the film core. This provides the opportunity to control the domain orientation in the copolymer films by mixing block copolymers with low-molecular additives instead of relying on a more complicated chemical modification of the substrate. In thinner films, a lateral phase separation appears.

  4. Progress in Self-assembly of the Block Copolymers%嵌段共聚物自组装的研究进展

    Institute of Scientific and Technical Information of China (English)

    唐林; 宋颖; 李冬梅; 马晓燕

    2011-01-01

    Self-Assembly is the process by which a system of molecules relied on non-covalent interaction spontaneously assemble into a structure-determinated and stable molecular aggregates or supramolecular structures which possess specific functions or performances in the mean time. Block copolymer systems exhibit well-known ability to self-assemble into a wide variety of morphologies either in bulk (lamellas, gyriods, cylinders, spheres, etc. ) or in solution (spherical micelles, vesicles,cylinders, etc. ). In this paper, the main factors which may influence the self-assembled morphology of the block copolymers in solution, including the length of the building blocks, the property of the selective solvents, the concentration of the block copolymers and the pH value of the solutions, are reviewed. Moreover, various methods of the computer simulation for the self-assembly of the block copolymers, such as self-consistent field theory, simulation of Monte Carlo, dissipative particle dynamics and simulated annealing, are introduced.%自组装是分子间通过非共价键相互作用自发组合形成的一类结构明确、稳定,同时具有某种特定功能或性能的分子聚集体或超分子结构的现象.嵌段共聚物不仅可以在本体中自组装,还能在溶液中自组装.本文综述了嵌段共聚物在溶液中自组装的规律及其主要影响因素,包括嵌段共聚物链段长度、选择性溶剂的性质、嵌段共聚物的浓度、溶液的pH值等;并介绍了计算机模拟中模拟退火(simulated annealing)、自洽场理论(self-consistent field theory,SCFT)、蒙特卡洛(Monte Carlo,MC)模拟、耗散粒子动力学(dissipative particle dynamics,DPD)等方法在该领域的应用.

  5. Phase Equilibria and Transition in Mixtures of a Homopolymer and a Block Copolymer. II.

    Science.gov (United States)

    1983-01-26

    AD-A124 929 PHASE EQUILIBRIA AND TRANSITION IN MIXTURES OF A In- NOMOPOLYMER AND’A BLOCK..(U) CINCINNATI UNJY ON DEPT OF MATERIALS SCIENCE AND...REPORT NO. 7 v2 L Phase Equilibria and Transition in Mixtures of a Homopolymer and a Block Copolymer II. The Phase Diagram by R. J. Roe and W. C. Zin...homopolymers as in our systems. The phase equilibria at temperatures above the "pseudo-triple point" BCD can be interpreted in terms of the free energy of

  6. Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL

    DEFF Research Database (Denmark)

    Bruce, Carl; Javakhishvili, Irakli; Fogelstrom, Linda

    2014-01-01

    Triblock copolymers of ABA- and BAB-type consisting of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, A) and poly(epsilon-caprolactone) (PCL, B) have successfully been prepared. PDMAEMA-b-PCL-b-PDMAEMA (ABA) and PCL-b-PDMAEMA-b-PCL (BAB) were synthesised by a combination of ring...... as the outer block (ABA), the inherent crystallinity of PCL was destroyed while with PCL as the outer block (BAB), the degree of crystallinity was in the same proximity as for a PCL homopolymer....

  7. Flash NanoPrecipitation of organic actives via confined micromixing and block copolymer stabilization

    Science.gov (United States)

    Johnson, Brian K.

    This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation

  8. Polydimethylsiloxane-polymethacrylate block copolymers tethering quaternary ammonium salt groups for antimicrobial coating

    Science.gov (United States)

    Qin, Xiaoshuai; Li, Yancai; Zhou, Fang; Ren, Lixia; Zhao, Yunhui; Yuan, Xiaoyan

    2015-02-01

    Block copolymers PDMS-b-PDMAEMA were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization involving N,N-dimethylaminoethyl methacrylate (DMAEMA) by using poly(dimethylsiloxane) (PDMS) macro-chain transfer agent. And, the tertiary amino groups in PDMAEMA were quaternized with n-octyliodide to provide quaternary ammonium salts (QPDMAEMA). The well-defined copolymers generated composition variation and morphology evolvement on film surfaces, which were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and contact angle measurements. The results indicated that the enrichment of QPDMAEMA brought about lower elemental ratios of Si/N on the film surfaces. The surface morphologies evolved with the variations of QPDMAEMA content, and the variation trend of film roughness was exactly opposite to that of water contact angle hysteresis. With regard to structure-antimicrobial relationships, the copolymer films had more evident antimicrobial activity against Gram-positive, Bacillus subtilis, and the surfaces with heterogeneous morphology and higher N+ content presented better antimicrobial activity. The functionalized copolymers based PDMS and quaternary ammonium salts materials have the potential applications as antimicrobial coatings.

  9. Predicting the Solution Morphology of a Sulfonated Pentablock Copolymer in an Arbitrary Solvent Mixture

    Science.gov (United States)

    Ford, Jamie; Kyei-Manu, William; Winey, Karen

    2013-03-01

    Block copolymers self assemble into a wide array of morphologies in solvents. To predict the solution morphology of the polymer, we assess the interactions between the individual blocks and the solvent or solvents. Here, we use the Hansen solubility parameters to calculate the interactions between a library of solvents and an ABCBA pentablock copolymer with non-polar A and B blocks and a polar, sulfonated C block to predict the expected morphology for a given solvent and compare it to our small-angle X-ray scattering data. In non-polar solvents, we observe micelles with a C core and an A-B corona. We observe inverted micelles in polar solvents - an A-B core with a C corona. We extended our methodology to mixed polar/non-polar solvent systems to predict the solvent ratios corresponding to the transition from micelles to inverted micelles.

  10. Positron Emission Tomography Based Analysis of Long-Circulating Cross-Linked Triblock Polymeric Micelles in a U87MG Mouse Xenograft Model and Comparison of DOTA and CB-TE2A as Chelators of Copper-64

    DEFF Research Database (Denmark)

    Jensen, Andreas Tue Ingemann; Binderup, Tina; Ek, Pramod Kumar;

    2014-01-01

    Copolymers of ABC-type (PEG-PHEMA-PCMA) architecture were prepared by atom transfer radical polymerization and formulated as micelles with functionalizable primary alcohols in the shell-region (PHEMA-block) to which the metal-ion chelators DOTA or CB-TE2A were conjugated. Using this micelle system...

  11. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    OpenAIRE

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing sulfonated units were prepared by blending styrene-block-butadiene-block-styrene (SBS), with both sulfonated PS and sulfonated SEBS in a Brabender mixer. Such a procedure was performed as an alter...

  12. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    Science.gov (United States)

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-09

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth.

  13. Bilayer membrane permeability of ionic liquid-filled block copolymer vesicles in aqueous solution.

    Science.gov (United States)

    Bai, Zhifeng; Zhao, Bin; Lodge, Timothy P

    2012-07-19

    The bilayer membrane permeability of block copolymer vesicles ("polymersomes") with ionic liquid interiors dispersed in water is quantified using fluorescence quenching. Poly((1,2-butadiene)-b-ethylene oxide) (PB-PEO) block copolymer vesicles in water with their interiors filled with a common hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, were prepared containing a hydrophobic dye, Nile Red, by intact migration of dye-encapsulated vesicles from the ionic liquid to water at room temperature. A small quencher molecule, dichloroacetamide, was added to the aqueous solution of the dye-loaded vesicles, and the permeation of the quencher passing through the membrane into the interior was determined from the fluorescence quenching kinetics. Rapid permeation of the quencher across the nanoscale membrane was observed, consistent with the high fluidity of the liquid polybutadiene membrane. Two different PB-PEO copolymers were employed, in order to vary the thickness of the solvophobic membrane. A significant increase in membrane permeability was also observed with decreasing membrane thickness, which is tentatively attributable to differences in quencher solubility in the membranes. Quantitative migration of the vesicles from the aqueous phase back to an ionic liquid phase was achieved upon heating. These microscopically heterogeneous and thermoresponsive vesicles with permeable and robust membranes have potential as recyclable nanoreactors, in which the high viscosity and capital expense of an ionic liquid reaction medium can be mitigated, while retaining the desirable features of ionic liquids as reaction media, and facile catalyst recovery.

  14. Solar cells based on block copolymer semiconductor nanowires: effects of nanowire aspect ratio.

    Science.gov (United States)

    Ren, Guoqiang; Wu, Pei-Tzu; Jenekhe, Samson A

    2011-01-25

    The solution-phase self-assembly of nanowires (NWs) from diblock copolymer semiconductors, poly(3-butylthiophene)-block-poly(3-octylthiophene), of different block compositions gave crystalline NWs of similar width (13-16 nm) but a tunable average aspect ratio (length/width) of 50-260. The power conversion efficiency of bulk heterojunction solar cells comprising the diblock copolythiophene NWs and PC(71)BM was found to increase with increasing aspect ratio, reaching 3.4% at the highest average aspect ratio of 260. The space charge limited current mobility of holes in neat films of the copolymer NWs and in copolymer NWs/PC(71)BM films (∼1.0 × 10(-4) cm(2)/(V s)) was invariant with aspect ratio, reflecting the parallel orientation of the NWs to the substrate. The enhancement of photovoltaic efficiency with increasing aspect ratio of NWs was explained in terms of increased exciton and charge photogeneration and collection in the bulk heterojunction solar cells.

  15. Predicting the Solution Morphology of a Sulfonated Block Copolymer in Binary Solvent Mixtures

    Science.gov (United States)

    Griffin, Philip; Salmon, Grace; Ford, Jamie; Winey, Karen

    2015-03-01

    The physicochemical properties of solvent-casted block copolymer films are highly dependent on the microscopic morphology of the solutions from which they are cast. In order to achieve macroscopically homogenous polymer solutions, binary or higher-degree solvent mixtures are often required, which introduces additional complexity in understanding the molecular level interactions that control block copolymer self-assembly in solution. Using small angle x-ray scattering, we have explored the solution morphology in ternary blends of a sulfonated pentablock copolymer in select binary solvent mixtures over a range of solvent compositions and polymer concentrations. We have found that the solution morphologies in these ternary blends depend strongly on the composition of the solvent mixture. Furthermore, we demonstrate that the solvent-composition-dependent morphologies can be accurately predicted by quantifying the polymer/solvent interactions using Hansen solubility parameters. These studies are an important step toward developing a complete and predictive understanding of the solution morphology of complex polymer/solvent mixtures.

  16. Nanostructured Double Hydrophobic Poly(Styrene-b-Methyl Methacrylate) Block Copolymer Membrane Manufactured Via Phase Inversion Technique

    KAUST Repository

    Karunakaran, Madhavan

    2016-03-11

    In this paper, we demonstrate the formation of nanostructured double hydrophobic poly(styrene-b-methyl methacrylate) (PS-b-PMMA) block copolymer membranes via state-of-the-art phase inversion technique. The nanostructured membrane morphologies are tuned by different solvent and block copolymer compositions. The membrane morphology has been investigated using FESEM, AFM and TEM. Morphological investigation shows the formation of both cylindrical and lamellar structures on the top surface of the block copolymer membranes. The PS-b-PMMA having an equal block length (PS160K-b-PMMA160K) exhibits both cylindrical and lamellar structures on the top layer of the asymmetric membrane. All membranes fabricated from PS160K-b-PMMA160K shows an incomplete pore formation in both cylindrical and lamellar morphologies during the phase inversion process. However, PS-b-PMMA (PS135K-b-PMMA19.5K) block copolymer having a short PMMA block allowed us to produce open pore structures with ordered hexagonal cylindrical pores during the phase inversion process. The resulting PS-b-PMMA nanostructured block copolymer membranes have pure water flux from 105-820 l/m2.h.bar and 95% retention of PEG50K

  17. Nanopatterning by large block copolymers for application in photonic devices (Conference Presentation)

    Science.gov (United States)

    Mokarian-Tabari, Parvaneh; Senthamaraikannan, Ramsankar; Collins, Timothy W.; Glynn, Colm; O'Dwyer, Colm; Morris, Michael

    2016-04-01

    The extensive benefits of the new generation of nanostructured surfaces is very promising for enhancing light absorption efficiency in photonic devices. However, the low throughput and the high cost of available technologies such as lithography for fabrication of nanostructures has proved to be a difficult technological hurdle for advanced manufacturing. In this research we present a solution based process based on high molecular weight block copolymer (BCP) nanolithography for fabrication of periodic structures on large areas of optical surfaces. Block copolymer self- assembly technique is a solution based process that offers an alternative route to produce highly ordered photonic crystal structures. BCPs forms nanodomains (5-10 nm) due to microphase separation of incompatible constitute blocks. The size and shape of the nanostructure can be customised by the molecular weight and volume fraction of the polymer blocks. However, the major challenge is BCPs do not phase separate into their signature ordered pattern above 100 nm, whereas for nanofeatures to be used as photonic gratings, they must be greater than 100 nm (typically ¼ wavelength). This is due to significant kinetic penalty arising from higher entanglement in high molecular weight polymers. In this work we present the results of exploiting commercially available block copolymers to phase separate into periodic domains greater than 100 nm. The process do not include any blending with homopolymers, or adding colloidal particles, and to our best knowledge, has not been yet achieved or reported in the literatures. We have pattern transferred the BCP mask to silicon substrate by reactive ion etch (ICP-RIE). The final product is black silicon, consists of hexagonally packed conic Si nanofeatures with diameter above 100nm and periodicity of 200 nm. The height of the Si nanopillars varies from 100 nm to 1 micron. We have characterized the angle dependent optical reflectance properties of the black silicon. The

  18. The formation of standing cylinders in block copolymer films by irreversibly adsorbed polymer layers on substrates

    Science.gov (United States)

    Shang, Jun; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori

    2013-03-01

    Block copolymers offer a simple and effective route to produce standing cylindrical nanostructures with regularity on the order of 10-100 nm, the length scale that is desirable for many advanced applications. However, these formations have been especially troublesome due to the fact that preferential interactions between one of the blocks and the surfaces will induce parallel alignment of the cylinders in order to minimize interfacial and surface energy. Here we introduce an alternative simple method utilizing an irreversibly adsorbed polymer layer (a ``Guiselin'' brush) as a neutral ``substrate'' formed on solid substrates for the arrangement of standing cylindrical nanostructures. The effect of polymer adsorbed layer on the long range ordering of asymmetric cylinder forming poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) triblock copolymer thin films were investigated by using a combination of grazing incidence small angle x-ray scattering and atomic force microscopy techniques. We found that the SEBS, which forms cylinders lying parallel to the surface when prepared on silicon substrates, show standing cylindrical structures on selected Guiselin brush layers after prolong thermal annealing. The details will be discussed in the presentation. We acknowledges the financial support from NSF Grant No. CMMI-084626

  19. Controlling Phase Separation of Interpenetrating Polymer Networks by Addition of Block Copolymers

    Science.gov (United States)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    2015-03-01

    Interpenetrating polymer networks (IPNs) offer a unique way to produce mechanically superior thermoset blends relative to the neat components. In this study, IPNs were prepared consisting of polydicyclopentadiene (polyDCPD), contributing high fracture toughness, and an epoxy resin (the diglycidyl ether of bisphenol A cured with nadic methyl anhydride), contributing high tensile strength and modulus. In the absence of compatibilization, the simultaneous curing of the networks leads to a macroscopically phase separated blend that exhibits poor mechanical behavior. To control phase separation and drive the system towards more mechanically robust nanostructured IPNs, block copolymers were designed to compatibilize this system, where one block possesses affinity to polyDCPD (polynorbornene in this study) and the other block possesses affinity to DGEBA (poly(ɛ-caprolactone) in this study). The influence of the block copolymer composition on the degree of phase separation and interfacial adhesion in the IPN was studied using a combination of small-angle scattering and imaging techniques. The resultant mechanical properties were explored and structure-property relationships were developed in this blend system.

  20. Block copolymer micelle coronas as quasi-two-dimensional dilute or semidilute polymer solutions

    DEFF Research Database (Denmark)

    Svaneborg, C.; Pedersen, J.S.

    2001-01-01

    Chain-chain interactions in a corona of polymers tethered to a spherical core under good solvent conditions are studied using Monte Carlo simulations. The total scattering function of the corona as well as different partial contributions are sampled. By combining the different contributions...... in this approach. The osmotic compressibility is extracted from the latter, and it is shown to be a universal function of surface coverage, with some deviations at high coverage due to surface curvature effects....

  1. Magnetic core–bilayer shell complex of magnetite nanoparticle stabilized with mPEG–polyester amphiphilic block copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Mekkapat, Supachai; Thong-On, Bandit; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Naresuan University, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science (Thailand)

    2013-11-15

    In this article, we report the synthesis of magnetite nanoparticles (Fe{sub 3}O{sub 4}) coated with methoxy poly(ethylene glycol) (mPEG)–polyester amphiphilic block copolymers. The coating polymer layer contains a hydrophobic inner layer of polyester and a hydrophilic corona of mPEG. The copolymers were first prepared via a direct condensation between diacid, diol compounds and mPEG oligomer to obtain a hydrophobic polyester block and hydrophilic mPEG block and then “grafted onto” a magnetite nanoparticle surface. The copolymer composition was varied by changing the structure of the diacid, diol, and the molecular weight ( M-bar {sub n} ) of the mPEG such that particles with good dispersibility and stability in water were obtained. It was found that the copolymer prepared from 1,6-hexanediol can effectively stabilize the particles in water regardless of the types of diacid and M-bar {sub n} of mPEG used. The particle size was approximately 10 nm in diameter, and the particle dispersibility in water was quite dependent on the type and concentration of the copolymer used. Thermogravimetric analysis revealed the presence of less than 37 % Fe{sub 3}O{sub 4} and about 48–53 % of the copolymer in the complexes. The percent entrapment efficiency and loading efficiency of indomethacin model drug in the copolymer-coated magnetite nanoparticles were 19 and 77 %, respectively.

  2. Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

    Science.gov (United States)

    Zheng, Wang; Bao-Hui, Li

    2016-01-01

    Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress. Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.

  3. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  4. Periodic nanoscale patterning of polyelectrolytes over square centimeter areas using block copolymer templates.

    Science.gov (United States)

    Oded, Meirav; Kelly, Stephen T; Gilles, Mary K; Müller, Axel H E; Shenhar, Roy

    2016-05-18

    Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. Here, we present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm(2)-scale areas. Chemically modified block copolymer thin films featuring alternating charged and neutral domains are used as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topography that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.

  5. Controlled titania sponge structures templated with block copolymers for applications in inorganic-organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Rawolle, M.; Sarkar, K.; Prams, S.M.; Zhong, Q.; Mueller-Buschbaum, P. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Funktionelle Materialien; Lellig, P.; Memesa, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Gutmann, J.S. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Mainz Univ. (Germany). Inst. fuer Physikalische Chemie; Perlich, J. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl fuer Funktionelle Materialien; DESY, Hamburg (Germany). HASYLAB; Roth, S.V. [DESY, Hamburg (Germany). HASYLAB

    2010-07-01

    Titania films with a well-defined morphology which have a huge application potential in photovoltaics are prepared by combining sol-gel chemistry and an amphiphilic diblock copolymer as structure directing agent in a 'good-poor' solvent induced microphase separation process. Using the diblock copolymer poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide) PDMS-b-MA(PEO) we can create a sponge structure with pores on two different size scales in a reproducible way. On the one hand mesoporous structures with pores on the nanometer scale provide a large surface area for charge generation. On the other hand macropores on a micrometer scale ensure an easier infiltration of holeconducting material and enhance the surface roughness for better light absorption. (orig.)

  6. Modulating the self-assembly of amphiphilic X-shaped block copolymers with cyclodextrins: structure and mechanisms.

    Science.gov (United States)

    González-Gaitano, Gustavo; Müller, Céline; Radulescu, Aurel; Dreiss, Cécile A

    2015-04-14

    Inclusion complexes between cyclodextrins and polymers-so-called pseudopolyrotaxanes (PPR)-are at the origin of fascinating supramolecular structures, which are finding increasing uses in biomedical and technological fields. Here we explore the impact of both native and a range of modified cyclodextrins (CD) on the self-assembly of X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers, so-called Tetronics or poloxamines, by focusing on Tetronic 904 (T904, Mw 6700). The effects are markedly dependent on the type and arrangement of the substituents on the macrocycle. While native CDs drive the formation of a solid PPR, most substituted CDs induce micellar breakup, with dimethylated β-CD (DIMEB) having the strongest impact and randomly substituted CDs a much weaker disruptive effect. Using native α-CD as a "molecular trap", we perform competitive binding experiments-where two types of CDs thread together onto the polymer chains-to establish that DIMEB indeed has the highest propensity to form an inclusion complex with the polymer, while hydroxypropylated CDs do not thread. 1D (1)H NMR and ROESY experiments confirm the formation of a soluble PPR with DIMEB in which the CD binds preferentially to the PO units, thus providing the drive for the observed demicellization. A combination of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) is used to extract detailed structural parameters on the micelles. A binding model is proposed, which exploits the chemical shifts of selected protons from the CD in conjunction with the Hill equation, to prove that the formation of the PPR is a negatively cooperative process, in which threaded DIMEBs hamper the entrance of subsequent macrocycles.

  7. Synthesis of β-cyclodextrin-Based Star Block Copolymers with Thermo-Responsive Behavior

    Directory of Open Access Journals (Sweden)

    Agnes Wycisk

    2015-05-01

    Full Text Available Star polymers are one example of three-dimensional macromolecules containing several arms with similar molecular weight connected to a central core. Due to their compact structure and their enhanced segment density in comparison to linear polymers of the same molecular weight, they have attracted significant attention during recent years. The preparation of block-arm star copolymers with a permanently hydrophilic block and an “environmentally” sensitive block, which can change its nature from hydrophilic to hydrophobic, leads to nanometer-sized responsive materials with unique properties. These polymers are able to undergo a conformational change or phase transition as a reply to an external stimulus resulting in the formation of core–shell nanoparticles, which further tend to aggregate. Star-shaped copolymers with different cores were synthesized via atom transfer radical polymerization (ATRP. The core-first method chosen as synthetic strategy allows good control over the polymer architecture. First of all the multifunctional initiators were prepared by esterification reaction of the hydroxyl groups with 2-chloropropionyl chloride. Using β-cyclodextrin as core molecules, which possess a well-defined number of functional groups up to 21, allows defining the number of arms per star polymer. In order to prepare stimuli-responsive multi-arm copolymers, containing a stimuli-responsive (poly(N-isopropylacrylamide (PNIPAAm and a non-responsive block (poly(N,N-dimethylacrylamide (PDMAAm, consecutive ATRP was carried out. The polymers were characterized intensively using NMR spectroscopy and size exclusion chromatography (SEC, whereas the temperature-depending aggregation behavior in aqueous solution was determined via turbidimetry and differential scanning calorimetry (DSC.

  8. Synthesis of PMMA-b-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air

    Directory of Open Access Journals (Sweden)

    P. Krol

    2013-03-01

    Full Text Available ARGET (activators regenerated by electron transfer ATRP (atom transfer radical polymerization has been successfully performed (in flasks fitted with rubber septa without the need for use of Schlenk line in the presence of limited amount of air and with a very small (370 ppm amount of copper catalyst together with an appropriate reducing agent Cu(0. Novelty of this work is that the poly(methyl methacrylate-block-polyurethane-block-poly(methyl methacrylate triblock copolymers were synthesized for the first time through ARGET ATRP, by using tertiary bromine-terminated polyurethane as a macroinitiator (MBP-PU-MBP, CuBr2 or CuCl2 as a catalyst and N,N,N',N",N"-pentamethyldiethylenetriamine (PMDETA or 2,2'-bipyridine (Bpy as a complexing agent. As the polymerization time increases, both the monomer conversion and ln([M]0/[M] increased and the molecular weight of copolymer increases linearly with increasing conversion. Theoretical number-average molecular weight (Mn, th of the tri-block copolymers was found to be comparable with number-average molecular weight determined by GPC analyses (Mn, GPC. These results indicate that the formation of the tri-block copolymers was through atom transfer radical polymerization mechanism. 1H and 13C NMR spectral methods were employed to confirm chemical structures of synthesized macroinitiator and tri-block copolymers. Mole percentage of PMMA in the tri-block copolymers was calculated using 1H NMR spectroscopy and was found to be comparable with the GPC results. Additionally, the studies of surface properties (confocal microscopy and SFE of tri-block copolymer coatings confirmed the presence of MMA segments.

  9. Directed Self-assembly of Block Copolymer with Sub-15 nm Domain Spacing Using Nanoimprinted Photoresist Templates

    Science.gov (United States)

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Coughlin, E. Bryan; Xiao, Shuaigang; Russell, Thomas

    There has been increasing interest in preparing block copolymer thin films with ultra-small domain spacings for use as etching masks for ultra-high resolution nanolithography. One method to prepare block copolymer materials with small feature sizes is salt doping, increasing the Flory-Huggins interaction and allowing microphase separation to be maintained at lower molecular weights. Lamellae-forming P2VP- b-PS- b-P2VP block copolymer with various molecular weight was synthesized using RAFT polymerization with a dual functional chain transfer agent. Copper (II) Chloride or Gold (III) chloride was found to be selectively associated with P2VP block and increase the unfavorable interactions between PS and P2VP blocks, driving the disordered block copolymer into the ordered state. A 14 nm lamellar spacing of P2VP- b-PS- b-P2VP thin film was prepared using copper (II) Chloride doping after acetone vapor annealing on neutral brushes. Metallic nano-wire arrays were prepared after selective infiltration of platinum salt into the P2VP domain and oxygen plasma treatment. The directed self-assembly of salt doped P2VP- b-PS- b-P2VP triblock copolymer having long-rang lateral order on nanoimprinted photoresist templates with shallow trenches was also studied.

  10. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  11. Characterization of a Model Polyelectrolyte Membrane Using a Semi-crystalline Block Copolymer

    Science.gov (United States)

    Beers, Keith; Wang, Xin; Balsara, Nitash

    2011-03-01

    The microstructured block copolymer sulfonated polystyrene-block-polyethylene is studied as model system for use as a proton exchange membrane in a fuel cell. Self-assembly of this system creates proton conducting hydrophilic channels in the form of sulfonated polystyrene domains, while the polyethylene domains create a hydrophobic matrix to provide mechanical stability. This system serves as a powerful model system since the effects of domain size, morphology and crystallinity on water uptake and proton conductivity can be investigated. Similar systems have shown the ability of small hydrophilic channels to prevent drying at high temperatures in humid air, but have focused on amorphous hydrophobic blocks. The morphology, water uptake, and proton conductivity of this semi-crystalline model system will be discussed.

  12. Nano-porous Material with Spherical or Gyroid Cavities Created by Quantitative Etching of Polydimethylsiloxane in Polystyrene-Polydimethylsiloxane Block Copolymers

    DEFF Research Database (Denmark)

    Ndoni, Sokol; Vigild, Martin Etchells; Berg, Rolf H.

    2003-01-01

    A new method for quantitative etching of the poly(dimethylsiloxane) block in polystyrene-poly(dimethylsiloxane) (PS-PDMS) block copolymers is reported. Reacting the block copolymer with anhydrous hydrogen fluoride renders a nanoporous material (NPM) with the remaining glassy PS maintaining...

  13. Acrylamide-b-N-isopropylacrylamide block copolymers : Synthesis by atomic transfer radical polymerization in water and the effect of the hydrophilic-hydrophobic ratio on the solution properties

    NARCIS (Netherlands)

    Wever, Diego Armando Z.; Ramalho, Graham; Picchioni, Francesco; Broekhuis, Antonius Augustinus

    2014-01-01

    A series of block copolymers of acrylamide and N-isopropylacrylamide (NIPAM) characterized by different ratios between the length of the two blocks have been prepared through atomic transfer radical polymerization in water at room temperature. The solution properties of the block copolymers were cor

  14. SYNTHESIS AND CHARACTERIZATION OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE

    Institute of Scientific and Technical Information of China (English)

    Hui-qing Zhang; Xiong-yan Zhao; De-shan Liu; Qi-xiang Zhou

    1999-01-01

    A series of liquid crystalline multi-block copolymers poly[1,6-bis(4-oxybenzoyl-oxy)hexane terephthalate]-b-bisphenol A polycarbonate (PHTH-6-b-PC) with different segment lengths were synthesized in tetrachloroethane by solution polycondensation in which hydroxyl terminated PC and acyl chloride terminated PHTH-6 were used. It is found that block copolymers with high molecular weight and welldefined structures were obtained. All the block copolymers exhibit a nematic liquid crystalline texture.

  15. Blending of styrene-block-butadiene-block-styrene copolymer with sulfonated vinyl aromatic polymers

    NARCIS (Netherlands)

    Ruggeri, Giacomo; Passaglia, Elisa; Giorgi, Ivan; Picchioni, Francesco; Aglietto, Mauro

    2001-01-01

    Different polymers containing sulfonic groups attached to the phenyl rings were prepared by sulfonation of polystyrene (PS) and styrene-block-(ethylene-co-1-butene)-block-styrene (SEBS). The sulfonation degree (SD) was varied between 1 and 20 mol% of the styrene units. Polyphase materials containing

  16. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns

    Science.gov (United States)

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S.; Ma, Zhenqiang; Nealey, Paul F.

    2016-08-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.

  17. Controlling Phase Separation of Tough Interpenetrating Polymer Networks via Addition of Amphiphilic Block Copolymers

    Science.gov (United States)

    Rohde, Brian; Krishnamoorti, Ramanan; Robertson, Megan

    Interpenetrating polymer networks (IPNs) offer a unique way to combine the mechanical properties of two thermoset systems. Often used to create a material that possesses both high toughness and tensile properties, here we use polydicyclopentadiene, cured via ring opening metathesis polymerization, to contribute high toughness and diglycidyl ether of bisphenol A cured via anhydride chemistry to contribute high tensile strength and modulus. As the uncompatibilized system reacts in the presence of one another, mesoscopic phase separation occurs and dictates the overall efficacy of combining mechanical properties. To control phase separation and drive the system towards more mechanically robust nanostructed IPNs, amphiphilic block copolymers of polybutadiene- b-polyethylene oxide, where one block possesses strong affinity to polyDCPD and the other the DGEBA, were added to the system. Here we present a systematic study of the influence of block copolymer composition in the overall blend on degree of phase separation and morphology using a combination of small-angle x-ray scattering (SAXS) and scanning electron microscopy (SEM) techniques. The resultant mechanical properties are then explored in an effort to link mechanical properties to blend morphology.

  18. Confined assembly of asymmetric block-copolymer nanofibers via multiaxial jet electrospinning.

    Science.gov (United States)

    Kalra, Vibha; Lee, Jung Hun; Park, Jay Hoon; Marquez, Manuel; Joo, Yong Lak

    2009-10-01

    Multiaxial (triaxial/coaxial) electrospinning is utilized to fabricate block copolymer (poly(styrene-b-isoprene), PS-b-PI) nanofibers covered with a silica shell. The thermally stable silica shell allows post-fabrication annealing of the fibers to obtain equilibrium self-assembly. For the case of coaxial nanofibers, block copolymers with different isoprene volume fractions are studied to understand the effect of physical confinement and interfacial interaction on self-assembled structures. Various confined assemblies such as co-existing cylinders and concentric lamellar rings are obtained with the styrene domain next to the silica shell. This confined assembly is then utilized as a template to guide the placement of functional nanoparticles such as magnetite selectively into the PI domain in self-assembled nanofibers. To further investigate the effect of interfacial interaction and frustration due to the physically confined environment, triaxial configuration is used where the middle layer of the self-assembling material is sandwiched between the innermost and outermost silica layers. The results reveal that confined block-copolymer assembly is significantly altered by the presence and interaction with both inner and outer silica layers. When nanoparticles are incorporated into PS-b-PI and placed as the middle layer, the PI phase with magnetite nanoparticles migrates next to the silica layers. The migration of the PI phase to the silica layers is also observed for the blend of PS and PS-b-PI as the middle layer. These materials not only provide a platform to further study the effect of confinement and wall interactions on self-assembly but can also help develop an approach to fabricate multilayered, multistructured nanofibers for high-end applications such as drug delivery.

  19. Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopy

    DEFF Research Database (Denmark)

    Li, Tao; Wu, Kaiyu; Rindzevicius, Tomas

    2016-01-01

    ). Direct silicon etching with high aspect ratio templated by the block copolymer mask is realized without any intermediate layer or external precursors. Uniquely, an atomic layer deposition (ALD)-assisted method is introduced to allow reversing of the morphology relative to the initial pattern. As a result......, highly ordered silicon nanopillar arrays are fabricated with controlled aspect ratios. After metallization, the resulting nanopillar arrays are suitable for SERS applications. These structures readily exhibit an average SERS enhancement factor of above 108, SERS uniformities of 8.5% relative standard...

  20. Microtome Sliced Block Copolymers and Nanoporous Polymers as Masks for Nanolithography

    DEFF Research Database (Denmark)

    Shvets, Violetta; Schulte, Lars; Ndoni, Sokol

    2014-01-01

    -linked phase are sliced with microtome and pattern is transfered from flakes to substrate by plasma etching. Experimental Section. Group of Self-organized Nanoporous Materials in Technical University of Denmark has developed series of block copolymers of Polybutadiene-b-Polydimethylsiloxane (PB...... with hexagonal pattern were transferred onto silicon wafer for plasma etching. Results and Discussion. After flakes had been removed hexagonal arrays of holes were observed on the silicon. Quality of observed structures depends on etching time. The longer etching time is the large optimal thickness of flake...

  1. Hydrogel formation by the 'topological conversion' of cyclic PLA-PEO block copolymers

    OpenAIRE

    Yamamoto, Takuya; Inoue, Kotaro; Tezuka, Yasuyuki

    2016-01-01

    An amphiphilic cyclic block copolymer consisting of poly(L- or D-lactide) and poly(ethylene oxide), that is, PLLA-PEO or PDLA-PEO, was synthesized from its corresponding linear triblock precursor, PLLA-PEO-PLLA or PDLA-PEO-PDLA, respectively, with alkenyl end groups. A mixture of the micellar dispersions of linear PLLA-PEO-PLLA and linear PDLA-PEO-PDLA formed a gel upon heating, whereas a mixture of the cyclic counterparts did not undergo this phase transition. These results suggest that the ...

  2. Self-assembled isoporous block copolymer membranes with tuned pore sizes

    KAUST Repository

    Yu, Haizhou

    2014-07-23

    The combination of nonsolvent-induced phase separation and the self-assembly of block copolymers can lead to asymmetric membranes with a thin highly ordered isoporous skin layer. The effective pore size of such membranes is usually larger than 15 nm. We reduced the pore size of these membranes by electroless gold deposition. We demonstrate that the pore sizes can be controlled precisely between 3 and 20 nm leading to a tunable sharp size discrimination in filtration processes. Besides fractionation of nanoparticles and biomaterials, controlled drug delivery is an attractive potential application. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tunable Mesoporous Bragg Reflectors Based on Block-Copolymer Self-Assembly

    KAUST Repository

    Guldin, Stefan

    2011-07-06

    Mesoporous Bragg reflectors are a promising materials platform for photovoltaics, light emission, and sensing. A fast and versatile fabrication route that relies on the self-assembly of the block copolymer poly(isoprene-b-ethylene oxide) in combination with simple sol-gel chemistry is reported. The method allows extended control over porosity and pore size in the resulting inorganic material and results in high-quality optical elements. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Metal nanodot arrays fabricated via seed-mediated electroless plating with block copolymer thin film scaffolding.

    Science.gov (United States)

    Komiyama, Hideaki; Iyoda, Tomokazu; Sanji, Takanobu

    2015-10-02

    We present an alternative approach to fabricating hexagonally arranged nanodot arrays of various metals by seed-mediated electroless plating with a cylinder-forming block copolymer thin film, PEO-b-PMA(Az), as a scaffold. Metal ions were selectively incorporated into PEO cylinders, followed by their reduction to metal and the etching of the scaffold to obtain highly ordered seed arrays of Au, Pd, and Pt. Nanodot arrays of the target metals (Au, Ag, and Ni) were selectively grown on the seed with their highly ordered arrangement by electroless plating. We studied the fabrication processes' suitability for control of the nanodot array size, as well as the plasmonic properties thereof.

  5. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer.

    Science.gov (United States)

    Fan, Wei; Shi, Wen; Zhang, Wenting; Jia, Yinnong; Zhou, Zhengyuan; Brusnahan, Susan K; Garrison, Jered C

    2016-10-01

    This work continues our efforts to improve the diagnostic and radiotherapeutic effectiveness of nanomedicine platforms by developing approaches to reduce the non-target accumulation of these agents. Herein, we developed multi-block HPMA copolymers with backbones that are susceptible to cleavage by cathepsin S, a protease that is abundantly expressed in tissues of the mononuclear phagocyte system (MPS). Specifically, a bis-thiol terminated HPMA telechelic copolymer containing 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Three maleimide modified linkers with different sequences, including cathepsin S degradable oligopeptide, scramble oligopeptide and oligo ethylene glycol, were subsequently synthesized and used for the extension of the HPMA copolymers by thiol-maleimide click chemistry. All multi-block HPMA copolymers could be labeled by (177)Lu with high labeling efficiency and exhibited high serum stability. In vitro cleavage studies demonstrated highly selective and efficient cathepsin S mediated cleavage of the cathepsin S-susceptible multi-block HPMA copolymer. A modified multi-block HPMA copolymer series capable of Förster Resonance Energy Transfer (FRET) was utilized to investigate the rate of cleavage of the multi-block HPMA copolymers in monocyte-derived macrophages. Confocal imaging and flow cytometry studies revealed substantially higher rates of cleavage for the multi-block HPMA copolymers containing the cathepsin S-susceptible linker. The efficacy of the cathepsin S-cleavable multi-block HPMA copolymer was further examined using an in vivo model of pancreatic ductal adenocarcinoma. Based on the biodistribution and SPECT/CT studies, the copolymer extended with the cathepsin S susceptible linker exhibited significantly faster clearance and lower non-target retention without compromising tumor targeting. Overall, these results indicate that

  6. Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP.

    Science.gov (United States)

    Xiang, Tao; Zhang, Li-Sha; Wang, Rui; Xia, Yi; Su, Bai-Hai; Zhao, Chang-Sheng

    2014-10-15

    For blood-contacting materials, good blood compatibility, especially good anticoagulant property is of great importance. Zwitterionic polymers have been proved to be resistant to nonspecific protein adsorption and platelet adhesion; however, their anticoagulant property is always inadequate. In this study, two kinds of zwitterionic copolymers (sulfobetaine methacrylate and sodium p-styrene sulfonate random copolymer and block copolymer) with sulfonic groups were covalently grafted from polysulfone (PSf) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) to improve blood compatibility. Field emission scanning electron microscopy (FE-SEM), attenuated total reflectance-Fourier transform infrared spectra (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and static water contact angle (WCA) were applied to characterize the morphologies, chemical compositions and hydrophilicity of the modified membranes. All the zwitterionic copolymer modified membranes showed improved blood compatibility, especially the anticoagulant property was obviously enhanced compared to the pristine PSf and simple zwitterionic polymer modified membranes. We also found that the random copolymer modified membranes showed better resistance to platelet adhesion than the block copolymer modified membranes. The zwitterionic copolymer modified membranes with integrated antifouling property and blood compatibility provided wide choice for specific applications such as hemodialysis, hemofiltration, and plasma separation.

  7. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    Science.gov (United States)

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors.

  8. SYNTHESIS OF NOVEL BLOCK COPOLYMERS OF POLY(3-HYDROXYBUTYRIC ACID) WITH POLY(ETHYLENE GLYCOL) THROUGH ANIONIC POLYMERISATION

    Institute of Scientific and Technical Information of China (English)

    Xin-tao Shuai; Zbigniew; Jedlinski, Qiang Luo; Nozirow Farhod

    2000-01-01

    A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of β-butyrolactone (β-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (Mn = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, 1H-NMR and GPC.

  9. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    Science.gov (United States)

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  10. Synthesis and Characterization of Poly(3-alkylthiophene)-containing Block Copolymers

    Science.gov (United States)

    Ho, Victor

    Conjugated polymers have been widely studied for their use in lightweight, flexible, and solution-processable electronic devices. However, the optimization of such polymer-based devices has been largely Edisonian in nature due to both a poor understanding of and an inability to control the complex hierarchical structure observed in semicrystalline polymers. In this thesis, we show that simple chemical modifications to commonly-studied conjugated polymers can have a large effect on the observed structure ranging from the unit cell to that on the order of device features. In particular, the self-assembly of block copolymers in which one of the components is optoelectronically-active is presented as a facile method to obtain nanostructured materials. For the work in this thesis, we will focus on poly(3-alkylthiophenes), a widely studied class of conjugated polymers due to their favorable optoelectronic properties, high solubility in organic solvents, and susceptibility to simple chemical modification. Although the synthesis of conjugated block copolymers has been presented in the past, complexities arising from crystallization of the conjugated moiety have dominated the observed solid state morphologies. Specifically, the crystallization of the semicrystalline block dictates the block copolymer microphase separation, a well-known phenomenon in the literature for non-conjugated semicrystalline block copolymers, which has resulted in solid state morphologies that do not differ significantly from that of the semiconducting homopolymer. To address this, we first show that the side chain chemistry controls the thermal transitions and optoelectronic properties in poly(3-alkylthiophenes). Such control over the crystallization kinetics provides an experimentally convenient approach to investigate the importance of the crystalline structure over a wide range of length scales on the optoelectronic properties. Furthermore, the ability to control the thermal transition

  11. Influence of Architecture, Concentration, and Thermal History on the Poling of Nonlinear Optical Chromophores in Block Copolymer Domains

    Energy Technology Data Exchange (ETDEWEB)

    Leolukman, Melvina; Paoprasert, Peerasak; Wang, Yao; Makhija, Varun; McGee, David J.; Gopalan, Padma (UW)

    2008-10-02

    Factors affecting the electric-field-induced poling of nonlinear optical chromophores in block copolymer domains were investigated by encapsulating the chromophores in a linear-diblock copolymer [poly(styrene-b-4-vinylpyridine)] and linear-dendritic (poly(methyl methacrylate)-dendron) block copolymer via hydrogen bonding. Temperature-dependent Fourier transform infrared spectroscopy and morphology evaluation by X-ray scattering and transmission electron microscopy were used with in situ second harmonic generation to correlate domain architectures, processing conditions such as thermal history, and chromophore concentrations with poling efficiency. Poling of chromophores encapsulated in the minority domain (spheres or cylinders) of a linear-diblock copolymer was inhibited by the increasing chromophore concentration within the domain and the chemical nature of the majority domain. Chromophore encapsulation in the majority domain produced the most favorable conditions for poling as measured by in situ second harmonic generation. Thermal annealing of the linear-diblock copolymer/chromophore composites resulted in chromophore aggregation with a corresponding decrease in nonlinear optical activity. The linear-dendron/chromophore system presented the most effective architecture for spatially dispersing chromophores. These findings suggest that while well-ordered phase-separated systems such as block copolymers enhance chromophore isolation over homopolymer systems, a more effective approach is to explore polymer chains end functionalized with chromophores.

  12. Effects of PEO-PPO diblock impurities on the cubic structure of aqueous PEO-PPO-PEO pluronics micelles: fcc and bcc ordered structures in F127

    DEFF Research Database (Denmark)

    Mortensen, Kell; Pedersen, Walther Batsberg; Hvidt, S.

    2008-01-01

    We report on structural properties of PEO-PPO-PEO type of triblock block copolymers (Pluronics F127) with special emphasis on the effect of diblock PEO-PPO impurities on the ordered gel phase. Commercial F127 polymers contain as received roughly 20% PEO-PPO diblock and 80% PEO-PPO-PEO triblock...... copolymers. Aqueous solutions of F127 copolymers used as received form fee ordered micellar structure. Copolymers depleted with respect to the diblock impurity, resulting in a pure PEO-PPO-PEO triblock copolymer system, form bcc ordered micelles within the major parts of the gel phase. However, close...

  13. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Science.gov (United States)

    Lu, Yu; Chowdhury, Danial; Vladisavljević, Goran T.; Koutroumanis, Konstantinos; Georgiadou, Stella

    2016-01-01

    Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF) or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles. PMID:27231945

  14. Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2016-05-01

    Full Text Available Polymeric micelles with a controlled size in the range between 41 and 80 nm were prepared by injecting the organic phase through a microengineered nickel membrane or a tapered-end glass capillary into an aqueous phase. The organic phase was composed of 1 mg·mL−1 of PEG-b-PCL diblock copolymers with variable molecular weights, dissolved in tetrahydrofuran (THF or acetone. The pore size of the membrane was 20 μm and the aqueous/organic phase volumetric flow rate ratio ranged from 1.5 to 10. Block copolymers were successfully synthesized with Mn ranging from ~9700 to 16,000 g·mol−1 and polymeric micelles were successfully produced from both devices. Micelles produced from the membrane device were smaller than those produced from the microfluidic device, due to the much smaller pore size compared with the orifice size in a co-flow device. The micelles were found to be relatively stable in terms of their size with an initial decrease in size attributed to evaporation of residual solvent rather than their structural disintegration. Fluconazole was loaded into the cores of micelles by injecting the organic phase composed of 0.5–2.5 mg·mL−1 fluconazole and 1.5 mg·mL−1 copolymer. The size of the drug-loaded micelles was found to be significantly larger than the size of empty micelles.

  15. Formation of nanoscale networks: selectively swelling amphiphilic block copolymers with CO2-expanded liquids

    Science.gov (United States)

    Gong, Jianliang; Zhang, Aijuan; Bai, Hua; Zhang, Qingkun; Du, Can; Li, Lei; Hong, Yanzhen; Li, Jun

    2013-01-01

    Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a temperature range of 45-60 °C. The formation mechanism of the network, involving plasticization of PS and selective swelling of P4VP, was proposed. Because the diblock copolymer diffusion process is controlled by the activated hopping of individual block copolymer chains with the thermodynamic barrier for moving PVP segments from one to another, the formation of the network structures is achieved in a short time scale and shows ``thermodynamically restricted'' character. Furthermore, the resulting polymer networks were employed as templates, for the preparation of polypyrrole networks, by an electrochemical polymerization process. The prepared porous polypyrrole film was used to fabricate a chemoresistor-type gas sensor which showed high sensitivity towards ammonia.Polymeric films with nanoscale networks were prepared by selectively swelling an amphiphilic diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), with the CO2-expanded liquid (CXL), CO2-methanol. The phase behavior of the CO2-methanol system was investigated by both theoretical calculation and experiments, revealing that methanol can be expanded by CO2, forming homogeneous CXL under the experimental conditions. When treated with the CO2-methanol system, the spin cast compact PS-b-P4VP film was transformed into a network with interconnected pores, in a pressure range of 12-20 MPa and a

  16. Controlled release of cortisone drugs from block copolymers synthetized by ATRP

    Science.gov (United States)

    Valenti, G.; La Carta, S.; Mazzotti, G.; Rapisarda, M.; Perna, S.; Di Gesù, R.; Giorgini, L.; Carbone, D.; Recca, G.; Rizzarelli, P.

    2016-05-01

    Diseases affecting posterior eye segment, like macular edema, infection and neovascularization, may cause visual impairment. Traditional treatments, such as steroidal-drugs intravitreal injections, involve chronic course of therapy usually over a period of years. Moreover, they can require frequent administrations of drug in order to have an adequately disease control. This dramatically reduce patient's compliance. Efforts have been made to develop implantable devices that offer an alternative therapeutic approach to bypass many challenges of conventional type of therapy. Implantable drug delivery systems (DDS) have been developed to optimize therapeutic properties of drugs and ensure their slow release in the specific site. Polymeric materials can play an essential role in modulating drug delivery and their use in such field has become indispensable. During last decades, acrylic polymers have obtained growing interest. Biocompatibility and chemical properties make them extremely versatile, allowing their use in many field such as biomedical. In particular, block methacrylate copolymer with a balance of hydrophilic and hydrophobic properties can be suitable for prolonged DDS in biomedical devices. In this work, we focused on the realization of a system for controlled and long term release of betamethasone 17,21-dipropionate (BDP), a cortisone drug, from methacrylic block copolymers, to be tested in the treatment of the posterior eye's diseases. Different series of methyl methacrylate/hydroxyethyl methacrylate (MMA/HEMA) block and random copolymers, with different monomer compositions (10-60% HEMA), were synthetized by Atom Transfer Radical Polymerization (ATRP) to find the best hydrophilic/hydrophobic ratio, able to ensure optimal kinetic release. Copolymer samples were characterized by NMR spectroscopy (1H-NMR, 13C-NMR, CosY), SEC, TGA and DSC. Monitoring of drug release from films loaded with BDP was carried out by HPLC analysis. Evaluation of different kinetic

  17. Rich Variety of Three-Dimensional Nanostructures Enabled by Geometrically Constraining Star-like Block Copolymers.

    Science.gov (United States)

    Wang, Chao; Xu, Yuci; Li, Weihua; Lin, Zhiqun

    2016-08-01

    The influence of star-like architecture on phase behavior of star-like block copolymer under cylindrical confinement differs largely from the bulk (i.e., nonconfinement). A set of intriguing self-assembled morphologies and the corresponding phase diagrams of star-like (AB)f diblock copolymers with different numbers of arms f (i.e., f = 3, 9, 15, and 21) in four scenarios (ϕA = 0.3 and V0 > 0; ϕA = 0.3 and V0 0; and ϕA = 0.7 and V0 0 represent that the pore wall of cylindrical confinement prefers the inner A block (i.e., A-preferential) and B block (i.e., B-preferential), respectively) were for the first time scrutinized by employing the pseudospectral method of self-consistent mean-field theory. Surprisingly, a new nanoscopic phase, that is, perforated-lamellae-on-cylinder (denoted PC), was observed in star-like (AB)3 diblock copolymer at ϕA = 0.3 and V0 > 0. With a further increase in f, a single lamellae (denoted L1) was found to possess a larger phase region. Under the confinement of A-preferential wall (i.e., V0 0, where an inverted cylinder was formed in bulk, the PC phase became stable, and its free energy decreased as f increased, suggesting the propensity to form PC phase under this condition. Moreover, in stark contrast to the phase transition of C1 → L1 → PC (C1, a single cylindrical microdmain) at ϕA = 0.3 and V0 > 0, when subjected to the A-preferential wall (ϕA = 0.7), a different phase transition sequence (i.e., C1 → PC → L1) was identified due to the formation of a double-layer structure. On the basis of our calculations, the influence of star-like architecture on (AB)f diblock copolymer under the imposed cylindrical confinement, particularly the shift of the phase boundaries as a function of f, was thoroughly understood. These self-assembled nanostructures may hold the promise for applications as lithographic templates for nanowires, photonic crystals, and nanotechnology.

  18. "Click-functional" block copolymers provide precise surface functionality via spin coating.

    Science.gov (United States)

    Rengifo, Hernán R; Chen, Lu; Grigoras, Cristian; Ju, Jingyue; Koberstein, Jeffrey T

    2008-07-15

    There are few existing methods for the quantitative functionalization of surfaces, especially for polymeric substrates. We demonstrate that alkyne end-functional diblock copolymers can be used to provide precise areal densities of reactive functionality on both hard (e.g., glass and silicon oxide) and soft (i.e., polymeric) substrates. Alkyne functionality is extremely versatile because the resultant functional surfaces are reactive toward azide functional molecules by Sharpless click chemistry. Spin-coated films of alpha-alkyne-omega-Br-poly( tert-butylacrylate- b-methylmethacrylate) (poly( tBA-MMA)) spontaneously self-assemble on the aforementioned substrates to present a surface monolayer of PtBA with a thickness in the range of 1 to 9 nm. The PMMA block physisorbs to provide multivalent anchoring onto hard substrates and is fixed onto polymer surfaces by interpenetration with the substrate polymer. The areal density of alkyne functional groups is precisely controlled by adjusting the thickness of the block copolymer monolayer, which is accomplished by changing either the spin coating conditions (i.e., rotational speed and solution concentration) or the copolymer molecular weight. The reactivity of surface-bound alkynes, in 1,3-dipolar cycloaddition reactions or by so-called "click chemistry", is demonstrated by covalent surface immobilization of fluorescently labeled azides. The modificed surfaces are characterized by atomic force microscopy (AFM), contact angle, ellipsometry, fluorescent imaging and angle-dependent X-ray photoelectron spectroscopy (ADXPS) measurements. Microarrays of covalently bound fluorescent molecules are created to demonstrate the approach and their performance is evaluated by determining their fluorescence signal-to-noise ratios.

  19. Block copolymers of ethylene oxide and propylene oxide (pluronics) as immunomodulators and antitumour agents.

    Science.gov (United States)

    Topchieva, I N; Erokhin, V N; Osipova, S V; Khrutskaya, M M; Kupriyanova, T A; Bykovskaya, S N

    1991-01-01

    Block copolymers of ethylene oxide and propylene oxide (pluronics) are nontoxic water-soluble membranotropic surfactants available as polymers with various compositions, molecular masses, number, and arrangement of blocks. In vivo experiments are reported which demonstrate that these polymers and their functional derivatives stimulate the production of anti-sheep-erythrocyte antibodies in mice. The introduction of reactive (hydroperoxide) groups into the polymers by chemical modification or by solubilization of low-molecular-mass hydroperoxides alters the properties of these immunostimulators. In vitro experiments revealed that these modified polymers enhance the activity of natural killer cells without reducing their viability. It is proposed that the immunomodulatory properties of pluronics and their derivatives play an important role in the antitumour activity of these substances in vivo.

  20. Mushroom-shaped Morphology Formed in Thin Films of Cylinder-forming Block Copolymer

    Institute of Scientific and Technical Information of China (English)

    GONG Yu-mei; SONG Jing-chuan; ZHANG Gui-xia

    2011-01-01

    The morphology of the film of polystyrene-block-poly(methyl methacrylate)(PS-b-PMMA) block copolymer having polystyrene(PS) cylinder forming composition spin-coated on a neutral brush modified silicon substrate has been investigated in this report. A mushroom-shaped morphology formed in the film with one period to two periods(L0-2L0) in thickness, which was spin-coated under a low humidity condition(RH ca.13%) and then thermally annealed at an extreme high temperature(230 ℃). The results suggest that the spin-coating condition together with the confinement conditions plays a crucial role in the interesting morphology formation.