Anderson wall and Bloch oscillations in molecular rotation
Floß, Johannes
2014-01-01
We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum -- the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of hbar. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at ambient conditions with the help of existing laser technology.
Anderson wall and BLOCH oscillations in molecular rotation.
Floß, Johannes; Averbukh, Ilya Sh
2014-07-25
We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under quantum resonance conditions. In a rigid rotor, the resonance causes an unlimited ballistic growth of the angular momentum. We show that the centrifugal distortion of rotating molecules eventually halts the growth, by causing Anderson localization beyond a critical value of the angular momentum--the Anderson wall. Its position solely depends on the molecular rotational constants and lies in the range of a few tens of ℏ. Below the wall, rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.
The Quantum Noise of Ferromagnetic π-Bloch Domain Walls
Directory of Open Access Journals (Sweden)
Peter R. Crompton
2009-09-01
Full Text Available We quantify the probability per unit Euclidean-time of reversing the magnetization of a π-Bloch vector, which describes the Ferromagnetic Domain Walls of a Ferromagnetic Nanowire at finite-temperatures. Our approach, based on Langer’s Theory, treats the double sine-Gordon model that defines the π-Bloch vectors via a procedure of nonperturbative renormalization, and uses importance sampling methods to minimise the free energy of the system and identify the saddlepoint solution corresponding to the reversal probability. We identify that whilst the general solution for the free energy minima cannot be expressed in closed form, we can obtain a closed expression for the saddlepoint by maximizing the entanglement entropy of the system as a polynomial ring. We use this approach to quantify the geometric and non-geometric contributions to the entanglement entropy of the Ferromagnetic Nanowire, defined between entangled Ferromagnetic Domain Walls, and evaluate the Euclidean-time dependence of the domain wall width and angular momentum transfer at the domain walls, which has been recently proposed as a mechanism for Quantum Memory Storage.
Dhar, Abhishek; Sriram Shastry, B.
2000-09-01
We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1D for any wave vector. These turn out to be string solutions of Bethe's equations with a macroscopic number of particles in them. They are identified as generalized quantum Bloch wall states, and a simple physical picture is provided for the same.
Dhar, Abhishek; Shastry, B. Sriram
2000-01-01
We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1-d for any wave vector. These turn out to be string solutions of Bethe's equations with a macroscopic number of particles in them. These are identified as generalized quantum Bloch wall states, and a simple physical picture provided for the same.
Floß, Johannes; Averbukh, Ilya Sh
2016-05-19
We describe a universal behavior of linear molecules excited by a periodic train of short laser pulses under conditions close to the quantum resonance. The quantum resonance effect causes an unlimited ballistic growth of the angular momentum. We show that a disturbance of the quantum resonance, either by the centrifugal distortion of the rotating molecules or a controlled detuning of the pulse train period from the so-called rotational revival time, eventually halts the growth by causing Anderson localization beyond a critical value of the angular momentum, the Anderson wall. Below the wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. We suggest optical experiments capable of observing the rotational Anderson wall and Bloch oscillations at near-ambient conditions with the help of existing laser technology.
International Nuclear Information System (INIS)
Small-angle scattering of neutrons allows the determination of the orientation of Bloch walls in the interior of bulk single crystals. The zigzag angle psi=280 of the 900 Bloch wall and its field dependence are measured. We also observe walls or wall pieces with psi=00. With 1800 walls we measure zigzag angles of psi approximately equal to 300. (orig.)
Bloch walls and the non-ideal bose gas spectrum
International Nuclear Information System (INIS)
The quasi-particle spectrum of non-ideal Bose gas with domain walls in the condensate is investigated. The existence of such a system is determined from solutions of Gross-Pitaevskii equation which represent many-soliton systems. The walls which make the condensate non-uniform are responsible for density and velocity fields ρ(x) and υ(x) repectively. In the laboratory, the Bogoliubov spectrum, supposed to be true for an uniform condensate at rest, is changed due to the velocity field to which the quasi-particles are submited. The spectrum in the laboratory frame is obtained by considering the Galileu invariance principle and the interaction energy between the quasi-particle and its medium. The importance in considering the last two facts is illustrated by the analyse of a constant density condensate which moves uniformly in the laboratory. The many-soliton spectrum configuration and structure function are studied by the Monte Carlo method. In an approximation that assumes the quasi-particle to be point like, the condensate can be treated as locally uniform. For each event the position x of a quasi-particle and its momentum in a frame with velocity υ(x) are determined. Thus, by a convenient Galileu transformation the energy spectrum in the laboratory an be obtained. The results show a phonon spectrum which splits in two branches in the high momenta region. In this region the lower energy branch exibiths a point of minimum. Analogies with the He II are explored. (author)
DEFF Research Database (Denmark)
Gaididei, Yu. B.; Christiansen, Peter Leth
2008-01-01
We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three kinds are found: periodic Ising states and two types of Bloch states, staggered...... and unstaggered. The stability of these states is investigated analytically and numerically. The nonlinear dynamics of the Bloch states are described by a complex Ginzburg-Landau equation with linear and nonlinear parametric driving. The switching between the staggered and unstaggered Bloch states under...
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2014-07-01
We introduce Bloch-wave beatings in arrays of multimode periodically bent waveguides with a transverse refractive index gradient. The new phenomenon manifests itself in the periodic drastic increase of the amplitude of the Bloch oscillations that accompanies resonant conversion of modes guided by the individual waveguides. The Bloch-wave beatings are found to be most pronounced when the length of the resonant mode conversion substantially exceeds the longitudinal period of the Bloch oscillations. The beating frequency decreases when the amplitude of waveguide bending decreases, while the beating amplitude is restricted by the amplitude of the Bloch oscillations that emerge from the second allowed band of the Floquet-Bloch lattice spectrum.
Kartashov, Yaroslav V; Torner, Lluis
2014-01-01
We introduce Bloch-wave beatings in arrays of multimode periodically bent waveguides with a transverse refractive index gradient. The new phenomenon manifests itself in the periodic drastic increase of the amplitude of the Bloch oscillations that accompanies resonant conversion of modes guided by the individual waveguides. The Bloch-wave beatings are found to be most pronounced when the length of the resonant mode conversion substantially exceeds the longitudinal period of the Bloch oscillations. The beating frequency decreases when the amplitude of waveguide bending decreases, while the beating amplitude is restricted by the amplitude of the Bloch oscillations that emerge from the second allowed band of the Floquet-Bloch lattice spectrum.
Polychromatic optical Bloch oscillations.
Longhi, Stefano
2009-07-15
Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.
Energy Technology Data Exchange (ETDEWEB)
Bertlmann, Reinhold A; Krammer, Philipp [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria)], E-mail: reinhold.bertlmann@univie.ac.at, E-mail: philipp.krammer@univie.ac.at
2008-06-13
We present three different matrix bases that can be used to decompose density matrices of d-dimensional quantum systems, so-called qudits: the generalized Gell-Mann matrix basis, the polarization operator basis and the Weyl operator basis. Such a decomposition can be identified with a vector-the Bloch vector, i.e. a generalization of the well-known qubit case-and is a convenient expression for comparison with measurable quantities and for explicit calculations avoiding the handling of large matrices. We present a new method to decompose density matrices via so-called standard matrices, consider the important case of an isotropic two-qudit state and decompose it according to each basis. In the case of qutrits we show a representation of an entanglement witness in terms of expectation values of spin-1 measurements, which is appropriate for an experimental realization.
A theory of generalized Bloch oscillations.
Duggen, Lars; Lew Yan Voon, L C; Lassen, Benny; Willatzen, Morten
2016-04-20
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny;
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics....
Observation of anharmonic Bloch oscillations.
Dreisow, Felix; Wang, Gang; Heinrich, Matthias; Keil, Robert; Tünnermann, Andreas; Nolte, Stefan; Szameit, Alexander
2011-10-15
We report on the experimental observation of Bloch oscillations of an optical wave packet in a lattice with second-order coupling. To this end, we employ zigzag waveguide arrays, in which the second-order coupling can be precisely tuned.
Bloch oscillations in carbon nanotubes.
Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando
2009-05-27
Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.
Optical analogue of electronic Bloch oscillations.
Sapienza, Riccardo; Costantino, Paola; Wiersma, Diederik; Ghulinyan, Mher; Oton, Claudio J; Pavesi, Lorenzo
2003-12-31
We report on the observation of Bloch oscillations in light transport through periodic dielectric systems. By introducing a linear refractive index gradient along the propagation direction the optical equivalent of a Wannier-Stark ladder was obtained. Bloch oscillations were observed as time-resolved oscillations in transmission, in direct analogy to electronic Bloch oscillations in conducting crystals where the Wannier-Stark ladder is obtained via an external electric field. The observed oscillatory behavior is in excellent agreement with transfer matrix calculations.
Hybrid Bloch-Anderson localization of light
Stutzer, Simon; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander
2013-01-01
We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.
Hybrid Bloch-Anderson localization of light.
Stützer, Simon; Kartashov, Yaroslav V; Vysloukh, Victor A; Konotop, Vladimir V; Nolte, Stefan; Torner, Lluis; Szameit, Alexander
2013-05-01
We investigate the interplay of Bloch oscillations and Anderson localization in optics. Gradual washing out of Bloch oscillations and the formation of nearly stationary averaged intensity distributions, which are symmetric for narrow and strongly asymmetric for broad input excitations, are observed experimentally in laser-written waveguide arrays. At large disorder levels Bloch oscillations are completely destroyed and both narrow and wide excitations lead to symmetric stationary averaged intensity distributions with exponentially decaying tails.
Wave impedance retrieving via Bloch modes analysis
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, S.; Sukhorukov, A.;
2011-01-01
The main bottleneck in the restoration of electromagnetic effective parameters is connected to the impedance retrieving. The S-parameters method gives the input (Bloch) impedance, which, being then used for permittivity and permeability determination, causes some fundamental physics prin......-ciples violation, like antiresonance behaviour with Im(ε) fundamental) Bloch mode. Then it is possible to determine the Bloch and wave impedances by the surface and volume aver-aging of the electromagnetic field...
The Bloch Vector for N-Level Systems
Kimura, Gen
2003-01-01
We determine the set of the Bloch vectors for N-level systems, generalizing the familiar Bloch ball in 2-level systems. An origin of the structural difference from the Bloch ball in 2-level systems is clarified.
Electric dipoles on the Bloch sphere
Vutha, Amar C
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Bloch-Zener oscillations in binary superlattices.
Dreisow, F; Szameit, A; Heinrich, M; Pertsch, T; Nolte, S; Tünnermann, A; Longhi, S
2009-02-20
Bloch-Zener oscillations, i.e., the coherent superposition of Bloch oscillations and Zener tunneling between minibands of a binary lattice, are experimentally demonstrated for light waves in curved femtosecond laser-written waveguide arrays. Visualization of double-periodicity breathing and oscillation modes is reported, and synchronous tunneling leading to wave reconstruction is demonstrated.
Bloch oscillations in atom interferometry
Cladé, Pierre
2014-01-01
In Paris, we are using an atom interferometer to precisely measure the recoil velocity of an atom that absorbs a photon. In order to reach a high sensitivity, many recoils are transferred to atoms using the Bloch oscillations technique. In this lecture, I will present in details this technique and its application to high precision measurement. I will especially describe in details how this method allows us to perform an atom recoil measurement at the level of $1.3 \\times 10^{-9}$. This measurement is used in the most precise determination of the fine structure constant that is independent of quantum electrodynamics.
First Bloch eigenvalue in high contrast media
Briane, Marc; Vanninathan, Muthusamy
2014-01-01
This paper deals with the asymptotic behavior of the first Bloch eigenvalue in a heterogeneous medium with a high contrast ɛY-periodic conductivity. When the conductivity is bounded in L1 and the constant of the Poincaré-Wirtinger weighted by the conductivity is very small with respect to ɛ-2, the first Bloch eigenvalue converges as ɛ → 0 to a limit which preserves the second-order expansion with respect to the Bloch parameter. In dimension two the expansion of the limit can be improved until the fourth-order under the same hypotheses. On the contrary, in dimension three a fibers reinforced medium combined with a L1-unbounded conductivity leads us to a discontinuity of the limit first Bloch eigenvalue as the Bloch parameter tends to zero but remains not orthogonal to the direction of the fibers. Therefore, the high contrast conductivity of the microstructure induces an anomalous effect, since for a given low-contrast conductivity the first Bloch eigenvalue is known to be analytic with respect to the Bloch parameter around zero.
First Bloch eigenvalue in high contrast media
Energy Technology Data Exchange (ETDEWEB)
Briane, Marc, E-mail: mbriane@insa-rennes.fr [Institut de Recherche Mathématique de Rennes, INSA de Rennes (France); Vanninathan, Muthusamy, E-mail: vanni@math.tifrbng.res.in [TIFR-CAM, Bangalore (India)
2014-01-15
This paper deals with the asymptotic behavior of the first Bloch eigenvalue in a heterogeneous medium with a high contrast εY-periodic conductivity. When the conductivity is bounded in L{sup 1} and the constant of the Poincaré-Wirtinger weighted by the conductivity is very small with respect to ε{sup −2}, the first Bloch eigenvalue converges as ε → 0 to a limit which preserves the second-order expansion with respect to the Bloch parameter. In dimension two the expansion of the limit can be improved until the fourth-order under the same hypotheses. On the contrary, in dimension three a fibers reinforced medium combined with a L{sup 1}-unbounded conductivity leads us to a discontinuity of the limit first Bloch eigenvalue as the Bloch parameter tends to zero but remains not orthogonal to the direction of the fibers. Therefore, the high contrast conductivity of the microstructure induces an anomalous effect, since for a given low-contrast conductivity the first Bloch eigenvalue is known to be analytic with respect to the Bloch parameter around zero.
Magnetic Bloch oscillations in nanowire superlattice rings.
Citrin, D S
2004-05-14
The recent growth of semiconductor nanowire superlattices encourages hope that Bloch-like oscillations in such structures formed into rings may soon be observed in the presence of a time-dependent magnetic flux threading the ring. These magnetic Bloch oscillations are a consequence of Faraday's law; the time-dependent flux produces an electromotive force around the ring, thus leading to the Bloch-like oscillations. In the spectroscopic domain, generalized Wannier-Stark states are found that are manifestations of the emf-induced localization of the states.
First Bloch eigenvalue in high contrast media
Briane, Marc; Vanninathan, Muthusamy
2014-01-01
16 pages International audience This paper deals with the asymptotic behavior of the first Bloch eigenvalue in a heterogeneous medium with a high contrast $\\varepsilon Y$-periodic conductivity. When the conductivity is bounded in $L^1$ and the constant of the Poincaré-Wirtinger weighted by the conductivity is very small with respect to $\\varepsilon^{-2}$, the first Bloch eigenvalue converges as $\\varepsilon\\to 0$ to a limit which preserves the second-order expansion with respect to the ...
Bloch oscillations in optical dissipative lattices.
Efremidis, Nikolaos K; Christodoulides, Demetrios N
2004-11-01
We show that Bloch oscillations are possible in dissipative optical waveguide lattices with a linearly varying propagation constant. These oscillations occur in spite of the fact that the Bloch wave packet experiences coupling gain and (or) loss. Experimentally, this process can be observed in different settings, such as in laser arrays and lattices of semiconductor optical amplifiers. In addition, we demonstrate that these systems can suppress instabilities arising from preferential mode noise growth.
Experimental observation of spectral Bloch oscillations.
Bersch, Christoph; Onishchukov, Georgy; Peschel, Ulf
2009-08-01
We report on the first, to our knowledge, experimental observation of spectral Bloch oscillations in an optical fiber employing the interaction between a probe signal and a traveling-wave periodic potential. The spectrum of weak probe pulses is shown to oscillate on account of their group-velocity mismatch to the periodic field. The behavior of a cw probe spectrum reveals the actual discrete nature of the effect. Recurrences of the spectrum after one and two Bloch periods are demonstrated.
Directory of Open Access Journals (Sweden)
Irshad Kashif
2016-01-01
Full Text Available Maintaining indoor climatic conditions of buildings compatible with the occupant comfort by consuming minimum energy, especially in a tropical climate becomes a challenging problem for researchers. This paper aims to investigate this problem by evaluating the effect of different kind of Photovoltaic Trombe wall system (PV-TW on thermal comfort, energy consumption and CO2 emission. A detailed simulation model of a single room building integrated with PV-TW was modelled using TRNSYS software. Results show that 14-35% PMV index and 26-38% PPD index reduces as system shifted from SPV-TW to DGPV-TW as compared to normal buildings. Thermal comfort indexes (PMV and PPD lie in the recommended range of ASHARE for both DPV-TW and DGPV-TW except for the few months when RH%, solar radiation intensity and ambient temperature were high. Moreover PVTW system significantly reduces energy consumption and CO2 emission of the building and also 2-4.8 °C of temperature differences between indoor and outdoor climate of building was examined.
Resonant delocalization and Bloch oscillations in modulated lattices.
El-Ganainy, R; Christodoulides, D N; Rüter, C E; Kip, D
2011-04-15
We study the propagation of light in Bloch waveguide arrays exhibiting periodic coupling interactions. Intriguing wave packet revival patterns as well as beating Bloch oscillations are demonstrated. A new resonant delocalization phase transition is also predicted.
Observation of Bloch oscillations in molecular rotation
Floß, Johannes; Averbukh, Ilya Sh; Bucksbaum, Philip H
2015-01-01
The periodically kicked quantum rotor is known for non-classical effects such as quantum localisation in angular momentum space or quantum resonances in rotational excitation. These phenomena have been studied in diverse systems mimicking the kicked rotor, such as cold atoms in optical lattices, or coupled photonic structures. Recently, it was predicted that several solid state quantum localisation phenomena - Anderson localisation, Bloch oscillations, and Tamm-Shockley surface states - may manifest themselves in the rotational dynamics of laser-kicked molecules. Here, we report the first observation of rotational Bloch oscillations in a gas of nitrogen molecules kicked by a periodic train of femtosecond laser pulses. A controllable detuning from the quantum resonance creates an effective accelerating potential in angular momentum space, inducing Bloch-like oscillations of the rotational excitation. These oscillations are measured via the temporal modulation of the refractive index of the gas. Our results int...
Fractional Bloch oscillations in photonic lattices.
Corrielli, Giacomo; Crespi, Andrea; Della Valle, Giuseppe; Longhi, Stefano; Osellame, Roberto
2013-01-01
Bloch oscillations, the oscillatory motion of a quantum particle in a periodic potential, are one of the most fascinating effects of coherent quantum transport. Originally studied in the context of electrons in crystals, Bloch oscillations manifest the wave nature of matter and are found in a wide variety of different physical systems. Here we report on the first experimental observation of fractional Bloch oscillations, using a photonic lattice as a model system of a two-particle extended Bose-Hubbard Hamiltonian. In our photonic simulator, the dynamics of two correlated particles hopping on a one-dimensional lattice is mapped into the motion of a single particle in a two-dimensional lattice with engineered defects and mimicked by light transport in a square waveguide lattice with a bent axis.
Fractional Bloch oscillations in photonic lattices
Corrielli, Giacomo; Della Valle, Giuseppe; Longhi, Stefano; Osellame, Roberto; 10.1038/ncomms2578
2013-01-01
Bloch oscillations, the oscillatory motion of a quantum particle in a periodic potential, are one of the most fascinating effects of coherent quantum transport. Originally studied in the context of electrons in crystals, Bloch oscillations manifest the wave nature of matter and are found in a wide variety of different physical systems. Here we report on the first experimental observation of fractional Bloch oscillations, using a photonic lattice as a model system of a two-particle extended Bose-Hubbard Hamiltonian. In our photonic simulator, the dynamics of two correlated particles hopping on a one-dimensional lattice is mapped into the motion of a single particle in a two-dimensional lattice with engineered defects and mimicked by light transport in a square waveguide lattice with a bent axis.
Bloch oscillations in complex crystals with PT symmetry.
Longhi, S
2009-09-18
Bloch oscillations in complex lattices with PT symmetry are theoretically investigated with specific reference to optical Bloch oscillations in photonic lattices with gain or loss regions. Novel dynamical phenomena with no counterpart in ordinary lattices, such as nonreciprocal Bloch oscillations related to violation of the Friedel's law of Bragg scattering in complex potentials, are highlighted.
Terahertz Bloch oscillator with a modulated bias.
Hyart, Timo; Alexeeva, Natalia V; Mattas, Jussi; Alekseev, Kirill N
2009-04-10
Electrons performing Bloch oscillations in an energy band of a dc-biased superlattice in the presence of weak dissipation can potentially generate THz fields at room temperature. The realization of such a Bloch oscillator is a long-standing problem due to the instability of a homogeneous electric field in conditions of negative differential conductivity. We establish the theoretical feasibility of stable THz gain in a long superlattice device in which the bias is quasistatically modulated by microwave fields. The modulation waveforms must have at least two harmonics in their spectra.
Observation of Bloch Oscillations in Molecular Rotation.
Floß, Johannes; Kamalov, Andrei; Averbukh, Ilya Sh; Bucksbaum, Philip H
2015-11-13
We report the observation of rotational Bloch oscillations in a gas of nitrogen molecules kicked by a periodic train of femtosecond laser pulses. A controllable detuning from the quantum resonance creates an effective accelerating potential in angular momentum space, inducing Bloch-like oscillations of the rotational excitation. These oscillations are measured via the temporal modulation of the refractive index of the gas. Our results introduce room-temperature laser-kicked molecules as a new laboratory for studies of localization phenomena in quantum transport.
Electronic Bloch oscillation in bilayer graphene gradient superlattices
Energy Technology Data Exchange (ETDEWEB)
Cheng, Hemeng; Li, Changan; Song, Yun [Department of Physics, Beijing Normal University, Beijing 100875 (China); Ma, Tianxing, E-mail: txma@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Wang, Li-Gang, E-mail: sxwlg@yahoo.com [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Lin, Hai-Qing [Beijing Computational Science Research Center, Beijing 100084 (China)
2014-08-18
We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.
Fractional Bloch Oscillations in photonic lattices
Directory of Open Access Journals (Sweden)
Corrielli G.
2013-11-01
Full Text Available We present the photonic analogy of the Fractional Bloch Oscillations [1]: the oscillatory motion of interacting particles moving in a periodic potential, under the presence of a static force. The analogy is implemented with the propagation of classical light in a specially engineered photonic waveguides lattice, fabricated in fused silica substrate via femtosecond laser micromachining.
Sandwich reactor lattices and Bloch's theorem
International Nuclear Information System (INIS)
The study of the neutron flux distribution in repetitive sandwiches of reactor material leads to results analogous to the 1-dimensional form of Bloch's theorem for the electronic structure in crystals. This principle makes it possible to perform analytically accurate homogenisations of sandwich lattices The method has been extended to cover multi group diffusion and transport theory. (author)
Institute of Scientific and Technical Information of China (English)
SUN Hui-Yuan; HU Yun-Zhi; LIU Li-Hu
2009-01-01
The diameters of the ordinary hard bubbles (OHBs) and soft bubbles in epitaxial garnet films are measured under the microscope at various temperatures. It is found that the bubble diameters of OHBs increase with temperature, and it is concluded that the equilibrium separation between two neighbouring vertical Bloch lines (VBLs) Seq is widened with increasing temperature. At the same time, the results can be understood simply as that there are more VBLs in the domain walls of the first dumbbell domains (IDs) than those in walls of OH Bs at the same temperature.
Pogrebnyak, Victor A.; Furlani, Edward P.
2016-05-01
We study wave propagation in uniform materials with periodic boundary profiles and introduce for the first time Bloch resonances and Bloch gaps. Bloch resonances are due to transverse phase matching, i.e., the coupling of two transverse standing waves corresponding to different harmonics. These are distinct from well-known Bragg resonances that result from longitudinal phase matching. We show that Bloch gaps can be engineered over the entire first Brillouin zone up to an infinite wavelength, i.e., kx=0 , where kx is the wave number in the direction of propagation. This is in contrast to Bragg gaps that open at a fixed wavelength, twice the period of the structure. Bloch resonances and gaps can be tuned by reconfiguring the boundary profile and we derive analytical expressions that predict these phenomena when the amplitude of the profile is small. The theory is fundamental as it broadly applies to wave phenomena that span the quantum to continuum scale with applications that range from condensed matter to acoustics. We validate the theory experimentally for the electromagnetic field at GHz frequencies. We also discuss potential photonic and electronic applications of the theory such as a white-light distributed feedback laser and a two-dimensional electron gas transistor.
Pogrebnyak, Victor A; Furlani, Edward P
2016-05-20
We study wave propagation in uniform materials with periodic boundary profiles and introduce for the first time Bloch resonances and Bloch gaps. Bloch resonances are due to transverse phase matching, i.e., the coupling of two transverse standing waves corresponding to different harmonics. These are distinct from well-known Bragg resonances that result from longitudinal phase matching. We show that Bloch gaps can be engineered over the entire first Brillouin zone up to an infinite wavelength, i.e., k_{x}=0, where k_{x} is the wave number in the direction of propagation. This is in contrast to Bragg gaps that open at a fixed wavelength, twice the period of the structure. Bloch resonances and gaps can be tuned by reconfiguring the boundary profile and we derive analytical expressions that predict these phenomena when the amplitude of the profile is small. The theory is fundamental as it broadly applies to wave phenomena that span the quantum to continuum scale with applications that range from condensed matter to acoustics. We validate the theory experimentally for the electromagnetic field at GHz frequencies. We also discuss potential photonic and electronic applications of the theory such as a white-light distributed feedback laser and a two-dimensional electron gas transistor. PMID:27258880
Bloch oscillations in plasmonic waveguide arrays.
Block, A; Etrich, C; Limboeck, T; Bleckmann, F; Soergel, E; Rockstuhl, C; Linden, S
2014-05-12
The combination of modern nanofabrication techniques and advanced computational tools has opened unprecedented opportunities to mold the flow of light. In particular, discrete photonic structures can be designed such that the resulting light dynamics mimics quantum mechanical condensed matter phenomena. By mapping the time-dependent probability distribution of an electronic wave packet to the spatial light intensity distribution in the corresponding photonic structure, the quantum mechanical evolution can be visualized directly in a coherent, yet classical wave environment. On the basis of this approach, several groups have recently observed discrete diffraction, Bloch oscillations and Zener tunnelling in different dielectric structures. Here we report the experimental observation of discrete diffraction and Bloch oscillations of surface plasmon polaritons in evanescently coupled plasmonic waveguide arrays. The effective external potential is tailored by introducing an appropriate transverse index gradient during nanofabrication of the arrays. Our experimental results are in excellent agreement with numerical calculations.
Logarithmic Bloch space and its predual
Pavlović, Miroslav
2011-01-01
We consider the space $\\bk^1_{\\log^\\alpha}$, of analytic functions on the unit disk $\\D,$ defined by the requirement $\\int_\\D|f'(z)|\\phi(|z|)\\,dA(z)<\\infty,$ where $\\phi(r)=\\log^\\alpha(1/(1-r))$ and show that it is a predual of the "$\\log^\\alpha$-Bloch" space and the dual of the corresponding little Bloch space. We prove that a function $f(z)=\\sum_{n=0}^\\infty a_nz^n$ with $a_n\\downarrow 0$ is in $\\bk^1_{\\log^\\alpha}$ iff $\\sum_{n=0}^\\infty \\log^\\alpha(n+2)/(n+1)<\\infty$ and apply this to obtain a criterion for membership of the Libera transform of a function with positive coefficients in $\\bk^1_{\\log^\\alpha}.$ Some properties of the Ces\\'aro and the Libera operator are considered as well.
Bloch oscillations of path-entangled photons.
Bromberg, Yaron; Lahini, Yoav; Silberberg, Yaron
2010-12-31
We show that when photons in N-particle path-entangled |N,0)+|0,N) or N00N states undergo Bloch oscillations, they exhibit a periodic transition between spatially bunched and antibunched states. The period of the bunching-antibunching oscillation is N times faster than the period of the oscillation of the photon density, manifesting the unique coherence properties of N00N states. The transition occurs even when the photons are well separated in space.
Photonic Bloch oscillations of correlated particles.
Longhi, Stefano
2011-08-15
A photonic realization of Bloch oscillations (BOs) of two correlated electrons that move on a one-dimensional periodic lattice, based on spatial light transport in a square waveguide array with a defect line, is theoretically proposed. The signature of correlated BOs, such as frequency doubling of the oscillation frequency induced by particle interaction, can be simply visualized by monitoring the spatial path followed by an optical beam that excites the array near the defect line.
Quantum state transfer via Bloch oscillations.
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G A
2016-05-18
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.
A Refresher of the Original Bloch's Law Paper (Bloch, July 1885).
Gorea, Andrei
2015-08-01
In 1885, Adolphe-Moïse Bloch asked the following simple question "Is there a law describing the relationship between the duration of a light and its perceived intensity?" Based on a series of experiments using a Foucault regulator and a candle, Bloch concluded that "when the lighting duration varies from 0.00173 to 0.0518 seconds (…) the [visible] light is markedly in inverse proportion to its duration"-his famous law. As this law pertains to the more general and hotly debated question of accumulation of sensory information over time, it is timely to offer the public a full translation of Bloch's original paper (from French) and to present it within the context of contemporary research. PMID:27433317
Inverse Bloch-oscillator: Strong Thz-photocurrent resonances at the Bloch frequency
Energy Technology Data Exchange (ETDEWEB)
Unterrainer, K.; Keay, B.J.; Wanke, M.C. [Univ. of California, Santa Barbara, CA (United States)] [and others
1995-12-31
We have observed resonant changes in the current-voltage characteristics of miniband semiconductor superlattices when the Bloch frequency is resonant with a terahertz field and its harmonics: the inverse Bloch oscillator effect. The resonant feature consists of a peak in the current which grows with increasing laser intensity accompanied by a decrease of the current at the low bias side. The peak position moves linearly with the laser frequency. When the intensity is increased further the first peak starts to decrease and a second peak at about twice the voltage of the first peak is observed due to a two photon resonance. At the highest intensities we observe up to a four photon resonance. A superlattice is expected to show negative differential conductance due to the strong nonparabolicity of the miniband. In this situation the carriers should undergo Bloch oscillations with a frequency {omega}{sub B} = eEd/h. Transient Bloch oscillations of photo excited carriers have been observed in time resolved Thz emission measurements. However, the possibility of Thz generation form a DC voltage biased superlattice is still under discussion. We have approached this problem by exploring the inverse Bloch oscillator effect in a superlattice excited by the Thz radiation form the UCSB FEL. The superlattice consists of 40 periods of 80{angstrom} GaAs wells and 20{angstrom} Al{sub 0.3}Ga{sub 0.7}As barriers. To couple the electric field of the Terahertz radiation parallel to the growth direction a coplanar bowtie antenna has been employed. Our results show clearly that the external radiation couples to Bloch oscillations in contrary to theoretical suggestions that Thz radiation would not couple to a uniform Wannier Stark ladder. We conclude that this result is intimately related to dissipation and line broadening of the otherwise identical states in the ladder: absorption appears above the Wannier Stark splitting ({omega}{sub B}<{omega}) and gain below ({omega}{sub B}>{omega}).
Bloch's Theorem in the Context of Quaternion Analysis
Gürlebeck, K
2012-01-01
The classical theorem of Bloch (1924) asserts that if $f$ is a holomorphic function on a region that contains the closed unit disk $|z|\\leq 1$ such that $f(0) = 0$ and $|f'(0)| = 1$, then the image domain contains discs of radius $3/2-\\sqrt{2} > 1/12$. The optimal value is known as Bloch's constant and 1/12 is not the best possible. In this paper we give a direct generalization of Bloch's theorem to the three-dimensional Euclidean space in the framework of quaternion analysis. We compute explicitly a lower bound for the Bloch constant.
Bloch oscillations in the presence of plasmons and phonons
Ghosh; Jonsson; Wilkins
2000-07-31
The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].
Shevchenko, A B; Barabash, M Yu
2015-12-01
It is shown that at low temperatures, quantum oscillations of nanoscale structural inhomogeneities (the vertical Bloch line and the Bloch point) occur in the domain walls of cylindrical magnetic domains formed in a uniaxial magnetic film with strong magnetic anisotropy. The conditions for the excitation of these oscillations are determined.
Ferroelectricity of domain walls in rare earth iron garnet films.
Popov, A I; Zvezdin, K A; Gareeva, Z V; Mazhitova, F A; Vakhitov, R M; Yumaguzin, A R; Zvezdin, A K
2016-11-16
In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films. PMID:27620369
Ferroelectricity of domain walls in rare earth iron garnet films
Popov, A. I.; Zvezdin, K. A.; Gareeva, Z. V.; Mazhitova, F. A.; Vakhitov, R. M.; Yumaguzin, A. R.; Zvezdin, A. K.
2016-11-01
In this paper, we report on electric polarization arising in a vicinity of Bloch-like domain walls in rare-earth iron garnet films. The domain walls generate an intrinsic magnetic field that breaks an antiferroelectric structure formed in the garnets due to an exchange interaction between rare earth and iron sublattices. We explore 180° domain walls whose formation is energetically preferable in the films with perpendicular magnetic anisotropy. Magnetic and electric structures of the 180° quasi-Bloch domain walls have been simulated at various relations between system parameters. Singlet, doublet ground states of rare earth ions and strongly anisotropic rare earth Ising ions have been considered. Our results show that electric polarization appears in rare earth garnet films at Bloch domain walls, and the maximum of magnetic inhomogeneity is not always linked to the maximum of electric polarization. A number of factors including the temperature, the state of the rare earth ion and the type of a wall influence magnetically induced electric polarization. We show that the value of polarization can be enhanced by the shrinking of the Bloch domain wall width, decreasing the temperature, and increasing the deviations of magnetization from the Bloch rotation that are regulated by impacts given by magnetic anisotropies of the films.
Ernst Bloch:repensar la utopia
Directory of Open Access Journals (Sweden)
Enric Gil
2003-07-01
Full Text Available Aquest article, fruit del treball final de carrera de l'autor per a obtenir la llicenciatura en Humanitats de la UOC, presenta la figura i el pensament d'Ernst Bloch. Considerat el filòsof de la utopia, Bloch aborda aquest tema en totes les seves obres, d'una manera o d'una altra; a més, en la seva trajectòria intel·lectual hi ha una obsessió recurrent pels somnis d'una vida millor en les seves diferents perspectives. Pensador de primera línia, sovint ha estat oblidat i malentès, pel fet de ser considerat un irracionalista que convertia el marxisme en una religió o un marxista heterodox que s'allunyava del materialisme dialèctic per les seves reflexions sobre l'escatologia. La crítica postmodernista dels grans relats i el fracàs dels règims comunistes de l'Est provocaren l'abandó del marxisme i, per extensió, dels seus autors més rellevants.L'article comença amb una exposició general i sintètica dels conceptes de Bloch que apareixen a "El Principi Esperança", comprova el lligam amb la qüestió central de la utopia i desemboca en una reflexió sobre dues utopies del nostre temps que, tot i divergir dels continguts blochians, es troben en diàleg amb l'estructura general dels somnis somiats despert.
Algorithm for generating goldstone and Bloch--Brandow diagrams
Energy Technology Data Exchange (ETDEWEB)
Kaldor, U.
1976-04-01
An algorithm for the automatic generation of Goldstone and Bloch--Brandow diagrams, needed for diagrammatic perturbation expansions, is described (the Bloch--Brandow diagrams are required for degenerate perturbations). Diagrams are produced in sets, each set consisting of members related by exchanges about interaction lines. Only distinct connected diagrams are generated. Applications are described. 5 figures, 1 table.
Improved Separability Criteria Based on Bloch Representation of Density Matrices.
Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming
2016-01-01
The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031
Bloch spaces on bounded symmetric domains in complex Banach spaces
Institute of Scientific and Technical Information of China (English)
DENG; Fangwen
2006-01-01
We give a definition of Bloch space on bounded symmetric domains in arbitrary complex Banach space and prove such function space is a Banach space. The properties such as boundedness, compactness and closed range of composition operators on such Bloch space are studied.
Synchronization of Bloch oscillations by a ring cavity.
Samoylova, M; Piovella, N; Robb, G R M; Bachelard, R; Courteille, Ph W
2015-06-01
We consider Bloch oscillations of ultracold atoms stored in a one-dimensional vertical optical lattice and simultaneously interacting with a unidirectionally pumped optical ring cavity whose vertical arm is collinear with the optical lattice. We find that the feedback provided by the cavity field on the atomic motion synchronizes Bloch oscillations via a mode-locking mechanism, steering the atoms to the lowest Bloch band. It also stabilizes Bloch oscillations against noise, and even suppresses dephasing due to atom-atom interactions. Furthermore, it generates periodic bursts of light emitted into the counter-propagating cavity mode, providing a non-destructive monitor of the atomic dynamics. All these features may be crucial for future improvements of the design of atomic gravimeters based on recording Bloch oscillations.
Experimental observation of N00N state Bloch oscillations.
Lebugle, Maxime; Gräfe, Markus; Heilmann, René; Perez-Leija, Armando; Nolte, Stefan; Szameit, Alexander
2015-09-22
Bloch oscillations of quantum particles manifest themselves as periodic spreading and relocalization of the associated wave functions when traversing lattice potentials subject to external gradient forces. Albeit this phenomenon is deeply rooted into the very foundations of quantum mechanics, all experimental observations so far have only contemplated dynamics of one and two particles initially prepared in separable local states. Evidently, a more general description of genuinely quantum Bloch oscillations will be achieved on excitation of a Bloch oscillator by nonlocal states. Here we report the observation of Bloch oscillations of two-particle N00N states, and discuss the nonlocality on the ground of Bell-like inequalities. The time evolution of two-photon N00N states in Bloch oscillators, whether symmetric, antisymmetric or partially symmetric, reveals transitions from particle antibunching to bunching. Consequently, the initial states can be tailored to produce spatial correlations akin to those of bosons, fermions and anyons, presenting potential applications in photonic quantum simulation.
Bloch-Like Oscillations in Finite Quantum Structures
DEFF Research Database (Denmark)
Duggen, Lars; Willatzen, Morten; Lassen, Benny;
Inspired by several attempts to generate Bloch-like oscillations in different fields of physics [1,2], we examine a multitude of oscillator systems and interactions that lead to Bloch oscillations in finite quantum structures. A general requirement is the existence of a common period in the time...... of individual quantum wells and changing the coupling strength as a function of position. It is, furthermore, demonstrated that the application of a magnetic field to a structure of quantum wells may lead to the observation of Bloch oscillations (similar to Bloch oscillations stemming from the Stark effect......) and derive rather general mathematical relations between quantum systems that allow the existence of Bloch oscillations. References: [1]: G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame, Nature Communications 4, 1555 (2013) [2]: H. Sanchis-Alepuz, Y. A. Kosevich, and J. Sanchez...
On unorthodox solutions of the Bloch equations
Moroz, Alexander
2012-01-01
A systematic, rigorous, and complete investigation of the Bloch equations in time-harmonic driving classical field is performed. Our treatment is unique in that it takes full advantage of the partial fraction decomposition over real number field, which makes it possible to find and classify all analytic solutions. Torrey's analytic solution in the form of exponentially damped harmonic oscillations [Phys. Rev. {\\bf 76}, 1059 (1949)] is found to dominate the parameter space, which justifies its use at numerous occasions in magnetic resonance and in quantum optics of atoms, molecules, and quantum dots. The unorthodox solutions of the Bloch equations, which do not have the form of exponentially damped harmonic oscillations, are confined to rather small detunings $\\delta^2\\lesssim (\\gamma-\\gamma_t)^2/27$ and small field strengths $\\Omega^2\\lesssim 8 (\\gamma-\\gamma_t)^2/27$, where $\\gamma$ and $\\gamma_t$ describe decay rates of the excited state (the total population relaxation rate) and of the coherence, respectiv...
Bloch inductance in small-capacitance Josephson junctions.
Zorin, A B
2006-04-28
We show that the electrical impedance of a small-capacitance Josephson junction also includes, in addition to the capacitive term -i/(omega)CB, an inductive term i(omega)LB. Similar to the known Bloch capacitance CB(q), the Bloch inductance LB(q) also depends periodically on the quasicharge, q, and its maximum value achieved at q=e(mod 2e) always exceeds the value of the Josephson inductance of this junction LJ(phi) at fixed phi=0. The effect of the Bloch inductance on the dynamics of a single junction and a one-dimensional array is described.
Bloch-mode analysis for effective parameters restoration
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Andryieuski, Andrei; Ha, Sangwoo;
2012-01-01
We utilize the Bloch-mode analysis of periodic composite structures to introduce an approach for retrieving effective parameters of homogenized metamaterials. In the case of single-mode propagation we can restore a complex effective refractive index with a high accuracy. By further employing...... surface or volume averaging of the electromagnetic fields of the dominating (fundamental) Bloch modes we are able to determine the Bloch and wave impedances, leading to wave and material effective parameters, respectively. The approach is demonstrated on several examples. We focus our discussion...
Bloch oscillations in chirped layered structures with metamaterials.
Davoyan, Arthur R; Shadrivov, Ilya V; Sukhorukov, Andrey A; Kivshar, Yuri S
2008-03-01
We analyze the Bloch oscillations of electromagnetic waves in chirped layered structures with alternating layers of negative-index metamaterial and conventional dielectric under the condition of the zero average refractive index. We consider the case when the chirp is introduced by varying the thickness of the layers linearly across the structure. We demonstrate that such structures can support three different types of the Bloch oscillations for electromagnetic waves associated with either propagating or evanescent guided modes. In particular, we predict a novel type of the Bloch oscillations associated with coupling between surface waves excited at the interfaces separating the layers of negative-index metamaterial and the layers of the conventional dielectric.
Bloch oscillations of THz acoustic phonons in coupled nanocavity structures.
Lanzillotti-Kimura, N D; Fainstein, A; Perrin, B; Jusserand, B; Mauguin, O; Largeau, L; Lemaître, A
2010-05-14
Nanophononic Bloch oscillations and Wannier-Stark ladders have been recently predicted to exist in specifically tailored structures formed by coupled nanocavities. Using pump-probe coherent phonon generation techniques we demonstrate that Bloch oscillations of terahertz acoustic phonons can be directly generated and probed in these complex nanostructures. In addition, by Fourier transforming the time traces we had access to the proper eigenmodes in the frequency domain, thus evidencing the related Wannier-Stark ladder. The observed Bloch oscillation dynamics are compared with simulations based on a model description of the coherent phonon generation and photoelastic detection processes.
Bloch oscillations in a one-dimensional spinor gas.
Gangardt, D M; Kamenev, A
2009-02-20
A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations of the particle's position and velocity. The existence of Bloch oscillations crucially depends on the viscous friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as an SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction is very weak, opening the possibility to observe Bloch oscillations.
Unit quaternions and the Bloch sphere
Wharton, K. B.; Koch, D.
2015-06-01
The spinor representation of spin-1/2 states can equally well be mapped to a single unit quaternion, yielding a new perspective despite the equivalent mathematics. This paper first demonstrates a useable map that allows Bloch-sphere rotations to be represented as quaternionic multiplications, simplifying the form of the dynamical equations. Left-multiplications generally correspond to non-unitary transformations, providing a simpler (essentially classical) analysis of time-reversal. But the quaternion viewpoint also reveals a surprisingly large broken symmetry, as well as a potential way to restore it, via a natural expansion of the state space that has parallels to second order fermions. This expansion to ‘second order qubits’ would imply either a larger gauge freedom or a natural space of hidden variables.
Bloch state tomography using Wilson lines.
Li, Tracy; Duca, Lucia; Reitter, Martin; Grusdt, Fabian; Demler, Eugene; Endres, Manuel; Schleier-Smith, Monika; Bloch, Immanuel; Schneider, Ulrich
2016-05-27
Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single- and multiband Chern and Z₂ numbers. PMID:27230376
Bloch state tomography using Wilson lines
Li, Tracy; Duca, Lucia; Reitter, Martin; Grusdt, Fabian; Demler, Eugene; Endres, Manuel; Schleier-Smith, Monika; Bloch, Immanuel; Schneider, Ulrich
2016-05-01
Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single- and multiband Chern and Z2 numbers.
Large momentum beam splitter using Bloch oscillations.
Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François
2009-06-19
The sensitivity of an inertial sensor based on an atomic interferometer is proportional to the velocity separation of atoms in the two arms of the interferometer. In this Letter we describe how Bloch oscillations can be used to increase this separation and to create a large momentum transfer (LMT) beam splitter. We experimentally demonstrate a separation of 10 recoil velocities. Light shifts during the acceleration introduce phase fluctuations which can reduce the fringes contrast. We precisely calculate this effect and demonstrate that it can be significantly reduced by using a suitable combination of LMT pulses. We finally show that this method seems to be very promising to realize a LMT beam splitter with several tens of recoils and a very good efficiency.
Bloch vector, disclination and exotic quantum holonomy
Energy Technology Data Exchange (ETDEWEB)
Tanaka, Atushi, E-mail: tanaka-atushi@tmu.ac.jp [Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397 (Japan); Cheon, Taksu [Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502 (Japan)
2015-09-04
A topological formulation of the eigenspace anholonomy, where eigenspaces are interchanged by adiabatic cycles, is introduced. The anholonomy in two-level systems is identified with a disclination of the director (headless vector) of a Bloch vector, which characterizes eigenprojectors. The covering map structure behind the exotic quantum holonomy and the role of the homotopy classification of adiabatic cycles are elucidated. The extensions of this formulation to nonadiabatic cycles and N-level systems are outlined. - Highlights: • A topological formulation of the eigenspace anholonomy is proposed. • The covering map structure behind the anholonomy is identified. • The role of homotopy classification of adiabatic cycles is explained. • The anholonomy in two-level systems is associated with disclinations. • The present formulation offers an extension to nonadiabatic cycles.
Dai, Jin; Niemi, Antti J.; He, Jianfeng; Sieradzan, Adam; Ilieva, Nevena
2016-03-01
We inquire how structure emerges during the process of protein folding. For this we scrutinize collective many-atom motions during all-atom molecular dynamics simulations. We introduce, develop, and employ various topological techniques, in combination with analytic tools that we deduce from the concept of integrable models and structure of discrete nonlinear Schrödinger equation. The example we consider is an α -helical subunit of the HIV envelope glycoprotein gp41. The helical structure is stable when the subunit is part of the biological oligomer. But in isolation, the helix becomes unstable, and the monomer starts deforming. We follow the process computationally. We interpret the evolving structure both in terms of a backbone based Heisenberg spin chain and in terms of a side chain based XY spin chain. We find that in both cases the formation of protein supersecondary structure is akin the formation of a topological Bloch domain wall along a spin chain. During the process we identify three individual Bloch walls and we show that each of them can be modelled with a precision of tenths to several angstroms in terms of a soliton solution to a discrete nonlinear Schrödinger equation.
Estimates on Bloch constants for planar harmonic mappings
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The Bloch constants for quasiregular harmonic mappings and open planar harmonic mappings are considered. Better estimates are obtained. The results, presented in this paper, improve the one made by Chen et al. and Grigoryan.
Coupled bloch-phonon oscillations in semiconductor superlattices
Dekorsy; Bartels; Kurz; Kohler; Hey; Ploog
2000-07-31
We investigate coherent Bloch oscillations in GaAs/AlxGa1-xAs superlattices with electronic miniband widths larger than the optical phonon energy. In these superlattices the Bloch frequency can be tuned into resonance with the optical phonon. Close to resonance a direct coupling of Bloch oscillations to LO phonons is observed which gives rise to the coherent excitation of LO phonons. The density necessary for driving coherent LO phonons via Bloch oscillations is about 2 orders of magnitude smaller than the density necessary to drive coherent LO phonons in bulk GaAs. The experimental observations are confirmed by the theoretical description of this phenomenon [A.W. Ghosh et al., Phys. Rev. Lett. 85, 1084 (2000)].
Calculation of the relativistic Bloch correction to stopping power
Ahlen, S. P.
1982-01-01
Bloch's technique of joining the nonrelativistic Bethe and Bohr stopping-power expressions by taking into account wave-packet effects for close collisions is extended to the relativistic case. It is found that Bloch's nonrelativistic correction term must be modified and that charge asymmetric terms appear. Excellent agreement is observed by comparing the results of these calculations to recent data on the stopping power of relativistic heavy ions.
Bloch Oscillations of Einstein-Podolsky-Rosen States
Lebugle, Maxime; Heilmann, René; Perez-Leija, Armando; Nolte, Stefan; Szameit, Alexander
2015-01-01
Bloch Oscillations (BOs) of quantum particles manifest themselves as periodic spreading and re-localization of the associated wave functions when traversing lattice potentials subject to external gradient forces. Albeit BOs are deeply rooted into the very foundations of quantum mechanics, all experimental observations of this phenomenon so far have only contemplated dynamics of one or two particles initially prepared in separable local states, which is well described by classical wave physics. Evidently, a more general description of genuinely quantum BOs will be achieved upon excitation of a Bloch-oscillator lattice system by nonlocal states, that is, containing correlations in contradiction with local realism. Here we report the first experimental observation of BOs of two-particle Einstein-Podolsky-Rosen states (EPR), whose associated N-particle wave functions are nonlocal by nature. The time evolution of two-photon EPR states in Bloch-oscillators, whether symmetric, antisymmetric or partially symmetric, r...
Landau-Zener Bloch Oscillations with Perturbed Flat Bands.
Khomeriki, Ramaz; Flach, Sergej
2016-06-17
Sinusoidal Bloch oscillations appear in band structures exposed to external fields. Landau-Zener (LZ) tunneling between different bands is usually a counteracting effect limiting Bloch oscillations. Here we consider a flat band network with two dispersive and one flat band, e.g., for ultracold atoms and optical waveguide networks. Using external synthetic gauge and gravitational fields we obtain a perturbed yet gapless band structure with almost flat parts. The resulting Bloch oscillations consist of two parts-a fast scan through the nonflat part of the dispersion structure, and an almost complete halt for substantial time when the atomic or photonic wave packet is trapped in the original flat band part of the unperturbed spectrum, made possible due to LZ tunneling.
Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations
DEFF Research Database (Denmark)
Liang, Z.; Willatzen, Morten; Christensen, Johan
2015-01-01
for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated...
COMPOSITION OPERATORS ON THE LITTLE BLOCH SPACE IN POLYDISCS
Institute of Scientific and Technical Information of China (English)
Zhou Zehua; Zhu Min; Shi Jihuai
2005-01-01
Let Un be the unit polydisc of Cn and φ = (φ1,…,φn) a holomorphic self map of Un. This paper shows that the composition operator Cφ induced by φ is bounded on the little Bloch space β0*(Un) if and only if φ∈β0*(Un) for every l=1,2,…,n, and also gives a sufficient and necessary condition for the composition operator Cφ to be compact on the little Bloch spaceβ0* (Un).
Surface optical Bloch oscillations in semi-infinite waveguide arrays.
Chremmos, I D; Efremidis, N K
2012-06-01
We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.
Control of interaction-induced dephasing of Bloch oscillations.
Gustavsson, M; Haller, E; Mark, M J; Danzl, J G; Rojas-Kopeinig, G; Nägerl, H-C
2008-02-29
We report on the control of interaction-induced dephasing of Bloch oscillations for an atomic Bose-Einstein condensate in an optical lattice. We quantify the dephasing in terms of the width of the quasimomentum distribution and measure its dependence on time for different interaction strengths which we control by means of a Feshbach resonance. For minimal interaction, the dephasing time is increased from a few to more than 20 thousand Bloch oscillation periods, allowing us to realize a BEC-based atom interferometer in the noninteracting limit.
Optical BLOCH oscillations and Zener tunneling with nonclassical light.
Longhi, Stefano
2008-11-01
A quantum theory of optical Bloch oscillations and Zener tunneling (ZT) in arrays of coupled waveguides is theoretically presented, and the particlelike behavior of photons undergoing ZT is highlighted. In singly-periodic arrays excited by a photon-number-state input beam, each photon behaves as a classical particle which independently undergoes a coin-toss ZT event with a probability described by classical Zener theory. In binary arrays, excitation with two tilted beams enables us to observe the Hong-Ou-Mandel interference for two photons undergoing Bloch-Zener oscillations.
Unidirectional optical Bloch oscillations in asymmetric waveguide arrays.
Kumar, Pradeep; Levy, Miguel
2011-11-15
We present an analytical proof of the existence of unidirectional optical Bloch oscillations in a waveguide array system. It is shown that the presence of nonreciprocity in the system allows for a complete normal-mode dephasing in one of the propagation directions, resulting in a unidirectional breakdown in Bloch oscillations. A model system consisting of an array of transversely magnetized asymmetric Si/SiO2 waveguides with a magneto-optic cover layer is presented. Large index contrasts between film and cover are critical for practical realizations.
Superfluidity versus Bloch oscillations in confined atomic gases.
Büchler, H P; Geshkenbein, V B; Blatter, G
2001-09-01
We study the superfluid properties of (quasi) one-dimensional bosonic atom gases/liquids in traps with finite geometries in the presence of strong quantum fluctuations. Driving the condensate with a moving defect we find the nucleation rate for phase slips using instanton techniques. While phase slips are quenched in a ring resulting in a superfluid response, they proliferate in a tube geometry where we find Bloch oscillations in the chemical potential. These Bloch oscillations describe the individual tunneling of atoms through the defect and thus are a consequence of particle quantization.
Generation of 1D interference patterns of Bloch surface waves
Kadomina, E. A.; Bezus, E. A.; Doskolovich, L. L.
2016-09-01
Interference patterns of Bloch surface waves with a period that is significantly less than the wavelength of incident radiation are formed using dielectric diffraction gratings located on the surface of photonic crystal. The simulation based on electromagnetic diffraction theory is used to demonstrate the possibility of high-quality interference patterns due to resonant enhancement of higher evanescent diffraction orders related to the excitation of the Bloch surface waves. The contrast of the interference patterns is close to unity, and the period is less than the period of the diffraction structure by an order of magnitude.
Compact composition operators on the Bloch space in polydiscs
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Let Un be the unit polydisc of Cn and =(1,…n) a holomorphicself-map of Un. As the main result of the paper, it shows that the composition operator Cφ is compact on the Bloch space β(Un) if and only if for every ε>0, there exists a δ>0, such thatwhenever dist((z),Un)<δ.
Quantum Properties of Bloch Point as Nanosized Soliton in Ferromagnetics
Directory of Open Access Journals (Sweden)
M.Yu. Barabash
2014-11-01
Full Text Available It is established that magnetic soliton – Bloch point – has quantum properties which are manifested in the effects of tunneling and above-barrier reflection in a subhelium temperature range. The conditions of the given phenomena are determined.
Topological optical Bloch oscillations in a deformed slab waveguide.
Longhi, Stefano
2007-09-15
Spatial Bloch oscillations of light waves of purely topological origin are theoretically shown to exist in weakly deformed slab waveguides. As the optical rays trapped in the deformed waveguide can roll freely, wave diffraction is strongly affected by the topology of the deformed surface, which can be tailored to simulate the effect of a tilted periodic refractive index.
Interaction-induced decoherence of atomic BLOCH oscillations.
Buchleitner, Andreas; Kolovsky, Andrey R
2003-12-19
We show that the energy spectrum of the Bose-Hubbard model amended by a static field exhibits Wigner-Dyson level statistics. In itself a characteristic signature of quantum chaos, this induces the irreversible decay of Bloch oscillations of cold, interacting atoms loaded into an optical lattice, and provides a Hamiltonian model for interaction-induced decoherence.
N-qubit states as points on the Bloch sphere
Energy Technology Data Exchange (ETDEWEB)
Maekelae, H; Messina, A, E-mail: harmak@gmail.co [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo, via Archirafi 36, 90123 Palermo (Italy)
2010-09-01
We show how the Majorana representation can be used to express the pure states of an N-qubit system as points on the Bloch sphere. We compare this geometrical representation of N-qubit states with an alternative one, proposed recently by the present authors.
Generalized Bloch spheres for m-qubit states
Energy Technology Data Exchange (ETDEWEB)
Dietz, Klaus [Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, via Archirafi 36, 90123 Palermo (Italy); Sektion Physik, LMU, Muenchen, Theresienstrasse 37, 80333 Munich (Germany)
2006-02-10
m-qubit states are embedded in Cl{sub 2m} Clifford algebras. Their probability spectrum then depends on O(2m)- or O(2m + 1)-invariants, respectively. Parameter domains for O(2m(+1))-vector and -tensor configurations, generalizing the notion of a Bloch sphere, are derived.
Lines crossing a tetrahedron and the Bloch group
Hutchinson, Kevin
2011-01-01
We consider a simple modification of the Chow group CH^2(Spec(k),3) using only linear subvarieties in affine spaces and show that it maps surjectively to the Bloch group B(k) for any infinite field k. We also describe the kernel of this map.
Domain walls in Fe(001) bicrystals-thickness dependence and field-induced transitions
Energy Technology Data Exchange (ETDEWEB)
Hanson, M. [Department of Applied physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)]. E-mail: maj.hanson@fy.chalmers.se; Brucas, R. [Department of Applied physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)
2007-03-15
Magnetic domain walls (DW's) formed at the grain boundary (GB) of epitaxial bicrystal Fe(001) films, thickness t=50 and 70nm, were studied by magnetic force microscopy. The 'as-grown' samples displayed DW's with different magnetic contrast profiles yielding a single peak for t=50nm and a double peak with a change of sign at the centre of the wall for t=70nm. For t=50nm the wall is characterised as an asymmetric Bloch wall. The double peak of the 70nm thick film transformed into a single peak characteristic for a charged wall, when a field of 30mT was applied along the GB. At remanence this domain wall relaxed to a regular Bloch wall divided into segments of alternating signs.
Bloch-Redfield equations for modeling light-harvesting complexes
Jeske, Jan; Plenio, Martin B; Huelga, Susana F; Cole, Jared H
2014-01-01
We challenge the commonly held view that Bloch-Redfield equations are a less powerful tool than phenomenological Lindblad equations for modeling exciton transport in photosynthetic complexes. This view predominantly originates from the misuse of the secular approximation. We provide a detailed description of how to model both coherent oscillations and several types of noise, giving explicit examples. All issues with non-positivity are overcome by a consistent straightforward physical noise model. Herein also lies the strength of the Bloch-Redfield approach because it facilitates the analysis of noise-effects by linking them back to physical parameters of the noise environment. This includes temporal and spatial correlations and the strength and type of interaction between the noise and the system of interest. Finally we analyze a prototypical dimer system as well as a 7-site Fenna-Matthews-Olson (FMO) complex in regards to spatial correlation length of the noise, noise strength, temperature and their connecti...
Geometry of entangled states, Bloch spheres and Hopf fibrations
Energy Technology Data Exchange (ETDEWEB)
Mosseri, Remy [Groupe de Physique des Solides, CNRS UMR 7588, Universites Pierre et Marie Curie et Denis Diderot, Paris (France)]. E-mail: mosseri@gps.jussieu.fr; Dandoloff, Rossen [Laboratoire de Physique Theorique et Modelisation, CNRS-ESA 8089, Universite de Cergy-Pontoise, Cergy-Pontoise (France)]. E-mail: rossen.dandoloff@ptm.u-cergy.fr
2001-11-30
We discuss a generalization of the standard Bloch sphere representation for a single qubit to two qubits, in the framework of Hopf fibrations of high-dimensional spheres by lower dimensional spheres. The single-qubit Hilbert space is the three-dimensional sphere S{sup 3}. The S{sup 2} base space of a suitably oriented S{sup 3} Hopf fibration is nothing but the Bloch sphere, while the circular fibres represent the overall qubit phase degree of freedom. For the two-qubits case, the Hilbert space is a seven-dimensional sphere S{sup 7}, which also allows for a Hopf fibration, with S{sup 3} fibres and a S{sup 4} base. The most striking result is that suitably oriented S{sup 7} Hopf fibrations are entanglement sensitive. The relation with the standard Schmidt decomposition is also discussed. (author)
Surface Bloch waves mediated heat transfer between two photonic crystals
Ben-Abdallah, Philippe; Joulain, Karl; Pryamikov, Andrey
2010-01-01
submitted to Applied Physics Letters We theoretically investigate the non-radiative heat transfer between two photonic crystals separated by a small gap in non-equilibrium thermal situation. We predict that the surface Bloch states coupling supported by these media can make heat exchanges larger than those measured at the same separation distance between two massive homogeneous materials made with the elementary components of photonic crystals. These results could find broad applications i...
Experimental reconstruction of Wilson lines in Bloch bands
Li, Tracy; Duca, Lucia; Reitter, Martin; Grusdt, Fabian; Demler, Eugene; Endres, Manuel; Schleier-Smith, Monika; Bloch, Immanuel; Schneider, Ulrich
2015-01-01
Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high energy theories, quantum information, and condensed matter physics. In condensed matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multi-band systems. By realizing strong-force dynamics in Bloch bands that are described by Wilson lines, we observe an ev...
Nonreciprocal Bloch oscillations in magneto-optic waveguide arrays.
Levy, Miguel; Kumar, Pradeep
2010-09-15
We show that nonreciprocal optical Bloch-like oscillations can emerge in transversely magnetized waveguide arrays in the presence of an effective index step between the waveguides. Normal modes of the system are shown to acquire different wavenumbers in opposite propagation directions. Significant differences in phase coherence and decoherence between these normal modes are presented and discussed. Nonreciprocity is established by imposing unequal vertical refractive index gradients at the substrate/core and core/cover interfaces in the presence of transverse magnetization.
Acoustic Bloch oscillations in a two-dimensional phononic crystal.
He, Zhaojian; Peng, Shasha; Cai, Feiyan; Ke, Manzhu; Liu, Zhengyou
2007-11-01
We report the observation of acoustic Bloch oscillations at megahertz frequency in a two-dimensional phononic crystal. By creating periodically arrayed cavities with a decreasing gradient in width along one direction in the phononic crystal, acoustic Wannier-Stark ladders are created in the frequency domain. The oscillatory motion of an incident Gaussian pulse inside the sample is demonstrated by both simulation and experiment.
Super Bloch Oscillation in a PT symmetric system
Turker, Z
2016-01-01
Wannier-Stark ladder in a PT symmetric system is generally complex that leads to amplified/damped Bloch oscillation. We show that a non-amplified wave packet oscillation with very large amplitude can be realized in a non-Hermitian tight binding lattice if certain conditions are satisfied. We show that pseudo PT symmetry guarantees the reality of the quasi energy spectrum in our system.
Bloch oscillations of Bose-Einstein condensates: breakdown and revival.
Witthaut, D; Werder, M; Mossmann, S; Korsch, H J
2005-03-01
We investigate the dynamics of Bose-Einstein condensates in a tilted one-dimensional periodic lattice within the mean-field (Gross-Pitaevskii) description. Unlike in the linear case the Bloch oscillations decay because of nonlinear dephasing. Pronounced revival phenomena are observed. These are analyzed in detail in terms of a simple integrable model constructed by an expansion in Wannier-Stark resonance states. We also briefly discuss the pulsed output of such systems for stronger static fields.
Damping of Bloch oscillations in the Hubbard model.
Eckstein, Martin; Werner, Philipp
2011-10-28
Using nonequilibrium dynamical mean-field theory, we study the isolated Hubbard model in a static electric field in the limit of weak interactions. Linear response behavior is established at long times, but only if the interaction exceeds a critical value, below which the system exhibits an ac-type response with Bloch oscillations. The transition from ac to dc response is defined in terms of the universal long-time behavior of the system, which does not depend on the initial condition.
On history and salvation in Emmanuel Levinas and Ernst Bloch
Directory of Open Access Journals (Sweden)
Salomon J. Terreblanche
2008-01-01
Full Text Available This article explores the tension between history and salvation as theme in contemporary social and humanist philosophy. Special reference is made to Emmanuel Levinas’ work in order to delineate the scope of the questions involved, and to critically elucidate the position on history, death and hope in new-Marxist philosopher Ernst Bloch. The article then illuminates Levinas’ phenomenological account of fecundity, parenthood, patience and institutional justice as hopeful moments that are contained in his philosophy on history
Bloch-mode analysis for retrieving effective parameters of metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Ha, Sangwoo; Sukhorukov, Andrey A.;
2012-01-01
We introduce an approach for retrieving effective parameters of metamaterials based on the Bloch-mode analysis of quasiperiodic composite structures. We demonstrate that, in the case of single-mode propagation, a complex effective refractive index can be assigned to the structure, being restored...... that this approach can be useful for retrieval of both material and wave effective parameters of a broad range of metamaterials....
Bloch-Nordsieck cancellations beyond logarithms in heavy particle decays
Beneke, M.; Braun, Vladimir M.; Zakharov, V. I.
1994-01-01
We investigate the one-loop radiative corrections to the semileptonic decay of a charged particle at finite gauge boson mass. Extending the Bloch-Nordsieck cancellation of infrared logarithms, the subsequent non-analytic terms are also found to vanish after eliminating the pole mass in favor of a mass defined at short distances. This observation justifies the operator product expansion for inclusive decays of heavy mesons and implies that infrared effects associated with the summation of the ...
Continuity, the Bloch-Torrey equation, and Diffusion MRI
Hall, Matt G
2016-01-01
The Bloch equation describes the evolution of classical particles tagged with a magnetisation vector in a strong magnetic field and is fundamental to many NMR and MRI contrast methods. The equation can be generalised to include the effects of spin motion by including a spin flux, which typically contains a Fickian diffusive term and/or a coherent velocity term. This form is known as the Bloch-Torrey equation, and is fundamental to MR modalities which are sensitive to spin dynamics such as diffusion MRI. Such modalities have received a great deal of interest in the research literature over the last few years, resulting in a huge range of models and methods. In this work we make make use of a more general Bloch-Torrey equation with a generalised flux term. We show that many commonly employed approaches in Diffusion MRI may be viewed as different choices for the flux terms in this equation. This viewpoint, although obvious theoretically, is not usually emphasised in the diffusion MR literature and points to inte...
Orbital magnetism of Bloch electrons I. General formula
International Nuclear Information System (INIS)
We derive an exact formula of orbital susceptibility expressed in terms of Bloch wave functions, starting from the exact one-line formula by Fukuyama in terms of Green's functions. The obtained formula contains four contributions: (1) Landau-Peierls susceptibility, (2) interband contribution, (3) Fermi surface contribution, and (4) contribution from occupied states. Except for the Landau-Peierls susceptibility, the other three contributions involve the crystal-momentum derivatives of Bloch wave functions. Physical meaning of each term is clarified. The present formula is simplified compared with those obtained previously by Hebborn et al. Based on the formula, it is seen first of all that diamagnetism from core electrons and Van Vleck susceptibility are the only contributions in the atomic limit. The band effects are then studied in terms of linear combination of atomic orbital treating overlap integrals between atomic orbitals as a perturbation and the itinerant feature of Bloch electrons in solids are clarified systematically for the first time. (author)
Zhou Zehua; Liu Yan
2006-01-01
Let be the unit polydisc of and a holomorphic self-map of . , and denote the -Bloch space, little -Bloch space, and little star -Bloch space in the unit polydisc , respectively, where . This paper gives the estimates of the essential norms of bounded composition operators induced by between ( or ) and ( or ). As their applications, some necessary and sufficient conditions for the (bounded) composition operators to be compact from ( or ) into ( or ) are obtained.
Properties of Floquet-Bloch space harmonics in 1D periodic magneto-dielectric structures
DEFF Research Database (Denmark)
Breinbjerg, O.
2012-01-01
Recent years have witnessed a significant research interest in Floquet-Bloch analysis for determining the homogenized permittivity and permeability of metamaterials consisting of periodic structures. This work investigates fundamental properties of the Floquet-Bloch space harmonics in a 1-dimensi......-dimensional magneto-dielectric lossless structure supporting a transverse-electric-magnetic Floquet-Bloch wave; in particular, the space harmonic permittivity and permeability, as well as the space harmonic Poynting vector....
Excitation of Bloch-like surface waves in quasi-crystals and aperiodic dielectric multilayers.
Koju, Vijay; Robertson, William M
2016-07-01
The existence of Bloch surface waves in periodic dielectric multilayer structures with a surface defect is well known. Not yet recognized is that quasi-crystals and aperiodic dielectric multilayers can also support Bloch-like surface waves. In this work, we numerically show the excitation of Bloch-like surface waves in Fibonacci quasi-crystals and Thue-Morse aperiodic dielectric multilayers using the prism coupling method. We report improved surface electric field intensity and penetration depth of Bloch-like surface waves in the air side in such structures compared to their periodic counterparts. PMID:27367064
From Bloch to random lasing in ZnO self-assembled nanostructures
DEFF Research Database (Denmark)
Garcia-Fernandez, Pedro David; Cefe, López
2013-01-01
In this paper, we present measurements on UV lasing in ZnO ordered and disordered nanostructures. Bloch lasing is achieved in the ordered structures by exploiting very low group-velocity Bloch modes in ZnO photonic crystals. In the second case, random lasing is observed in ZnO photonic glasses. W...
A formula for the Bloch vector of some Lindblad quantum systems
Salgado, D; Sanchez-Gomez, J. L.
2003-01-01
Using the Bloch representation of an N-dimensional quantum system and immediate results from quantum stochastic calculus, we establish a closed formula for the Bloch vector, hence also for the density operator, of a quantum system following a Lindblad evolution with selfadjoint Lindblad operators.
A formula for the Bloch vector of some Lindblad quantum systems
International Nuclear Information System (INIS)
Using the Bloch representation of an N-dimensional quantum system and immediate results from quantum stochastic calculus, we establish a closed formula for the Bloch vector, hence also for the density operator, of a quantum system following a Lindblad evolution with selfadjoint Lindblad operators
Wiegmann, P. B.; Zabrodin, A. V.
1993-01-01
We present a new approach to the problem of Bloch electrons in magnetic field,\\\\ by making explicit a natural relation between magnetic translations and the\\\\quantum group $U_{q}(sl_2)$. The approach allows to express the spectrum and\\\\\\ the Bloch function as solutions of the Bethe-Ansatz equations typical for com\\\\pletely integrable quantum systems
Nonreciprocal Bloch Oscillations in Magneto-Optic Waveguide Arrays
Levy, Miguel
2010-01-01
We show that nonreciprocal optical Bloch-like oscillations can emerge in transversely magnetized waveguide arrays in the presence of an effective index step between the waveguides. Normal modes of the system are shown to acquire different wavenumbers in opposite propagation directions. Significant differences in phase coherence and decoherence between these normal modes are presented and discussed. Non-reciprocity is established by imposing unequal vertical refractive index gradients at the substrate/core, and core/cover interfaces in the presence of transverse magnetization.
Heisenberg-Weyl Observables: Bloch vectors in phase space
Asadian, Ali; Erker, Paul; Huber, Marcus; Klöckl, Claude
2016-07-01
We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions. Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first nontrivial example beyond the dichotomic case.
Traffic restrictions on Routes Bloch, Maxwell and Bohr
IT Department
2008-01-01
Excavation and pipework is being carried out in the framework of the transfer of the waste water treatment plant for the effluents from the surface treatment workshops from Building 254 to Building 676, currently under construction. This work may encroach onto Routes Bloch, Maxwell and Bohr and disrupt the flow of traffic. Users are requested to comply with the road signs that will be erected. The work is expected to last until the beginning of December 2008. Thank you for your understanding. TS/CE and TS/FM Groups Tel.7 4188 or 16 4314
Tunable photonic Bloch oscillations in electrically modulated photonic crystals.
Wang, Gang; Huang, Ji Ping; Yu, Kin Wah
2008-10-01
We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.
Localization without recurrence and pseudo-Bloch oscillations in optics.
Longhi, Stefano
2015-10-15
Dynamical localization, i.e., the absence of secular spreading of a quantum or classical wave packet, is usually associated with Hamiltonians by the pure point spectrum, i.e., with a normalizable and complete set of eigenstates. Such systems always show quasi-periodic dynamics (recurrence). Here, we show, rather counter-intuitively, that dynamical localization can be observed in Hamiltonians with an absolutely continuous spectrum, where recurrence effects are forbidden. An optical realization of such a Hamiltonian is proposed based on beam propagation in a self-imaging optical resonator with a phase grating. Localization without recurrence in this system is explained in terms of pseudo-Bloch optical oscillations.
Plasmonic Bloch oscillations in cylindrical metal-dielectric waveguide arrays.
Shiu, Ruei-Cheng; Lan, Yung-Chiang; Chen, Chin-Min
2010-12-01
This study investigates plasmonic Bloch oscillations (PBOs) in cylindrical metal-dielectric waveguide arrays (MDWAs) by performing numerical simulations and theoretical analyses. Optical conformal mapping is used to transform cylindrical MDWAs into equivalent chirped structures with permittivity and permeability gradients across the waveguide arrays, which is caused by the curvature of the cylindrical waveguide. The PBOs are attributed to the transformed structure. The period of oscillation increases with the wavelength of the incident Gaussian beam. However, the amplitude of oscillation is almost independent of wavelength.
Localization without recurrence and pseudo-Bloch oscillations in optics
Longhi, Stefano
2015-01-01
Dynamical localization, i.e. the absence of secular spreading of a quantum or classical wave packet, is usually associated to Hamiltonians with purely point spectrum, i.e. with a normalizable and complete set of eigenstates, which show quasi-periodic dynamics (recurrence). Here we show rather counter-intuitively that dynamical localization can be observed in Hamiltonians with absolutely continuous spectrum, where recurrence effects are forbidden. An optical realization of such an Hamiltonian is proposed based on beam propagation in a self-imaging optical resonator with a phase grating. Localization without recurrence in this system is explained in terms of pseudo-Bloch optical oscillations.
Quasi-BLOCH oscillations in curved coupled optical waveguides.
Joushaghani, Arash; Iyer, Rajiv; Poon, Joyce K S; Aitchison, J Stewart; de Sterke, C Martijn; Wan, Jun; Dignam, Marc M
2009-10-01
We report the observation of quasi-Bloch oscillations, a recently proposed, new type of dynamic localization in the spatial evolution of light in a curved coupled optical waveguide array. By spatially resolving the optical intensity at various propagation distances, we show the delocalization and final relocalization of the beam in the waveguide array. Through comparisons with other structures, we show that this dynamic localization is robust beyond the nearest-neighbor tight-binding approximation and exhibits a wavelength dependence different from conventional dynamic localization.
Photon BLOCH oscillations in porous silicon optical superlattices.
Agarwal, V; del Río, J A; Malpuech, G; Zamfirescu, M; Kavokin, A; Coquillat, D; Scalbert, D; Vladimirova, M; Gil, B
2004-03-01
We report the first observation of oscillations of the electromagnetic field in an optical superlattice based on porous silicon. These oscillations are an optical equivalent of well-known electronic Bloch oscillations in crystals. Elementary cells of our structure are composed by microcavities whose coupling gives rise to the extended collective modes forming optical minigaps and minibands. By varying thicknesses of the cavities along the structure axis, we have created an effective electric field for photons. A very high quality factor of the confined optical state of the Wannier-Stark ladder may allow lasing in porous silicon-based superlattices.
Plasmonic Bloch oscillations in monolayer graphene sheet arrays.
Fan, Yang; Wang, Bing; Huang, He; Wang, Kai; Long, Hua; Lu, Peixiang
2014-12-15
We investigate the spatial plasmonic Bloch oscillations (BOs) in the monolayer graphene sheet arrays (MGSAs) as the surface plasmon polaritons (SPPs) between graphene in the arrays experience weak coupling. In order to realize BOs, linear gradient of the potential is introduced by changing the chemical potentials of individual graphene sheets or the interlayer space between graphene. Numerical simulations show that the complete plasmonic BOs can be observed in the former MGSAs. However, only harmonic oscillations occur in the latter of varying interlayer space. Theoretical analysis based on the coupled-mode theory agrees well with the numerical simulations.
Truncated-Bloch-wave solitons in optical lattices
Wang, Jiandong; Alexander, Tristram J; Kivshar, Yuri S
2009-01-01
We study self-trapped localized nonlinear states in the form of truncated Bloch waves in one-dimensional optical lattices, which appear in the gaps of the linear bandgap spectrum. We demonstrate the existence of families of such localized states which differ by the number of intensity peaks. These families do not bifurcate from the band edge, and their power curves exhibit double branches. Linear stability analysis demonstrates that in deep lattice potentials the states corresponding to the lower branches are stable, whereas those corresponding to the upper branches are unstable, independently of the number of peaks.
Local gravity measurement with the combination of atom interferometry and Bloch oscillations
Charrière, Renée; Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre
2011-01-01
We present a local measurement of gravity combining Bloch oscillations and atom interferometry. With a falling distance of 0.8 mm, we achieve a sensitivity of 2x10-7 g with an integration time of 300 s. No bias associated with the Bloch oscillations has been measured. A contrast decay with Bloch oscillations has been observed and attributed to the spatial quality of the laser beams. A simple experimental configuration has been adopted where a single retro-reflected laser beam is performing atoms launch, stimulated Raman transitions and Bloch oscillations. The combination of Bloch oscillations and atom interferometry can thus be realized with an apparatus no more complex than a standard atomic gravimeter.
Institute of Scientific and Technical Information of China (English)
Weinan E; Jian-feng LU; Xu YANG
2013-01-01
We study the semi-classical limit of the Schr(o)dinger equation in a crystal in the presence of an external potential and magnetic field.We first introduce the Bloch-Wigner transform and derive the asymptotic equations governing this transform in the semi-classical setting.For the second part,we focus on the appearance of the Berry curvature terms in the asymptotic equations.These terms play a crucial role in many important physical phenomena such as the quantum Hall effect.We give a simple derivation of these terms in different settings using asymptotic analysis.
Bloch-Zener oscillations in a tunable optical honeycomb lattice
Energy Technology Data Exchange (ETDEWEB)
Uehlinger, Thomas; Greif, Daniel; Jotzu, Gregor; Esslinger, Tilman [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich (Switzerland); Tarruell, Leticia [Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland and LP2N, Universite Bordeaux 1, IOGS, CNRS, 351 cours de la Liberation, 33405 Talence (France)
2013-12-04
Ultracold gases in optical lattices have proved to be a flexible tool to simulate many different phenomena of solid state physics [1, 2]. Recently, optical lattices with complex geometries have been realized [3, 4, 5, 6, 7], paving the way to simulating more realistic systems. The honeycomb structure has recently become accessible in an optical lattice composed of mutually perpendicular laser beams. This lattice structure exhibits topological features in its band structure – the Dirac points. At these points, two energy bands intersect linearly and the particles behave as relativistic Dirac fermions. In optical lattices, Bloch oscillations [8] resolved both in time and in quasi-momentum space can be directly observed. We make use of such Bloch-Zener oscillations to probe the vanishing energy gap at the Dirac points as well as their position in the band structure. In small band gap regions, we observe Landau-Zener tunneling [7, 9] to the second band and the regions of maximum transfer can be identified with the position of the Dirac points.
Bloch-Redfield equations for modeling light-harvesting complexes.
Jeske, Jan; Ing, David J; Plenio, Martin B; Huelga, Susana F; Cole, Jared H
2015-02-14
We challenge the misconception that Bloch-Redfield equations are a less powerful tool than phenomenological Lindblad equations for modeling exciton transport in photosynthetic complexes. This view predominantly originates from an indiscriminate use of the secular approximation. We provide a detailed description of how to model both coherent oscillations and several types of noise, giving explicit examples. All issues with non-positivity are overcome by a consistent straightforward physical noise model. Herein also lies the strength of the Bloch-Redfield approach because it facilitates the analysis of noise-effects by linking them back to physical parameters of the noise environment. This includes temporal and spatial correlations and the strength and type of interaction between the noise and the system of interest. Finally, we analyze a prototypical dimer system as well as a 7-site Fenna-Matthews-Olson complex in regards to spatial correlation length of the noise, noise strength, temperature, and their connection to the transfer time and transfer probability.
Shear Bloch waves and coupled phonon-polariton in periodic piezoelectric waveguides.
Piliposyan, D G; Ghazaryan, K B; Piliposian, G T
2014-02-01
Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide are considered in the framework of the full system of Maxwell's electrodynamic equations. We investigate Bloch-Floquet waves under homogeneous or alternating boundary conditions for the elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped modes as well as some anomalous features due to piezoelectricity are identified. For mixed boundary conditions, by modulating the ratio of the length of the unit cell to the width of the waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin zone. The dispersion equation has been investigated also for phonon-polariton band gaps. It is shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton behavior at wavelengths much larger than the length of the unit cell but at optical frequencies polariton resonance occurs at wavelengths comparable with the period of the waveguide. PMID:24139302
Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments
Lermer, Matthias; Dunzer, Florian; Reitzenstein, Stephan; Höfling, Sven; Mørk, Jesper; Worschech, Lukas; Kamp, Martin; Forchel, Alfred
2011-01-01
We have employed Bloch-wave engineering to realize submicron diameter ultra-high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm.
Sanchis-Alepuz, Helios; Kosevich, Yuriy A; Sánchez-Dehesa, José
2007-03-30
We demonstrate the existence of Bloch oscillations of acoustic fields in sound propagation through a superlattice of water cavities and layers of methyl methacrylate. To obtain the acoustic equivalent of a Wannier-Stark ladder, we employ a set of cavities with different thicknesses. Bloch oscillations are observed as time-resolved oscillations of transmission in a direct analogy to electronic Bloch oscillations in biased semiconductor superlattices. Moreover, for a particular gradient of cavity thicknesses, an overlap of two acoustic minibands occurs, which results in resonant Zener-like transmission enhancement.
Bloch-wave engineering of quantum dot-micropillars for cavity quantum electrodynamics experiments
DEFF Research Database (Denmark)
Lermer, Matthias; Gregersen, Niels; Dunzer, Florian;
2012-01-01
We have employed Bloch-wave engineering to realize submicron diameter ultra-high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced...... scattering loss leads to record-high visibility of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13,600 and a Rabi splitting of 85 \\mueV with an estimated visibility v of 0.38 are observed for a small mode volume MP with a diameter dc of 850 nm....
Inducing transport in a dissipation-free lattice with super Bloch oscillations.
Haller, Elmar; Hart, Russell; Mark, Manfred J; Danzl, Johann G; Reichsöllner, Lukas; Nägerl, Hanns-Christoph
2010-05-21
Particles in a perfect lattice potential perform Bloch oscillations when subject to a constant force, leading to localization and preventing conductivity. For a weakly interacting Bose-Einstein condensate of Cs atoms, we observe giant center-of-mass oscillations in position space with a displacement across hundreds of lattice sites when we add a periodic modulation to the force near the Bloch frequency. We study the dependence of these "super" Bloch oscillations on lattice depth, modulation amplitude, and modulation frequency and show that they provide a means to induce linear transport in a dissipation-free lattice.
Computation and visualization of photonic quasicrystal spectra via Blochs theorem
Rodriguez, Alejandro W; Avniel, Yehuda; Johnson, Steven G
2007-01-01
Previous methods for determining photonic quasicrystal (PQC) spectra have relied on the use of large supercells to compute the eigenfrequencies and/or local density of states (LDOS). In this manuscript, we present a method by which the energy spectrum and the eigenstates of a PQC can be obtained by solving Maxwells equations in higher dimensions for any PQC defined by the standard cut-and-project construction, to which a generalization of Blochs theorem applies. In addition, we demonstrate how one can compute band structures with defect states in the higher-dimensional superspace with no additional computational cost. As a proof of concept, these general ideas are demonstrated for the simple case of one-dimensional quasicrystals, which can also be solved by simple transfer-matrix techniques.
Engineering of slow Bloch modes for optical trapping
Energy Technology Data Exchange (ETDEWEB)
Milord, L.; Gerelli, E.; Jamois, C.; Harouri, A.; Benyattou, T., E-mail: taha.benyattou@insa-lyon.fr [Institut des Nanotechnologies de Lyon (INL), CNRS UMR5270, Université de Lyon, INSA-Lyon, Bât “Blaise Pascal,” 7 avenue Jean Capelle, Villeurbanne F-69621 (France); Chevalier, C.; Viktorovitch, P.; Letartre, X. [Institut des Nanotechnologies de Lyon (INL), CNRS UMR5270, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, Ecully F-69134 (France)
2015-03-23
In the present paper, we propose an approach based on slow Bloch mode microcavity that enables the optical trapping of small nanoparticles over a broad surface. A specific design based on a double-period photonic crystal is presented. It enables an easy coupling using a wide free-space Gaussian beam and the cavity Q factor can be tuned at will. Moreover, the microcavity mode is mainly localized within the photonic crystal holes, meaning that each hole of the microcavity behaves as efficient nanotweezers. Experimental studies have shown that 200 nm and 100 nm particles can be trapped within the microcavity, in a spatial region that corresponds to the size of one hole (200 nm wide). The experimental trap stiffness has been extracted. It shows that this approach is among the most performant ones if we take into account the size of the cavity.
Landau-Lifhsitz-Bloch equation for exchange coupled grains
Vogler, Christoph; Bruckner, Florian; Suess, Dieter
2014-01-01
Heat assisted recording is a promising technique to further increase the storage density in hard disks. Multilayer recording grains with graded Curie temperature is discussed to further assist the write process. Describing the correct magnetization dynamics of these grains, from room temperature to far above the Curie point, during a write process is required for the calculation of bit error rates. We present a coarse grained approach based on the Landau-Lifshitz-Bloch (LLB) equation to model exchange coupled grains with low computational effort. The required temperature dependent material properties such as the zero-field equilibrium magnetization as well as the parallel and normal susceptibilities are obtained by atomistic Landau-Lifshitz-Gilbert (LLB) simulations. Each grain is described with one magnetization vector. In order to mimic the atomistic exchange interaction between the grains a special treatment of the exchange field in the coarse grained approach is presented.
Coulomb blockade and BLOCH oscillations in superconducting Ti nanowires.
Lehtinen, J S; Zakharov, K; Arutyunov, K Yu
2012-11-01
Quantum fluctuations in quasi-one-dimensional superconducting channels leading to spontaneous changes of the phase of the order parameter by 2π, alternatively called quantum phase slips (QPS), manifest themselves as the finite resistance well below the critical temperature of thin superconducting nanowires and the suppression of persistent currents in tiny superconducting nanorings. Here we report the experimental evidence that in a current-biased superconducting nanowire the same QPS process is responsible for the insulating state--the Coulomb blockade. When exposed to rf radiation, the internal Bloch oscillations can be synchronized with the external rf drive leading to formation of quantized current steps on the I-V characteristic. The effects originate from the fundamental quantum duality of a Josephson junction and a superconducting nanowire governed by QPS--the QPS junction.
Entanglement and the three-dimensionality of the Bloch ball
Energy Technology Data Exchange (ETDEWEB)
Masanes, Ll., E-mail: ll.masanes@gmail.com [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Müller, M. P. [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg (Germany); Pérez-García, D. [Departamento de Analisis Matematico and IMI, Universidad Complutense de Madrid, 28040 Madrid (Spain); Augusiak, R. [ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona (Spain)
2014-12-15
We consider a very natural generalization of quantum theory by letting the dimension of the Bloch ball be not necessarily three. We analyze bipartite state spaces where each of the components has a d-dimensional Euclidean ball as state space. In addition to this, we impose two very natural assumptions: the continuity and reversibility of dynamics and the possibility of characterizing bipartite states by local measurements. We classify all these bipartite state spaces and prove that, except for the quantum two-qubit state space, none of them contains entangled states. Equivalently, in any of these non-quantum theories, interacting dynamics is impossible. This result reveals that “existence of entanglement” is the requirement with minimal logical content which singles out quantum theory from our family of theories.
Stable BLOCH oscillations of cold atoms with time-dependent interaction.
Gaul, C; Lima, R P A; Díaz, E; Müller, C A; Domínguez-Adame, F
2009-06-26
We investigate Bloch oscillations of interacting cold atoms in a mean-field framework. In general, atom-atom interaction causes dephasing and destroys Bloch oscillations. Here we show that Bloch oscillations are persistent if the interaction is modulated harmonically with suitable frequency and phase. For other modulations, Bloch oscillations are rapidly damped. We explain this behavior in terms of collective coordinates whose Hamiltonian dynamics permits one to predict a whole family of stable solutions. In order to describe also the unstable cases, we carry out a stability analysis for Bogoliubov excitations. Using Floquet theory, we are able to predict the unstable modes as well as their growth rate, found to be in excellent agreement with numerical simulations.
Spatiotemporal control of light by Bloch-mode dispersion in multi-core fibers
DEFF Research Database (Denmark)
Rasmussen, Per Dalgaard; Sukhorukov, A.A.; Neshev, D.N.;
2008-01-01
We study theoretically the dispersion properties of Bloch modes and nonlinearly-induced defect states in two-dimensional waveguide arrays. We define the conditions for achieving anomalous group-velocity dispersion and discuss possibilities for generation of spatiotemporal solitons....
Band structure and Bloch states in birefringent 1D magnetophotonic crystals: An analytical approach
Lévy, M; Levy, Miguel; Jalali, Amir A
2007-01-01
An analytical formulation for the band structure and Bloch modes in elliptically birefringent magnetophotonic crystals is presented. The model incorporates both the effects of gyrotropy and linear birefringence generally present in magneto-optic thin film devices. Full analytical expressions are obtained for the dispersion relation and Bloch modes in a layered stack photonic crystal and their properties are analyzed. It is shown that other models recently discussed in the literature are contained as special limiting cases of the formulation presented herein.
A dorsal fold in Gymnura micrura (Bloch and Scheneider, 1801 (Chondrichthyes: Gymnuridae
Directory of Open Access Journals (Sweden)
Jorge Luiz Silva Nunes
2009-04-01
Full Text Available This paper reports a dorsal fold which is a membranous structure located on the tail of two juvenile butterfly rays, Gymnura micrura (Bloch & Scheneider, 1801, caught through artisanal fishery in the shallow waters of Maranhão State (Brazil.Neste manuscrito registra-se uma nadadeira dorsal em dois espécimes juvenis de Gymnura micrura (Bloch and Scheneider, 1801 capturadas pela pesca artesanal em águas rasas do estado do Maranhão (Brasil.
Weighted Composition Operators from Bergman-Type Spaces into Bloch Spaces
Indian Academy of Sciences (India)
Songxiao Li; Stevo Stević
2007-08-01
Let be an analytic self-map and be a fixed analytic function on the open unit disk in the complex plane $\\mathbb{C}$. The weighted composition operator is defined by $$u C_\\varphi f=u\\cdot p (f\\circ\\varphi), f\\in H(D).$$ Weighted composition operators from Bergman-type spaces into Bloch spaces and little Bloch spaces are characterized by function theoretic properties of their inducing maps.
Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices
Institute of Scientific and Technical Information of China (English)
GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei
2006-01-01
@@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.
Imaging of Bloch oscillations in erbium-doped curved waveguide arrays.
Chiodo, N; Della Valle, G; Osellame, R; Longhi, S; Cerullo, G; Ramponi, R; Laporta, P; Morgner, U
2006-06-01
We report a direct observation of Bloch-like dynamics of light in curved waveguide arrays manufactured in Er:Yb-doped phosphate glass by femtosecond laser writing. The green upconversion fluorescence emitted by excited erbium ions is exploited to image the flow of the guided pump light at approximately 980 nm along the array. Direct and clear evidence of periodic light breathing for single-waveguide excitation, closely related to Bloch oscillations, is reported.
Photonic Bloch oscillations and Wannier-Stark ladders in exponentially chirped Bragg gratings.
Wilkinson, P B
2002-05-01
The formation of photonic Bloch oscillations and Wannier-Stark ladders is demonstrated in an exponentially chirped one-dimensional Bragg grating. The photonic Bloch oscillations are investigated using Hamiltonian optics, and direct analogies are made with electron dynamics in periodic potentials. The results of transfer matrix calculations are presented, which show the existence of a photonic Wannier-Stark ladder that should be detectable in experiments.
Modified Bloch-Redfield Master Equation for Incoherent Excitation of Multilevel Quantum Systems
Tscherbul, Timur V.; Brumer, Paul
2014-01-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The modified Bloch-Redfield master equation allows an un...
An extended q-deformed su(2) algebra and the Bloch electron problem
Fujikawa, Kazuo; KUBO, HARUNOBU
1997-01-01
It is shown that an extended q-deformed $su(2)$ algebra with an extra (``Schwinger '') term can describe Bloch electrons in a uniform magnetic field with an additional periodic potential. This is a generalization of the analysis of Bloch electrons by Wiegmann and Zabrodin. By using a representation theory of this q-deformed algebra, we obtain functional Bethe ansatz equations whose solutions should be functions of finite degree. It is also shown that the zero energy solution is expressed in t...
Allaire, Grégoire; Briane, Marc; Vanninathan, Muthusamy
2016-01-01
in press International audience In this paper we make a comparison between the two-scale asymptotic expansion method for periodic homogenization and the so-called Bloch wave method. It is well-known that the homogenized tensor coincides with the Hessian matrix of the first Bloch eigenvalue when the Bloch parameter vanishes. In the context of the two-scale asymptotic expansion method, there is the notion of high order homogenized equation [5] where the homogenized equation can be improve...
Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F
2008-01-01
This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...
Geometry of the generalized Bloch sphere for qutrit
Goyal, Sandeep K; Singh, Rajeev; Simon, Sudhavathani
2011-01-01
The geometry of the generalized Bloch sphere $\\Omega_3$, the state space of a qutrit is studied. Closed form expressions for $\\Omega_3$, its boundary $\\partial \\Omega_3$, and the set of extremals $\\Omega_3^{\\rm ext}$ are obtained by use of an elementary observation. These expressions and analytic methods are used to classify the 28 two-sections and the 56 three-sections of $\\Omega_3$ into unitary equivalence classes, completing the works of earlier authors. It is shown, in particular, that there are families of two-sections and of three-sections which are equivalent geometrically but not unitarily, a feature that does not appear to have been appreciated earlier. A family of three-sections of obese-tetrahedral shape whose symmetry corresponds to the 24-element tetrahedral point group $T_d$ is examined in detail. This symmetry is traced to the reduction of the adjoint representation of SU(3), the symmetry underlying $\\Omega_3$, into direct sum of the two-dimensional and the two (inequivalent) three-dimensional ...
Floquet-Bloch theory for polymers in a periodic
Pablo Pedro, Ricardo; Tempel, David; Alexander-Katz, Alfredo
2014-03-01
Anderson localization in disordered systems predicts the localization of electronic wave functions and the resulting absence of diffusion. The phenomenon is much more general and has been observed in a variety of systems. In the case of the polymer, the behavior of it in a periodic potential is equivalent to the behavior of a quantum-machanicial particle in a periodic potential. According to this mapping our results for polymers in a periodic potential ara valid for localization of a quantum-mechanical particle in a periodic potential. Besides, one of our motivations for studying polymers in a periodic potential is because it reveals interesting aspects of a self-organization of the adsorbed polymers onto a surface with periodic potential. In order to describe the properties of time-periodic polymer system, we consider the potential time dependent which is periodic in time and space and we evaluate the solutions using the powerful nonperturbative Floquet-Bloch theory which is formulated for linear systems. Finally, we also consider a more interesting problem of when disorder is included in the time-periodic system, where localization of the wave function can occur.
Non-Hermitian wave packet approximation of Bloch optical equations
Energy Technology Data Exchange (ETDEWEB)
Charron, Eric [Universite Paris-Sud, Institut des Sciences Moleculaires d' Orsay, ISMO, CNRS, F-91405 Orsay (France); Sukharev, Maxim [Department of Applied Sciences and Mathematics, Arizona State University, Mesa, Arizona 85212 (United States)
2013-01-14
We introduce a non-Hermitian approximation of Bloch optical equations. This approximation provides a complete description of the excitation, relaxation, and decoherence dynamics of ensembles of coupled quantum systems in weak laser fields, taking into account collective effects and dephasing. In the proposed method, one propagates the wave function of the system instead of a complete density matrix. Relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. As an application, we compute the numerical wave packet solution of a time-dependent non-Hermitian Schroedinger equation describing the interaction of electromagnetic radiation with a quantum nano-structure, and compare the calculated transmission, reflection, and absorption spectra with those obtained from the numerical solution of the Liouville-von Neumann equation. It is shown that the proposed wave packet scheme is significantly faster than the propagation of the full density matrix while maintaining small error. We provide the key ingredients for easy-to-use implementation of the proposed scheme and identify the limits and error scaling of this approximation.
Geometry of the generalized Bloch sphere for qutrits
Goyal, Sandeep K.; Neethi Simon, B.; Singh, Rajeev; Simon, Sudhavathani
2016-04-01
The geometry of the generalized Bloch sphere Ω3, the state space of a qutrit, is studied. Closed form expressions for Ω3, its boundary ∂Ω3, and the set of extremals {{{Ω }}}3{{ext}} are obtained by use of an elementary observation. These expressions and analytic methods are used to classify the 28 two-sections and the 56 three-sections of Ω3 into unitary equivalence classes, completing the works of earlier authors. It is shown, in particular, that there are families of two-sections and of three-sections which are equivalent geometrically but not unitarily, a feature that does not appear to have been appreciated earlier. A family of three-sections of obese-tetrahedral shape whose symmetry corresponds to the 24-element tetrahedral point group T d is examined in detail. This symmetry is traced to the natural reduction of the adjoint representation of SU(3), the symmetry underlying Ω3, into direct sum of the two-dimensional and the two (inequivalent) three-dimensional irreducible representations of T d .
Philippe Bloch: Reducing distance between experiments and CERN
2009-01-01
With its unique combination of several hundred staff members and thousands of users from around the world sharing offices and physics data and profiting from mutually beneficial exchanges of know-how and expertise, the PH Department is a good example of a successful worldwide collaboration, set up as it was to construct and run the Laboratory’s physics experiments. The PH Depart-ment has always played host to thousands of users that contribute to CERN experiments and work on them, and whose numbers are set to grow in the years to come. With his long-standing experience as a user and then as the head of the CERN group within the CMS collaboration, Philippe Bloch, the new PH Department Head, is in favour of closer links between the Department and the experiments. "I think that the PH management should have a direct link to the experiments, and to do so we are holding regular management team meetings comprising members of the Department’s management and the e...
Bloch Oscillation in a One-Dimensional Array of Small Josephson Junctions
Shimada, Hiroshi; Katori, Shunsuke; Gandrothula, Srinivas; Deguchi, Tomoaki; Mizugaki, Yoshinao
2016-07-01
A distinct Bloch nose was demonstrated in the current-voltage characteristics of a one-dimensional array of 20 small Josephson junctions. Arrays of direct-current superconducting quantum interference device (dc-SQUID) structures were used as leads to the array of junctions, and the environmental impedance was tuned with a magnetic field. The observed Bloch nose had a negative differential resistance of its magnitude of as large as 14.3 MΩ, a blockade voltage of 0.36 mV, and a decrease in voltage of 0.21 mV due to the Bloch oscillation, all of which are larger than those obtained in a single junction by more than one order. The observed Bloch oscillation was quantitatively described on the basis of the Bloch oscillation of each single junction in combination with the charge soliton model in a long array. Unexpected constant-current spikes, whose origin lay in the dc-SQUID in the leads, were also observed to be superposed on the current-voltage characteristics when the Coulomb blockade appeared.
Energy Technology Data Exchange (ETDEWEB)
Lazcano, Z.; Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110-A, Ciudad Universitaria, 72570 Puebla (Mexico); Aliev, G. N. [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)
2014-04-21
We report the theoretical calculations and the experimental demonstration of acoustic Bloch oscillations and Wannier-Stark ladders in linear tilted multilayer structures based on porous silicon. The considered structures consist of layers with constant porosity alternated by layers with a linear gradient in the parameter η=1/v{sub L}{sup 2} along the growth direction in order to tilt the acoustic band gap. The purpose of this gradient is to mimic the tilted electronic miniband structure of a superlattice semiconductor under an external electric field. In this way, acoustic Wannier-Stark ladders of equidistant modes are formed and they were experimentally confirmed in the transmission spectrum around 1.2 GHz. Their frequency separation defines the period of the acoustic Bloch oscillations. We fabricated three different structures with the same thicknesses but different values in the η parameter to observe the effect on the period of the Bloch oscillations. We measured the acoustic transmission spectra in the frequency domain, and by using the Fourier transform, we obtained the transmission in the time domain. The transmission spectra of the fabricated samples show acoustic Bloch oscillations with periods of 27, 24, and 19 ns. The experimental results are in good agreement with the transfer matrix calculations. The observed phenomenon is the acoustic counterpart of the well known electronic Bloch oscillations.
Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal.
Hsieh, Mei-Li; Bur, James A; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu
2016-10-14
We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on [Formula: see text] than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation. PMID:27606574
Bloch wave deafness and modal conversion at a phononic crystal boundary
Directory of Open Access Journals (Sweden)
Vincent Laude
2011-12-01
Full Text Available We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.
Bloch wave deafness and modal conversion at a phononic crystal boundary
Laude, Vincent; Moiseyenko, Rayisa P.; Benchabane, Sarah; Declercq, Nico F.
2011-12-01
We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.
Integral type operators from normal weighted Bloch spaces to QT,S spaces
Directory of Open Access Journals (Sweden)
Yongyi GU
2016-08-01
Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.
Observation of fractional Bloch band quantum Hall states in graphene/h-BN superlattices
Wang, Lei; Gao, Yuanda; Wen, Bo; Hone, James; Dean, Cory
The Hofstadter energy spectrum provides a uniquely tunable system to study emergent topological order in the regime of strong interactions. Previous experiments, however, have been limited to low Bloch band fillings where only the Landau level index plays a role. Here we report measurements of high mobility graphene superlattices where the complete unit cell of the Hofstadter spectrum is accessible. We observe coexistence of conventional fractional quantum Hall effect (QHE) states together with the integer QHE states associated with the fractal Hofstadter spectrum. At large magnetic field, we observe signatures of another series of states, which appears at fractional Bloch filling index. These fractional Bloch band QHE states are not anticipated by existing theoretical pictures and point towards a distinct type of many-body state.
Bloch mode synthesis: Ultrafast methodology for elastic band-structure calculations
Krattiger, Dimitri; Hussein, Mahmoud I.
2014-12-01
We present a methodology for fast band-structure calculations that is generally applicable to problems of elastic wave propagation in periodic media. The methodology, called Bloch mode synthesis, represents an extension of component mode synthesis, a set of substructuring techniques originally developed for structural dynamics analysis. In Bloch mode synthesis, the unit cell is divided into interior and boundary degrees-of-freedom, which are described, respectively, by a set of normal modes and a set of constraint modes. A combination of these mode sets then forms a reduced basis for the band structure eigenvalue problem. The reduction is demonstrated on a phononic-crystal model and a locally resonant elastic-metamaterial model and is shown to accurately predict the frequencies and Bloch mode shapes with a dramatic decrease in computation time in excess of two orders of magnitude.
Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice.
Xu, Ye-Long; Fegadolli, William S; Gan, Lin; Lu, Ming-Hui; Liu, Xiao-Ping; Li, Zhi-Yuan; Scherer, Axel; Chen, Yan-Feng
2016-01-01
As an important electron transportation phenomenon, Bloch oscillations have been extensively studied in condensed matter. Due to the similarity in wave properties between electrons and other quantum particles, Bloch oscillations have been observed in atom lattices, photonic lattices, and so on. One of the many distinct advantages for choosing these systems over the regular electronic systems is the versatility in engineering artificial potentials. Here by utilizing dissipative elements in a CMOS-compatible photonic platform to create a periodic complex potential and by exploiting the emerging concept of parity-time synthetic photonics, we experimentally realize spatial Bloch oscillations in a non-Hermitian photonic system on a chip level. Our demonstration may have significant impact in the field of quantum simulation by following the recent trend of moving complicated table-top quantum optics experiments onto the fully integrated CMOS-compatible silicon platform. PMID:27095533
Bloch bound states in the radiation continuum in a periodic array of dielectric rods
Bulgakov, Evgeny N
2014-01-01
We consider an infinite periodic array of dielectric rods in vacuum with the aim to demonstrate three types of a Bloch bound states in the continuum (BSC), symmetry protected with a zero Bloch vector, embedded into one diffraction channel with nonzero Bloch vector, and embedded into two and three diffraction channels. The first and second types of the BSC exist in a wide range of material parameters of the rods, while the third occurs only at a specific value of the radius of the rods. We show that the second type supports the power flux along the array. In order to find BSC we put forward an approach based on the expansion over the Hankel functions. We show how the BSC reveals itself in the scattering function when the singular BSC point is approached along a specific path in the parametric space.
Non-destructive monitoring of Bloch oscillations in an optical cavity
Keßler, H; Venkatesh, B P; Georges, Ch; Hemmerich, A
2016-01-01
Bloch oscillations are a hallmark of coherent wave dynamics in periodic potentials. They occur as the response of quantum mechanical particles in a lattice if a weak force is applied. In optical lattices with their perfect periodic structure they can be readily observed and employed as a quantum mechanical force sensor, for example, for precise measurements of the gravitational acceleration. However, the destructive character of the measurement process in previous experimental implementations poses serious limitations for the precision of such measurements. In this article we show that the use of an optical cavity operating in the regime of strong cooperative coupling allows one to directly monitor Bloch oscillations of a cloud of cold atoms in the light leaking out of the cavity. Hence, with a single atomic sample the Bloch oscillation dynamics can be mapped out, while in previous experiments, each data point required the preparation of a new atom cloud. The use of a cavity-based monitor should greatly impro...
Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice.
Xu, Ye-Long; Fegadolli, William S; Gan, Lin; Lu, Ming-Hui; Liu, Xiao-Ping; Li, Zhi-Yuan; Scherer, Axel; Chen, Yan-Feng
2016-04-20
As an important electron transportation phenomenon, Bloch oscillations have been extensively studied in condensed matter. Due to the similarity in wave properties between electrons and other quantum particles, Bloch oscillations have been observed in atom lattices, photonic lattices, and so on. One of the many distinct advantages for choosing these systems over the regular electronic systems is the versatility in engineering artificial potentials. Here by utilizing dissipative elements in a CMOS-compatible photonic platform to create a periodic complex potential and by exploiting the emerging concept of parity-time synthetic photonics, we experimentally realize spatial Bloch oscillations in a non-Hermitian photonic system on a chip level. Our demonstration may have significant impact in the field of quantum simulation by following the recent trend of moving complicated table-top quantum optics experiments onto the fully integrated CMOS-compatible silicon platform.
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Christodoulides, Demetrios; Peschel, Ulf
2016-01-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals ...
Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments.
Lermer, M; Gregersen, N; Dunzer, F; Reitzenstein, S; Höfling, S; Mørk, J; Worschech, L; Kamp, M; Forchel, A
2012-02-01
We have employed Bloch-wave engineering to realize submicron diameter high quality factor GaAs/AlAs micropillars (MPs). The design features a tapered cavity in which the fundamental Bloch mode is subject to an adiabatic transition to match the Bragg mirror Bloch mode. The resulting reduced scattering loss leads to record-high vacuum Rabi splitting of the strong coupling in MPs with modest oscillator strength quantum dots. A quality factor of 13, 600 and a splitting of 85 μeV with an estimated visibility v of 0.41 are observed for a small mode volume MP with a diameter d{c} of 850 nm.
Hung, Yu-Ju; Lin, I-Sheng
2016-07-11
This paper reports a novel approach to the direct observation of Bloch surface waves, wherein a layer of fluorescent material is deposited directly on the surface of a semi-infinite periodic layered cell. A set of surface nano-gratings is used to couple pumping light to Bloch surface waves, while the sample is rotated until the pumping light meets the quasi-phase matching conditions. This study investigated the directional propagation of waves on stripe and circular one-dimensional grating structures by analyzing the dispersion relationship of the first two eigen modes. Our results demonstrate the efficacy of the proposed scheme in visualizing Bloch surface waves, which could be extended to a variety of other devices. PMID:27410869
Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice
Xu, Ye-Long; Fegadolli, William S.; Gan, Lin; Lu, Ming-Hui; Liu, Xiao-Ping; Li, Zhi-Yuan; Scherer, Axel; Chen, Yan-Feng
2016-01-01
As an important electron transportation phenomenon, Bloch oscillations have been extensively studied in condensed matter. Due to the similarity in wave properties between electrons and other quantum particles, Bloch oscillations have been observed in atom lattices, photonic lattices, and so on. One of the many distinct advantages for choosing these systems over the regular electronic systems is the versatility in engineering artificial potentials. Here by utilizing dissipative elements in a CMOS-compatible photonic platform to create a periodic complex potential and by exploiting the emerging concept of parity-time synthetic photonics, we experimentally realize spatial Bloch oscillations in a non-Hermitian photonic system on a chip level. Our demonstration may have significant impact in the field of quantum simulation by following the recent trend of moving complicated table-top quantum optics experiments onto the fully integrated CMOS-compatible silicon platform. PMID:27095533
Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice
Xu, Ye-Long; Fegadolli, William S.; Gan, Lin; Lu, Ming-Hui; Liu, Xiao-Ping; Li, Zhi-Yuan; Scherer, Axel; Chen, Yan-Feng
2016-04-01
As an important electron transportation phenomenon, Bloch oscillations have been extensively studied in condensed matter. Due to the similarity in wave properties between electrons and other quantum particles, Bloch oscillations have been observed in atom lattices, photonic lattices, and so on. One of the many distinct advantages for choosing these systems over the regular electronic systems is the versatility in engineering artificial potentials. Here by utilizing dissipative elements in a CMOS-compatible photonic platform to create a periodic complex potential and by exploiting the emerging concept of parity-time synthetic photonics, we experimentally realize spatial Bloch oscillations in a non-Hermitian photonic system on a chip level. Our demonstration may have significant impact in the field of quantum simulation by following the recent trend of moving complicated table-top quantum optics experiments onto the fully integrated CMOS-compatible silicon platform.
The Barkas-Effect Correction to Bethe-Bloch Stopping Power
Porter, L. E.
A brief history of the discovery of the Barkas-effect correction to the Bethe-Bloch stopping power formula is presented, followed by a recounting of the initial theoretical calculations prepared as a quantitative explanation. A current version of the modified Bethe-Bloch formula is described in detail. An overview of the current capability to assess the validity of several existing formalisms for calculating the Barkas-effect correction term is provided, in the course of which discussion of numerous sources of uncertainty ensues. Finally, an opinion on the significance of this departure from Bethe-Bloch theory is offered, along with a presentation of a few recent developments and of some areas for focus in future exploration in the field of the stopping power of matter for charged particles.
Quantum distance and the Euler number index of the Bloch band in a one-dimensional spin model.
Ma, Yu-Quan
2014-10-01
We study the Riemannian metric and the Euler characteristic number of the Bloch band in a one-dimensional spin model with multisite spins exchange interactions. The Euler number of the Bloch band originates from the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone. We study this approach analytically in a transverse field XY spin chain with three-site spin coupled interactions. We define a class of cyclic quantum distance on the Bloch band and on the ground state, respectively, as a local characterization for quantum phase transitions. Specifically, we give a general formula for the Euler number by means of the Berry curvature in the case of two-band models, which reveals its essential relation to the first Chern number of the band insulators. Finally, we show that the ferromagnetic-paramagnetic phase transition in zero temperature can be distinguished by the Euler number of the Bloch band.
Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices.
Kling, Sebastian; Salger, Tobias; Grossert, Christopher; Weitz, Martin
2010-11-19
We report on experiments investigating quantum transport and band interferometry of an atomic Bose-Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase between paths in different bands is varied, an interference signal is observed, demonstrating the coherence of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.
Sankin, Vladimir; Andrianov, Alexandr; Petrov, Alexey; Zakhar'in, Alexey; Lepneva, Ala; Shkrebiy, Pavel
2012-10-09
: We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices.
Bloch-Zener oscillations across a merging transition of Dirac points.
Lim, Lih-King; Fuchs, Jean-Noël; Montambaux, Gilles
2012-04-27
Bloch oscillations are a powerful tool to investigate spectra with Dirac points. By varying band parameters, Dirac points can be manipulated and merged at a topological transition toward a gapped phase. Under a constant force, a Fermi sea initially in the lower band performs Bloch oscillations and may Zener tunnel to the upper band mostly at the location of the Dirac points. The tunneling probability is computed from the low-energy universal Hamiltonian describing the vicinity of the merging. The agreement with a recent experiment on cold atoms in an optical lattice is very good.
Schrodinger cat states prepared by Bloch oscillation in a spin-dependent optical lattice
Wu, B J
2011-01-01
We propose to use Bloch oscillation of ultra-cold atoms in a spin-dependent optical lattice to prepare schrodinger cat states. Depending on its internal state, an atom feels different periodic potentials and thus has different energy band structures for its center-of-mass motion. Consequently, under the same gravity force, the wave packets associated with different internal states perform Bloch oscillation of different amplitudes in space and in particular they can be macroscopically displaced with respect to each other. In this way, a cat state can be prepared.
Sreekumari, T.; Aravindan, C.M.
1993-01-01
Satiation amount, satiation time and handling time of Anabas testudineus (Bloch), an air breathing predatory fish was experimentally estimated using guppy (Lebistes reticulatus) as prey. Weight of the fish and satiation time influenced prey handling time. As satiation time is related to the level of hunger, level of hunger was found to influence handling time of prey.
Quantum Maxwell-Bloch equations for spontaneous emission in optical semiconductor devices
Hess, Ortwin; Hofmann, Holger F.
1998-01-01
We present quantum Maxwell-Bloch equations (QMBE) for spatially inhomogeneous optical semiconductor devices taking into account the quantum noise effects which cause spontaneous emission and amplified spontaneous emission. Analytical expressions derived from the QMBE are presented for the spontaneous emission factor beta and the far field pattern of amplified spontaneous emission in broad area quantum well lasers.
Floquet-Bloch waves and suppression of vibrations in multi-scale fluid-solid systems
Carta, Giorgio; Movchan, Alexander B
2016-01-01
The paper presents a mathematical model for an industry inspired problem of vibration isolation applied to a cluster of elastic fluid-filled containers. We develop a systematic approach employing full fluid-solid interaction and Floquet-Bloch waves in periodic multi-scale systems. The analytical findings are accompanied by numerical simulations, including frequency response analyses and computations in the transient regime.
Proof of an entropy conjecture for Bloch coherent spin states and its generalizations
DEFF Research Database (Denmark)
H. Lieb, Elliott; Solovej, Jan Philip
2014-01-01
in 1978 who also extended the conjecture to Bloch SU(2) spin-coherent states for every angular momentum $J$. This conjecture is proved here. We also recall our 1991 extension of the Wehrl map to a quantum channel from $J$ to $K=J+1/2, J+1, ...$, with $K=\\infty$ corresponding to the Wehrl map to classical...
Dynamic localization and Bloch oscillations in the spectrum of a frequency mode-locked laser.
Longhi, Stefano
2005-04-01
It is shown that a frequency mode-locked laser with a sinusoidal sweep of modulation frequency around a mode-locking condition represents an ideal optical system for observing in the spectral domain the phenomena of dynamic localization and Bloch oscillations of electrons in an ideal solid placed in an external ac electric field.
Institute of Scientific and Technical Information of China (English)
OUYANG BiYao; ZHAO XianGeng; CHEN ShiGang; LIU Jie
2001-01-01
In this paper, we study the dynamic behavior and quasi-energy spectrum of multiband superlattice Bloch electrons in quantum kicked potential. We show analytically and numerically the avoided crossing and band suppression about the quasi-energy spectrum, the dynamic nonlocalization, and the electron oscillation behavior between two bands.
Beam splitter and combiner based on Bloch oscillations in spatially modulated waveguide arrays
Zhang, Yiqi; Zhong, Weiping; Wen, Feng; Guo, Yang; Guo, Yao; Lu, Keqing; Zhang, Yanpeng
2014-01-01
We numerically investigate the light beam propagation in periodic waveguide arrays which are elaborately modulated with certain structures. We find that the light beam may split, coalesce, deflect, and be localized during propagation in these spatially modulated waveguide arrays. All the phenomena originate from Bloch oscillations, and supply possible method for fabricating on-chip beam splitters and beam combiners.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Babicheva, Viktoriia; Orlov, A. A.;
2014-01-01
Optics of hyperbolic metamaterials is revisited in terms of large-wavevector waves, evanescent in isotropic media but propagating in presence of extreme anisotropy. Identifying the physical nature of these waves as Bloch volume plasmon polaritons, we derive their existence conditions and outline...... the strategy for tailoring their properties in multiscale metamaterials....
Floquet-Bloch vs. Nicolson-Ross-Weir Extraction for Magneto-Dielectric Bragg Stacks
DEFF Research Database (Denmark)
Clausen, Niels Christian Jerichau; Arslanagic, Samel; Breinbjerg, Olav
2014-01-01
We extract and compare the permittivity and permeability from a dielectric and a magnetodielectric Bragg stack with the Floquet-Bloch (FB) method for the infinite stack and the Nicolson-Ross- Weir (NRW) method for the finite stack. While the extracted propagation constants are identical, the wave...
Greenman, Jim
2006-01-01
In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…
DEFF Research Database (Denmark)
Mody, Astrid
2012-01-01
of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...
Institute of Scientific and Technical Information of China (English)
LIU Jing; LI Chunsheng; NING Ping
2013-01-01
Pampus cinereus (Bloch,1795) (Stromateidae),a species believed to be widely distributed throughout the Indo-Western Pacific region,was redescribed and a neotype was designated.The designation of a neotype was necessary because of ambiguous data in Bloch's original description and the loss of the original type specimen.Morphological data indicated that 10 recently-collected specimens from the coasts of southern China agreed well with Bloch's original description and figure ofP.cinereus.A neotype for this species was selected from among the 10 specimens,and a detailed description is presented in this paper.
Direct observation of closure domain wall mediated spin waves
Energy Technology Data Exchange (ETDEWEB)
Mozooni, Babak, E-mail: bamo@tf.uni-kiel.de; McCord, Jeffrey, E-mail: jmc@tf.uni-kiel.de [Institute for Materials Science, University of Kiel, Kaiserstraße 2, 24143 Kiel (Germany)
2015-07-27
The generation and guiding of spin waves from and by magnetic domain walls are demonstrated. The spin waves radiate from pinned and oscillating magnetic closure domain walls and propagate linearly along a narrow path formed by the surrounding 180° asymmetric Bloch domain walls. The propagating spin wave modes are directly visualized by time-resolved magneto-optical Kerr microscopy with picosecond temporal resolution. A linear relationship between excitation frequency, wavelength, and number of spin waves per domain exists. Independent of the field excitation frequency, a constant phase velocity of spin waves propagation is obtained. Spin waves characteristics can be tuned by varying the magnetic domain dynamics, allowing for variable spin wave characteristics with magnetic field characteristics and histories.
Serkin, Vladimir N.; Belyaeva, T. L.
2001-11-01
It is shown that optical solitons in nonlinear fibre-optic communication systems and soliton lasers can be represented as nonlinear Bloch waves in periodic structures. The Bloch theorem is proved for solitons of the nonlinear Schrodinger equation in systems with the dispersion, the nonlinearity, and the gain (absorption coefficient) periodically changing over the length. The dynamics of formation and interaction, as well as stability of the coupled states of nonlinear Bloch waves are investigated. It is shown that soliton Bloch waves exist only under certain self-matching conditions for the basic parameters of the system and reveal a structural instability with respect to the mismatch between the periods of spatial modulation of the dispersion, nonlinearity or gain.
Raman fingerprints on the Bloch sphere of a spinor Bose-Einstein condensate
Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.
2016-10-01
We explore the geometric interpretation of a diabatic, two-photon Raman process as a rotation on the Bloch sphere for a pseudo-spin-? system. The spin state of a spin-? quantum system can be described by a point on the surface of the Bloch sphere, and its evolution during a Raman pulse is a trajectory on the sphere determined by properties of the optical beams: the pulse area, the relative intensities and phases and the relative frequencies. We experimentally demonstrate key features of this model with a ?Rb spinor Bose-Einstein condensate, which allows us to examine spatially dependent signatures of the Raman beams. The two-photon detuning allows us to precisely control the spin density and imprinted relative phase profiles, as we show with a coreless vortex. With this comprehensive understanding and intuitive geometric interpretation, we use the Raman process to create and tailor as well as study and characterize exotic topological spin textures in spinor BECs.
Quantum Theory of Conducting Matter Newtonian Equations of Motion for a Bloch Electron
Fujita, Shigeji
2007-01-01
Quantum Theory of Conducting Matter: Newtonian Equations of Motion for a Bloch Electron targets scientists, researchers and graduate-level students focused on experimentation in the fields of physics, chemistry, electrical engineering, and material sciences. It is important that the reader have an understanding of dynamics, quantum mechanics, thermodynamics, statistical mechanics, electromagnetism and solid-state physics. Many worked-out problems are included in the book to aid the reader's comprehension of the subject. The Bloch electron (wave packet) moves by following the Newtonian equation of motion. Under an applied magnetic field B the electron circulates around the field B counterclockwise or clockwise depending on the curvature of the Fermi surface. The signs of the Hall coefficient and the Seebeck coefficient are known to give the sign of the major carrier charge. For alkali metals, both are negative, indicating that the carriers are "electrons." These features arise from the Fermi surface difference...
A Refresher of the Original Bloch’s Law Paper (Bloch, July 1885)
2015-01-01
In 1885, Adolphe-Moïse Bloch asked the following simple question “Is there a law describing the relationship between the duration of a light and its perceived intensity?” Based on a series of experiments using a Foucault regulator and a candle, Bloch concluded that “when the lighting duration varies from 0.00173 to 0.0518 seconds (…) the [visible] light is markedly in inverse proportion to its duration”—his famous law. As this law pertains to the more general and hotly debated question of accumulation of sensory information over time, it is timely to offer the public a full translation of Bloch’s original paper (from French) and to present it within the context of contemporary research. PMID:27433317
Tilted resonators in a triangular elastic lattice: chirality, Bloch waves and negative refraction
Tallarico, Domenico; Movchan, Alexander B; Colquitt, Daniel J
2016-01-01
We consider a vibrating triangular mass-truss lattice whose unit cell contains a resonator of a triangular shape. The resonators are connected to the triangular lattice by trusses. Each resonator is tilted, i.e. it is rotated with respect to the triangular lattice's unit cell through an angle $\\vartheta_0$. This geometrical parameter is responsible for the emergence of a resonant mode in the Bloch spectrum for elastic waves and strongly affects the dispersive properties of the lattice. Additionally, the tilting angle $\\vartheta_0$ triggers the opening of a band gap at a Dirac-like point. We provide a physical interpretation of these phenomena and discuss the dynamical implications on elastic Bloch waves. The dispersion properties are used to design a structured interface containing tilted resonators which exhibit negative refraction and focussing, as in a "flat elastic lens".
The Bloch wave operator: generalizations and applications: Part I. The time-independent case
Killingbeck, J P
2003-01-01
This is part 1 of a two-part review on wave operator theory and methods. The basic theory of the time-independent wave operator is presented in terms of partitioned matrix theory for the benefit of general readers, with a discussion of the links between the matrix and projection operator approaches. The matrix approach is shown to lead to simple derivations of the wave operators and effective Hamiltonians of Loewdin, Bloch, Des Cloizeaux and Kato as well as to some associated variational forms. The principal approach used throughout stresses the solution of the nonlinear equation for the reduced wave operator, leading to the construction of the effective Hamiltonians of Bloch and of Des Cloizeaux. Several mathematical techniques which are useful in implementing this approach are explained, some of them being relatively little known in the area of wave operator calculations. The theoretical discussion is accompanied by several specimen numerical calculations which apply the described techniques to a selection ...
Magneto-optical switching of Bloch surface waves in magnetophotonic crystals
Romodina, M. N.; Soboleva, I. V.; Fedyanin, A. A.
2016-10-01
Bloch-surface-wave (BSW) excitation controlled by Faraday rotation in one-dimensional magnetophotonic crystals is presented. Dispersion curves of the Bloch surface wave and waveguide modes of magnetophotonic crystals consisting of silicon dioxide and bismuth-substituted yttrium-iron-garnet (Bi:YIG) quarter-wavelength-thick layers are calculated using Berreman's 4×4 transfer matrix method. Enhanced Faraday rotation observed in the magnetophotonic crystals in the spectral vicinity of the BSW resonance enables the magneto-optical switching of BSWs. The excitation of the BSWs at the magnetophotonic crystal surface for p-polarized incident light is induced by magneto-optical activity in the Bi:YIG layers.
Bloch oscillations as generators of polarons in a 1D crystal
Nazareno, H. N.; Brito, P. E. de
2016-08-01
The main purpose of this work is to characterize the kind of propagation/localization of carriers in a one-dimensional crystalline structure along the tight-binding model while the electron-phonon interaction is taken into account through a deformation potential and the system is under the action of a dc electric field. The lattice was treated in the classical formalism of harmonic vibrations. A remarkable effect is obtained due to the presence of the electric field. On one side the particle performs Bloch oscillations and at the same time it interacts with the lattice and as a result at each turning point of its trajectory phonons are generated that carry with them a fraction of the electronic wave packet, it is the polaron formation. This way the Bloch oscillations pump polarons into the system. We explain why the polaron is formed at returning points of the oscillations.
Interplay between Point-Group Symmetries and the Choice of the Bloch Basis in Multiband Models
Directory of Open Access Journals (Sweden)
Qiang-Hua Wang
2013-11-01
Full Text Available We analyze the point-group symmetries of generic multiband tight-binding models with respect to the transformation properties of the effective interactions. While the vertex functions in the orbital language may transform non-trivially under point-group operations, their point-group behavior in the band language can be simplified by choosing a suitable Bloch basis. We first give two analytically accessible examples. Then, we show that, for a large class of models, a natural Bloch basis exists, in which the vertex functions in the band language transform trivially under all point-group operations. As a consequence, the point-group symmetries can be used to reduce the computational effort in perturbative many-particle approaches, such as the functional renormalization group.
Suppression of space broadening of exciton polariton beams by Bloch oscillation effects
Duan, Xudong; Zhang, Yongyou
2015-01-01
We theoretically study the transport of exciton polaritons under different applied photon potentials. The relation between the photon potentials and the thickness of the cavity layer is calculated by the finite element simulation. The theoretical analysis and numerical calculation indicate that the cavity photon potential is proportional to the thickness of the cavity layer with the coefficient being about $1.8$ meV/nm. Further, the periodic and linear photon potentials are considered to control the transport of the exciton polaritons in weak- and strong-field pump situations. In both situations the periodic potential cannot by itself effectively suppress the scatterings of the disorder potentials of the cavity photons and excitons and the nonlinear exciton-exciton interaction. When the linear potential is added to the cavity photons, the polariton transport exhibits the Bloch oscillation behavior. Importantly, the polariton Bloch oscillation can strongly suppress the space broadening due to the disorder pote...
Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.
Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi
2013-12-01
The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.
Phase transition to spatial Bloch-like oscillation in squeezed photonic lattices
Nezhad, M Khazaei; Golshani, M; Mahdavi, S M; Langari, A
2013-01-01
We propose an exactly solvable waveguide lattice incorporating inhomogeneous coupling coefficient. This structure provides a classical analogue to the squeezed number and squeezed coherent intensity distribution in quantum optics where the propagation length plays the role of squeezed amplitude. The intensity pattern is obtained in a closed form for an arbitrary distribution of the initial beam profile. We have also investigated the phase transition to the spatial Bloch-like oscillations by adding a linear gradient to the propagation constant of each waveguides ($ \\alpha $). Our analytical results show that the Bloch-like oscillations appear above a critical value for the linear gradient of propagation constant ($ \\alpha > \\alpha_{c} $). The phase transition (in the propagation properties of the waveguide) is a result of competition between discrete and Bragg diffraction. Moreover, the light intensity decay algebraically along each waveguide at the critical point while it falls off exponentially below the cri...
Tarallo, M G; Poli, N; Chiofalo, M L; Wang, F -Y; Tino, G M
2012-01-01
In this paper we describe and compare different methods used for accurate determination of forces acting on matter-wave packets in optical lattices. The quantum interference nature responsible for the production of both Bloch oscillations and coherent delocalization is investigated in detail. We study conditions for optimal detection of Bloch oscillation for a thermal ensemble of cold atoms with a large velocity spread. We report on the experimental observation of resonant tunneling in an amplitude-modulated (AM) optical lattice up to the sixth harmonic with Fourier-limited linewidth. We then explore the fundamental and technical phenomena which limit both the sensitivity and the final accuracy of the atomic force sensor at 10^{-7} precision level [1], with an analysis of the coherence time of the system and addressing few simple setup changes to go beyond the current accuracy.
DEFF Research Database (Denmark)
Zhukovsky, Sergei; Lavrinenko, Andrei
2012-01-01
We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength-scale struc......We propose proof-of-concept designs of Bragg reflectors and Fabry-Pe´rot resonators for large wave vector waves (Bloch bulk plasmon polaritons) in multilayer metal-dielectric hyperbolic metamaterials. The designs are based on hybrid multilayers having both subwavelength and wavelength......-scale structuring. This multiscale approach is shown to be a promising platform for using bulk plasmonic waves in complex multilayer metamaterials as a new kind of information carriers....
Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations
Parker, Richard
2016-05-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
Modified Bloch-Redfield Master Equation for Incoherent Excitation of Multilevel Quantum Systems
Tscherbul, Timur V
2014-01-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The modified Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis, and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a fi...
Norm equivalence and composition operators between Bloch/Lipschitz spaces of the ball
Stević Stevo; Clahane Dana D
2006-01-01
For , let and denote, respectively, the -Bloch and holomorphic -Lipschitz spaces of the open unit ball in . It is known that and are equal as sets when . We prove that these spaces are additionally norm-equivalent, thus extending known results for and the polydisk. As an application, we generalize work by Madigan on the disk by investigating boundedness of the composition operator from to .
Institute of Scientific and Technical Information of China (English)
Robert F.Allen
2014-01-01
We study the bounded and the compact weighted composition operators from the Bloch space into the weighted Banach spaces of holomorphic functions on bounded homogeneous domains, with particular attention to the unit polydisk. For bounded homogeneous domains, we characterize the bounded weighted composition operators and determine the operator norm. In addition, we provide sufficient condi-tions for compactness. For the unit polydisk, we completely characterize the compact weighted composition operators, as well as provide ”computable” estimates on the operator norm.
EXTENDED CES(A)RO OPERATORS ON THE BLOCH SPACE IN THE UNIT BALL OF Cn
Institute of Scientific and Technical Information of China (English)
胡璋剑
2003-01-01
The paper defines an extended Cesàro operator Tg with holomorphic symbolg in the unit ball B of Cn asWhere g(z)= ∑j=1∑n zj g/ zj is the radial derivative of g. In this paper, the author characterizes g for which Tg is bounded (or compact) on the Bloch spaceB and the little Blochspace B0.
Muthusamy RAJASEKAR; Muthusamy THANGARAJ; Thathiredypalli R. BARATHKUMAR; Jayachandran SUBBURAJ; Kaliyan MUTHAZHAGAN
2012-01-01
Lates calcarifer (Bloch 1790) is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai) and one captive (Mutukadu) population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD) markers. Ten random primers were used for the assessment of their genetic diversity and const...
Positiveness and Pauli exception principle in raw Bloch equations for quantum boxes
Bidégaray-Fesquet, Brigitte
2010-01-01
International audience The aim of this paper is to derive a raw Bloch model for the interaction of light with quantum boxes in the framework of a two-electron-species (conduction and valence) description. This requires a good understanding of the one-species case and of the treatment of level degeneracy. In contrast with some existing literature we obtain a Liouville equation which induces the positiveness and the boundedness of solutions, that are necessary for future mathematical studies...
Positiveness and Pauli exception principle in raw Bloch equations for quantum boxes
Bidégaray-Fesquet, Brigitte
2010-10-01
The aim of this paper is to derive a raw Bloch model for the interaction of light with quantum boxes in the framework of a two-electron-species (conduction and valence) description. This requires a good understanding of the one-species case and of the treatment of level degeneracy. In contrast with some existing literature, we obtain a Liouville equation which induces the positiveness and the boundedness of solutions, that are necessary for future mathematical studies involving higher order phenomena.
Positiveness and Pauli exception principle in raw Bloch equations for quantum boxes
International Nuclear Information System (INIS)
The aim of this paper is to derive a raw Bloch model for the interaction of light with quantum boxes in the framework of a two-electron-species (conduction and valence) description. This requires a good understanding of the one-species case and of the treatment of level degeneracy. In contrast with some existing literature, we obtain a Liouville equation which induces the positiveness and the boundedness of solutions, that are necessary for future mathematical studies involving higher order phenomena.
Anti-Newtonian dynamics and self-induced Bloch oscillations of correlated particles
Longhi, Stefano
2014-01-01
We predict that two correlated particles hopping on a one-dimensional Hubbard lattice can show transient self-acceleration and self-induced Bloch oscillations as a result of anti-Newtonian dynamics. Self-propulsion occurs for two particles with opposite effective mass on the lattice and requires long-range particle interaction. A photonic simulator of the two-particle Hubbard model with controllable long-range interaction, where self-propulsion can be observed, is discussed.
Sensitive measurement of forces at the micron scale using Bloch oscillations of ultracold atoms.
Carusotto, I; Pitaevskii, L; Stringari, S; Modugno, G; Inguscio, M
2005-08-26
We show that Bloch oscillations of ultracold fermionic atoms in the periodic potential of an optical lattice can be used for a sensitive measurement of forces at the micrometer length scale, e.g., in the vicinity of a dielectric surface. In particular, the proposed approach allows us to perform a local and direct measurement of the Casimir-Polder force which is, for realistic experimental parameters, as large as 10(-4) gravity.
Freezing of nonlinear Bloch oscillations in the generalized discrete nonlinear Schrödinger equation.
Cao, F J
2004-09-01
The dynamics in a nonlinear Schrödinger chain in a homogeneous electric field is studied. We show that discrete translational invariant integrability-breaking terms can freeze the Bloch nonlinear oscillations and introduce new faster frequencies in their dynamics. These phenomena are studied by direct numerical integration and through an adiabatic approximation. The adiabatic approximation allows a description in terms of an effective potential that greatly clarifies the phenomena.
Bloch oscillations and Zener tunneling in two-dimensional photonic lattices.
Trompeter, Henrike; Krolikowski, Wieslaw; Neshev, Dragomir N; Desyatnikov, Anton S; Sukhorukov, Andrey A; Kivshar, Yuri S; Pertsch, Thomas; Peschel, Ulf; Lederer, Falk
2006-02-10
We report on the first experimental observation of photonic Bloch oscillations and Zener tunneling in two-dimensional periodic systems. We study the propagation of an optical beam in a square lattice superimposed on a refractive index ramp. We observe oscillations of the beam inside the first Brilloin zone and tunneling of light from the first to the higher-order bands of the lattice band gap spectrum.
Laura Ghigliotti; Julius Nielsen; Jorgen Schou Christiansen; Eva Pisano
2015-01-01
The Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801) is the largest predatory fish in Arctic waters. The socio-economic significance of Greenland shark is demonstrated by its impact on the fishing cultures in Greenland, Scandinavia and Iceland for centuries. The fundamental biology and ecological role of Greenland shark, on the other hand, is virtually unknown. Although knowledge of its life history is limited, increasing evidence indicates that the Greenland shark may unde...
Maxwell-Bloch Equations Modeling of Ultrashort Optical Pulse Propagation in Semiconductor Materials
Goorjian, Peter M.; Agrawal, Govind, P.
1997-01-01
An algorithm has been developed that solves the semiconductor Maxwell-Bloch equations, without making the standard slowly-varying envelope (SVEA) and rotating-wave (RWA) approximations. It is applied to study the propagation of ultrashort pulses in semiconductor materials. The results include many-body effects due to the Coulomb interaction among the charge carriers as well as the nonlinear effects resulting from spectral hole-burning.
Explicit Solutions of the Bethe Ansatz Equations for Bloch Electrons in a Magnetic Field
Hatsugai, Yasuhiro; Kohmoto, Mahito; Wu, Yong-Shi
1994-01-01
For Bloch electrons in a magnetic field, explicit solutions are obtained at the center of the spectrum for the Bethe ansatz equations of Wiegmann and Zabrodin. When the magnetic flux per plaquette is 1 / Q with Q an odd integer, distribution of the roots of the Bethe ansatz equation is uniform except at two points on the unit circle in the complex plane. For the semiclassical limit Q→∞, the wave function is
Real-time protein aggregation monitoring with a Bloch surface wave-based approach
Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter
2014-05-01
The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-12-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations.
Representability of Bloch states on Projector-augmented-wave (PAW) basis sets
Agapito, Luis; Ferretti, Andrea; Curtarolo, Stefano; Buongiorno Nardelli, Marco
2015-03-01
Design of small, yet `complete', localized basis sets is necessary for an efficient dual representation of Bloch states on both plane-wave and localized basis. Such simultaneous dual representation permits the development of faster more accurate (beyond DFT) electronic-structure methods for atomistic materials (e.g. the ACBN0 method.) by benefiting from algorithms (real and reciprocal space) and hardware acceleration (e.g. GPUs) used in the quantum-chemistry and solid-state communities. Finding a `complete' atomic-orbital basis (partial waves) is also a requirement in the generation of robust and transferable PAW pseudopotentials. We have employed the atomic-orbital basis from available PAW data sets, which extends through most of the periodic table, and tested the representability of Bloch states on such basis. Our results show that PAW data sets allow systematic and accurate representability of the PAW Bloch states, better than with traditional quantum-chemistry double-zeta- and double-zeta-polarized-quality basis sets.
Dynamic scattering of electron vortex beams – A Bloch wave analysis
Energy Technology Data Exchange (ETDEWEB)
Mendis, B.G., E-mail: b.g.mendis@durham.ac.uk
2015-02-15
Two important applications of electron vortex beams are in electron magnetic chiral dichroism (EMCD) measurements and nanoparticle manipulation. In both cases orbital angular momentum (
Pusch, Andreas; Wuestner, Sebastian; Hamm, Joachim M; Tsakmakidis, Kosmas L; Hess, Ortwin
2012-03-27
Nanoplasmonic metamaterials are an exciting new class of engineered media that promise a range of important applications, such as subwavelength focusing, cloaking, and slowing/stopping of light. At optical frequencies, using gain to overcome potentially not insignificant losses has recently emerged as a viable solution to ultra-low-loss operation that may lead to next-generation active metamaterials. Maxwell-Bloch models for active nanoplasmonic metamaterials are able to describe the coherent spatiotemporal and nonlinear gain-plasmon dynamics. Here, we extend the Maxwell-Bloch theory to a Maxwell-Bloch Langevin approach-a spatially resolved model that describes the light field and noise dynamics in gain-enhanced nanoplasmonic structures. Using the example of an optically pumped nanofishnet metamaterial with an embedded laser dye (four-level) medium exhibiting a negative refractive index, we demonstrate the transition from loss-compensation to amplification and to nanolasing. We observe ultrafast relaxation oscillations of the bright negative-index mode with frequencies just below the THz regime. The influence of noise on mode competition and the onset and magnitude of the relaxation oscillations is elucidated, and the dynamics and spectra of the emitted light indicate that coherent amplification and lasing are maintained even in the presence of noise and amplified spontaneous emission.
Observation of Bloch oscillations in complex PT-symmetric photonic lattices.
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-12-07
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations.
Dynamic scattering of electron vortex beams – A Bloch wave analysis
International Nuclear Information System (INIS)
Two important applications of electron vortex beams are in electron magnetic chiral dichroism (EMCD) measurements and nanoparticle manipulation. In both cases orbital angular momentum (
Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories
Ivanov, Yurii P.
2016-05-03
Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. © 2016 American Chemical Society.
1999-01-01
The FIRE AND RESCUE Group of TIS Commission informs that the climbing wall in the yard of the Fire-fighters Station, is intended for the sole use of the members of that service, and recalls that access to this installation is forbidden for safety reasons to all persons not belonging to the Service.CERN accepts no liability for damage or injury suffered as a result of failure to comply with this interdiction.TIS/DI
Energy Technology Data Exchange (ETDEWEB)
Clade, P
2005-10-15
From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
Weighted Composition Operators from α-Bloch Spaces to H∞%α-Bloch空间到H∞的加权复合算子
Institute of Scientific and Technical Information of China (English)
唐笑敏
2007-01-01
The article not only presents the boundedness and compactness of the weighted composition operator from α-Bloch spaces(or little α-Bloch spaces) to H∞, but also gives some estimates for the norm of the weighted composition operator.
Bloch oscillating transistor as the readout element for hot electron bolometers
Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti
2004-10-01
In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.
Energy Technology Data Exchange (ETDEWEB)
Lyo, Sungkwun Kenneth; Pan, Wei; Reno, John Louis; Wendt, Joel Robert; Barton, Daniel Lee
2008-09-01
We have investigated the physics of Bloch oscillations (BO) of electrons, engineered in high mobility quantum wells patterned into lateral periodic arrays of nanostructures, i.e. two-dimensional (2D) quantum dot superlattices (QDSLs). A BO occurs when an electron moves out of the Brillouin zone (BZ) in response to a DC electric field, passing back into the BZ on the opposite side. This results in quantum oscillations of the electron--i.e., a high frequency AC current in response to a DC voltage. Thus, engineering a BO will yield continuously electrically tunable high-frequency sources (and detectors) for sensor applications, and be a physics tour-de-force. More than a decade ago, Bloch oscillation (BO) was observed in a quantum well superlattice (QWSL) in short-pulse optical experiments. However, its potential as electrically biased high frequency source and detector so far has not been realized. This is partially due to fast damping of BO in QWSLs. In this project, we have investigated the possibility of improving the stability of BO by fabricating lateral superlattices of periodic coupled nanostructures, such as metal grid, quantum (anti)dots arrays, in high quality GaAs/Al{sub x}Ga{sub 1-x}As heterostructures. In these nanostructures, the lateral quantum confinement has been shown theoretically to suppress the optical-phonon scattering, believed to be the main mechanism for fast damping of BO in QWSLs. Over the last three years, we have made great progress toward demonstrating Bloch oscillations in QDSLs. In the first two years of this project, we studied the negative differential conductance and the Bloch radiation induced edge-magnetoplasmon resonance. Recently, in collaboration with Prof. Kono's group at Rice University, we investigated the time-domain THz magneto-spectroscopy measurements in QDSLs and two-dimensional electron systems. A surprising DC electrical field induced THz phase flip was observed. More measurements are planned to investigate this
Experimental reconstruction of the Berry curvature in a topological Bloch band
Weitenberg, Christof; Flaeschner, Nick; Rem, Benno; Tarnowski, Matthias; Vogel, Dominik; Luehmann, Dirk-Soeren; Sengstock, Klaus
2016-05-01
Topological properties lie at the heart of many fascinating phenomena in solid state systems such as quantum Hall systems or Chern insulators. The topology can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Employing fermionic ultracold atoms in a hexagonal optical lattice, we engineer the Berry curvature of the Bloch bands using resonant driving and measure it with full momentum resolution. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.
Experimental reconstruction of the Berry curvature in a Floquet Bloch band
Fläschner, N.; Rem, B. S.; Tarnowski, M.; Vogel, D.; Lühmann, D.-S.; Sengstock, K.; Weitenberg, C.
2016-05-01
Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved measurement of the ensuing Berry curvature. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.
UGROŽENE VRSTE RIBA U SVIJETU: Mystus vittatus (Bloch, 1794) (Siluriformes: Bagridae)
Hossain, Yeamin
2014-01-01
Autohtona vrsta, Mystus vittatus (Bloch, 1794), pripadnik porodice Bagridae, široke je distribucije u azijskim zemljama, uključujući Bangladeš, Indiju, Pakistan, Šri Lanku, Nepal i Mianmar. Međutim, prirodne populacije ozbiljno opadaju zbog visokog ribolovnog pritiska, gubitka staništa, zagađenja, prirodnih katastrofa, sanacije močvara i prekomjernog poplavnog zamuljivanja pa se stoga nalazi se u kategoriji osjetljive vrste. U članku se predlažu mjere za očuvanje ostatka izolirane populacije ...
Estey, Brian; Müller, Holger; Kuan, Pei-Chen; Lan, Shau-Yu
2014-01-01
We describe a new scheme for atom interferometry based on both large-momentum transfer Bragg beam splitters and Bloch oscillations. Combining the advantages of previous approaches to recoil-sensitive interferometers, we increase the signal and suppress a systematic phase shift caused by Bragg diffraction at least 60-fold, matching experiment to theory; the systematic shift can be eliminated from Mach-Zehnder interferometers. We demonstrate high contrast, interference with up to 4.4 million radians of phase difference between freely evolving matter waves, and a resolution of $\\delta \\alpha/\\alpha=0.33\\,$ppb$\\sqrt{\\rm 6h}$ available to measurements of the fine structure constant.
Nontrivial Bloch oscillations in waveguide arrays with second-order coupling.
Wang, Gang; Huang, Ji Ping; Yu, Kin Wah
2010-06-01
Under the influence of the next-nearest-neighbor interaction, we theoretically investigate the occurrence of Bloch oscillations in zigzag waveguide arrays. Because of the special topological configuration of the lattice itself, the second-order coupling (SOC) can be enhanced significantly and leads to the band alteration beyond the nearest-neighbor model, i.e., the offset of minimum value from the band edge. Contrary to the behavior in the vanishing SOC, the oscillation patterns exhibit new features, namely, a double turning-back occurs when the beam approaches the band edge. Our results can be applied to some ordered-lattice systems.
Bloch Oscillations of Cold Atoms in a Cavity: Effects of Quantum Noise
Venkatesh, B Prasanna
2013-01-01
In this communication we extend our theory of Bloch oscillations of cold atoms inside an optical cavity [Venkatesh et al., Phys. Rev. A 80, 063834 (2009)] to include the effects of quantum noise. By solving the coupled dynamics of linearized fluctuations about the atomic and optical meanfields, we are able to include the effects of quantum measurement backaction upon the atoms and ultimately examine how this influences the signal-to-noise ratio of a measurement of external forces using this system. One of the hurdles we overcome along the way is the proper treatment of fluctuations about time-dependent meanfields in the cold atom cavity-QED context.
On-chip optical isolation via unidirectional Bloch oscillations in a waveguide array.
Kumar, Pradeep; Levy, Miguel
2012-09-15
We propose to use the unidirectionality of the optical Bloch oscillation phenomenon achievable in a magneto-optic asymmetric waveguide array to achieve optical isolation. At the 1.55 μm telecommunication wavelength, our isolator design exhibits an isolation ratio of 36 dB between forward- and backward-propagating waves. The proposed design consists of a waveguide array made in a silicon-on-insulator substrate with a magnetic garnet cover layer. A key role is played by the transverse-magnetic mode nonreciprocal phase shift effect.
Bloch oscillations of quasispin polaritons in a magneto-optically controlled atomic ensemble
Jiang, Chang; Zhou, Lan
2012-01-01
We consider the propagation of a quantized polarized light in a magneto-optically manipulated atomic ensemble with a tripod configuration. Polariton formalism is applied when the medium is subjected to a washboard magnetic field under electromagnetically induced transparency. The dark-state polariton with multiple components is achieved. We analyze quantum dynamics of the dark-state polariton by some experiment data from rubidium D1-line. It is found that one component propagates freely, however the wavepacket trajectory of the other component performs Bloch oscillations.
Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations.
Longhi, Stefano
2007-02-01
It is theoretically shown that storage and time reversal of light pulses can be achieved in a coupled-resonator optical waveguide by dynamic tuning of the cavity resonances without maintaining the translational invariance of the system. The control exploits the Bloch oscillation motion of a light pulse in the presence of a refractive index ramp, and it is therefore rather different from the mechanism of adiabatic band compression and reversal proposed by Yanik and Fan in recent works [Phys. Rev. Lett., 92, 083901 (2004); 93, 173903 (2004)].
Long-living BLOCH oscillations of matter waves in periodic potentials.
Salerno, M; Konotop, V V; Bludov, Yu V
2008-07-18
The dynamics of matter waves in linear and nonlinear optical lattices subject to a spatially uniform linear force is studied both analytically and numerically. It is shown that by properly designing the spatial dependence of the scattering length it is possible to induce long-living Bloch oscillations of gap-soliton matter waves in optical lattices. This occurs when the effective nonlinearity and the effective mass of the soliton have opposite signs for all values of the crystal momentum in the Brillouin zone. The results apply to all systems modeled by the periodic nonlinear Schrödinger equation, including propagation of light in photonic and photorefractive crystals with tilted band structures.
Institute of Scientific and Technical Information of China (English)
CHEN Li-Xue(陈历学); KIM Dalwoo; SONG Ying-Lin(宋瑛琳); DING Wei-Qiang(丁卫强); LI Wen-Hui(李文惠); LIU Shu-Tian(刘树田)
2004-01-01
One-dimensional photonic crystal of second-order nonlinearity is studied. Among the three waves of the parametric interaction process of down-conversion with a nondispersive medium, two gap-edge localized modes and one travelling-mode are proposed, and an exact phase matching condition is realized using the periodic condition of the Bloch phase. Numerical simulation is implemented by the slow-envelope finite difference time domain method. In the case of a pulse wave pump of amplitude half-width 5.2 × 10-13 s, an intense optical parametric pulse with half-width about 5 × 10-14 s is observed.
Toxicity studies of butachlor to the freshwater fish Channa punctata (Bloch).
Tilak, K S; Veeraiah, K; Bhaskara Thathaji, P; Butchiram, M S
2007-04-01
The toxicity studies were conducted on the fish Channa punctata (Bloch) by employing static and continuous flow through systems, for the toxicant butachlor (technical grade+) and its commercial formulation+ (machete 50% EC). The LC50 values are 297.89 ppb and 247.46 ppb for 24 hr and 48 hr in static for technical and 636.45 and 546.09 for machete. In continuous flow through the values are 270.05, 233.52 to the technical and 567.85 and 481.49 respectively for machete. The tissues show qualitative accumulation and were quantitatively analysed by gas liquid chromatography (GLC).
Extraction of optical Bloch modes in a photonic-crystal waveguide
Huisman, S R; Stobbe, S; Herek, J L; Lodahl, P; Vos, W L; Pinkse, P W H
2011-01-01
We perform phase-sensitive near-field scanning optical microscopy on photonic-crystal waveguides. The observed intricate field patterns are analyzed by spatial Fourier transformations, revealing several guided TE- and TM-like modes. Using the reconstruction algorithm proposed by Ha, et al. (Opt. Lett. 34 (2009)), we decompose the measured two-dimensional field pattern in a superposition of propagating Bloch modes. This opens new possibilities to study specific modes in near-field measurements. We apply the method to study the transverse behavior of a guided TE-like mode, where the mode extends deeper in the surrounding photonic crystal when the band edge is approached.
Sturmberg, Björn C. P.; Dossou, Kokou B.; Lawrence, Felix J.; Poulton, Christopher G.; McPhedran, Ross C.; Martijn de Sterke, C.; Botten, Lindsay C.
2016-05-01
We describe EMUstack, an open-source implementation of the Scattering Matrix Method (SMM) for solving field problems in layered media. The fields inside nanostructured layers are described in terms of Bloch modes that are found using the Finite Element Method (FEM). Direct access to these modes allows the physical intuition of thin film optics to be extended to complex structures. The combination of the SMM and the FEM makes EMUstack ideally suited for studying lossy, high-index contrast structures, which challenge conventional SMMs.
Explicit Solutions of the Bethe Ansatz Equations for Bloch Electrons in a Magnetic Field
Hatsugai, Yasuhiro; Kohmoto, Mahito; Wu, Yong-Shi
1994-01-01
For Bloch electrons in a magnetic field, explicit solutions are obtained at the center of the spectrum for the Bethe ansatz equations recently proposed by Wiegmann and Zabrodin. When the magnetic flux per plaquette is $1/Q$ where $Q$ is an odd integer, distribution of the roots is uniform on the unit circle in the complex plane. For the semi-classical limit, $ Q\\rightarrow\\infty$, the wavefunction obeys the power low and is given by $|\\psi(x)|^2=(2/ \\sin \\pi x)$ which is critical and unnormal...
Quantum Group, Bethe Ansatz and Bloch Electrons in a Magnetic Field
Hatsugai, Y.; Kohmoto, M.; Wu, Y.-S.
1995-01-01
The wave functions for two dimensional Bloch electrons in a uniform magnetic field at the mid-band points are studied with the help of the algebraic structure of the quantum group $U_q(sl_2)$. A linear combination of its generators gives the Hamiltonian. We obtain analytical and numerical solutions for the wave functions by solving the Bethe Ansatz equations, proposed by Wiegmann and Zabrodin on the basis of above observation. The semi-classical case with the flux per plaquette $\\phi=1/Q$ is ...
Nonlinear waves of the Hirota and the Maxwell-Bloch equations in nonlinear optics
Institute of Scientific and Technical Information of China (English)
Li Chuan-Zhong; He Jing-Song; K.Porseizan
2013-01-01
In this paper,considering the Hirota and the Maxwell-Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system,we construct the Darboux transformation of this system through a linear eigenvalue problem.Using this Daurboux transformation,we generate multi-soliton,positon,and breather solutions (both bright and dark breathers) of the H-MB equations.Finally,we also construct the rogue wave solutions of the above system.
de Lima, M M; Kosevich, Yu A; Santos, P V; Cantarero, A
2010-04-23
We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.
Estevez, J Octavio; Arriaga, Jesús; Mendez-Blas, Antonio; Reyes-Ayona, Edgar; Escorcia, José; Agarwal, Vivechana
2012-07-23
: Theoretical demonstration and experimental evidence of photon Bloch oscillations and Wannier-Stark ladders (WSLs) in dual-periodical (DP) multilayers, based on porous silicon, are presented. An introduction of the linear gradient in refractive indices in DP structure, which is composed by stacking two different periodic substructures N times, resulted in the appearance of WSLs. Theoretical time-resolved reflection spectrum shows the photon Bloch oscillations with a period of 130 fs. Depending on the values of the structural parameters, one can observe the WSLs in the near infrared or visible region which may allow the generation of terahertz radiation with a potential applications in several fields like imaging.
Cadoret, Malo; de Mirandes, Estefania; Cladé, Pierre; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2008-12-01
We report a new experimental scheme which combines atom interferometry with Bloch oscillations to provide a new measurement of the ratio h/mRb. By using Bloch oscillations, we impart to the atoms up to 1600 recoil momenta and thus we improve the accuracy on the recoil velocity measurement. The deduced value of h/mRb leads to a new determination of the fine structure constant alpha(-1) =137.03599945 (62) with a relative uncertainty of 4.6 x 10(-9). The comparison of this result with the value deduced from the measurement of the electron anomaly provides the most stringent test of QED.
Wieser, R.
2016-10-01
The derivation of the time dependent Schrödinger equation with transversal and longitudinal relaxation, as the quantum mechanical analog of the classical Landau-Lifshitz-Bloch equation, has been described. Starting from the classical Landau-Lifshitz-Bloch equation the transition to quantum mechanics has been performed and the corresponding von-Neumann equation deduced. In a second step the time Schrödinger equation has been derived. Analytical proofs and computer simulations show the correctness and applicability of the derived Schrödinger equation.
Wieser, R
2016-10-01
The derivation of the time dependent Schrödinger equation with transversal and longitudinal relaxation, as the quantum mechanical analog of the classical Landau-Lifshitz-Bloch equation, has been described. Starting from the classical Landau-Lifshitz-Bloch equation the transition to quantum mechanics has been performed and the corresponding von-Neumann equation deduced. In a second step the time Schrödinger equation has been derived. Analytical proofs and computer simulations show the correctness and applicability of the derived Schrödinger equation. PMID:27494599
Matveev, V. I.; Makarov, D. N.
2011-09-01
A simple method including nonperturbative shell corrections has been developed for calculating energy losses on complex atoms. The energy losses of fast highly charged ions on neon, argon, krypton, and xenon atoms have been calculated and compared with experimental data. It has been shown that the inclusion of the non-perturbative shell corrections noticeably improves agreement with experimental data as compared to calculations by the Bethe-Bloch formula with the standard corrections. This undoubtedly helps to reduce the number of fitting parameters in various modifications of the Bethe-Bloch formula, which are usually determined semiempirically.
Domain and wall structures in films with helical magnetization profile
Energy Technology Data Exchange (ETDEWEB)
Dubuget, Vincent [Laboratoire d' Electrodynamique des Materiaux Avances, Universite Francois Rabelais, CNRS UMR 6157, Parc de Grandmont, F-37200 Tours (France); CEA, DAM, Le Ripault, F-37260 Monts (France); Thiaville, Andre [Laboratoire de Physique des Solides, Universite Paris-Sud, CNRS UMR 8502, Bat. 510, F-91405 Orsay (France); Adenot-Engelvin, Anne-Lise, E-mail: anne-lise.adenot-engelvin@cea.f [CEA, DAM, Le Ripault, F-37260 Monts (France); Duverger, Francois; Dubourg, Sebastien [CEA, DAM, Le Ripault, F-37260 Monts (France)
2011-06-15
We study soft magnetic bilayers having orthogonal, in-plane easy axes. The layers are thicker than the Bloch wall width linked to the anisotropy, so that a helical magnetization with a large angle exists across the sample thickness. The magnetic domains structure has been investigated at both sample surfaces, using magneto-optical microscopy. The domain structure is found to be similar to that of double films with biquadratic coupling. Two kinds of domain walls are identified, namely with a 90{sup o} and 180{sup o} rotation of the average magnetization. The detailed structure and energy of these walls are studied by micromagnetic calculations. - Research highlights: This paper is devoted to the peculiar domain structure resulting from an anisotropy distribution in the thickness of the sample, realized through specific elaboration conditions. The helical magnetization profile obtained leads to a complex dynamic behaviour described and modelled in Phys.Rev. B 80, 134412 (published in October 2009) which has been already cited three times. This paper sheds light on of the demagnetized state of such samples: a variety of domains structure has been observed by Kerr microscopy, under various saturation fields. The most striking conclusion is driven by the analysis of the magnetization process which implies the co-existence of two types of domain walls in the sample, with four possible directions for the mean magnetization. The magnetization profile of the two walls has been confirmed by numerical simulation.
Dynamics of Bloch State Positronium Emission from MOF Targets Studied via Rydberg TOF Spectroscopy
Piñeiro Escalera, Alina; Jones, Adric; Mills, Allen
2016-05-01
Recent advances in the efficient production and detection of Rydberg positronium (Ps) have made it possible to perform energy- and angle- resolved time-of-flight (TOF) spectroscopy with Ps. We report here TOF measurements of Ps emission from the metal-oxide framework (MOF) targets, MOF-5 and ZIF-8. MOFs are a recently synthesized class of chemical structures, characterized by high long-range order and large surface area to volume ratios (i.e., they are highly porous and uniform, crystalline materials). Ps is found to be emitted predominantly in a series of monoenergetic peaks, providing clear evidence of Ps Bloch states. Measuring the relative populations of the monoenergetic peaks, as a function of implantation energy and target temperature, provides insight into the target-dependent dynamics of Bloch state Ps. Work supported by the U.S. National Science Foundation Grants No. PHY 1206100 and No. PHY 1040590 and the National Science Foundation Graduate Research Fellowship Progam (NSF-GRFP). DOE BES DE-FG02-13ER46972 (MOF-5 synthesis and characterization).
Wannier-Bloch approach to localization in high harmonics generation in solids
Osika, Edyta N; Ortmann, Lisa; Suárez, Noslen; Pérez-Hernández, Jose Antonio; Szafran, Bartłomiej; Ciappina, Marcelo F; Sols, Fernando; Landsman, Alexandra S; Lewenstein, Maciej
2016-01-01
Emission of high-order harmonics from solids provides a new avenue in attosecond science. On one hand, it allows to investigate fundamental processes of the non-linear response of electrons driven by a strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order harmonic generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-understood phenomena of HHG in an atomic gas) is the delocalization of the process, whereby an electron ionized from one site in the periodic lattice may recombine with any other. Here, we develop an analytic model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice sites to the HHG process, and hence addresses precisely the question of localization of harmonic emission...
Energy Technology Data Exchange (ETDEWEB)
Tscherbul, Timur V., E-mail: ttscherb@chem.utoronto.ca; Brumer, Paul [Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)
2015-03-14
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The partial secular Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a first application, we consider the dynamics of excited state coherences arising under incoherent light excitation from a single ground state and observe population-to-coherence transfer and the formation of non-equilibrium quasisteady states in the regime of small excited state splitting. Analytical expressions derived earlier for the V-type system [T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014)] are found to provide a nearly quantitative description of multilevel excited-state populations and coherences in both the small- and large-molecule limits.
Singularity of the time-energy uncertainty in adiabatic perturbation and cycloids on a Bloch sphere.
Oh, Sangchul; Hu, Xuedong; Nori, Franco; Kais, Sabre
2016-01-01
Adiabatic perturbation is shown to be singular from the exact solution of a spin-1/2 particle in a uniformly rotating magnetic field. Due to a non-adiabatic effect, its quantum trajectory on a Bloch sphere is a cycloid traced by a circle rolling along an adiabatic path. As the magnetic field rotates more and more slowly, the time-energy uncertainty, proportional to the length of the quantum trajectory, calculated by the exact solution is entirely different from the one obtained by the adiabatic path traced by the instantaneous eigenstate. However, the non-adiabatic Aharonov-Anandan geometric phase, measured by the area enclosed by the exact path, approaches smoothly the adiabatic Berry phase, proportional to the area enclosed by the adiabatic path. The singular limit of the time-energy uncertainty and the regular limit of the geometric phase are associated with the arc length and arc area of the cycloid on a Bloch sphere, respectively. Prolate and curtate cycloids are also traced by different initial states outside and inside of the rolling circle, respectively. The axis trajectory of the rolling circle, parallel to the adiabatic path, is shown to be an example of transitionless driving. The non-adiabatic resonance is visualized by the number of cycloid arcs. PMID:26916031
Creating full-Bloch Bose-Einstein condensates with Raman q-plates
Schultz, Justin T.; Hansen, Azure; Murphree, Joseph D.; Jayaseelan, Maitreyi; Bigelow, Nicholas P.
2016-06-01
A coherent two-photon optical Raman interaction in a pseudo-spin-1/2 Bose-Einstein condensate (BEC) serves as a q-plate for atoms, converting spin to orbital angular momentum. This Raman q-plate has a singular pattern in its polarization distribution in analogy to the singular birefringent q-plates used in singular optics. The vortex winding direction and magnitude as well as the final spin state of the BEC depend on the initial spin state and the topology of the optical Raman q-plate beams. Drawing on the mathematical and geometric foundations of singular optics, we derive the equivalent Jones matrix for this Raman q-plate and use it to create and characterize atomic spin singularities in the BEC that are analogous to optical C-point singularities in polarization. By tuning the optical Raman parameters, we can generate a coreless vortex spin texture which contains every possible superposition in a two-state system. We identify this spin texture as a full-Bloch BEC since every point on the Bloch sphere is represented at some point in the cross section of the atomic cloud. This spin-orbit interaction and the spin textures it generates may allow for the observation of interesting geometric phases in matter waves and lead to schemes for topological quantum computation with spinor BECs.
Dynamic scattering of electron vortex beams--a Bloch wave analysis.
Mendis, B G
2015-02-01
Two important applications of electron vortex beams are in electron magnetic chiral dichroism (EMCD) measurements and nanoparticle manipulation. In both cases orbital angular momentum (〈Lz〉) transfer between the vortex beam and the specimen due to dynamic scattering is critical. In general the 〈Lz〉 pendellösung consists of short and long wavelength oscillations. The former is due to interference between the tightly bound 1s and more dispersive non-1s Bloch states, while the latter is due to interference between the non-1s states. For EMCD experiments with ±ħ angular momentum beams, momentum transfer can be minimised by selecting the appropriate aperture size, so that the probe wavefunction approximately matches that of the 2p-type Bloch states. For manipulating nanoparticles with large angular momentum beams small apertures are required to excite the 1s state and thereby enhance the short wavelength oscillations in 〈Lz〉. This enables efficient momentum transfer to the specimen, provided the nanoparticle dimension corresponds to a minimum in the 〈Lz〉 pendellösung.
Raman fingerprints on the Bloch sphere of a spinor Bose-Einstein condensate
Schultz, Justin T; Murphree, Joseph D; Jayaseelan, Maitreyi; Bigelow, Nicholas P
2016-01-01
We explore the geometric interpretation of a diabatic, two-photon Raman process as a rotation on the Bloch sphere for a pseudo-spin-1/2 system. The spin state of a spin-1/2 quantum system can be described by a point on the surface of the Bloch sphere, and its evolution during a Raman pulse is a trajectory on the sphere determined by properties of the optical beams: the pulse area, the relative intensities and phases, and the relative frequencies. We experimentally demonstrate key features of this model with a $^{87}$Rb spinor Bose-Einstein condensate, which allows us to examine spatially dependent signatures of the Raman beams. The two-photon detuning allows us to precisely control the spin density and imprinted relative phase profiles, as we show with a coreless vortex. With this comprehensive understanding and intuitive geometric interpretation, we use the Raman process to create and tailor as well as study and characterize exotic topological spin textures in spinor BECs.
Tscherbul, Timur V.; Brumer, Paul
2015-03-01
We present an efficient theoretical method for calculating the time evolution of the density matrix of a multilevel quantum system weakly interacting with incoherent light. The method combines the Bloch-Redfield theory with a partial secular approximation for one-photon coherences, resulting in a master equation that explicitly exposes the reliance on transition rates and the angles between transition dipole moments in the energy basis. The partial secular Bloch-Redfield master equation allows an unambiguous distinction between the regimes of quantum coherent vs. incoherent energy transfer under incoherent light illumination. The fully incoherent regime is characterized by orthogonal transition dipole moments in the energy basis, leading to a dynamical evolution governed by a coherence-free Pauli-type master equation. The coherent regime requires non-orthogonal transition dipole moments in the energy basis and leads to the generation of noise-induced quantum coherences and population-to-coherence couplings. As a first application, we consider the dynamics of excited state coherences arising under incoherent light excitation from a single ground state and observe population-to-coherence transfer and the formation of non-equilibrium quasisteady states in the regime of small excited state splitting. Analytical expressions derived earlier for the V-type system [T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014)] are found to provide a nearly quantitative description of multilevel excited-state populations and coherences in both the small- and large-molecule limits.
Magnetic Bloch oscillations in the near-Ising antiferromagnet CoCl2#center dot#2D2O
DEFF Research Database (Denmark)
Christensen, N.B.; Lefmann, K.; Johannsen, I.;
2000-01-01
We have investigated the possible occurrence of magnetic Bloch oscillations in CoCl2 . 2D(2)O. We were unable to observe these oscillations at 20.0 K, just above T-N. In an attempt to explain this result, we studied spin waves in the a*-c* plane in order to estimate the effect of the interchain...
Energy Technology Data Exchange (ETDEWEB)
Sokolov, V. N. [Department of Theoretical Physics, Institute for Semiconductor Physics, NASU, Pr. Nauki 41, Kiev 03028 (Ukraine); Iafrate, G. J. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-8617 (United States)
2014-02-07
A theory for the spontaneous emission (SE) of terahertz radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity, while undergoing elastic scattering is presented. The Bloch electron is accelerated under the influence of a superimposed external constant electric field and an internal inhomogeneous electric field, while radiating into a microcavity. The analysis of the SE accounts for both the spectral structure of nonharmonic miniband components and the Bloch oscillation degradation effects arising from elastic scattering due to SL interface roughness. The interface roughness effects are decomposed into contributions arising from independent planar and cross-correlated neighboring planar interfaces; parametric numerical estimates show that the cross-correlated contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate. It is shown that the degradation effects from SL interface roughness can be more than compensated for by the enhancements derived from microcavity-based tuning of the emission frequency to the cavity density of states peak. The theoretical approach developed herein has general applicability beyond its use for elastic scattering due to interface roughness. As well, the results obtained in this analysis can be useful in the development of SL-based Bloch-oscillator terahertz devices.
It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...
Bazeia, D
2004-01-01
We investigate a system described by two real scalar fields coupled with gravity in (4, 1) dimensions in warped spacetime involving one extra dimension. The results show that the parameter which controls the way the two scalar fields interact induces the appearence of thick brane which engenders internal structure, driving the energy density to localize inside the brane in a very specific way.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C
2014-05-16
We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics.
Effects of gamma radiations on certain tissues of heteropneustes fossils bloch
International Nuclear Information System (INIS)
In the present investigation effect of gamma radiation on certain tissues (kidney, stomach and gills) of Heteropneustes fossilis Bloch, an Indian Cat fish, were studied. The fish were irradiated with 10 Gy of gamma radiations at the dose rate of 1.60 Gy/minute from a 60Co source. Five fish were autopsied at each post-irradiation time of 1,2,3,7,15 and 30 days. Radiation induced histopathology was observed in all the tissues studied. The radio lesions appeared on day-1 after exposure which became exaggerated on day-2 and 3. Signs of recovery were noticed on day-7 which progressed on day-15 and normal histology was observed on day-30. (author). 18 refs
Modified-Bloch-equation description of EPR transient nutations and free induction decay in solids
Energy Technology Data Exchange (ETDEWEB)
Asadullina, N.Ya.; Asadullin, Ya.Ya. [Kazan State Technical University, Department of General Physics, Kazan (Russian Federation); Asadullin, T.Ya. [Kazan State Technical University, Department of General Physics, Kazan (Russian Federation). E-mail: atimur@physics.ktsu-kai.ru
2001-04-09
Based on the experimental work by Boscaino et al on the EPR transient nutations (TNs) and free induction decay (FID) in solids, we propose the modified Bloch equations (MBEs). In addition to the Tomita expression for power-dependent parameter T{sub 2u}, we give an original phenomenological expression for power-dependent parameter T{sub 2v} and tuning {delta}. Both analytical (in the form of a Torrey solution with these parameters) and numerical solutions of MBE are obtained for TN and for different FID regimes with very good agreement between theory and experiment. We also discuss the meaning and role of the instantaneous diffusion mechanism in the transient pulse experiments. (author)
Wu, Zhizhang; Huang, Zhongyi
2016-07-01
In this paper, we consider the numerical solution of the one-dimensional Schrödinger equation with a periodic lattice potential and a random external potential. This is an important model in solid state physics where the randomness results from complicated phenomena that are not exactly known. Here we generalize the Bloch decomposition-based time-splitting pseudospectral method to the stochastic setting using the generalized polynomial chaos with a Galerkin procedure so that the main effects of dispersion and periodic potential are still computed together. We prove that our method is unconditionally stable and numerical examples show that it has other nice properties and is more efficient than the traditional method. Finally, we give some numerical evidence for the well-known phenomenon of Anderson localization.
Electroweak corrections and Bloch-Nordsieck violations in 2-to-2 processes at the LHC
Stirling, W. J.; Vryonidou, E.
2013-04-01
We consider the effect of next-to-leading order (NLO) electroweak corrections to Standard Model 2 → 2 processes, taking into account the potentially large double logarithms originating from both real and virtual corrections. A study of the leading Sudakov logarithms is presented and Bloch-Nordsieck (BN) violations are discussed for processes at the CERN Large Hadron Collider. In particular, we focus on the processes Z/γ+jet and also the ratio of Z to γ production. This ratio is known to be insensitive to NLO QCD corrections but this is not expected to be the case for the electroweak corrections. We also comment on the effect of electroweak corrections and the presence of BN violation for QCD processes, in particular dijet production, and also for purely electroweak processes such as W + H and W + Z associated production.
Electroweak corrections and Bloch-Nordsieck violations in 2-to-2 processes at the LHC
Stirling, W J
2013-01-01
We consider the effect of next-to-leading order (NLO) electroweak corrections to Standard Model 2-to-2 processes, taking into account the potentially large double logarithms originating from both real and virtual corrections. A study of the leading Sudakov logarithms is presented and Bloch-Nordsieck (BN) violations are discussed for processes at the CERN Large Hadron Collider. In particular, we focus on the processes Z/photon+jet and also the ratio of Z to photon production. This ratio is known to be insensitive to NLO QCD corrections but this is not expected to be the case for the electroweak corrections. We also comment on the effect of electroweak corrections and the presence of BN violation for QCD processes, in particular dijet production, and also for purely electroweak processes such as W + H and W + Z associated production.
High tip angle approximation based on a modified Bloch-Riccati equation.
Boulant, Nicolas; Hoult, David I
2012-02-01
When designing a radio-frequency pulse to produce a desired dependence of magnetization on frequency or position, the small flip angle approximation is often used as a first step, and a Fourier relation between pulse and transverse magnetization is then invoked. However, common intuition often leads to linear scaling of the resulting pulse so as to produce a larger flip angle than the approximation warrants--with surprisingly good results. Starting from a modified version of the Bloch-Riccati equation, a differential equation in the flip angle itself, rather than in magnetization, is derived. As this equation has a substantial linear component that is an instance of Fourier's equation, the intuitive approach is seen to be justified. Examples of the accuracy of this higher tip angle approximation are given for both constant- and variable-phase pulses.
Bloch oscillations of ultracold atoms and measurement of the fine structure constant
International Nuclear Information System (INIS)
From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10-9, in conjunction with a careful study of systematic effects (5 10-9), has led us to a determination of alpha with an uncertainty of 6.7 10-9: α-1(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)
Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations
Schubert, O; Langer, F; Urbanek, B; Lange, C; Huttner, U; Golde, D; Meier, T; Kira, M; Koch, S W; Huber, R
2016-01-01
Ultrafast charge transport in strongly biased semiconductors is at the heart of highspeed electronics, electro-optics, and fundamental solid-state physics. Intense light pulses in the terahertz (THz) spectral range have opened fascinating vistas: Since THz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for THz amplitudes reaching atomic field strengths. We exploit controlled THz waveforms with peak fields of 72 MV/cm to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire THz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and in...
Chirped dual periodic structures for photonic Bloch oscillations and Zener tunneling.
Estevez, J O; Arriaga, J; Reyes-Ayona, E; Agarwal, V
2015-06-29
Experimental evidence of photon Wannier-stark ladders (WSLs) and Zener tunneling (ZT) in one dimensional dual-periodical (DP) optical superlattices based on Porous Silicon (PSi), is presented. An introduction of linear gradient in physical thickness of the layers, composed of five stacks of two different periodic substructures, resulted in the appearance of four WSLs resonances and resonant Zener tunneling of nearest resonances of two consecutive WSLs. Theoretical analysis of time-resolved reflection spectra as a function of gradient reveals the presence of photonic Bloch oscillations (BOs) and an eventual tunneling at a specific value of linear gradient (20%), has been demonstrated through scattering maps. Measured reflection from different DP photonic structures confirm the presence of minibands, WSLs and ZT in the near infrared region.
Bloch oscillations of ultracold atoms: a tool for a metrological determination of h/m Rb.
Battesti, Rémy; Cladé, Pierre; Guellati-Khélifa, Saïda; Schwob, Catherine; Grémaud, Benoît; Nez, François; Julien, Lucile; Biraben, François
2004-06-25
We use Bloch oscillations in a horizontal moving standing wave to transfer a large number of photon recoils to atoms with a high efficiency (99.5% per cycle). By measuring the photon recoil of 87Rb, using velocity-selective Raman transitions to select a subrecoil velocity class and to measure the final accelerated velocity class, we have determined h/m(Rb) with a relative precision of 0.4 ppm. To exploit the high momentum transfer efficiency of our method, we are developing a vertical standing wave setup. This will allow us to measure h/m(Rb) better than 10(-8) and hence the fine structure constant alpha with an uncertainty close to the most accurate value coming from the (g-2) determination.
Backaction-driven transport of Bloch oscillating atoms in ring cavities.
Goldwin, J; Venkatesh, B Prasanna; O'Dell, D H J
2014-08-15
We predict that an atomic Bose-Einstein condensate strongly coupled to an intracavity optical lattice can undergo resonant tunneling and directed transport when a constant and uniform bias force is applied. The bias force induces Bloch oscillations, causing amplitude and phase modulation of the lattice which resonantly modifies the site-to-site tunneling. For the right choice of parameters a net atomic current is generated. The transport velocity can be oriented oppositely to the bias force, with its amplitude and direction controlled by the detuning between the pump laser and the cavity. The transport can also be enhanced through imbalanced pumping of the two counterpropagating running wave cavity modes. Our results add to the cold atoms quantum simulation toolbox, with implications for quantum sensing and metrology.
Zheng, Ming Jie; Wang, Gang; Yu, Kin Wah
2010-12-01
We have studied the optical oscillation and tunneling of light waves in optical waveguide ladders (OWLs) formed by two coupled planar optical waveguide arrays. For the band structure, a midzone gap is formed owing to band hybridization, and its wavenumber position can be tuned throughout the whole Brillouin zone, which is different from the Bragg gap. By imposing a gradient in the propagation constant in each array, Bloch-Zener oscillation (BZO) is realized with Zener tunneling between the bands occurring at the midzone, which is contrary to the common BZO with tunneling at the center or edge of the Brillouin zone. The occurrence of BZO is demonstrated by using the field-evolution analysis. The tunable hybridization at the midzone enhances the tunability of BZO in the OWLs. This Letter may offer new insights into the coherent phenomena in optical lattices.
Optical Bloch oscillations and Zener tunneling of Airy beams in ionic-type photonic lattices.
Xiao, Fajun; Zhu, Weiren; Shang, Wuyun; Wang, Meirong; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin
2016-08-01
We report on the existence of optical Bloch oscillations (OBOs) and Zener tunneling (ZT) of Airy beams in ionic-type photonic lattices with a refractive index ramp. Different from their counterparts in uniform lattices, Airy beams undergoing OBOs show an alternatively switched concave and convex trajectory as well as a periodical revival of input beam profiles. Moreover, the ionic-type photonic lattice established in photorefractive crystal exhibits a reconfigurable lattice structure, which provides a flexible way to tune the amplitude and period of the OBOs. Remarkably, it is demonstrated that the band gap of the lattice can be readily controlled by rotating the lattice inducing beam, which forces the ZT rate to follow two significant different decay curves amidst decreasing index gradient. Our results open up new possibilities for all-optical switching, routing and manipulation of Airy beams.
Quasiclassical analysis of Bloch oscillations in non-Hermitian tight-binding lattices
Graefe, E M; Rush, A
2016-01-01
Many features of Bloch oscillations in one-dimensional quantum lattices with a static force can be described by quasiclassical considerations for example by means of the acceleration theorem, at least for Hermitian systems. Here the quasiclassical approach is extended to non-Hermitian lattices, which are of increasing interest. The analysis is based on a generalised non-Hermitian phase space dynamics developed recently. Applications to a single-band tight-binding system demonstrate that many features of the quantum dynamics can be understood from this classical description qualitatively and even quantitatively. Two non-Hermitian and $PT$-symmetric examples are studied, a Hatano-Nelson lattice with real coupling constants and a system with purely imaginary couplings, both for initially localised states in space or in momentum. It is shown that the time-evolution of the norm of the wave packet and the expectation values of position and momentum can be described in a classical picture.
Coexisting localized and extended optical Bloch states in a periodic deep wire array microcavity
Löchner, Franz J. F.; Mischok, Andreas; Brückner, Robert; Lyssenko, Vadim G.; Zakhidov, Alexander A.; Fröb, Hartmut; Leo, K.
2015-09-01
We embed periodic SiO2 wires in an organic microcavity, producing a rectangular potential by the different optical thicknesses of the active layer due to the additional SiO2 layer. By μ -photoluminescence spectroscopy, we observe the energy dispersion of the photons and obtain discrete localized below and extended Bloch states above the potential barrier, respectively, showing that electro-magnetic waves can behave like massive particles, such as electrons, in crystal lattices. We investigate the dependencies on wire width and period and use the Kronig-Penney model to describe the photon energy dispersion, including an "effective mass" of a photon propagating through a microcavity implying polarization splitting. We obtain excellent agreement between experiment, simulation and analytical calculation.
Measuring the fine structure constant with Bragg diffraction and Bloch oscillations
Yu, Chenghui; Estey, Brian; Parker, Richard; Dudley, Jordan; Müller, Holger
2016-05-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
Bloch waves in an arbitrary two-dimensional lattice of subwavelength Dirichlet scatterers
Schnitzer, Ory
2016-01-01
We study waves governed by the planar Helmholtz equation, propagating in an infinite lattice of subwavelength Dirichlet scatterers, the periodicity being comparable to the wavelength. Applying the method of matched asymptotic expansions, the scatterers are effectively replaced by asymptotic point constraints. The resulting coarse-grained Bloch-wave dispersion problem is solved by a generalised Fourier series, whose singular asymptotics in the vicinities of scatterers yield the dispersion relation governing modes that are strongly perturbed from plane-wave solutions existing in the absence of the scatterers; there are also empty-lattice waves that are only weakly perturbed. Characterising the latter is useful in interpreting and potentially designing the dispersion diagrams of such lattices. The method presented, that simplifies and expands on Krynkin & McIver [Waves Random Complex, 19 347 2009], could be applied in the future to study more sophisticated designs entailing resonant subwavelength elements di...
Deformed Harmonic Oscillators for Metal Clusters and Balian-Bloch Theory
Bonatsos, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis
2003-01-01
The predictions for the shell structure of metal clusters of the three-dimensional q-deformed harmonic oscillator (3D q-HO), utilizing techniques of quantum groups and having the symmetry Uq(3)$\\supset$SOq(3), are compared to the restrictions imposed by the periodic orbit theory of Balian and Bloch, of electrons moving in a spherical cavity. It is shown that agreement between the predictions of the two models is established through the introduction of an additional term to the Hamiltonian of the 3D q-HO, which does not influence the predictions for supershells. This term preserves the Uq(3)$\\supset$SOq(3) symmetry, while in addition it can be derived through a variational procedure, analogous to the one leading from the usual harmonic oscillator to the Morse oscillator by introducing the concept of the Variable Frequency Oscillator (VFO).
Dynamics of cold bosons in optical lattices: effects of higher Bloch bands
Łącki, Mateusz; Delande, Dominique; Zakrzewski, Jakub
2013-01-01
The extended effective multiorbital Bose-Hubbard-type Hamiltonian which takes into account higher Bloch bands is discussed for boson systems in optical lattices, with emphasis on dynamical properties, in relation to current experiments. It is shown that the renormalization of Hamiltonian parameters depends on the dimension of the problem studied. Therefore, mean-field phase diagrams do not scale with the coordination number of the lattice. The effect of Hamiltonian parameters renormalization on the dynamics in reduced one-dimensional optical lattice potential is analyzed. We study both the quasi-adiabatic quench through the superfluid-Mott insulator transition and the absorption spectroscopy, that is, the energy absorption rate when the lattice depth is periodically modulated.
Directory of Open Access Journals (Sweden)
Claudiu Alexandru Baciu
2015-12-01
Full Text Available In our researches we have determined the variation of certain physiological indexes, such as the oxygen consume, the breathing rhythm, the glycaemia and the number of red blood cells under the action of Coragen insecticide on Carassius auratus gibelio Bloch. Under the action of Coragen, we have registered significant changes in the oxygen consume, the breathing rhythm, the number of red blood cells and glycemia at the Carassius auratus gibelio Bloch items, considered as answers to the stress provoked by emissions. The highest variations of the physiological indexes, from the perspective of the percentage, were noticed at the glycemia, which at the mark was 28 mg/dl, and in the treated sample, with 0.1 ml/l Coragen is 42 mg/dl, representing a 50% growth and at the breathing rhythm in 24 hours, where values significantly decreased with 41.18% at the concentration of 0.07 ml/l and with 39.33% at the concentrations of 0.05 and 0.1 ml/l Coragen. The slightest variations of the physiological indexes, from the perspective of percentage, were noticed at the oxygen consumption, which, at the mark is of 55.302 ml oxygen/kg/hour, and for the treated sample, with 0.1 ml/l Coragen is 34.81 ml oxygen/kg/hour, representing a decrease of 37.06% in 24 hours and the number of red blood cells, where the values have significantly decrease with 9.58%, 13.48%, respectively 18.44% for the concentrations of 0.05, 0.07 and 0.1 ml/l Coragen.
A Bloch-Torrey Equation for Diffusion in a Deforming Media
Energy Technology Data Exchange (ETDEWEB)
Rohmer, Damien; Gullberg, Grant T.
2006-12-29
Diffusion Tensor Magnetic Resonance Imaging (DTMRI)technique enables the measurement of diffusion parameters and therefore,informs on the structure of the biological tissue. This technique isapplied with success to the static organs such as brain. However, thediffusion measurement on the dynamically deformable organs such as thein-vivo heart is a complex problem that has however a great potential inthe measurement of cardiac health. In order to understand the behavior ofthe Magnetic Resonance (MR)signal in a deforming media, the Bloch-Torreyequation that leads the MR behavior is expressed in general curvilinearcoordinates. These coordinates enable to follow the heart geometry anddeformations through time. The equation is finally discretized andpresented in a numerical formulation using implicit methods, in order toget a stable scheme that can be applied to any smooth deformations.Diffusion process enables the link between the macroscopic behavior ofmolecules and themicroscopic structure in which they evolve. Themeasurement of diffusion in biological tissues is therefore of majorimportance in understanding the complex underlying structure that cannotbe studied directly. The Diffusion Tensor Magnetic ResonanceImaging(DTMRI) technique enables the measurement of diffusion parametersand therefore provides information on the structure of the biologicaltissue. This technique has been applied with success to static organssuch as the brain. However, diffusion measurement of dynamicallydeformable organs such as the in-vivo heart remains a complex problem,which holds great potential in determining cardiac health. In order tounderstand the behavior of the magnetic resonance (MR) signal in adeforming media, the Bloch-Torrey equation that defines the MR behavioris expressed in general curvilinear coordinates. These coordinates enableus to follow the heart geometry and deformations through time. Theequation is finally discretized and presented in a numerical formulationusing
Luciano Neves dos Santos; Alejandra Filippo Gonzalez; Francisco Gerson de Araújo
2001-01-01
The diet of Cichla monoculus (Bloch & Schneider, 1801) in Lajes's Reservoir, a major impoundment in Rio de Janeiro State, Brazil, was assessed, from fishes collected in 1994,1996 and 1999/2000. Gut contents in individuals was analyzed by the index of relative importance (IRI) which deals with numerical, gravimetrical and frequency of occurrence. Cichla monoculus showed a strong piscivorous habits feeding on Cichlidae, Characidae and Pimelodidae, in decreasing order of importance, with a remar...
Directory of Open Access Journals (Sweden)
B. Prasanna Venkatesh
2015-12-01
Full Text Available In this paper we give a new description, in terms of optomechanics, of previous work on the problem of an atomic Bose–Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a bias force, such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a high-finesse optical cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice depth at the Bloch frequency which can in turn transport the atoms up or down the lattice. In the optomechanical picture, the transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading out the Bloch frequency. In this context, we establish the significant result that the optical spring effect is absent and the Bloch frequency is not modified by the backaction.
International Nuclear Information System (INIS)
In this paper, a generalized variable-coefficient Hirota–Maxwell–Bloch system is investigated, which can describe the propagation of optical solitons in an erbium-doped optical fiber. Higher-step generalized Darboux transformation and rogue-wave solutions are obtained. Rogue-wave interaction is analyzed as follows: (1) Variable coefficients in the system affect the shape, background and number of the wave crests and troughs of the first-step rogue waves for the modulus of the normalized slowly varying amplitude of the complex pulse envelope, modulus of the measure of the polarization of the resonant medium and extant population inversion; (2) Variable coefficients in the system affect the shape, background and number of the wave crests and troughs of the second-step rogue-wave interaction. Those phenomena can not be attained through the existing Hirota–Maxwell–Bloch system
Institute of Scientific and Technical Information of China (English)
Zhang Bing-Zhi; Cui Hu; Li Xiang-Heng; She Wei-Long
2009-01-01
We theoretically study the beam dynamical hehaviour in a modulated optical lattice with a quadratic potential in a photovoltaic photorefractive crystal. We find that two different Bloch oscillation patterns appear for the excitation of both broad and narrow light beams. One kind of optical Landau-Zener tunnelling also appears upon the Bloch oscillation and can be controlled by adjusting the parameter of the optical lattice. Unlike the case of linear potential, the energy radiation due to Landau-Zener tunnelling can be confined in modulated lattices of this kind. For high input intensity levels, the Landau-Zener tunnelling is suppressed by the photovoltaic photorefractive nonlinearity and a symmetry breaking of beam propagation from the modulational instability appears.
Simulação de sinais de RMN através das equações de Bloch
Directory of Open Access Journals (Sweden)
Tiago Bueno Moraes
2014-01-01
Full Text Available The aim of this paper was to present a simple and fast way of simulating Nuclear Magnetic Resonance signals using the Bloch equations. These phenomenological equations describe the classical behavior of macroscopic magnetization and are easily simulated using rotation matrices. Many NMR pulse sequences can be simulated with this formalism, allowing a quantitative description of the influence of many experimental parameters. Finally, the paper presents simulations of conventional sequences such as Single Pulse, Inversion Recovery, Spin Echo and CPMG.
Savoie, Baptiste
2012-01-01
Starting with a nearest-neighbors tight-binding model, we rigorously investigate the bulk zero-field orbital susceptibility of a non-interacting Bloch electrons gas in graphene-like solids at fixed temperature and density of particles. In the zero-temperature limit and in the semiconducting situation, we derive a complete expression which holds for an arbitrary number of bands with possible degeneracies. In the particular case of a two-bands gapped model, all involved quantities are exactly written down. Besides the formula we obtain have the special feature to be suitable for numerical computations since it only involves the eigenvalues and associated eigenfunctions of the Bloch Hamiltonian, together with the derivatives (up to the second order) w.r.t. the quasi-momentum of the matrix-elements of the Bloch Hamiltonian. Finally we give a simple application for the two-bands gapped model by considering the case of a dispersion law which is linear w.r.t. the quasi-momentum in the gapless limit. Through this ins...
The analysis of cytochrome b nucleotidic sequence for Carassius gibelio (Bloch, 1782
Directory of Open Access Journals (Sweden)
Lucian D. Gorgan
2009-01-01
Full Text Available The paper is part of a larger scale study for some genes` (Cytb, ND4L and D-loop nucleotidic structure identification by sequencing, to distinguish the structural differences and their exact length inase pairs. Research was carried out on individuals of Carassius gibelio (Bloch, 1782 (Actinopterygii,Cypriniformes from two different populations, Iezăreni and Movileni (Iaşi, from which dorsal musculartissue was sampled. Mitochondrial DNA (mtDNA isolation and purification was carried out automaticallyusing Promega’s Maxwell 16 (SEV module. Cytochrome b (cytb was multiplied by a two stage>polymerase chain reaction (PCR, using two sets of complementary primers (1 set for each fragment.Direct sequencing of PCR products revealed that the cytochrome b has one sequence of 1140bp. Theobtained sequences were subsequently compared with sequences of the same gene from otherindividuals within this species, towards identifying possible differences in the nucleotidic structure.Key Words: Carassius, cytocrhome b, mtDNA.
Establishment of a cell line from kidney of seabass, Lates calcarifer (Bloch
Directory of Open Access Journals (Sweden)
Phromkunthong, W.
2003-01-01
Full Text Available Primary cell culture from caudal fin and kidney of seabass (Lates calcarifer Bloch using tissue explant method were cultured in three different medias with various salt concentrations. Only seabass kidney (SK cells grew well in Leibovitze's-15 medium containing 8 g/l of NaCl supplemented with 10 % fetal bovine serum at an optimum temperature of 25 oC. Over a period of 24 months, SK cells were subcultured over than 75 passages and exhibited epithelial-like cells. The chromosome number of SK cells was 42. The cells were found to be free from bacterial, fungal and mycoplasma contamination. Seabass cells can be kept at -80 oC and/or in liquid nitrogen (-196 oC for at least 24 months with a survival rate of 83.20 and 74.50 %, respectively. Nine fish viruses were tested for their infectivity and this SK cells were susceptible to sand goby virus (SGV, chub reovirus (CRV, snake-head rhabdovirus (SHRV, red seabream iridovirus (RSIV, seabass iridovirus (SIV and grouper iridovirus-2 (GIV-2.
Directory of Open Access Journals (Sweden)
Debraj Roy
2013-10-01
Full Text Available Histopathology on the olfactory organ of a snakehead fish, Channa punctatus (Bloch, 1793 were assessed after exposing the fish to 2.5 mg/L and 5mg/L of CdCl2 for 15 days, 30 days and 45 days. Cellular organization of the epithelium was affected severely with degeneration of sensory and supporting cells and hyperplasia of basal cells and mucous cells. Mucous cell proliferation indicates the upregulation of mucous secretion to protect the epithelium from toxic effect of cadmium. The olfactory epithelium was endowed with the multipotent basal cells which differentiate into sensory cells, supporting cells and other cell types of the epithelium during normal cells turn over and in the event of cell death. However, due to cadmium exposure proliferating basal cells failed to differentiate into normal cells and the undifferentiated proliferated cell formed lump and intraepithelial lesion altering the composition of the entire epithelium. Present study indicates that in prolonged exposure to cadmium chloride olfactory functions of the fish might be impaired due to loss of all sensory cells.
Directory of Open Access Journals (Sweden)
Muthusamy RAJASEKAR
2012-08-01
Full Text Available Lates calcarifer (Bloch 1790 is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai and one captive (Mutukadu population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD markers. Ten random primers were used for the assessment of their genetic diversity and construction of the dendrogram. A total of 589 scorable bands were obtained, 93.12% of them were polymorphic. The Nei�s gene diversity (H of two wild populations were more (0.0504 � 0.0670 and 0.0519 � 0.0953 than the captive population (0.0489 � 0.0850. The clustering pattern obtained by UPGMA method emphasized the wild populations were clustered in one clade and captive population was deviated into another clade. This study proved that RAPD analysis has the ability to discriminate L. calcarifer populations. Further molecular studies, comprising a higher number of molecular tools are still required to precisely evaluate the genetic structure of all seabass populations along the Indian coast.
Grating-Coupling-Based Excitation of Bloch Surface Waves for Lab-on-Fiber Nanoprobes
Scaravilli, Michele; Cusano, Andrea; Galdi, Vincenzo
2016-01-01
In this paper, we investigate for the first time the possibility to excite Bloch surface waves (BSWs) on the tip of single-mode optical fibers. Within this framework, we first demonstrate the possibility to exploit a grating-coupling mechanism for on-tip excitation of BSWs, and highlight the flexibility of the proposed design as well as its intrinsic robustness to unavoidable fabrication tolerances. Subsequently, with a view towards label-free chemical and biological sensing, we present an optimized design to maximize the sensitivity (in terms of wavelength shift) of the arising resonances with respect to changes in the refractive properties of the surrounding environment. Numerical results indicate that the attained sensitivities are in line with those exhibited by state-of-the-art plasmonic nanoprobes, with the key advantage of exhibiting much narrower spectral resonances. This prototype study paves the way for a new class of miniaturized high-performance surface-wave fiber-optic devices for high-resolution...
Differential geometric invariants for time-reversal symmetric Bloch-bundles: The "Real" case
De Nittis, Giuseppe; Gomi, Kiyonori
2016-05-01
Topological quantum systems subjected to an even (resp. odd) time-reversal symmetry can be classified by looking at the related "Real" (resp. "Quaternionic") Bloch-bundles. If from one side the topological classification of these time-reversal vector bundle theories has been completely described in De Nittis and Gomi [J. Geom. Phys. 86, 303-338 (2014)] for the "Real" case and in De Nittis and Gomi [Commun. Math. Phys. 339, 1-55 (2015)] for the "Quaternionic" case, from the other side it seems that a classification in terms of differential geometric invariants is still missing in the literature. With this article and its companion [G. De Nittis and K. Gomi (unpublished)] we want to cover this gap. More precisely, we extend in an equivariant way the theory of connections on principal bundles and vector bundles endowed with a time-reversal symmetry. In the "Real" case we generalize the Chern-Weil theory and we show that the assignment of a "Real" connection, along with the related differential Chern class and its holonomy, suffices for the classification of "Real" vector bundles in low dimensions.
Directory of Open Access Journals (Sweden)
Laura Ghigliotti
2015-11-01
Full Text Available The Greenland shark Somniosus microcephalus (Bloch and Schneider, 1801 is the largest predatory fish in Arctic waters. The socio-economic significance of Greenland shark is demonstrated by its impact on the fishing cultures in Greenland, Scandinavia and Iceland for centuries. The fundamental biology and ecological role of Greenland shark, on the other hand, is virtually unknown. Although knowledge of its life history is limited, increasing evidence indicates that the Greenland shark may undertake long-distance migrations and perform vertical movements from the surface to the deep sea. It is an omnivorous species feeding on carrion and a wide variety of pelagic and bottom-dwelling organisms ranging from invertebrates to mammals, and including active species such as fishes and seals. Accordingly, Greenland shark should be recognized as a top predator, with a strong potential to influence the trophic dynamics of the Arctic marine ecosystem. The sensory biology of Greenland shark is scarcely studied, and considering the importance of olfaction in chemoreception, feeding and other behavioral traits, we examined the architecture of the peripheral olfactory organ where olfactory cues are received from the environment – the olfactory rosette. The structural organization of the olfactory rosette, in terms of histological features of the sensory epithelium, number of primary lamellae and total sensory surface area, provides a first proxy of the olfactory capability of Greenland shark. Based on own results and published studies, the overall morphology of the olfactory rosette is viewed in context of the functional and trophic ecology among other elasmobranch species.
Photonic lattices in organic microcavities: Bloch states and control of lasing
Mischok, Andreas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl
2015-09-01
Organic microcavities comprising the host:guest emitter system Alq3:DCM offer an interesting playground to experimentally study the dispersion characteristics of laterally patterned microlasers due to the broad emission spectrum and large oscillator strength of the organic dye. By structuring of metallic or dielectric sublayers directly on top of the bottom mirror, we precisely manipulate the mode structure and influence the coherent emission properties of the device. Embedding silver layers into a microcavity leads to an interaction of the optical cavity-state in the organic layer and the neighboring metal which red-shifts the cavity resonance, creating a Tamm-plasmon-polariton state. A patterning of the metal can in turn be exploited to fabricate deep photonic wells of micron-size, efficiently confining light in lateral direction. In periodic arrays of silver wires, we create a Kronig-Penney-like optical potential in the cavity and in turn observe optical Bloch states spanning over several photonic wires. We modify the Kronig-Penney theory to analytically describe the full far-field emission dispersion of our cavities and show the emergence of either zero- , π-, or 2π- phase-locking in the system. By investigating periodic SiO2 patterns, we experimentally observe stimulated emission from the ground and different excited discrete states at room temperature and are able to directly control the laser emission from both extended and confined modes of the photonic wires at room-temperature.
Bloch oscillations in non-Hermitian lattices with trajectories in the complex plane
Longhi, Stefano
2015-10-01
Bloch oscillation (BO), i.e., the oscillatory motion of a quantum particle in a periodic potential, is one of the most striking effects of coherent quantum transport in matter. In the semiclassical picture, it is well known that BOs can be explained owing to the periodic band structure of the crystal and the so-called acceleration theorem: since in the momentum space the particle wave packet drifts with a constant speed without being distorted, in real space the probability distribution of the particle undergoes a periodic motion following a trajectory which exactly reproduces the shape of the lattice band. In non-Hermitian lattices with a complex (i.e., not real) energy band, extension of the semiclassical model is not intuitive. Here we show that the acceleration theorem holds for non-Hermitian lattices with a complex energy band only on average, and that the periodic wave-packet motion of the particle in real space is described by a trajectory in the complex plane, i.e., it generally corresponds to reshaping and breathing of the wave packet in addition to a transverse oscillatory motion. The concept of BOs involving complex trajectories is exemplified by considering two examples of non-Hermitian lattices with a complex band dispersion relation, including the Hatano-Nelson tight-binding Hamiltonian describing the hopping motion of a quantum particle on a linear lattice with an imaginary vector potential and a tight-binding lattice with imaginary hopping rates.
Effects of the projectile electronic structure on Bethe-Bloch stopping parameters for Ag
Moussa, D.; Damache, S.; Ouichaoui, S.
2010-06-01
Energy losses of protons and alpha particles in silver have been accurately measured under the same experimental conditions over the velocity range E=(0.192-2.595) MeV/amu using the transmission method. Deduced S(E) stopping powers are compared to most accurate ones from the literature, to values generated by the SRIM-2008 computer code and to ICRU-49 compilation. They were analyzed in the framework of modified Bethe-Bloch theory for extracting Ag target mean excitation and ionization potential, I, and Barkas effect parameter, b. Values of ( 466±5) eV and 1.20±0.01 for these two parameters were inferred from the proton S(E) data while the alpha particle data yielded values of (438±4) eV and 1.38±0.01, respectively. The ( I, b) stopping parameters thus exhibit opposite variations as the projectile charge increases, similarly as we have found previously for nickel [6]. This can be ascribed only to an effect of the projectile electronic structure at low velocities. The obtained results are discussed in comparison to previous ones reported in the literature.
Mass Spectrum of Fermion on Bloch Branes with New Scalar-fermion Coupling
Xie, Qun-Ying; Zhao, Zhen-Hua; Du, Yun-Zhi; Zhang, Yu-Peng
2015-01-01
In order to localize a left- or right-handed fermion zero mode on a thick brane, one usually introduces the Yukawa coupling $\\eta \\bar{\\Psi} F(\\chi) \\Psi$ between a bulk fermion and the background scalar field $\\chi$. However, the Yukawa coupling will do not work if the background scalar is an even function of the extra dimension. Recently, Ref. [Phy. Rev. \\textbf{D} 89 (2014) 086001] has presented a new scalar-fermion coupling form $\\lambda \\bar \\Psi \\Gamma^M \\partial_M F(\\chi) \\gamma^5 \\Psi$ in order to deal with this problem. In this paper, we investigate the localization and mass spectrum of fermion on the Bloch brane by using the new scalar-fermion coupling with $F(\\chi)=\\chi^n$. It is found that the effective potentials have rich structure and may be volcano-like, finite square well-like, and infinite potentials, which depend on the parameter $n$. As a result, there may appear some resonant KK fermions, finite or infinite numbers of bound KK fermions.
Energy Technology Data Exchange (ETDEWEB)
Keiliszewski, M.; Lamport, D. (Michigan State Univ. Plant Research Lab., East Lansing (United States))
1991-05-01
The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.
Halogenation of microcapsule walls
Davis, T. R.; Schaab, C. K.; Scott, J. C.
1972-01-01
Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.
Venkatesh, B Prasanna; Goldwin, J
2015-01-01
We analyze the optomechanics of an atomic Bose-Einstein condensate interacting with the optical lattice inside a laser-pumped optical cavity and subject to a uniform bias force such as gravity. An atomic wave packet in a tilted lattice undergoes Bloch oscillations; in a cavity the backaction of the atoms on the light leads to a time-dependent modulation of the intracavity lattice at the Bloch frequency. When the Bloch frequency is on the order of the cavity damping rate we find transport of the atoms either up or down the lattice. The transport dynamics can be interpreted as a manifestation of dynamical backaction-induced sideband damping/amplification of the optomechanical Bloch oscillator. Depending on the sign of the pump-cavity detuning, atoms are transported either with or against the bias force accompanied by an up- or down-conversion of the frequency of the pump laser light. We also evaluate the prospects for using the optomechanical Bloch oscillator to make continuous measurements of forces by reading...
Several Growth Characteristics of an Invasive Cyprinid Fish (Carassius gibelio Bloch, 1782
Directory of Open Access Journals (Sweden)
Sait BULUT
2013-05-01
Full Text Available Age composition, length-weight relationships, growth, and condition factors of the gibel carp (Carassius gibelio Bloch, 1782 were determined using specimens collected from Seyitler Reservoir between July 2005 to June 2006. A total of 149 gibel carp were observed and examined. The age composition of the samples ranged between I and VII years of age. It has been determined than 82.55% of the obtained samples are comprised of females, 16.11% is comprised of males and 1.34% is comprised of immature. The population is dominated by females able to reproduce gynogenetically. The mean fork lengths and mean weights of the population were 14.8-32.5 cm and 43.1-807.3 g respectively. The length-weight relation were calculated as W = 0.0696 L2.132, r=0.838 for females, for males W = 0.2942 L2.6417 r=0.784 and W = 0.0274 L2.9382, r=0.813 for all samples. The mean Fulton Condition Factor was calculated as 2.342 for females, 2.064 for males and 2.276 for all samples. Age-length and age-weight relations were determined according to von Bertalanffy growth equation formula. Growth parameters of the population were Lt = 48.09 [1-e-0.093(t+0.29], and Wt=2323.62 [1-e-0.093(t+0.29]2.9382. The growth performance index value (Ø´ was computed as 5.37 for all specimens.
Institute of Scientific and Technical Information of China (English)
Palanivel Bharadhirajan; Natarajan Periyasamy; Sambantham Murugan
2014-01-01
Objective: To assess the nutritions in Mene maculata (Bloch & Schneider, 1801) (M. maculata). Methods: Fishes (14-16 cm) were obtained from the landings at Parangipettai for the evaluation of biochemical composition. The present study deals with biochemical composition such as protein, carbohydrate, lipid, amino acids fatty acids, vitamins and minerals which were evaluated in the moonfish.Results:protein was high in the tissue (23.16%), followed by the carbohydrate (1.3%) and lipid (2.62%). Totally 20 essential and nonessential amino acids were present at the rate of 46.72% and 43.91%. In the analysis, the fatty acid profile by gas chromatography revealed the presence of higher amount of saturated fatty acid (palmitic acid 22.17%) than monounsaturated fatty acid (oleic acid 14.51%) and polyunsaturated fatty acid (alpha linolenic acid 16.07%). Vitamins were detected in M. maculata. Among them, vitamin A was found in higher levels (124.5 mg/g), whereas vitamin B6 was noticed as lower levels (0.34 mg/g). In the present study, totally 5 macro minerals and 2 trace minerals were reported. The macro mineral calcium (156.7 mg/g) was found at the highest level and other minerals such as sodium (31.98 mg/g), potassium (21.33 mg/g), copper (1.43 mg/g) and magnesium (0.341 mg/g) were also detected in the moonfish.Conclusions:The results of proximate composition in M. maculata showed that the percentage of The result showed that the moonfish M. maculata tissue is a valuable food recipe for human consumption, due to its high quality protein and well-balanced amino acids.
Directory of Open Access Journals (Sweden)
Palanivel Bharadhirajan
2014-01-01
Full Text Available Objective: To assess the nutritions in Mene maculata (Bloch & Schneider, 1801 (M. maculata. Methods: Fishes (14-16 cm were obtained from the landings at Parangipettai for the evaluation of biochemical composition. The present study deals with biochemical composition such as protein, carbohydrate, lipid, amino acids fatty acids, vitamins and minerals which were evaluated in the moonfish. Results: The results of proximate composition in M. maculata showed that the percentage of protein was high in the tissue (23.16%, followed by the carbohydrate (1.3% and lipid (2.62%. Totally 20 essential and nonessential amino acids were present at the rate of 46.72% and 43.91%. In the analysis, the fatty acid profile by gas chromatography revealed the presence of higher amount of saturated fatty acid (palmitic acid 22.17% than monounsaturated fatty acid (oleic acid 14.51% and polyunsaturated fatty acid (alpha linolenic acid 16.07%. Vitamins were detected in M. maculata. Among them, vitamin A was found in higher levels (124.5 mg/g, whereas vitamin B6 was noticed as lower levels (0.34 mg/g. In the present study, totally 5 macro minerals and 2 trace minerals were reported. The macro mineral calcium (156.7 mg/g was found at the highest level and other minerals such as sodium (31.98 mg/g, potassium (21.33 mg/g, copper (1.43 mg/g and magnesium (0.341 mg/g were also detected in the moonfish. Conclusions: The result showed that the moonfish M. maculata tissue is a valuable food recipe for human consumption, due to its high quality protein and well-balanced amino acids.
Antes, desde y para el exilio. Herencia de esta época (1935/1962 de Ernst Bloch
Directory of Open Access Journals (Sweden)
Salmerón Infante, Miguel
2009-10-01
Full Text Available The first edition of Erbschaft dieser Zeit was published in Zurich in 1935, during Ernst Bloch’s five-year period of emigration from Nazi-Germany in various European capitals before his final emigration to America for ten years in 1938. In this book Bloch made a courageous stand in defence of the artistic avant-garde against the dogmatic advocates of socialist realism. His particularly adversary was Georg Lukács. But of course one of the most fascinating aspects of the book is that is also reads as a contemporary observation of the rise of the Nazis. Erbschaft is undoubtedly the major work of Weimar Germany Exile.La primera edición de Erbschaft dieser Zeit fue publicada en 1935 en Zurich, durante la emigración de Ernst Bloch de la Alemania nazi por un período de cinco años en el que residió en varias capitales europeas antes de su marcha definitiva a América en 1938, donde vivió diez años. En este libro Bloch hace una encorajinada defensa de la vanguardia artística contra los abogados del realismo socialista. Su adversario específico era Georg Lukács. Pero sin duda alguna uno de los aspectos más fascinantes de este libro es que puede leerse como una observación contemporánea de la ascensión al poder de los nazis. Erbschaft es indudablemente la obra clave del exilio de la Alemania de Weimar.
Zhang, Wen-Zhuo
2012-01-01
We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.
Buschlinger, Robert; Peschel, Ulf
2014-01-01
We present a time-domain model for the simulation of light-matter interaction in semiconductors in arbitrary geometries and across a wide range of excitation conditions. The electromagnetic field is treated classically using the finite-difference time-domain method. The polarization and occupation numbers of the semiconductor material are described using the semiconductor Bloch equations including many-body effects in the screened Hartree-Fock approximation. Spontaneous emission noise is introduced using stochastic driving terms. As an application of the model, we present simulations of the dynamics of a nanowire laser including optical pumping, seeding by spontaneous emission and the selection of lasing modes.
Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones.
Zhang, Peng; Fietz, Chris; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M
2015-04-20
A numerical method combining complex-k band calculations and absorbing boundary conditions for Bloch waves is presented. We use this method to study photonic crystals with Dirac cones. We demonstrate that the photonic crystal behaves as a zero-index medium when excited at normal incidence, but that the zero-index behavior is lost at oblique incidence due to excitation of modes on the flat band. We also investigate the formation of monomodal and multimodal cavity resonances inside the photonic crystals, and the physical origins of their different line-shape features.
Bloch k-selective resonant inelastic scattering of hard X-rays from valence electrons of 3d-metals
Enkisch, Hartmut
2002-01-01
Die Form von resonant angeregen Valenz-Fluoreszenzspektren hängt sowohl vonder Energie der einfallenden Strahlung, als auch von Größe und Richtung desImpulsübertrags q ab, falls harte Röntgenstrahlen benutzt werden. DieserEffekt ist auf die elektronische Bandstruktur der Valenz- undLeitungselektronen der Probe, in Kombination mit der Energie- undImpulserhaltung des Streuprozesses zurückzuführen, woraus dieBloch-k-Impulserhaltung des resonant inelastischen Streuprozesses folgt.In dieser Arbeit...
Lawrence, Felix J; Dossou, Kokou B; McPhedran, R C; de Sterke, C Martijn
2011-01-01
We present a flexible method that can calculate Bloch modes, complex band structures, and impedances of two-dimensional photonic crystals from scattering data produced by widely available numerical tools. The method generalizes previous work which relied on specialized multipole and FEM techniques underpinning transfer matrix methods. We describe the numerical technique for mode extraction, and apply it to calculate a complex band structure and to design two photonic crystal antireflection coatings. We do this for frequencies at which other methods fail, but which nevertheless are of significant practical interest.
Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices.
Morsch, O; Müller, J H; Cristiani, M; Ciampini, D; Arimondo, E
2001-10-01
We have loaded Bose-Einstein condensates into one-dimensional, off-resonant optical lattices and accelerated them by chirping the frequency difference between the two lattice beams. For small values of the lattice well depth, Bloch oscillations were observed. Reducing the potential depth further, Landau-Zener tunneling out of the lowest lattice band, leading to a breakdown of the oscillations, was also studied and used as a probe for the effective potential resulting from mean-field interactions as predicted by Choi and Niu [Phys. Rev. Lett. 82, 2022 (1999)]. The effective potential was measured for various condensate densities and trap geometries, yielding good qualitative agreement with theoretical calculations.
Ferrari, G; Poli, N; Sorrentino, F; Tino, G M
2006-08-11
We report on the observation of Bloch oscillations on the unprecedented time scale of several seconds. The experiment is carried out with ultracold bosonic 88Sr atoms loaded into a vertical optical standing wave. The negligible atom-atom elastic cross section and zero angular momentum in the ground state makes 88Sr an almost ideal Bose gas, insensitive to typical mechanisms of decoherence due to thermalization and external stray fields. The small size of the system enables precision measurements of forces at micrometer scale. This is a challenge in physics for studies of surfaces, Casimir effects, and searches for deviations from Newtonian gravity predicted by theories beyond the standard model.
Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François
2006-01-27
We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).
Zuo, J M; Gjonnes, K; Spence, J C
1989-05-01
The FORTRAN source code is given for a computer program that calculates the two-dimensional intensity distribution in convergent-beam transmission electron microdiffraction (CBED) patterns from perfect crystals. The program uses the eigenvalue or Bloch-wave method. It allows three-dimensional dynamical diffraction, and so includes all higher-order Laue zone effects without approximation. No symmetry reduction is included. The program accepts noncentrosymmetric or centrosymmetric crystal structures and allows absorption corrections to be included. It uses the "EISPACK" subroutines for the diagonalisation of a general complex matrix. Up to 100 CBED disks may be included. The code is also available via "Bitnet."
Energy Technology Data Exchange (ETDEWEB)
Sharp, R. [Sharp and Diamond Landscape Architecture Inc., Vancouver, BC (Canada)
2007-07-01
With the renewed interest in design for microclimate control and energy conservation, many cities are implementing clean air initiatives and sustainable planning policies to mitigate the effects of urban climate and the urban heat island effect. Green roofs, sky courts and green walls must be thoughtfully designed to withstand severe conditions such as moisture stress, extremes in temperature, tropical storms and strong desiccating winds. This paper focused on the installation of green wall systems. There are 2 general types of green walls systems, namely facade greening and living walls. Green facades are trellis systems where climbing plants can grow vertically without attaching to the surface of the building. Living walls are part of a building envelope system where plants are actually planted and grown in a wall system. A modular G-SKY Green Wall Panel was installed at the Aquaquest Learning Centre at the Vancouver Aquarium in Stanley Park in September 2006. This green wall panel, which was originally developed in Japan, incorporates many innovative features in the building envelope. It provides an exterior wall covered with 8 species of plants native to the Coastal Temperate Rain Forest. The living wall is irrigated by rainwater collected from the roof, stored in an underground cistern and fed through a drip irrigation system. From a habitat perspective, the building imitates an escarpment. Installation, support systems, irrigation, replacement of modules and maintenance are included in the complete wall system. Living walls reduce the surface temperature of buildings by as much as 10 degrees C when covered with vegetation and a growing medium. The project team is anticipating LEED gold certification under the United States-Canada Green Building Council. It was concluded that this technology of vegetated building envelopes is applicable for acoustical control at airports, biofiltration of indoor air, greywater treatment, and urban agriculture and vertical
Staggered domain wall fermions
Hoelbling, Christian
2016-01-01
We construct domain wall fermions with a staggered kernel and investigate their spectral and chiral properties numerically in the Schwinger model. In some relevant cases we see an improvement of chirality by more than an order of magnitude as compared to usual domain wall fermions. Moreover, we present first results for four-dimensional quantum chromodynamics, where we also observe significant reductions of chiral symmetry violations for staggered domain wall fermions.
Rodriguez, Gilberto A.; Lonai, John D.; Mernaugh, Raymond L.; Weiss, Sharon M.
2014-08-01
A porous silicon (PSi) Bloch surface wave (BSW) and Bloch sub-surface wave (BSSW) composite biosensor is designed and used for the size-selective detection of both small and large molecules. The BSW/BSSW structure consists of a periodic stack of high and low refractive index PSi layers and a reduced optical thickness surface layer that gives rise to a BSW with an evanescent tail that extends above the surface to enable the detection of large surface-bound molecules. Small molecules were detected in the sensor by the BSSW, which is a large electric field intensity spatially localized to a desired region of the Bragg mirror and is generated by the implementation of a step or gradient refractive index profile within the Bragg mirror. The step and gradient BSW/BSSW sensors are designed to maximize both resonance reflectance intensity and sensitivity to large molecules. Size-selective detection of large molecules including latex nanospheres and the M13KO7 bacteriophage as well as small chemical linker molecules is reported.
Energy Technology Data Exchange (ETDEWEB)
Aerts, Diederik, E-mail: diraerts@vub.ac.be [Center Leo Apostel for Interdisciplinary Studies and Department of Mathematics, Brussels Free University, Brussels (Belgium); Sassoli de Bianchi, Massimiliano, E-mail: autoricerca@gmail.com [Laboratorio di Autoricerca di Base, 6914 Lugano (Switzerland)
2014-12-15
A generalized Bloch sphere, in which the states of a quantum entity of arbitrary dimension are geometrically represented, is investigated and further extended, to also incorporate the measurements. This extended representation constitutes a general solution to the measurement problem, inasmuch it allows to derive the Born rule as an average over hidden-variables, describing not the state of the quantum entity, but its interaction with the measuring system. According to this modelization, a quantum measurement is to be understood, in general, as a tripartite process, formed by an initial deterministic decoherence-like process, a subsequent indeterministic collapse-like process, and a final deterministic purification-like process. We also show that quantum probabilities can be generally interpreted as the probabilities of a first-order non-classical theory, describing situations of maximal lack of knowledge regarding the process of actualization of potential interactions, during a measurement. - Highlights: • An extended Bloch representation of quantum measurements is given. • Quantum measurements are explained in terms of hidden-measurement interactions. • Quantum measurements are explained as tripartite processes. • The Born rule results from a universal average, over all possible measurement processes.
Directory of Open Access Journals (Sweden)
Alexander V. Baryshev
2014-12-01
Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.
Web-based description of the space radiation environment using the Bethe-Bloch model
Cazzola, Emanuele; Calders, Stijn; Lapenta, Giovanni
2016-01-01
Space weather is a rapidly growing area of research not only in scientific and engineering applications but also in physics education and in the interest of the public. We focus especially on space radiation and its impact on space exploration. The topic is highly interdisciplinary, bringing together fundamental concepts of nuclear physics with aspects of radiation protection and space science. We give a new approach to presenting the topic by developing a web-based application that combines some of the fundamental concepts from these two fields into a single tool that can be used in the context of advanced secondary or undergraduate university education. We present DREADCode, an outreach or teaching tool to rapidly assess the current conditions of the radiation field in space. DREADCode uses the available data feeds from a number of ongoing space missions (ACE, GOES-13, GOES-15) to produce a first order approximation of the radiation dose an astronaut would receive during a mission of exploration in deep space (i.e. far from the Earth’s shielding magnetic field and from the radiation belts). DREADCode is based on an easy-to-use GUI interface available online from the European Space Weather Portal (www.spaceweather.eu/dreadcode). The core of the radiation transport computation to produce the radiation dose from the observed fluence of radiation observed by the spacecraft fleet considered is based on a relatively simple approximation: the Bethe-Bloch equation. DREADCode also assumes a simplified geometry and material configuration for the shields used to compute the dose. The approach is approximate and sacrifices some important physics on the altar of rapid execution time, which allows a real-time operation scenario. There is no intention here to produce an operational tool for use in space science and engineering. Rather, we present an educational tool at undergraduate level that uses modern web-based and programming methods to learn some of the most important
DEFF Research Database (Denmark)
Hansen, Ernst Jan de Place; Brandt, Erik
2010-01-01
A ventilated cavity is usually considered good practice for removing moisture behind the cladding of timber framed walls. Timber frame walls with no cavity are a logical alternative as they are slimmer and less expensive to produce and besides the risk of a two-sided fire behind the cladding...
Kruis, A.; Sneller, A.C.W.(L.)
2013-01-01
The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful, a
Piette, B.; Zakrzewski, W. J.
1997-01-01
We study the 3+1 dimensional Skyrme model with a mass term different from the usual one. We show that this new model possesses domain walls solutions. We describe how, in the equivalent 2+1 dimensional model, the Skyrmion is absorbed by the wall.
Padmanabha Chakrabarti; Saroj Kumar Ghosh
2015-01-01
The histological analysis, disposition and histochemical localization of tryptophan were investigated in the pancreas to compare the cellular organization and histochemical characterization in the pancreas of Labeo rohita (Hamilton, 1822), Mystus vittatus (Bloch, 1790) and Notopterus notopterus (Pallas, 1769) having different feeding habits. Histological analysis demonstrated that the exocrine pancreatic tissues were dispersed within the hepatic parenchyma and spleen in L. rohita. Thin septa ...
PREFACE: Domain wall dynamics in nanostructures Domain wall dynamics in nanostructures
Marrows, C. H.; Meier, G.
2012-01-01
forms of ordered phases such as antiferromagnetism and ferroelectricity. We would like to thank the scientists from all over the world who happily agreed to contribute their latest results to this special issue, and the Journal of Physics: Condensed Matter staff for their help, patience and professionalism. In such a fast-moving field it is not possible to give a definitive account, and this special issue can be no more than a snapshot of the current state of knowledge regarding this topic. Nevertheless, we hope that this collection of papers is a useful resource for experienced workers in the field, forms a useful introduction to researchers early in their careers and inspires others in related areas of nanotechnology to enter into the study of domain dynamics in nanostructures. Domain wall dynamics in nanostructures contents Temperature estimation in a ferromagnetic Fe-Ni nanowire involving a current-driven domain wall motionA Yamaguchi, A Hirohata, T Ono and H Miyajima Magnetization reversal in magnetic nanostripes via Bloch wall formation M Zeisberger and R Mattheis Magnetic soft x-ray microscopy of the domain wall depinning process in permalloy magnetic nanowiresMi-Young Im, Lars Bocklage, Guido Meier and Peter Fischer Domain wall propagation in meso- and nanoscale ferroelectrics R G P McQuaid, M McMillen, L-W Chang, A Gruverman and J M Gregg Transverse and vortex domain wall structure in magnetic nanowires with uniaxial in-plane anisotropyM T Bryan, S Bance, J Dean, T Schrefl and D A Allwood The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness Eduardo Martinez Temperature-dependent dynamics of stochastic domain-wall depinning in nanowiresClemens Wuth, Peter Lendecke and Guido Meier Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropyTheo Gerhardt, André Drews and Guido Meier The interaction of transverse domain wallsBenjamin Krüger The increase of the
International Nuclear Information System (INIS)
In collaboration with ANSALDO and within the frame of the European Fusion Tecnology Task N1 (Plasma Facing Components Design Studies), ENEA has performed a design an manufacturing feasibility study for the first wall of the Next European Torus (NET) during its ''physics'' operation phase. The main design specifications are average neutron wall load=1 MW/m2, peak surface heat flux=0.4 MW/m2, total number of burn pulses=1*104, average burn pulse duration=100 s, average neutron fluence=0.03 MWy/m2, structure material=AISI 316L SA, coolant=H2O at 50/100 centigrates (in/out). The reference ENEA-ANSALDO design is based on the use of flat plates coupled by microbrazing to poloidal cooling tubes. The technological development work has led to the design and manufacturing of a representative NET first wall box segment (0.65x 0.25x0.15 m) mockup which will be tested in the 190 kW Thermal Fatique Test Facility at JRC-Ispra. In this paper, we report on the various aspects of the basic experimental and theoretical investigations on the plasma-wall interactions for adequate protection of the first wall against erosion, global stress analysis of the first wall box, thecnological tests on brazed joints, and disign and manufacturing of the first wall mockup
International Nuclear Information System (INIS)
The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed
Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I
2016-04-01
Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it
Directory of Open Access Journals (Sweden)
Luciano Neves dos Santos
2001-07-01
Full Text Available The diet of Cichla monoculus (Bloch & Schneider, 1801 in Lajes's Reservoir, a major impoundment in Rio de Janeiro State, Brazil, was assessed, from fishes collected in 1994,1996 and 1999/2000. Gut contents in individuals was analyzed by the index of relative importance (IRI which deals with numerical, gravimetrical and frequency of occurrence. Cichla monoculus showed a strong piscivorous habits feeding on Cichlidae, Characidae and Pimelodidae, in decreasing order of importance, with a remarkable cannibalism on young-of-the-year. Others minor items in the diet were Macrobrachium sp. and Odonata. Changes in feeding composition varied with reservoir's zones and seasons, with higher diversity in Autumn and peaks of cannibalism in lower zone during Spring/Summer. Overall, only one third of fish species composition in the reservoir are predated by C. monoculus. Condition factor (k and fullness index varied closely with higher values in lower zone, and lower records in Winter.
DEFF Research Database (Denmark)
Morrison, Ann Judith; Manresa-Yee, Cristina; Jensen, Brian Walther Skovgaard;
2016-01-01
We observed interactions with The Humming Wall, a vibrotactile and vibroacoustic interactive artifact placed in an urban park. Prior studies have focused on interactivity with primarily vision based systems (or with this system, the interaction between the wall and a wearable vibrotactile vest). ......-vibroacoustic interactive artifact in a public space.......We observed interactions with The Humming Wall, a vibrotactile and vibroacoustic interactive artifact placed in an urban park. Prior studies have focused on interactivity with primarily vision based systems (or with this system, the interaction between the wall and a wearable vibrotactile vest...... and groups with children. We contribute incrementally on confirming findings with prior studies on interactive public displays but in this instance the interactions are with vibro-tactile-acoustic responses. In addition, we innovate with the first study that demonstrates the successful use of a vibrotactile...
... your health care provider may have you learn pelvic floor muscle exercises ( Kegel exercises ), use estrogen cream in ... GM. Anatomic defects of the abdominal wall and pelvic floor: abdominal and inguinal hernias, cystocele, urethrocele, enterocele, rectocele, ...
International Nuclear Information System (INIS)
The equations of fluid mechanics, coupled with those that describe matter transportation at the molecular level must be handled effectively. Putting the fluid into equations, we model the Bloch NMR flow equations into the harmonic wave equation for the analysis of general fluid flow. We derived the solution of the modelled harmonic equation in non relativistic quantum mechanics and discuss its semi classical application to illustrate its potential wide-ranging usefulness in the search for the best possible data obtainable for general fluid flow analysis. Representing the solution of the derived harmonic wave equation by a normalized state function is quite useful in generating the properly normalized wave functions and in the efficient evaluation of expectation values of many operators that can be fundamental to the analysis of fluid flow especially at the microscopic level. (author)
Energy Technology Data Exchange (ETDEWEB)
Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Whitney, William S. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Physics, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)
2014-10-21
We present a unified framework for resonant absorption in periodic arrays of high index semiconductor nanowires that combines a leaky waveguide theory perspective and that of photonic crystals supporting Bloch modes, as array density transitions from sparse to dense. Full dispersion relations are calculated for each mode at varying illumination angles using the eigenvalue equation for leaky waveguide modes of an infinite dielectric cylinder. The dispersion relations along with symmetry arguments explain the selectivity of mode excitation and spectral red-shifting of absorption for illumination parallel to the nanowire axis in comparison to perpendicular illumination. Analysis of photonic crystal band dispersion for varying array density illustrates that the modes responsible for resonant nanowire absorption emerge from the leaky waveguide modes.
Directory of Open Access Journals (Sweden)
Gladush M.G.
2015-01-01
Full Text Available We obtained the system of Maxwell-Bloch equations (MB that describe the interaction of cw laser with optically active impurity centers (particles embedded in a dielectric material. The dielectric material is considered as a continuous medium with sufficient laser detuning from its absorption lines. The model takes into account the effects associated with both the real and the imaginary part of the dielectric constant of the material. MB equations were derived within a many-particle quantum-kinetic formalism, which is based on Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY hierarchy for reduced density matrices and correlation operators of material particles and the quantized radiation field modes. It is shown that this method is beneficial to describe the effects of individual and collective behavior of the light emitters and requires no phenomenological procedures. It automatically takes into account the characteristics associated with the presence of non-resonant and resonant particles filling the space between the optical centers.
Xiao, Fajun; Li, Baoran; Wang, Meirong; Zhu, Weiren; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin
2014-09-22
We theoretically report the existence of optical Bloch oscillations (BO) of an Airy beam in a one-dimensional optically induced photonic lattice with a linear transverse index gradient. The Airy beam experiencing optical BO shows a more robust non-diffracting feature than its counterparts in free space or in a uniform photonic lattice. Interestingly, a periodical recurrence of Airy shape accompanied with constant alternation of its acceleration direction is also found during the BO. Furthermore, we demonstrate that the period and amplitude of BO of an Airy beam can be readily controlled over a wide range by varying the index gradient and/or the lattice period. Exploiting these features, we propose a scheme to rout an Airy beam to a predefined output channel without losing its characteristics by longitudinally modulating the transverse index gradient.
Sych, Denis V.; Grishanin, Boris A.; Zadkov, Victor N.
2005-06-01
Possibilities of improving characteristics of quantum key distribution (QKD) protocols via variation of character set in quantum alphabets are investigated. QKD protocols with discrete alphabets letters of which form regular polyhedrons on the Bloch sphere (tetrahedron octahedron cube icosahedron and dodecahedron which have 4, 6, 8, 12, and 20 vertexes) and QKD protocol with continuous alphabet which corresponds to the limiting case of a polyhedron with infinitive number of vertexes are considered. Stability of such QKD protocols to the interceptresend and optimal eavesdropping strategies at the individual attacks is studied in detail. It is shown that in case of optimal eavesdropping strategy after safety bases reconciliation critical error rate of the QKD protocol with continuous alphabet surpasses all other protocols. Without basis reconciliation the highest critical error rate have the protocol with tetrahedron-type alphabet.
Ammi, H.; Zemih, R.; Mammeri, S.; Allab, M.
2005-04-01
Recent stopping power measurements in thin polymeric films have been performed for protons of 0.4-3.5 MeV energies using the indirect transmission technique [H. Ammi, S. Mammeri, M. Chekirine, B. Bouzid, M. Allab, Nucl. Instr. and Meth. B 198 (2002) 5]. Experimental stopping data have been analyzed with the modified Bethe-Bloch formula and the mean excitation energies I have been then extracted from the data. Resulting values for each thin film are 76 ± 1 eV in Mylar, 70.8 ± 1 eV in Makrofol, 82.2 ± 1.2 eV in LR-115 and 55.4 ± 1 eV in Polypropylene. The I-extracted values are compared to those IB calculated by using the Bragg's rule.
Conducting Wall Hall Thrusters
Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon
2013-01-01
A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.
Directory of Open Access Journals (Sweden)
Tiago de Melo Gomes
2006-12-01
Full Text Available Este artigo se foca na obra de Marc Bloch, em especial em seu livro tido como mais importante, A Sociedade Feudal (1939, argumentando que mesmo no trabalho de um dos mais importantes do século XX ainda é possível encontrar elementos associados a uma historiografia mais tradicional.This article is focused on Marc Bloch's oeuvre, especially in his so-called masterpiece, Feudal Society (1939, arguing that even in the work of one of the most important historians of the century, we can find important elements of the traditional historiography.
Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H
2011-07-12
Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.
Redondo, Javier
2010-01-01
Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, th...
Axion domain wall baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Daido, Ryuji; Kitajima, Naoya [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Takahashi, Fuminobu [Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Kavli IPMU, TODIAS, University of Tokyo,Kashiwa 277-8583 (Japan)
2015-07-28
We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.
Double wall underground storage tank
Energy Technology Data Exchange (ETDEWEB)
Canaan, E.B. Jr.; Wiegand, J.R.; Bartlow, D.H.
1993-07-06
A double wall underground storage tank is described comprising: (a) a cylindrical inner wall, (b) a cylindrical outer wall comprising plastic resin and reinforcement fibers, and (c) a layer of spacer filaments wound around the inner wall, the spacer filaments separating the inner and outer walls, and the spacer filaments being at least partially surrounded by voids to enable liquids to flow along the filaments.
Di Dio, Enea; Durrer, Ruth
2011-01-01
We study the distance-redshift relation in a universe filled with 'walls' of pressure-less dust separated by under dense regions. We show that as long as the density contrast of the walls is small, or the diameter of the under dense regions is much smaller than the Hubble scale, the distance-redshift relation remains close to what is obtained in a Friedmann universe. However, when arbitrary density contrasts are allowed, every prescribed distance-redshift relation can be reproduced with such models.
Directory of Open Access Journals (Sweden)
M. Hajek
2006-04-01
Full Text Available The propagation of ultra wide band (UWB signals through walls is analyzed. For this propagation studies, it is necessary to consider not only propagation at a single frequency but in the whole band. The UWB radar output signal is formed by both transmitter and antenna. The effects of antenna receiving and transmitting responses for various antenna types (such as small and aperture antennas are studied in the frequency as well as time domain. Moreover, UWB radar output signals can be substantially affected due to electromagnetic wave propagation through walls and multipath effects.
Energy Technology Data Exchange (ETDEWEB)
Morrison, B.
1969-11-01
A side-wall sampler which is capable of taking samples from the walls of test holes to a depth of 1,000 ft or more is described. Samples have been extracted from till, clay, silt, and fine- to coarse-grained sands in drift and nonindurated bedrock from more than 1,000 test holes in S. Saskatchewan. Side-hole sampling is faster and cheaper than conventional sampling methods and is ideally suited for geological investigations. Mineralogical paleonto- locical and radiocarbon analyses have been determined on side-hole cores.
Vankara, Anu Prasanna; Vijayalakshmi, C.
2009-01-01
A total of 9 metazoan parasitic species were identified from Mystus vittatus (Bloch) in river Godavari during 2005–2007 including 2 monogeneans, 2 digeneans, 3 acanthocephalans and 2 copepods. Two species of monogeneans (Bifurcohaptor indicus and Thaparocleidus tengra), digeneans (Haplorchoides macrones and metacercariae of Isoparorchis hypselobagri), an acanthocephalan (Raosentis podderi) found during the present study are of common occurrence in this fish. M. vittatus constitutes a new host...
Mohammed Safwan Ali Khan; Abdul Manan Mat Jais; Javeed Hussain; Faiza Siddiqua; Gopala Reddy, A.; P. Shivakumar; Madhuri, D.
2014-01-01
Channa striata (Bloch.) is a fresh water fish belonging to the family Channidae. The stripped snakehead fish possesses wide range of medicinal properties. In view of traditional use of C. striata for wound healing, the present study was undertaken to investigate the beneficial effects of orally administered freeze dried aqueous extract of Channa striata (AECS) in experimentally induced gastric ulcers in Wistar rats. Aspirin induced ulcerogenesis in pyloric ligation model was used for the asse...
Berry, Dave; Korpan, Cynthia
2009-01-01
This paper describes the implementation of a peer observation program at the University of Victoria called the Lecture Club. The observers are not interactive during the class--they are the proverbial flies on the wall. The paper identifies the program as self-developmental, discussing the attributes of this learning-to-teach and peer-sharing…
Richter, Marten; Renger, Thomas; Knorr, Andreas
2008-01-01
On the basis of the recent progress in the resolution of the structure of the antenna light harvesting complex II (LHC II) of the photosystem II, we propose a microscopically motivated theory to predict excitation intensity-dependent spectra. We show that optical Bloch equations provide the means to include all 2( N ) excited states of an oligomer complex of N coupled two-level systems and analyze the effects of Pauli Blocking and exciton-exciton annihilation on pump-probe spectra. We use LHC Bloch equations for 14 Coulomb coupled two-level systems, which describe the S (0) and S (1) level of every chlorophyll molecule. All parameter introduced into the Hamiltonian are based on microscopic structure and a quantum chemical model. The derived Bloch equations describe not only linear absorption but also the intensity dependence of optical spectra in a regime where the interplay of Pauli Blocking effects as well as exciton-exciton annihilation effects are important. As an example, pump-probe spectra are discussed. The observed saturation of the spectra for high intensities can be viewed as a relaxation channel blockade on short time scales due to Pauli blocking. The theoretical investigation is useful for the interpretation of the experimental data, if the experimental conditions exceed the low intensity pump limit and effects like strong Pauli Blocking and exciton-exciton annihilation need to be considered. These effects become important when multiple excitations are generated by the pump pulse in the complex. PMID:17924202
Moisture Research - Optimizing Wall Assemblies
Energy Technology Data Exchange (ETDEWEB)
Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)
2013-05-01
In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.
High-R Walls for Remodeling: Wall Cavity Moisture Monitoring
Energy Technology Data Exchange (ETDEWEB)
Wiehagen, J.; Kochkin, V.
2012-12-01
The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.
High-R Walls for Remodeling. Wall Cavity Moisture Monitoring
Energy Technology Data Exchange (ETDEWEB)
Wiehagen, J. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States); Kochkin, V. [NAHB Research Center Industry Partnership, Upper Marlboro, MD (United States)
2012-12-01
The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.
自适应Bloch球面的量子遗传算法%Adaptive quantum genetic algorithm based on Bloch sphere
Institute of Scientific and Technical Information of China (English)
易正俊; 侯坤; 何荣花
2012-01-01
在基于量子位Bloch坐标的量子遗传算法的基础上,提出一种自适应Bloch球面的量子遗传算法.该算法按两种方式自适应地选取Bloch球面的一部分进行搜索:沿经线方向选取和沿纬线方向选取,并在理论上证明了这两种选取方式都能够包含所求连续优化问题的所有可行解.在对选取的Bloch球面进行搜索时,提出了近似等面积搜索的方法,进而推导出两个相位转角大小之间的反比例关系,染色体的变异操作也作了相应的修改以适应选取区域的限制.实验表明该算法在搜索能力方面与基于量子位Bloch坐标的量子遗传算法基本相当,但优化效率方面有明显提高.%An adaptive quantum genetic algorithm based on Bloch sphere is proposed based on the quantum genetic algorithm which is based on Bloch coordinates of qubits. The algorithm uses two ways to select a part of the Bloch sphere for searching: along the warp direction and weft direction. The paper proves that the two methods are able to contain all the solutions of the continuous optimization problem in theory, and proposes a method of approximately equal-area to search the selected Bloch sphere, and derives the inverse relationship between the two-phase. The chromosomes mutation is modified to meet the restrictions of selected region. The simulation results show that the approach is equal to quantum genetic algorithm based on Bloch coordinates of qubits in search capability, but the optimization efficiency is significantly improved.
Steyerl, A; Müller, G; Golub, R
2015-01-01
The important role of geometric phases in searches for a permanent electric dipole moment of the neutron, using Ramsey separated oscillatory field nuclear magnetic resonance, was first investigated by Pendlebury $\\textit{et al.}$ [Phys. Rev. A $\\mathbf{70}$, 032102 (2004)]. Their analysis was based on the Bloch equations. In subsequent work using the spin density matrix Lamoreaux and Golub [Phys. Rev. A $\\mathbf{71}$, 032104 (2005)] showed the usual relation between the frequency shifts and the correlation functions of the fields seen by trapped particles in general fields (Redfield theory). More recently we presented a solution of the Schr\\"odinger equation for spin-$1/2$ particles in circular cylindrical traps with smooth walls and exposed to arbitrary fields [Steyerl $\\textit{et al.}$, Phys.Rev. A $\\mathbf{89}$, 052129 (2014)]. Here we extend this work to show how the Redfield theory follows directly from the Schr\\"odinger equation solution and include wall roughness, cylindrical trap geometry with arbitra...
Scalable Resolution Display Walls
Leigh, Jason
2013-01-01
This article will describe the progress since 2000 on research and development in 2-D and 3-D scalable resolution display walls that are built from tiling individual lower resolution flat panel displays. The article will describe approaches and trends in display hardware construction, middleware architecture, and user-interaction design. The article will also highlight examples of use cases and the benefits the technology has brought to their respective disciplines. © 1963-2012 IEEE.
Walker, Christopher M.; Bankson, James A.
2015-03-01
Magnetic resonance imaging (MRI) of hyperpolarized (HP) agents has the potential to probe in-vivo metabolism with sensitivity and specificity that was not previously possible. Biological conversion of HP agents specifically for cancer has been shown to correlate to presence of disease, stage and response to therapy. For such metabolic biomarkers derived from MRI of hyperpolarized agents to be clinically impactful, they need to be validated and well characterized. However, imaging of HP substrates is distinct from conventional MRI, due to the non-renewable nature of transient HP magnetization. Moreover, due to current practical limitations in generation and evolution of hyperpolarized agents, it is not feasible to fully experimentally characterize measurement and processing strategies. In this work we use a custom Bloch-McConnell simulator with pharmacokinetic modeling to characterize the performance of specific magnetic resonance spectroscopy sequences over a range of biological conditions. We performed numerical simulations to evaluate the effect of sequence parameters over a range of chemical conversion rates. Each simulation was analyzed repeatedly with the addition of noise in order to determine the accuracy and reproducibility of measurements. Results indicate that under both closed and perfused conditions, acquisition parameters can affect measurements in a tissue dependent manner, suggesting that great care needs to be taken when designing studies involving hyperpolarized agents. More modeling studies will be needed to determine what effect sequence parameters have on more advanced acquisitions and processing methods.
Delamare-Deboutteville, J; Bowater, R; Condon, K; Reynolds, A; Fisk, A; Aviles, F; Barnes, A C
2015-12-01
Since 2007, 96 wild Queensland groupers, Epinephelus lanceolatus, (Bloch), have been found dead in NE Australia. In some cases, Streptococcus agalactiae (Group B Streptococcus, GBS) was isolated. At present, a GBS isolate from a wild grouper case was employed in experimental challenge trials in hatchery-reared Queensland grouper by different routes of exposure. Injection resulted in rapid development of clinical signs including bilateral exophthalmia, hyperaemic skin or fins and abnormal swimming. Death occurred in, and GBS was re-isolated from, 98% fish injected and was detected by PCR in brain, head kidney and spleen from all fish, regardless of challenge dose. Challenge by immersion resulted in lower morbidity with a clear dose response. Whilst infection was established via oral challenge by admixture with feed, no mortality occurred. Histology showed pathology consistent with GBS infection in organs examined from all injected fish, from fish challenged with medium and high doses by immersion, and from high-dose oral challenge. These experimental challenges demonstrated that GBS isolated from wild Queensland grouper reproduced disease in experimentally challenged fish and resulted in pathology that was consistent with that seen in wild Queensland grouper infected with S. agalactiae. PMID:25117665
Dynamics of the time dependent Bloch NMR equations for complex rFB1(t) magnetic field
International Nuclear Information System (INIS)
This study examines the dynamical changes produced by a complex time-dependent rFB1(t) magnetic field in an initially unperturbed magnetic resonance system. The analysis uses the Green's function algorithm as a tool to solve the transverse component of the time-dependent Bloch NMR equations with complex rFB1(t) field. The time development of the system is studied in the Hersenberg picture in which the operators are subject to unitary transformation as the applied rFB1(t) field changes the state of the NMR system from its initial ground state into another coherent state. The detailed features of the rFB1(t) field essentially affect the evolution of the state during its application. The state of the system after the complete cessation of the radio-frequency field is determined exclusively by a Fourier component which is in resonance with the NMR system. The unitary operator allows us to determine all the physically relevant information about the system in terms of a NMR relaxation parameter. (author)
Chen, Wen-Jun; Ma, Hong; Yu, De; Zeng, Xiao-Hu
2016-08-01
A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloch equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68-3.40 GHz) white noise. Furthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference. Supported by National Natural Science Foundation of China (11475067), the Innovative Research Foundation of Huazhong University of Science and Technology (2015 ZDTD017) and the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center (2015KF17)
Directory of Open Access Journals (Sweden)
Bogdan Mihai Udroiu
2015-12-01
Full Text Available The main objective of this study is to see how the metylthiophanate fungicide influences the energetic metabolism and the breathing rhythm at Carassius auratus gibelio Bloch L. 1758. Experimental samples were subjected to under-lethal concentrations of 3.75mg/l, 7.5mg/l, 15mg/l and 30mg/l methyl-thiophanate fungicide from 24 to 336 hours. The physiologic parameter with the highest growth rate was the oxygen consumption, which, at the concentration of 7.5mg/l grew by 40.3% in 6 hours, compared to the witness values, registering the value of 179.52 mg oxygen/l/h compared to 127.95 mg oxygen/l/h. Also, the breathing rhythm grew at the concentration of 7.5 mg/l by 24.76% in 6 hours, compared to the witness values. At the concentration of 30mg/l, both physiologic parameters decreased. So, after 6 hours, the oxygen consumption decrease up to 31.38% from the witness values, registering the value of 51.503mg oxygen/l/h compared to 164.09mg oxygen/l/h, and the breathing rhythm decreased to 84.3% compared to the witness martor.
Chen, Wen-Jun; Ma, Hong; Yu, De; Zeng, Xiao-Hu
2016-08-01
A novel nuclear magnetic resonance (NMR) experimental scheme, called wideband continuous wave NMR (WB-CW-NMR), is presented in this article. This experimental scheme has promising applications in pulsed magnetic fields, and can dramatically improve the utilization of the pulsed field. The feasibility of WB-CW-NMR scheme is verified by numerically solving modified Bloch equations. In the numerical simulation, the applied magnetic field is a pulsed magnetic field up to 80 T, and the wideband continuous radio frequency (RF) excitation is a band-limited (0.68–3.40 GHz) white noise. Furthermore, the influences of some experimental parameters, such as relaxation time, applied magnetic field strength and wideband continuous RF power, on the WB-CW-NMR signal are analyzed briefly. Finally, a multi-channel system framework for transmitting and receiving ultra wideband signals is proposed, and the basic requirements of this experimental system are discussed. Meanwhile, the amplitude of the NMR signal, the level of noise and RF interference in WB-CW-NMR experiments are estimated, and a preliminary adaptive cancellation plan is given for detecting WB-CW-NMR signal from large background interference. Supported by National Natural Science Foundation of China (11475067), the Innovative Research Foundation of Huazhong University of Science and Technology (2015 ZDTD017) and the Experimental Apparatus Research Project of Wuhan Pulsed High Magnetic Field Center (2015KF17)
Higher Order Radial Derivatives of Bloch Type Functions%Bloch型函数的高阶径向导数
Institute of Scientific and Technical Information of China (English)
卓文新
2002-01-01
讨论了复超球上全纯函数的高阶导数的增长速度,证明了f∈Bα的充分必要条件是supa∈B(1-|z|2)m+α-1|Rmf(z)|＜∞,或supa∈B∫B(1-|z|2)(m+α-1)|Rmf(z)|pJRφα(z)dv(z)＜∞,或(1-|z|2)p(m+α-1)|Rmf(z)|pdv(z)是Bergman-Carleson测度.%In this paper, higher order radial derivatives of Bloch type functions in the unit ball of Cn is discussed and it is proved that for f∈H(B), f∈Bα if and only if supα∈B(1-|z|2)m+α-1|Rmf(z)|＜∞, if and only if supa∈B∫B(1-|z|2)P(m+α-1)|Rmf(z)|PJRφα(z)dv(z)＜∞, if and only if (1-|z|2)P(m+α-1)|Rmf(z)|Pdv(z) is a Bergman-Carleson measure.
Frazier, Michael J.; Hussein, Mahmoud I.
2016-05-01
It is common for dispersion curves of damped periodic materials to be based on real frequencies as a function of complex wavenumbers or, conversely, real wavenumbers as a function of complex frequencies. The former condition corresponds to harmonic wave motion where a driving frequency is prescribed and where attenuation due to dissipation takes place only in space alongside spatial attenuation due to Bragg scattering. The latter condition, on the other hand, relates to free wave motion admitting attenuation due to energy loss only in time while spatial attenuation due to Bragg scattering also takes place. Here, we develop an algorithm for 1D systems that provides dispersion curves for damped free wave motion based on frequencies and wavenumbers that are permitted to be simultaneously complex. This represents a generalized application of Bloch's theorem and produces a dispersion band structure that fully describes all attenuation mechanisms, in space and in time. The algorithm is applied to a viscously damped mass-in-mass metamaterial exhibiting local resonance. A frequency-dependent effective mass for this damped infinite chain is also obtained. xml:lang="fr"
Energy Technology Data Exchange (ETDEWEB)
Redondo, Javier [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Ringwald, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2010-11-15
Shining light through walls? At first glance this sounds crazy. However, very feeble gravitational and electroweak effects allow for this exotic possibility. Unfortunately, with present and near future technologies the opportunity to observe light shining through walls via these effects is completely out of question. Nevertheless there are quite a number of experimental collaborations around the globe involved in this quest. Why are they doing it? Are there additional ways of sending photons through opaque matter? Indeed, various extensions of the standard model of particle physics predict the existence of new particles called WISPs - extremely weakly interacting slim particles. Photons can convert into these hypothetical particles, which have no problems to penetrate very dense materials, and these can reconvert into photons after their passage - as if light was effectively traversing walls. We review this exciting field of research, describing the most important WISPs, the present and future experiments, the indirect hints from astrophysics and cosmology pointing to the existence of WISPs, and finally outlining the consequences that the discovery of WISPs would have. (orig.)
Wall Street som kreationistisk forkynder
DEFF Research Database (Denmark)
Ekman, Susanne
2016-01-01
Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong......Artiklen gennemgår Karen Hos etnografi om Wall Street: "Liquidated: An ethnography of Wall Street" set i lyset af den offentlige debat vedrørende Goldman Sachs opkøb af Dong...
Canal Wall Reconstruction Mastoidectomy
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Objective To investigate the advantages of canal wall reconstruction (CWR) mastoidectomy, a single-stage technique for cholesteatoma removal and posterior external canal wall reconstruction, over the open and closed procedures in terms of cholesteatoma recurrence. Methods: Between June 2002 and December 2005, 38 patients (40 ears) with cholesteatoma were admited to Sun Yat-Sen Memorial Hospital and received surgical treatments. Of these patients, 25 were male with ages ranging between 11 and 60 years (mean = 31.6 years) and 13 were female with ages ranging between 20 and 65 years (mean = 38.8 years). Canal wall reconstruction (CWR)mastoidectomy was performed in 31 ears and canal wall down (CWD) mastoidectomy in 9 ears. Concha cartilage was used for ear canal wall reconstruction in 22 of the 31 CWR procedures and cortical mastoid bone was used in the remaining 9 cases. Results At 0.5 to 4 years follow up, all but one patients remained free of signs of cholesteatoma recurrence, i.e., no retraction pocket or cholesteatoma matrix. One patient, a smoker, needed revision surgery due to cholesteatoma recurrence 1.5 year after the initial operation. The recurrence rate was therefore 3.2% (1/31). Cholesteatoma recurrence was monitored using postoperative CT scans whenever possible. In the case that needed a revision procedure, a retraction pocket was identified by otoendoscopy in the pars flacida area that eventually evolved into a cholesteatoma. A pocket extending to the epitympanum filled with cholesteatoma matrix was confirmed during the revision operation, A decision to perform a modified mastoidectomy was made as the patient refused to quit smoking. The mean air-bone gap in pure tone threshold was 45 dB before surgery and 25 dB after (p ＜ 0.05). There was no difference between using concha cartilage and cortical mastoid bone for the reconstruction regarding air-bone gap improvement, CT findings and otoendoscopic results. Conclusion CWR mastoidectomy can be used for
Cell Wall Biology: Perspectives from Cell Wall Imaging
Institute of Scientific and Technical Information of China (English)
Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox
2011-01-01
Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.
Liu Biyue; Zheng Jie; Bach Richard; Tang Dalin
2012-01-01
Abstract Background There are two major hemodynamic stresses imposed at the blood arterial wall interface by flowing blood: the wall shear stress (WSS) acting tangentially to the wall, and the wall pressure (WP) acting normally to the wall. The role of flow wall shear stress in atherosclerosis progression has been under intensive investigation, while the impact of blood pressure on plaque progression has been under-studied. Method The correlations of wall thickness (WT) with wall pressure (WP...
Geometric optics radome analysis wall incorporating effects of wall curvature
Kozakoff, Dennis J.
1993-07-01
In this research, a principal unmodeled error contributor in radome analysis is identified as the local plane approximation at the ray intercept point. An improved approach to modeling and computing the effects of the radome wall was developed which improves the radome wall transmission wall analysis in three respects: use of surface integration, utilization of a divergence factor (DF) to account for wall curvature, and incorporation of the effects of multiple refraction (MR). Modeling an incident plane wave on an external reference plane as an ensemble of Huygen's sources, geometric optics is used to trace the fields from the reference plane through the radome wall to a receiving monopulse antenna, where the wall transmissions on each ray are collected. The fact that the integration of a bundle of rays through the radome wall, as opposed to a single ray, more densely samples the curvature variation results in a more robust model. A DF derived from Snell's law for spherical shells accounts for the local wall curvature at the ray intercept point. To validate the approach, a microwave measurement setup was assembled around a network analyzer. Swept frequency data were obtained for similar monolithic wall dielectric panels but with different wall curvatures. Comparisons were then with measured data and the predictions of the model herein.
International Nuclear Information System (INIS)
The Forward Wall Detector is designed to identify projectile like fragments from heavy ion reactions at CELSIUS storage ring in Uppsala, Sweden. The FWD consist of 96 detection modules covering azimuthal angle from 3.9o to 11.7o with efficiency of 81%. The detection module can be either of phoswitch type (10 mm fast plastic + 80 mm CsI(Tl)) or standard ΔE-E telescope (750 μm Si + 88 mm CsI(Tl)). It is expected to have charge identification up to Z=18, mass resolution for H and He isotopes and energy resolution ∼ 8%. (author)
Energy Technology Data Exchange (ETDEWEB)
Chang, S; Hagmann, C; Sikivie, P
2001-01-08
The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is
Cecotti, Sergio; Vafa, Cumrun
2011-01-01
We construct 3d, N=2 supersymmetric gauge theories by considering a one-parameter `R-flow' of 4d, N=2 theories, where the central charges vary while preserving their phase order. Each BPS state in 4d leads to a BPS particle in 3d, and thus each chamber of the 4d theory leads to a distinct 3d theory. Pairs of 4d chambers related by wall-crossing, R-flow to mirror pairs of 3d theories. In particular, the 2-3 wall-crossing for the A_2 Argyres-Douglas theory leads to 3d mirror symmetry for N_f=1 SQED and the XYZ model. Although our formalism applies to arbitrary N=2 models, we focus on the case where the parent 4d theory consists of pairs of M5-branes wrapping a Riemann surface, and develop a general framework for describing 3d N=2 theories engineered by wrapping pairs of M5-branes on three-manifolds. Each 4d chamber, which corresponds to a dual 3d description, maps to a particular tetrahedral decomposition of the UV 3d geometry. In the IR the physics is captured by a single recombined M5-brane which is a branche...
Domain-wall depinning dominated by the Spin Hall effect
Swagten, Henk
2013-03-01
Current induced domain wall motion (CIDWM) in perpendicular materials is believed to be very efficient. We will show that the Spin Hall effect (SHE) provides a radically new mechanism for CIDWM in these systems. Using focused-ion-beam irradiation we are able to stabilize and pin two DWs in a Pt/Co/Pt nanowire. By depinning the DWs under the application of a perpendicular field as well as an injected charge current and in-plane magnetic field, we are able to disentangle the contributions to DW motion originating from (1) conventional spin transfer torques that act on magnetization gradients and (2) from the hitherto unexplored SHE torques. The fact the perpendicular depinning field H as a function of charge current J for the two DWs has equal slope dH/dJ, as well as a sign change of the slope when we change the polarity of the DWs, directly proves the dominance of the SHE contribution. To further proof that the SHE is governing the depinning process, we have tuned the internal spin structure of the DW from Bloch to Néel, by varying the in-plane field parallel to the current, and find that the influence of current on the depinning is highest when the DW has the Néel structure. This behavior is verified by macrospin simulations, which can quantitatively explain our data. As a final compelling evidence, we have varied the thickness of the bottom and top Pt, showing that we are able to tune the spin Hall currents originating from the nonmagnetic Pt layers. The work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).
DOE Zero Energy Ready Home Case Study: Amerisips Homes — Miller-Bloch Residence, Johns Island, SC
Energy Technology Data Exchange (ETDEWEB)
none,
2014-09-01
For this DOE Zero Energy Ready Home that won a Custom Builder award in the 2014 Housing Innovation Awards, the builder uses structural insulated panels to construct the entire building shell, including the roof, walls, and floor of the home.
Quantum Particle Swarm Optimization Algorithm Based on Bloch Spherical Search%基于Bloch球面搜索的量子粒子群优化算法
Institute of Scientific and Technical Information of China (English)
李盼池; 王琪超; 施光尧
2013-01-01
通过分析量子势阱粒子群优化算法的设计过程,提出一种基于Bloch球面搜索的量子粒子群优化算法.首先用基于Bloch球面描述的量子位描述粒子,用泡利矩阵建立旋转轴,用Delta势阱模型计算旋转角度,用量子位在Bloch球面上的绕轴旋转实现搜索.然后用Hadamard门实现粒子变异,以避免早熟收敛.这种旋转可使当前量子位沿着Bloch球面上的大圆逼近目标量子位,从而可加速优化进程.仿真结果表明,该算法的优化能力优于原算法.%To enhance optimization ability of quantum potential well-based particle swarm optimization algorithm,a quantum particle swarm optimization algorithm based on Bloch spherical search is proposed by analyzing the design of quantum potential well-based particle swarm optimization algorithms.Firstly,particles are expressed with qubits,axis of rotation is established with Pauli matrix,the angle of rotation is obtained with a model of Delta potential well,and search is realized with rotation of qubits in Bloch sphere.Then,to avoid premature convergence,mutation of particles is achieved with Hadamard gates.Such rotation makes current qubit approximates target qubit along with the biggest circle on Bloch sphere,which accelerates optimization process.It shows that the proposed algorithm is superior to the original one in optimization ability.
基于Bloch球面搜索的量子蚁群优化算法%Quantum ant colony optimization based on Bloch spherical search
Institute of Scientific and Technical Information of China (English)
李盼池; 王海英
2013-01-01
To enhance the optimization efficiency of ant colony algorithms,a quantum ant colony optimization algorithm based on Bloch spherical search is proposed.When this algorithm works,ants' locations are encoded by the qubits described on the Bloch sphere,the ants' target locations are determined according to the selected probability constructed by the pheromone and the heuristic information,and the ants' movement is realized with the rotation of the qubits on the Bloch sphere.To avoid premature convergence,the mutation is performed with the Hadamard gates.The pheromone and the heuristic information are updated in the new location of ants.The simulation results show that the proposed algorithm is superior to other quantum intelligent optimization algorithms in both the search capability and the optimization efficiency.%为提高蚁群算法的优化效率,提出一种基于Bloch球面搜索的量子蚁群优化算法.该算法用Bloch球面描述的量子比特对蚂蚁位置编码,用信息素强度和启发式信息构造的选择概率选择蚂蚁的移动目标,用量子比特在Bloch球面上的绕轴旋转实现蚂蚁移动,用Hadamard门实现变异以避免早熟收敛,在移动后的新位置完成信息素和启发式信息的更新.仿真结果表明该方法的搜索能力和优化效率优于其他量子智能优化算法.
Nirlei Hirachy Costa Barros; Wallace Silva Nascimento; Andréa Soares Araújo; Arrilton Araujo Souza; Sathyabama Chellappa
2013-01-01
A biologia reprodutiva do peixe hermafrodita mussum, Synbranchus marmoratus (Bloch, 1795) (Osteichthyes: Synbranchidae) foi investigada no açude Marechal Dutra, Acari, Rio Grande do Norte, utilizando os exemplares capturados mensalmente no período de julho de 2010 á janeiro de 2011. Os peixes capturados foram numerados, pesados, medidos, dissecados as e gônadas foram retiradas, pesadas e identificadas quanto ao sexo. A relação peso-comprimento foi determinada para sexos agrupados. O índice go...
Vankara, Anu Prasanna; Vijayalakshmi, C
2009-12-01
A total of 9 metazoan parasitic species were identified from Mystus vittatus (Bloch) in river Godavari during 2005-2007 including 2 monogeneans, 2 digeneans, 3 acanthocephalans and 2 copepods. Two species of monogeneans (Bifurcohaptor indicus and Thaparocleidus tengra), digeneans (Haplorchoides macrones and metacercariae of Isoparorchis hypselobagri), an acanthocephalan (Raosentis podderi) found during the present study are of common occurrence in this fish. M. vittatus constitutes a new host record for an acanthocephalan, Raosentis thapari and 2 copepods, Argulus striatus and Lamproglena hospetensis. The occurrence of A. striatus represents unusual for M. vittatus. A new species of acanthocephala, Raosentis godavarensis sp. nov is reported, described and illustrated. PMID:23129893
La conciencia de la libertad (La filosofía moral como filosofía de la historia en Ernst Bloch)
Gimbernat, José Antonio
1991-01-01
Not available.
A partir del concepto hegeliano de «progreso en la conciencia de la libertad », se puede hacer una lectura de la filosofía moral de Bloch como filosofía de la historia. Ello conduce a una reino reinterpretación libre y materialista de Hegel y a una recuperación de la moral en el marxismo. En diálogo con Kant se hace posible descubrir el potencial utópico del énfasis subjetivo de la moral. El objetivo del reino de la libertad marxiano es la clave de una histor...
Bender, N; Ellis, F M; Kottos, T
2015-01-01
We propose a family of {\\it local} $\\cal{PT}$-symmetric photonic lattices with transverse index gradient $\\omega$, where the emergence of {\\it stable} Bloch-Zener oscillations are controlled by the degree of non-Hermiticity $\\gamma$ of the lattice. In the exact $\\cal{PT}$-symmetric phase we identify a condition between $\\omega$ and $\\gamma$ for which a wavepacket self -imaging together with a cascade of splittings and giant recombinations occurs at various propagation distances. The giant wavepacket recombination is further enhanced by introducing local impurities.
方波电场驱动下的Rabi振荡%Rabi Oscillations Between Bloch Bands in a Square-wave Electric Field
Institute of Scientific and Technical Information of China (English)
宫建平; 邵建立; 段素青; 赵宪庚
2006-01-01
We investigate double Bloch bands driven by a square-wave electric field with a tight-binding model. Using Fourier analysis, we analytically obtain resonance conditions of Rabi oscillation and Rabi frequency in the weak-coupling limit. The results are verified by numerical evolution of electrons.%研究了方波电场驱动下的双Bloch带的紧束缚模型.借助Fourier分析,得到了在弱耦合极限下Rabi振荡及Rabi频率的解析解;这些结果均由电子的数值演化所证实.
Asymptotic Dynamics of Monopole Walls
Cross, R
2015-01-01
We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.
Dynamical domain wall and localization
Directory of Open Access Journals (Sweden)
Yuta Toyozato
2016-03-01
Full Text Available Based on the previous works (Toyozato et al., 2013 [24]; Higuchi and Nojiri, 2014 [25], we investigate the localization of the fields on the dynamical domain wall, where the four-dimensional FRW universe is realized on the domain wall in the five-dimensional space–time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in George et al. (2009 [23].
DEFF Research Database (Denmark)
Hansen, Ernst Jan de Place; Brandt, Erik
2010-01-01
is reduced. To investigate the possibilities, full-size wall elements with wooden cladding and different cavity design, type of cladding and type of wind barrier were exposed to natural climate on the outside and to a humid indoor climate on the inside. During the exposure period parts of the vapour barrier...... were removed in some of the elements to simulate damaged vapour barriers. The condition of the wind barriers of elements with intact vapour barriers was inspected from the inside after four years of exposure. This paper presents results with emphasis on the moisture conditions behind the wind barrier....... It was found that the specific damages made to the vapour barrier as part of the test did not have any provable effect on the moisture content. In general elements with an intact vapour barrier did not show a critical moisture content at the wind barrier after four years of exposure....
2001-01-01
This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north.This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface
Moisture Research - Optimizing Wall Assemblies
Energy Technology Data Exchange (ETDEWEB)
Arena, L.; Mantha, P.
2013-05-01
The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.
International Nuclear Information System (INIS)
It is possible to determine the h/mRb ratio between the Planck constant and the mass of the atoms, and then to deduce a value of the fine structure constant alpha, from the accurate measurement of the recoil velocity of an atom absorbing a photon. To perform this measurement we combine the high efficiency of Bloch oscillations with the high sensitivity of a Ramsey-Borde interferometer. The Bloch oscillations technic allows us to transfer a large number of recoils to the atoms (up to 1600 recoil momenta). An interferometric Ramsey-Borde velocity sensor, based on velocity selective Raman transitions, allows us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 3 ppb (3*10-9), in conjunction with a careful study of systematic effects (3.4 ppb), lead us to a determination of alpha with a relative uncertainty of 4.8 ppb. The value of α-1 is 137.03599887(65). It is the best determination of alpha, independent from quantum electrodynamics
RELACIONES TALLA-PESO DEL BARBUL (Pimelodus clarias f.c. Bloch, 1785 EN LA CUENCA DEL RIO SINU,
Directory of Open Access Journals (Sweden)
Iliana Santos-Sanes,
2006-12-01
Full Text Available Objetivo. Establecer las relaciones de talla y peso del barbul (Pimelodus clarias en la cuenca del río Sinú. Materiales y Métodos. Se estimaron las relaciones talla-peso de 4324 individuos de Barbul (Pimelodus clarias f.c. Bloch, 1785 colectados entre enero 2000 y diciembre 2002. Resultados. La longitud total (LT osciló entre 13.0-30.0 cm, promedio de 19.5 (±1.6 cm y el peso total (WT entre 20.0 y 248.1 g, promedio de 65.8 (±23.2 g. Las relaciones lineales estimadas fueron: LT = 1.92 (�� 0.16 + 1.20 (± 0.01 LS, r = 0.96; LT = 1.21 (± 0.16 + 1.15 (± 0.01 LH; r = 0.97 y LH = 0.91 (± 0.10 + 1.02 (± 0.01 LS, r = 0.97; con diferencias significativas entre las pendientes de la relación longitud estándar (LS-longitud horquilla (LH. La relación longitud-peso fue: WT = 0.005 (± 0.09 LT 3.16 (± 0.07, n = 4324, r = 0.81, con diferencias estadísticas significativas entre los diferentes coeficientes de crecimiento y factores de condición. Se encontró correlación entre el factor de condición, los niveles del Río Sinú y la época de desove del Barbul, la cual se extiende de marzo a octubre. Conclusión. Los resultados alcanzados en este estudio sugieren que las nuevas condiciones del río no han afectado la dinámica poblacional de la especie en lo que al crecimiento en talla y peso se refiere, y que el Barbul se ha adaptado a estas nuevas condiciones.
Domain wall description of superconductivity
Brito, F A; Silva, J C M
2012-01-01
In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.
Solar walls in tsbi3 user's guide
DEFF Research Database (Denmark)
Wittchen, K.B.
tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....
Energy Technology Data Exchange (ETDEWEB)
Sharp, R. [Sharp and Diamond Landscape Architecture and Planning, Vancouver, BC (Canada)
2006-07-01
North American cities face many major environmental and health issues such as urban heat island effect, the intensity of storms, microclimate around buildings, imperviousness of sites, poor air quality and increases in respiratory disease. Several new technologies are starting to address global impacts and community level issues as well as the personal health and comfort of building occupants. These include green towers, living walls, vegetated rooftops and ecological site developments. This paper examined these forms of eco-development and presented their benefits. It discussed green walls in Japan; green towers in Malaysia, Singapore and Great Britain; green facades of climbing plants; active living walls in Canada; and passive living walls in France and Canada. It also discussed thermal walls; thematic walls; vertical gardens and structured wildlife habitat. Last, it presented testing, monitoring, research and conclusions. The Centre for the Advancement of Green Roof Technology is setting up a program to test thermal performance, to assess plant survival and to monitor green walls at the British Columbia Institute of Technology in Vancouver, Canada as much of the research out of Japan is only available in Japanese script. It was concluded that green architecture can provide shade, food, rainwater, shelter for wildlife and mimic natural systems. 15 refs.
Economics of abdominal wall reconstruction.
Bower, Curtis; Roth, J Scott
2013-10-01
The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. PMID:24035086
Partial domain wall partition functions
Foda, O.; Wheeler, M.
2012-01-01
We consider six-vertex model configurations on an n-by-N lattice, n =< N, that satisfy a variation on domain wall boundary conditions that we define and call "partial domain wall boundary conditions". We obtain two expressions for the corresponding "partial domain wall partition function", as an (N-by-N)-determinant and as an (n-by-n)-determinant. The latter was first obtained by I Kostov. We show that the two determinants are equal, as expected from the fact that they are partition functions...
基于Bloch球面搜索的混沌量子免疫算法%Chaos quantum immune algorithm based on Bloch sphere
Institute of Scientific and Technical Information of China (English)
李盼池; 林晶晶
2012-01-01
In the existing quantum intelligent optimization algorithms, almost all of the individuals are encoded by qubits described on plane unit circle. Since there is only one adjustable parameter, quantum properties have not been fully embodied, which limits the improvement of the optimization ability further. To address this issue, a chaos quantum immune algorithm based on Bloch sphere is proposed. In the proposed algorithm, the antibodies are encoded by qubits described on Bloch sphere, the axis of rotation is designed by using Pauli matrix, the clone of the excellent antibodies is performed by rotating qubits on Bloch sphere, and the local searching is achieved by employing the chaos variables in the rotation angles. The global searching is achieved by the mutations of the inferior individuals based on the Hadamard gates. The simulation results show that the proposed algorithm is superior to other quantum intelligent optimization algorithms in both search capability and optimization efficiency.%目前大多数量子智能优化算法的个体均采用基于平面单位圆描述的量子比特编码,由于量子比特只有一个可调参数,量子特性没有得到充分体现,从而限制了优化能力的进一步提高.针对这一问题提出一种基于Bloch球面搜索的混沌量子免疫算法.该方法采用Bloch球面描述的量子比特对抗体进行编码,用泡利矩阵建立旋转轴,用量子比特在Bloch球面上的绕轴旋转实现优良抗体的克隆,通过在旋转角度中引入混沌变量动态改变转角大小实现局部搜索；用Hadamard门实现较差抗体的变异,实现全局搜索.仿真结果表明,提出的方法在搜索能力和优化效率两方面均比其他量子智能优化算法有所提高.
基于Bloch球面坐标的量子粒子群算法%Quantum particle swarm optimization based on Bloch coordinates of qubits
Institute of Scientific and Technical Information of China (English)
陈义雄; 梁昔明; 黄亚飞
2013-01-01
To improve the efficiency of Particle Swarm Optimization ( PSO), a quantum particle swarm optimization algorithm combined with quantum theory on the basis of Bloch sphere was proposed. In Bloch spherical coordinates, the particle automatically updated rotation angle and particle position, without setting the rotation angle in the form of look-up table (or setting fixed value of the interval), making up for the deficiency of quantum evolutionary algorithm and quantum genetic algorithm on the basis of Bloch sphere, and the algorithm is more generalizable. Using quantum Hadamard gate to realize the variation of particle enhanced the diversity of population, and prompted particle jump out of local extreme value. The simulation results of the typical function optimization problem show that the algorithm is stable with high precision and fast convergence rate, and it is practical.%为了提高粒子群优化(PSO)算法的优化效率,结合量子理论提出一种基于Bloch球面坐标的量子粒子群优化算法.在Bloch球面坐标下,粒子自动更新旋转角大小和粒子位置,不需将旋转角以查询表的形式设定(或设定为区间上的固定值),弥补了Bloch球面坐标下量子进化算法和量子遗传算法的不足,算法更具有普遍性；用量子Hadamard门实现粒子的变异,增强了种群的多样性,促使粒子跳出局部极值点.对典型函数优化问题的仿真结果表明,提出的算法稳定性强,精度高,收敛速度快,具有一定的实用价值.
McClain, John
This dissertation reports on a novel theoretical and computational framework for calculating low-energy electron reflectivities from crystalline surfaces and its application to two layered systems of two-dimensional materials, graphene and molybdenum disulfide. The framework provides a simple and efficient approach through the matching of a small set of Fourier components of Bloch wave solutions to the Schrodinger Equation in a slab-in-supercell geometry to incoming and outgoing plane waves on both sides of the supercell. The implementation of this method is described in detail for the calculation of reflectivities in the lowest energy range, for which only specular reflection is allowed. This implementation includes the calculation of reflectivities from beams with normal or off-normal incidence. Two different algorithms are described in the case of off-normal incidence which differ in their dependence on the existence of a symmetry with a mirror plane parallel to the crystal surface. Applications to model potentials in one, two, and three dimensions display consistent results when using different supercell sizes and convergent results with the density of Fourier grids. The design of the Bloch wave matching also allows for the accurate modeling of crystalline slabs through the use of realistic potentials determined via density functional theory. The application of the method to low-energy electron scattering from free-standing systems of a few layers of graphene, including the use of these realistic potentials, demonstrates this ability of the method to accurately model real systems. It reproduces the layer-dependent oscillations found in experimental, normal incidence reflectivity curves for a few layers of graphene grown on silicon carbide. The normal incidence reflectivity curves calculated for slabs consisting of few-layer graphene on 10 layers of nickel show some qualitative agreement with experiment. General incidence reflectivity spectra for free
Komatsu, Setsuko; Yanagawa, Yuki
2013-01-01
Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improv...
Actinomycosis - Left Post Chest Wall
Directory of Open Access Journals (Sweden)
Kafil Akhtar, M. Naim, S. Shamshad Ahmad, Nazoora Khan, Uroos Abedi, A.H. Khan*
2008-01-01
Full Text Available A forty year old female of weak body built presented with recurring small hard lumps in let posteriorchest wall for 3 years and discharging ulcers for 3 months duration. Clinically, the provisional diagnosiswas malignancy with secondary infection. FNAC showed features suggestive of dysplasia buthistopathology confirmed the diagnosis as actinomycosis. The present case is reported due to rare incidenceof actinomycosis at post chest wall with muscle involvement.
Non-Bloch nature of alloy states in a conventional semiconductor alloy - GaxIn1-xP as an example
Energy Technology Data Exchange (ETDEWEB)
Wang, Lin-Wang; Zhang, Yong; Mascarenhas, Angelo; Wang, Lin-Wang
2008-07-11
Contrary to the conventional wisdom, electronic states in a 'well behaved' semiconductor alloy such as Ga{sub x}In{sub 1-x}P may drastically deviate from a Bloch state, which can be true even for band edge states if they are derived from degenerate critical points. For Ga{sub x}In{sub 1-x}P in the entire composition range, k-space spectral analyses are performed for the important critical points, revealing the significance of the (near) resonant inter-and intra-valley scatterings of the fluctuation potential in the alloy. The non-trivial implications of such scatterings on the transport and strain effect are discussed.
Energy Technology Data Exchange (ETDEWEB)
Saenphet, S.; Thaworn, W.; Saenphet, K. [Chiang Mai University, Chiang Mai (Thailand). Faculty of Science
2009-09-15
The acidity of mine water generally makes it toxic to most organisms. The gills, kidneys and livers of Anabas testudineus Bloch fish inhabiting the acidic water (pH 2-4) of an unused lignite mine in Li District, Lamphun Province, Thailand were examined and compared to those of farmed fish. Tissue abnormalities were found in all investigated organs. Deterioration and telangiectasia of gill filaments were found. Liver tissue revealed hemorrhages, blood congestion and necrotic cells with mononuclear cell infiltration. In addition, hypertrophy of the epithelial cells of the renal tubules with reduced lumens, aneurisms of the renal tubules, and contractions of the glomeruli in the Bowman's capsule were observed. These histopathological findings suggest the acidic water in this habitat causes severe damage to the internal organs of fish and consequently alter their physiological status. Since the water in this pond is utilized by local people, these findings highlight the need for adequate water treatment.
WallProtDB, a database resource for plant cell wall proteomics
San Clemente, Hélène; Jamet, Elisabeth
2015-01-01
Background During the last fifteen years, cell wall proteomics has become a major research field with the publication of more than 50 articles describing plant cell wall proteomes. The WallProtDB database has been designed as a tool to facilitate the inventory, the interpretation of cell wall proteomics data and the comparisons between cell wall proteomes. Results WallProtDB (http://www.polebio.lrsv.ups-tlse.fr/WallProtDB/) presently contains 2170 proteins and ESTs identified experimentally i...
MHD Electrode and wall constructions
Way, Stewart; Lempert, Joseph
1984-01-01
Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.
The feasibility of removable prefab diaphragm walls
Amaarouk, R.; De Gijt, J.G.; Braam, C.R.
2013-01-01
A diaphragm wall is a cast in-situ reinforced concrete retaining wall applied in, among others, quay walls. The main advantages of this type of retaining wall are that it can be made in almost every preferred length and that it can resist high structural loads. However, there are several disadvantag
Abdominal wall hernia and pregnancy
DEFF Research Database (Denmark)
Jensen, K K; Henriksen, N A; Jorgensen, L N
2015-01-01
PURPOSE: There is no consensus as to the treatment strategy for abdominal wall hernias in fertile women. This study was undertaken to review the current literature on treatment of abdominal wall hernias in fertile women before or during pregnancy. METHODS: A literature search was undertaken in Pub......Med and Embase in combination with a cross-reference search of eligible papers. RESULTS: We included 31 papers of which 23 were case reports. In fertile women undergoing sutured or mesh repair, pain was described in a few patients during the last trimester of a subsequent pregnancy. Emergency surgery...... of incarcerated hernias in pregnant women, as well as combined hernia repair and cesarean section appears as safe procedures. No major complications were reported following hernia repair before or during pregnancy. The combined procedure of elective cesarean section and abdominal wall hernia repair was reported...
Chest Wall tumor: combined management
International Nuclear Information System (INIS)
Cancer is relatively rare disease among children and adolescents. The incidence of solid tumors other than CNS is less than 2/100,000. Tumors of the chest wall can arise either from the somatic tissue or ribs. These are rare, so either institutional reviews or multi institutional studies should determine optimal therapeutic management. Of the bony chest wall, Ewing's sarcoma or the family of tumor (peripheral neuro epithelioma, Askin tumor), are the most common. These lesions are lytic and have associated large extra pleural component. This large extra pleural component often necessitates major chest wall resection (3 or more ribs), and when lower ribs are involved, this entails resection of portion of diaphragm. Despite this resection, survival in the early 1970 was 10-20%. Since 1970 multi agent chemotherapy has increased survival rates. of importance, however, is these regimens have caused significant reduction of these extra pleural components so that major chest wall resections have become a rarity. With improved survival and decreased morbidity preoperative chemotherapy followed by surgery is now the accepted modality of treatment. Another major advantage of this regimen is that potential radiation therapy may be obviated. The most common chest wall lesion is rhabdomyosarcoma. In the IRS study of 1620 RMS patients, in 141 (9%) the primary lesion was in the chest wall. these are primarily alveolar histology. when lesions were superficial, wide local excision with supplemental radiation therapy was associated with low morbidity and good overall survival. however, a majority have significant intra- thoracic components. in these circumstances the resectability rate is less than 30% and the survival poor. Other lesions include non rhabdomyosarcomas, eosinophilic granuloma, chondrosarcoma, and osteomyelitis. The management of these lesions varies according to extent, histology, and patient characteristics
Lymphomas presenting as chest wall tumors
Witte, Biruta; Hürtgen, Martin
2006-01-01
Four cases of thoracic lymphoma mimicking chest wall tumors are presented. As resection is not the treatment of first choice in lymphomas, pretherapeutical evaluation of chest wall tumors should include a thoroughly staging and a biopsy for histopathological diagnosis. Chest wall destruction due to an anterior mediastinal mass, or a chest wall tumor associated with mediastinal lymph node enlargement, could be suspicious of thoracic lymphoma. Lymphoma with chest wall involvement mostly turns o...
DEFF Research Database (Denmark)
Pedersen, Jan; Burcharth, H. F.
1993-01-01
This paper presents some of the results from a large parametric laboratory study including more than 200 long-duration model tests. The study addresses both the wave forces imposed on the breakwater crown wall as well as the performance of the structure in reducing the wave overtopping. The testing...... programme includes variations of the sea state parameters and of the geometrical configuration of the breakwater and crown wall. Basic relations between forces/overtopping and the varied parameters are examined and preliminary design guidelines for structures within the tested range of variations are...
Domain wall description of superconductivity
Energy Technology Data Exchange (ETDEWEB)
Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)
2014-01-20
In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.
Domain wall description of superconductivity
International Nuclear Information System (INIS)
In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath
Overlap/Domain-wall reweighting
Fukaya, H; Cossu, G; Hashimoto, S; Kaneko, T; Noaki, J
2013-01-01
We investigate the eigenvalues of nearly chiral lattice Dirac operators constructed with five-dimensional implementations. Allowing small violation of the Ginsparg-Wilson relation, the HMC simulation is made much faster while the eigenvalues are not significantly affected. We discuss the possibility of reweighting the gauge configurations generated with domain-wall fermions to those of exactly chiral lattice fermions.
Institute of Scientific and Technical Information of China (English)
RONG JIAOJIAO
2007-01-01
@@ Whenever a newcomer enters the classroom, he points at the wall. "Look at that!" says Li Shunye, indicating a picture of something that looks a bit like a pink furry fox, only with an oversized tail. "It's a squirrel," says the 9-year-old. "I made it."
Partial domain wall partition functions
Foda, O
2012-01-01
We consider six-vertex model configurations on a rectangular lattice with n (N) horizontal (vertical) lines, and "partial domain wall boundary conditions" defined as 1. all 2n arrows on the left and right boundaries point inwards, 2. n_u (n_l) arrows on the upper (lower) boundary, such that n_u + n_l = N - n, also point inwards, 3. all remaining n+N arrows on the upper and lower boundaries point outwards, and 4. all spin configurations on the upper and lower boundaries are summed over. To generate (n-by-N) "partial domain wall configurations", one can start from A. (N-by-N) configurations with domain wall boundary conditions and delete n_u (n_l) upper (lower) horizontal lines, or B. (2n-by-N) configurations that represent the scalar product of an n-magnon Bethe eigenstate and an n-magnon generic state on an N-site spin-1/2 chain, and delete the n lines that represent the Bethe eigenstate. The corresponding "partial domain wall partition function" is computed in construction {A} ({B}) as an N-by-N (n-by-n) det...
Solar Walls for concrete renovation
DEFF Research Database (Denmark)
Gramkow, Lotte; Vejen, Niels Kristian; Olsen, Lars;
1996-01-01
This repport gives a short presentation of three full-scale testing solar walls, the construction including the architectural design, materials and components, transportation and storage of solar enegy, the effect on the construction behind, statics and practical experience.The results of the mea...
PPOOLEX experiments on wall condensation
Energy Technology Data Exchange (ETDEWEB)
Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))
2009-08-15
This report summarizes the results of the wall condensation experiments carried out in December 2008 and January 2009 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology. Steam was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows, were carried out. The main purpose of the experiment series was to study wall condensation phenomenon inside the dry well compartment while steam is discharged through it into the condensation pool and to produce comparison data for CFD calculations at VTT. The PPOOLEX test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. For the wall condensation experiments the test facility was equipped with a system for collecting and measuring the amount of condensate from four different wall segments of the dry well compartment. A thermo graphic camera was used in a couple of experiments for filming the outside surface of the dry well wall. The effect of the initial temperature level of the dry well structures and of the steam flow rate for the accumulation of condensate was studied. The initial temperature level of the dry well structures varied from 23 to 99 deg. C. The steam flow rate varied from 90 to 690 g/s and the temperature of incoming steam from 115 to 160 deg. C. During the initial phase of steam discharge the accumulation of condensate was strongly controlled by the temperature level of the dry well structures; the lower the initial temperature level was the more condensate was accumulated. As the dry well structural temperatures increased the condensation process slowed down. Most of the condensate usually accumulated during the first 200 seconds of the discharge. However, the condensation process never completely stopped because a small temperature difference remained between the dry well atmosphere and inner wall
Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance
Energy Technology Data Exchange (ETDEWEB)
Kosny, J.; Desjarlais, A.O.; Christian, J.E.
1998-06-01
The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.
Through-the-wall radar imaging
Amin, Moeness G
2011-01-01
Wall Attenuation and Dispersion, A. Hussein Muqaibel, M.A. Alsunaidi, Nuruddeen M. Iya, and A. Safaai-JaziAntenna Elements, Arrays, and Systems for Through-the-Wall Radar Imaging, A. Hoorfar and A. FathyBeamforming for Through-the-Wall Radar Imaging, G. Alli and D. DiFilippoImage and Localization of Behind-the-Wall Targets Using Collocated and Distributed Apertures, Y.D. Zhang and A. HuntConventional and Emerging Waveforms for Detection and Imaging of Targets behind Walls, F. Ahmad and R.M. NarayananInverse Scattering Approaches in Through-the-Wall Imaging, K. Sarabandi, M. Thiel, M. Dehmollai
WALL-E. Humanamente tecnológicos
Madrid Brito, Débora
2014-01-01
[ES] El cine de animación ha planteado en numerosas ocasiones los conflictos que ha generado la relación entre el hombre y el desarrollo tecnológico y científico. En el caso de Wall-E se aprecia un llamativo cambio de roles entre humanos y robots. La película propone, a través de las relaciones de sus personajes y su argumento, una reflexión en torno a la necesidad de la técnica para la evolución humana. Este artículo, a partir de la descripción e interpretación de algunos elementos clave de ...
Wall conditioning of JET with the ITER-Like Wall
Douai, D.; Brezinsek, S.; Esser, H. G.; Joffrin, E.; Keenan, T.; Knipe, S.; Kogut, D.; Lomas, P. J.; Marsen, S.; Nunes, I.; Philipps, V.; Pitts, R. A.; Shimada, M.; de Vries, P.; JET EFDA Contributors
2013-07-01
The initial conditioning cycle of JET ILW is analysed and compared with restart and operation in 2008 with a carbon dominated wall. Comparable water and oxygen decay times are observed during bake-out in both cases. Despite a 2 × 10-3 mbar l/s leak rate during plasma operation, no further wall conditioning has been necessary after plasma restart in ILW, which dramatically contrasts with 2008. Plasma O content is lower with the ILW. Higher O levels are measured after nights or week-ends, BeO layers being formed and re-eroded, but do not impact plasma operation and performance. First results on isotopic wall changeover by GDC on the ILW six months of the first D2 campaign evidence a reservoir of about 3 × 1022 atoms, i.e. ten time lower than in carbon PFCs. A study in JET of the glow discharge current distribution for different ratios of the ionization mean free paths to the vessel dimensions seems to indicate sufficient toroidal and poloidal homogeneity in ITER.
Medved, A J M
2002-01-01
The so-called ``brick-wall model'' is a semi-classical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior work invoked a simplifying assumption (which we avoid) that can not be adequately justified.
Energy Technology Data Exchange (ETDEWEB)
Medved, A J M [Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton (Canada)
2002-01-21
The so-called 'brick-wall model' is a semiclassical approach that has been used to explain black hole entropy in terms of thermal matter fields. Here, we apply the brick-wall formalism to thermal bulk fields in a Randall-Sundrum brane world scenario. In this case, the black hole entity is really a string-like object in the anti-de Sitter bulk, while appearing as a Schwarzchild black hole to observers living on the brane. In spite of these exotic circumstances, we establish that the Bekenstein-Hawking entropy law is preserved. Although a similar calculation was recently considered in the literature, this prior study invoked a simplifying assumption (which we avoid) that cannot be adequately justified.
Creating universes with thick walls
Ulvestad, Andrew
2012-01-01
We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a "thick wall", which is generated by a scalar field in a quartic potential. We study the "Farhi-Guth-Guven" (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The ADM mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.
Actinomycosis involving the chest wall: CT findings
International Nuclear Information System (INIS)
Two cases of pulmonary actinomycosis with extension to involve the chest wall that were evaluated using computerized tomography are reported. In both cases, the relation of pulmonary and chest wall disease was best shown using CT
Walled-off pancreatic necrosis
Institute of Scientific and Technical Information of China (English)
Michael; Stamatakos; Charikleia; Stefanaki; Konstantinos; Kontzoglou; Spyros; Stergiopoulos; Georgios; Giannopoulos; Michael; Safioleas
2010-01-01
Walled-off pancreatic necrosis (WOPN), formerly known as pancreatic abscess is a late complication of acute pancreatitis. It can be lethal, even though it is rare. This critical review provides an overview of the continually expanding knowledge about WOPN, by review of current data from references identified in Medline and PubMed, to September 2009, using key words, such as WOPN, infected pseudocyst, severe pancreatitis, pancreatic abscess, acute necrotizing pancreatitis (ANP), pancreas, inflammation and al...
Thermal insulation properties of walls
Directory of Open Access Journals (Sweden)
Zhukov Aleksey Dmitrievich
2014-05-01
Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.
Flooding Effect on Earth Walls
Directory of Open Access Journals (Sweden)
Meysam Banimahd
2010-12-01
Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.
Accelerating forward genetics for cell wall deconstruction
Vidaurre, Danielle; Bonetta, Dario
2012-01-01
The elucidation of the genes involved in cell wall synthesis and assembly remains one of the biggest challenges of cell wall biology. Although traditional genetic approaches, using simple yet elegant screens, have identified components of the cell wall, many unknowns remain. Exhausting the genetic toolbox by performing sensitized screens, adopting chemical genetics or combining these with improved cell wall imaging, hold the promise of new gene discovery and function. With the recent introduc...
Cell Wall Integrity Signaling in Saccharomyces cerevisiae
Levin, David E.
2005-01-01
The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small...
Moss cell walls: structure and biosynthesis
Alison W. Roberts; Eric M Roberts; Haigler, Candace H.
2012-01-01
The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperm...
Domain Walls Zoo in Supersymmetric QCD
Smilga, A V
1998-01-01
Solving numerically the equations of motion for the effective lagrangian describing supersymmetric QCD with the SU(2) gauge group, we find a menagerie of complex domain wall solutions connecting different chirally asymmetric vacua. Some of these solutions are BPS saturated walls; they exist when the mass of the matter fields does not exceed some critical value m m*, the complex walls disappear altogether and only the walls connecting a chirally asymmetric vacuum with the chirally symmetric one survive.
How do plant cell walls extend?
Cosgrove, D. J.
1993-01-01
This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).
Directory of Open Access Journals (Sweden)
Liu Biyue
2012-07-01
Full Text Available Abstract Background There are two major hemodynamic stresses imposed at the blood arterial wall interface by flowing blood: the wall shear stress (WSS acting tangentially to the wall, and the wall pressure (WP acting normally to the wall. The role of flow wall shear stress in atherosclerosis progression has been under intensive investigation, while the impact of blood pressure on plaque progression has been under-studied. Method The correlations of wall thickness (WT with wall pressure (WP, blood pressure on the lumen wall and spatial wall pressure gradient (WPG in a human atherosclerotic right coronary artery were studied. The pulsatile blood flow was simulated using a three dimensional mathematical model. The blood was treated as an incompressible viscous non-Newtonian fluid. The geometry of the artery was re-constructed using an in vivo intravascular ultrasound (IVUS 44-slice dataset obtained from a patient with consent obtained. The WT, the WP and the WPG were averaged on each slice, respectively, and Pearson correlation analysis was performed on slice averaged base. Each slice was then divided into 8 segments and averaged vessel WT, WP and WPG were collected from all 352 segments for correlation analysis. Each slice was also divided into 2 segments (inner semi-wall of bend and outer semi-wall of bend and the correlation analysis was performed on the 88 segments. Results Under mean pressure, the Pearson coefficient for correlation between WT and WP was r = − 0.52 (p Conclusions Results from this representative case report indicated that plaque wall thickness correlated negatively with wall pressure (r = −0.81 by slice and positively with wall pressure gradient (r = 0.45. The slice averaged WT has a strong linear relationship with the slice averaged WP. Large-scale patient studies are needed to further confirm our findings.
Unique aspects of the grass cell wall
Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are lin...
The cell wall of Fusarium oxysporum
Schoffelmeer, EAM; Klis, FM; Sietsma, JH; Cornelissen, BJC
1999-01-01
Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50
To detect anomalies in diaphragm walls
Spruit, R.
2015-01-01
Diaphragm walls are potentially ideal retaining walls for deep excavations in densely built-up areas, as they cause no vibrations during their construction and provide structural elements with high strength and stiffness. In the recent past, however, several projects using diaphragm walls as soil an
Domain walls. II. Baryon-number generation
International Nuclear Information System (INIS)
Domain walls present in the early universe due to a spontaneous breakdown of charge conjugation can leave behind net baryon number. SU/sub R/(2) instantons provide baryon nonconservation and the proton is effectively stable. Density perturbations (on scales large enough for galaxy formation) and monopole suppression can occur if walls dominate the energy density. Mechanisms for wall removal are discussed
Steel Sheet Pile Walls in Soft Soil
Kort, D.A.
2002-01-01
For almost a century, steel sheet pile walls are applied worldwide as earth retaining structures for excavations and quay walls. Within the framework of the development of European structural codes for Civil Engineering works, the Eurocodes, Eurocode 3 Part 5 for design of steel sheet pile walls was
Static domain wall in braneworld gravity
Energy Technology Data Exchange (ETDEWEB)
Abdalla, M.C.B.; Carlesso, P.F. [UNESP, Universidade Estadual Paulista, Instituto de Fisica Teiorica, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra-Funda, Caixa Postal 70532-2, Sao Paulo, SP (Brazil); Hoff da Silva, J.M. [UNESP, Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2014-01-15
In this paper we consider a static domain wall inside a 3-brane. Different from the standard achievement obtained in General Relativity, the analysis performed here gives a consistency condition for the existence of static domain walls in a braneworld gravitational scenario. Also the behavior of the domain wall's gravitational field in the newtonian limit is shown. (orig.)
Directory of Open Access Journals (Sweden)
Latif Taşkaya
2016-03-01
Full Text Available In this study, quality properties and shelf life for gibel carp (Carassius gibelio, Bloch 1782 marinades during stored at 4±1 °C in different sauces was investigated. The marinating process was carried out in 2.5% vinegar, 10% salt and water for 72h at 4±1 °C. After the marination process, fish were removed from the solutions, transferred in to glass jar contain with different sauces (Group A: sunflower oil and tomato paste, Group B: sunflower oil with garlic, red pepper, thyme, basil and mint and the control group: sun flower oil. Sensory, chemical, colour and microbiological analyses were performed during the storage. According the chemical analysis results TVB-N and TBA values of all groups were increased during the storage, but during the stored period did not exceed acceptible limit values. The highest TVB-N and TBA values were group A. (P<0,05. At the end of 135 days of storage, sensory analysis results pointed out that the marinades of group B did not exceed acceptible limit values (P<0,05. The overall microbial load of the fresh samples decreased through out the storage period (P<0,05. By sensory data, shelf life of sauced gibel carp marinades were 120 days (control, 105 days (group A and 135 days (group B.
Cai, S H; Lu, Y S; Wu, Z H; Jian, J C
2013-08-01
The outer membrane proteins of the marine aquatic animal pathogen, Vibrio alginolyticus, play an important role in the virulence of the bacterium and are potential candidates for vaccine development. In this study, the gene encoding an outer membrane protein-OmpU was cloned and expressed in Escherichia coli. Polyclonal antibodies were raised in rabbits against the purified recombinant OmpU, and the reaction of the antibody was confirmed by Western blotting using the isolated OmpU and the recombinant OmpU of V. alginolyticus. To analyze the immunogenicity of the recombinant OmpU, crimson snapper, Lutjanus erythropterus Bloch, were immunized by intraperitoneal injection, and antibody response was assessed by the enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the recombinant OmpU produced an observable antibody response in all sera of the vaccinated fish. The vaccinated fish were challenged by virulent V. alginolyticus and observed to have high resistance to infection. These results indicate that the recombinant OmpU is an effective vaccine candidate against V. alginolyticus in L. erythropterus.
Wang, H; Xu, Lj; Lu, Lq
2016-02-01
Epidemics caused by cyprinid herpesvirus 2 (CyHV-2) in domestic cyprinid species have been reported in both European and Asian countries. Although the mechanisms remain unknown, acute CyHV-2 infections generally result in high mortality, and the surviving carps become chronic carriers displaying no external clinical signs. In this study, in situ hybridization analysis showed that CyHV-2 tended to infect peripheral blood cells during either acute or chronic infections in silver crucian carp, Carassius auratus gibelio (Bloch). Laboratory challenge experiments coupled with real-time PCR quantification assays further indicated that steady-state levels of the viral genomic copy number in fish serum exhibited a typical 'one-step' growth curve post-viral challenge. Transcriptional expression of open reading frames (ORF) 121, which was selected due to its highest transcriptional levels in almost all tested tissues, was monitored to represent the replication kinetics of CyHV-2 in peripheral blood cells. Similar kinetic curve of active viral gene transcription in blood cells was obtained as that of serum viral load, indicating that CyHV-2 replicated in peripheral blood cells as well as in other well-characterized tissues. This study should pave the way for designing non-invasive and cost-effective serum diagnostic methods for quick detection of CyHV-2 infection.
Ali Khan, Mohammed Safwan; Mat Jais, Abdul Manan; Hussain, Javeed; Siddiqua, Faiza; Gopala Reddy, A; Shivakumar, P; Madhuri, D
2014-01-01
Channa striata (Bloch.) is a fresh water fish belonging to the family Channidae. The stripped snakehead fish possesses wide range of medicinal properties. In view of traditional use of C. striata for wound healing, the present study was undertaken to investigate the beneficial effects of orally administered freeze dried aqueous extract of Channa striata (AECS) in experimentally induced gastric ulcers in Wistar rats. Aspirin induced ulcerogenesis in pyloric ligation model was used for the assessment of antiulcer activity and Ranitidine (50 mg/kg) was employed as the standard drug. The various gastric parameters like volume of gastric juice, pH, free and total acidities, ulcer index, and levels of antioxidant enzymes like catalase, superoxide dismutase, and lipid peroxidation marker malondialdehyde were determined. AECS at concentrations of 40% and 50% w/v significantly decreased the volume of gastric juice and increased the levels of catalase while considerable decrease in free and total acidities and increase in superoxide dismutase were observed with the treatment of standard drug and AECS (50% w/v). All the test doses of AECS markedly decreased ulcer index and malondialdehyde compared to the standard drug whereas AECS 30% w/v did not alter volume of gastric juice, pH, free and total acidities, catalase, and superoxide dismutase. From these findings, it can be concluded that AECS is devoid of acid neutralizing effects at lower doses and possesses antisecretory and antiulcer activities and this could be related to its antioxidant mechanism.
Directory of Open Access Journals (Sweden)
Padmanabha Chakrabarti
2015-01-01
Full Text Available The histological analysis, disposition and histochemical localization of tryptophan were investigated in the pancreas to compare the cellular organization and histochemical characterization in the pancreas of Labeo rohita (Hamilton, 1822, Mystus vittatus (Bloch, 1790 and Notopterus notopterus (Pallas, 1769 having different feeding habits. Histological analysis demonstrated that the exocrine pancreatic tissues were dispersed within the hepatic parenchyma and spleen in L. rohita. Thin septa of connective tissue separated parenchyma of liver and also the spleen from exocrine pancreatic cells. However, in M. vittatus, the discrete pancreatic tissue formed distinct oval or elongated acini interspersed with small area of islet of Langerhans and blood vessels. In N. notopterus, the rhomboidal acinar cells of discrete pancreatic tissue intercalated with comparatively clear and large islet of Langerhans. The exocrine acinar cells in all the three species were provided with prominent nuclei and densely packed zymogen granules. Histochemical localization revealed that the zymogen granules of exocrine acinar cells of all species exhibited varied intensities of tryptophan reaction, the precursor of various pancreatic enzymes which may be related to the food and feeding habits of the fishes under study.
Ali Khan, Mohammed Safwan; Mat Jais, Abdul Manan; Hussain, Javeed; Siddiqua, Faiza; Gopala Reddy, A; Shivakumar, P; Madhuri, D
2014-01-01
Channa striata (Bloch.) is a fresh water fish belonging to the family Channidae. The stripped snakehead fish possesses wide range of medicinal properties. In view of traditional use of C. striata for wound healing, the present study was undertaken to investigate the beneficial effects of orally administered freeze dried aqueous extract of Channa striata (AECS) in experimentally induced gastric ulcers in Wistar rats. Aspirin induced ulcerogenesis in pyloric ligation model was used for the assessment of antiulcer activity and Ranitidine (50 mg/kg) was employed as the standard drug. The various gastric parameters like volume of gastric juice, pH, free and total acidities, ulcer index, and levels of antioxidant enzymes like catalase, superoxide dismutase, and lipid peroxidation marker malondialdehyde were determined. AECS at concentrations of 40% and 50% w/v significantly decreased the volume of gastric juice and increased the levels of catalase while considerable decrease in free and total acidities and increase in superoxide dismutase were observed with the treatment of standard drug and AECS (50% w/v). All the test doses of AECS markedly decreased ulcer index and malondialdehyde compared to the standard drug whereas AECS 30% w/v did not alter volume of gastric juice, pH, free and total acidities, catalase, and superoxide dismutase. From these findings, it can be concluded that AECS is devoid of acid neutralizing effects at lower doses and possesses antisecretory and antiulcer activities and this could be related to its antioxidant mechanism. PMID:24977051
Wang, Qi-Min; Gao, Yi-Tian; Su, Chuan-Qi; Zuo, Da-Wei
2015-10-01
In this paper, a higher-order nonlinear Schrödinger-Maxwell-Bloch system with quintic terms is investigated, which describes the propagation of ultrashort optical pulses, up to the attosecond duration, in an erbium-doped fiber. Multi-soliton, breather and rogue-wave solutions are derived by virtue of the Darboux transformation and the limiting procedure. Features and interaction patterns of the solitons, breathers and rogue waves are discussed. (i) The solitonic amplitudes, widths and velocities are exhibited, and solitonic amplitudes and widths are proved to have nothing to do with the higher-order terms. (ii) The higher-order terms and frequency detuning affect the growth rate of periodic modulation and skewing angle for the breathers, except for the range of the frequency of modulation. (iii) The quintic terms and frequency detuning have the effects on the temporal duration for the rogue waves. (iv) Breathers are classified into two types, according to the range of the modulation instability. (v) Interaction between the two solitons is elastic. When the two solitons interact with each other, the periodic structure occurs, which is affected by the higher-order terms and frequency detuning. (vi) Interaction between the two Akhmediev-like breathers or two Kuznetsov-Ma-like solitons shows the different patterns with different ratios of the relative modulation frequencies, while the interaction area induced by the two breathers looks like a higher-order rogue wave.
International Nuclear Information System (INIS)
Under investigation in this article is a higher-order nonlinear Schroedinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.
Energy Technology Data Exchange (ETDEWEB)
Su, Chuan-Qi; Gao, Yi-Tian; Yu, Xin [Beijing Univ. of Aeronautics and Astronautics (China). Ministry-of-Education Key Lab. of Fluid Mechanics and National Lab. for Computational Fluid Dynamics; Xue, Long [Beijing Univ. of Aeronautics and Astronautics (China). Ministry-of-Education Key Lab. of Fluid Mechanics and National Lab. for Computational Fluid Dynamics; Aviation Univ. of Air Force, Liaoning (China). Flight Training Base
2015-07-01
Under investigation in this article is a higher-order nonlinear Schroedinger-Maxwell-Bloch (HNLS-MB) system for the optical pulse propagation in an erbium-doped fiber. Lax pair, Darboux transformation (DT), and generalised DT for the HNLS-MB system are constructed. Soliton solutions and rogue wave solutions are derived based on the DT and generalised DT, respectively. Properties of the solitons and rogue waves are graphically presented. The third-order dispersion parameter, fourth-order dispersion parameter, and frequency detuning all influence the characteristic lines and velocities of the solitons. The frequency detuning also affects the amplitudes of solitons. The separating function has no effect on the properties of the first-order rogue waves, except for the locations where the first-order rogue waves appear. The third-order dispersion parameter affects the propagation directions and shapes of the rogue waves. The frequency detuning influences the rogue-wave types of the module for the measure of polarization of resonant medium and the extant population inversion. The fourth-order dispersion parameter impacts the rogue-wave interaction range and also has an effect on the rogue-wave type of the extant population inversion. The value of separating function affects the spatial-temporal separation of constituting elementary rogue waves for the second-order and third-order rogue waves. The second-order and third-order rogue waves can exhibit the triangular and pentagon patterns under different choices of separating functions.
Antigen incorporation on Cryptosporidium parvum oocyst walls
Directory of Open Access Journals (Sweden)
Entrala Emilio
2001-01-01
Full Text Available Cryptosporidium parvum oocysts are the infective stages responsible for transmission and survival of the organism in the environment. In the present work we show that the oocyst wall, far from being a static structure, is able to incorporate antigens by a mechanism involving vesicle fusion with the wall, and the incorporation of the antigen to the outer oocyst wall. Using immunoelectron microscopy we show that the antigen recognized by a monoclonal antibody used for diagnosis of cryptosporidiosis (Merifluor®, Meridian Diagnostic Inc. could be found associated with vesicles in the space between the sporozoites and the oocysts wall, and incorporated to the outer oocyst wall by an unknown mechanism.
Asymmetric counter propagation of domain walls
Andrade-Silva, I.; Clerc, M. G.; Odent, V.
2016-07-01
Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.
Practical considerations in ultrasonic wall thickness measurement
International Nuclear Information System (INIS)
Ultrasonic inspection is widely used by industry for the detection of corrosion and the measurement of material wall thickness. Due to wall thinning and the various forms of corrosion that can be found in pressure piping and pressure vessels the annual cost of corrosion damage and related service failures, is very expensive. The author interest is primarily in the examination of personnel who need to become competent and certificated in the various skills that are required to carry out wall thickness measurement and detection of wall thinning due to corrosion. The various techniques and equipment available for ultrasonic wall thickness measurement and assessment give rise to problems regarding the accuracy of results and detection of corrosion. This paper will discuss some of the corrosion conditions that may occur and also problems that may arise during wall thickness measurement. Methods of improving the wall thickness measurement and the assessment process will also be discussed. (author)
Gölsdorf, Katrin; Müller, Hans; Collier, Marcus
2013-01-01
Can plants help to improve the air quality? People have often complained about Ivy on buildings, but research by Helix Pflanzen GmbH, a company that is specialised in the cultivation of ivy species and the development of green wall technology, is shedding new light on an old problem. Using a cultivated variety of ivy (Hedera helix 'Wörner'), experiments were carried out that illustrated the binding effect that this Ivy has on fine dust particles. This is particularly important in urban ...
First Wall and Operational Diagnostics
Energy Technology Data Exchange (ETDEWEB)
Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C
2006-06-19
In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.
Methodology for first wall design
International Nuclear Information System (INIS)
An analytic parametric scoping tool has been developed for application to first wall (FW) design problems. Both thermal and disruption force effects are considered. For the high heat flux and high disruption load conditions expected in the International Thermonuclear Experimental Reactor (ITER) device, Vanadium alloy and dispersion-strengthened copper offer the best stress margins using a somewhat flattened plasma-facing configuration. Ferritic steels also appear to have an acceptable stress margin, whereas the conventional stainless steel 316 does not appear feasible. If a full semicircle shape FW is required, only the Vanadium and ferritic steel alloy have acceptable solutions
Domain Walls Out of Equilibrium
Alamoudi, S M; Takakura, F I
1998-01-01
We study the non-equilibrium dynamics of domain walls in real time for equation of motion for the collective coordinate is obtained by integrating out the meson excitations around the domain wall to one-loop order and the non-equilibrium relaxation is studied analytically and numerically. The constant friction coefficient vanishes but there is dynamical friction and relaxation caused by non-Markovian effects. A Markovian approximation is shown to fail even at large temperatures. The proper Langevin equation is obtained to this order, the noise is Gaussian and additive but colored. We analyze the classical and hard thermal loop contributions to the self-energy and noise kernels and show that at temperatures larger than the meson mass the hard contributions are negligible and the finite temperature contribution to the dynamics is governed by the classical soft modes of the meson bath. The long time relaxational dynamics is completely dominated by classical Landau damping resulting in that the corresponding time...
Anterior chest wall examination reviewed
Directory of Open Access Journals (Sweden)
F. Trotta
2011-09-01
Full Text Available Anterior chest wall involvement is not infrequently observed within inflammatory arthropaties, particularly if one considers seronegative spondiloarthritides and SAPHO syndrome. Physical examination is unreliable and conventional X-rays analysis is an unsatisfactory tool during diagnostic work-up of this region. Scintigraphic techniques yield informations both on the activity and on the anatomical extent of the disease while computerized tomography visualize the elementary lesions, such as erosions, which characterize the process. Moreover, when available, magnetic resonance imaging couple the ability to finely visualize such lesions with the possibility to show early alterations and to characterize the “activity” of the disease, presenting itself as a powerful tool both for diagnosis and follow-up. This review briefly shows the applications of imaging techniques for the evaluation of the anterior chest wall focusing on what has been done in the SAPHO syndrome which can be considered prototypical for this regional involvement since it is the osteo-articular target mainly affected by the disease.
Electrons in ferromagnets with domain walls
International Nuclear Information System (INIS)
Domain walls can significantly modify electronic properties of ferromagnetic metals. In this paper we consider theoretically the influence of domain walls on transport properties of ferromagnetic materials and the results are compared with recent experiments. In the case of diffusive transport through a thick domain wall, the semiclassical approximation is applied and a local spin transformation is performed, which replaces the system with a domain wall by the corresponding system without a domain wall but with an additional gauge field. Due to a redistribution of single-particle electron states at the wall, one obtains then either negative or positive contributions to resistivity. The situation is different for very narrow and/or constrained domain walls. In such a case, the semiclassical approximation is not valid. Instead of this the approach based on scattering matrix is applied. The domain wall then gives rise to a large positive contribution to electrical resistivity. The corresponding magnetoresistance can be therefore very large, which is in agreement with recent experiments. The limiting case of narrow domain walls in systems with a single conduction channel is analysed in detail, with the effects due to electron-electron interaction taken into account. In this particular case the magnetoresistance due to a domain wall can be extremely large
RG Domain Walls and Hybrid Triangulations
Dimofte, Tudor; van der Veen, Roland
2013-01-01
This paper studies the interplay between the N=2 gauge theories in three and four dimensions that have a geometric description in terms of twisted compactification of the six-dimensional (2,0) SCFT. Our main goal is to construct the three-dimensional domain walls associated to any three-dimensional cobordism. We find that we can build a variety of 3d theories that represent the local degrees of freedom at a given domain wall in various 4d duality frames, including both UV S-dual frames and IR Seiberg-Witten electric-magnetic dual frames. We pay special attention to Janus domain walls, defined by four-dimensional Lagrangians with position-dependent couplings. If the couplings on either side of the wall are weak in different UV duality frames, Janus domain walls reduce to S-duality walls, i.e. domain walls that encode the properties of UV dualities. If the couplings on one side are weak in the IR and on the other weak in the UV, Janus domain walls reduce to RG walls, i.e. domain walls that encode the properties...
Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis
Nozawa, Y.; Kitajima, Y.
1984-01-01
A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.
Shape dynamics of growing cell walls
Banerjee, Shiladitya; Dinner, Aaron R
2015-01-01
We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell-wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to d...
Hydrodynamics of ultra-relativistic bubble walls
Directory of Open Access Journals (Sweden)
Leonardo Leitao
2016-04-01
Full Text Available In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.
Jones, Kyle M.; Randtke, Edward A.; Howison, Christine M.; Pagel, Mark D.
2016-03-01
We have developed a MRI method that can measure extracellular pH in tumor tissues, known as acidoCEST MRI. This method relies on the detection of Chemical Exchange Saturation Transfer (CEST) of iopamidol, an FDA-approved CT contrast agent that has two CEST signals. A log10 ratio of the two CEST signals is linearly correlated with pH, but independent of agent concentration, endogenous T1 relaxation time, and B1 inhomogeneity. Therefore, detecting both CEST effects of iopamidol during in vivo studies can be used to accurately measure the extracellular pH in tumor tissues. Past in vivo studies using acidoCEST MRI have suffered from respiration artifacts in orthotopic and lung tumor models that have corrupted pH measurements. In addition, the non-linear fitting method used to analyze results is unreliable as it is subject to over-fitting especially with noisy CEST spectra. To improve the technique, we have recently developed a respiration gated CEST MRI pulse sequence that has greatly reduced motion artifacts, and we have included both a prescan and post scan to remove endogenous CEST effects. In addition, we fit the results by parameterizing the contrast of the exogenous agent with respect to pH via the Bloch equations modified for chemical exchange, which is less subject to over-fitting than the non-linear method. These advances in the acidoCEST MRI technique and analysis methods have made pH measurements more reliable, especially in areas of the body subject to respiratory motion.
ADULT ABDOMINAL WALL HERNIA IN IBADAN
Ayandipo, O.O; Afuwape, O.O.; Irabor, D. O.; Abdurrazzaaq, A.I.
2015-01-01
Background: Abdominal wall hernias are very common diseases encountered in surgical practice. Groin hernia is the commonest type of abdominal wall hernias. There are several methods of hernia repair but tension-free repair (usually with mesh) offers the least recurrent rate. Aim: To describe the clinical profile of anterior abdominal wall hernias and our experience in the surgical management of identified hernias Method: The project was a retrospective study of all patients with abdominal wal...
Vapor wall deposition in Teflon chambers
Zhang, X; R. H. Schwantes; R. C. McVay; H Lignell; M. M. Coggon; Flagan, R C; Seinfeld, J.H.
2014-01-01
Teflon chambers are ubiquitous in studies of atmospheric chemistry. Secondary organic aerosol (SOA) formation can be substantially underestimated owing to deposition of SOA-forming compounds to chamber walls. We present here an experimental protocol to constrain the nature of wall deposition of organic vapors in Teflon chambers. We measured the wall deposition rates of 25 oxidized organic compounds generated from the photooxidation of isoprene, toluene, α-pinene, and dodecan...
Tourism Development: Issues for Historic Walled Towns
Tomi Brezovec; David Bruce
2009-01-01
This paper discusses issues in tourism development and visitor management in historic walled towns. Historic towns and walled towns in particular, attract tourists that enjoy the preserved medieval ambience, architecture and picturesque streets. Tourism has an impact on economic and social life as well as on the urban and natural environment. Walled towns and cities with their obvious barriers exemplify and crystallise issues, challenges, and opportunities critical to the development of touri...
Ultrasonic wall thickness measurement without coupling liquid
International Nuclear Information System (INIS)
If the material measured is part of the ultrasonic transducer, then one can do without the usual coupling liquid for ultrasonic measurement of wall thickness. Measuring equipment works on the basis of this electro-dynamic ultrasonic transducer, which has been developed to check the wall thickness (3 to 30 mm) of steel pipes with outside diameters of 25 to 180 mm. Double errors and local changes of wall thickness can be detected. (orig.)
Antigen Incorporation on Cryptosporidium parvum Oocyst Walls
Entrala Emilio; Sbihi Younes; Sánchez-Moreno Manuel; Mascaró Carmen
2001-01-01
Cryptosporidium parvum oocysts are the infective stages responsible for transmission and survival of the organism in the environment. In the present work we show that the oocyst wall, far from being a static structure, is able to incorporate antigens by a mechanism involving vesicle fusion with the wall, and the incorporation of the antigen to the outer oocyst wall. Using immunoelectron microscopy we show that the antigen recognized by a monoclonal antibody used for diagnosis of cryptosporidi...
Mechanics of the Toxoplasma gondii oocyst wall
Dumètre, Aurélien; Dubey, Jitender P.; Ferguson, David J. P.; Bongrand, Pierre; Azas, Nadine; Puech, Pierre-Henri
2013-01-01
International audience; The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from harsh environmental conditions until their ingestion by the host. None of the common disinfectants are effective in killing the parasite, since the oocyst wall acts as a pr...
Motional Effect on Wall Shear Stresses
DEFF Research Database (Denmark)
Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won
Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....
Transport and coherent structures in wall turbulence
Tardu, Sedat
2014-01-01
Wall bounded turbulent flows are of major importance in industrial and environmental fluid mechanics. The structure of the wall turbulence is intrinsically related to the coherent structures that play a fundamental role in the transport process. The comprehension of their regeneration mechanism is indispensable for the development of efficient strategies in terms of drag control and near wall turbulence management. This book provides an up-to-date overview on the progress made in this specific area in recent years.
Pioline, Boris
2015-01-01
In $D=4,N=2$ theories on $R^{3,1}$, the index receives contributions not only from single-particle BPS states, counted by the BPS indices, but also from multi-particle states made of BPS constituents. In a recent work [arXiv:1406.2360], a general formula expressing the index in terms of the BPS indices was proposed, which is smooth across walls of marginal stability and reproduces the expected single-particle contributions. In this note, I analyze the two-particle contributions predicted by this formula, and show agreement with the spectral asymmetry of the continuum of scattering states in the supersymmetric quantum mechanics of two non-relativistic, mutually non-local dyons. This provides a physical justification for the error function profile used in the mathematics literature on indefinite theta series, and in the physics literature on black hole partition functions.
Institute of Scientific and Technical Information of China (English)
XuHuagen; XuHushan; LiWenfei; ZhanWenlong; XiaoGuoqing; GuoZhongyan; SunZhiyu; LiChen; ChenRuofu; MaYue; ZhangXueying[; JiaFei
2003-01-01
With the construction of the new Radioactive Ion Beam Line in Lanzhou (RIBLL Ⅱ) which connecting the CSRm and the CSRe, an experimental setup.The Time-of-Flight (ToF) technique was recognized as one of the best ways for neutron detection and it, is employed by the neutrons wall. Considering the high neutron multiplicity, the detector shouldal so have the ability to resolve the multiple hits. Moreover, a high detection efficiency for the neutrons with energies ranging from 100MeV to 1 GeV is also required besides the high granularity. In this case, the sampling hadronic calorimeter type of detector has been selected. In order to estimate the performance of the detector and
Virtual gap dielectric wall accelerator
Energy Technology Data Exchange (ETDEWEB)
Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A
2013-11-05
A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.
Creating universes with thick walls
Ulvestad, Andrew; Albrecht, Andreas
2012-05-01
We study the dynamics of a spherically symmetric false vacuum bubble embedded in a true vacuum region separated by a “thick wall”, which is generated by a scalar field in a quartic potential. We study the “Farhi-Guth-Guven” (FGG) quantum tunneling process by constructing numerical solutions relevant to this process. The Arnowitt-Deser-Misner mass of the spacetime is calculated, and we show that there is a lower bound that is a significant fraction of the scalar field mass. We argue that the zero mass solutions used to by some to argue against the physicality of the FGG process are artifacts of the thin wall approximation used in earlier work. We argue that the zero mass solutions should not be used to question the viability of the FGG process.
BPS Spectra, Barcodes and Walls
Cirafici, Michele
2015-01-01
BPS spectra give important insights into the non-perturbative regimes of supersymmetric theories. Often from the study of BPS states one can infer properties of the geometrical or algebraic structures underlying such theories. In this paper we approach this problem from the perspective of persistent homology. Persistent homology is at the base of topological data analysis, which aims at extracting topological features out of a set of points. We use these techniques to investigate the topological properties which characterize the spectra of several supersymmetric models in field and string theory. We discuss how such features change upon crossing walls of marginal stability in a few examples. Then we look at the topological properties of the distributions of BPS invariants in string compactifications on compact threefolds, used to engineer black hole microstates. Finally we discuss the interplay between persistent homology and modularity by considering certain number theoretical functions used to count dyons i...
ON WALL SHEAR STRESS OF ARTERY
Institute of Scientific and Technical Information of China (English)
Liu Zhao-rong; Liu Bao-yu; Qin Kai-rong
2003-01-01
In this paper, a method was proposed that the wall shear stress of artery could be determined by measuring the centerline axial velocity and radial motion of arterial wall simultaneously.The method is simple in application and can get higher precision when it is used to determine the shear stress of arterial wall in vivo.As an example, the shear stress distribution in periodic oscillatory flow of human carotid was calculated and discussed.The computed results show that the shear stress distribution at any given instant is almost uniform and will be zero at the centerline and tends to maximum at the vessel wall.
Determination of arterial wall shear stress
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The arteries can remodel their structure and function to adapt themselves to the mechanical environment. In various factors that lead to vascular remodeling, the shear stress on the arterial wall induced by the blood flow is of great importance. However, there are many technique difficulties in measuring the wall shear stress directly at present. In this paper, through analyzing the pulsatile blood flow in arteries, a method has been proposed that can determine the wall shear stress quantitatively by measuring the velocity on the arterial axis, and that provides a necessary means to discuss the influence of arterial wall shear stress on vascular remodeling.
Microanalysis of Plant Cell Wall Polysaccharides
Institute of Scientific and Technical Information of China (English)
Nicolai Obel; Veronika Erben; Tatjana Schwarz; Stefan Kühne; Andrea Fodor; Markus Pauly
2009-01-01
Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first iso-lating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apo-plastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.
Skyrmions from Instantons inside Domain Walls
Eto, M; Ohashi, K; Tong, D; Eto, Minoru; Nitta, Muneto; Ohashi, Keisuke; Tong, David
2005-01-01
Some years ago, Atiyah and Manton described a method to construct approximate Skyrmion solutions from Yang-Mills instantons. Here we present a dynamical realization of this construction using domain walls in a five-dimensional gauge theory. The non-abelian gauge symmetry is broken in each vacuum but restored in the core of the domain wall, allowing instantons to nestle inside the wall. We show that the worldvolume dynamics of the wall is given by the Skyrme model, including the four-derivative term, and the instantons appear as Skyrmions.
Fillability of Thin-Wall Steel Castings
Energy Technology Data Exchange (ETDEWEB)
Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday
2002-07-30
The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.
Molecular regulation of plant cell wall extensibility
Cosgrove, D. J.
1998-01-01
Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.
Xiao, Chaowen; Anderson, Charles T
2016-09-01
In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.
Xiao, Chaowen; Anderson, Charles T
2016-09-01
In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis. PMID:27611066
External Insulation of Masonry Walls and Wood Framed Walls
Energy Technology Data Exchange (ETDEWEB)
Baker, P. [Building Science Corporation, Somerville, MA (United States)
2013-01-01
The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.