WorldWideScience

Sample records for blind astrometric calibration

  1. Astrometry.net: Blind Astrometric Calibration of Arbitrary Astronomical Images

    Science.gov (United States)

    Lang, Dustin; Hogg, David W.; Mierle, Keir; Blanton, Michael; Roweis, Sam

    2010-05-01

    We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or World Coordinate System information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing—not even the image scale—is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a null hypothesis. With indices built from the USNO-B catalog and designed for uniformity of coverage and redundancy, the success rate is >99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the incompleteness of the USNO-B catalog; augmentation with indices built from the Two Micron All Sky Survey catalog brings the completeness to 100% with no false positives. We are using this system to generate consistent and standards-compliant meta-data for digital and digitized imaging from plate repositories, automated observatories, individual scientific investigators, and hobbyists. This is the first step in a program of making it possible to trust calibration meta-data for astronomical data of arbitrary provenance.

  2. Astrometry.net: Blind astrometric calibration of arbitrary astronomical images

    CERN Document Server

    Lang, Dustin; Mierle, Keir; Blanton, Michael; Roweis, Sam

    2009-01-01

    We have built a reliable and robust system that takes as input an astronomical image, and returns as output the pointing, scale, and orientation of that image (the astrometric calibration or WCS information). The system requires no first guess, and works with the information in the image pixels alone; that is, the problem is a generalization of the "lost in space" problem in which nothing--not even the image scale--is known. After robust source detection is performed in the input image, asterisms (sets of four or five stars) are geometrically hashed and compared to pre-indexed hashes to generate hypotheses about the astrometric calibration. A hypothesis is only accepted as true if it passes a Bayesian decision theory test against a background hypothesis. With indices built from the USNO-B Catalog and designed for uniformity of coverage and redundancy, the success rate is 99.9% for contemporary near-ultraviolet and visual imaging survey data, with no false positives. The failure rate is consistent with the inc...

  3. Astrometric Calibration of the Gemini Planet Imager

    Science.gov (United States)

    Tran, Debby; Konopacky, Quinn M.; GPIES Team

    2017-01-01

    The Gemini Planet Imager (GPI), housed on the 8-meter Gemini South telescope in Chile, is an instrument designed to detect Jupiter-like extrasolar planets by direct imaging. It relies on adaptive optics to correct the effects of atmospheric turbulence, along with an advanced coronagraph and calibration system. One of the scientific goals of GPI is to measure the orbital properties of the planets it discovers. Because these orbits have long periods, precise measurements of the relative position between the star and the planet (relative astrometry) are required. In this poster, I will present the astrometric calibration of GPI. We constrain the plate scale and orientation of the camera by observing different binary star systems with both GPI and another well-calibrated instrument, NIRC2, at the Keck telescope in Hawaii. We measure their separations with both instruments and use that information to calibrate the plate scale. By taking these calibration measurements over the course of one year, we have measured the plate scale to 0.05% and shown that it is stable across multiple epochs. We also examined the effects of the point spread function on the positions of the binaries as well as their separations, the results of which I will discuss.

  4. SPHERE IRDIS and IFS astrometric strategy and calibration

    CERN Document Server

    Maire, Anne-Lise; Dohlen, Kjetil; Lagrange, Anne-Marie; Gratton, Raffaele; Chauvin, Gael; Desidera, Silvano; Girard, Julien H; Milli, Julien; Vigan, Arthur; Zins, Gerard; Delorme, Philippe; Beuzit, Jean-Luc; Claudi, Riccardo U; Feldt, Markus; Mouillet, David; Puget, Pascal; Turatto, Massimo; Wildi, Francois

    2016-01-01

    We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60+/-0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1". The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255+/-0.009 milliarcseco...

  5. Astrometric Calibration and Performance of the Dark Energy Camera

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, G.M.; et al.

    2017-03-05

    We characterize the ability of the Dark Energy Camera (DECam) to perform relative astrometry across its 500 Mpix, 3 $deg^2$ science field of view, and across 4 years of operation. This is done using internal comparisons of $~ 4 x 10^7$ measurements of high-S/N stellar images obtained in repeat visits to fields of moderate stellar density, with the telescope dithered to move the sources around the array. An empirical astrometric model includes terms for: optical distortions; stray electric fields in the CCD detectors; chromatic terms in the instrumental and atmospheric optics; shifts in CCD relative positions of up to $\\approx 10 \\mu m$ when the DECam temperature cycles; and low-order distortions to each exposure from changes in atmospheric refraction and telescope alignment. Errors in this astrometric model are dominated by stochastic variations with typical amplitudes of 10-30 mas (in a 30 s exposure) and $5^{\\prime}-10^{\\prime}$ arcmin coherence length, plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of these atmospheric distortions is not closely related to the seeing. Given an astrometric reference catalog at density $\\approx 0.7$ $arcmin^{-2}$, e.g. from Gaia, the typical atmospheric distortions can be interpolated to $\\approx$ 7 mas RMS accuracy (for 30 s exposures) with $1^{\\prime}$ arcmin coherence length for residual errors. Remaining detectable error contributors are 2-4 mas RMS from unmodelled stray electric fields in the devices, and another 2-4 mas RMS from focal plane shifts between camera thermal cycles. Thus the astrometric solution for a single DECam exposure is accurate to 3-6 mas ( $\\approx$ 0.02 pixels, or $\\approx$ 300 nm) on the focal plane, plus the stochastic atmospheric distortion.

  6. Double-blind test program for astrometric planet detection with Gaia

    CERN Document Server

    Casertano, S; Sozzetti, A; Spagna, A; Jancart, S; Morbidelli, R; Pannunzio, R; Pourbaix, D; Queloz, D

    2008-01-01

    We use detailed simulations of the Gaia observations of synthetic planetary systems and develop and utilize independent software codes in double-blind mode to analyze the data, including statistical tools for planet detection and different algorithms for single and multiple Keplerian orbit fitting that use no a priori knowledge of the true orbital parameters of the systems. 1) Planets with astrometric signatures $\\alpha\\simeq 3$ times the single-measurement error $\\sigma_\\psi$ and period $P\\leq 5$ yr can be detected reliably, with a very small number of false positives. 2) At twice the detection limit, uncertainties in orbital parameters and masses are typically $15%-20%$. 3) Over 70% of two-planet systems with well-separated periods in the range $0.2\\leq P\\leq 9$ yr, $2\\leq\\alpha/\\sigma_\\psi\\leq 50$, and eccentricity $e\\leq 0.6$ are correctly identified. 4) Favorable orbital configurations have orbital elements measured to better than 10% accuracy $> 90%$ of the time, and the value of the mutual inclination ...

  7. Astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC)

    Science.gov (United States)

    Zhang, Hui-Hua; Liu, Xiao-Wei; Yuan, Hai-Bo; Zhao, Hai-Bin; Yao, Jin-Sheng; Zhang, Hua-Wei; Xiang, Mao-Sheng; Huang, Yang

    2014-04-01

    We present astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC). XSTPS-GAC is the photometric part of the Digital Sky Survey of the Galactic Anti-center (DSS-GAC), which is a photometric and spectroscopic sky survey, in combination with LAMOST. In order to select an astrometric reference catalog, we made comparisons between the four widely used astrometric catalogs, GSC2.3, USNO-B1.0, UCAC3 and PPMXL. PPMXL shows relatively small systematic errors in positions and more homogeneous proper motion distributions toward the Galactic Anti-center (GAC), and was selected as the reference catalog. Based on the high quality and bright reference stars that were picked out from PPMXL, we performed a 4th-order polynomial fitting in image units, to construct the transformation relation between coordinates used by XSTPS-GAC and standard coordinates, and to simultaneously correct the image distortions in the CCD. Then we applied the derived relation to all sources to obtain their mean celestial coordinates based on the International Celestial Reference System. For bright point sources with r errors being less than 10 mas. But for the faint sources at the brightness limit of the survey, which was r ~ 19.0 mag, the accuracy can still reach 200 mas. After combining all observations, the final weighted average coordinates could reach an accuracy of less than 70 mas for bright stars. For faint stars, the rms residuals of weighted coordinates decrease to ~ 110 mas. The final combined XSTPS-GAC coordinates show a good consistency with the Sloan Digital Sky Survey.

  8. Gaia’s Cepheids and RR Lyrae stars and luminosity calibrations based on Tycho-Gaia Astrometric Solution

    Directory of Open Access Journals (Sweden)

    Clementini Gisella

    2017-01-01

    Full Text Available Gaia Data Release 1 contains parallaxes for more than 700 Galactic Cepheids and RR Lyrae stars, computed as part of the Tycho-Gaia Astrometric Solution (TGAS. We have used TGAS parallaxes, along with literature (V, I, J, Ks, W1 photometry and spectroscopy, to calibrate the zero point of the period-luminosity and period-Wesenheit relations of classical and type II Cepheids, and the near-infrared period-luminosity, period-luminosity-metallicity and optical luminosity-metallicity relations of RR Lyrae stars. In this contribution we briefly summarise results obtained by fitting these basic relations adopting different techniques that operate either in parallax or distance (absolute magnitude space.

  9. Association Between Retinal Vascular Calibre and Blindness in Young Patients With Type 1 Diabetes

    DEFF Research Database (Denmark)

    Rasmussen, Malin Lundberg

    Association Between Retinal Vascular Calibre and Blindness in Young Patients With Type 1 Diabetes Purpose To examine the association between retinal vascular calibre and incident blindness caused by diabetic retinopathy in young patients with type 1 diabetes. Methods A case-control study of 6...... patients (12 eyes) who later went blind and 18 age- and sex-matched controls (36 eyes). They were all identified in a population-based cohort study of 339 patients with type 1 diabetes. Patients and controls all participated in a clinical baseline examination in 1995 and were subsequently followed for 15...... years. Incident blindness was defined for patients who registered between 1995 and 2010 in the Danish Association of the Blind, which is a voluntary organization open for patients with a visual acuity at or below 6/60 (0.1) in the best eye. Each blind patient was matched with 3 controls regarding age...

  10. ESPRI: Astrometric planet search with PRIMA at the VLTI

    Directory of Open Access Journals (Sweden)

    Ségransan D.

    2011-07-01

    Full Text Available The ESPRI consortium will conduct an astrometric survey for extrasolar planets, using the PRIMA facility at the Very Large Telescope Interferometer. Our scientific goals include determining orbital inclinations and masses for planets already known from radial-velocity surveys, searches for planets around nearby stars of all masses, and around young stars. The consortium has built the PRIMA differential delay lines, developed an astrometric operation and calibration plan, and will deliver astrometric data reduction software.

  11. Astrometric microlensing of stars

    NARCIS (Netherlands)

    Dominik, M; Sahu, KC

    2000-01-01

    Because of dramatic improvements in the precision of astrometric measurements, the observation of light centroid shifts in observed stars due to intervening massive compact objects ("astrometric microlensing") will become possible in the near future. Upcoming space missions, such as SIM and GAIA,

  12. Astrometric Redshifts for Quasars

    CERN Document Server

    Kaczmarczik, Michael C; Mehta, Sajjan S; Schlegel, David J

    2009-01-01

    The wavelength dependence of atmospheric refraction causes differential chromatic refraction (DCR), whereby objects imaged at different optical/UV wavelengths are observed at slightly different positions in the plane of the detector. Strong spectral features induce changes in the effective wavelengths of broad-band filters that are capable of producing significant positional offsets with respect to standard DCR corrections. We examine such offsets for broad-emission-line (type 1) quasars from the Sloan Digital Sky Survey (SDSS) spanning 0astrometric information can be used to break degeneracies in photometric redshifts of quasars (or other emission-line sources) and, for extreme cases, may be suitable for determining "astrometric redshifts". On the SDSS's southern equatorial stripe, where it is pos...

  13. Astrometric signal profile fitting for Gaia

    CERN Document Server

    Gai, Dr Mario; Busonero, Dr Deborah

    2010-01-01

    A tool for representation of the one-dimensional astrometric signal of Gaia is described and investigated in terms of fit discrepancy and astrometric performance with respect to number of parameters required. The proposed basis function is based on the aberration free response of the ideal telescope and its derivatives, weighted by the source spectral distribution. The influence of relative position of the detector pixel array with respect to the optical image is analysed, as well as the variation induced by the source spectral emission. The number of parameters required for micro-arcsec level consistency of the reconstructed function with the detected signal is found to be 11. Some considerations are devoted to the issue of calibration of the instrument response representation, taking into account the relevant aspects of source spectrum and focal plane sampling. Additional investigations and other applications are also suggested.

  14. Gravitation Astrometric Measurement Experiment (GAME)

    Science.gov (United States)

    Gai, M.; Vecchiato, A.; Ligori, S.; Riva, A.; Lattanzi, M. G.; Busonero, D.; Fienga, A.; Loreggia, D.; Crosta, M. T.

    2012-07-01

    GAME is a recent concept for a small/medium class mission aimed at Fundamental Physics tests in the Solar system, by means of an optimised instrument in the visible, based on smart combination of coronagraphy and Fizeau interferometry. The targeted precision on the γ and β parameters of the Parametrised Post-Newtonian formulation of General Relativity are respectively in the 10-7-10-8 and 10-5-10-6 range, improving by one or two orders of magnitude with respect to the expectations on current or near future experiments. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy from a Solar system scale experiment. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing variation (Cassini). The instrument concept is based on multiple field, multiple aperture Fizeau interferometry, observing simultaneously regions close to the Solar limb (requiring the adoption of coronagraphic techniques), and others in opposition to the Sun. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. The multiple field observation is aimed at cost-effective control of systematic effects through simultaneous calibration. We describe the science motivation, the proposed mission profile, the instrument concept and the expected performance.

  15. Astrometric solar system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  16. Deep Astrometric Standards (DAS) and Galactic Structure

    CERN Document Server

    Platais, I; Zacharias, N

    2005-01-01

    The advent of next-generation imaging telescopes such as LSST and Pan-STARRS has revitalized the need for deep and precise reference frames. The proposed weak-lensing observations with these facilities put the highest demands on image quality over wide angles on the sky. It is particularly difficult to achieve a sub-arcsecond PSF on stacked images, where precise astrometry plays a key role. Current astrometric standards are insufficient to achieve the science goals of these facilities. We thus propose the establishing of a few selected deep (V=25) astrometric standards (DAS). These will enable a reliable geometric calibration of solid-state mosaic detectors in the focal plane of large ground-based telescopes and make a substantial contribution to our understanding of stellar populations in the Milky Way. In this paper we motivate the need for such standards and discuss the strategy of their selection and acquisition and reduction techniques. The feasibility of DAS is demonstrated by a pilot study around the o...

  17. Gamma astrometric measurement experiment -science and implementation

    Science.gov (United States)

    Gai, Mario; Vecchiato, Alberto; Lattanzi, Mario G.; Ligori, Sebastiano; Loreggia, Davide; Fineschi, Silvano

    . The GAME measurement principle is based on the differential astrometric signature on the stellar positions. Calibration is implemented by observation of stellar fields affected by neg-ligible deflection. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously sky regions close to the Solar limb. Coronagraphic solutions are embedded in the astrometric telescope design, to achieve a rejection factor of the Sun disk and stray light of ˜ 10-9 . An array of apertures implemented by pupil masking on an underlying telescope with primary diameter below one meter, with long focal length, fulfills the mission specifications by providing individual photo-center precision better than 1 milli-arcsecond for source magnitude 15 or brighter.

  18. The Future of Astrometric Education

    Directory of Open Access Journals (Sweden)

    William van Altena

    2006-01-01

    Full Text Available La Astrometría está preparada para entrar en una era de crecimiento y relevancia sin paralelo debido a la esperada abundancia de datos procedentes de las misiones espaciales SIM y GAIA. Se diseñan modernos telescopios terrestres, como el LSST, que brindaran datos menos precisos, pero de una mayor cantidad de estrellas. El potencial para los estudios de estructura, cinemática y dinámica de nuestra Galaxia, así como de la naturaleza física de las estrellas y de las escalas cosmológicas, no tiene igual en la historia de la astronomía. Es irónico, por lo tanto, que a escala global, se puede obtener una educación completa en astrometría sólo en San Petersburgo y en Paris, mientras que en breve, no se dictaría curso alguno de astrometría en los EEUU. ¿Quien aseguraría el control de calidad astrométrico de JWT, SIM, GAIA, LST, por no hablar de los grandes telescopios basados en tierra tales como, VLT, Gemini, Keck, NOAO, Magellan, LBT, etc.? Proponemos una renovación de la educación universitaria en astrometría con el fin de preparar científicos calificados que permitan maximizar los resultados de las actuales inversiones multimillonarias en instrumentación astronómica. Por un lado, las agencias de financiamiento están proporcionando fondos especiales para estos propósitos, y a su vez, las universidades y los observatorios deben reconocer su responsabilidad de contratar astrometrías altamente calificados aún de entrenar estudiantes y supervisar el instrumental astronómico planificado y existente, de tal manera que se obtengan y analicen datos de gran calidad. Una solución provisional a este problema es proponer la realización de series de escuelas internacionales de verano en Astrometría. El Centro Científico Michelson del proyecto SIM coordinarla una escuela de astrometría en 2005, aún de iniciar este proceso. Se sugiere el equivalente a un programa educativo de un semestre en técnicas astrometrías en carreras

  19. The Astrometric Foundation of Astrophysics

    CERN Document Server

    Høg, Erik

    2014-01-01

    Astrophysical studies require a knowledge of very accurate positions, motions and distances of stars. A brief overview is given of the significance and development of astrometry by ESA's two astrometric satellites, Hipparcos and Gaia, launched in respectively 1989 and 2013. The astrometric foundation of all branches of astronomy from the solar system and stellar systems to compact galaxies, quasars and dark matter is being revolutionized by the observations from these satellites. The future of fundamental astrometry must be considered in a time frame of 50 years, therefore science issues for a Gaia successor mission in twenty years are discussed in an extensive report: "Absolute Astrometry in the Next 50 Years" available at https://dl.dropbox.com/u/49240691/GaiaRef.pdf.

  20. The Future of Astrometric Education

    OpenAIRE

    William van Altena; Magda Stavinschi

    2006-01-01

    La Astrometría está preparada para entrar en una era de crecimiento y relevancia sin paralelo debido a la esperada abundancia de datos procedentes de las misiones espaciales SIM y GAIA. Se diseñan modernos telescopios terrestres, como el LSST, que brindaran datos menos precisos, pero de una mayor cantidad de estrellas. El potencial para los estudios de estructura, cinemática y dinámica de nuestra Galaxia, así como de la naturaleza física de las estrellas y de las escalas cosmológicas, no tien...

  1. Satellite Tracking Astrometric Network (STAN)

    Science.gov (United States)

    Vecchiato, Alberto; Gai, Mario

    2015-08-01

    The possibility of precise orbit tracking and determination of different types of satellites has been explored for at least some 25 years (Arimoto et al., 1990). Proposals in this sense made use mainly of astrometric observations, but multiple tracking techniques combining transfer and laser ranging was also suggested (Guo et al., 2009; Montojo et al., 2011), with different requirements and performances ranging from $\\sim100$~m to tenths of meters.In this work we explore the possible improvements and a novel implementation of a technique relying on large angle, high precision astrometry from ground for the determination of satellite orbits. The concept is based on combined observation of geostationary satellites and other near-Earth space objects from two or more telescopes, applying the triangulation principle over widely separated regions of the sky. An accuracy of a few $10^{-2}$~m can be attained with 1-meter-class telescopes and a field of vied of some arcminutes.We discuss the feasibility of the technique, some of the implementation aspects, and the limitations imposed by atmospheric turbulence. The potential benefits for satellite orbit control and navigation systems are presented, depending on the number and position of the contributing telescopes.We also discuss the possibility that, by reversing the roles of stars and satellites, the same kind of observations can be used for verification and maintenance of astrometric catalogs.

  2. Astrometric Gravitation Probe: a space mission concept for fundamental physics

    Science.gov (United States)

    Vecchiato, Alberto; Fienga, Agnes; Gai, Mario; Lattanzi, Mario G.; Riva, Alberto; Busonero, Deborah

    2015-08-01

    Modern technological developments have pushed the accuracy of astrometric measurements in the visible band down to the micro-arcsec level. This allows to test theories of gravity in the weak field limit to unprecedented level, with possible consequences spanning from the validity of fundamental physics principles, to tests of theories describing cosmological and galactic dynamics without resorting to Dark Matter and Dark Energy.This is the main goal of Astrometric Gravitation Probe (AGP) mission, which will be achieved by highly accurate astrometric determination of light deflection (as a modern rendition of the Dyson, Eddington, and Robertson eclipse experiment of 1919), aberration, and of the orbits of selected Solar System objects, with specific reference to the excess shift of the pericentre effect.The AGP concept was recently proposed for the recent call for ESA M4 missions as a collaboration among several scientists coming from many different European and US institutions. Its payload is based on a 1.15 m diameter telescope fed through a coronagraphic system by four fields, two set in symmetric positions around the Sun, and two in the opposite direction, all imaged on a CCD detector. Large parts of the instrument are common mode to all fields. The baseline operation mode is the scan of the ±1.13 deg Ecliptic strip, repeated for a minimum of 3 years and up to an optimal duration of 5 years. Operations and calibrations are simultaneous, defined in order to ensure common mode instrumental effects, identified and removed in data reduction. The astrometric and coronagraphic technologies build on the heritage of Gaia and Solar Orbiter.We review the mission concept and its science case, and discuss how this measurement concepts can be scaled to different mission implementations.

  3. Astrometric Detection of Earthlike Planets

    CERN Document Server

    Shao, Michael; Catanzarite, Joseph H; Edberg, Stephen J; Leger, Alain; Malbet, Fabien; Queloz, Didier; Muterspaugh, Matthew W; Beichman, Charles; Fischer, Debra A; Ford, Eric; Olling, Robert; Kulkarni, Shrinivas; Unwin, Stephen C; Traub, Wesley

    2009-01-01

    Astrometry can detect rocky planets in a broad range of masses and orbital distances and measure their masses and three-dimensional orbital parameters, including eccentricity and inclination, to provide the properties of terrestrial planets. The masses of both the new planets and the known gas giants can be measured unambiguously, allowing a direct calculation of the gravitational interactions, both past and future. Such dynamical interactions inform theories of the formation and evolution of planetary systems, including Earth-like planets. Astrometry is the only technique technologically ready to detect planets of Earth mass in the habitable zone (HZ) around solar-type stars within 20 pc. These Earth analogs are close enough for follow-up observations to characterize the planets by infrared imaging and spectroscopy with planned future missions such as the James Webb Space Telescope (JWST) and the Terrestrial Planet Finder/Darwin. Employing a demonstrated astrometric precision of 1 microarcsecond and a noise ...

  4. The Full-sky Astrometric Mapping Explorer - An optical, astrometric survey mission

    Science.gov (United States)

    Horner, S. D.; Germain, M. E.; Greene, T. P.; Harris, F. H.; Harris, H. C.; Johnson, M. S.; Johnston, K. J.; Monet, D. G.; Murison, M. A.; Phillips, J. D.; Reasenberg, R. D.; Seidelmann, P. K.; Urban, S. E.; Vassar, R. H.

    1999-12-01

    The Full-sky Astrometric Mapping Explorer (FAME) is a NASA MIDEX mission scheduled for launch in 2004. It will perform an all sky, astrometric survey with unprecedented accuracy. FAME will determine the positions, parallaxes, proper motions, and photometry of 40,000,000 stars with visual band magnitudes 5 DSS colors. FAME will enable a wide range of scientific investigations using its large, rich database of information on stellar properties. It will: * Calibrate the zero point of the extragalactic distance scale to 1% * Determine absolute luminosities of a wide range of spectral types * Detect a meaningful statistical sample of companion stars, brown dwarfs, and giant planets * Enable studies of the kinematics of our galaxy, including the effect of dark matter in the disk * Characterize stellar variability of a large sample of stars at the 0.1% level * Define a rigid optical reference frame for future scientific endeavors FAME is evolved from design concepts from the Hipparcos mission, using current CCD technology to observe more and fainter stars. Like Hipparcos, FAME has a compound mirror consisting of two flats angled relative to each other. The compound mirror feeds the two fields of view separated by the ``basic angle'' into a common telescope. The two fields of view are used to control the growth of stochastic errors in determining the relative separations of stars. FAME is a joint development effort of the U.S. Naval Observatory, the Naval Research Laboratory, Lockheed Martin Missiles and Space Advanced Technology Center, and the Smithsonian Astrophysical Observatory. Funding for FAME is provided by the NASA Office of Space Science through the Explorer program managed by Goddard Space Flight Center. Additional funding has been provided by the U.S. Navy. http://www.usno.navy.mil/fame

  5. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control.

    Science.gov (United States)

    Zou, Tengyue; Lin, Shouying; Li, Shuyuan

    2016-05-31

    Indoor localization based on wireless sensor networks (WSNs) is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD) to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF) are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost.

  6. Blind RSSD-Based Indoor Localization with Confidence Calibration and Energy Control

    Directory of Open Access Journals (Sweden)

    Tengyue Zou

    2016-05-01

    Full Text Available Indoor localization based on wireless sensor networks (WSNs is an important field of research with numerous applications, such as elderly care, miner security, and smart buildings. In this paper, we present a localization method based on the received signal strength difference (RSSD to determine a target on a map with unknown transmission information. To increase the accuracy of localization, we propose a confidence value for each anchor node to indicate its credibility for participating in the estimation. An automatic calibration device is designed to help acquire the values. The acceleration sensor and unscented Kalman filter (UKF are also introduced to reduce the influence of measuring noise in the application. Energy control is another key point in WSN systems and may prolong the lifetime of the system. Thus, a quadtree structure is constructed to describe the region correlation between neighboring areas, and the unnecessary anchor nodes can be detected and set to sleep to save energy. The localization system is implemented on real-time Texas Instruments CC2430 and CC2431 embedded platforms, and the experimental results indicate that these mechanisms achieve a high accuracy and low energy cost.

  7. A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables

    Science.gov (United States)

    Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew

    2017-10-01

    Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.

  8. Astrometric exoplanet detection with Gaia

    Energy Technology Data Exchange (ETDEWEB)

    Perryman, Michael; Hartman, Joel; Bakos, Gáspár Á. [Department of Astrophysical Sciences, Peyton Hall, Princeton, NJ 08544 (United States); Lindegren, Lennart [Lund Observatory, Lund, Box 43, SE-22100 Sweden (Sweden)

    2014-12-10

    We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the signal-to-noise ratio of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (±6000) high-mass (∼1-15M {sub J}) long-period planets should be discovered out to distances of ∼500 pc for the nominal 5 yr mission (including at least 1000-1500 around M dwarfs out to 100 pc), rising to some 70,000 (±20, 000) for a 10 yr mission. We indicate some of the expected features of this exoplanet population, amongst them ∼25-50 intermediate-period (P ∼ 2-3 yr) transiting systems.

  9. GAME: Gamma Astrometric Measurement Experiment

    Science.gov (United States)

    Gai, Mario; Lattanzi, Mario G.; Ligori, Sebastiano; Vecchiato, Alberto

    2008-07-01

    The GAME mission concept aims at the very precise measurement of the gravitational deflection of light by the Sun, by means of an optimised telescope operating in the visible and launched in orbit on a small class satellite. The targeted precision on the γ parameter of the Parametrised Post-Newtonian formulation of General Relativity is 10-6 or better, i.e. one to two orders of magnitude better than the best currently available results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e., based on the spatial component of the effect rather than the temporal component as in the most recent experiments using radio link delay timing. The observation strategy also allows some additional scientific objectives related to other tests of General Relativity and to the study of exo-planetary field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics approach is selected for achieving an efficient rejection of the scattered solar radiation, while retaining an acceptable angular resolution on the science targets. We describe the science motivation, the proposed mission profile, the possible payload implementation and the expected performance.

  10. Astrometric Solar-System Anomalies

    CERN Document Server

    Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr$^{-1}$. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction ...

  11. URAT: astrometric requirements and design history

    CERN Document Server

    Zacharias, N; Rakich, A; Epps, H

    2006-01-01

    The U.S. Naval Observatory Robotic Astrometric Telescope (URAT) project aims at a highly accurate (5 mas), ground-based, all-sky survey. Requirements are presented for the optics and telescope for this 0.85 m aperture, 4.5 degree diameter field-of-view, specialized instrument, which are close to the capability of the industry. The history of the design process is presented as well as astrometric performance evaluations of the toleranced, optical design, with expected wavefront errors included.

  12. URAT: astrometric requirements and design history

    Science.gov (United States)

    Zacharias, Norbert; Laux, Uwe; Rakich, Andrew; Epps, Harland

    2006-06-01

    The U.S. Naval Observatory Robotic Astrometric Telescope (URAT) project aims at a highly accurate (5 mas), ground-based, all-sky survey. Requirements are presented for the optics and telescope for this 0.85 m aperture, 4.5 degree diameter field-of-view, specialized instrument, which are close to the capability of the industry. The history of the design process is presented as well as astrometric performance evaluations of the toleranced, optical design, with expected wavefront errors included.

  13. Utilizing Astrometric Orbits to Obtain Coronagraphic Images

    CERN Document Server

    Davidson, John M

    2010-01-01

    We present an approach for utilizing astrometric orbit information to improve the yield of planetary images and spectra from a follow-on direct detection mission. This approach is based on the notion-strictly hypothetical-that if a particular star could be observed continuously, the instrument would in time observe all portions of the habitable zone so that no planet residing therein could be missed. This strategy could not be implemented in any realistic mission scenario. But if an exoplanet's orbit is known from astrometric observation, then it may be possible to plan and schedule a sequence of imaging observations that is the equivalent of continuous observation. A series of images-optimally spaced in time-could be recorded to examine contiguous segments of the orbit. In time, all segments would be examined, leading to the inevitable detection of the planet. In this paper, we show how astrometric orbit information can be used to construct such a sequence. Using stars from astrometric and imaging target lis...

  14. The Carnegie Astrometric Planet Search Program

    CERN Document Server

    Boss, Alan P; Anglada-Escude, Guillem; Thompson, Ian B; Burley, Gregory; Birk, Christoph; Pravdo, Steven H; Shaklan, Stuart B; Gatewood, George D; Majewski, Steven R; Patterson, Richard J

    2009-01-01

    We are undertaking an astrometric search for gas giant planets and brown dwarfs orbiting nearby low mass dwarf stars with the 2.5-m du Pont telescope at the Las Campanas Observatory in Chile. We have built two specialized astrometric cameras, the Carnegie Astrometric Planet Search Cameras (CAPSCam-S and CAPSCam-N), using two Teledyne Hawaii-2RG HyViSI arrays, with the cameras' design having been optimized for high accuracy astrometry of M dwarf stars. We describe two independent CAPSCam data reduction approaches and present a detailed analysis of the observations to date of one of our target stars, NLTT 48256. Observations of NLTT 48256 taken since July 2007 with CAPSCam-S imply that astrometric accuracies of around 0.3 milliarcsec per hour are achievable, sufficient to detect a Jupiter-mass companion orbiting 1 AU from a late M dwarf 10 pc away with a signal-to-noise ratio of about 4. We plan to follow about 100 nearby (primarily within about 10 pc) low mass stars, principally late M, L, and T dwarfs, for 10...

  15. Astrometric Positioning of Geostationary Satellites (PASAGE)

    OpenAIRE

    T. López Moratalla; C. Abad; F. Belizón; J. C. Coma; F. J. Montojo; J. L. Muiños; Palacio, J.; Vallejo, M.

    2006-01-01

    Se describen las líneas básicas del proyecto PASAGE del Real Instituto y Observatorio de la Armada (España), cuyo objetivo es obtener efemérides precisas de satélites geoestacionarios mediante observaciones visuales astrometrías desde tierra. A priori, se trata de una técnica más precisa que las utilizadas habitualmente y supondría una nueva e importante aplicación de la astronomía basada en tierra.

  16. ON THE SOURCE OF ASTROMETRIC ANOMALOUS REFRACTION

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, M. Suzanne [Department of Natural and Environmental Sciences, Western State Colorado University, 128 Hurst Hall, Gunnison, CO 81230 (United States); McGraw, John T.; Zimmer, Peter C. [Department of Physics and Astronomy, University of New Mexico, MSC07 4220, Albuquerque, NM 87131 (United States); Pier, Jeffrey R., E-mail: mstaylor@western.edu [Division of Astronomical Sciences, NSF 4201 Wilson Blvd, Arlington, VA 22230 (United States)

    2013-03-15

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed 'anomalous refraction' by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale ({approx}2 Degree-Sign ) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  17. On the Source of Astrometric Anomalous Refraction

    Science.gov (United States)

    Taylor, M. Suzanne; McGraw, John T.; Zimmer, Peter C.; Pier, Jeffrey R.

    2013-03-01

    More than a century ago, astronomers using transit telescopes to determine precise stellar positions were hampered by an unexplained periodic shifting of the stars they were observing. With the advent of CCD transit telescopes in the past three decades, this unexplained motion, termed "anomalous refraction" by these early astronomers, is again being observed. Anomalous refraction is described as a low-frequency, large angular scale (~2°) motion of the entire image plane with respect to the celestial coordinate system as observed and defined by astrometric catalogs. These motions, of typically several tenths of an arcsecond amplitude with timescales on the order of 10 minutes, are ubiquitous to ground-based drift-scan astrometric measurements regardless of location or telescopes used and have been attributed to the effect of tilting of equal-density layers of the atmosphere. The cause of this tilting has often been attributed to atmospheric gravity waves, but this cause has never been confirmed. Although theoretical models of atmospheric refraction show that atmospheric gravity waves are a plausible cause of anomalous refraction, an observational campaign specifically directed at defining this relationship provides clear evidence that anomalous refraction is not consistent with the passage of atmospheric gravity waves. The source of anomalous refraction is found to be meter-scale, slowly evolving quasi-coherent dynamical structures in the boundary layer below 60 m above ground level.

  18. Astrometric Microlensing by Local Dark Matter Subhalos

    CERN Document Server

    Erickcek, Adrienne L

    2010-01-01

    High-resolution N-body simulations of dark matter halos indicate that the Milky Way contains numerous subhalos. When a dark matter subhalo passes in front of a star, the light from that star will be deflected by gravitational lensing, leading to a small change in the star's apparent position. This astrometric microlensing signal depends on the inner density profile of the subhalo and can be greater than a few microarcseconds for an intermediate-mass subhalo (Mvir > 10000 solar masses) passing within arcseconds of a star. Current and near-future instruments could detect this signal, and we evaluate SIM's, Gaia's, and ground-based telescopes' potential as subhalo detectors. We develop a general formalism to calculate a subhalo's astrometric lensing cross section over a wide range of masses and density profiles, and we calculate the lensing event rate by extrapolating the subhalo mass function predicted by simulations down to the subhalo masses potentially detectable with this technique. We find that, although t...

  19. Astrometric performance of the Gemini multi-conjugate adaptive optics system in crowded fields

    CERN Document Server

    Neichel, Benoit; Rigaut, Francois; Ammons, S Mark; Carrasco, Eleazar R; Lassalle, Emmanuel

    2014-01-01

    The Gemini Multi-conjugate adaptive optics System (GeMS) is a facility instrument for the Gemini-South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcminute field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide field camera, GeMS/GSAOI's combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exo-planets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic center. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyze deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, un-dithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding one minute, provided enough star...

  20. Improving the Planetary Ephemeris with Astrometric Observations of Cassini

    Science.gov (United States)

    Jones, Dayton L.; Fomalont, E.; Dhawan, V.; Romney, J.; Lanyi, G.; Border, J.; Folkner, B.; Jacobson, B.

    2009-05-01

    During the past three years we have carried out a series of astrometric VLBA observations of the Cassini spacecraft. At each epoch, we used phase referencing to obtain high precision relative positions between Cassini and an angularly nearby calibration source. The calibration sources were separately tied to nearby defining sources of the International Celestial Reference Frame (ICRF) through additional phase-referenced VLBA experiments. By combining our position measurements of Cassini with a model of Cassini's orbit around Saturn (from Doppler measurements by the Deep Space Network), we are able to determine the ICRF position of Saturn at each epoch to about 0.3 mas. This is about 2 km at the average distance of Saturn. These results will improve the Saturn ephemeris, particularly in ecliptic latitude (the plane of Saturn's orbit). The error in latitude decreases dramatically as the total time span of VLBA data approaches 1/4 of Saturn's orbital period in 2011-2012. Saturn is the first outer planet whose ephemeris can be improved and more closely tied to the ICRF and the inner solar system through long-term observations of an orbiter. The planned Juno mission to Jupiter will allow this technique to be applied there also. The planetary ephemeris is an essential tool for studies of solar system dynamics, interplanetary spacecraft navigation, and test of general relativity. It requires continuous maintenance and improvement. This research has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and has relied on observations by the Very Long Baseline Array, a facility of the National Science Foundation operated by the National Radio Astronomy Observatory under a cooperative agreement with Associated Universities, Inc.

  1. Nearby Exo-Earth Astrometric Telescope (NEAT)

    Science.gov (United States)

    Shao, M.; Nemati, B.; Zhai, C.; Goullioud, R.

    2011-01-01

    NEAT (Nearby Exo ]Earths Astrometric Telescope) is a modest sized (1m diameter telescope) It will be capable of searching approx 100 nearby stars down to 1 Mearth planets in the habitable zone, and 200 @ 5 Mearth, 1AU. The concept addresses the major issues for ultra -precise astrometry: (1) Photon noise (0.5 deg dia field of view) (2) Optical errors (beam walk) with long focal length telescope (3) Focal plane errors , with laser metrology of the focal plane (4) PSF centroiding errors with measurement of the "True" PSF instead of using a "guess " of the true PSF, and correction for intra pixel QE non-uniformities. Technology "close" to complete. Focal plane geometry to 2e-5 pixels and centroiding to approx 4e -5 pixels.

  2. Neural network correction of astrometric chromaticity

    CERN Document Server

    Gai, M

    2005-01-01

    In this paper we deal with the problem of chromaticity, i.e. apparent position variation of stellar images with their spectral distribution, using neural networks to analyse and process astronomical images. The goal is to remove this relevant source of systematic error in the data reduction of high precision astrometric experiments, like Gaia. This task can be accomplished thanks to the capability of neural networks to solve a nonlinear approximation problem, i.e. to construct an hypersurface that approximates a given set of scattered data couples. Images are encoded associating each of them with conveniently chosen moments, evaluated along the y axis. The technique proposed, in the current framework, reduces the initial chromaticity of few milliarcseconds to values of few microarcseconds.

  3. Astrometric Discovery of GJ 164B

    Science.gov (United States)

    Pravdo, Steven H.; Shaklan, Stuart B.; Henry, Todd; Benedict, G. Fritz

    2004-01-01

    We discovered a low-mass companion to the M dwarf GJ 164 with the CCD-based imaging system of the Stellar Planet Survey astrometric program. The existence of GJ 164B was confirmed with Hubble Space Telescope NICMOS imaging observations. A high-dispersion spectral observation in V sets a lower limit of Deltam > 2.2 mag between the two components of the system. Based on our parallax value of 82 +/- 8 mas, we derive the following orbital parameters: P = 2.04 +/- 0.03 yr, a = 103 +/- 0.03, and M-total 0.265 +/- 0.020 M-circle dot. The component masses are M-A = 0.170 +/- 0.015 M-circle dot and M-B = 0.095 +/- 0/015 M-circle dot. Based on its mass, colors, and spectral properties, GJ 164B has spectral type M6-M8 V.

  4. An Updated 2017 Astrometric Solution for Betelgeuse

    Science.gov (United States)

    Harper, G. M.; Brown, A.; Guinan, E. F.; O'Gorman, E.; Richards, A. M. S.; Kervella, P.; Decin, L.

    2017-07-01

    We provide an update for the astrometric solution for the Type II supernova progenitor Betelgeuse using the revised Hipparcos Intermediate Astrometric Data (HIAD) of van Leeuwen, combined with existing VLA and new e-MERLIN and ALMA positions. The 2007 Hipparcos refined abscissa measurements required the addition of so-called Cosmic Noise of 2.4 mas to find an acceptable 5-parameter stochastic solution. We find that a measure of radio Cosmic Noise should also be included for the radio positions because surface inhomogeneities exist at a level significant enough to introduce additional intensity centroid uncertainty. Combining the 2007 HIAD with the proper motions based solely on the radio positions leads to a parallax of π =5.27+/- 0.78 mas ({190}-25+33 pc), smaller than the Hipparcos 2007 value of 6.56 ± 0.83 mas ({152}-17+22 pc). Furthermore, combining the VLA and new e-MERLIN and ALMA radio positions with the 2007 HIAD, and including radio Cosmic Noise of 2.4 mas, leads to a nominal parallax solution of 4.51 ± 0.80 mas ({222}-34+48 pc), which, while only 0.7σ different from the 2008 solution of Harper et al., is 2.6σ different from the solution of van Leeuwen. An accurate and precise parallax for Betelgeuse is always going to be difficult to obtain because it is small compared to the stellar angular diameter (θ =44 mas). We outline an observing strategy utilizing future mm and sub-mm high-spatial resolution interferometry that must be used if substantial improvements in the precision and accuracy of the parallax and distance are to be achieved.

  5. Full-sky Astrometric Mapping Explorer (FAME)

    Science.gov (United States)

    Johnston, K.; Gaume, R.; Harris, F.; Monet, D.; Murison, M.; Seidelmann, P. K.; Urban, S.; Johnson, M.; Horner, S.; Vassar, R.

    2000-12-01

    The FAME project began Phase B development in September 2000. FAME is a MIDEX class NASA Explorer mission that will perform an all-sky, astrometric survey with unprecedented accuracy. FAME will produce an astrometric catalog of 40 million stars between 5th and 15th magnitude. For the bright stars (5th to 9th magnitude) FAME will determine positions and parallaxes accurate to better than 50 microarcseconds, with proper motion errors less than 50 microarcseconds per year. For the fainter stars (between 9th and 15th magnitude) FAME will determine positions and parallaxes accurate to better than 500 microarcseconds, with proper motion errors less than 500 microarcseconds per year. FAME will also collect photometric data on these 40 million stars in four Sloan DSS colors. The FAME science, instrument, and spacecraft requirements and error budgets are being refined to establish the basis for the improved design of the instrument and spacecraft. The Attitude Control System (ACS) based on solar radiation pressure is being studied, including the limitations on the solar angle between the Sun and the rotation angle. The data processing plans are being developed. The CCD procurement contract is in place and design and fabrication of the CCDs is in progress. CCD tests for operations in various Time Delay Integration (TDI) situations are underway and described in another poster. It appears that the current FAME launch schedule will be delayed somewhat due to recent NASA budget restrictions. The FAME project is funded by the NASA Explorer program administered by Goddard Space Flight Center for the Office of Space Science under contract number S-13610-Y.

  6. Astrometric surveys: Solving the Milky Way puzzle with Gaia

    Directory of Open Access Journals (Sweden)

    Brown A.G.A.

    2012-02-01

    Full Text Available In this contribution I provide a brief summary of ongoing and future astrometric surveys and then focus on presenting the current status and expected scientific performance of the Gaia mission, scheduled for launch in 2013.

  7. The Gamma Astrometric Measurement Experiment (GAME)

    Science.gov (United States)

    Gai, Mario; Vecchiato, Alberto; Ligori, Sebastiano; Fineschi, Silvano; Lattanzi, Mario G.

    2009-08-01

    The GAME mission concept is aimed at very precise measurement of the gravitational deflection of light by the Sun, by an optimized telescope in the visible and launched in orbit on a small class satellite. The targeted precision on the γ parameter of the Parametrized Post-Newtonian formulation of General Relativity is 10-6 or better, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from unity value, associated to generalized Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometric signature on the stellar positions, i.e. on the spatial component of the effect rather than the temporal component as in recent experiments using radio link delay timing. Exploiting the observation strategy, it is also possible to target other interesting scientific goals both in the realm of General Relativity and in the observations of extrasolar systems. The instrument is a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics approach is selected for efficient rejection of the solar radiation, while retaining an acceptable angular resolution on the science targets. We describe the science motivation, the proposed mission profile, the payload concept and the expected performance from recent results.

  8. The Laser Astrometric Test of Relativity Mission

    Science.gov (United States)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L.

    2004-09-01

    This paper discusses new fundamental physics experiment to test relativistic gravity at the accuracy better than the effects of the 2nd order in the gravitational field strength, ∝ G2. The Laser Astrometric Test Of Relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station (ISS). The interferometer is used for measuring the angles between the two spacecraft. In Euclidean geometry, determination of a triangle's three sides determines any angle therein; with gravity changing the optical lengths of sides passing close by the Sun and deflecting the light, the Euclidean relationships are overthrown. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parameterized post-Newtonian (PPN) parameter γ to unprecedented levels of accuracy of 10-8, it will also reach ability to measure effects of the next post-Newtonian order (c-4) of light deflection resulting from gravity's intrinsic non-linearity. The solar quadrupole moment parameter, J2, will be measured with high precision, as well as a variety of other relativistic effects including Lense-Thirring precession. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.

  9. A Test of GEMS Astrometric Precision for Exoplanet Detection and Mass Measurement

    Science.gov (United States)

    Ammons, S. Mark; Marois, Christian; Macintosh, Bruce; Konopacky, Quinn; Neichel, Benoit; Galicher, Raphael; Bendek, Eduardo; Guyon, Olivier

    2014-08-01

    Precision astrometry is so far the only mainstream exoplanet detection technique that has yet to find a new planet. The unique capabilities of GeMS and GSAOI may finally be what we have been waiting for: the combination of a large aperture and wide-field AO correction for stable high-resolution wide-field diffraction-limited imaging. As part of this program, we have observed the astrometric calibrator star TYC 7122-00041-1 to demonstrate GeMS' long-term astrometric precision of < 0.4 mas in sparse fields (Ammons et al. 2013). Here, we propose two more epochs on the closest brown dwarf pair at 2 pc, WISE J1049-53 (Luhman 2013), newly discovered with Gemini in 2013 to be the third closest system known. GEMS will in one year obtain the best available projected relative orbits and a < 1% trigonometric distance, enabling precision masses and luminosity measurements for both L/T transition components of WISE 1049-53.

  10. Analogue Simulation and Orbital Solving Algorithm of Astrometric Exoplanet Detection

    Science.gov (United States)

    Huang, P. H.; Ji, J. H.

    2016-09-01

    Astrometry is an effective method to detect exoplanets. It has many advantages that other detection methods do not bear, such as providing three dimensional planetary orbit and determining the planetary mass. Astrometry will enrich the sample of exoplanets. As the high-precision astrometric satellite Gaia (Global Astrometry interferometer for Astrophysics) was launched in 2013, there will be abundant long-period Jupiter-size planets to be discovered by Gaia. In this paper, we specify the α Centauri A, HD 62509, and GJ 876 systems, and generate the synthetic astrometric data with the single astrometric precision of Gaia. Then we use the Lomb-Scargle periodogram to analyse the signature of planets and the Markov Chain Monte Carlo (MCMC) algorithm to fit the orbit of planets. The simulation results are well coincide with the initial solutions.

  11. The laser astrometric test of relativity mission

    Energy Technology Data Exchange (ETDEWEB)

    Turyshev, Slava G [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Nordtvedt, Kenneth [Northwest Analysis, 118 Sourdough Ridge Road, Bozeman, MT 59715 (United States)

    2004-06-21

    This paper discusses the motivation and general design elements of a new fundamental physics experiment that will test relativistic gravity at the accuracy better than the effects of the second order in the gravitational field strength, {proportional_to}G{sup 2}. The laser astrometric test of relativity (LATOR) mission uses laser interferometry between two micro-spacecraft whose lines of sight pass close by the Sun to accurately measure deflection of light in the solar gravity. The key element of the experimental design is a redundant geometry optical truss provided by a long-baseline (100 m) multi-channel stellar optical interferometer placed on the International Space Station (ISS). The spatial interferometer is used for measuring the angles between the two spacecraft and for orbit determination purposes. In Euclidean geometry, determination of a triangle's three sides determines any angle therein; with gravity changing the optical lengths of sides passing close by the Sun and deflecting the light, the Euclidean relationships are overthrown. The geometric redundancy enables LATOR to measure the departure from Euclidean geometry caused by the solar gravity field to a very high accuracy. LATOR will not only improve the value of the parametrized post-Newtonian (PPN) parameter {gamma} to unprecedented levels of accuracy of 1 part in 10{sup 8}, it will also reach the ability to measure effects of the next post-Newtonian order ({proportional_to}G{sup 2}) of light deflection resulting from gravity's intrinsic nonlinearity. The solar quadrupole moment parameter, J{sub 2}, will be measured with high precision, as well as a variety of other relativistic effects including Lense-Thirring precession. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogues to the

  12. Forthcoming mutual events of planets and astrometric radio sources

    CERN Document Server

    Malkin, Z; Tsekmejster, S

    2013-01-01

    Radio astronomy observations of close approaches of the Solar system planets to compact radio sources as well as radio source occultations by planets may be of large interest for planetary sciences, dynamical astronomy, and testing gravity theories. In this paper, we present extended lists of occultations of astrometric radio sources observed in the framework of various astrometric and geodetic VLBI programs by planets, and close approaches of planets to radio sources expected in the nearest years. Computations are made making use of the EPOS software package.

  13. Enabling interferometry technologies for the GAIA astrometric mission

    Science.gov (United States)

    Bisi, M.; Bonino, L.; Cecconi, Massimo; Cesare, Stefano; Bertinetto, Fabrizio; Mana, Giovanni; Carollo, D.; Gai, Mario; Lattanzi, Mario G.; Canuto, Enrico; Donati, F.

    1999-08-01

    Within a Technology Research Program funded by the European Space Agency, a team led by Alenia Aerospazio has investigated and started the development of some technologies which are considered fundamental for the achievement of the scientific objectives of the future astrometric mission GAIA. The activities have been focused on the design of a two-aperture optical interferometer and of a system for the active stabilization of its configuration within few picometers. A laboratory prototype of the active stabilization system has been implemented and tested. The results achieved in the laboratory tests proved that the very challenging requirements imposed by the GAIA astrometric goal of 10 micro-arcsec accuracy can be fulfilled.

  14. Forthcoming Occultations of Astrometric Radio Sources by Planets

    Science.gov (United States)

    L'vov, Victor; Malkin, Zinovy; Tsekmeister, Svetlana

    2010-01-01

    Astrometric observations of radio source occultations by solar system bodies may be of large interest for testing gravity theories, dynamical astronomy, and planetary physics. In this paper, we present an updated list of the occultations of astrometric radio sources by planets expected in the coming years. Such events, like solar eclipses, generally speaking can only be observed in a limited region. A map of the shadow path is provided for the events that will occurr in regions with several VLBI stations and hence will be the most interesting for radio astronomy experiments.

  15. Gamma Astrometric Measurement Experiment (GAME) - Science case

    Science.gov (United States)

    Vecchiato, Alberto; Gai, Mario; Lattanzi, Mario G.; Crosta, Maria Teresa; Sozzetti, Alessandro

    GAME (Gamma Astrometric Measurement Experiment) is a concept for a small mission whose main goal is to measure from space the γ parameter of the Parameterized Post-Newtonian formalism. A satellite looking as close as possible to the Solar limb implements a technique similar to that used during the solar eclipse of 1919, when Dyson, Eddington and collaborators measured for the first time the gravitational bending of light. Preliminary simulations have shown that the expected final accuracy can reach the 10-7 level or better. This makes GAME a decisive experiment for the understanding of gravity physics, cosmology and the Universe evolution at a fundamental level. During the last decade, in fact, a strong experimental evidence of an acceleration of the expansion of the Universe at the present time has been provided by several observational data. This has been interpreted as the effect of a long range perturbation of the gravity field of the visible matter generated by the so-called Dark Energy. These data add to those available for long time at different scale length, which are explained with the existence of non-barionic Dark Matter (e.g. galaxy rotation curves) or with some kind of modification of the General Relativity theory (e.g. Pioneer anomalies). However, there are claims that these data can be explained with a modified version of General Relativity, in which the curvature invariant R is no longer constant in the Einstein equations (f (R) gravity theories). Present experimental data are not accurate enough to discriminate between these scenarios, but this could be done with a 10-7 -level measure of γ. Moreover, the limited fraction of time needed for the main experiment with respect to the overall mission duration opens interesting possibilities for other kinds of measurements. One is to measure the light deflection induced by the quadrupole moment of giant planets like Jupiter or Saturn, an effect predicted by General Relativity but never measured up to

  16. Optical design for the Laser Astrometric Test of Relativity

    Science.gov (United States)

    Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth L., Jr.

    2004-01-01

    This paper discusses the Laser Astrometric Test of Relativity (LATOR) mission. LATOR is a Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation the fundamental postulate of Einstein's theory of general relativity. With its focus on gravity's action on light propagation it complements other tests which rely on the gravitational dynamics of bodies.

  17. A new method for astrometric observations of asteroids

    Science.gov (United States)

    Pauwels, Thierry

    1992-01-01

    In this paper we propose a new method for photographic astrometric observations of asteroids. We discuss its advantages and disadvantages and compare them to the advantages and disadvantages of the classical photographic methods. The new method is best suited for observations on a spot where no CCD cameras, blink or stereo comparators are available and when a fast detection of unknown objects is required.

  18. Gamma Astrometric Measurement Experiment (GAME) - Implementation and performance

    Science.gov (United States)

    Gai, Mario; Gai, Mario; Vecchiato, Alberto; Lattanzi, Mario G.; Ligori, Sebastiano; Loreggia, Davide

    The GAME mission concept is aimed at test of the General Relativity, through very precise measurement of the gravitational deflection of light by the Sun, by means of an optimised telescope operating in the visible and launched in orbit on a small class satellite. We recall the science motivations, discussed in detail in a separate contribution by Vecchiato et al., and describe the mission requirements derivation, the proposed mission profile, the preliminary payload design and the expected performance. The targeted precision on the "γ" parameter of the Parametrised Post-Newtonian formulation of General Relativity is in the range 10-6 to 10-7 or better, with an improvement of one or two orders of magnitude with respect to the best currently available experimental results. Such precision is suitable to detect possible deviations of γ from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on the differential astrometric signature on the stellar positions, i.e. on the spatial component of the gravitational effect, rather than the temporal component as in the most recent experiments based on radio link delay timing. Calibration is based on frequent measurement of angular separation of bright sources in stellar fields affected by negligible deflection. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two sky regions close to the Solar limb. A split flat mirror is used to fold the telescope line of sight on two different directions on the sky, separated by a base angle of about 4 degrees, which represents the gauge applied on the sky to measure the desired angular value of deflection. Stability or calibration of the base angle is the key to fulfilling the GAME science goals. An internal laser metrology option is considered for both on ground

  19. Utilizing Astrometric Orbits to Obtain Coronagraphic Images of Extrasolar Planets

    Science.gov (United States)

    Davidson, John M.

    2011-08-01

    We present an approach for utilizing astrometric orbit information to improve the yield of planetary images and spectra from a follow-on direct-detection mission. This approach is based on the notion—strictly hypothetical—that if a particular star could be observed continuously, the instrument would in time observe all portions of the habitable zone so that no planet residing therein could be missed. This strategy could not be implemented in any realistic mission scenario. But if an exoplanet’s orbit is known from astrometric observation, then it may be possible to plan and schedule a sequence of imaging observations that is the equivalent of continuous observation. A series of images—optimally spaced in time—could be recorded to examine contiguous segments of the orbit. In time, all segments would be examined, leading to the inevitable detection of the planet. In this article, we show how astrometric orbit information can be used to construct such a sequence. We apply this methodology to seven stars taken from the target lists of proposed astrometric and direct-detection missions. In addition, we construct this sequence for the Sun-Earth system as it would appear from a distance of 10 pc. In constructing these sequences, we have assumed that the imaging instrument has an inner working angle (IWA) of 75 mas and that the planets are visible whenever they are separated from their host stars by ≥IWA and are in quarter-phase or greater. In addition, we have assumed that the planets orbit at a distance of 1 AU scaled to luminosity and that the inclination of the orbit plane is 60°. For the individual stars in this target pool, we find that the number of observations in this sequence ranges from two to seven, representing the maximum number of observations required to find the planet. The probable number of observations ranges from 1.5 to 3.1. These results suggest that a direct-detection mission using astrometric orbits would find all eight exoplanets in

  20. Finding Free-Floating Black Holes using Astrometric Microlensing

    Science.gov (United States)

    Lu, Jessica R.; Ofek, Eran Oded; Sinukoff, Evan; Udalski, Andrzej; Kozlowski, Szymon

    2017-01-01

    Our Galaxy most likely hosts 10-100 million stellar mass black holes. The exact number and mass function of these black holes contains important information regarding our Galaxy's star formation history, stellar mass function, and the fate of very massive stars. However, isolated stellar black holes have yet to be detected. To date, stellar mass black holes have only been definitively detected in binary systems with accreting companions or merging to produce gravitational waves. In principle, the presence of isolated black holes can be inferred from astrometric and photometric signatures produced when they lens light from a background star. We attempt to detect the astrometric lensing signatures of several photometrically identified microlensing events, toward the Galactic Bulge. Long-duration events (t_Einstein > 100 days) were selected as the most likely black hole candidates and were observed using several years of laser-guided adaptive optics observations from the W. M. Keck telescopes. We present results from this search.

  1. Resolved astrometric orbits of ten O-type binaries

    CERN Document Server

    Bouquin, J -B Le; Gosset, E; De Becker, M; Duvert, G; Absil, O; Anthonioz, F; Berger, J -P; Ertel, S; Grellmann, R; Guieu, S; Kervella, P; Rabus, M; Willson, M

    2016-01-01

    Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONIER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms ...

  2. The Full-sky Astrometric Mapping Explorer Concept Study

    Science.gov (United States)

    Horner, S. D.; Germain, M. E.; Greene, T. P.; Harris, F. H.; Johnson, M. S.; Johnston, K. J.; Monet, D. G.; Murison, M. A.; Phillips, J. D.; Reasenberg, R. D.; Seidelmann, P. K.; Talabac, S. J.; Urban, S. E.; van Buren, D.; Vassar, R. H.

    1999-05-01

    NASA has selected the Full-sky Astrometric Mapping Explorer (FAME) to be one of five MIDEX missions to be funded for a concept study. This concept study will be submitted to NASA on 18 June, with final selection, scheduled for September, of two of these missions for flight in 2003 or 2004. FAME is designed to perform an all-sky, astrometric survey with unprecedented accuracy. It will create a rigid astrometric catalog of 40,000,000 stars with visual band magnitudes 5 DSS colors. During the concept study, the team has worked to optimize the scientific return from FAME while minimizing cost and risk. The optical design was modified for improved accuracy of individual observations and improved mechanical design. The optical, mechanical, and thermal design of the instrument have been improved. Tests using CCDs in TDI mode are being conducted to confirm the accuracy obtainable from individual observations as well as determine the optimal clocking scheme for astrometric devices operated in TDI mode. The use of solar radiation pressure for spacecraft precession has undergone further feasibility study, as have the mechanisms for deploying the solar shield. Numerous other trade studies have been conducted, including orbit/communications, on board processing, and the use of neutral density filters for astrometry of bright stars versus other options. A detailed error budget has been formulated and the mission requirements have been defined. We look forward to selection for launch and a successful FAME mission that will redefine the extragalactic distance scale and provide a large, rich database of information on stellar properties that will enable numerous science investigations into stellar structure and evolution, the dynamics of the Milky Way, and stellar companions including brown dwarfs and giant planets. FAME is a joint development effort of the US Naval Observatory, the Smithsonian Astrophysical Observatory, the Infrared Processing and Analysis Center, Lockheed Martin

  3. Astrometric precision of observations at VLT/FORS2

    CERN Document Server

    Lazorenko, P F

    2005-01-01

    In this paper we test the astrometric precision of VLT/FORS2 observations using a serie of CCD frames taken in Galactic bulge area. A special reduction method based on symmetrization of reference fields was used to reduce the atmospheric image motion. Positional precision of unsaturated R=16 mag star images at 17 sec exposure and 0.55 arcsec seeing was found to be equal to 300 microarcsec. The total error of observations was decomposed into components. It was shown that astrometric error depends largely on the photon centroiding error of the target (250 microarcsec for 16 mag stars) while the image motion is much less (110 microarcsec). At galactic latitudes to about 20 degrees, precision for a serie of frames with a 10 min total exposure is estimated to be 30-50 microarcsec for 14-16 mag stars providing the images are not overexposed and the filter R "special" is used. Error estimates for fields with smaller sky star density are given. We conclude that astrometric observations with large telescopes, under op...

  4. Stray light evaluation for the astrometric gravitation probe mission

    Science.gov (United States)

    Landini, Federico; Riva, Alberto; Gai, Mario; Baccani, Cristian; Focardi, Mauro; Pancrazzi, Maurizio

    2016-08-01

    The main goal of the Astrometric Gravitation Probe mission is the verification of General Relativity and competing gravitation theories by precise astrometric determination of light deflection, and of orbital parameters of selected Solar System objects. The key element is the coherent combination of a set of 92 circular entrance apertures, each feeding an elementary inverted occulter similar to the one developed for Solar Orbiter/METIS.1 This provides coronagraphic functions over a relevant field of view, in which all stars are observed for astrometric purposes with the full resolution of a 1 m diameter telescope. The telescope primary mirror acts as a beam combiner, feeding the 92 pupils, through the internal optics, toward a single focal plane. The primary mirror is characterized by 92 output apertures, sized according to the entrance pupil and telescope geometry, in order to dump the solar disk light beyond the instrument. The astronomical objects are much fainter than the solar disk, which is angularly close to the inner field of view of the telescope. The stray light as generated by the diffraction of the solar disk at the edges of the 92 apertures defines the limiting magnitude of observable stars. In particular, the stray light due to the diffraction from the pupil apertures is scattered by the telescope optics and follows the same optical path of the astronomical objects; it is a contribution that cannot be eliminated and must therefore be carefully evaluated. This paper describes the preliminary evaluation of this stray light contribution.

  5. Astrometric and photometric monitoring of GQ Lup and its sub-stellar companion

    CERN Document Server

    Neuhaeuser, Ralph; Seifahrt, Andreas; Schmidt, Tobias; Vogt, Nikolaus

    2008-01-01

    Neuhaeuser et al. (2005) presented direct imaging evidence for a sub-stellar companion to the young T Tauri star GQ Lup. Common proper motion was highly significant, but no orbital motion was detected. Faint luminosity, low gravity, and a late-M/early-L spectral type indicated that the companion is either a planet or a brown dwarf. We have monitored GQ Lup and its companion in order to detect orbital and parallactic motion and variability in its brightness. We also search for closer and fainter companions. We have taken six more images with the VLT Adaptive Optics instrument NACO from May 2005 to Feb 2007, always with the same calibration binary from Hipparcos for both astrometric and photometric calibration. By adding up all the images taken so far, we search for additional companions. The position of GQ Lup A and its companion compared to a nearby non-moving background object varies as expected for parallactic motion by about one pixel (2 \\pi with parallax \\pi). We could not find evidence for variability of...

  6. Microlensing Events in Gaia and other Astrometric Surveys

    Science.gov (United States)

    Baker, Claire; Di Stefano, Rosanne; Lepine, Sebastien

    2017-01-01

    The region within a kiloparsec of the Sun is a vast and mysterious place filled with uncharted planets, stars and compact objects, whose masses and properties are unknown. The Gaia space mission provides a unique opportunity to study of this region by measuring parallax distances and proper motions to millions of nearby stars, significantly advancing data available from previous astrometric surveys.We are putting this new astrometric information from the first Gaia data release to a novel use, by searching for matches between the positions of known microlensing events and the positions of stars observed by both the Gaia and the Tycho-2 missions, as listed in the Tycho-Gaia Astrometric Solution (TGAS) Catalogue.The existence of a gravitational microlensing event near a TGAS-listed star may provide information about the nature of either the source star lensed in the event, or the lens itself. For example, the source star lensed in the ‘TAGO’ event lies nearby, and is listed in the TGAS Catalogue. Other events may also have been caused by nearby TGAS-listed stars, or by their dim companions. In such cases, we can determine the lens mass and acquire information about any compact objects or planets which may exist around the lens.We report on the process of matching the positions of over 20,000 candidate microlensing events discovered by either OGLE and/or MOA, with the positions of 2 million stars from the TGAS Catalogue and stars from a range of other surveys, including Lepine's SUPERBLINK survey, and discuss the implications of the matches obtained.

  7. Astrometric jitter of the sun as a star

    CERN Document Server

    Makarov, V V; Ulrich, R K

    2010-01-01

    The daily variation of the solar photocenter over some 11 years is derived from the Mount Wilson data reprocessed by Ulrich et al. 2010 to closely match the surface distribution of solar irradiance. The standard deviations of astrometric jitter are 0.52 $\\mu$AU and 0.39 $\\mu$AU in the equatorial and the axial dimensions, respectively. The overall dispersion is strongly correlated with the solar cycle, reaching $0.91 \\mu$AU at the maximum activity in 2000. The largest short-term deviations from the running average (up to 2.6 $\\mu$AU) occur when a group of large spots happen to lie on one side with respect to the center of the disk. The amplitude spectrum of the photocenter variations never exceeds 0.033 $\\mu$AU for the range of periods 0.6--1.4 yr, corresponding to the orbital periods of planets in the habitable zone. Astrometric detection of Earth-like planets around stars as quiet as the Sun is not affected by star spot noise, but the prospects for more active stars may be limited to giant planets.

  8. A study of purely astrometric selection of extragalactic point sources

    CERN Document Server

    Heintz, Kasper E; Høg, Erik

    2015-01-01

    Selection of extragalactic point sources, e.g. QSOs, is often hampered by significant selection effects causing existing samples to have rather complex selection functions. We explore whether a purely astrometric selection of extragalactic point sources, e.g. QSOs, is feasible with the ongoing Gaia mission. Such a selection would be interesting as it would be unbiased in terms of colours of the targets and hence would allow selection also with colours in the stellar sequence. We have analyzed a total of 18 representative regions of the sky by using \\textit{GUMS}, the simulator prepared for ESAs Gaia mission, both in the range of $12\\le G \\le 20$ mag and $12\\le G \\le 18$ mag. For each region we determine the density of apparently stationary stellar sources, i.e. sources for which Gaia cannot measure a significant proper motion. The density is contrasted with the density of extragalactic point sources, e.g. QSOs, in order to establish in which celestial directions a pure astrometric selection is feasible. When ...

  9. PHOTOMETRYPIPELINE: An automated pipeline for calibrated photometry

    Science.gov (United States)

    Mommert, M.

    2017-01-01

    PHOTOMETRYPIPELINE (PP) is an automated pipeline that produces calibrated photometry from imaging data through image registration, aperture photometry, photometric calibration, and target identification with only minimal human interaction. PP utilizes the widely used Source Extractor software for source identification and aperture photometry; SCAMP is used for image registration. Both image registration and photometric calibration are based on matching field stars with star catalogs, requiring catalog coverage of the respective field. A number of different astrometric and photometric catalogs can be queried online. Relying on a sufficient number of background stars for image registration and photometric calibration, PP is well-suited to analyze data from small to medium-sized telescopes. Calibrated magnitudes obtained by PP are typically accurate within ≤0.03 mag and astrometric accuracies are of the order of 0.3 arcsec relative to the catalogs used in the registration. The pipeline consists of an open-source software suite written in Python 2.7, can be run on Unix-based systems on a simple desktop machine, and is capable of realtime data analysis. PP has been developed for observations of moving targets, but can be used for analyzing point source observations of any kind.

  10. Effects of disc asymmetries on astrometric measurements - Can they mimic planets?

    CERN Document Server

    Kral, Quentin; Kennedy, Grant; Souami, Damya

    2016-01-01

    Astrometry covers a parameter space that cannot be reached by RV or transit methods to detect terrestrial planets on wide orbits. In addition, high accuracy astrometric measurements are necessary to measure the inclination of the planet's orbits. Here we investigate the principles of an artefact of the astrometric approach. Namely, the displacement of the photo-centre due to inhomogeneities in a dust disc around the parent star. Indeed, theory and observations show that circumstellar discs can present strong asymmetries. We model the pseudo-astrometric signal caused by these inhomogeneities, asking whether a dust clump in a disc can mimic the astrometric signal of an Earth-like planet. We show that these inhomogeneities cannot be neglected when using astrometry to find terrestrial planets. We provide the parameter space for which these inhomogeneities can affect the astrometric signals but still not be detected by mid-IR observations. We find that a small cross section of dust corresponding to a cometary mass...

  11. First experimental results of very high accuracy centroiding measurements for the neat astrometric mission

    CERN Document Server

    Crouzier, A; Preis, O; Henault, F; Kern, P; Martin, G; Feautrier, P; Stadler, E; Lafrasse, S; Behar, E; Saint-Pe, M; Dupont, J; Potin, S; Cara, C; Lagage, P O; Leger, A; LeDuigou, J M; Shao, M; Goullioud, R

    2013-01-01

    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also pres...

  12. Willed blindness

    DEFF Research Database (Denmark)

    Gjerris, Mickey

    2015-01-01

    This article describes how we seem to live in a willed blindness towards the effects that our meat production and consumption have on animals, the environment and the climate. A willed blindness that cannot be explained by either lack of knowledge or scientific uncertainty. The blindness enables us...... blindness focusing on the development of either a new moral vision of our obligations or new visions of what a good life is....

  13. Color Blindness

    Institute of Scientific and Technical Information of China (English)

    严双红

    2007-01-01

    About one in 12 boys is color-blind, and one in every 400 girls, so in each school class there are likely to be at least one or two people who are color-blind. Because they are color- blind from birth, most people do not know that they are color-

  14. The science, technology and mission design for the Laser Astrometric test of relativity

    Science.gov (United States)

    Turyshev, Slava G.

    2006-01-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun.

  15. The astrometric core solution for the Gaia mission. Overview of models, algorithms and software implementation

    CERN Document Server

    Lindegren, Lennart; Hobbs, David; O'Mullane, William; Bastian, Ulrich; Hernández, José

    2011-01-01

    The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global solution approach which must also include a large number of parameters for the satellite attitude and optical instrument. The accurate and efficient implementation of this solution is an extremely demanding task, but crucial for the outcome of the mission. We provide a comprehensive overview of the mathematical and physical models applicable to this solution, as well as its numerical and algorithmic framework. The astrometric core solution is a simultaneous least-squares estimation of about half a billion parameters, including the astrometric parameters for some 100 million well-behaved so-called primary sources. The global nature of the solution requires an iterative approach, which can be broken down into a small number of distinct processing blocks (source, attitude,...

  16. Experimental Tests of the Astrometric Precision Obtainable with a Ten Micron Interferometer.

    Science.gov (United States)

    1982-01-18

    declination-dependent phase offset is caused by the failure of the axes of rotation of the heliostat mirrors to intersect precisely . The source...A-Ji>L __ _ _ _ _ _ 4. TITLE (and Subtitle) S. TYPE Of REPORT & PERIOD COVERED EXPERIMENTAL TESTS OF THE ASTROMETRIC PRECISION Final Contract...of tests successfully achieved its objective and demonstrated the usefulness of infrared spatial interferometry for very precise astrometric

  17. A detector interferometric calibration experiment for high precision astrometry

    Science.gov (United States)

    Crouzier, A.; Malbet, F.; Henault, F.; Léger, A.; Cara, C.; LeDuigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.

    2016-11-01

    Context. Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5 × 10-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of function parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4 × 10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 × 10-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1 × 10-3 pixel), a photon noise limited precision of 3 × 10-5 pixel was reached.

  18. New constraints on Saturn's interior from Cassini astrometric data

    CERN Document Server

    Lainey, Valéry; Tajeddine, Radwan; Cooper, Nicholas J; Murray, Carl; Robert, Vincent; Tobie, Gabriel; Guillot, Tristan; Mathis, Stéphane; Remus, Françoise; Desmars, Josselin; Arlot, Jean-Eudes; De Cuyper, Jean-Pierre; Dehant, Véronique; Pascu, Dan; Thuillot, William; Poncin-Lafitte, Christophe Le; Zahn, Jean-Paul

    2015-01-01

    Using astrometric observations spanning more than a century and including a large set of Cassini data, we determine Saturn's tidal parameters through their current effects on the orbits of the eight main and four coorbital moons. We have used the latter to make the first determination of Saturn's Love number, $k_2=0.390 \\pm 0.024$, a value larger than the commonly used theoretical value of 0.341 (Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which $k_2$ ranges from 0.355 to 0.382. Depending on the assumed spin for Saturn's interior, the new constraint can lead to a reduction of up to 80% in the number of potential models, offering great opportunities to probe the planet's interior. In addition, significant tidal dissipation within Saturn is confirmed (Lainey et al., 2012) corresponding to a high present-day tidal ratio $k_2/Q=(1.59 \\pm 0.74) \\times 10^{-4}$ and implying fast orbital expansions of the moons. This high dissipation, with no obvious variati...

  19. Fundamental Physics with the Laser Astrometric Test Of Relativity

    CERN Document Server

    Turyshev, S G; Lämmerzahl, C; Theil, S; Ertmer, W; Rasel, E; Foerstner, R; Johann, U; Klioner, S A; Soffel, M H; Dachwald, B; Seboldt, W; Perlick, V; Sandford, M C W; Bingham, R; Kent, B; Sumner, T J; Bertolami, O; Páramos, J; Christophe, B; Foulon, B; Touboul, P; Bouyer, P; Damour, T; Salomon, C; Reynaud, S; Brillet, A; Bondu, F; Mangin, J F; Samain, E; Bertotti, B; Iess, L; Erd, C; Grenouilleau, J C; Izzo, D; Rathke, A; Asmar, S W; Colavita, M; Gursel, Y; Hemmati, H; Shao, M; Williams, J G; Nordtvedt, K L; Shapiro, I; Reasenberg, R; Drever, R W P; Degnan, J; Plowman, J E; Hellings, R; Murphy, T W; Rovisco Pais, A; Copernic, A N; Favata, F; Turyshev, Slava G.; Dittus, Hansjoerg

    2005-01-01

    The Laser Astrometric Test Of Relativity (LATOR) is a European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - the fundamental postulate of Einstein's theory of general relativity. By using a combination of independent time-series of highly accurate gravitational deflection of light in the immediate proximity to the Sun along with measurements of the Shapiro time delay on the interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity. The primary mission objective is to i) measure the key post-Newtonian Eddington parameter \\gamma with accuracy of a part in 10^9. (1-\\gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test. The mission will also provide: ii) first measurement of gravity's non-linear effects on light to ~0.01% accur...

  20. Photometric and astrometric vagaries of the enigma star KIC 8462852

    CERN Document Server

    Makarov, Valeri V

    2016-01-01

    We apply a PCA-based pre-whitening method to the entire collection of main Kepler mission long-cadence data for KIC 8462852 spanning four years. This technique removes the correlated variations of instrumental origin in both the detected light curves and astrometry, resolving intrinsic changes in flux and image position of less than 100 ppm and 1 mas, respectively. Beside the major dips in the light curve during mission quarters 8 and 16, when the flux dropped by up to 20%, we confirm multiple smaller dips across the time span of observation with amplitudes ranging from 0.1% to 7%. A variation of flux with a period of 0.88 d and a half-amplitude of approximately 90 ppm is confirmed in the PCA-cleaned data. We find that the phase of the wave is steady over the entire 15-month interval. We confidently detect a weak variability-induced motion (VIM) effect in the cleaned astrometric trajectories, when the moment-based centroids shift synchronously with the flux dips by up to 0.0008 pixels on the detector. The inc...

  1. Astrometric positioning and orbit determination of geostationary satellites

    Science.gov (United States)

    Montojo, F. J.; López Moratalla, T.; Abad, C.

    2011-03-01

    In the project titled “Astrometric Positioning of Geostationary Satellite” (PASAGE), carried out by the Real Instituto y Observatorio de la Armada (ROA), optical observation techniques were developed to allow satellites to be located in the geostationary ring with angular accuracies of up to a few tenths of an arcsec. These techniques do not necessarily require the use of large telescopes or especially dark areas, and furthermore, because optical observation is a passive method, they could be directly applicable to the detection and monitoring of passive objects such as space debris in the geostationary ring.By using single-station angular observations, geostationary satellite orbits with positional uncertainties below 350 m (2 sigma) were reconstructed using the Orbit Determination Tool Kit software, by Analytical Graphics, Inc. This software is used in collaboration with the Spanish Instituto Nacional de Técnica Aeroespacial.Orbit determination can be improved by taking into consideration the data from other stations, such as angular observations alone or together with ranging measurements to the satellite. Tests were carried out combining angular observations with the ranging measurements obtained from the Two-Way Satellite Time and Frequency Transfer technique that is used by ROA’s Time Section to carry out time transfer with other laboratories. Results show a reduction of the 2 sigma uncertainty to less than 100 m.

  2. [Cortical blindness].

    Science.gov (United States)

    Chokron, S

    2014-02-01

    Cortical blindness refers to a visual loss induced by a bilateral occipital lesion. The very strong cooperation between psychophysics, cognitive psychology, neurophysiology and neuropsychology these latter twenty years as well as recent progress in cerebral imagery have led to a better understanding of neurovisual deficits, such as cortical blindness. It thus becomes possible now to propose an earlier diagnosis of cortical blindness as well as new perspectives for rehabilitation in children as well as in adults. On the other hand, studying complex neurovisual deficits, such as cortical blindness is a way to infer normal functioning of the visual system.

  3. Revisiting TW Hydrae in light of new astrometric data

    Science.gov (United States)

    Teixeira, R.; Ducourant, C.; Galli, P. A. B.; Le Campion, J. F.; Zuckerman, B.; Krone-Martins, A. G. O.; Chauvin, G.; Song, I.

    2014-10-01

    Our efforts in the present work focused mainly on refining and improving the previous description and understanding of the stellar association TW Hydrae (TWA) including a very detailed membership analysis and its dynamical and evolutionary age.To achieve our objectives in a fully reliable way we take advantage of our own astrometric measurements (Ducourant et al. 2013) performed with NTT/EFOSC2 - ESO (La Silla - Chile) spread over three years (2007 - 2010) and of those published in the literature.A very detailed membership analysis based on the convergent point strategy as developed by our team (Galli et al. 2012, 2013) allowed us to define a consistent kinematic group containing 31 stars among the 44 proposed as TWA member in the literature. Assuming that our sample of stars may be contaminated by non-members and to get rid of the particular influence of each star we applied a Jacknife resampling technique generating 2000 random lists of 13 stars taken from our 16 stars and calculated for each the epoch of convergence when the radius is minimum. The mean of the epochs obtained and the dispersion about the mean give a dynamical age of 7.5± 0.7 Myr for the association that is in good agreement with the previous traceback age (De La Reza et al. 2006). We also estimated age for TWA moving group members from pre-main sequence evolutionary models (Siess et al. 2000) and find a mean age of 7.4± 1.2 Myr. These results show that the dynamical age of the association obtained via the traceback technique and the average age derived from theoretical evolutionary models are in good agreement.

  4. New constraints on Saturn's interior from Cassini astrometric data

    Science.gov (United States)

    Lainey, Valéry; Jacobson, Robert A.; Tajeddine, Radwan; Cooper, Nicholas J.; Murray, Carl; Robert, Vincent; Tobie, Gabriel; Guillot, Tristan; Mathis, Stéphane; Remus, Françoise; Desmars, Josselin; Arlot, Jean-Eudes; De Cuyper, Jean-Pierre; Dehant, Véronique; Pascu, Dan; Thuillot, William; Le Poncin-Lafitte, Christophe; Zahn, Jean-Paul

    2017-01-01

    Using astrometric observations spanning more than a century and including a large set of Cassini data, we determine Saturn's tidal parameters through their current effects on the orbits of the eight main and four coorbital Moons. We have used the latter to make the first determination of Saturn's Love number from observations, k2=0.390 ± 0.024, a value larger than the commonly used theoretical value of 0.341 (Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which the static k2 ranges from 0.355 to 0.382. Depending on the assumed spin for Saturn's interior, the new constraint can lead to a significant reduction in the number of potential models, offering great opportunities to probe the planet's interior. In addition, significant tidal dissipation within Saturn is confirmed (Lainey et al., 2012) corresponding to a high present-day tidal ratio k2/Q=(1.59 ± 0.74) × 10-4 and implying fast orbital expansions of the Moons. This high dissipation, with no obvious variations for tidal frequencies corresponding to those of Enceladus and Dione, may be explained by viscous friction in a solid core, implying a core viscosity typically ranging between 1014 and 1016 Pa.s (Remus et al., 2012). However, a dissipation increase by one order of magnitude at Rhea's frequency could suggest the existence of an additional, frequency-dependent, dissipation process, possibly from turbulent friction acting on tidal waves in the fluid envelope of Saturn (Ogilvie & Lin, 2004; Fuller et al. 2016).

  5. A detector interferometric calibration experiment for high precision astrometry

    CERN Document Server

    Crouzier, A; Henault, F; Leger, A; Cara, C; LeDuigou, J M; Preis, O; Kern, P; Delboulbe, A; Martin, G; Feautrier, P; Stadler, E; Lafrasse, S; Rochat, S; Ketchazo, C; Donati, M; Doumayrou, E; Lagage, P O; Shao, M; Goullioud, R; Nemati, B; Zhai, C; Behar, E; Potin, S; Saint-Pe, M; Dupont, J

    2016-01-01

    Context: Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5e-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on vari...

  6. Calibration uncertainty

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Anglov, Thomas

    2002-01-01

    Methods recommended by the International Standardization Organisation and Eurachem are not satisfactory for the correct estimation of calibration uncertainty. A novel approach is introduced and tested on actual calibration data for the determination of Pb by ICP-AES. The improved calibration unce...

  7. Astrometry with Hubble Space Telescope A Parallax of the Fundamental Distance Calibrator delta Cephei

    CERN Document Server

    Benedict, G F; Fredrick, L W; Harrison, T E; Slesnick, C L; Rhee, J; Patterson, R J; Skrutskie, M F; Franz, O G; Wasserman, L H; Jefferys, W H; Nelan, E; Van Altena, W; Shelus, P J; Hemenway, P D; Duncombe, R L; Story, D; Whipple, A L; Bradley, A J

    2002-01-01

    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, delta Cep. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. Utilizing spectrophotometric estimates of the absolute parallaxes of our astrometric reference stars and constraining delta Cep and reference star HD 213307 to belong to the same association (Cep OB6, de Zeeuw et al. 1999), we find pi_{abs} = 3.66 +/- 0.15 mas. The larger than typical astrometric residuals for the nearby astrometric reference star HD 213307 are found to satisfy Keplerian motion with P = 1.07 +/- 0.02 years, a perturbation and period that could be due to a F0V companion ~7 mas distant from and ~4 magnitudes fainter than the primary. Spectral classifications and VRIJHKT$_2$M and DDO51 photometry of the astrometric reference frame surrounding delta Cep indicate that field extinction is high and variable along this line of sight. However the extinction suffered by the reference star nearest (in a...

  8. Blind Masseurs

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    Guan Enming and his wife Hao Dejuan, a blind couple, vowed to "never become a burden for society." The couple retired from the QJngdao Massotherapy Hospital in 1992, and thereafter opened a private clinic with assistance from their

  9. Spectro-astrometric Study of HI emission lines from Herbig Ae/Be Stars

    Science.gov (United States)

    Cade Adams, Steven; Brittain, Sean D.; Dougados, Catherine; Benisty, Myriam; Podio, Linda; Whelan, Emma

    2015-01-01

    We present a spectro-astrometric study of the Pa β and Br γ lines from six Herbig Ae/Be stars using NIFS on Gemini North. The goal of this study is to determine the origin of the HI emission lines. By combining the high angular resolution ( 0.1") and intermediate spectral resolution (R~5000) of GEMINI/NIFS we measured the spectro-astrometric signal of the Pa β and Br γ emission lines at the 0.1 mas level. The HAe stars showed no significant spectro-astrometric signal, while the HBe stars did show significant detections. We compare our results to models and discuss the implications for understanding the origin of the HI lines in Herbig Ae/Be stars and their utility for measuring the accretion rate. We also discuss various artifacts in the data and prospects for more sensitive measurements in the future.

  10. An astrometric search for a stellar companion to the sun

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, S.

    1986-11-25

    A companion star within 0.8 pc of the Sun has been postulated to explain a possible 26 Myr periodicity in mass extinctions of species on the Earth. Such a star would already be catalogued in the Yale Bright Star catalogue unless it is fainter than m/sub nu/ = 6.5; this limits the possible stellar types for an unseen companion to red dwarfs, brown dwarfs, or compact objects. Red dwarfs account for about 75% of these possible stars. We describe here the design and development of an astrometric search for a nearby red dwarf companion with a six-month peak-to-peak parallax of greater than or equal to2.5 arcseconds. We are measuring the parallax of 2770 candidate faint red stars selected from the Dearborn Observatory catalogue. An automated 30-inch telescope and CCD camera system collect digitized images of the candidate stars, along with a 13' x 16' surrounding field of background stars. Second-epoch images, taken a few months later, are registered to the first epoch images using the background stars as fiducials. An apparent motion, m/sub a/, of the candidate stars is found to a precision of sigma/sub m//sub a/ approx. = 0.08 pixel approx. = 0.2 arcseconds for fields with N/sub fiducial/ greater than or equal to 10 fiducial stars visible above the background noise. This precision is sufficient to detect the parallactic motion of a star at 0.8 pc with a two month interval between the observation epochs. Images with fewer fiducial stars above background noise are observed with a longer interval between epochs. If a star is found with high parallactic motion, we will confirm its distance with further parallax measurements, photometry, and spectral studies, and will measure radial velocity and proper motion to establish its orbit. We have demonstrated the search procedure with observations of 41 stars, and have shown that none of these is a nearby star. 37 refs., 16 figs., 3 tabs.

  11. The Full-sky Astrometric Mapping Explorer - Astrometry for the New Millennium

    Science.gov (United States)

    Horner, S. D.; Germain, M. E.; Greene, T. P.; Harris, F. H.; Johnson, M. S.; Johnson, K. J.; Monet, D. G.; Murison, M. A.; Phillips, J. D.; Reasenberg, R. D.; Seidelmann, P. K.; Urban, S. E.; Vassar, R. H.

    FAME is designed to perform an all-sky, astrometric survey with unprecedented accuracy. It will create a rigid astrometric catalog of ~40,000,000 stars with visual band magnitudes 5 DSS colors. The FAME data will provide a rigid, accurate, optical, astrometric grid. The proper motion data, combined with Hipparcos and other data should be ideal for use by the Space Interferometry Mission (SIM) to select its astrometric reference grid stars. FAME will also identify stars with nonlinear proper motions as candidates for further study by SIM, Terrestrial Planet Finder, and future ground based interferometers as possible planetary systems. The fundamental astrometric data provided at relatively low cost by FAME will help optimize the scientific return from these future projects. This is in addition to the considerable direct scientific return from FAME. It will redefine the extragalactic distance scale and provide a large, rich database of information on stellar properties that will enable numerous science investigations into stellar structure and evolution, the dynamics of the Milky Way, and stellar companions including brown dwarfs and giant planets. NASA has selected the Full-sky Astrometric Mapping Explorer (FAME) to be one of five MIDEX missions to be funded for a concept study. This concept study will be submitted to NASA on 18 June, with final selection, scheduled for September, of two of these missions for fli ght in 2003 or 2004. FAME is a joint development e ffort of the U.S. Naval Observatory, the Smithsonian Astrophysical Observatory, the Infrared Processing and Analysis Center, Lockheed Martin Missiles and Space, the Naval Research Laboratory, and Omitron Incorporated.

  12. Statistical analysis of the astrometric errors for the most productive asteroid surveys

    Science.gov (United States)

    Vereš, Peter; Farnocchia, Davide; Chesley, Steven R.; Chamberlin, Alan

    2016-10-01

    Accurate orbits of minor planets allow reliable predictions of an object's location in time and space. High fidelity ephemerides are crucial for the space missions targeting asteroids and comets, mitigation of Earth impact hazard, study of non-gravitational effects on small bodies and mass determination of encountering objects through mutual perturbations. The length of the observation arc as well as high quality astrometry play an essential role in achieving accurate orbits. In particular, accurate astrometry can allow the recovery of small near-Earth objects that could otherwise be lost. The vast majority of the 715,000 known asteroids have been discovered and observed by major dedicated optical CCD surveys. However, uncertainties of individual astrometric positions are not directly provided by observers yet and so orbit determination traditionally relies on conservative estimates of astrometric errors. We present a statistical study of astrometric residuals of optical CCD astrometry for the nine most prolific past and current asteroid surveys: Pan-STARRS1 (F51), Mt. Lemmon (G96), Catalina (703), LINEAR (704), Spacewatch (691), LONEOS (699), NEAT (644), NEOWISE (C51) and SST (G45). The study was limited to multiple apparition asteroids, which have well-constrained orbits, after correcting for the star catalog position and proper motion biases (Farnocchia et al., 2015). Therefore, the resulting astrometric residuals can be largely attributed to astrometric and timing errors in the reported astrometry. We analyze the behavior of residuals in right ascension, declination, along-track and cross-track, as well as timing errors. Astrometric residuals generally depend on reported magnitude by a quadratic function with astrometric quality degradation near the limiting magnitude and the saturation limit for bright objects. We found no systematic timing errors exceeding one second for the tested surveys. The presented analysis provides useful information to improve the

  13. The Space Interferometry Mission Astrometric Grid Giant-Star Survey. I. Stellar Parameters and Radial Velocity Variability

    CERN Document Server

    Bizyaev, D; Cunha, K; Geisler, D; Gieren, W; Majewski, S R; Pardo, C D; Patterson, R J; Smith, V V; Suntzeff, N B; Arenas, Jose; Bizyaev, Dmitry; Cunha, Katia; Geisler, Doug; Gieren, Wolfgang; Majewski, Steven R.; Pardo, Cecilia Del; Patterson, Richard J.; Smith, Verne V.; Suntzeff, Nicholas B.

    2005-01-01

    We present results from a campaign of multiple epoch echelle spectroscopy of relatively faint (V = 9.5-13.5 mag) red giants observed as potential astrometric grid stars for the Space Interferometry Mission (SIM PlanetQuest). Data are analyzed for 775 stars selected from the Grid Giant Star Survey spanning a wide range of effective temperatures (Teff), gravities and metallicities. The spectra are used to determine these stellar parameters and to monitor radial velocity (RV) variability at the 100 m/s level. The degree of RV variation measured for 489 stars observed two or more times is explored as a function of the inferred stellar parameters. The percentage of radial velocity unstable stars is found to be very high -- about 2/3 of our sample. It is found that the fraction of RV-stable red giants (at the 100 m/s level) is higher among stars with Teff \\sim 4500 K, corresponding to the calibration-independent range of infrared colors 0.59 < (J-K_s)_0 < 0.73. A higher percentage of RV-stable stars is found ...

  14. The resolutions of the 24th IAU General Assembly and presedent astrometric research fields

    Science.gov (United States)

    Jin, Wenjing; Xia, Yifei; Han, Changhao

    2001-06-01

    The action of IAU resolutions for the development of astronomy are described and the three resolutions, which were passed at the 24th IAU General Assembly, are briefly introduced. The precedent astrometric research fields during the period of 2000 - 2003 are evaluated and the prior research fields of fundamental astrometry in China are suggested.

  15. The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis

    CERN Document Server

    Thuillot, W; Ivantsov, A; Desmars, J; Assafin, M; Eggl, S; Hestroffer, D; Rocher, P; Carry, B; David, P; Abe, L; Andreev, M; Arlot, J -E; Asami, A; Ayvasian, V; Baransky, A; Belcheva, M; Bendjoya, Ph; Bikmaev, I; Burkhonov, O A; Camci, U; Carbognani, A; Colas, F; Devyatkin, A V; Ehgamberdiev, Sh A; Enikova, P; Eyer, L; Galeev, A; Gerlach, E; Godunova, V; Golubaev, A V; Gorshanov, D L; Gumerov, R; Hashimoto, N; Helvaci, M; Ibryamov, S; Inasaridze, R Ya; Khamitov, I; Kostov, A; Kozhukhov, A M; Kozyryev, Y; Krugly, Yu N; Kryuchkovskiy, V; Kulichenko, N; Maigurova, N; Manilla-Robles, A; Martyusheva, A A; Molotov, I E; Nikolov, G; Nikolov, P; Nishiyama, K; Okumura, S; Palaversa, L; Parmonov, O; Peng, Q Y; Petrova, S N; Pinigin, G I; Pomazan, A; Rivet, J -P; Sakamoto, T; Sakhibullin, N; Sergeev, O; Sergeyev, A V; Shulga, O V; Suarez, O; Sybiryakova, Y; Takahashi, N; Tarady, V; Todd, M; Urakawa, S; Uysal, O; Vaduvescu, O; Vovk, V; Zhang, X -L

    2015-01-01

    Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO . The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Plane...

  16. Determination of the small Solar system bodies orbital elements from astrometric observations with OMT-800 telescope

    Science.gov (United States)

    Troianskyi, Volodymyr; Bazey, A. A.; Kashuba, V. I.; Zhukov, V. V.

    2014-11-01

    From the beginning of operation of the new OMT-800 telescope in late 2012 we were able to recieve the high-precision differential astrometrical observations of geostationary objects, asteroids and comets brighter than 21 mag. In this work, the technique of calculation of the orbital elements and prediction of the geostationary objects and asteroids trajectory are considered

  17. Astrometric techniques; Proceedings of the Symposium, Gainesville, FL, January 9-12, 1984

    Science.gov (United States)

    Eichhorn, H. K.; Leacock, R. J.

    The conference presents papers on the reduction technique, radio astrometry, photographic astrometry, interferometry, small field photoelectric astronomy, transit circles and astrolabes, space astronomy, objects, administration and distribution, and connections between the various techniques. Particular attention is given to the concepts of reference systems, the relativistic reduction of astrometric observations, computation of compilation catalogs, global reduction of fundamental astrometric data, the astrometric possibilities of very-long-base interferometry and the JPL/DSN J2000 radio reference frame. Papers are also presented on proper motions with respect to galaxies, plans for the second epoch of the southern proper motion program, trigonometric parallaxes obtained with the UK Schmidt telescope, astrometry with the Lowell PDS, speckle interferometry in astrometry, moving-image astrometry with the multianode microchannel array, timing and data acquisition for a field astrolabe, the use of photographic positions in determining the azimuth of a meridian circle, the Hipparcos satellite and the organization of the project, astrometric desiderata for nearby stars, astrometry in China, and the need for better cooperation and intercomparison in fundamental astrometry.

  18. Gravitational lensing statistics with extragalactic surveys; 2, Analysis of the Jodrell Bank-VLA Astrometric Survey

    NARCIS (Netherlands)

    Helbig, P.; Marlow, D. R.; Quast, R.; Wilkinson, P. N.; Browne, I. W. A.; Koopmans, L. V. E.

    1999-01-01

    Published in: Astron. Astrophys. Suppl. Ser. 136 (1999) no. 2, pp.297-305 citations recorded in [Science Citation Index] Abstract: We present constraints on the cosmological constant $lambda_{0}$ from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this

  19. Gravitational lensing statistics with extragalactic surveys - II. Analysis of the Jodrell Bank-VLA Astrometric Survey

    NARCIS (Netherlands)

    Helbig, P; Marlow, D; Quast, R; Wilkinson, PN; Browne, IWA; Koopmans, LVE

    We present constraints on the cosmological constant lambda(0) from gravitational lensing statistics of the Jodrell Bank-VLA Astrometric Survey (JVAS). Although this is the largest gravitational lens survey which has been analysed, cosmological constraints are only comparable to those from optical

  20. Blind Ambition

    Science.gov (United States)

    Olson, Catherine Applefeld

    2009-01-01

    No matter how dedicated they may be, some teachers are daunted by extreme challenges. Carol Agler, music director at the Ohio State School for the Blind (OSSB), is not one of those teachers. Since joining the OSSB staff 11 years ago, Agler has revived the school's long-dormant band program and created its first marching band. Next January, she…

  1. A Search For Stellar-mass Black Holes Via Astrometric Microlensing

    Science.gov (United States)

    Lu, J. R.; Sinukoff, E.; Ofek, E. O.; Udalski, A.; Kozlowski, S.

    2016-10-01

    While dozens of stellar-mass black holes (BHs) have been discovered in binary systems, isolated BHs have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over one to two years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained by the photometric light curves. The OB120169 light curve is well fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were consistent with linear motion. The significant lack of astrometric signal constrains the lens mass of OB110022 to 0.05-1.79 M ⊙ in a 99.7% confidence interval, which disfavors a BH lens. Fits to OB110125 yielded a reduced Einstein crossing time and insufficient observations during the peak, so no mass limits were obtained. Two degenerate solutions exist for OB120169, which have a lens mass between 0.2-38.8 M ⊙ and 0.4-39.8 M ⊙ for a 99.7% confidence interval. Follow-up observations of OB120169 will further constrain the lens mass. Based on our experience, we use simulations to design optimal astrometric observing strategies and show that with more typical observing conditions the detection of BHs is feasible.

  2. Calibration of ACS Prism Slitless Spectroscopy Modes

    CERN Document Server

    Larsen, S S; Walsh, J R

    2005-01-01

    The Advanced Camera for Surveys is equipped with three prisms in the Solar Blind (SBC) and High Resolution (HRC) Channels, which together cover the 1150 - 3500 A range, albeit at highly non-uniform spectral resolution. We present new wavelength- and flux calibrations of the SBC (PR110L and PR130L) and HRC (PR200L) prisms, based on calibration observations obtained in Cycle 13. The calibration products are available to users via the ST-ECF/aXe web pages, and can be used directly with the aXe package. We discuss our calibration strategy and some caveats specific to slitless prism spectroscopy.

  3. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties

    Science.gov (United States)

    Gaia Collaboration; Brown, A. G. A.; Vallenari, A.; Prusti, T.; de Bruijne, J. H. J.; Mignard, F.; Drimmel, R.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Katz, D.; Klioner, S. A.; Lammers, U.; Lindegren, L.; Luri, X.; O'Mullane, W.; Panem, C.; Pourbaix, D.; Randich, S.; Sartoretti, P.; Siddiqui, H. I.; Soubiran, C.; Valette, V.; van Leeuwen, F.; Walton, N. A.; Aerts, C.; Arenou, F.; Cropper, M.; Høg, E.; Lattanzi, M. G.; Grebel, E. K.; Holland, A. D.; Huc, C.; Passot, X.; Perryman, M.; Bramante, L.; Cacciari, C.; Castañeda, J.; Chaoul, L.; Cheek, N.; De Angeli, F.; Fabricius, C.; Guerra, R.; Hernández, J.; Jean-Antoine-Piccolo, A.; Masana, E.; Messineo, R.; Mowlavi, N.; Nienartowicz, K.; Ordóñez-Blanco, D.; Panuzzo, P.; Portell, J.; Richards, P. J.; Riello, M.; Seabroke, G. M.; Tanga, P.; Thévenin, F.; Torra, J.; Els, S. G.; Gracia-Abril, G.; Comoretto, G.; Garcia-Reinaldos, M.; Lock, T.; Mercier, E.; Altmann, M.; Andrae, R.; Astraatmadja, T. L.; Bellas-Velidis, I.; Benson, K.; Berthier, J.; Blomme, R.; Busso, G.; Carry, B.; Cellino, A.; Clementini, G.; Cowell, S.; Creevey, O.; Cuypers, J.; Davidson, M.; De Ridder, J.; de Torres, A.; Delchambre, L.; Dell'Oro, A.; Ducourant, C.; Frémat, Y.; García-Torres, M.; Gosset, E.; Halbwachs, J.-L.; Hambly, N. C.; Harrison, D. L.; Hauser, M.; Hestroffer, D.; Hodgkin, S. T.; Huckle, H. E.; Hutton, A.; Jasniewicz, G.; Jordan, S.; Kontizas, M.; Korn, A. J.; Lanzafame, A. C.; Manteiga, M.; Moitinho, A.; Muinonen, K.; Osinde, J.; Pancino, E.; Pauwels, T.; Petit, J.-M.; Recio-Blanco, A.; Robin, A. C.; Sarro, L. M.; Siopis, C.; Smith, M.; Smith, K. W.; Sozzetti, A.; Thuillot, W.; van Reeven, W.; Viala, Y.; Abbas, U.; Abreu Aramburu, A.; Accart, S.; Aguado, J. J.; Allan, P. M.; Allasia, W.; Altavilla, G.; Álvarez, M. A.; Alves, J.; Anderson, R. I.; Andrei, A. H.; Anglada Varela, E.; Antiche, E.; Antoja, T.; Antón, S.; Arcay, B.; Bach, N.; Baker, S. G.; Balaguer-Núñez, L.; Barache, C.; Barata, C.; Barbier, A.; Barblan, F.; Barrado y Navascués, D.; Barros, M.; Barstow, M. A.; Becciani, U.; Bellazzini, M.; Bello García, A.; Belokurov, V.; Bendjoya, P.; Berihuete, A.; Bianchi, L.; Bienaymé, O.; Billebaud, F.; Blagorodnova, N.; Blanco-Cuaresma, S.; Boch, T.; Bombrun, A.; Borrachero, R.; Bouquillon, S.; Bourda, G.; Bouy, H.; Bragaglia, A.; Breddels, M. A.; Brouillet, N.; Brüsemeister, T.; Bucciarelli, B.; Burgess, P.; Burgon, R.; Burlacu, A.; Busonero, D.; Buzzi, R.; Caffau, E.; Cambras, J.; Campbell, H.; Cancelliere, R.; Cantat-Gaudin, T.; Carlucci, T.; Carrasco, J. M.; Castellani, M.; Charlot, P.; Charnas, J.; Chiavassa, A.; Clotet, M.; Cocozza, G.; Collins, R. S.; Costigan, G.; Crifo, F.; Cross, N. J. G.; Crosta, M.; Crowley, C.; Dafonte, C.; Damerdji, Y.; Dapergolas, A.; David, P.; David, M.; De Cat, P.; de Felice, F.; de Laverny, P.; De Luise, F.; De March, R.; de Martino, D.; de Souza, R.; Debosscher, J.; del Pozo, E.; Delbo, M.; Delgado, A.; Delgado, H. E.; Di Matteo, P.; Diakite, S.; Distefano, E.; Dolding, C.; Dos Anjos, S.; Drazinos, P.; Duran, J.; Dzigan, Y.; Edvardsson, B.; Enke, H.; Evans, N. W.; Eynard Bontemps, G.; Fabre, C.; Fabrizio, M.; Faigler, S.; Falcão, A. J.; Farràs Casas, M.; Federici, L.; Fedorets, G.; Fernández-Hernández, J.; Fernique, P.; Fienga, A.; Figueras, F.; Filippi, F.; Findeisen, K.; Fonti, A.; Fouesneau, M.; Fraile, E.; Fraser, M.; Fuchs, J.; Gai, M.; Galleti, S.; Galluccio, L.; Garabato, D.; García-Sedano, F.; Garofalo, A.; Garralda, N.; Gavras, P.; Gerssen, J.; Geyer, R.; Gilmore, G.; Girona, S.; Giuffrida, G.; Gomes, M.; González-Marcos, A.; González-Núñez, J.; González-Vidal, J. J.; Granvik, M.; Guerrier, A.; Guillout, P.; Guiraud, J.; Gúrpide, A.; Gutiérrez-Sánchez, R.; Guy, L. P.; Haigron, R.; Hatzidimitriou, D.; Haywood, M.; Heiter, U.; Helmi, A.; Hobbs, D.; Hofmann, W.; Holl, B.; Holland, G.; Hunt, J. A. S.; Hypki, A.; Icardi, V.; Irwin, M.; Jevardat de Fombelle, G.; Jofré, P.; Jonker, P. G.; Jorissen, A.; Julbe, F.; Karampelas, A.; Kochoska, A.; Kohley, R.; Kolenberg, K.; Kontizas, E.; Koposov, S. E.; Kordopatis, G.; Koubsky, P.; Krone-Martins, A.; Kudryashova, M.; Kull, I.; Bachchan, R. K.; Lacoste-Seris, F.; Lanza, A. F.; Lavigne, J.-B.; Le Poncin-Lafitte, C.; Lebreton, Y.; Lebzelter, T.; Leccia, S.; Leclerc, N.; Lecoeur-Taibi, I.; Lemaitre, V.; Lenhardt, H.; Leroux, F.; Liao, S.; Licata, E.; Lindstrøm, H. E. P.; Lister, T. A.; Livanou, E.; Lobel, A.; Löffler, W.; López, M.; Lorenz, D.; MacDonald, I.; Magalhães Fernandes, T.; Managau, S.; Mann, R. G.; Mantelet, G.; Marchal, O.; Marchant, J. M.; Marconi, M.; Marinoni, S.; Marrese, P. M.; Marschalkó, G.; Marshall, D. J.; Martín-Fleitas, J. M.; Martino, M.; Mary, N.; Matijevič, G.; Mazeh, T.; McMillan, P. J.; Messina, S.; Michalik, D.; Millar, N. R.; Miranda, B. M. H.; Molina, D.; Molinaro, R.; Molinaro, M.; Molnár, L.; Moniez, M.; Montegriffo, P.; Mor, R.; Mora, A.; Morbidelli, R.; Morel, T.; Morgenthaler, S.; Morris, D.; Mulone, A. F.; Muraveva, T.; Musella, I.; Narbonne, J.; Nelemans, G.; Nicastro, L.; Noval, L.; Ordénovic, C.; Ordieres-Meré, J.; Osborne, P.; Pagani, C.; Pagano, I.; Pailler, F.; Palacin, H.; Palaversa, L.; Parsons, P.; Pecoraro, M.; Pedrosa, R.; Pentikäinen, H.; Pichon, B.; Piersimoni, A. M.; Pineau, F.-X.; Plachy, E.; Plum, G.; Poujoulet, E.; Prša, A.; Pulone, L.; Ragaini, S.; Rago, S.; Rambaux, N.; Ramos-Lerate, M.; Ranalli, P.; Rauw, G.; Read, A.; Regibo, S.; Reylé, C.; Ribeiro, R. A.; Rimoldini, L.; Ripepi, V.; Riva, A.; Rixon, G.; Roelens, M.; Romero-Gómez, M.; Rowell, N.; Royer, F.; Ruiz-Dern, L.; Sadowski, G.; Sagristà Sellés, T.; Sahlmann, J.; Salgado, J.; Salguero, E.; Sarasso, M.; Savietto, H.; Schultheis, M.; Sciacca, E.; Segol, M.; Segovia, J. C.; Segransan, D.; Shih, I.-C.; Smareglia, R.; Smart, R. L.; Solano, E.; Solitro, F.; Sordo, R.; Soria Nieto, S.; Souchay, J.; Spagna, A.; Spoto, F.; Stampa, U.; Steele, I. A.; Steidelmüller, H.; Stephenson, C. A.; Stoev, H.; Suess, F. F.; Süveges, M.; Surdej, J.; Szabados, L.; Szegedi-Elek, E.; Tapiador, D.; Taris, F.; Tauran, G.; Taylor, M. B.; Teixeira, R.; Terrett, D.; Tingley, B.; Trager, S. C.; Turon, C.; Ulla, A.; Utrilla, E.; Valentini, G.; van Elteren, A.; Van Hemelryck, E.; van Leeuwen, M.; Varadi, M.; Vecchiato, A.; Veljanoski, J.; Via, T.; Vicente, D.; Vogt, S.; Voss, H.; Votruba, V.; Voutsinas, S.; Walmsley, G.; Weiler, M.; Weingrill, K.; Wevers, T.; Wyrzykowski, Ł.; Yoldas, A.; Žerjal, M.; Zucker, S.; Zurbach, C.; Zwitter, T.; Alecu, A.; Allen, M.; Allende Prieto, C.; Amorim, A.; Anglada-Escudé, G.; Arsenijevic, V.; Azaz, S.; Balm, P.; Beck, M.; Bernstein, H.-H.; Bigot, L.; Bijaoui, A.; Blasco, C.; Bonfigli, M.; Bono, G.; Boudreault, S.; Bressan, A.; Brown, S.; Brunet, P.-M.; Bunclark, P.; Buonanno, R.; Butkevich, A. G.; Carret, C.; Carrion, C.; Chemin, L.; Chéreau, F.; Corcione, L.; Darmigny, E.; de Boer, K. S.; de Teodoro, P.; de Zeeuw, P. T.; Delle Luche, C.; Domingues, C. D.; Dubath, P.; Fodor, F.; Frézouls, B.; Fries, A.; Fustes, D.; Fyfe, D.; Gallardo, E.; Gallegos, J.; Gardiol, D.; Gebran, M.; Gomboc, A.; Gómez, A.; Grux, E.; Gueguen, A.; Heyrovsky, A.; Hoar, J.; Iannicola, G.; Isasi Parache, Y.; Janotto, A.-M.; Joliet, E.; Jonckheere, A.; Keil, R.; Kim, D.-W.; Klagyivik, P.; Klar, J.; Knude, J.; Kochukhov, O.; Kolka, I.; Kos, J.; Kutka, A.; Lainey, V.; LeBouquin, D.; Liu, C.; Loreggia, D.; Makarov, V. V.; Marseille, M. G.; Martayan, C.; Martinez-Rubi, O.; Massart, B.; Meynadier, F.; Mignot, S.; Munari, U.; Nguyen, A.-T.; Nordlander, T.; Ocvirk, P.; O'Flaherty, K. S.; Olias Sanz, A.; Ortiz, P.; Osorio, J.; Oszkiewicz, D.; Ouzounis, A.; Palmer, M.; Park, P.; Pasquato, E.; Peltzer, C.; Peralta, J.; Péturaud, F.; Pieniluoma, T.; Pigozzi, E.; Poels, J.; Prat, G.; Prod'homme, T.; Raison, F.; Rebordao, J. M.; Risquez, D.; Rocca-Volmerange, B.; Rosen, S.; Ruiz-Fuertes, M. I.; Russo, F.; Sembay, S.; Serraller Vizcaino, I.; Short, A.; Siebert, A.; Silva, H.; Sinachopoulos, D.; Slezak, E.; Soffel, M.; Sosnowska, D.; Straižys, V.; ter Linden, M.; Terrell, D.; Theil, S.; Tiede, C.; Troisi, L.; Tsalmantza, P.; Tur, D.; Vaccari, M.; Vachier, F.; Valles, P.; Van Hamme, W.; Veltz, L.; Virtanen, J.; Wallut, J.-M.; Wichmann, R.; Wilkinson, M. I.; Ziaeepour, H.; Zschocke, S.

    2016-11-01

    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims: A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods: The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results: Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues - a realisation of the Tycho-Gaia Astrometric Solution (TGAS) - and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of 3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr-1 for the proper motions. A systematic component of 0.3 mas should be added to the parallax uncertainties. For the subset of 94 000 Hipparcos stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr-1. For the secondary astrometric data set, the typical uncertainty of the positions is 10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to 0.03 mag over the magnitude range 5 to 20.7. Conclusions: Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five

  4. An Advance Open Architecture Astrometric Alignment Sensor for Distributed & Non-Distributed GN&C Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This IRAD will advance the technology to provide a stellar sensor that may be used for astrometric alignments necessary for Formation Flying/Relative Navigation...

  5. The Dark Energy Survey Data Processing and Calibration System

    CERN Document Server

    Mohr, Joseph J; Bertin, Emmanuel; Daues, Gregory E; Desai, Shantanu; Gower, Michelle; Gruendl, Robert; Hanlon, William; Kuropatkin, Nikolay; Lin, Huan; Marriner, John; Petravick, Don; Sevilla, Ignacio; Swanson, Molly; Tomashek, Todd; Tucker, Douglas; Yanny, Brian

    2012-01-01

    The Dark Energy Survey (DES) is a 5000 deg2 grizY survey reaching characteristic photometric depths of 24th magnitude (10 sigma) and enabling accurate photometry and morphology of objects ten times fainter than in SDSS. Preparations for DES have included building a dedicated 3 deg2 CCD camera (DECam), upgrading the existing CTIO Blanco 4m telescope and developing a new high performance computing (HPC) enabled data management system (DESDM). The DESDM system will be used for processing, calibrating and serving the DES data. The total data volumes are high (~2PB), and so considerable effort has gone into designing an automated processing and quality control system. Special purpose image detrending and photometric calibration codes have been developed to meet the data quality requirements, while survey astrometric calibration, coaddition and cataloging rely on new extensions of the AstrOmatic codes which now include tools for PSF modeling, PSF homogenization, PSF corrected model fitting cataloging and joint mode...

  6. Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations

    CERN Document Server

    Gomes-Júnior, A R; Vieira-Martins, R; Arlot, J -E; Camargo, J I B; Braga-Ribas, F; Neto, D N da Silva; Andrei, A H; Dias-Oliveira, A; Morgado, B E; Benedetti-Rossi, G; Duchemin, Y; Desmars, J; Lainey, V; Thuillot, W

    2015-01-01

    The irregular satellites of the giant planets are believed to have been captured during the evolution of the solar system. Knowing their physical parameters, such as size, density, and albedo is important for constraining where they came from and how they were captured. The best way to obtain these parameters are observations in situ by spacecrafts or from stellar occultations by the objects. Both techniques demand that the orbits are well known. We aimed to obtain good astrometric positions of irregular satellites to improve their orbits and ephemeris. We identified and reduced observations of several irregular satellites from three databases containing more than 8000 images obtained between 1992 and 2014 at three sites (Observat\\'orio do Pico dos Dias, Observatoire de Haute-Provence, and European Southern Observatory - La Silla). We used the software PRAIA (Platform for Reduction of Astronomical Images Automatically) to make the astrometric reduction of the CCD frames. The UCAC4 catalog represented the Inte...

  7. Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity

    Science.gov (United States)

    Dravins, Dainis; Lindegren, Lennart; Madsen, Søren

    1999-08-01

    High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant potential in planned astrometric projects. Current accuracies are still inadequate for the first method, while the second is marginally feasible and is here applied to 16 stars. The third method reaches high accuracy (accuracy limit is set by uncertainties in the cluster expansion rate. Based (in part) on observations by the ESA Hipparcos satellite

  8. Astrometric radial velocities; 1, Non-spectroscopic methods for measuring stellar radial velocity

    CERN Document Server

    Dravins, D; Madsen, S; Dravins, Dainis; Lindegren, Lennart; Madsen, Soren

    1999-01-01

    High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant potential in planned astrometric projects. Current accuracies are still inadequate for the first method, while the second is marginally feasible and is here applied to 16 stars. The third method reaches high accuracy (<1 km/s) already with present data, although for some clusters an accuracy limit is set by uncertainties in the cluster expansion rate.

  9. A Global Astrometric Solution for Pan-STARRS Referenced to ICRF2

    Science.gov (United States)

    Berghea, C. T.; Makarov, V. V.; Frouard, J.; Hennessy, G. S.; Dorland, B. N.; Veillette, D. R.; Dudik, R. P.; Magnier, E. A.; Burgett, W. S.; Chambers, K. C.; Denneau, L.; Flewelling, H.; Kaiser, N.; Tonry, J. L.; Wainscoat, R. J.; Sesar, B.

    2016-09-01

    We describe the development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, and thus PS1 astrometry inherits the errors of the 2MASS catalog. The GAS, based on a single, least-squares adjustment to approximately 750 k “grid stars” using over 3000 extragalactic objects as reference objects, avoids this catalog-to-catalog propagation of errors to a great extent. The GAS uses a relatively small number of quasi-stellar objects (QSOs, or distant active galactic nuclei) with very accurate (expected based on simulations (˜10 mas). We provide a likely explanation for the reason the small-scale residual errors are not corrected in our solution as would be expected.

  10. Improving distances to nearby bright stars: Combining astrometric data from Hipparcos, Nano-JASMINE and Gaia

    CERN Document Server

    Michalik, Daniel; Hobbs, David; Lammers, Uwe; Yamada, Yoshiyuki

    2014-01-01

    Starting in 2013, Gaia will deliver highly accurate astrometric data, which eventually will supersede most other stellar catalogues in accuracy and completeness. It is, however, lim- ited to observations from magnitude 6 to 20 and will therefore not include the brightest stars. Nano-JASMINE, an ultrasmall Japanese astrometry satellite, will observe these bright stars, but with much lower accuracy. Hence, the Hipparcos catalogue from 1997 will likely remain the main source of accurate distances to bright nearby stars. We are investigating how this might be improved by optimally combining data from all three missions in a joint astrometric solu- tion. This would take advantage of the unique features of each mission: the historic bright-star measurements of Hipparcos, the updated bright-star observations of Nano-JASMINE, and the very accurate reference frame of Gaia. The long temporal baseline between the missions pro- vides additional benefits for the determination of proper motions and binary detection, which ...

  11. Astrometric radial velocities. I. Non-spectroscopic methods for measuring stellar radial velocity

    OpenAIRE

    1999-01-01

    High-accuracy astrometry permits the determination of not only stellar tangential motion, but also the component along the line-of-sight. Such non-spectroscopic (i.e. astrometric) radial velocities are independent of stellar atmospheric dynamics, spectral complexity and variability, as well as of gravitational redshift. Three methods are analysed: (1) changing annual parallax, (2) changing proper motion and (3) changing angular extent of a moving group of stars. All three have significant pot...

  12. Unbiased Luminosity Calibrations for HIPPARCOS Data

    Science.gov (United States)

    Arenou, F.; Gomez, A. E.

    1997-08-01

    One of the main uses of the Hipparcos astrometric parameters is the calibration of stellar luminosities against colour indices. The high quality of Hipparcos parameters would however be useless if selection biases were not taken into account. Using parametrical probability density functions, a maximum likelihood algorithm has been developed. It takes into account limiting magnitude or limiting parallax in order to compute unbiased estimates of various parameters: absolute magnitude (as a function of colour indices, metallicity, v sin(i)), galactic scale height, and first- and second-order moment of the velocity ellipsoid. As a by-product, improved estimates of distances can be obtained. A multi-platform, tcl/tk based user interface has been built which allows to determine the relevant parameters using Hipparcos data. The algorithm is described, together with the adopted parametrical models, and several applications are given.

  13. A Search for Stellar-Mass Black Holes via Astrometric Microlensing

    CERN Document Server

    Lu, J R; Ofek, E O; Udalski, A; Kozlowski, S

    2016-01-01

    While dozens of stellar mass black holes have been discovered in binary systems, isolated black holes have eluded detection. Their presence can be inferred when they lens light from a background star. We attempt to detect the astrometric lensing signatures of three photometrically identified microlensing events, OGLE-2011-BLG-0022, OGLE-2011-BLG-0125, and OGLE-2012-BLG-0169 (OB110022, OB110125, and OB120169), located toward the Galactic Bulge. These events were selected because of their long durations, which statistically favors more massive lenses. Astrometric measurements were made over 1-2 years using laser-guided adaptive optics observations from the W. M. Keck Observatory. Lens model parameters were first constrained by the photometric light curves. The OB120169 light curve is well-fit by a single-lens model, while both OB110022 and OB110125 light curves favor binary-lens models. Using the photometric fits as prior information, no significant astrometric lensing signal was detected and all targets were c...

  14. Tycho-Gaia Astrometric Solution parallaxes and proper motions for 5 Galactic globular clusters

    CERN Document Server

    Watkins, Laura L

    2016-01-01

    We perform a systematic search for Galactic globular cluster (GC) stars in the Tycho-Gaia Astrometric Solution (TGAS) catalogue that formed part of Gaia Data Release 1 (DR1), and identify 5 members of NGC104 (47 Tucanae), 1 member of NGC5272 (M3), 5 members of NGC6121 (M4), 7 members of NGC6397, and 2 members of NGC6656 (M22). By taking a weighted average of the member stars, fully accounting for the correlations between parameter estimates, we estimate the parallax (and, hence, distance) and proper motion (PM) of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors, and yields random PM errors that are similar to existing measurements. Detailed comparison to the available Hubble Space Telescope (HST) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST. By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding ...

  15. A new probe of the small-scale primordial power spectrum: astrometric microlensing by ultracompact minihalos

    CERN Document Server

    Li, Fangda; Law, Nicholas M

    2012-01-01

    The dark matter enclosed in a density perturbation with a large initial amplitude (delta-rho/rho > 1e-3) collapses shortly after recombination and forms an ultracompact minihalo (UCMH). Their high central densities make UCMHs especially suitable for detection via astrometric microlensing: as the UCMH moves, it changes the apparent position of background stars. A UCMH with a mass larger than a few solar masses can produce a distinctive astrometric microlensing signal that is detectable by the space astrometry mission Gaia. If Gaia does not detect gravitational lensing by any UCMHs, then it establishes an upper limit on their abundance and constrains the amplitude of the primordial power spectrum for k~3500 Mpc^{-1}. These constraints complement the upper bound on the amplitude of the primordial power spectrum derived from limits on gamma-ray emission from UCMHs because the astrometric microlensing signal produced by an UCMH is maximized if the dark-matter annihilation rate is too low to affect the UCMH's densi...

  16. Using HST to Detect Isolated Black Holes and Neutron Stars through Astrometric Microlensing

    Science.gov (United States)

    Sahu, Kailash C.; Albrow, M.; Anderson, J.; Bond, H. E.; Bond, I.; Brown, T. M.; Casertano, S.; Dominik, M.; Ferguson, H. C.; Fryer, C.; Livio, M.; Mao, S.; Perrott, Y.; Udalski, A.; Yock, P.

    2012-05-01

    To date, Black Hole (BH) and Neutron Star (NS) masses have been directly measured only in binaries; no isolated stellar-mass BH has been detected unambiguously within our Galaxy. We have underway a large, 3-year HST program (192 orbits) designed to detect microlensing events caused by non-luminous isolated BHs and NSs in the direction of the Galactic bulge. Our program consists of monitoring of 12 fields in the Sagittarius window of the Galactic bulge, containing a total of 1.5 million stars down to V=28. Our observations have a typical cadence of one observation every two weeks, and are primarily targeted towards detecting microlensing events caused by non-luminous isolated BHs and NSs in the Galactic disk and bulge. The unique capability of HST imaging for microlensing observations is the addition of high-precision astrometry, allowing detection of the astrometric shift of the source during the event. Combined with the lens parallax, which can be determined from the light curve as measured by HST (and supplemented by GEMINI) observations, the astrometric shift provides a direct measurement of the lens mass. Our program is optimized to detect long-duration events, which are more likely to be caused by massive lenses. We expect to detect a few dozen long-duration microlensing events, of which 45% will show astrometric deflections, leading to direct determinations of the lens masses.

  17. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties

    CERN Document Server

    Brown, A G A; Prusti, T; de Bruijne, J; Mignard, F; Drimmel, R; co-authors, 585

    2016-01-01

    At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. We summarize Gaia DR1 and provide illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Gaia DR1 consists of: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the Hipparcos and Tycho-2 catalogues and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set,consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ~3000 Cepheid and RR Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about...

  18. Detecting and Measuring the Masses of Isolated Black Holes and Neutron Stars through Astrometric Microlensing

    Science.gov (United States)

    Sahu, Kailash

    2013-10-01

    We propose a 3-year program of monitoring of 12 fields in the Galactic bulge, containing a total of 1.5 million stars down to V=28. Our primary aim is to detect microlensing events caused by non-luminous isolated black holes {BHs} and neutron stars {NSs} in the Galactic disk and bulge.The unique capability of HST imaging for microlensing observations is the addition of high-precision astrometry, allowing detection of the astrometric shift of the source during the event. Combined with the lens parallax, provided by the HST event light curve, the astrometric shift provides a direct measurement of the lens mass. We will detect 120 microlensing events, of which 45% will show astrometric deflections, leading to direct determinations of the lens masses. Of these, about 18 lenses are expected to be BHs and 14 of them NSs, along with about 22 events due to main-sequence stars.To date, BH and NS masses have been directly measured only in binaries; no isolated BH has been detected unambiguously within our Galaxy. A survey of the scope proposed here is the only means available at present for measuring the mass function of isolated BHs and NSs, and moreover one that is normalized to that of luminous stars. The results will provide a quantitative estimate of the mass content in the form of stellar remnants in the young Galactic disk and old bulge, and important constraints on SN/GRB explosion mechanisms that produce NSs and BHs.Our data will also be useful for other investigations, including a more accurate determination of the microlensing optical depth, faint variable stars, bulge proper motions and kinematics, and a deep luminosity function of the disk and bulge stars.

  19. ASTROMETRIC POSITIONING OF THE VENEZUELAN SATELLITE VENESAT-1 “PASAVEN”

    OpenAIRE

    Otero, S.; Abad, C; Hernández, R.

    2014-01-01

    En este trabajo informamos de la colaboraci ́n entre dos instituciones venezolanas, la Agencia Bolivariana para o Actividades Espaciales (ABAE) y el Centro de Investigaciones de Astronom ́ (CIDA), con el prop ́sito de ıa o hacer uso de la Astrometr ́ para el seguimiento del sat ́lite geoestacionario venezolano VENESAT1 a partir ıa e de observaciones ́pticas. Para ello, dos peque ̃os observatorios han sido instalados junto a las estaciones o n terrenas de seguimiento que el ABAE posee en Vene...

  20. Data Mining for Dwarf Novae in SDSS, GALEX and Astrometric Catalogues

    CERN Document Server

    Wils, Patrick; Drake, Andrew J; Southworth, John

    2009-01-01

    By cross matching blue objects from SDSS with GALEX and the astrometric catalogues USNO-B1.0, GSC2.3 and CMC14, 64 new dwarf nova candidates with one or more observed outbursts have been identified. 14 of these systems are confirmed as cataclysmic variables through existing and follow-up spectroscopy. A study of the amplitude distribution and an estimate of the outburst frequency of these new dwarf novae and those discovered by the Catalina Real-time Transient Survey (CRTS) indicates that besides systems that are faint because they are farther away, there also exists a population of intrinsically faint dwarf novae with rare outbursts.

  1. The principle of measuring unusual change of underground mass by optical astrometric instrument

    Directory of Open Access Journals (Sweden)

    Wang Jiancheng

    2012-11-01

    In this study, we estimate the deflection angle of the plumb line on a ground site, and give a relation between the angle, abnormal mass and site distance (depth and horizontal distance. Then we derive the abnormality of underground material density using the plumb lines measured at different sites, and study the earthquake gestation, development and occurrence. Using the deflection angles of plumb lines observed at two sites, we give a method to calculate the mass and the center of gravity of underground materials. We also estimate the abnormal masses of latent seismic zones with different energy, using thermodynamic relations, and introduce a new optical astrometric instrument we had developed.

  2. Iterative methods used in overlap astrometric reduction techniques do not always converge

    Science.gov (United States)

    Rapaport, M.; Ducourant, C.; Colin, J.; Le Campion, J. F.

    1993-04-01

    In this paper we prove that the classical Gauss-Seidel type iterative methods used for the solution of the reduced normal equations occurring in overlapping reduction methods of astrometry do not always converge. We exhibit examples of divergence. We then analyze an alternative algorithm proposed by Wang (1985). We prove the consistency of this algorithm and verify that it can be convergent while the Gauss-Seidel method is divergent. We conjecture the convergence of Wang method for the solution of astrometric problems using overlap techniques.

  3. ASTROMETRIC REDUCTION OF GEOSTATIONARY SATELLITES OPTICAL OBSERVATIONS FOR ORBIT DETERMINATION (PASAGE)

    OpenAIRE

    F. J. Montojo; T. López Moratalla; C. Abad; J. L. Muiños

    2008-01-01

    El conocimiento de las efemérides de los satélites geostacionarios es de gran importancia para las agencias de control, tanto para programar maniobras como para comprobar sus resultados. El proyecto PASAGE (Posicionamiento Astrométrico de Satélites Geoestacionarios) tiene como principal objetivo determinar con precisión astrométrica estas efemérides desde telescopios basados en tierra, y la posterior determinación de sus órbitas. Para esta especial aplicación de la astrometría, hemos desarrol...

  4. Astrometric and Photometric Accuracy of the 1.3 m Robotically Controlled Telescope on Kitt Peak

    Science.gov (United States)

    McGruder, Charles H.; Carini, M. T.; Engle, S. G.; Gelderman, R.; Guinan, E. F.; Laney, D.; Strolger, L.; Treffers, R. R.; Walter, D. K.

    2014-01-01

    The 1.3 m (50 inch) telescope on Kitt Peak has been refurbished and provided with an autonomous scheduler. It is operated by The Robotically Controlled Telescope (RCT) consortium whose members are: South Carolina State, Villanova and Western Kentucky Universities. The facility possesses 5 board (UBVRI) and 11 narrow-band filters. Attached to the RCT camera is a 2048 x 2048 SITe SI-424A back-illuminated CCD with 24 micrometer pixels. We used over 7,000 star measurements from 37, 198s R-images to compute the astrometric and photometric accuracy. The difference of the J2000 coordinates computed from the RCT images and the J2000 Nomad catalog coordinate values in right ascension peaks at 0.058”, while the declination peaks at -0.125”. We obtained these astrometric results using the simplest assumptions: linear relationship between standard coordinates and measured coordinates, no color or magnitude dependency and no differential refraction (all images taken in the zenith). We express the photometric accuracy in the following manner: The Signal-to-Noise-Ratio as a function of apparent magnitude shows that the RCT is not noise dominated at m < 20 magnitude.

  5. Astrometric discovery of GJ 802b : in the Brown Dwarf Oasis?

    Science.gov (United States)

    Pravdo, Steven H.; Shaklan, Stuart B.; Lloyd, James

    2005-01-01

    The Stellar Planet Survey is an ongoing astrometric search for giant planets and brown dwarfs around a sample of 30 M dwarfs. We have discovered several low-mass companions by measuring the motion of our target stars relative to their reference frames. The lowest mass discovery thus far is GJ 802b, a companion to the M5 dwarf GJ 802A. The orbital period is 3.14 +/-0:03 yr, the system mass is 0:214 +/- 0:045 M(circled dot operator), and the semimajor axis is 1:28+/- 0:10 AU or 81 + 6 mas. Imaging observations indicate that GJ 802b is likely to be a brow with the astrometrically determined mass 0:058 +/- 0:021 M(circled dot operator) (1 (sigma) limits). The remaining uncertainty in the orbit is the eccentricity that is now loosely constrained. We dis the system age limits the mass and the prospects of further narrowing the mass range when e is more precisely determined.

  6. A Global Astrometric Solution for Pan-STARRS referenced to ICRF2

    CERN Document Server

    Berghea, C T; Frouard, J; Hennessy, G S; Dorland, B N; Veillette, D R; Dudik, R P; Magnier, E A; Burgett, W S; Chambers, K C; Denneau, L; Flewelling, H; Kaiser, N; Tonry, J L; Wainscoat, R J; Sesar, B

    2016-01-01

    We describe development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, thus PS1 astrometry inherits the errors of the 2MASS catalog. The GAS, based on a single, least squares adjustment to approximately 750k grid stars using over 3000 extragalactic objects as reference objects, avoids this catalog-to-catalog propagation of errors to a great extent. The GAS uses a relatively small number of Quasi-Stellar Objects (QSOs, or distant AGN) with very accurate (<1 mas) radio positions, referenced to the ICRF2. These QSOs provide a hard constraint in the global least squares adjustment. Solving such a system provides absolute astrometry for all the stars simultaneously. The concept is much cleaner than conventional astrometry but is not easy to perform for large catalogs. In this paper we describe our method and its application to Pan-STARRS1 data. We show tha...

  7. Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-consistent Measurements

    Science.gov (United States)

    Konopacky, Q. M.; Marois, C.; Macintosh, B. A.; Galicher, R.; Barman, T. S.; Metchev, S. A.; Zuckerman, B.

    2016-08-01

    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 m telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this data set, we detect acceleration for two of the planets (HR 8799b and e) at >3σ. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns χ 2 consistent to within 1σ of the best fit values, suggesting that if inclination offsets of ≲20° are present, they are not detectable with current data. Our orbital fits also favor low eccentricities, consistent with predictions from dynamical modeling. We also find period distributions consistent to within 1σ with a 1:2:4:8 resonance between all planets. This analysis demonstrates the importance of minimizing astrometric systematics when fitting for solutions to highly undersampled orbits.

  8. The baseline paradox of optical interferometry. Application to the GRAVITY astrometric error budget

    CERN Document Server

    Lacour, S; Gillessen, S; Pfuhl, O; Woillez, J; Bonnet, H; Perrin, G; Lazareff, B; Rabien, S; Lapeyrere, V; Clenet, Y; Kok, Y

    2014-01-01

    A basic principle of long baseline interferometry is that an optical path difference (OPD) directly translate into an astrometric measurement. In the simplest case, the OPD is equal to the scalar product between the vector linking the two telescopes and the normalized vector pointing toward the star. However, in some circumstances, a too simple approximation interpretation of this scalar product leads to seemingly conflicting results, called here "the baseline paradox". For micro-arcsecond accuracy astrometry, we have to model in full the metrology measurement. It involves a complex system subject to many optical effects: from pure baseline errors to static, quasi-static and high order optical aberrations. The goal of this paper is to present the strategy used by GRAVITY to minimize the biases introduced by these defects. It is possible to give an analytical formula on how the baselines and tip-tilt errors affect the astrometric measurement. This formula depends on the limit-points of three type of baselines:...

  9. Automated Astrometric Analysis of Satellite Observations using Wide-field Imaging

    Science.gov (United States)

    Skuljan, J.; Kay, J.

    2016-09-01

    An observational trial was conducted in the South Island of New Zealand from 24 to 28 February 2015, as a collaborative effort between the United Kingdom and New Zealand in the area of space situational awareness. The aim of the trial was to observe a number of satellites in low Earth orbit using wide-field imaging from two separate locations, in order to determine the space trajectory and compare the measurements with the predictions based on the standard two-line elements. This activity was an initial step in building a space situational awareness capability at the Defence Technology Agency of the New Zealand Defence Force. New Zealand has an important strategic position as the last land mass that many satellites selected for deorbiting pass before entering the Earth's atmosphere over the dedicated disposal area in the South Pacific. A preliminary analysis of the trial data has demonstrated that relatively inexpensive equipment can be used to successfully detect satellites at moderate altitudes. A total of 60 satellite passes were observed over the five nights of observation and about 2600 images were collected. A combination of cooled CCD and standard DSLR cameras were used, with a selection of lenses between 17 mm and 50 mm in focal length, covering a relatively wide field of view of 25 to 60 degrees. The CCD cameras were equipped with custom-made GPS modules to record the time of exposure with a high accuracy of one millisecond, or better. Specialised software has been developed for automated astrometric analysis of the trial data. The astrometric solution is obtained as a two-dimensional least-squares polynomial fit to the measured pixel positions of a large number of stars (typically 1000) detected across the image. The star identification is fully automated and works well for all camera-lens combinations used in the trial. A moderate polynomial degree of 3 to 5 is selected to take into account any image distortions introduced by the lens. A typical RMS

  10. Blind Quantum Signature with Blind Quantum Computation

    Science.gov (United States)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  11. Blind Quantum Signature with Blind Quantum Computation

    Science.gov (United States)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2016-12-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  12. Blind system identification

    OpenAIRE

    Abed-Meriam, Karim; Qui, Wanzhi; Hua, Yingbo

    1997-01-01

    Blind system identification (BSI) is a fundamental signal processing technology aimed at retrieving a system's unknown information from its output only. This technology has a wide range of possible applications such as mobile communications, speech reverberation cancellation, and blind image restoration. This paper reviews a number of recently developed concepts and techniques for BSI, which include the concept of blind system identifiability in a deterministic framework, the blind techniques...

  13. The First U.S. Naval Observatory Robotic Astrometric Telescope Catalog (URAT1)

    CERN Document Server

    Zacharias, Norbert; Subasavage, John; Bredthauer, Greg; Crockett, Chris; DiVittorio, Mike; Ferguson, Erik; Harris, Fred; Harris, Hugh; Henden, Arne; Kilian, Chris; Munn, Jeff; Rafferty, Ted; Rhodes, Al; Schultheiss, Mike; Tilleman, Trudy; Wieder, Gary

    2015-01-01

    URAT1 is an observational, astrometric catalog covering most of the Dec >= -15 deg area and a magnitude range of about R = 3 to 18.5. Accurate positions (typically 10 to 30 mas standard error) are given for over 228 million objects at a mean epoch around 2013.5. For the over 188 million objects matched with the 2MASS point source catalog proper motions (typically 5 to 7 mas/yr std. errors) are provided. These data are supplemented by 2MASS and APASS photometry. Observations, reductions and catalog construction are described together with results from external data verifications. The catalog data are served by CDS, Starsbourg (I/329). There is no DVD release.

  14. Astrometric imaging of crowded stellar fields with only two SIM pointings

    CERN Document Server

    Dalal, N; Dalal, Neal; Griest, Kim

    2001-01-01

    The Space Interferometry Mission (SIM) will observe sources in crowded fields. Recent work has shown that source crowding can induce significant positional errors in SIM's astrometric measurements, even for targets many magnitudes brighter than all other crowding sources. Here we investigate whether the spectral decomposition of the fringe pattern may be used to disentangle the overlapping fringes from multiple blended sources, effectively by performing synthesis imaging with two baselines. We find that spectrally dispersed fringes enable SIM to identify and localize a limited number of field sources quite robustly, thereby removing their effect from SIM astrometry and reducing astrometry errors to near photon noise levels. We simulate SIM measurements of the LMC, and show that (a) SIM astrometry will not be corrupted by blending and (b) extremely precise imaging of mildly crowded fields may be performed using only two orthogonal baseline orientations, allowing microarcsecond positional measurements. We lastl...

  15. Theory of Relativistic Reference Frames for High-Precision Astrometric Space Missions

    CERN Document Server

    Kopeikin, S M

    2000-01-01

    Recent modern space missions deliver invaluable information about origin of our universe, physical processes in the vicinity of black holes and other exotic astrophysical objects, stellar dynamics of our galaxy, etc. On the other hand, space astrometric missions make it possible to determine with unparalleled precision distances to stars and cosmological objects as well as their physical characteristics and positions on the celestial sphere. Permanently growing accuracy of space astronomical observations and the urgent need for adequate data processing algorithms require corresponding development of an adequate theory of reference frames along with unambiguous description of propagation of light rays from a source of light to observer. Such a theory must be based on the Einstein's general relativity and account for numerous relativistic effects both in the solar system and outside of its boundary. The main features of the relativistic theory of reference frames are presented in this work. A hierarchy of the f...

  16. ASTROMETRIC POSITIONING OF THE VENEZUELAN SATELLITE VENESAT-1 “PASAVEN”

    Directory of Open Access Journals (Sweden)

    S. Otero

    2014-01-01

    Full Text Available En este trabajo informamos de la colaboraci ́n entre dos instituciones venezolanas, la Agencia Bolivariana para o Actividades Espaciales (ABAE y el Centro de Investigaciones de Astronom ́ (CIDA, con el prop ́sito de ıa o hacer uso de la Astrometr ́ para el seguimiento del sat ́lite geoestacionario venezolano VENESAT1 a partir ıa e de observaciones ́pticas. Para ello, dos peque ̃os observatorios han sido instalados junto a las estaciones o n terrenas de seguimiento que el ABAE posee en Venezuela, esperando que en un corto espacio de tiempo den los resultados deseados. Asimismo, es nuestro inter ́s extender esta aplicaci ́n a futuros sat ́lites venezolanos, e o e e incluso a la b ́squeda y determinaci ́n de trayectorias de basura espacial geoestacionaria.

  17. Interstellar medium, young stars, and astrometric binaries in Galactic archaeology spectroscopic surveys

    CERN Document Server

    Zwitter, Tomaž; Žerjal, Maruša; Traven, Gregor

    2015-01-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and structure of the Galaxy. But they allow for important auxiliary science: (i) Galactic interstellar medium can be studied in four dimensions (position in space + radial velocity) through weak but numerous diffuse insterstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and qua...

  18. ASTROMETRIC REDUCTION OF GEOSTATIONARY SATELLITES OPTICAL OBSERVATIONS FOR ORBIT DETERMINATION (PASAGE

    Directory of Open Access Journals (Sweden)

    F. J. Montojo

    2008-01-01

    Full Text Available El conocimiento de las efemérides de los satélites geostacionarios es de gran importancia para las agencias de control, tanto para programar maniobras como para comprobar sus resultados. El proyecto PASAGE (Posicionamiento Astrométrico de Satélites Geoestacionarios tiene como principal objetivo determinar con precisión astrométrica estas efemérides desde telescopios basados en tierra, y la posterior determinación de sus órbitas. Para esta especial aplicación de la astrometría, hemos desarrollado técnicas y algoritmos especiales que nos permiten obtener elas posiciones aparentes topocéntricas de los satélites geostacionarios con precisiones de décimas de segundo de arco, incluso desde lugares con alta contaminación lumínica.

  19. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  20. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina

    2016-05-02

    This poster presents the development, implementation, and operation of the Broadband Outdoor Radiometer Calibrations (BORCAL) Longwave (LW) system at the Southern Great Plains Radiometric Calibration Facility for the calibration of pyrgeometers that provide traceability to the World Infrared Standard Group.

  1. Calibration of sound calibrators: an overview

    Science.gov (United States)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  2. Interstellar Medium, Young Stars, and Astrometric Binaries in Galactic Archaeology Spectroscopic Surveys

    Science.gov (United States)

    Zwitter, T.; Kos, J.; Žerjal, M.; Traven, G.

    2016-10-01

    Current ongoing stellar spectroscopic surveys (RAVE, GALAH, Gaia-ESO, LAMOST, APOGEE, Gaia) are mostly devoted to studying Galactic archaeology and the structure of the Galaxy. But they allow also for important auxiliary science: (i) the Galactic interstellar medium can be studied in four dimensions (position in space plus radial velocity) through weak but numerous diffuse interstellar bands and atomic absorptions seen in spectra of background stars, (ii) emission spectra which are quite frequent even in field stars can serve as a good indicator of their youth, pointing e.g. to stars recently ejected from young stellar environments, (iii) an astrometric solution of the photocenter of a binary to be obtained by Gaia can yield accurate masses when joined by spectroscopic information obtained serendipitously during a survey. These points are illustrated by first results from the first three surveys mentioned above. These hint at the near future: spectroscopic studies of the dynamics of the interstellar medium can identify and quantify Galactic fountains which may sustain star formation in the disk by entraining fresh gas from the halo; RAVE already provided a list of ˜ 14,000 field stars with chromospheric emission in Ca II lines, to be supplemented by many more observations by Gaia in the same band, and by GALAH and Gaia-ESO observations of Balmer lines; several millions of astrometric binaries with periods up to a few years which are being observed by Gaia can yield accurate masses when supplemented with measurements from only a few high-quality ground based spectra.

  3. A Model for Astrometric Detection and Characterization of Multi-Exoplanet Systems

    Science.gov (United States)

    April Thompson, Maggie; Spergel, David N.

    2017-01-01

    In this thesis, we develop an approximate linear model of stellar motion in multi- planet systems as an aid to observers using the astrometric method to detect and characterize exoplanets. Recent and near-term advances in satellite and ground-based instruments are on the threshold of achieving sufficient (~10 micro-arcsecond) angular accuracies to allow astronomers to measure and analyze the transverse mo- tion of stars about the common barycenter in single- and multi-planet systems due to the gravitational influence of companion planets. Given the emerging statistics of extrasolar planetary systems and the long observation periods required to assess exoplanet influences, astronomers should find an approximate technique for preliminary estimates of multiple planet numbers, masses and orbital parameters useful in determining the most likely stellar systems for follow-up studies. In this paper, we briefly review the history of astrometry and discuss its advantages and limitations in exoplanet research. In addition, we define the principal astrometric signature and describe the main variables affecting it, highlighting astrometry’s complementary role to radial velocity and photometric transit exoplanet detection techniques. We develop and test a Python computer code using actual data and projections of the Sun’s motion due to the influence of the four gas giants in the solar system. We then apply this model to over 50 hypothetical massive two- and three-exoplanet systems to discover useful general patterns by employing a heuristic examination of key aspects of the host star’s motion over long observation intervals. Finally, we modify the code by incorporating an inverse least-squares fit program to assess its efficiency in identifying the main characteristics of multi-planet systems based on observational records over 5-, 10- and 20-year periods for a variety of actual and hypothetical exoplanetary systems. We also explore the method’s sensitivity to

  4. Micro-Arcsec mission: implications of the monitoring, diagnostic and calibration of the instrument response in the data reduction chain. .

    Science.gov (United States)

    Busonero, D.; Gai, M.

    The goals of 21st century high angular precision experiments rely on the limiting performance associated to the selected instrumental configuration and observational strategy. Both global and narrow angle micro-arcsec space astrometry require that the instrument contributions to the overall error budget has to be less than the desired micro-arcsec level precision. Appropriate modelling of the astrometric response is required for optimal definition of the data reduction and calibration algorithms, in order to ensure high sensitivity to the astrophysical source parameters and in general high accuracy. We will refer to the framework of the SIM-Lite and the Gaia mission, the most challenging space missions of the next decade in the narrow angle and global astrometry field, respectively. We will focus our dissertation on the Gaia data reduction issues and instrument calibration implications. We describe selected topics in the framework of the Astrometric Instrument Modelling for the Gaia mission, evidencing their role in the data reduction chain and we give a brief overview of the Astrometric Instrument Model Data Analysis Software System, a Java-based pipeline under development by our team.

  5. Verification of the astrometric performance of the Korean VLBI network, using comparative SFPR studies with the VLBA AT 14/7 mm

    Energy Technology Data Exchange (ETDEWEB)

    Rioja, María J.; Dodson, Richard; Jung, TaeHyun; Sohn, Bong Won; Byun, Do-Young; Cho, Se-Hyung; Lee, Sang-Sung; Kim, Jongsoo; Kim, Kee-Tae; Oh, Chung Sik; Han, Seog-Tae; Je, Do-Heung; Chung, Moon-Hee; Wi, Seog-Oh; Kang, Jiman; Lee, Jung-Won; Chung, Hyunsoo; Kim, Hyo Ryoung; Kim, Hyun-Goo [Korea Astronomy and Space Science Institute, Daedeokdae-ro 776, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Agudo, Iván, E-mail: maria.rioja@icrar.org [Joint Institute for VLBI in Europe, Postbus 2, NL-7990 AA Dwingeloo (Netherlands); and others

    2014-11-01

    The Korean VLBI Network (KVN) is a new millimeter VLBI dedicated array with the capability to simultaneously observe at multiple frequencies, up to 129 GHz. The innovative multi-channel receivers present significant benefits for astrometric measurements in the frequency domain. The aim of this work is to verify the astrometric performance of the KVN using a comparative study with the VLBA, a well-established instrument. For that purpose, we carried out nearly contemporaneous observations with the KVN and the VLBA, at 14/7 mm, in 2013 April. The KVN observations consisted of simultaneous dual frequency observations, while the VLBA used fast frequency switching observations. We used the Source Frequency Phase Referencing technique for the observational and analysis strategy. We find that having simultaneous observations results in superior compensation for all atmospheric terms in the observables, in addition to offering other significant benefits for astrometric analysis. We have compared the KVN astrometry measurements to those from the VLBA. We find that the structure blending effects introduce dominant systematic astrometric shifts, and these need to be taken into account. We have tested multiple analytical routes to characterize the impact of the low-resolution effects for extended sources in the astrometric measurements. The results from the analysis of the KVN and full VLBA data sets agree within 2σ of the thermal error estimate. We interpret the discrepancy as arising from the different resolutions. We find that the KVN provides astrometric results with excellent agreement, within 1σ, when compared to a VLBA configuration that has a similar resolution. Therefore, this comparative study verifies the astrometric performance of the KVN using SFPR at 14/7 mm, and validates the KVN as an astrometric instrument.

  6. Astrometric Detection of Terrestrial Planets in the Habitable Zones of Nearby Stars with SIM PlanetQuest

    CERN Document Server

    Catanzarite, J; Tanner, A; Unwin, S; Yu, J; Catanzarite, Joseph; Shao, Michael; Tanner, Angelle; Unwin, Stephen; Yu, Jeffrey

    2006-01-01

    SIM PlanetQuest (Space Interferometry Mission) is a space-borne Michelson interferometer for precision stellar astrometry, with a nine meter baseline, currently slated for launch in 2015. One of the principal science goals is the astrometric detection and orbit characterization of terrestrial planets in the habitable zones of nearby stars. Differential astrometry of the target star against a set of reference stars lying within a degree will allow measurement of the target star's reflex motion with astrometric accuracy of 1 micro-arcsecond in a single measurement. We assess SIM's capability for detection (as opposed to characterization by orbit determination) of terrestrial planets in the habitable zones of nearby solar-type stars. We compare SIM's performance on target lists optimized for the SIM and Terrestrial Planet Finder Coronograph (TPF-C) missions. Performance is quantified by three metrics: minimum detectable planet mass, number and mass distribution of detected planets, and completeness of detections...

  7. The ESPRI project: astrometric exoplanet search with PRIMA I. Instrument description and performance of first light observations

    CERN Document Server

    Sahlmann, J; Queloz, D; Quirrenbach, A; Elias, N M; Launhardt, R; Pepe, F; Reffert, S; Segransan, D; Setiawan, J; Abuter, R; Andolfato, L; Bizenberger, P; Baumeister, H; Chazelas, B; Delplancke, F; Derie, F; Di Lieto, N; Duc, T P; Fleury, M; Graser, U; Kaminski, A; Koehler, R; Leveque, S; Maire, C; Megevand, D; Merand, A; Michellod, Y; Moresmau, J -M; Mohler, M; Mueller, A; Muellhaupt, P; Naranjo, V; Sache, L; Salvade, Y; Schmid, C; Schuhler, N; Schulze-Hartung, T; Sosnowska, D; Tubbs, B; van Belle, G T; Wagner, K; Weber, L; Zago, L; Zimmerman, N

    2012-01-01

    The ESPRI project relies on the astrometric capabilities offered by the PRIMA facility of the Very Large Telescope Interferometer for the discovery and study of planetary systems. Our survey consists of obtaining high-precision astrometry for a large sample of stars over several years and to detect their barycentric motions due to orbiting planets. We present the operation principle, the instrument's implementation, and the results of a first series of test observations. A comprehensive overview of the instrument infrastructure is given and the observation strategy for dual-field relative astrometry is presented. The differential delay lines, a key component of the PRIMA facility which was delivered by the ESPRI consortium, are described and their performance within the facility is discussed. Observations of bright visual binaries are used to test the observation procedures and to establish the instrument's astrometric precision and accuracy. The data reduction strategy for astrometry and the necessary correc...

  8. The latest results from DICE (Detector Interferometric Calibration Experiment)

    Science.gov (United States)

    Crouzier, A.; Malbet, F.; Hénault, F.; Léger, A.; Cara, C.; Le Duigou, J. M.; Preis, O.; Kern, P.; Delboulbe, A.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Rochat, S.; Ketchazo, C.; Donati, M.; Doumayrou, Eric; Lagage, P. O.; Shao, M.; Goullioud, R.; Nemati, B.; Zhai, C.; Behar, E.; Potin, S.; Saint-Pe, M.; Dupont, J.

    2016-07-01

    Theia is an astrometric mission proposed to ESA in 2014 for which one of the scientific objectives is detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. This objective requires the capability to measure stellar centroids at the precision of 1x10-5 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 3x10-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The Theia consortium is operating a testbed in vacuum in order to achieve 1x10-5 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the Theia spacecraft. The testbed consists of two main sub-systems. The first one produces pseudo stars: a blackbody source is fed into a large core fiber and lights-up a pinhole mask in the object plane, which is imaged by a mirror on the CCD. The second sub-system is the metrology, it projects young fringes on the CCD. The fringes are created by two single mode fibers facing the CCD and fixed on the mirror. In this paper we present the latest experiments conducted and the results obtained after a series of upgrades on the testbed was completed. The calibration system yielded the pixel positions to an accuracy estimated at 4x10-4 pixel. After including the pixel position information, an astrometric accuracy of 6 x 10-5 pixel was obtained, for a PSF motion over more than 5 pixels. In the static mode (small jitter motion of less than 1 x 10-3 pixel), a photon noise limited precision of 3x10-5 pixel was reached.

  9. Frequency-Difference Source Localization and Blind Deconvolution in Shallow Ocean Environments

    Science.gov (United States)

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Frequency-Difference Source Localization and Blind ... blind deconvolution technique to dynamic multipath environments, and (ii) determining the utility of the frequency difference concept within matched...successful, the STR work might make underwater acoustic communications more efficient and reliable since sound-channel calibration would not be

  10. The Astrometric-Spectroscopic Binary System HIP 50796: An Overmassive Companion

    CERN Document Server

    Torres, G

    2005-01-01

    We report spectroscopic observations of the star HIP 50796, previously considered (but later rejected) as a candidate member of the TW Hya association. Our measurements reveal it to be a single-lined binary with an orbital period of 570 days and an eccentricity of e = 0.61. The astrometric signature of this orbit was previously detected by the HIPPARCOS satellite in the form of curvature in the proper motion components, although the period was unknown at the time. By combining our radial velocity measurements with the HIPPARCOS intermediate data (abscissae residuals) we are able to derive the full three-dimensional orbit, and determine the dynamical mass of the unseen companion as well as a revised trigonometric parallax that accounts for the orbital motion. Given our primary mass estimate of 0.73 solar masses (mid-K dwarf), the companion mass is determined to be 0.89 solar masses, or about 20% larger than the primary. The likely explanation for the larger mass without any apparent contribution to the light i...

  11. Astrometric observations of Phobos and Deimos during the 1971 opposition of Mars

    CERN Document Server

    Robert, V; Pascu, D; Arlot, J -E; De Cuyper, J -P; Dehant, V; Thuillot, W

    2015-01-01

    Accurate positional measurements of planets and satellites are used to improve our knowledge of their dynamics and to infer the accuracy of planet and satellite ephemerides. In the framework of the FP7 ESPaCE project, we provide the positions of Mars, Phobos, and Deimos taken with the U.S. Naval Observatory 26-inch refractor during the 1971 opposition of the planet. These plates were measured with the digitizer of the Royal Observatory of Belgium and reduced through an optimal process that includes image, instrumental, and spherical corrections to provide the most accurate data. We compared the observed positions of the planet Mars and its satellites with the theoretical positions from INPOP10 and DE430 planetary ephemerides, and from NOE and MAR097 satellite ephemerides. The rms residuals in RA and Dec. of one position is less than 60 mas, or about 20 km at Mars. This accuracy is comparable to the most recent CCD observations. Moreover, it shows that astrometric data derived from photographic plates can comp...

  12. Astrometric Monitoring of the HR 8799 Planets: Orbit Constraints from Self-Consistent Measurements

    CERN Document Server

    Konopacky, Q M; Macintosh, B A; Galicher, R; Barman, T S; Metchev, S A; Zuckerman, B

    2016-01-01

    We present new astrometric measurements from our ongoing monitoring campaign of the HR 8799 directly imaged planetary system. These new data points were obtained with NIRC2 on the W.M. Keck II 10 meter telescope between 2009 and 2014. In addition, we present updated astrometry from previously published observations in 2007 and 2008. All data were reduced using the SOSIE algorithm, which accounts for systematic biases present in previously published observations. This allows us to construct a self-consistent data set derived entirely from NIRC2 data alone. From this dataset, we detect acceleration for two of the planets (HR 8799b and e) at $>$3$\\sigma$. We also assess possible orbital parameters for each of the four planets independently. We find no statistically significant difference in the allowed inclinations of the planets. Fitting the astrometry while forcing coplanarity also returns $\\chi^2$ consistent to within 1$\\sigma$ of the best fit values, suggesting that if inclination offsets of $\\lesssim$20$^{o...

  13. The Second Post-Newtonian Light Propagation and Its Astrometric Measurement in the SOLAR SYSTEM

    CERN Document Server

    Deng, Xue-Mei

    2015-01-01

    The relativistic theories of light propagation are generalized by introducing two new parameters $\\varsigma$ and $\\eta$ in the second post-Newtonian (2PN) order, in addition to the parameterized post-Newtonian parameters $\\gamma$ and $\\beta$. This new 2PN parameterized (2PPN) formalism includes the non-stationary gravitational fields and the influences of all kinds of relativistic effects. The multipolar components of gravitating bodies are taken into account as well at the first post-Newtonian order. The equations of motion and their solutions of this 2PPN light propagation problem are obtained. Started from the definition of a measurable quantity, a gauge-invariant angle between the directions of two incoming photons for a differential measurement in astrometric observation is discussed and its formula is derived. For a precision level of a few microacrsecond ($\\mu$as) for space astrometry missions in the near future, we further consider a model of angular measurement, LATOR-like missions. In this case, all...

  14. Habitable Worlds Around M Dwarf Stars: The CAPSCam Astrometric Planet Search

    Science.gov (United States)

    Boss, Alan P.; Weinberger, Alycia J.; Anglada-Escudé, Guillem; Thompson, Ian B.; Brahm, Rafael

    2014-04-01

    M dwarf stars are attractive targets in the search for habitable worlds as a result of their relative abundance and proximity, making them likely targets for future direct detection efforts. Hot super-Earths as well as gas giants have already been detected around a number of early M dwarfs, and the former appear to be the high-mass end of the population of rocky, terrestrial exoplanets. The Carnegie Astrometric Planet Search (CAPS) program has been underway since March 2007, searching ~ 100 nearby late M, L, and T dwarfs for gas giant planets on orbits wide enough for habitable worlds to orbit interior to them. The CAPSCam-N camera on the 2.5-m du Pont telescope at the Las Campanas Observatory has demonstrated the ability to detect planets as low in mass as Saturn orbiting at several AU around late M dwarfs within 15 pc. Over the next decade, the CAPS program will provide new constraints on the planetary census around late M dwarf stars, and hence on the suitability of these nearby planetary systems for supporting life.

  15. THE APPLICATION OF MULTIVIEW METHODS FOR HIGH-PRECISION ASTROMETRIC SPACE VLBI AT LOW FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, R.; Rioja, M.; Imai, H. [International Centre for Radio Astronomy Research, M468, University of Western Australia, 35 Stirling Hwy, Crawley, Western Australia 6009 (Australia); Asaki, Y. [Institute of Space and Astronautical Science, 3-1-1 Yoshinodai, Chuou, Sagamihara, Kanagawa 252-5210 (Japan); Hong, X.-Y.; Shen, Z., E-mail: richard.dodson@icrar.org [Shanghai Astronomical Observatory, CAS, 200030 Shanghai (China)

    2013-06-15

    High-precision astrometric space very long baseline interferometry (S-VLBI) at the low end of the conventional frequency range, i.e., 20 cm, is a requirement for a number of high-priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in pulsar-black hole pairs and OH masers anywhere in the Milky Way and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8 m in size and with ionospheric atmospheres consistent with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high-quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.

  16. The application of MultiView Methods for High Precision Astrometric Space VLBI at Low Frequencies

    CERN Document Server

    Dodson, R; Asaki, Y; Imai, H; Hong, X -Y; Shen, Z

    2013-01-01

    High precision astrometric Space Very Long Baseline Interferometry (S-VLBI) at the low end of the conventional frequency range, i.e. 20cm, is a requirement for a number of high priority science goals. These are headlined by obtaining trigonometric parallax distances to pulsars in Pulsar--Black Hole pairs and OH masers anywhere in the Milky Way Galaxy and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8m in size and with ionospheric atmospheres consistant with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high quality orbit reconstruction of a space-based radio tele...

  17. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  18. Blindness and vision loss

    Science.gov (United States)

    ... means you cannot see anything and DO NOT see light. (Most people who use the term "blindness" mean ... the vision loss. For long-term vision loss, see a low-vision specialist, who can help you learn to care for yourself and ... of vision; No light perception (NLP); Low vision; Vision loss and blindness ...

  19. "Color-Blind" Racism.

    Science.gov (United States)

    Carr, Leslie G.

    Examining race relations in the United States from a historical perspective, this book explains how the constitution is racist and how color blindness is actually a racist ideology. It is argued that Justice Harlan, in his dissenting opinion in Plessy v. Ferguson, meant that the constitution and the law must remain blind to the existence of race…

  20. Blind Pre-School.

    Science.gov (United States)

    Taylor, Billie, Comp.

    Articles pertinent to aiding the pre-school blind child are collected in this publication. Topics include discussion of attitudes and emotional reactions important for parents and teachers of blind children, and optimal development in regard to early motor behavior and emotional and social needs. Common areas of parental concern such as discipline…

  1. Blindness%失明

    Institute of Scientific and Technical Information of China (English)

    李同良

    2009-01-01

    @@ There was a blind girl who hated herself because she was blind. She hated everyone,except her loving boyfriend who was always there for her. She told her boyfriend, "If I could only see the World, I will marry you."

  2. Blindness and Yoga

    Science.gov (United States)

    Heyes, Anthony David

    1974-01-01

    Evidence is presented to support the claims that, among many blind persons, physical inactivity leads to poor physical fitness; that a state of anxiety is often a concomitant of unguided blind mobility; and that Yogic practices offer a solution to both difficulties. (GW)

  3. "Color-Blind" Racism.

    Science.gov (United States)

    Carr, Leslie G.

    Examining race relations in the United States from a historical perspective, this book explains how the constitution is racist and how color blindness is actually a racist ideology. It is argued that Justice Harlan, in his dissenting opinion in Plessy v. Ferguson, meant that the constitution and the law must remain blind to the existence of race…

  4. Models for the blind

    DEFF Research Database (Denmark)

    Olsén, Jan-Eric

    2014-01-01

    When displayed in museum cabinets, tactile objects that were once used in the education of blind and visually impaired people, appear to us, sighted visitors, as anything but tactile. We cannot touch them due to museum policies and we can hardly imagine what it would have been like for a blind...... person to touch them in their historical context. And yet these objects are all about touch, from the concrete act of touching something to the norms that assigned touch a specific pedagogical role in nineteenth-century blind schools. The aim of this article is twofold. First, I provide a historical...... background to the tactile objects of the blind. When did they appear as a specific category of pedagogical aid and how did they help determine the relation between blindness, vision, and touch? Second, I address the tactile objects from the point of view of empirical sources and historical evidence. Material...

  5. The Calibration and Data Products of the Galaxy Evolution Explorer

    CERN Document Server

    Morrissey, Patrick; Barlow, Tom A; Small, Todd; Seibert, Mark; Wyder, Ted K; Budavari, Tamas; Arnouts, Stephane; Friedman, Peter G; Forster, Karl; Martin, D Christopher; Neff, Susan G; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Heckman, Timothy M; Lee, Young-Wook; Madore, Barry F; Milliard, Bruno; Rich, R Michael; Szalay, Alexander S; Welsh, Barry Y; Yi, Sukyoung K

    2007-01-01

    We describe the calibration status and data products pertaining to the GR2 and GR3 data releases of the Galaxy Evolution Explorer (GALEX). These releases have identical pipeline calibrations that are significantly improved over the GR1 data release. GALEX continues to survey the sky in the Far Ultraviolet (FUV, ~154 nm) and Near Ultraviolet (NUV, ~232 nm) bands, providing simultaneous imaging with a pair of photon counting, microchannel plate, delay line readout detectors. These 1.25 degree field-of-view detectors are well-suited to ultraviolet observations because of their excellent red rejection and negligible background. A dithered mode of observing and photon list output pose complex requirements on the data processing pipeline, entangling detector calibrations and aspect reconstruction algorithms. Recent improvements have achieved photometric repeatability of 0.05 and 0.03 mAB in the FUV and NUV, respectively. We have detected a long term drift of order 1% FUV and 6% NUV over the mission. Astrometric pre...

  6. Encoding audio motion: spatial impairment in early blind individuals

    Directory of Open Access Journals (Sweden)

    Sara eFinocchietti

    2015-09-01

    Full Text Available The consequence of blindness on auditory spatial localization has been an interesting issue of research in the last decade providing mixed results. Enhanced auditory spatial skills in individuals with visual impairment have been reported by multiple studies, while some aspects of spatial hearing seem to be impaired in the absence of vision. In this study, the ability to encode the trajectory of a 2 dimensional sound motion, reproducing the complete movement, and reaching the correct end-point sound position, is evaluated in 12 early blind individuals, 8 late blind individuals, and 20 age-matched sighted blindfolded controls. Early blind individuals correctly determine the direction of the sound motion on the horizontal axis, but show a clear deficit in encoding the sound motion in the lower side of the plane. On the contrary, late blind individuals and blindfolded controls perform much better with no deficit in the lower side of the plane. In fact the mean localization error resulted 271 ± 10 mm for early blind individuals, 65 ± 4 mm for late blind individuals, and 68 ± 2 mm for sighted blindfolded controls.These results support the hypothesis that i it exists a trade-off between the development of enhanced perceptual abilities and role of vision in the sound localization abilities of early blind individuals, and ii the visual information is fundamental in calibrating some aspects of the representation of auditory space in the brain.

  7. Analysis of the photometric and astrometric fidelity of high-resistivity, p- channel CCDs

    Science.gov (United States)

    Abunaemeh, Malek Amir Mahmoud

    Photometry and astrometry performed with charge coupled devices (CCDs) at the focal planes of large telescopes are indispensable tools of modern observational cosmology, astrophysics and astronomy. In the modern era of precision cosmology, variations in the sub-pixel sensitivity and spectral response of CCDs can affect the science yield of observations and must be characterized. Unfortunately, there have been very few studies to measure the sub-pixel response variations of CCDs, particularly in the context of observational cosmology. It is the aim of this thesis to perform the first measurement of the photometric and astrometric fidelity of high-resistivity, p- channel CCDs. These devices have been selected for major upcoming observational cosmology missions such as the space-based Supernova Acceleration Probe satellite (SNAP) and the ground-based Dark Energy Survey. An experimental study has been performed to make detailed measurements of the intrapixel response variations of these devices at a precision exceeding 2%, which is the level of precision required for the missions mentioned above. A 300 mm thick, 10.5 mm pixel pitch, 1.4k×1.4k format, high-resistivity, p-channel CCD operated fully depleted was illuminated by a 1.3 mm pinhole projector. The illuminated spot was moved in sub-pixel steps through various patterns to measure several properties of the device including the lateral charge diffusion, the intrapixel sensitivity variations, the effective diffusion near the edge of the device active region where electric field lines in the device may diverge, to test the photometric performance of a new technique for acquiring dithered astronomical observations coined "CCD Phase Dithering." It was determined that the intrapixel sensitivity variations were less than ˜ 0.5% in most cases. The lateral diffusion in the device was measured to be 7.41 mm in the device center, consistent with theoretical predictions. Charge spreading near the device edge resulted in an

  8. The blind hens’ challenge

    DEFF Research Database (Denmark)

    Sandøe, Peter; Hocking, Paul M.; Forkman, Björn

    2014-01-01

    about breeding blind hens. But we also argue that alternative views, which (for example) claim that it is important to respect the telos or rights of an animal, do not offer a more convincing solution to questions raised by the possibility of disenhancing animals for their own benefit.......Animal ethicists have recently debated the ethical questions raised by disenhancing animals to improve their welfare. Here, we focus on the particular case of breeding blind hens for commercial egg-laying systems, in order to benefit their welfare. Many people find breeding blind hens intuitively...

  9. Static analysis for blinding

    DEFF Research Database (Denmark)

    Nielsen, Christoffer Rosenkilde; Nielson, Hanne Riis

    2006-01-01

    operation blinding. In this paper we study the theoretical foundations for one of the successful approaches to validating cryptographic protocols and we extend it to handle the blinding primitive. Our static analysis approach is based on Flow Logic; this gives us a clean separation between the specification...... of the analysis and its realisation in an automatic tool. We concentrate on the former in the present paper and provide the semantic foundation for our analysis of protocols using blinding - also in the presence of malicious attackers....

  10. Blind Collective Signature Protocol

    Directory of Open Access Journals (Sweden)

    Nikolay A. Moldovyan

    2011-06-01

    Full Text Available Using the digital signature (DS scheme specified by Belarusian DS standard there are designed the collective and blind collective DS protocols. Signature formation is performed simultaneously by all of the assigned signers, therefore the proposed protocols can be used also as protocols for simultaneous signing a contract. The proposed blind collective DS protocol represents a particular implementation of the blind multisignature schemes that is a novel type of the signature schemes. The proposed protocols are the first implementations of the multisignature schemes based on Belarusian signature standard.

  11. The calibration of PIXIE

    Science.gov (United States)

    Fixsen, D. J.; Chuss, D. T.; Kogut, Alan; Mirel, Paul; Wollack, E. J.

    2016-07-01

    The FIRAS instrument demonstrated the use of an external calibrator to compare the sky to an instrumented blackbody. The PIXIE calibrator is improved from -35 dB to -65 dB. Another significant improvement is the ability to insert the calibrator into either input of the FTS. This allows detection and correction of additional errors, reduces the effective calibration noise by a factor of 2, eliminates an entire class of systematics and allows continuous observations. This paper presents the design and use of the PIXIE calibrator.

  12. Parallax of a Mira variable R Ursae Majoris studied with astrometric VLBI

    Science.gov (United States)

    Nakagawa, Akiharu; Kurayama, Tomoharu; Matsui, Makoto; Omodaka, Toshihiro; Honma, Mareki; Shibata, Katsunori M.; Sato, Katsuhisa; Jike, Takaaki

    2016-10-01

    We have measured an annual parallax of the Mira variable R Ursae Majoris (R UMa) with the VLBI Exploration for Radio Astronomy (VERA). From the monitoring VLBI observations over a span of about two years, we detected H2O maser spots in the LSR velocity range from 37 to 42 km s-1. We derived an annual parallax of 1.97 ± 0.05 mas, and this gives a corresponding distance of 508 ± 13 pc. The VLBI maps revealed 72 maser spots distributed in an ˜110 au area around the expected stellar position. Circumstellar kinematics of the maser spots were also revealed by subtracting a systemic motion in the Hipparcos catalog from proper motions of each maser spot derived from our VLBI observations. Infrared photometry was also conducted to measure a K-band apparent magnitude, and we obtained a mean magnitude of mK = 1.19 ± 0.02 mag. Using the trigonometric distance, mK is converted to a K-band absolute magnitude of MK = -7.34 ± 0.06 mag. This result gives a much more accurate absolute magnitude for R UMa than previously provided. We solved a zero-point of the MK-log P relation for the Galactic Mira variables and obtained a relation of MK = -3.52 log P + (1.09 ± 0.14). Other long-period variables, including red supergiants, whose distances were determined with astrometric VLBI, were also compiled to explore the different sequences of the MK-log P relation.

  13. Speckle observations with PISCO in Merate: IV. Astrometric measurements of visual binaries in 2005

    Science.gov (United States)

    Scardia, M.; Prieur, J.-L.; Pansecchi, L.; Argyle, R. W.; Sala, M.; Basso, S.; Ghigo, M.; Koechlin, L.; Aristidi, E.

    2008-01-01

    We present relative astrometric measurements of visual binaries made during the second semester of 2005, with the speckle camera PISCO at the 102 cm Zeiss telescope of Brera Astronomical Observatory, in Merate. Our sample contains orbital couples as well as binaries whose motion is still uncertain. The purpose of this long term program is to improve the accuracy of the orbits and determine the masses of the components.\\ We performed 130 new observations of 120 objects, with most of the angular separations in the range 0\\farcs1-4\\arcsec, and with an average accuracy of 0\\farcs01. Most of the position angles could be determined without the usual 180° ambiguity with the application of triple-correlation techniques, and their mean error is 0\\fdg8. We have found a possible new triple system: ADS 11077. škip0.15cm The measurements of the closest binaries were made with a new data reduction procedure, based on model fitting of the background of the auto-correlations. As this procedure proved to be very efficient, we have re-processed the old observations of close binaries made with PISCO in Merate since 2004. We thus improved 20 measurements already published and obtained 7 new measurements for observations that were previously reported as ``unresolved".\\ We finally present revised orbits for ADS 684, MCA 55Aac (in the Beta 1 Cyg-Albireo multiple system) and ADS 14783 for which the previously published orbits led to large residuals with our measurements and for which the new observations made since their computation allowed a significant improvement of those old orbits. The sum of the masses that we derived for those systems are consistent with the spectral type of the stars and the dynamic parallaxes are in good agreement with the parallaxes measured by Hipparcos.

  14. GAME - A small mission concept for high-precision astrometric test of General Relativity

    Science.gov (United States)

    Vecchiato, A.; Gai, Mario; Donati, Paolo; Morbidelli, Roberto; Lattanzi, Mario G.; Crosta, Mariateresa

    2010-11-01

    GAME (Gamma Astrometric Measurement Experiment) is a concept for a small mission whose main goal is to measure from space the γ parameter of the Parameterized Post-Newtonian formalism, Will (2001)) A satellite, looking as close as possible to the Solar limb, measures the gravitational bending of light in a way similar to that followed by past experiments from the ground during solar eclipses. In the cited formalism, deviations of the γ parameter from unity are interpreted as deviations from the predictions of General Relativity which are foreseen by several competing theories of gravity. In the present theoretical scenario, such deviations are expected to appear in the range between 10-5 and 10-7. The most stringent experimental constraints available up to now are those of the Cassini mission, that gives 1-γ≲10-5 Bertotti et al. (2003), while future space missions are expected to reach the 10-7 level of accuracy. (Vecchiato et al. (2003), Turyshev et al. (2004), Ni (2008)) Preliminary simulations have shown that the expected final accuracy of GAME can reach the 10-7 level, or better if the mission profile can be extended to fit a larger budget Vecchiato et al. (2009), Gai et al. (2009). This work, which has recently been extended to better assess the mission performances, has confirmed the previous results and has given indications on how further improve various aspects of the mission profile. Moreover, thanks to its flexible observation strategy, GAME is also able to target other interesting scientific goals in the realm of General Relativity, as well as in those involving observations of selected extrasolar systems in the brown dwarf and planetary regime.

  15. Calibration of Geodetic Instruments

    Directory of Open Access Journals (Sweden)

    Marek Bajtala

    2005-06-01

    Full Text Available The problem of metrology and security systems of unification, correctness and standard reproducibilities belong to the preferred requirements of theory and technical practice in geodesy. Requirements on the control and verification of measured instruments and equipments increase and the importance and up-to-date of calibration get into the foreground. Calibration possibilities of length-scales (of electronic rangefinders and angle-scales (of horizontal circles of geodetic instruments. Calibration of electronic rangefinders on the linear comparative baseline in terrain. Primary standard of planar angle – optical traverse and its exploitation for calibration of the horizontal circles of theodolites. The calibration equipment of the Institute of Slovak Metrology in Bratislava. The Calibration process and results from the calibration of horizontal circles of selected geodetic instruments.

  16. Blind loop syndrome

    Science.gov (United States)

    ... part of the stomach) and operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  17. Vision - night blindness

    Science.gov (United States)

    ... People with night blindness often have trouble seeing stars on a clear night or walking through a ... certain drugs Vitamin A deficiency (rare) Nontreatable causes: Birth defects Retinitis pigmentosa

  18. Visual Impairment, Including Blindness

    Science.gov (United States)

    ... Who Knows What? Survey Item Bank Search for: Visual Impairment, Including Blindness Links updated, April 2017 En ... doesn’t wear his glasses. Back to top Visual Impairments in Children Vision is one of our ...

  19. A Blind Date

    Institute of Scientific and Technical Information of China (English)

    周立

    2003-01-01

    英语对话:A: Talking about girls, I still remember my first time to meet my girlfriend. Iwas so clumsy and very nervous.B: That’s the same case with me. I had the jitters at my blind date, too.A: Did you also meet your girlfriend at a blind date?B: Yeah. I was actually very shy of speaking to girls, you know?

  20. WFC3: Status, Calibrations and Advice for the CY24 Observers

    Science.gov (United States)

    Sabbi, Elena; WFC3 Team

    2016-06-01

    The Wide Field Camera 3 is UV, Visible and near Infrared Camera on boar of the Hubble Space Telescope. We report on the current status of the instrument and on the recent significant improvements in the photometric, flat fields, dark current, and CTE calibrations for the UVIS channel. As a result of this effort we obtained the new independent solutions for the two CCD detectors, and have improved the zero points and color terms in the near-UV and visual wavelengths. We report on the improved astrometric solutions and PSF calibrations. We also highlight new observing strategies recently developed to allow efficient observations of very wide fields of view. Finally new tools for the planning and extraction of slittles spectroscopic observations of crowded fields are presented.

  1. Absolute-magnitude Calibration for W UMa-type Systems Based on Gaia Data

    Science.gov (United States)

    Mateo, Nicole M.; Rucinski, Slavek M.

    2017-09-01

    Tycho-Gaia Astrometric Solution (TGAS) parallax data are used to determine absolute magnitudes M V for 318 W UMa-type (EW) contact binary stars. A very steep (slope ≃ ‑9), single-parameter ({log}P), linear calibration can be used to predict M V to about 0.1–0.3 mag over the whole range of accessible orbital period, 0.22distribution. Although the scatter around the linear {log}P-fit is fairly large (0.2–0.4 mag), the current data do not support the inclusion of a B-V color term in the calibration. ). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

  2. Models for the Blind

    Directory of Open Access Journals (Sweden)

    Jan Eric Olsén

    2014-10-01

    Full Text Available When displayed in museum cabinets, tactile objects that were once used in the education of blind and visually impaired people, appear to us, sighted visitors, as anything but tactile. We cannot touch them due to museum policies and we can hardly imagine what it would have been like for a blind person to touch them in their historical context. And yet these objects are all about touch, from the concrete act of touching something to the norms that assigned touch a specific pedagogical role in nineteenth-century blind schools. The aim of this article is twofold. First, I provide a historical background to the tactile objects of the blind. When did they appear as a specific category of pedagogical aid and how did they help determine the relation between blindness, vision, and touch? Second, I address the tactile objects from the point of view of empirical sources and historical evidence. Material objects are rarely used as historical testimonies for the simple reason that they, unlike archival material, do not present historians with written documents that can be held as evidence of the past. However, as I point out, certain historical questions of which archives remain silent could be approached by other means such as the use of material objects. Rather than delivering concrete methodological suggestions, this second part reflects upon the historical use of material objects - both their possibilities and their limits - within the context of blindness.

  3. Astrometric Constraints on the Masses of Long-period Gas Giant Planets in the TRAPPIST-1 Planetary System

    Science.gov (United States)

    Boss, Alan P.; Weinberger, Alycia J.; Keiser, Sandra A.; Astraatmadja, Tri L.; Anglada-Escude, Guillem; Thompson, Ian B.

    2017-09-01

    Transit photometry of the M8V dwarf star TRAPPIST-1 (2MASS J23062928-0502285) has revealed the presence of at least seven planets with masses and radii similar to that of Earth, orbiting at distances that might allow liquid water to be present on their surfaces. We have been following TRAPPIST-1 since 2011 with the CAPSCam astrometric camera on the 2.5 m du Pont telescope at the Las Campanas Observatory in Chile. In 2016, we noted that TRAPPIST-1 lies slightly farther away than previously thought, at 12.49 pc, rather than 12.1 pc. Here, we examine 15 epochs of CAPSCam observations of TRAPPIST-1, spanning the five years from 2011 to 2016, and obtain a revised trigonometric distance of 12.56 ± 0.12 pc. The astrometric data analysis pipeline shows no evidence for a long-period astrometric wobble of TRAPPIST-1. After proper motion and parallax are removed, residuals at the level of ±1.3 mas remain. The amplitude of these residuals constrains the masses of any long-period gas giant planets in the TRAPPIST-1 system: no planet more massive than ∼4.6 M Jup orbits with a 1 year period, and no planet more massive than ∼1.6 M Jup orbits with a 5 year period. Further refinement of the CAPSCam data analysis pipeline, combined with continued CAPSCam observations, should either detect any long-period planets, or put an even tighter constraint on these mass upper limits.

  4. Distributed Radio Interferometric Calibration

    CERN Document Server

    Yatawatta, Sarod

    2015-01-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distribute...

  5. Verification of the Astrometric Performance of the Korean VLBI Network, using comparative SFPR studies with the VLBA at 14/7 mm

    CERN Document Server

    Rioja, Mar\\'\\ia J; Jung, TaeHyun; Sohn, Bong Won; Byun, Do-Young; Agudo, Iván; Cho, Se-Hyung; Lee, Sang-Sung; Kim, Jongsoo; Kim, Kee-Tae; Oh, Chung Sik; Han, Seog-Tae; Je, Do-Heung; Chung, Moon-Hee; Wi, Seog-Oh; Kang, Jiman; Lee, Jung-Won; Chung, Hyunsoo; Kim, Hyo Ryoung; Kim, Hyun-Goo; Lee, Chang-Hoon; Roh, Duk-Gyoo; Oh, Se-Jin; Yeom, Jae-Hwan; Song, Min-Gyu; Kang, Yong-Woo

    2014-01-01

    The Korean VLBI Network (KVN) is a new mm-VLBI dedicated array with capability for simultaneous observations at multiple frequencies, up to 129 GHz. The innovative multi-channel receivers present significant benefits for astrometric measurements in the frequency domain. The aim of this work is to verify the astrometric performance of the KVN using a comparative study with the VLBA, a well established instrument. For that purpose, we carried out nearly contemporaneous observations with the KVN and the VLBA, at 14/7 mm, in April 2013. The KVN observations consisted of simultaneous dual frequency observations, while the VLBA used fast frequency switching observations. We used the Source Frequency Phase Referencing technique for the observational and analysis strategy. We find that having simultaneous observations results in a superior performance for compensation of all atmospheric terms in the observables, in addition to offering other significant benefits for astrometric analysis. We have compared the KVN astr...

  6. Update on Astrometric Follow-Up at Apache Point Observatory by Adler Planetarium

    Science.gov (United States)

    Nault, Kristie A.; Brucker, Melissa; Hammergren, Mark

    2016-10-01

    We began our NEO astrometric follow-up and characterization program in 2014 Q4 using about 500 hours of observing time per year with the Astrophysical Research Consortium (ARC) 3.5m telescope at Apache Point Observatory (APO). Our observing is split into 2 hour blocks approximately every other night for astrometry (this poster) and several half-nights per month for spectroscopy (see poster by M. Hammergren et al.) and light curve studies.For astrometry, we use the ARC Telescope Imaging Camera (ARCTIC) with an SDSS r filter, in 2 hour observing blocks centered around midnight. ARCTIC has a magnitude limit of V~23 in 60s, and we target 20 NEOs per session. ARCTIC has a FOV 1.57 times larger and a readout time half as long as the previous imager, SPIcam, which we used from 2014 Q4 through 2015 Q3. Targets are selected primarily from the Minor Planet Center's (MPC) NEO Confirmation Page (NEOCP), and NEA Observation Planning Aid; we also refer to JPL's What's Observable page, the Spaceguard Priority List and Faint NEOs List, and requests from other observers. To quickly adapt to changing weather and seeing conditions, we create faint, midrange, and bright target lists. Detected NEOs are measured with Astrometrica and internal software, and the astrometry is reported to the MPC.As of June 19, 2016, we have targeted 2264 NEOs, 1955 with provisional designations, 1582 of which were detected. We began observing NEOCP asteroids on January 30, 2016, and have targeted 309, 207 of which were detected. In addition, we serendipitously observed 281 moving objects, 201 of which were identified as previously known objects.This work is based on observations obtained with the Apache Point Observatory 3.5m telescope, which is owned and operated by the Astrophysical Research Consortium. We gratefully acknowledge support from NASA NEOO award NNX14AL17G and thank the University of Chicago Department of Astronomy and Astrophysics for observing time in 2014.

  7. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    Science.gov (United States)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We

  8. The Science of Calibration

    Science.gov (United States)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  9. Comparing Whole Building Energy Implications of Sidelighting Systems with Alternate Manual Blind Control Algorithms

    Directory of Open Access Journals (Sweden)

    Christopher Dyke

    2015-05-01

    Full Text Available Currently, there is no manual blind control guideline used consistently throughout the energy modeling community. This paper identifies and compares five manual blind control algorithms with unique control patterns and reports blind occlusion, rate of change data, and annual building energy consumption. The blind control schemes detailed here represent five reasonable candidates for use in lighting and energy simulation based on difference driving factors. This study was performed on a medium-sized office building using EnergyPlus with the internal daylight harvesting engine. Results show that applying manual blind control algorithms affects the total annual consumption of the building by as much as 12.5% and 11.5% for interior and exterior blinds respectively, compared to the Always Retracted blinds algorithm. Peak demand was also compared showing blind algorithms affected zone load sizing by as much as 9.8%. The alternate algorithms were tested for their impact on American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE Guideline 14 calibration metrics and all models were found to differ from the original calibrated baseline by more than the recommended ±15% for coefficient of variance of the mean square error (CVRMSE and ±5% for normalized mean bias error (NMBE. The paper recommends that energy modelers use one or more manual blind control algorithms during design stages when making decisions about energy efficiency and other design alternatives.

  10. The StarScan plate measuring machine: overview and calibrations

    CERN Document Server

    Zacharias, Norbert; Holdenried, Ellis; de Cuyper, Jean-Pierre; Rafferty, Ted; Wycoff, Gary

    2008-01-01

    The StarScan machine at the U.S. Naval Observatory (USNO) completed measuring photographic astrograph plates to allow determination of proper motions for the USNO CCD Astrograph Catalog (UCAC) program. All applicable 1940 AGK2 plates, about 2200 Hamburg Zone Astrograph plates, 900 Black Birch (USNO Twin Astrograph) plates, and 300 Lick Astrograph plates have been measured. StarScan comprises of a CCD camera, telecentric lens, air-bearing granite table, stepper motor screws, and Heidenhain scales to operate in a step-stare mode. The repeatability of StarScan measures is about 0.2 micrometer. The CCD mapping as well as the global table coordinate system has been calibrated using a special dot calibration plate and the overall accuracy of StarScan x,y data is derived to be 0.5 micrometer. Application to real photographic plate data shows that position information of at least 0.65 micrometer accuracy can be extracted from course grain 103a-type emulsion astrometric plates. Transformations between "direct" and "re...

  11. Quasars can be used to verify the parallax zero-point of the Tycho-Gaia Astrometric Solution

    CERN Document Server

    Michalik, Daniel

    2016-01-01

    Context. The Gaia project will determine positions, proper motions, and parallaxes for more than one billion stars in our Galaxy. It is known that Gaia's two telescopes are affected by a small but significant variation of the basic angle between them. Unless this variation is taken into account during data processing, e.g. using on-board metrology, it causes systematic errors in the astrometric parameters, in particular a shift of the parallax zero-point. Previously, we suggested an early reduction of Gaia data for the subset of Tycho-2 stars (Tycho-Gaia Astrometric Solution; TGAS). Aims. We aim to investigate whether quasars can be used to independently verify the parallax zero-point already in early data reductions. This is not trivially possible as the observation interval is too short to disentangle parallax and proper motion for the quasar subset. Methods. We repeat TGAS simulations but additionally include simulated Gaia observations of quasars from ground-based surveys. All observations are simulated w...

  12. Interannaul variations of the vertical and their possible influence on the star catalogs derived from ground-based astrometric observations

    Science.gov (United States)

    Li, Z. X.

    The efforts at Shanghai Observatory since 1991, in response to the Resolution of IAU Comm.19: "Applications of optical astrometry time and latitude programs", is described in the paper, especially the studies concerned with the interannual variations of the vertical and their influence on the astronomical studies. It is clear now that there is a component of the order 0.01 - 0.02" on an interannual time scale in latitude residuals which is correlated with geophysical phenomena on the Earth. A recent study has confirmed that the component discovered is actually the variation of the vertical, related to ground-based observation in astronomy. So, it should be emphasized now that the variation of the vertical is significant enough to be considered in astronomy from now on. Its influence on the past studies, including the star catalogs already published and the ERP before 1980 when optical astrometry observations were still used, should be studied in the future. In comparing the HIPPARCOS catalog with those derived by the past observations, we should keep in mind the existence of this error in an astrometric observation and its influence on the star catalogs and other results derived from ground-based astrometric observations.

  13. Rotation periods and astrometric motions of the Luhman 16AB brown dwarfs by high-resolution lucky-imaging monitoring

    CERN Document Server

    Mancini, L; Littlefair, S P; Southworth, J; Bozza, V; Damasso, M; Dominik, M; Hundertmark, M; Jorgensen, U G; Juncher, D; Popovas, A; Rabus, M; Rahvar, S; Schmidt, R W; Skottfelt, J; Snodgrass, C; Sozzetti, A; Alsubai, K; Bramich, D M; Novati, S Calchi; Ciceri, S; D'Ago, G; Jaimes, R Figuera; Galianni, P; Gu, S -H; Harpsoe, K; Haugbolle, T; Henning, Th; Hinse, T C; Kains, N; Korhonen, H; Scarpetta, G; Starkey, D; Surdej, J; Wang, X -B; Wertz, O

    2015-01-01

    Context. Photometric monitoring of the variability of brown dwarfs can provide useful information about the structure of clouds in their cold atmospheres. The brown-dwarf binary system Luhman 16AB is an interesting target for such a study, as its components stand at the L/T transition and show high levels of variability. Luhman 16AB is also the third closest system to the Solar system, allowing precise astrometric investigations with ground-based facilities. Aims. The aim of the work is to estimate the rotation period and study the astrometric motion of both components. Methods. We have monitored Luhman 16AB over a period of two years with the lucky-imaging camera mounted on the Danish 1.54m telescope at La Silla, through a special i+z long-pass filter, which allowed us to clearly resolve the two brown dwarfs into single objects. An intense monitoring of the target was also performed over 16 nights, in which we observed a peak-to-peak variability of 0.20 \\pm 0.02 mag and 0.34 \\pm 0.02 mag for Luhman 16A and 1...

  14. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    Science.gov (United States)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  15. Astrometric Confirmation and Preliminary Orbital Parameters of the Young Exoplanet 51 Eridani b with the Gemini Planet Imager

    CERN Document Server

    De Rosa, Robert J; Blunt, Sarah C; Graham, James R; Konopacky, Quinn M; Marois, Christian; Pueyo, Laurent; Rameau, Julien; Wang, Jason J; Bailey, Vanessa; Chontos, Ashley; Fabrycky, Daniel C; Follette, Katherine B; Macintosh, Bruce; Marchis, Franck; Ammons, S Mark; Arriaga, Pauline; Chilcote, Jeffrey K; Doyon, René; Duchêne, Gaspard; Esposito, Thomas M; Fitzgerald, Michael P; Gerard, Benjamin; Goodsell, Stephen J; Greenbaum, Alexandra Z; Hibon, Pascale; Ingraham, Patrick; Johnson-Groh, Mara; Kalas, Paul G; Lafrenière, David; Maire, Jerome; Metchev, Stanimir; Millar-Blanchaer, Maxwell A; Morzinski, Katie M; Oppenheimer, Rebecca; Patel, Rahul I; Patience, Jennifer L; Perrin, Marshall D; Rajan, Abhijith; Rantakyrö, Fredrik T; Ruffio, Jean-Baptiste; Schneider, Adam C; Sivaramakrishnan, Anand; Song, Inseok; Tran, Debby; Ward-Duong, Kimberly; Wolff, Schuyler G

    2015-01-01

    We present new GPI observations of the young exoplanet 51 Eridani b which provide further evidence that the companion is physically associated with 51 Eridani. Combining this new astrometric measurement with those reported in the literature, we significantly reduce the posterior probability that 51 Eridani b is an unbound foreground or background T-dwarf in a chance alignment with 51 Eridani to $2\\times10^{-7}$, an order of magnitude lower than previously reported. If 51 Eridani b is indeed a bound object, then we have detected orbital motion of the planet between the discovery epoch and the latest epoch. By implementing a computationally efficient Monte Carlo technique, preliminary constraints are placed on the orbital parameters of the system. The current set of astrometric measurements suggest an orbital semi-major axis of $14^{+7}_{-3}$ AU, corresponding to a period of $41^{+35}_{-12}$ yr (assuming a mass of $1.75$ M$_{\\odot}$ for the central star), and an inclination of $138^{+15}_{-13}$ deg. The remaini...

  16. Handheld temperature calibrator

    National Research Council Canada - National Science Library

    Martella, Melanie

    2003-01-01

    ... you sign on. What are you waiting for? JOFRA ETC Series dry-block calibrators from AMETEK Test & Calibration Instruments, Largo, FL, are small enough to be handheld and feature easy-to-read displays, multiple bore blocks, programmable test setup, RS-232 communications, and software. Two versions are available: the ETC 125A that ranges from -10[degrees]C to 125[d...

  17. OLI Radiometric Calibration

    Science.gov (United States)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  18. Models for the Blind

    OpenAIRE

    Jan Eric Olsén

    2014-01-01

    When displayed in museum cabinets, tactile objects that were once used in the education of blind and visually impaired people, appear to us, sighted visitors, as anything but tactile. We cannot touch them due to museum policies and we can hardly imagine what it would have been like for a blind person to touch them in their historical context. And yet these objects are all about touch, from the concrete act of touching something to the norms that assigned touch a specific pedagogical role in n...

  19. WFPC2 Polarization Calibration

    Science.gov (United States)

    Biretta, J.; McMaster, M.

    1997-12-01

    We derive a detailed calibration for WFPC2 polarization data which is accurate to about 1.5%. We begin by computing polarizer flats, and show how they are applied to data. A physical model for the polarization effects of the WFPC2 optics is then created using Mueller matricies. This model includes corrections for the instrumental polarization (diattenuation and phase retardance) of the pick-off mirror, as well as the high cross-polarization transmission of the polarizer filter. We compare this model against the on-orbit observations of polarization calibrators, and show it predicts relative counts in the different polarizer/aperture settings to 1.5% RMS accuracy. We then show how this model can be used to calibrate GO data, and present two WWW tools which allow observers to easily calibrate their data. Detailed examples are given illustrationg the calibration and display of WFPC2 polarization data. In closing we describe future plans and possible improvements.

  20. Sandia WIPP calibration traceability

    Energy Technology Data Exchange (ETDEWEB)

    Schuhen, M.D. [Sandia National Labs., Albuquerque, NM (United States); Dean, T.A. [RE/SPEC, Inc., Albuquerque, NM (United States)

    1996-05-01

    This report summarizes the work performed to establish calibration traceability for the instrumentation used by Sandia National Laboratories at the Waste Isolation Pilot Plant (WIPP) during testing from 1980-1985. Identifying the calibration traceability is an important part of establishing a pedigree for the data and is part of the qualification of existing data. In general, the requirement states that the calibration of Measuring and Test equipment must have a valid relationship to nationally recognized standards or the basis for the calibration must be documented. Sandia recognized that just establishing calibration traceability would not necessarily mean that all QA requirements were met during the certification of test instrumentation. To address this concern, the assessment was expanded to include various activities.

  1. Using acoustic information to perceive room size: effects of blindness, room reverberation time, and stimulus.

    Science.gov (United States)

    Kolarik, Andrew J; Pardhan, Shahina; Cirstea, Silvia; Moore, Brian C J

    2013-01-01

    Blind participants greatly rely on sound for spatial information regarding the surrounding environment. It is not yet established whether lack of vision to calibrate audition in far space affects blind participants' internal spatial representation of acoustic room size. Furthermore, blind participants may rely more on farthest distance estimates to sound sources compared with sighted participants when perceiving room size. Here we show that judgments of apparent room size and sound distance are correlated, more so for blind than for sighted participants. Sighted participants judged a reverberant virtual room to be larger for speech than for music or noise stimuli, whereas blind participants did not. The results suggest that blindness affects the use of room reverberation for distance and room-size judgments.

  2. Oplysnigens blinde vinkler

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Hansen, Pelle Guldborg

    manipulation og fordrejning, til at påvirke menneskers overvejelser, beslutninger og handlinger, både individuelt og kollektivt, hvilket i sidste ende kan få betydning for de demokratiske processer. Oplysningens blinde vinkler gennemgår en række informationsfænomener, som optræder i vores dagligdag, og den...

  3. Oplysningens blinde vinkler

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Hendricks, Vincent Fella

    manipulation og fordrejning, til at påvirke menneskers overvejelser, beslutninger og handlinger, både individuelt og kollektivt, hvilket i sidste ende kan få betydning for de demokratiske processer. Oplysningens blinde vinkler gennemgår en række informationsfænomener, som optræder i vores dagligdag, og den...

  4. Testing Children for Color Blindness

    Science.gov (United States)

    ... Stories Español Eye Health / News Testing Children for Color Blindness Written By: Shirley Dang Apr. 03, 2014 New study shows that kids can be tested for color blindness as soon as age 4, finds Caucasian boys ...

  5. Postural control in blind subjects

    Directory of Open Access Journals (Sweden)

    Antonio Vinicius Soares

    2011-12-01

    Full Text Available Objective: To analyze postural control in acquired and congenitally blind adults. Methods: A total of 40 visually impaired adults participated in the research, divided into 2 groups, 20 with acquired blindness and 20 with congenital blindness - 21 males and 19 females, mean age 35.8 ± 10.8. The Brazilian version of Berg Balance Scale and the motor domain of functional independence measure were utilized. Results: On Berg Balance Scale the mean for acquired blindness was 54.0 ± 2.4 and 54.4 ± 2.5 for congenitally blind subjects; on functional independence measure the mean for acquired blind group was 87.1 ± 4.8 and 87.3 ± 2.3 for congenitally blind group. Conclusion: Based upon the scale used the results suggest the ability to control posture can be developed by compensatory mechanisms and it is not affected by visual loss in congenitally and acquired blindness.

  6. Segment Based Camera Calibration

    Institute of Scientific and Technical Information of China (English)

    马颂德; 魏国庆; 等

    1993-01-01

    The basic idea of calibrating a camera system in previous approaches is to determine camera parmeters by using a set of known 3D points as calibration reference.In this paper,we present a method of camera calibration in whih camera parameters are determined by a set of 3D lines.A set of constraints is derived on camea parameters in terms of perspective line mapping.Form these constraints,the same perspective transformation matrix as that for point mapping can be computed linearly.The minimum number of calibration lines is 6.This result generalizes that of Liu,Huang and Faugeras[12] for camera location determination in which at least 8 line correspondences are required for linear computation of camera location.Since line segments in an image can be located easily and more accurately than points,the use of lines as calibration reference tends to ease the computation in inage preprocessing and to improve calibration accuracy.Experimental results on the calibration along with stereo reconstruction are reported.

  7. Blind Source Separation Algorithms for PSF Subtraction from Direct Imaging

    Science.gov (United States)

    Shapiro, Jacob; Ranganathan, Nikhil; Savransky, Dmitry; Ruffio, Jean-Baptise; Macintosh, Bruce; GPIES Team

    2017-01-01

    The principal difficulty with detecting planets via direct imaging is that the target signal is similar in magnitude, or fainter, than the noise sources in the image. To compensate for this, several methods exist to subtract the PSF of the host star and other confounding noise sources. One of the most effective methods is Karhunen-Loève Image Processing (KLIP). The core algorithm within KLIP is Principal Component Analysis, which is a member of a class of algorithms called Blind Source Separation (BSS).We examine three other BSS algorithms that may potentially also be used for PSF subtraction: Independent Component Analysis, Stationary Subspace Analysis, and Common Spatial Pattern Filtering. The underlying principles of each of the algorithms is discussed, as well as the processing steps needed to achieve PSF subtraction. The algorithms are examined both as primary PSF subtraction techniques, as well as additional postprocessing steps used with KLIP.These algorithms have been used on data from the Gemini Planet Imager, analyzing images of β Pic b. To build a reference library, both Angular Differential Imaging and Spectral Differential Imaging were used. To compare to KLIP, three major metrics are examined: computation time, signal-to-noise ratio, and astrometric and photometric biases in different image regimes (e.g., speckle-dominated compared to Poisson-noise dominated). Preliminary results indicate that these BSS algorithms improve performance when used as an enhancement for KLIP, and that they can achieve similar SNR when used as the primary method of PSF subtraction.

  8. Corneal blindness and xenotransplantation.

    Science.gov (United States)

    Lamm, Vladimir; Hara, Hidetaka; Mammen, Alex; Dhaliwal, Deepinder; Cooper, David K C

    2014-01-01

    Approximately 39 million people are blind worldwide, with an estimated 285 million visually impaired. The developing world shoulders 90% of the world's blindness, with 80% of causative diseases being preventable or treatable. Blindness has a major detrimental impact on the patient, community, and healthcare spending. Corneal diseases are significant causes of blindness, affecting at least 4 million people worldwide. The prevalence of corneal disease varies between parts of the world. Trachoma, for instance, is the second leading cause of blindness in Africa, after cataracts, but is rarely found today in developed nations. When preventive strategies have failed, corneal transplantation is the most effective treatment for advanced corneal disease. The major surgical techniques for corneal transplantation include penetrating keratoplasty (PK), anterior lamellar keratoplasty, and endothelial keratoplasty (EK). Indications for corneal transplantation vary between countries, with Fuchs' dystrophy being the leading indication in the USA and keratoconus in Australia. With the exception of the USA, where EK will soon overtake PK as the most common surgical procedure, PK is the overwhelming procedure of choice. Success using corneal grafts in developing nations, such as Nepal, demonstrates the feasibility of corneal transplantation on a global scale. The number of suitable corneas from deceased human donors that becomes available will never be sufficient, and so research into various alternatives, for example stem cells, amniotic membrane transplantation, synthetic and biosynthetic corneas, and xenotransplantation, is progressing. While each of these has potential, we suggest that xenotransplantation holds the greatest potential for a corneal replacement. With the increasing availability of genetically engineered pigs, pig corneas may alleviate the global shortage of corneas in the near future.

  9. Site Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the site calibration carried out at Østerild, during a given period. The site calibration was performed with two Windcube WLS7 (v1) lidars at ten measurements heights. The lidar is not a sensor approved by the current version of the IEC 61400-12-1 [1] and therefore the site...... calibration with lidars does not comply with the standard. However, the measurements are carried out following the guidelines of IEC 61400-12-1 where possible, but with some deviations presented in the following chapters....

  10. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  11. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  12. Calibration Fixture For Anemometer Probes

    Science.gov (United States)

    Lewis, Charles R.; Nagel, Robert T.

    1993-01-01

    Fixture facilitates calibration of three-dimensional sideflow thermal anemometer probes. With fixture, probe oriented at number of angles throughout its design range. Readings calibrated as function of orientation in airflow. Calibration repeatable and verifiable.

  13. The willed blindness of humans

    DEFF Research Database (Denmark)

    Gjerris, Mickey

    2012-01-01

    This paper describes how we seem to live in a willed blindness towards the effects that our meat production and consumption have on animals, the environment and the climate. It is a willed blindness that cannot be explained by either lack of knowledge or scientific uncertainty. The blindness...

  14. Astrometry with Hubble Space Telescope A Parallax of the Fundamental Distance Calibrator RR Lyrae

    CERN Document Server

    Benedict, G F; Fredrick, L W; Harrison, T E; Lee, J; Slesnick, C L; Rhee, J T; Patterson, R J; Nelan, E; Jefferys, W H; Van Altena, W F; Shelus, P J; Franz, O G; Wasserman, L H; Hemenway, P D; Duncombe, R L; Story, D; Whipple, A L; Bradley, A J

    2001-01-01

    We present an absolute parallax and relative proper motion for the fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric data from FGS 3, a white-light interferometer on HST. We find $\\pi_{abs} = 3.82 \\pm 0.2$ mas. Spectral classifications and VRIJHKT$_2$M and DDO51 photometry of the astrometric reference frame surrounding RR Lyr indicate that field extinction is low along this line of sight. We estimate =0.07\\pm0.03 for these reference stars. The extinction suffered by RR Lyr becomes one of the dominant contributors to the uncertainty in its absolute magnitude. Adopting the average field absorption, =0.07 \\pm 0.03, we obtain M_V^{RR} = 0.61 ^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 - 18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr variables in the LMC, , remaining a significant uncertainty. We compare this result to more than 80 other determinations of the distance modulus of the LMC.

  15. Calibrating nacelle lidars

    DEFF Research Database (Denmark)

    Courtney, Michael

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report...... presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated...... a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam...

  16. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  17. Air Data Calibration Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is for low altitude subsonic altimeter system calibrations of air vehicles. Mission is a direct support of the AFFTC mission. Postflight data merge is...

  18. SPOTS Calibration Example

    Directory of Open Access Journals (Sweden)

    Patterson E.

    2010-06-01

    Full Text Available The results are presented using the procedure outlined by the Standardisation Project for Optical Techniques of Strain measurement to calibrate a digital image correlation system. The process involves comparing the experimental data obtained with the optical measurement system to the theoretical values for a specially designed specimen. The standard states the criteria which must be met in order to achieve successful calibration, in addition to quantifying the measurement uncertainty in the system. The system was evaluated at three different displacement load levels, generating strain ranges from 289 µstrain to 2110 µstrain. At the 289 µstrain range, the calibration uncertainty was found to be 14.1 µstrain, and at the 2110 µstrain range it was found to be 28.9 µstrain. This calibration procedure was performed without painting a speckle pattern on the surface of the metal. Instead, the specimen surface was prepared using different grades of grit paper to produce the desired texture.

  19. Calibrated Properties Model

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers; H. Liu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to document the Calibrated Properties Model that provides calibrated parameter sets for unsaturated zone (UZ) flow and transport process models for the Yucca Mountain Site Characterization Project (YMP). This work was performed in accordance with the ''AMR Development Plan for U0035 Calibrated Properties Model REV00. These calibrated property sets include matrix and fracture parameters for the UZ Flow and Transport Model (UZ Model), drift seepage models, drift-scale and mountain-scale coupled-processes models, and Total System Performance Assessment (TSPA) models as well as Performance Assessment (PA) and other participating national laboratories and government agencies. These process models provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic and thermal-loading conditions.

  20. Traceable Pyrgeometer Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Mike; Kutchenreiter, Mark; Reda, Ibrahim; Habte, Aron; Sengupta, Manajit; Andreas, Afshin; Newman, Martina; Webb, Craig

    2016-05-02

    This presentation provides a high-level overview of the progress on the Broadband Outdoor Radiometer Calibrations for all shortwave and longwave radiometers that are deployed by the Atmospheric Radiation Measurement program.

  1. [The blindness in the literature-Jose Saramago: blindness and Albert Bang: the blind witness].

    Science.gov (United States)

    Permin, H; Norn, M

    2001-01-01

    Two novels with different aspects of blindness seen through the doctors eyes. The Portuguese Nobel-prize winner José Saramago's story of a city struck by an epidemic of "white blindness", where the truth is what we cannot bear to see. The Danish author and unskilled labourer Albert Bang's (synonym with Karl E. Rasmussen) crime novel describes a blind or pretend to be blind butcher, who is a witness to a murder. Both novels are lyric, thought-provoking and insightful.

  2. Calibrating nacelle lidars

    OpenAIRE

    Courtney, Michael

    2013-01-01

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail.The first of these is a line of sight...

  3. Scanner calibration revisited.

    Science.gov (United States)

    Pozhitkov, Alexander E

    2010-07-01

    Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2.) reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  4. Scanner calibration revisited

    Directory of Open Access Journals (Sweden)

    Pozhitkov Alexander E

    2010-07-01

    Full Text Available Abstract Background Calibration of a microarray scanner is critical for accurate interpretation of microarray results. Shi et al. (BMC Bioinformatics, 2005, 6, Art. No. S11 Suppl. 2. reported usage of a Full Moon BioSystems slide for calibration. Inspired by the Shi et al. work, we have calibrated microarray scanners in our previous research. We were puzzled however, that most of the signal intensities from a biological sample fell below the sensitivity threshold level determined by the calibration slide. This conundrum led us to re-investigate the quality of calibration provided by the Full Moon BioSystems slide as well as the accuracy of the analysis performed by Shi et al. Methods Signal intensities were recorded on three different microarray scanners at various photomultiplier gain levels using the same calibration slide from Full Moon BioSystems. Data analysis was conducted on raw signal intensities without normalization or transformation of any kind. Weighted least-squares method was used to fit the data. Results We found that initial analysis performed by Shi et al. did not take into account autofluorescence of the Full Moon BioSystems slide, which led to a grossly distorted microarray scanner response. Our analysis revealed that a power-law function, which is explicitly accounting for the slide autofluorescence, perfectly described a relationship between signal intensities and fluorophore quantities. Conclusions Microarray scanners respond in a much less distorted fashion than was reported by Shi et al. Full Moon BioSystems calibration slides are inadequate for performing calibration. We recommend against using these slides.

  5. TWSTFT Link Calibration Report

    Science.gov (United States)

    2015-09-01

    box calibrator with unknown but constant total delay during a calibration tour Total Delay: The total electrical delay from the antenna phase center...to the UTCp including all the devices/cables that the satellite and clock signals pass through. It numerically equals the sum of all the sub-delays...PTB. To average out the dimnal effects and measurement noise , 5-7 days of continuous measurements is required. 3 Setups at the Lab(k) The setup

  6. Approximation Behooves Calibration

    DEFF Research Database (Denmark)

    da Silva Ribeiro, André Manuel; Poulsen, Rolf

    2013-01-01

    Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009.......Calibration based on an expansion approximation for option prices in the Heston stochastic volatility model gives stable, accurate, and fast results for S&P500-index option data over the period 2005–2009....

  7. Astrometric sky survey of the zone +2° – +5.5° with the telescope MAC

    Science.gov (United States)

    Lazorenko, P.; Karbovsky, V.; Svachiy, L.; Buromsky, M.; Kasyan, S.

    2016-06-01

    We describe the results of the astrometric sky survey with the telescope MAC which was performed in 2010–2014 by the Main Astronomical observatory of NAS of Ukraine and Astronomical observatory of Taras Shevchenko Kiev national University. We obtained about 6 million of images of the sky objects to 17m in equatorial zone δ = +2°÷+5.5°. All images were obtained during 188 night observational series with use of V-band filter. Now we obtained the preliminary version of KMAC2.0 catalogue. We estimate that precision of positions for bright V<14m stars is 50–90 milliarcsecond and for fainter 14m

  8. Energy calibration via correlation

    CERN Document Server

    Maier, Daniel

    2015-01-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241 Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be le...

  9. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  10. Unconditionally verifiable blind computation

    CERN Document Server

    Fitzsimons, Joseph F

    2012-01-01

    Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's input, output and computation remain private. Recently the authors together with Broadbent proposed a universal unconditionally secure BQC scheme where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. A desirable property for any BQC protocol is verification, whereby the client can verify with high probability whether the server has followed the instructions of the protocol, or if there has been some deviation resulting in a corrupted output state. A verifiable BQC protocol can be viewed as an interactive proof system leading to consequences for complexity theory. In this paper we extend the BQC protocol presented in [Broadbent, Fitzsimons and Kashefi, FOCS 2009 p517] with new functionality allowing blind computational basis m...

  11. Blind Quantum Computation

    CERN Document Server

    Arrighi, P; Arrighi, Pablo; Salvail, Louis

    2003-01-01

    We investigate the possibility of having someone carry out the work of executing a function for you, but without letting him learn anything about your input. Say Alice wants Bob to compute some well-known function f upon her input x, but wants to prevent Bob from learning anything about x. The situation arises for instance if client Alice has limited computational resources in comparison with mistrusted server Bob, or if x is an inherently mobile piece of data. Could there be a protocol whereby Bob is forced to compute f(x) "blindly", i.e. without observing x? We provide such a blind computation protocol for the class of functions which admit an efficient procedure to generate random input-output pairs, e.g. factorization. The setting is quantum, the security is unconditional, the eavesdropper is as malicious as can be. Keywords: Secure Circuit Evaluation, Secure Two-party Computation, Information Hiding, Information gain vs disturbance.

  12. Postpartum cortical blindness.

    Science.gov (United States)

    Faiz, Shakeel Ahmed

    2008-09-01

    A 30-years-old third gravida with previous normal pregnancies and an unremarkable prenatal course had an emergency lower segment caesarean section at a periphery hospital for failure of labour to progress. She developed bilateral cortical blindness immediately after recovery from anesthesia due to cerebral angiopathy shown by CT and MR scan as cortical infarct cerebral angiopathy, which is a rare complication of a normal pregnancy.

  13. Color Blind Affirmative Action

    OpenAIRE

    2003-01-01

    This paper presents a conceptual framework for understanding the consequences of the widespread adoption of race-neutral alternatives' to conventional racial affirmative action policies in college admissions. A simple model of applicant competition with endogenous effort is utilized to show that, in comparison to color-conscious affirmative action, these color-blind alternatives can significantly lower the efficiency of the student selection process in equilibrium. We examine data on matricul...

  14. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  15. HAWC Timing Calibration

    CERN Document Server

    Huentemeyer, Petra; Dingus, Brenda

    2009-01-01

    The High-Altitude Water Cherenkov (HAWC) Experiment is a second-generation highsensitivity gamma-ray and cosmic-ray detector that builds on the experience and technology of the Milagro observatory. Like Milagro, HAWC utilizes the water Cherenkov technique to measure extensive air showers. Instead of a pond filled with water (as in Milagro) an array of closely packed water tanks is used. The event direction will be reconstructed using the times when the PMTs in each tank are triggered. Therefore, the timing calibration will be crucial for reaching an angular resolution as low as 0.25 degrees.We propose to use a laser calibration system, patterned after the calibration system in Milagro. Like Milagro, the HAWC optical calibration system will use ~1 ns laser light pulses. Unlike Milagro, the PMTs are optically isolated and require their own optical fiber calibration. For HAWC the laser light pulses will be directed through a series of optical fan-outs and fibers to illuminate the PMTs in approximately one half o...

  16. Calibration Under Uncertainty.

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  17. Gemini Planet Imager Observational Calibrations I: Overview of the GPI Data Reduction Pipeline

    CERN Document Server

    Perrin, Marshall D; Ingraham, Patrick; Savransky, Dmitry; Millar-Blanchaer, Max; Wolff, Schuyler G; Ruffio, Jean-Baptiste; Wang, Jason J; Draper, Zachary H; Sadakuni, Naru; Marois, Christian; Rajan, Abhijith; Fitzgerald, Michael P; Macintosh, Bruce; Graham, James R; Doyon, René; Larkin, James E; Chilcote, Jeffrey K; Goodsell, Stephen J; Palmer, David W; Labrie, Kathleen; Beaulieu, Mathilde; De Rosa, Robert J; Greenbaum, Alexandra Z; Hartung, Markus; Hibon, Pascale; Konopacky, Quinn; Lafreniere, David; Lavigne, Jean-Francois; Marchis, Franck; Patience, Jenny; Pueyo, Laurent; Rantakyrö, Fredrik T; Soummer, Rémi; Sivaramakrishnan, Anand; Thomas, Sandrine; Ward-Duong, Kimberly; Wiktorowicz, Sloane

    2014-01-01

    The Gemini Planet Imager (GPI) has as its science instrument an infrared integral field spectrograph/polarimeter (IFS). Integral field spectrographs are scientificially powerful but require sophisticated data reduction systems. For GPI to achieve its scientific goals of exoplanet and disk characterization, IFS data must be reconstructed into high quality astrometrically and photometrically accurate datacubes in both spectral and polarization modes, via flexible software that is usable by the broad Gemini community. The data reduction pipeline developed by the GPI instrument team to meet these needs is now publicly available following GPI's commissioning. This paper, the first of a series, provides a broad overview of GPI data reduction, summarizes key steps, and presents the overall software framework and implementation. Subsequent papers describe in more detail the algorithms necessary for calibrating GPI data. The GPI data reduction pipeline is open source, available from planetimager.org, and will continue...

  18. TARGETLESS CAMERA CALIBRATION

    Directory of Open Access Journals (Sweden)

    L. Barazzetti

    2012-09-01

    Full Text Available In photogrammetry a camera is considered calibrated if its interior orientation parameters are known. These encompass the principal distance, the principal point position and some Additional Parameters used to model possible systematic errors. The current state of the art for automated camera calibration relies on the use of coded targets to accurately determine the image correspondences. This paper presents a new methodology for the efficient and rigorous photogrammetric calibration of digital cameras which does not require any longer the use of targets. A set of images depicting a scene with a good texture are sufficient for the extraction of natural corresponding image points. These are automatically matched with feature-based approaches and robust estimation techniques. The successive photogrammetric bundle adjustment retrieves the unknown camera parameters and their theoretical accuracies. Examples, considerations and comparisons with real data and different case studies are illustrated to show the potentialities of the proposed methodology.

  19. Calibration Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  20. Ibis ground calibration

    Energy Technology Data Exchange (ETDEWEB)

    Bird, A.J.; Barlow, E.J.; Tikkanen, T. [Southampton Univ., School of Physics and Astronomy (United Kingdom); Bazzano, A.; Del Santo, M.; Ubertini, P. [Istituto di Astrofisica Spaziale e Fisica Cosmica - IASF/CNR, Roma (Italy); Blondel, C.; Laurent, P.; Lebrun, F. [CEA Saclay - Sap, 91 - Gif sur Yvette (France); Di Cocco, G.; Malaguti, E. [Istituto di Astrofisica Spaziale e Fisica-Bologna - IASF/CNR (Italy); Gabriele, M.; La Rosa, G.; Segreto, A. [Istituto di Astrofisica Spaziale e Fisica- IASF/CNR, Palermo (Italy); Quadrini, E. [Istituto di Astrofisica Spaziale e Fisica-Cosmica, EASF/CNR, Milano (Italy); Volkmer, R. [Institut fur Astronomie und Astrophysik, Tubingen (Germany)

    2003-11-01

    We present an overview of results obtained from IBIS ground calibrations. The spectral and spatial characteristics of the detector planes and surrounding passive materials have been determined through a series of calibration campaigns. Measurements of pixel gain, energy resolution, detection uniformity, efficiency and imaging capability are presented. The key results obtained from the ground calibration have been: - optimization of the instrument tunable parameters, - determination of energy linearity for all detection modes, - determination of energy resolution as a function of energy through the range 20 keV - 3 MeV, - demonstration of imaging capability in each mode, - measurement of intrinsic detector non-uniformity and understanding of the effects of passive materials surrounding the detector plane, and - discovery (and closure) of various leakage paths through the passive shielding system.

  1. Calibrating Legal Judgments

    Directory of Open Access Journals (Sweden)

    Frederick Schauer

    2017-09-01

    Full Text Available Objective to study the notion and essence of legal judgments calibration the possibilities of using it in the lawenforcement activity to explore the expenses and advantages of using it. Methods dialectic approach to the cognition of social phenomena which enables to analyze them in historical development and functioning in the context of the integrity of objective and subjective factors it determined the choice of the following research methods formallegal comparative legal sociological methods of cognitive psychology and philosophy. Results In ordinary life people who assess other peoplersaquos judgments typically take into account the other judgments of those they are assessing in order to calibrate the judgment presently being assessed. The restaurant and hotel rating website TripAdvisor is exemplary because it facilitates calibration by providing access to a raterrsaquos previous ratings. Such information allows a user to see whether a particular rating comes from a rater who is enthusiastic about every place she patronizes or instead from someone who is incessantly hard to please. And even when less systematized as in assessing a letter of recommendation or college transcript calibration by recourse to the decisional history of those whose judgments are being assessed is ubiquitous. Yet despite the ubiquity and utility of such calibration the legal system seems perversely to reject it. Appellate courts do not openly adjust their standard of review based on the previous judgments of the judge whose decision they are reviewing nor do judges in reviewing legislative or administrative decisions magistrates in evaluating search warrant representations or jurors in assessing witness perception. In most legal domains calibration by reference to the prior decisions of the reviewee is invisible either because it does not exist or because reviewing bodies are unwilling to admit using what they in fact know and employ. Scientific novelty for the first

  2. Iterative Magnetometer Calibration

    Science.gov (United States)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  3. Fighting blindness with microelectronics.

    Science.gov (United States)

    Zrenner, Eberhart

    2013-11-06

    There is no approved cure for blindness caused by degeneration of the photoreceptor cells of the retina. However, there has been encouraging progress with attempts to restore vision using microelectronic retinal implant devices. Yet many questions remain to be addressed. Where is the best location to implant multielectrode arrays? How can spatial and temporal resolution be improved? What are the best ways to ensure the safety and longevity of these devices? Will color vision be possible? This Perspective discusses the current state of the art of retinal implants and attempts to address some of the outstanding questions.

  4. The latest results from DICE (Detector Interferometric Calibration Experiment)

    CERN Document Server

    Crouzier, A; Henault, F; Leger, A; Cara, C; LeDuigou, J M; Preis, O; Kern, P; Delboulbe, A; Martin, G; Feautrier, P; Stadler, E; Lafrasse, S; Rochat, S; Ketchazo, C; Donati, M; Doumayrou, E; Lagage, P O; Shao, M; Goullioud, R; Nemati, B; Zhai, C; Behar, E; Potin, S; Saint-Pe, M; Dupont, J

    2016-01-01

    Theia is an astrometric mission proposed to ESA in 2014 for which one of the scientific objectives is detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. This objective requires the capability to measure stellar centroids at the precision of 1e-5 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 3e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The Theia consortium is operating a testbed in vacuum in order to achieve 1e-5 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the Theia spacecraft. The testbed consists of two main sub-systems. The first one produces pseudo stars: a blackbody source is fed into a large core fiber and lights-up a pinhole mask in the object plane, which is imaged by a...

  5. Smart Calibration of Excavators

    DEFF Research Database (Denmark)

    Bro, Marie; Døring, Kasper; Ellekilde, Lars-Peter

    2005-01-01

    Excavators dig holes. But where is the bucket? The purpose of this report is to treat four different problems concerning calibrations of position indicators for excavators in operation at concrete construction sites. All four problems are related to the question of how to determine the precise ge...

  6. Calibration with Absolute Shrinkage

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Madsen, Henrik; Thyregod, Poul

    2001-01-01

    is suggested to cope with the singular design matrix most often seen in chemometric calibration. Furthermore, the proposed algorithm may be generalized to all convex norms like Sigma/beta (j)/(gamma) where gamma greater than or equal to 1, i.e. a method that continuously varies from ridge regression...

  7. Calibrating Communication Competencies

    Science.gov (United States)

    Surges Tatum, Donna

    2016-11-01

    The Many-faceted Rasch measurement model is used in the creation of a diagnostic instrument by which communication competencies can be calibrated, the severity of observers/raters can be determined, the ability of speakers measured, and comparisons made between various groups.

  8. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  9. CALIBRATION OF PHOSWICH DETECTORS

    NARCIS (Netherlands)

    LEEGTE, HKW; KOLDENHOF, EE; BOONSTRA, AL; WILSCHUT, HW

    1992-01-01

    Two important aspects for the calibration of phoswich detector arrays have been investigated. It is shown that common gate ADCs can be used: The loss in particle identification due to fluctuations in the gate timing in multi-hit events can be corrected for by a simple procedure using the measured ti

  10. Measurement System & Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  11. LOFAR facet calibration

    CERN Document Server

    van Weeren, R J; Hardcastle, M J; Shimwell, T W; Rafferty, D A; Sabater, J; Heald, G; Sridhar, S S; Dijkema, T J; Brunetti, G; Brüggen, M; Andrade-Santos, F; Ogrean, G A; Röttgering, H J A; Dawson, W A; Forman, W R; de Gasperin, F; Jones, C; Miley, G K; Rudnick, L; Sarazin, C L; Bonafede, A; Best, P N; Bîrzan, L; Cassano, R; Chyży, K T; Croston, J H; Ensslin, T; Ferrari, C; Hoeft, M; Horellou, C; Jarvis, M J; Kraft, R P; Mevius, M; Intema, H T; Murray, S S; Orrú, E; Pizzo, R; Simionescu, A; Stroe, A; van der Tol, S; White, G J

    2016-01-01

    LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map diffuse extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional difficulties. In this paper we present a new calibration scheme, which we name facet calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed field of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at $\\sim$ 5arcsec resolu...

  12. Entropic calibration revisited

    Energy Technology Data Exchange (ETDEWEB)

    Brody, Dorje C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)]. E-mail: d.brody@imperial.ac.uk; Buckley, Ian R.C. [Centre for Quantitative Finance, Imperial College, London SW7 2AZ (United Kingdom); Constantinou, Irene C. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Meister, Bernhard K. [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom)

    2005-04-11

    The entropic calibration of the risk-neutral density function is effective in recovering the strike dependence of options, but encounters difficulties in determining the relevant greeks. By use of put-call reversal we apply the entropic method to the time reversed economy, which allows us to obtain the spot price dependence of options and the relevant greeks.

  13. An astrometric and spectroscopic study of the δ Scuti variable HD 21190 and its wide companion CPD -83° 64B

    Science.gov (United States)

    Niemczura, E.; Scholz, R.-D.; Hubrig, S.; Järvinen, S. P.; Schöller, M.; Ilyin, I.; Kahraman Aliçavuş, F.

    2017-10-01

    Although pulsations of δ Scuti type are not expected among Ap stars from a theoretical point of view, previous observations of the known δ Scuti star HD 21190 indicated a spectral classification F2 III SrEuSi:, making it the most evolved Ap star known. Our atmospheric chemical analysis based on recent High Accuracy Radial velocity Planet Searcher observations confirms the presence of chemical peculiarities in HD 21190. This star is also the only target known to host a magnetic field along with its δ Scuti pulsation properties. Using an astrometric analysis, we show that HD 21190 forms a physical binary system with the companion CPD -83° 64B. The presented astrometric and spectroscopic study of the binary components is important to understand the complex interplay between stellar pulsations, magnetic fields and chemical composition.

  14. Deaf, blind or deaf-blind: Is touch enhanced?

    Science.gov (United States)

    Papagno, Costanza; Cecchetto, Carlo; Pisoni, Alberto; Bolognini, Nadia

    2016-02-01

    When someone looses one type of sensory input, s/he may compensate by using the sensory information conveyed by other senses. To verify whether loosing a sense or two has consequences on a spared sensory modality, namely touch, and whether these consequences depend on the type of sensory loss, we investigated the effects of deafness and blindness on temporal and spatial tactile tasks in deaf, blind and deaf-blind people. Deaf and deaf-blind people performed the spatial tactile task better than the temporal one, while blind and controls showed the opposite pattern. Deaf and deaf-blind participants were impaired in temporal discrimination as compared to controls, while deaf-blind individuals outperformed blind participants in the spatial tactile task. Overall, sensory-deprived participants did not show an enhanced tactile performance. We speculate that discriminative touch is not so relevant in humans, while social touch is. Probably, more complex tactile tasks would have revealed an increased performance in sensory-deprived people.

  15. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  16. POSTERIOR SEGMENT CAUSES OF BLINDNESS AMONG CHILDREN IN BLIND SCHOOLS

    Directory of Open Access Journals (Sweden)

    Sandhya

    2015-09-01

    Full Text Available BACKGROUND: It is estimated that there are 1.4 million irreversibly blind children in the world out of which 1 million are in Asia alone. India has the highest number of blind children than any other country. Nearly 70% of the childhood blindness is avoidable. There i s paucity of data available on the causes of childhood blindness. This study focuses on the posterior segment causes of blindness among children attending blind schools in 3 adjacent districts of Andhra Pradesh. MATERIAL & METHODS: This is a cross sectiona l study conducted among 204 blind children aged 6 - 16 years age. Detailed eye examination was done by the same investigator to avoid bias. Posterior segment examination was done using a direct and/or indirect ophthalmoscope after dilating pupil wherever nec essary. The standard WHO/PBL for blindness and low vision examination protocol was used to categorize the causes of blindness. A major anatomical site and underlying cause was selected for each child. The study was carried out during July 2014 to June 2015 . The results were analyzed using MS excel software and Epi - info 7 software version statistical software. RESULTS: Majority of the children was found to be aged 13 - 16 years (45.1% and males (63.7%. Family history of blindness was noted in 26.0% and consa nguinity was reported in 29.9% cases. A majority of them were belonged to fulfill WHO grade of blindness (73.0% and in majority of the cases, the onset of blindness was since birth (83.7%. The etiology of blindness was unknown in majority of cases (57.4% while hereditary causes constituted 25.4% cases. Posterior segment causes were responsible in 33.3% cases with retina being the most commonly involved anatomical site (19.1% followed by optic nerve (14.2%. CONCLUSIONS: There is a need for mandatory oph thalmic evaluation, refraction and assessment of low vision prior to admission into blind schools with periodic evaluation every 2 - 3 years

  17. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Mortensen, Niels Gylling; Hansen, Jens Carsten

    2007-01-01

    A field calibration method and results are described along with the experience gained with the method. The cup anemometers to be calibrated are mounted in a row on a 10-m high rig and calibrated in the free wind against a reference cup anemometer. The method has been reported [1] to improve...... the statistical bias on the data relative to calibrations carried out in a wind tunnel. The methodology is sufficiently accurate for calibration of cup anemometers used for wind resource assessments and provides a simple, reliable and cost-effective solution to cup anemometer calibration, especially suited...

  18. Mercury Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  19. Justifications Shape Ethical Blind Spots

    NARCIS (Netherlands)

    Pittarello, Andrea; Leib, Margarita; Gordon-Hecker, Tom; Shalvi, Shaul

    2015-01-01

    To some extent, unethical behavior results from people's limited attention to ethical considerations, which results in an ethical blind spot. Here, we focus on the role of ambiguity in shaping people's ethical blind spots, which in turn lead to their ethical failures. We suggest that in ambiguous se

  20. Overview on Deaf-Blindness

    Science.gov (United States)

    ... build relationships and become the eventual basis for language learning. As the child who is deaf-blind becomes ... those near them, deaf-blindness fosters opportunities for learning and mutual ... M. (Eds.), (1993). Second edition. A model service delivery system for persons ...

  1. Blind Cognitive MAC Protocols

    CERN Document Server

    Mehanna, Omar; Gamal, Hesham El

    2008-01-01

    We consider the design of cognitive Medium Access Control (MAC) protocols enabling an unlicensed (secondary) transmitter-receiver pair to communicate over the idle periods of a set of licensed channels, i.e., the primary network. The objective is to maximize data throughput while maintaining the synchronization between secondary users and avoiding interference with licensed (primary) users. No statistical information about the primary traffic is assumed to be available a-priori to the secondary user. We investigate two distinct sensing scenarios. In the first, the secondary transmitter is capable of sensing all the primary channels, whereas it senses one channel only in the second scenario. In both cases, we propose MAC protocols that efficiently learn the statistics of the primary traffic online. Our simulation results demonstrate that the proposed blind protocols asymptotically achieve the throughput obtained when prior knowledge of primary traffic statistics is available.

  2. M2000 an astrometric catalog in the Bordeaux Carte du Ciel zone +11 degrees < {delta} < +18 degrees

    CERN Document Server

    Rapaport, M S; Soubiran, C; Daigne, G; Perié, J P; Bosq, F; Colin, J; Desbats, J M; Ducourant, C; Mazurier, J M; Montignac, G; Ralite, N; Réquième, Y; Viateau, B

    2001-01-01

    During four years, systematic observations have been conducted in drift scan mode with the Bordeaux automated meridian circle in the declination band [+11 ; +18]. The resulting astrometric catalog includes about 2 300 000 stars down to the magnitude limit V_M=16.3. Nearly all stars (96%) have been observed at least 6 times, the catalog being complete down to V_M=15.4. The median internal standard error in position is about 35 mas in the V_M magnitude range [11 ; 15], which degrades to about 50 mas when the faintest stars are considered. M2000 provides also one band photometry with a median internal standard error of 0.04 mag. Comparisons with the Hipparcos and bright part of Tycho-2 catalogs have enabled to estimate external errors in position to be lower than 40 mas. In this zone and at epoch 1998, the faint part of Tycho-2 is found to have an accuracy of 116 mas in alpha instead of 82 mas deduced from the model-based standard errors given in the catalog.

  3. Relativistic formulation of coordinate light time, Doppler and astrometric observables up to the second post-Minkowskian order

    CERN Document Server

    Hees, A; Poncin-Lafitte, C Le

    2014-01-01

    Given the extreme accuracy of modern space science, a precise relativistic modeling of observations is required. In particular, it is important to describe properly light propagation through the Solar System. For two decades, several modeling efforts based on the solution of the null geodesic equations have been proposed but they are mainly valid only for the first order Post-Newtonian approximation. However, with the increasing precision of ongoing space missions as Gaia, GAME, BepiColombo, JUNO or JUICE, we know that some corrections up to the second order have to be taken into account for future experiments. We present a procedure to compute the relativistic coordinate time delay, Doppler and astrometric observables avoiding the integration of the null geodesic equation. This is possible using the Time Transfer Function formalism, a powerful tool providing key quantities such as the time of flight of a light signal between two point-events and the tangent vector to its null-geodesic. Indeed we show how to ...

  4. The Calibration Reference Data System

    Science.gov (United States)

    Greenfield, P.; Miller, T.

    2016-07-01

    We describe a software architecture and implementation for using rules to determine which calibration files are appropriate for calibrating a given observation. This new system, the Calibration Reference Data System (CRDS), replaces what had been previously used for the Hubble Space Telescope (HST) calibration pipelines, the Calibration Database System (CDBS). CRDS will be used for the James Webb Space Telescope (JWST) calibration pipelines, and is currently being used for HST calibration pipelines. CRDS can be easily generalized for use in similar applications that need a rules-based system for selecting the appropriate item for a given dataset; we give some examples of such generalizations that will likely be used for JWST. The core functionality of the Calibration Reference Data System is available under an Open Source license. CRDS is briefly contrasted with a sampling of other similar systems used at other observatories.

  5. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  6. HIRDLS monochromator calibration equipment

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Djotni, Karim; Whitney, John G.; Bracken, Justain N.; Wolfenden, Roger; Row, Frederick; Palmer, Christopher W. P.; Watkins, Robert E. J.; Knight, Rodney J.; Gray, Peter F.; Hammond, Geoffory

    2003-11-01

    A specially designed and built monochromator was developed for the spectral calibration of the HIRDLS instrument. The High Resolution Dynamics Limb Sounder (HIRDLS) is a precision infra-red remote sensing instrument with very tight requirements on the knowledge of the response to received radiation. A high performance, vacuum compatible monochromator, was developed with a wavelength range from 4 to 20 microns to encompass that of the HIRDLS instrument. The monochromator is integrated into a collimating system which is shared with a set of tiny broad band sources used for independent spatial response measurements (reported elsewhere). This paper describes the design and implementation of the monochromator and the performance obtained during the period of calibration of the HIRDLS instrument at Oxford University in 2002.

  7. Optical tweezers absolute calibration

    CERN Document Server

    Dutra, R S; Neto, P A Maia; Nussenzveig, H M

    2014-01-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past fifteen years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spo...

  8. Calibration Facilities for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T.S.

    2000-06-15

    The calibration facilities will be dynamic and will change to meet the needs of experiments. Small sources, such as the Manson Source should be available to everyone at any time. Carrying out experiments at Omega is providing ample opportunity for practice in pre-shot preparation. Hopefully, the needs that are demonstrated in these experiments will assure the development of (or keep in service) facilities at each of the laboratories that will be essential for in-house preparation for experiments at NIF.

  9. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  10. Astrid-2 SSC ASUMagnetic Calibration

    DEFF Research Database (Denmark)

    Primdahl, Fritz

    1997-01-01

    Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory.......Report of the inter calibration between the starcamera and the fluxgate magnetometer onboard the ASTRID-2 satellite. This calibration was performed in the night between the 15. and 16. May 1997 at the Lovö magnetic observatory....

  11. Calibration of Underwater Sound Transducers

    Directory of Open Access Journals (Sweden)

    H.R.S. Sastry

    1983-07-01

    Full Text Available The techniques of calibration of underwater sound transducers for farfield, near-field and closed environment conditions are reviewed in this paper .The design of acoustic calibration tank is mentioned. The facilities available at Naval Physical & Oceanographic Laboratory, Cochin for calibration of transducers are also listed.

  12. The regularized blind tip reconstruction algorithm as a scanning probe microscopy tip metrology method

    CERN Document Server

    Jozwiak, G; Masalska, A; Gotszalk, T; Ritz, I; Steigmann, H

    2011-01-01

    The problem of an accurate tip radius and shape characterization is very important for determination of surface mechanical and chemical properties on the basis of the scanning probe microscopy measurements. We think that the most favorable methods for this purpose are blind tip reconstruction methods, since they do not need any calibrated characterizers and might be performed on an ordinary SPM setup. As in many other inverse problems also in case of these methods the stability of the solution in presence of vibrational and electronic noise needs application of so called regularization techniques. In this paper the novel regularization technique (Regularized Blind Tip Reconstruction - RBTR) for blind tip reconstruction algorithm is presented. It improves the quality of the solution in presence of isotropic and anisotropic noise. The superiority of our approach is proved on the basis of computer simulations and analysis of images of the Budget Sensors TipCheck calibration standard. In case of characterization ...

  13. Internet-based calibration of a multifunction calibrator

    Energy Technology Data Exchange (ETDEWEB)

    BUNTING BACA,LISA A.; DUDA JR.,LEONARD E.; WALKER,RUSSELL M.; OLDHAM,NILE; PARKER,MARK

    2000-04-17

    A new way of providing calibration services is evolving which employs the Internet to expand present capabilities and make the calibration process more interactive. Sandia National Laboratories and the National Institute of Standards and Technology are collaborating to set up and demonstrate a remote calibration of multifunction calibrators using this Internet-based technique that is becoming known as e-calibration. This paper describes the measurement philosophy and the Internet resources that can provide real-time audio/video/data exchange, consultation and training, as well as web-accessible test procedures, software and calibration reports. The communication system utilizes commercial hardware and software that should be easy to integrate into most calibration laboratories.

  14. Corneal blindness: prevention, treatment and rehabilitation

    Directory of Open Access Journals (Sweden)

    Matthew J Burton

    2009-12-01

    Full Text Available Blindness from corneal disease is a major ophthalmic public health problem. There are three important elements to addressing corneal blindness: prevention, treatment, and rehabilitation.

  15. Calibration-Free Signal-Strength Localization using Product-Moment Correlation

    NARCIS (Netherlands)

    van Kleunen, W.A.P.; Le Viet Duc, L Duc; Havinga, Paul J.M.

    2016-01-01

    Localization, a process of determining the position of a blind node, can be used in various applications. Signal-strength localization provides a low-cost and lowpower solution to positioning. Signal-strength positioning approaches using fingerprinting or calibrated approaches require a

  16. Effect of acute metabolic acid/base shifts on the human airway calibre.

    NARCIS (Netherlands)

    Brijker, F.; Elshout, F.J.J. van den; Heijdra, Y.F.; Bosch, F.H.; Folgering, H.T.M.

    2001-01-01

    Acute metabolic alkalosis (NaHCO(3)), acidosis (NH(4)Cl), and placebo (NaCl) were induced in 15 healthy volunteers (12 females, median age 34 (range 24-56) years) in a double blind, placebo controlled study to evaluate the presence of the effects on airway calibre. Acid-base shifts were determined b

  17. Mercury CEM Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  18. Self-Calibrating Pressure Transducer

    Science.gov (United States)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  19. LOVE IS COLOR BLIND

    Institute of Scientific and Technical Information of China (English)

    陈梦扬

    2013-01-01

    <正>看完这部电影,突然想起小时候看完《辛德勒的名单》后,问过母亲一个问题:"为什么有些人要嘲笑和歧视那些与众不同的人?"母亲告诉我:"我们都是一样的,没有人应当受到责备,每个人都应当为自己而活,要始终坚信‘Love is color blind(爱无定界)’。"爱究竟有无定界?有太多故事让我们相信这句话并非纸上谈兵。《汤姆叔叔的小屋》、《美国往事》、《为黛西小姐开车》……是的,"Love"是"Listen(倾听)",是无条件无偏见地倾听对方的需求,并予以协助;是"Obligate(感恩)",需要不断地感恩,付出爱来灌

  20. Perceptual Repetition Blindness Effects

    Science.gov (United States)

    Hochhaus, Larry; Johnston, James C.; Null, Cynthia H. (Technical Monitor)

    1994-01-01

    The phenomenon of repetition blindness (RB) may reveal a new limitation on human perceptual processing. Recently, however, researchers have attributed RB to post-perceptual processes such as memory retrieval and/or reporting biases. The standard rapid serial visual presentation (RSVP) paradigm used in most RB studies is, indeed, open to such objections. Here we investigate RB using a "single-frame" paradigm introduced by Johnston and Hale (1984) in which memory demands are minimal. Subjects made only a single judgement about whether one masked target word was the same or different than a post-target probe. Confidence ratings permitted use of signal detection methods to assess sensitivity and bias effects. In the critical condition for RB a precue of the post-target word was provided prior to the target stimulus (identity precue), so that the required judgement amounted to whether the target did or did not repeat the precue word. In control treatments, the precue was either an unrelated word or a dummy.

  1. CALIBRATED HYDRODYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Sezar Gülbaz

    2015-01-01

    Full Text Available The land development and increase in urbanization in a watershed affect water quantityand water quality. On one hand, urbanization provokes the adjustment of geomorphicstructure of the streams, ultimately raises peak flow rate which causes flood; on theother hand, it diminishes water quality which results in an increase in Total SuspendedSolid (TSS. Consequently, sediment accumulation in downstream of urban areas isobserved which is not preferred for longer life of dams. In order to overcome thesediment accumulation problem in dams, the amount of TSS in streams and inwatersheds should be taken under control. Low Impact Development (LID is a BestManagement Practice (BMP which may be used for this purpose. It is a land planningand engineering design method which is applied in managing storm water runoff inorder to reduce flooding as well as simultaneously improve water quality. LID includestechniques to predict suspended solid loads in surface runoff generated over imperviousurban surfaces. In this study, the impact of LID-BMPs on surface runoff and TSS isinvestigated by employing a calibrated hydrodynamic model for Sazlidere Watershedwhich is located in Istanbul, Turkey. For this purpose, a calibrated hydrodynamicmodel was developed by using Environmental Protection Agency Storm WaterManagement Model (EPA SWMM. For model calibration and validation, we set up arain gauge and a flow meter into the field and obtain rainfall and flow rate data. Andthen, we select several LID types such as retention basins, vegetative swales andpermeable pavement and we obtain their influence on peak flow rate and pollutantbuildup and washoff for TSS. Consequently, we observe the possible effects ofLID on surface runoff and TSS in Sazlidere Watershed.

  2. Dynamic Torque Calibration Unit

    Science.gov (United States)

    Agronin, Michael L.; Marchetto, Carl A.

    1989-01-01

    Proposed dynamic torque calibration unit (DTCU) measures torque in rotary actuator components such as motors, bearings, gear trains, and flex couplings. Unique because designed specifically for testing components under low rates. Measures torque in device under test during controlled steady rotation or oscillation. Rotor oriented vertically, supported by upper angular-contact bearing and lower radial-contact bearing that floats axially to prevent thermal expansion from loading bearings. High-load capacity air bearing available to replace ball bearings when higher load capacity or reduction in rate noise required.

  3. ALTEA: The instrument calibration

    Energy Technology Data Exchange (ETDEWEB)

    Zaconte, V. [INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: livio.narici@roma2.infn.it; Belli, F.; Bidoli, V.; Casolino, M.; Di Fino, L.; Narici, L.; Picozza, P.; Rinaldi, A. [INFN and University of Rome Tor Vergata, Department of Physics, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sannita, W.G. [DISM, University of Genova, Genova (Italy); Department of Psychiatry, SUNY, Stoony Brook, NY (United States); Finetti, N.; Nurzia, G.; Rantucci, E.; Scrimaglio, R.; Segreto, E. [Department of Physics, University and INFN, L' Aquila (Italy); Schardt, D. [GSI/Biophysik, Darmstadt (Germany)

    2008-05-15

    The ALTEA program is an international and multi-disciplinary project aimed at studying particle radiation in space environment and its effects on astronauts' brain functions, as the anomalous perception of light flashes first reported during Apollo missions. The ALTEA space facility includes a 6-silicon telescopes particle detector, and is onboard the International Space Station (ISS) since July 2006. In this paper, the detector calibration at the heavy-ion synchrotron SIS18 at GSI Darmstadt will be presented and compared to the Geant 3 Monte Carlo simulation. Finally, the results of a neural network analysis that was used for ion discrimination on fragmentation data will also be presented.

  4. 天体测量法探测系外行星∗%Exoplanet Detection by Astrometric Method

    Institute of Scientific and Technical Information of China (English)

    许伟维; 廖新浩; 周永宏; 许雪晴

    2016-01-01

    As we known, the exoplanets are mostly detected by the methods of radial velocity and transit, only one is found by the astrometric method. As the data of the gaia to be released, astrometry will become one of the most important method for detecting exoplanets gradually. Based on the position sequence of stars, this paper discusses the calculation of the equations of dynamics conditions involved in solving the mass and the orbit parameters of the planet. Due to the deficiency of the available theory (orbital element method), we put forward a new method (coordinate velocity method). The differential correction formulae of the two methods are presented, as well as the necessary simulation. In addition, the method established in this paper can be applied to the multi-planet system easily.%在目前已发现的系外行星中,绝大多数是由视向速度法和凌星法探测得到的,天体测量法仅发现了1颗。 gaia卫星数据即将发布,天体测量法将逐步成为系外行星探测的重要方法之一。基于天体测量法给出的恒星位置参数序列,讨论了在求解行星质量和轨道参数时涉及的动力学条件方程计算问题,给出了具体微分改正公式,同时也进行了必要的仿真模拟计算。建立的方法可以较容易地推广到多行星系统。

  5. Simple pendulum for blind students

    Science.gov (United States)

    Goncalves, A. M. B.; Cena, C. R.; Alves, D. C. B.; Errobidart, N. C. G.; Jardim, M. I. A.; Queiros, W. P.

    2017-09-01

    Faced with the need to teach physics to the visually impaired, in this paper we propose a way to demonstrate the dependence of distance and time in a pendulum experiment to blind students. The periodic oscillation of the pendulum is translated, by an Arduino and an ultrasonic sensor, in a periodic variation of frequency in a speaker. The main advantage of this proposal is the possibility that a blind student understands the movement without necessity of touching it.

  6. A Simple Accelerometer Calibrator

    Science.gov (United States)

    Salam, R. A.; Islamy, M. R. F.; Munir, M. M.; Latief, H.; Irsyam, M.; Khairurrijal

    2016-08-01

    High possibility of earthquake could lead to the high number of victims caused by it. It also can cause other hazards such as tsunami, landslide, etc. In that case it requires a system that can examine the earthquake occurrence. Some possible system to detect earthquake is by creating a vibration sensor system using accelerometer. However, the output of the system is usually put in the form of acceleration data. Therefore, a calibrator system for accelerometer to sense the vibration is needed. In this study, a simple accelerometer calibrator has been developed using 12 V DC motor, optocoupler, Liquid Crystal Display (LCD) and AVR 328 microcontroller as controller system. The system uses the Pulse Wave Modulation (PWM) form microcontroller to control the motor rotational speed as response to vibration frequency. The frequency of vibration was read by optocoupler and then those data was used as feedback to the system. The results show that the systems could control the rotational speed and the vibration frequencies in accordance with the defined PWM.

  7. Blinded trials taken to the test

    DEFF Research Database (Denmark)

    Hróbjartsson, A; Forfang, E; Haahr, M T

    2007-01-01

    Blinding can reduce bias in randomized clinical trials, but blinding procedures may be unsuccessful. Our aim was to assess how often randomized clinical trials test the success of blinding, the methods involved and how often blinding is reported as being successful....

  8. What It's Like to Be Color Blind

    Science.gov (United States)

    ... los dientes Video: Getting an X-ray What It's Like to Be Color Blind KidsHealth > For Kids > What It's Like to Be Color Blind Print A A ... blind. But some people really are color blind. It doesn't mean they can't see any ...

  9. Sub-pixel calibration for Weak Lensing and Astrometry

    Science.gov (United States)

    Shao, Michael

    WFIRST together. Specifically, we propose to develop a pre-flight ground-based characterization of the detector arrays on WIRST using our laser metrology technique. As such, the new technique offers unique capabilities for investigation of exoplanets with WFIRST. We plan to study these exciting science possibilities. We propose a 3-year program focused on the improvement, development, and application of our new technique of sub-pixel detector calibration. This proposal has several major objectives: 1. To extend our work on ultra-precise centroiding of images to the removal of image shape bias that is relevant to the weak lensing campaign on WFIRST. Ultra-precise sub-pixel calibration also enables very high photometric accuracy, similar to that on Kepler mission. We also intend to expand beyond astrometric application of sub-pixel characterization to shape bias removal and precise photometry. Much of this work can proceed using our data from CCDs. 2. To extend the applicability of our technique from optical to NIR detectors and demonstrate this new technique to the H2RG detectors. The results of this work will be directly applicable to H4RG-10 detectors, which we wish to calibrate, once they will become available. We will develop data analysis methods relevant to weak lensing surveys on WFIRST by providing a proper account for the detector systematics, essentially eliminating their contribution. 3. To explore the science implication of the high-precision astrometric measurements on WFIRST that may be possible at the level of 4 μas. To investigate the science possibilities of ultra-precise astrometry and/or photometry on WFIRST, including exoplanet astrometry of super Earths, exoplanet transit observations, determination of masses of binary stars where one component is a neutron star or black hole.

  10. Blindness in children: a worldwide perspective

    Directory of Open Access Journals (Sweden)

    Clare Gilber

    2007-06-01

    Full Text Available Many of the causes of childhood blindness are avoidable, being either preventable or treatable. Only three per cent of the world's blind population are children. However, because children have a lifetime of blindness ahead of them, the number of ‘blind person years’ resulting from blindness starting in childhood is second only to cataract. Controlling blindness in children is a priority of VISION 20203,4; however, as its causes differ from that of blindness in adults, different strategies, personnel, infrastructure, and equipment are required to combat it. There is also a greater urgency when managing children, as delays in treatment can lead to amblyopia (lazy eye.

  11. Internal Water Vapor Photoacoustic Calibration

    Science.gov (United States)

    Pilgrim, Jeffrey S.

    2009-01-01

    Water vapor absorption is ubiquitous in the infrared wavelength range where photoacoustic trace gas detectors operate. This technique allows for discontinuous wavelength tuning by temperature-jumping a laser diode from one range to another within a time span suitable for photoacoustic calibration. The use of an internal calibration eliminates the need for external calibrated reference gases. Commercial applications include an improvement of photoacoustic spectrometers in all fields of use.

  12. Multiframe Blind Super Resolution Imaging Based on Blind Deconvolution

    Institute of Scientific and Technical Information of China (English)

    元伟; 张立毅

    2016-01-01

    As an ill-posed problem, multiframe blind super resolution imaging recovers a high resolution image from a group of low resolution images with some degradations when the information of blur kernel is limited. Note that the quality of the recovered image is influenced more by the accuracy of blur estimation than an advanced regularization. We study the traditional model of the multiframe super resolution and modify it for blind deblurring. Based on the analysis, we proposed two algorithms. The first one is based on the total variation blind deconvolution algorithm and formulated as a functional for optimization with the regularization of blur. Based on the alternating minimization and the gradient descent algorithm, the high resolution image and the unknown blur kernel are esti-mated iteratively. By using the median shift and add operator, the second algorithm is more robust to the outlier influence. The MSAA initialization simplifies the interpolation process to reconstruct the blurred high resolution image for blind deblurring and improves the accuracy of blind super resolution imaging. The experimental results demonstrate the superiority and accuracy of our novel algorithms.

  13. RX130 Robot Calibration

    Science.gov (United States)

    Fugal, Mario

    2012-10-01

    In order to create precision magnets for an experiment at Oak Ridge National Laboratory, a new reverse engineering method has been proposed that uses the magnetic scalar potential to solve for the currents necessary to produce the desired field. To make the magnet it is proposed to use a copper coated G10 form, upon which a drill, mounted on a robotic arm, will carve wires. The accuracy required in the manufacturing of the wires exceeds nominal robot capabilities. However, due to the rigidity as well as the precision servo motor and harmonic gear drivers, there are robots capable of meeting this requirement with proper calibration. Improving the accuracy of an RX130 to be within 35 microns (the accuracy necessary of the wires) is the goal of this project. Using feedback from a displacement sensor, or camera and inverse kinematics it is possible to achieve this accuracy.

  14. SURF Model Calibration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  15. Radiological Calibration and Standards Facility

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL maintains a state-of-the-art Radiological Calibration and Standards Laboratory on the Hanford Site at Richland, Washington. Laboratory staff provide expertise...

  16. Field calibration of cup anemometers

    DEFF Research Database (Denmark)

    Kristensen, L.; Jensen, G.; Hansen, A.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statisticalsignificance of the calibration expressions....... It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometersmay take more than one month in order to have wind speeds covering a sufficiently large magnitude range...

  17. Calibration of Nanopositioning Stages

    Directory of Open Access Journals (Sweden)

    Ning Tan

    2015-12-01

    Full Text Available Accuracy is one of the most important criteria for the performance evaluation of micro- and nanorobots or systems. Nanopositioning stages are used to achieve the high positioning resolution and accuracy for a wide and growing scope of applications. However, their positioning accuracy and repeatability are not well known and difficult to guarantee, which induces many drawbacks for many applications. For example, in the mechanical characterisation of biological samples, it is difficult to perform several cycles in a repeatable way so as not to induce negative influences on the study. It also prevents one from controlling accurately a tool with respect to a sample without adding additional sensors for closed loop control. This paper aims at quantifying the positioning repeatability and accuracy based on the ISO 9283:1998 standard, and analyzing factors influencing positioning accuracy onto a case study of 1-DoF (Degree-of-Freedom nanopositioning stage. The influence of thermal drift is notably quantified. Performances improvement of the nanopositioning stage are then investigated through robot calibration (i.e., open-loop approach. Two models (static and adaptive models are proposed to compensate for both geometric errors and thermal drift. Validation experiments are conducted over a long period (several days showing that the accuracy of the stage is improved from typical micrometer range to 400 nm using the static model and even down to 100 nm using the adaptive model. In addition, we extend the 1-DoF calibration to multi-DoF with a case study of a 2-DoF nanopositioning robot. Results demonstrate that the model efficiently improved the 2D accuracy from 1400 nm to 200 nm.

  18. [Aiming for zero blindness].

    Science.gov (United States)

    Nakazawa, Toru

    2015-03-01

    Glaucoma is the leading cause of acquired blindness in Japan. One reason that it often leads to blindness is that it can continue to worsen even after effective medical reduction of intraocular pressure (IOP), the only evidence-based treatment. The limitations of current treatments make it critical to identify IOP-independent factors that can cause glaucoma and develop new drugs to target these factors. This is a challenging task, as the pathology of glaucoma is thought to be very complex, with different combinations of factors underlying its development and progression in different patients. Additionally, there is a deficiency in methods to efficiently perform clinical evaluations and reliably probe the state of the disease over relatively short periods. In addition, newly developed drugs need to be evaluated with clinical trials, for which human and financial resources are limited, before they can be widely used for treatment. Taking all these issues into consideration, it is evident that there are two urgent issues to consider: the development of methods to classify glaucoma in detail based on its pathology, and the improvement of clinical evaluation methods. In this review, we discuss some of our efforts to develop new neuroprotective agents for glaucoma, with a focus on the following three areas: 1. Clinical research and development of methods to classify glaucoma in detail based on IOP-independent factors, and the exploration of possibilities for the improvement of clinical evaluation of glaucoma. 2. Pathology-based research and development of new drugs for glaucoma, focusing on comprehensive gene expression analysis and the development of molecule-targeting drugs, using murine optic nerve crush as a disease model. 3. Development of next generation in vivo imaging modalities and the establishment of infrastructure enabling "big-data" analysis. First, we discuss our clinical research and the development of methods to classify glaucoma in detail based on IOP

  19. Tectonic calibrations in molecular dating

    Institute of Scientific and Technical Information of China (English)

    Ullasa KODANDARAMAIAH

    2011-01-01

    Molecular dating techniques require the use of calibrations, which are usually fossil or geological vicariance-based.Fossil calibrations have been criticised because they result only in minimum age estimates. Based on a historical biogeographic perspective, Ⅰ suggest that vicariance-based calibrations are more dangerous. Almost all analytical methods in historical biogeography are strongly biased towards inferring vicariance, hence vicariance identified through such methods is unreliable. Other studies, especially of groups found on Gondwanan fragments, have simply assumed vicariance. Although it was previously believed that vicariance was the predominant mode of speciation, mounting evidence now indicates that speciation by dispersal is common, dominating vicariance in several groups. Moreover, the possibility of speciation having occurred before the said geological event cannot be precluded. Thus, geological calibrations can under- or overestimate times, whereas fossil calibrations always result in minimum estimates. Another major drawback of vicariant calibrations is the problem of circular reasoning when the resulting estimates are used to infer ages of biogeographic events. Ⅰ argue that fossil-based dating is a superior alternative to vicariance, primarily because the strongest assumption in the latter, that speciation was caused by the said geological process, is more often than not the most tenuous. When authors prefer to use a combination of fossil and vicariant calibrations, one suggestion is to report results both with and without inclusion of the geological constraints. Relying solely on vicariant calibrations should be strictly avoided.

  20. UVIS G280 Wavelength Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Wavelength calibration of the UVIS G280 grism will be established using observations of the Wolf Rayet star WR14. Accompanying direct exposures will provide wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be obtained.

  1. New treatments of hereditary blindness

    DEFF Research Database (Denmark)

    Bertelsen, Mette; Rosenberg, Thomas; Larsen, Michael

    2013-01-01

    Ongoing clinical trials are targeting several previously intractable hereditary causes of blindness of congenital, childhood or early adulthood onset, mainly in the optic nerve and retina. The intended stage of initiation of the new therapeutic approaches ranges from neonatal life and a structura......Ongoing clinical trials are targeting several previously intractable hereditary causes of blindness of congenital, childhood or early adulthood onset, mainly in the optic nerve and retina. The intended stage of initiation of the new therapeutic approaches ranges from neonatal life...... and a structurally intact retinal tissue to adult life with a complete loss of photoreceptors. It must be assumed that some of the trials will succeed in producing new therapies and action must be taken to refine and accelerate diagnostics and to preserve therapeutic potential in blind people....

  2. Cobalt source calibration

    Energy Technology Data Exchange (ETDEWEB)

    Rizvi, H.M.

    1999-12-03

    The data obtained from these tests determine the dose rate of the two cobalt sources in SRTC. Building 774-A houses one of these sources while the other resides in room C-067 of Building 773-A. The data from this experiment shows the following: (1) The dose rate of the No.2 cobalt source in Building 774-A measured 1.073 x 10{sup 5} rad/h (June 17, 1999). The dose rate of the Shepherd Model 109 Gamma cobalt source in Building 773-A measured 9.27 x 10{sup 5} rad/h (June 25, 1999). These rates come from placing the graduated cylinder containing the dosimeter solution in the center of the irradiation chamber. (2) Two calibration tests in the 774-A source placed the graduated cylinder with the dosimeter solution approximately 1.5 inches off center in the axial direction. This movement of the sample reduced the measured dose rate 0.92% from 1.083 x 10{sup 5} rad/h to 1.073 x 10{sup 5} rad/h. and (3) A similar test in the cobalt source in 773-A placed the graduated cylinder approximately 2.0 inches off center in the axial direction. This change in position reduced the measured dose rate by 10.34% from 1.036 x 10{sup 6} to 9.27 x 10{sup 5}. This testing used chemical dosimetry to measure the dose rate of a radioactive source. In this method, one determines the dose by the chemical change that takes place in the dosimeter. For this calibration experiment, the author used a Fricke (ferrous ammonium sulfate) dosimeter. This solution works well for dose rates to 10{sup 7} rad/h. During irradiation of the Fricke dosimeter solution the Fe{sup 2+} ions ionize to Fe{sup 3+}. When this occurs, the solution acquires a slightly darker tint (not visible to the human eye). To determine the magnitude of the change in Fe ions, one places the solution in an UV-VIS Spectrophotometer. The UV-VIS Spectrophotometer measures the absorbency of the solution. Dividing the absorbency by the total time (in minutes) of exposure yields the dose rate.

  3. Automated calibration of multistatic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Henderer, Bruce

    2017-03-14

    A method is disclosed for calibrating a multistatic array having a plurality of transmitter and receiver pairs spaced from one another along a predetermined path and relative to a plurality of bin locations, and further being spaced at a fixed distance from a stationary calibration implement. A clock reference pulse may be generated, and each of the transmitters and receivers of each said transmitter/receiver pair turned on at a monotonically increasing time delay interval relative to the clock reference pulse. Ones of the transmitters and receivers may be used such that a previously calibrated transmitter or receiver of a given one of the transmitter/receiver pairs is paired with a subsequently un-calibrated one of the transmitters or receivers of an immediately subsequently positioned transmitter/receiver pair, to calibrate the transmitter or receiver of the immediately subsequent transmitter/receiver pair.

  4. Liquid Krypton Calorimeter Calibration Software

    CERN Document Server

    Hughes, Christina Lindsay

    2013-01-01

    Calibration of the liquid krypton calorimeter (LKr) of the NA62 experiment is managed by a set of standalone programs, or an online calibration driver. These programs are similar to those used by NA48, but have been updated to utilize classes and translated to C++ while maintaining a common functionality. A set of classes developed to handle communication with hardware was used to develop the three standalone programs as well as the main driver program for online calibration between bursts. The main calibration driver has been designed to respond to run control commands and receive burst data, both transmitted via DIM. In order to facilitate the process of reading in calibration parameters, a serializable class has been introduced, allowing the replacement of standard text files with XML configuration files.

  5. TIME CALIBRATED OSCILLOSCOPE SWEEP CIRCUIT

    Science.gov (United States)

    Smith, V.L.; Carstensen, H.K.

    1959-11-24

    An improved time calibrated sweep circuit is presented, which extends the range of usefulness of conventional oscilloscopes as utilized for time calibrated display applications in accordance with U. S. Patent No. 2,832,002. Principal novelty resides in the provision of a pair of separate signal paths, each of which is phase and amplitude adjustable, to connect a high-frequency calibration oscillator to the output of a sawtooth generator also connected to the respective horizontal deflection plates of an oscilloscope cathode ray tube. The amplitude and phase of the calibration oscillator signals in the two signal paths are adjusted to balance out feedthrough currents capacitively coupled at high frequencies of the calibration oscillator from each horizontal deflection plate to the vertical plates of the cathode ray tube.

  6. The Advanced LIGO Photon Calibrators

    CERN Document Server

    Karki, S; Kandhasamy, S; Abbott, B P; Abbott, T D; Anders, E H; Berliner, J; Betzwieser, J; Daveloza, H P; Cahillane, C; Canete, L; Conley, C; Gleason, J R; Goetz, E; Kissel, J S; Izumi, K; Mendell, G; Quetschke, V; Rodruck, M; Sachdev, S; Sadecki, T; Schwinberg, P B; Sottile, A; Wade, M; Weinstein, A J; West, M; Savage, R L

    2016-01-01

    The two interferometers of the Laser Interferometry Gravitaional-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events, and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as Photon Calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO Photon Calibrators that are currently providing fiducial displacements on the order of $10^{-18}$ m/$\\sqrt{\\textrm{Hz}}$ with accuracy and precision of better ...

  7. The Advanced LIGO photon calibrators

    Science.gov (United States)

    Karki, S.; Tuyenbayev, D.; Kandhasamy, S.; Abbott, B. P.; Abbott, T. D.; Anders, E. H.; Berliner, J.; Betzwieser, J.; Cahillane, C.; Canete, L.; Conley, C.; Daveloza, H. P.; De Lillo, N.; Gleason, J. R.; Goetz, E.; Izumi, K.; Kissel, J. S.; Mendell, G.; Quetschke, V.; Rodruck, M.; Sachdev, S.; Sadecki, T.; Schwinberg, P. B.; Sottile, A.; Wade, M.; Weinstein, A. J.; West, M.; Savage, R. L.

    2016-11-01

    The two interferometers of the Laser Interferometry Gravitational-wave Observatory (LIGO) recently detected gravitational waves from the mergers of binary black hole systems. Accurate calibration of the output of these detectors was crucial for the observation of these events and the extraction of parameters of the sources. The principal tools used to calibrate the responses of the second-generation (Advanced) LIGO detectors to gravitational waves are systems based on radiation pressure and referred to as photon calibrators. These systems, which were completely redesigned for Advanced LIGO, include several significant upgrades that enable them to meet the calibration requirements of second-generation gravitational wave detectors in the new era of gravitational-wave astronomy. We report on the design, implementation, and operation of these Advanced LIGO photon calibrators that are currently providing fiducial displacements on the order of 1 0-18m /√{Hz } with accuracy and precision of better than 1%.

  8. Antenna Calibration and Measurement Equipment

    Science.gov (United States)

    Rochblatt, David J.; Cortes, Manuel Vazquez

    2012-01-01

    A document describes the Antenna Calibration & Measurement Equipment (ACME) system that will provide the Deep Space Network (DSN) with instrumentation enabling a trained RF engineer at each complex to perform antenna calibration measurements and to generate antenna calibration data. This data includes continuous-scan auto-bore-based data acquisition with all-sky data gathering in support of 4th order pointing model generation requirements. Other data includes antenna subreflector focus, system noise temperature and tipping curves, antenna efficiency, reports system linearity, and instrument calibration. The ACME system design is based on the on-the-fly (OTF) mapping technique and architecture. ACME has contributed to the improved RF performance of the DSN by approximately a factor of two. It improved the pointing performances of the DSN antennas and productivity of its personnel and calibration engineers.

  9. High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)

    CERN Document Server

    Malbet, Fabien; Shao, Michael; Goullioud, Renaud; Lagage, Pierre-Olivier; Brown, Anthony G A; Cara, Christophe; Durand, Gilles; Eiroa, Carlos; Feautrier, Philippe; Jakobsson, Björn; Hinglais, Emmanuel; Kaltenegger, Lisa; Labadie, Lucas; Lagrange, Anne-Marie; Laskar, Jacques; Liseau, René; Lunine, Jonathan; Maldonado, Jesús; Mercier, Manuel; Mordasini, Christoph; Queloz, Didier; Quirrenbach, Andreas; Sozzetti, Alessandro; Traub, Wesley; Absil, Olivier; Alibert, Yann; Andrei, Alexandre Humberto; Beichman, Charles; Chelli, Alain; Cockell, Charles S; Duvert, Gilles; Forveille, Thierry; Garcia, Paulo J V; Hobbs, David; Krone-Martins, Alberto; Lammer, Helmut; Meunier, Nadège; Minardi, Stefano; de Almeida, André Moitinho; Rambaux, Nicolas; Raymond, Sean; Röttgering, Huub J A; Sahlmann, Johannes; Schuller, Peter A; Ségransan, Damien; Selsis, Franck; Surdej, Jean; Villaver, Eva; White, Glenn J; Zinnecker, Hans

    2011-01-01

    (abridged) A complete census of planetary systems around a volume-limited sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform sensitivity down to Earth-mass planets within their Habitable Zones out to several AUs would be a major milestone in extrasolar planets astrophysics. This fundamental goal can be achieved with a mission concept such as NEAT - the Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne extremely-high-precision astrometric measurements sufficient to detect dynamical effects due to orbiting planets of mass even lower than Earth's around the nearest stars. Such a survey mission would provide the actual planetary masses and the full orbital geometry for all the components of the detected planetary systems down to the Earth-mass limit. The NEAT performance limits can be achieved by carrying out differential astrometry between the targets and a set of suitable reference stars in the field. The NEAT instrument design consists of an off-axis para...

  10. Access to Mathematics by Blind Students: A Global Problem

    OpenAIRE

    Karshmer, Arthur I.; Daryoush D. Farsi

    2007-01-01

    The issue of blindness and legally blind is becoming a global issue. Based on the last statistics from American Foundation for the blind, there are approximately 10 million blind and visually impaired people in the United States alone. Over 45 million people around the world are completely blind. 180 million more people are legally blind, and approximately 7 million people are diagnosed as blind or legally blind every year. One of the greatest stumbling blocks in the ability of the blind to e...

  11. Computer Reader for the Blind

    Science.gov (United States)

    1990-01-01

    Optacon II uses the same basic technique of converting printed information into a tactile image as did Optacon. Optacon II can also be connected directly to a personal computer, which opens up a new range of job opportunities for the blind. Optacon II is not limited to reading printed words, it can convert any graphic image viewed by the camera. Optacon II demands extensive training for blind operators. TSI provides 60-hour training courses at its Mountain View headquarters and at training centers around the world. TeleSensory discontinued production of the Optacon as of December 1996.

  12. Night blindness and ancient remedy

    Directory of Open Access Journals (Sweden)

    H.A. Hajar Al Binali

    2014-01-01

    Full Text Available The aim of this article is to briefly review the history of night blindness and its treatment from ancient times until the present. The old Egyptians, the Babylonians, the Greeks and the Arabs used animal liver for treatment and successfully cured the disease. The author had the opportunity to observe the application of the old remedy to a patient. Now we know what the ancients did not know, that night blindness is caused by Vitamin A deficiency and the animal liver is the store house for Vitamin A.

  13. ASTROMETRIC CATALOGS: BE CAREFUL!

    Directory of Open Access Journals (Sweden)

    R. Teixeira

    2014-01-01

    Full Text Available En este trabajo hemos inicado una investigaci ́n sobre los movimientos propios en los principales –y extensos– o cat ́logos astrom ́tricos. Esta investigaci ́n consiste en la comparaci ́n de los movimientos propios de tres a e o o cat ́logos con los obtenidos exclusivamente mediante observaciones CCD con el c ́ a ırculo meridiano hechas en el Observatorio Abrah ̃o de Moraes, Valinhos (Brasil durante 15 a ̃os. La motivaci ́n para este trabajo es el uso a n o –c ́modo pero peligroso– de los movimientos propios de los m ́s importantes cat ́logos, que globalmente son o a a muy buenos, pero que localmente no lo son. Nuestro prop ́sito es llamar la atenci ́n sobre la necesidad de usar o o estos cat ́logos con cuidado, sobre todo para los movimientos propios de las estrellas d ́biles.

  14. Gamma Astrometric Measurement Experiment

    Science.gov (United States)

    Gai, M.; Lattanzi, M. G.; Ligori, S.; Loreggia, D.; Vecchiato, A.

    GAME aims at the measurement of gravitational deflection of the light by the Sun, by an optimised telescope on board a small class satellite. The targeted precision on the gamma parameter of the Parametrised Post-Newtonian formulation of General Relativity is below 10-6, i.e. one to two orders of magnitude better than the best current results. Such precision is suitable to detect possible deviations from the unity value, associated to generalised Einstein models for gravitation, with potentially huge impacts on the cosmological distribution of dark matter and dark energy. The measurement principle is based on differential astrometry. The observations also allow additional scientific objectives related to tests of General Relativity and to the study of exo-planetary systems. The instrument concept is based on a dual field, multiple aperture Fizeau interferometer, observing simultaneously two regions close to the Solar limb. The diluted optics achieves efficient rejection of the solar radiation, with good angular resolution on the science targets. We describe the science motivation, the proposed mission implementation and the expected performance.

  15. A calibrated Franklin chimes

    Science.gov (United States)

    Gonta, Igor; Williams, Earle

    1994-05-01

    Benjamin Franklin devised a simple yet intriguing device to measure electrification in the atmosphere during conditions of foul weather. He constructed a system of bells, one of which was attached to a conductor that was suspended vertically above his house. The device is illustrated in a well-known painting of Franklin (Cohen, 1985). The elevated conductor acquired a potential due to the electric field in the atmosphere and caused a brass ball to oscillate between two bells. The purpose of this study is to extend Franklin's idea by constructing a set of 'chimes' which will operate both in fair and in foul weather conditions. In addition, a mathematical relationship will be established between the frequency of oscillation of a metallic sphere in a simplified geometry and the potential on one plate due to the electrification of the atmosphere. Thus it will be possible to calibrate the 'Franklin Chimes' and to obtain a nearly instantaneous measurement of the potential of the elevated conductor in both fair and foul weather conditions.

  16. Mercury Continuous Emmission Monitor Calibration

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Eric Kalberer; Ryan Boysen; William Schuster; Joseph Rovani

    2009-03-12

    Mercury continuous emissions monitoring systems (CEMs) are being implemented in over 800 coal-fired power plant stacks throughput the U.S. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor calibrators/generators. These devices are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 and vacated by a Federal appeals court in early 2008 required that calibration be performed with NIST-traceable standards. Despite the vacature, mercury emissions regulations in the future will require NIST traceable calibration standards, and EPA does not want to interrupt the effort towards developing NIST traceability protocols. The traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued a conceptual interim traceability protocol for elemental mercury calibrators. The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The EPA traceability protocol document is divided into two separate sections. The first deals with the qualification of calibrator models by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the calibrators that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma

  17. Mexican national pyronometer network calibration

    Science.gov (United States)

    VAldes, M.; Villarreal, L.; Estevez, H.; Riveros, D.

    2013-12-01

    In order to take advantage of the solar radiation as an alternate energy source it is necessary to evaluate the spatial and temporal availability. The Mexican National Meterological Service (SMN) has a network with 136 meteorological stations, each coupled with a pyronometer for measuring the global solar radiation. Some of these stations had not been calibrated in several years. The Mexican Department of Energy (SENER) in order to count on a reliable evaluation of the solar resource funded this project to calibrate the SMN pyrometer network and validate the data. The calibration of the 136 pyronometers by the intercomparison method recommended by the World Meterological Organization (WMO) requires lengthy observations and specific environmental conditions such as clear skies and a stable atmosphere, circumstances that determine the site and season of the calibration. The Solar Radiation Section of the Instituto de Geofísica of the Universidad Nacional Autónoma de México is a Regional Center of the WMO and is certified to carry out the calibration procedures and emit certificates. We are responsible for the recalibration of the pyronometer network of the SMN. A continuous emission solar simulator with exposed areas with 30cm diameters was acquired to reduce the calibration time and not depend on atmospheric conditions. We present the results of the calibration of 10 thermopile pyronometers and one photovoltaic cell by the intercomparison method with more than 10000 observations each and those obtained with the solar simulator.

  18. The Blind Learning Aptitude Test.

    Science.gov (United States)

    Newland, T. Ernest

    A Blind Learning Aptitude Test (BLAT) was developed on the basis of sense of touch rather than on conventional experience, fine sensory discrimination, or verbal competency. From a pool of about 350 items, most of them used in testing intelligence in the sighted, a pool of 94 was selected and embossed after the manner of braille. A residual pool…

  19. The Blind as "Ordinary People".

    Science.gov (United States)

    Feinman, Saul

    1978-01-01

    Based on a paper presented at the 1977 Western Social Science Association Meeting in Denver, Colorado, the article reports on a study that compared major demographic features of a sample of 70 legally blind adults with the sighted adult sample studied in the 1975 National Opinion Research Center General Social Survey. (Author/DLS)

  20. Visual Product Identification for Blind

    Directory of Open Access Journals (Sweden)

    Krutarth Majithia

    2015-12-01

    Full Text Available This project is developed to make the life of blind people easy. This is a camera based system to scan the barcode behind the image and read the description of the product with the help of Id stored in the barcode. This is very beneficial in case of finding out the description of packaged goods to the blind people and thus helping them in deciding to purchase a product or not especially which are packaged. This is because it becomes very difficult for the blind people to distinguish between the packaged goods. In order to use this system, all the user needs to do is capture the image on the product in the mobile phone which then resolves the barcode which means it scans the image to find out the Id stored. Thus this application really benefits blind and visually impaired people and thus making their work of identifying products easy. This is very easy to use and affordable as it requires a scanner to scan the barcode and a camera phone to take the picture of the image containing the barcode. This is now easy to implement as most of the mobile phones today have the required resolution in order to scan the barcode to identify the Id stored in it and read out the product description. This project can be implemented in any shopping mall, supermarket, Book stores, Medical stores etc.

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how people ... an optical illusion? Click to Watch What is color blindness? Click to Watch How do I become a ...

  2. Blinding in randomized clinical trials: imposed impartiality

    DEFF Research Database (Denmark)

    Hróbjartsson, A; Boutron, I

    2011-01-01

    Blinding, or "masking," is a crucial method for reducing bias in randomized clinical trials. In this paper, we review important methodological aspects of blinding, emphasizing terminology, reporting, bias mechanisms, empirical evidence, and the risk of unblinding. Theoretical considerations...

  3. Elliptic Curve Blind Digital Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    YOULin; YANGYixian; WENQiaoyan

    2003-01-01

    Blind signature schemes are important cryptographic protocols in guaranteeing the privacy or anonymity of the users.Three new blind signature schemes and their corresponding generalizations are pro-posed. Moreover, their securities are simply analyzed.

  4. The Concept and Operations of Blind Number

    Institute of Scientific and Technical Information of China (English)

    PANG Yan-jun; LIU Kai-di; ZHANG Bo-wen

    2001-01-01

    This paper gives the definition and operations of blind number, and discusses its operationproperties. Blind number is a mathematical tool to express and deal with complex information with severalkinds of uncertainty.

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in the dark? ... Miller answers questions about color blindness, whether it can be treated, and how people become color blind. ...

  6. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun

    2003-01-01

    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  7. Jet energy calibration in ATLAS

    CERN Document Server

    Schouten, Doug

    A correct energy calibration for jets is essential to the success of the ATLAS experi- ment. In this thesis I study a method for deriving an in situ jet energy calibration for the ATLAS detector. In particular, I show the applicability of the missing transverse energy projection fraction method. This method is shown to set the correct mean energy for jets. Pileup effects due to the high luminosities at ATLAS are also stud- ied. I study the correlations in lateral distributions of pileup energy, as well as the luminosity dependence of the in situ calibration metho

  8. Poverty and blindness in Africa.

    Science.gov (United States)

    Naidoo, Kovin

    2007-11-01

    Africa carries a disproportionate responsibility in terms of blindness and visual impairment. With approximately 10 per cent of the world's population, Africa has 19 per cent of the world's blindness. It is no surprise that this reality also mirrors the situation in terms of the burden of world poverty. There is an increasing recognition of the need to highlight the link between poverty, development and health care. Blindness, disabling visual impairment and the overall lack of eye-care services are too often the result of social, economic and developmental challenges of the developing world. The state of eye care in Africa stands in alarming contrast to that in the rest of the world. Poor practitioner-to-patient ratios, absence of eye-care personnel, inadequate facilities, poor state funding and a lack of educational programs are the hallmarks of eye care in Africa, with preventable and treatable conditions being the leading cause of blindness. Eye diseases causing preventable blindness are often the result of a combination of factors such as poverty, lack of education and inadequate health-care services. The challenge that Vision 2020 has set itself in Africa is enormous. Africa is not a homogenous entity, the inter- and intra-country differences in economic development, prevalence of disease, delivery infrastructure and human resources amplify the challenges of meeting eye-care needs. The successful implementation of Vision 2020 programs will be hindered without the development of a comprehensive, co-ordinated strategy that is cognisant of the differences that exist and the need for comprehensive solutions that are rooted in the economic and political realities of the continent as well as the individual countries and regions within countries. This strategy should recognise the need for economic growth that results in greater state funded eye-care services that focus on health promotion to ensure the prevention of eye disease, the development of eye clinics in

  9. Partially Blind Signatures Based on Quantum Cryptography

    Science.gov (United States)

    Cai, Xiao-Qiu; Niu, Hui-Fang

    2012-12-01

    In a partially blind signature scheme, the signer explicitly includes pre-agreed common information in the blind signature, which can improve the availability and performance. We present a new partially blind signature scheme based on fundamental properties of quantum mechanics. In addition, we analyze the security of this scheme, and show it is not possible to forge valid partially blind signatures. Moreover, the comparisons between this scheme and those based on public-key cryptography are also discussed.

  10. Tactile maze solving in congenitally blind individuals

    DEFF Research Database (Denmark)

    Gagnon, Léa; Kupers, Ron; Schneider, Fabien C;

    2010-01-01

    Vision is undoubtedly important for navigation although not essential as blind individuals outperform their blindfolded seeing counterparts in a variety of navigational tasks. It is believed that the blind's superior performance is because of their efficient use of proprioceptive signals and envi......Vision is undoubtedly important for navigation although not essential as blind individuals outperform their blindfolded seeing counterparts in a variety of navigational tasks. It is believed that the blind's superior performance is because of their efficient use of proprioceptive signals...

  11. BLIND ADAPTIVE XPIC BASED ON HOS

    Institute of Scientific and Technical Information of China (English)

    Fu Haiyang; Yang Longxiang; Peng Jianglong

    2001-01-01

    This paper presents a new blind XPIC and a new adaptive blind deconvolutional algorithm based on HOS processing, which separates and equalizes the signals in real time. The simulation results demonstrate that the performance of the proposed adaptive blind algorithm,compared with the conventional algorithms, is outstanding with the feature of feasibility, stability and fast convergence rate.

  12. Occupant satisfaction with two blind control strategies

    DEFF Research Database (Denmark)

    Karlsen, Line Røseth; Heiselberg, Per Kvols; Bryn, Ida

    2015-01-01

    Highlights •Occupant satisfaction with two blind control strategies has been studied. •Control based on cut-off position of slats was more popular than closed slats. •Results from the study are helpful in development of control strategies for blinds. •The results give indications of how blinds...

  13. Psychomotor Development for the Deaf-Blind.

    Science.gov (United States)

    Sherrill, Claudine

    The stages of psychomotor development in deaf blind children and youth are reviewed, and educational principles to guide psychomotor development programs for the deaf blind are outlined. Etiological factors which contribute to the psychomotor development of deaf blind persons are discussed including nonambulation and sensory deprivation, heart…

  14. Coast guard STD calibration procedures

    National Research Council Canada - National Science Library

    Freeman, R.H; Krug, W.S

    1973-01-01

    This manual describes the procedures used by the Coast Guard Oceanographic UNIT (CGOU) to calibrate several Model 9040 STD systems, manufactured by Plessey Environmental Systems, currently in use within the Coast Guard...

  15. Calibration of "Babyline" RP instruments

    CERN Multimedia

    2015-01-01

      If you have old RP instrumentation of the “Babyline” type, as shown in the photo, please contact the Radiation Protection Group (Joffrey Germa, 73171) to have the instrument checked and calibrated. Thank you. Radiation Protection Group

  16. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    experiment built as a collaboration between the DTU, Department of Automation and the Department of Plasma Physics, The Alfvenlaboratory, Royal Institute of Technology (RIT), Stockholm. The final magnetic calibration of the Astrid-2 satellite was done at the Lovoe Magnetic Observatory under the Geological...... of the magnetometer readings in each position were related to the field magnitudes from the Observatory, and a least squares fit for the 9 magnetometer calibration parameters was performed (3 offsets, 3 scale values and 3 inter-axes angles). After corrections for the magnetometer digital-to-analogue converters...... fit calibration parameters. Owing to time shortage, we did not evaluate the temperature coefficients of the flight sensor calibration parameters. However, this was done for an identical flight spare magnetometer sensor at the magnetic coil facility belonging to the Technical University of Braunschweig...

  17. Field calibration of cup anemometers

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, L.; Jensen, G.; Hansen, A.; Kirkegaard, P.

    2001-01-01

    An outdoor calibration facility for cup anemometers, where the signals from 10 anemometers of which at least one is a reference can be recorded simultaneously, has been established. The results are discussed with special emphasis on the statistical significance of the calibration expressions. It is concluded that the method has the advantage that many anemometers can be calibrated accurately with a minimum of work and cost. The obvious disadvantage is that the calibration of a set of anemometers may take more than one month in order to have wind speeds covering a sufficiently large magnitude range in a wind direction sector where we can be sure that the instruments are exposed to identical, simultaneous wind flows. Another main conclusion is that statistical uncertainty must be carefully evaluated since the individual 10 minute wind-speed averages are not statistically independent. (au)

  18. From" Televised Blind Date” to" Televised Half-blind Wedding”

    Institute of Scientific and Technical Information of China (English)

    倪俊

    2001-01-01

    @@ A couple of weeks ago I happened to see on TV how American young men and women go out on "blind dates” , arranged by a television station. It is interesting to see how a young man and a young woman enjoy playing, dining or chatting with each other happily and naturally before a TV camera, even though they have never known or met with each other before. Yesterday evening one of the biggest national TV stations, FOX by name, made another bold try by broadcasting live a "half-blind wedding” to the whole country. It is such an original and also absurd idea that 1 think only American television-men can have figured it out and carried it out.

  19. From "Televised Blind Date" to "Televised Half-blind Wedding"

    Institute of Scientific and Technical Information of China (English)

    倪俊

    2001-01-01

    A couple of weeks ago I happened to see on TV how American young men and women go out on "blind dates", arranged by a television station, It is interesting to see bow a young man and a young woman enjoy playing, dining or chatting with each other happily and naturally before a TV camera, even though they have never known or met with each other before. Yesterday evening one of the biggest national TV stations, FOX by name, made another bold try by broadcasting live a "half-blind wedding" to the whole country. It is such an original and also absurd idea that I think only American television-men can have figured it out and carried it out. In the beginning, the directors of FOX put ads in newspapers, openly asking the public: "Who wants to marry a multi-millionaire?" It did not cost much time or

  20. Bayesian Calibration of Microsimulation Models.

    Science.gov (United States)

    Rutter, Carolyn M; Miglioretti, Diana L; Savarino, James E

    2009-12-01

    Microsimulation models that describe disease processes synthesize information from multiple sources and can be used to estimate the effects of screening and treatment on cancer incidence and mortality at a population level. These models are characterized by simulation of individual event histories for an idealized population of interest. Microsimulation models are complex and invariably include parameters that are not well informed by existing data. Therefore, a key component of model development is the choice of parameter values. Microsimulation model parameter values are selected to reproduce expected or known results though the process of model calibration. Calibration may be done by perturbing model parameters one at a time or by using a search algorithm. As an alternative, we propose a Bayesian method to calibrate microsimulation models that uses Markov chain Monte Carlo. We show that this approach converges to the target distribution and use a simulation study to demonstrate its finite-sample performance. Although computationally intensive, this approach has several advantages over previously proposed methods, including the use of statistical criteria to select parameter values, simultaneous calibration of multiple parameters to multiple data sources, incorporation of information via prior distributions, description of parameter identifiability, and the ability to obtain interval estimates of model parameters. We develop a microsimulation model for colorectal cancer and use our proposed method to calibrate model parameters. The microsimulation model provides a good fit to the calibration data. We find evidence that some parameters are identified primarily through prior distributions. Our results underscore the need to incorporate multiple sources of variability (i.e., due to calibration data, unknown parameters, and estimated parameters and predicted values) when calibrating and applying microsimulation models.

  1. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  2. UVIS G280 Flux Calibration

    Science.gov (United States)

    Bushouse, Howard

    2009-07-01

    Flux calibration, image displacement, and spectral trace of the UVIS G280 grism will be established using observations of the HST flux standard start GD71. Accompanying direct exposures will provide the image displacement measurements and wavelength zeropoints for dispersed exposures. The calibrations will be obtained at the central position of each CCD chip and at the center of the UVIS field. No additional field-dependent variations will be derived.

  3. Infrasound Sensor Calibration and Response

    Science.gov (United States)

    2012-09-01

    functions with faster rise times. SUMMARY We have documented past work on the determination of the calibration constant of the LANL infrasound sensor...Monitoring Technologies 735 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated...National Laboratory ( LANL ) has operated an infrasound sensor calibration chamber that operates over a frequency range of 0.02 to 4 Hz. This chamber has

  4. Beam Imaging and Luminosity Calibration

    CERN Document Server

    Klute, Markus; Salfeld-Nebgen, Jakob

    2016-01-01

    We discuss a method to reconstruct two-dimensional proton bunch densities using vertex distributions accumulated during LHC beam-beam scans. The $x$-$y$ correlations in the beam shapes are studied and an alternative luminosity calibration technique is introduced. We demonstrate the method on simulated beam-beam scans and estimate the uncertainty on the luminosity calibration associated to the beam-shape reconstruction to be below 1\\%.

  5. Calibration of shaft alignment instruments

    Science.gov (United States)

    Hemming, Bjorn

    1998-09-01

    Correct shaft alignment is vital for most rotating machines. Several shaft alignment instruments, ranging form dial indicator based to laser based, are commercially available. At VTT Manufacturing Technology a device for calibration of shaft alignment instruments was developed during 1997. A feature of the developed device is the similarity to the typical use of shaft alignment instruments i.e. the rotation of two shafts during the calibration. The benefit of the rotation is that all errors of the shaft alignment instrument, for example the deformations of the suspension bars, are included. However, the rotation increases significantly the uncertainty of calibration because of errors in the suspension of the shafts in the developed device for calibration of shaft alignment instruments. Without rotation the uncertainty of calibration is 0.001 mm for the parallel offset scale and 0,003 mm/m for the angular scale. With rotation the uncertainty of calibration is 0.002 mm for the scale and 0.004 mm/m for the angular scale.

  6. Color blindness and Rorschach color responsivity.

    Science.gov (United States)

    Corsino, B V

    1985-10-01

    Color vision deficits occur in 10% of the American white male population. Thus, color blindness may invalidate diagnostic hypotheses generated from Rorschach data. The Rorschach protocols of 43 white, college male color-blind subjects were compared to the protocols of normally sighted controls. The color-blind group manifested fewer pure "C" responses. No significant between group differences emerged for any of the other primary Rorschach color variables. Pure "C" responses rarely figure prominently in Rorschach evaluations, and the apparent lowered frequency of these responses by the color-blind is insufficient to warrant modification of current Rorschach practice. The data suggest that color blindness is unlikely to confound Rorschach assessment.

  7. BLIND SERBIAN RULERS AND FAMOUS PERSONS

    Directory of Open Access Journals (Sweden)

    Janicijevic Katarina

    2016-12-01

    Full Text Available History and medicine were an integral part of life-being of blind serbian acters. One of the main actors was half-blind serbian ruler, Stefan of Decani and whose name was associated with first ophthalmologic hospital and precursor of the eye`s injuries care. After, national reputation as Stefan Blind Righteous, ruler of the Serbian despot between 1458. and 1459. (member of Brankovic`s dinasty, and he was blinded by eye injuries burns. The famous national was also Filip Visnjic, as blind minstrel and authentic creator of serbian folk traditions, with sequels as a child, by bilateral infective panuveitis.

  8. Demonstration of blind quantum computing.

    Science.gov (United States)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  9. [Cortical plasticity in blind individual].

    Science.gov (United States)

    Wang, Shu-zhen; Zhu, Si-quan

    2008-10-01

    The cognitive mechanisms and functional brain imaging research on blind individuals provide special information for exploring the plasticity of the developing human brain. This paper focuses on five aspects of recent progress in this field: (1) the behavior compensation of the blind; (2) the influence of early visual deprivation and later visual deprivation on cross-modal reorganization; (3) the relationship between the complexity of task requirement and cross-modal reorganization; (4) the relationship between the sensitive periods of the visual system and the time course of cross-modal reorganization; (5) the neural mechanisms of cross-modal reorganization. These findings contribute greatly to the theoretical basis of the rehabilitation of individuals with perceptual deficits.

  10. An Astrometric Search for a Sub-stellar Companion of the M8.5 Dwarf TVLM 513-46546 Using Very Long Baseline Interferometry

    CERN Document Server

    Forbrich, Jan; Reid, Mark J

    2013-01-01

    We conducted multi-epoch VLBI observations to search for astrometric reflex motion caused by a sub-stellar companion of the M8.5 dwarf TVLM 513-46546. The observations yield an absolute parallax corresponding to a distance of 10.762+/-0.027 pc and a proper motion of 78.09+/-0.17 mas/yr. From the absence of significant residual motion, we place an upper limit to any reflex motion caused by a companion, extending the parameter space covered by previous near-infrared direct-imaging searches. By covering different orbital periods, the data exclude a phase-space of companion masses and orbital periods ranging from 3.8 Mjup with an orbital radius of ~0.05 AU (orbital period of 16 days) to 0.3 Mjup with an orbital radius of ~0.7 AU (orbital period of 710 days).

  11. [Double-blind peer review].

    Science.gov (United States)

    Fenyvesi, Tamás

    2002-02-03

    The peer review process in medical sciences is much debated. The method is not yet evidence based. Who are the reviewers and how do they perform? They are "independent" experts. As such they are bound to be involved in research similar to that outlined in the manuscript. Very often they are contestant in the same race. That is why the author consider the double blind method, where the author is blinded and the reviewer masked from each other's identity, the best choice. Nevertheless in very many scientific journals of high quality and envied impact factors do not blind the identity of the authors. Science is a race for fame, self accomplishment and also a means to get grants for pursuing the scientific research. Only success is able to provide resources for expensive scientific research. There is no fail-safe method against bias in grant giving and editorial process. In the tidal wave of electronic information it is mandatory to help in differentiating between signal and noise in science. Peer review is the best method to protect readers from the trash of uncontrolled publications in medical science.

  12. Calibration of the SNO+ experiment

    Science.gov (United States)

    Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ collaboration.

    2017-09-01

    The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.

  13. The KLOE Online Calibration System

    Institute of Scientific and Technical Information of China (English)

    E.Pasqualucci

    2001-01-01

    Based on all the features of the KLOE online software,the online calibration system performs current calibration quality checking in real time and starts automatically new calibration procedures when needed.Acalibration manager process controls the system,implementing the interface to the online system,receiving information from the run control and translating its state transitions to a separate state machine.It acts as a " calibration run controller"and performs failure recovery when requested by a set of process checkers.The core of the system is a multi-threaded OO histogram server that receives histogramming commands by remote processes and operates on local ROOT histograms.A client library and C,fortran and C++ application interface libraries allow the user to connect and define his own histogram or read histograms owned by others using an bool-like interface.Several calibration processes running in parallel in a destributed,multiplatform environment can fill the same histograms,allowing fast external information check.A monitor thread allow remote browsing for visual inspection,Pre-filtered data are read in nonprivileged spy mode from the data acquisition system via the Kloe Integrated Dataflow,privileged spy mode from the data acquisiton system via the Kole Integrated Dataflow.The main characteristics of the system are presented.

  14. On chromatic and geometrical calibration

    DEFF Research Database (Denmark)

    Folm-Hansen, Jørgen

    1999-01-01

    of non-uniformity of the illumination of the image plane. Only the image deforming aberrations and the non-uniformity of illumination are included in the calibration models. The topics of the pinhole camera model and the extension to the Direct Linear Transform (DLT) are described. It is shown how......The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the DLT can be extended with non-linear models of the common lens aberrations/errors some of them caused by manufacturing defects like decentering and thin prism distortion. The relation between a warping and the non-linear defects are shown. The issue of making a good resampling of an image by using...

  15. Reduced Ambiguity Calibration for LOFAR

    CERN Document Server

    Yatawatta, Sarod

    2012-01-01

    Interferometric calibration always yields non unique solutions. It is therefore essential to remove these ambiguities before the solutions could be used in any further modeling of the sky, the instrument or propagation effects such as the ionosphere. We present a method for LOFAR calibration which does not yield a unitary ambiguity, especially under ionospheric distortions. We also present exact ambiguities we get in our solutions, in closed form. Casting this as an optimization problem, we also present conditions for this approach to work. The proposed method enables us to use the solutions obtained via calibration for further modeling of instrumental and propagation effects. We provide extensive simulation results on the performance of our method. Moreover, we also give cases where due to degeneracy, this method fails to perform as expected and in such cases, we suggest exploiting diversity in time, space and frequency.

  16. Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Faber, M.H.; Sørensen, John Dalsgaard

    2003-01-01

    The present paper addresses fundamental concepts of reliability based code calibration. First basic principles of structural reliability theory are introduced and it is shown how the results of FORM based reliability analysis may be related to partial safety factors and characteristic values....... Thereafter the code calibration problem is presented in its principal decision theoretical form and it is discussed how acceptable levels of failure probability (or target reliabilities) may be established. Furthermore suggested values for acceptable annual failure probabilities are given for ultimate...... and serviceability limit states. Finally the paper describes the Joint Committee on Structural Safety (JCSS) recommended procedure - CodeCal - for the practical implementation of reliability based code calibration of LRFD based design codes....

  17. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    is calibrated rather than a reconstructed parameter. This contribution presents a generic methodology to calibrate profiling nacelle-mounted lidars. The application of profiling lidars to wind turbine power performance and corresponding need for calibration procedures is introduced in relation to metrological...... standards. Further, two different calibration procedure concepts are described along with their strengths and weaknesses. The main steps of the generic methodology are then explained and illustrated by calibration results from two types of profiling lidars. Finally, measurement uncertainty assessment...

  18. Flexible calibration procedure for fringe projection profilometry

    OpenAIRE

    Vargas, Javier; Quiroga Mellado, Juan Antonio; Terrón López, María José

    2007-01-01

    A novel calibration method for whole field three-dimensional shape measurement by means of fringe projection is presented. Standard calibration techniques, polynomial-and model-based, have practical limitations such as the difficulty of measuring large fields of view, the need to use precise z stages, and bad calibration results due to inaccurate calibration points. The proposed calibration procedure is a mixture of the two main standard techniques, sharing their benefits and avoiding their m...

  19. Blindness

    Science.gov (United States)

    ... good vision would be able to read certain letters from 20 feet (6 meters) away. Eyesight this good is called 20/20 vision, although some people can see even better than that. The numbers change depending on ...

  20. Tank calibration; Arqueacao de tanques

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ana [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This work relates the analysis of the norms ISO (International Organization for Standardization) for calibration of vertical cylindrical tanks used in fiscal measurement, established on Joint Regulation no 1 of June 19, 2000 between the ANP (National Agency of Petroleum) and the INMETRO (National Institute of Metrology, Normalization and Industrial Quality). In this work a comparison between norms ISO and norms published by the API (American Petroleum Institute) and the IP (Institute of Petroleum) up to 2001 was made. It was concluded that norms ISO are wider than norms API, IP, and INMETRO methods in the calibration of vertical cylindrical tanks. (author)

  1. Instrument Calibration and Certification Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R. Wesley [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-31

    The Amptec 640SL-2 is a 4-wire Kelvin failsafe resistance meter, designed to reliably use very low-test currents for its resistance measurements. The 640SL-1 is a 2-wire version, designed to support customers using the Reynolds Industries type 311 connector. For both versions, a passive (analog) dual function DC Milliameter/Voltmeter allows the user to verify the actual 640SL output current level and the open circuit voltage on the test leads. This procedure includes tests of essential performance parameters. Any malfunction noticed during calibration, whether specifically tested for or not, shall be corrected before calibration continues or is completed.

  2. Performance standard for dose Calibrator

    CERN Document Server

    Darmawati, S

    2002-01-01

    Dose calibrator is an instrument used in hospitals to determine the activity of radionuclide for nuclear medicine purposes. International Electrotechnical Commission (IEC) has published IEC 1303:1994 standard that can be used as guidance to test the performance of the instrument. This paper briefly describes content of the document,as well as explains the assessment that had been carried out to test the instrument accuracy in Indonesia through intercomparison measurement.Its is suggested that hospitals acquire a medical physicist to perform the test for its dose calibrator. The need for performance standard in the form of Indonesia Standard is also touched.

  3. PreCam: A Precursor Observational Campaign for Calibration of the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, K.; Kuhlmann, S.; Allam, S.; Annis, J. T.; Bailey, T.; Balbinot, E.; Bernstein, J. P.; Biesiadzinski, T.; Burke, D. L.; Butner, M.; Camargo, J. I. B.; da Costa, L. A. N.; DePoy, D.; Diehl, H. T.; Dietrich, J. P.; Estrada, J.; Fausti, A.; Gerke, B.; Guarino, V.; Head, H. H.; Kessler, R.; Lin, H.; Lorenzon, W.; Maia, M. A. G.; Maki, L.; Marshall, J.; Nord, B.; Neilsen, E.; Ogando, R. L. C.; Park, D.; Peoples, J.; Rastawicki, D.; Rheault, J. -P.; Santiago, B.; Schubnell, M.; Seitzer, P.; Smith, J. A.; Spinka, H.; Sypniewski, A.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2013-04-01

    PreCam, a precursor observational campaign supporting the Dark Energy Survey (DES), is designed to produce a photometric and astrometric catalog of nearly a hundred thousand standard stars within the DES footprint, while the PreCam instrument also serves as a prototype testbed for the Dark Energy Camera's hardware and software. This catalog represents a potential 100-fold increase in Southern Hemisphere photometric standard stars, and therefore will be an important component in the calibration of the Dark Energy Survey. We provide details on the PreCam instrument's design, construction, and testing, as well as results from a subset of the 51 nights of PreCam survey observations on the University of Michigan Department of Astronomy's Curtis-Schmidt telescope at Cerro Tololo Inter-American Observatory (CTIO). We briefly describe the preliminary data processing pipeline that has been developed for PreCam data and the preliminary results of the instrument performance, as well as astrometry and photometry of a sample of stars previously included in other southern sky surveys.

  4. Extracting Radial Velocities of A- and B-type Stars from Echelle Spectrograph Calibration Spectra

    Science.gov (United States)

    Becker, Juliette C.; Johnson, John Asher; Vanderburg, Andrew; Morton, Timothy D.

    2015-04-01

    We present a technique to extract radial velocity (RV) measurements from echelle spectrograph observations of rapidly rotating stars (V sin i≳ 50 km s-1). This type of measurement is difficult because the line widths of such stars are often comparable to the width of a single echelle order. To compensate for the scarcity of lines and Doppler information content, we have developed a process that forward-models the observations, fitting the RV shift of the star for all echelle orders simultaneously with the echelle blaze function. We use our technique to extract RV measurements from a sample of rapidly rotating A- and B-type stars used as calibrator stars observed by the California Planet Survey observations. We measure absolute RVs with a precision ranging from 0.5-2.0 km s-1 per epoch for more than 100 A- and B-type stars. In our sample of 10 well-sampled stars with RV scatter in excess of their measurement uncertainties, three of these are single-lined binaries with long observational baselines. From this subsample, we present detections of two previously unknown spectroscopic binaries and one known astrometric system. Our technique will be useful in measuring or placing upper limits on the masses of sub-stellar companions discovered by wide-field transit surveys, and conducting future spectroscopic binarity surveys and Galactic space-motion studies of massive and/or young, rapidly rotating stars.

  5. Metrology calibration and very high accuracy centroiding with the NEAT testbed

    CERN Document Server

    Crouzier, A; Preis, O; Henault, F; Kern, P; Martin, G; Feautrier, P; Stadler, E; Lafrasse, S; Delboulbe, A; Behar, E; Saint-Pe, M; Dupont, J; Potin, S; Cara, C; Donati, M; Doumayrou, E; Lagage, P O; Léger, A; LeDuigou, J M; Shao, M; Goullioud, R

    2014-01-01

    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. The testbed consists of two main sub-systems. The first one produces pseudo stars: a blackbody source is fed into a large core fiber and lights-up a pinhole mask in the object plane, which is imaged by a mirror on the CCD. The ...

  6. Provably secure robust threshold partial blind signature

    Institute of Scientific and Technical Information of China (English)

    CAO Zhenfu; ZHU Haojin; LU Rongxing

    2006-01-01

    Threshold digital signature and blind signature are playing important roles in cryptography as well as in practical applications such as e-cash and e-voting systems.Over the past few years, many cryptographic researchers have made considerable headway in this field. However, to our knowledge, most of existing threshold blind signature schemes are based on the discrete logarithm problem. In this paper, we propose a new robust threshold partial blind signature scheme based on improved RSA cryptosystem.This scheme is the first threshold partial blind signature scheme based on factoring, and the robustness of threshold partial blind signature is also introduced. Moreover, in practical application, the proposed scheme will be especially suitable for blind signature-based voting systems with multiple administrators and secure electronic cash systems to prevent their abuse.

  7. CERTIFICATELESS SIGNATURE AND BLIND SIGNATURE

    Institute of Scientific and Technical Information of China (English)

    Zhang Lei; Zhang Futai

    2008-01-01

    Certificateless public key cryptography is a new paradigm introduced by AI-Riyami and Paterson. It eliminates the need of the certificates in traditional public key cryptosystems and the key escrow problem in IDentity-based Public Key Cryptography (ID-PKC). Due to the advantages of the certificateless public key cryptography,a new efficient certificateless pairing-based signature scheme is presented,which has some advantages over previous constructions in computational cost. Based on this new signature scheme,a certificateless blind signature scheme is proposed. The security of our schemes is proven based on the hardness of computational Diffie-Hellman problem.

  8. Convolutive Blind Source Separation Methods

    DEFF Research Database (Denmark)

    Pedersen, Michael Syskind; Larsen, Jan; Kjems, Ulrik

    2008-01-01

    During the past decades, much attention has been given to the separation of mixed sources, in particular for the blind case where both the sources and the mixing process are unknown and only recordings of the mixtures are available. In several situations it is desirable to recover all sources from....... This may help practitioners and researchers new to the area of convolutive source separation obtain a complete overview of the field. Hopefully those with more experience in the field can identify useful tools, or find inspiration for new algorithms....

  9. Selection of a Sample of Suitable Potential Mid-Infrared Calibration Stars from the Hipparcos/Tycho Catalogue

    Science.gov (United States)

    Martín-Luis, F.; Kidger, M.; Cohen, M.

    With the increasing availability of sensitive mid-IR area detectors on large telescopes there is a pressing need to increase the number and faintness of mid-infrared flux standards that are available. It is necessary to go as much as 4 orders of magnitude fainter in flux than the faintest ISO calibrators, although building on the foundations of the ISO calibration legacy. In an attempt to resolve this problem we have searched the Hipparcos/Tycho catalogue for stars of type KIII and AV that are suitable potential standard stars for the mid-infrared. Colour, variability, and astrometric criteria have been used. We discuss the progress that has already been made towards the resolution of the problem of calibration, particularly the studies aimed at obtaining an initial list of normal stars with reliable spectral type and good visible photometry, and which have a high density on the sky. We discuss a method for templating highly accurate fluxes from 1 to 30 μm from the visible colours and spectral type of a star of type AV or KIII that will allow us to predict fluxes with great accuracy, with a resolution Δ λ/λ ˜ 3000. This resolution is well adapted to proposed infrared instruments on the Spanish 10m Gran Telescopio Canarias. Our aim is to produce a list of 1000 standard stars with highly accurate calibration from 1 to 30 μm for Day 1 of the GTC. Work in progress has produced an initial list of ˜7000 candidate stars north of declination -44o. MSX infrared photometry has been found for 881 of the stars included in our all-sky survey, allowing us to extend the spectral coverage of a significant fraction of these stars into the mid-infrared.

  10. A Rare Hydrocephalus Complication: Cortical Blindness.

    Science.gov (United States)

    Ünal, Emre; Göçmen, Rahşan; Işıkay, Ayşe İlksen; Tekşam, Özlem

    2015-01-01

    Cortical blindness related to bilateral occipital lobe infarction is an extremely rare complication of hydrocephalus. Compression of the posterior cerebral artery, secondary to tentorial herniation, is the cause of occipital infarction. Particularly in children and mentally ill patients, cortical blindness may be missed. Therefore, early diagnosis and treatment of hydrocephalus is important. We present herein a child of ventricular shunt malfunction complicated by cortical blindness.

  11. Elimination of blinding trachoma in China.

    Science.gov (United States)

    Liu, T; Liang, Q; Hu, A; Feng, G; Wang, N; Peng, X; Baudouin, C; Labbé, A

    2016-12-01

    To present the change in the prevalence of blindness caused by trachoma between 1987 and 2006 by secondary data analysis based on two China National Sample Surveys on Disability (CNSSD). Secondary data analysis was performed on two China National Sample Surveys on Disability (CNSSD), which were national representative household surveys conducted in 1987 and 2006. The prevalence of blindness caused by trachoma was estimated by 10-year age group. In addition, the proportion of various causes of blindness was evaluated. The geographical distribution of blindness caused by trachoma both in 1987 and 2006 was analyzed in order to visualize the hot spots of blinding trachoma in China. The prevalence of blindness caused by trachoma in China decreased from 51.5/100,000 in 1987 to 17.6/100,000 in 2006. In addition, the proportion of blindness attributed to trachoma also decreased from 10.1% (1987) to 0.9% (2006). Moreover, the prevalence of blindness caused by trachoma was over 200/100,000 in 2.2% of sampled counties in 2006 as compared to 8.6% in 1987. The hot spots of blinding trachoma were shown to be limited to underdeveloped mountain areas in Hubei and Guizhou provinces. Although blinding trachoma is no longer the leading cause of blindness in China since the 2000's, the prevalence of trachoma should still be monitored in some underdeveloped mountain areas. Therefore, health organization must continue to fight against blinding trachoma in underdeveloped areas. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Practical intraoperative stereo camera calibration.

    Science.gov (United States)

    Pratt, Philip; Bergeles, Christos; Darzi, Ara; Yang, Guang-Zhong

    2014-01-01

    Many of the currently available stereo endoscopes employed during minimally invasive surgical procedures have shallow depths of field. Consequently, focus settings are adjusted from time to time in order to achieve the best view of the operative workspace. Invalidating any prior calibration procedure, this presents a significant problem for image guidance applications as they typically rely on the calibrated camera parameters for a variety of geometric tasks, including triangulation, registration and scene reconstruction. While recalibration can be performed intraoperatively, this invariably results in a major disruption to workflow, and can be seen to represent a genuine barrier to the widespread adoption of image guidance technologies. The novel solution described herein constructs a model of the stereo endoscope across the continuum of focus settings, thereby reducing the number of degrees of freedom to one, such that a single view of reference geometry will determine the calibration uniquely. No special hardware or access to proprietary interfaces is required, and the method is ready for evaluation during human cases. A thorough quantitative analysis indicates that the resulting intrinsic and extrinsic parameters lead to calibrations as accurate as those derived from multiple pattern views.

  13. Scalar Calibration of Vector Magnetometers

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Primdahl, Fritz;

    2000-01-01

    The calibration parameters of a vector magnetometer are estimated only by the use of a scalar reference magnetometer. The method presented in this paper differs from those previously reported in its linearized parametrization. This allows the determination of three offsets or signals in the absence...

  14. Laboratory panel and radiometer calibration

    CSIR Research Space (South Africa)

    Deadman, AJ

    2011-07-01

    Full Text Available AND RADIOMETER CALIBRATION A.J Deadmana, I.D Behnerta, N.P Foxa, D. Griffithb aNational Physical Laboratory (NPL), United Kingdom bCouncil for Scientific and Industrial Research (CSIR), South Africa ABSTRACT This paper presents the results...

  15. CALIBRATION OF THE INFRARED OPTOMETER

    Science.gov (United States)

    An infrared optometer for measuring the absolute status of accommodation is subject to a constant error not associated with chromatic aberration or...on optometer accuracy as long as the pupil does not vignette the optometer beam. A modification is described for calibrating the infrared optometer ...for an individual subject without using trial lenses or a subjective optometer . (Author)

  16. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this report...

  17. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  18. Measurement System and Calibration report

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This Measurement System & Calibration report is describing DTU’s measurement system installed at a specific wind turbine. A major part of the sensors has been installed by others (see [1]) the rest of the sensors have been installed by DTU. The results of the measurements, described in this repor...

  19. Causes of blindness and needs of the blind in Mansoura, Egypt.

    Science.gov (United States)

    el-Gilany, A H; el-Fedawy, S; Tharwat, M

    2002-01-01

    A study of 113 blind people in Mansoura, Egypt highlighted the causes and risk factors for blindness, and health and social care needs of the blind. In two-thirds of cases, blindness occurred before 10 years of age. Risk factors for blindness were reported by more than half the study population. Congenital causes accounted for almost half the cases. The commonest causes of bilateral blindness were corneal opacities, cataract and glaucoma. Almost three-quarters of causes were avoidable. Health and social care for this group was inadequate and more than half would benefit from further management. Legislation for keratoplasty, a registry of blind people, and a nationwide community survey on the epidemiology of blindness are needed urgently.

  20. Congenital color blindness in young Turkish men.

    Science.gov (United States)

    Citirik, Mehmet; Acaroglu, Golge; Batman, Cosar; Zilelioglu, Orhan

    2005-04-01

    We investigated a healthy population of men from different regions of Turkey for the presence of congenital red-green color blindness. Using Ishihara pseudoisochromatic plates, 941 healthy men from the Turkish army were tested for congenital red-green color blindness. The prevalence of red-green color blindness was 7.33 +/- 0.98% (5.10% protans and 2.23% deutans). These ratios were higher than other reported samples from Mediterranean Europe. Higher percentages of color blindness were found in regions with a lower education level and more consanguineous marriages.

  1. Blindness and Insight in King Lear

    Institute of Scientific and Technical Information of China (English)

    岳元玉

    2008-01-01

    This paper intends to explore how William Shakespeare illustrates the theme of blindness and insight in his great tragedy "King Lear".Four characters’ deeds and their fate are used as a case study to examine what blindness is,what insight is,and the relationship between the two.The writer finds that by depicting the characters’ deeds and their fate in a double plot,Shakespeare renders the folly of blindness,the transition from blindness to insight,and the use of reason and thought to understand the truth.

  2. Comparison of Training, Blind and Semi Blind Equalizers in MIMO Fading Systems Using Capacity as Measure

    OpenAIRE

    Kavitha, Veeraruna; Sharma, Vinod

    2005-01-01

    Semi blind/blind equalizers are believed to work unsatisfactorily in fading MIMO channels compared to training based methods, due to slow convergence or high computational complexity. We revisit this issue. Defining a 'composite' channel for each equalizer, we compare the three algorithms based on the capacity of this channel. We show that, in a Rician (with line of sight, LOS) environment, semi blind/blind algorithms outperform training equalizers, but in Rayleigh channels, it is better to u...

  3. Radio Interferometric Calibration Using a Riemannian Manifold

    CERN Document Server

    Yatawatta, Sarod

    2013-01-01

    In order to cope with the increased data volumes generated by modern radio interferometers such as LOFAR (Low Frequency Array) or SKA (Square Kilometre Array), fast and efficient calibration algorithms are essential. Traditional radio interferometric calibration is performed using nonlinear optimization techniques such as the Levenberg-Marquardt algorithm in Euclidean space. In this paper, we reformulate radio interferometric calibration as a nonlinear optimization problem on a Riemannian manifold. The reformulated calibration problem is solved using the Riemannian trust-region method. We show that calibration on a Riemannian manifold has faster convergence with reduced computational cost compared to conventional calibration in Euclidean space.

  4. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    Science.gov (United States)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  5. Childhood Fears among Children Who Are Blind: The Perspective of Teachers Who Are Blind

    Science.gov (United States)

    Al-Zboon, Eman

    2017-01-01

    The aim of this study was to investigate childhood fears in children who are blind from the perspective of teachers who are blind. The study was conducted in Jordan. Forty-six teachers were interviewed. Results revealed that the main fear content in children who are blind includes fear of the unknown; environment-, transportation- and…

  6. Causes of blindness in blind unit of the school for the handicapped ...

    African Journals Online (AJOL)

    All the blind or visually challenged people in the blind unit of the school for the ... person (5.6%) had visual impairment with visual acuity of 4/60 in the better eye. ... transfer of blind people for rehabilitation to enhance the overall development of ...

  7. A First Calibration of SBF using Mulit-Conjugate Adaptive Optics

    Science.gov (United States)

    Gibson, Zachary; Jensen, Joseph B.; Blakeslee, John; Schirmer, Mischa

    2016-01-01

    We measured Surface Brightness Fluctuations (SBF) in three galaxies, ESO137-G006, NGC 3309, and NGC 5128, using the GeMS Multi-Conjugate Adaptive Optics (MCAO) system on the Gemini South telescope. ESO137-G006 is located in the Norma Cluster, NGC 3309 is located in the Hydra Cluster, while NGC 5128, also known as Centaurus A, is a nearby galaxy with numerous other distance measurements, including Cepheids. These galaxies were observed as a pathfinder to establish the SBF technique using the MCAO system.The J and K-band images taken with MCAO were astrometrically corrected and combined using the THELI software. This method allowed us to accurately account for the distortions of the focal plane when combining the images. The foreground stars as well as the globular clusters were measured to account for their contribution to the SBF. J-K color measurements were made to calibrate SBF and determine the stellar populations of the galaxies.The results of these measurements give us an SBF calibration that we can use to measure the distances to much more distant galaxies. Accurate distances are needed to determine the true spatial motions of galaxies and measure the mass distribution and density of the Universe. We now live in the era of "precision cosmology" in which distance measurements have transformed our understanding of the composition of the Universe and revealed the presence of Dark Matter and Dark Energy, the two dominant (but still unidentified) components of the Universe. The origins and nature of Dark Matter and Dark Energy are among the most important unsolved mysteries in physics.

  8. Astrometric follow-up observations of directly imaged sub-stellar companions to young stars and brown dwarfs

    CERN Document Server

    Ginski, C; Mugrauer, M; Neuhäuser, R; Vogt, N; Errmann, R; Berndt, A

    2014-01-01

    The formation of massive planetary or brown dwarf companions at large projected separations from their host star is not yet well understood. In order to put constraints on formation scenarios we search for signatures in the orbit dynamics of the systems. We are specifically interested in the eccentricities and inclinations since those parameters might tell us about the dynamic history of the systems and where to look for additional low-mass sub-stellar companions. For this purpose we utilized VLT/NACO to take several well calibrated high resolution images of 6 target systems and analyze them together with available literature data points of those systems as well as Hubble Space Telescope archival data. We used a statistical Least-Squares Monte-Carlo approach to constrain the orbit elements of all systems that showed significant differential motion of the primary star and companion. We show for the first time that the GQ Lup system shows significant change in both separation and position angle. Our analysis yi...

  9. SMAP RADAR Calibration and Validation

    Science.gov (United States)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  10. Blavigator: a navigation aid for blind persons

    OpenAIRE

    José,João; Moreno, M.; Pinilla-Dutoit, J.; Rodrigues, J. M. F.; du Buf, J. M. H.

    2012-01-01

    Blavigator (blind navigator) is a vision aid for blind and visuaIIy impaired persons. It supports local navigation by detecting waIkable paths in the immediate vicinity of the user. It guides the user for centering on the path.

  11. Front blind spot crashes in Hong Kong.

    Science.gov (United States)

    Cheng, Yuk Ki; Wong, Koon Hung; Tao, Chi Hang; Tam, Cheok Ning; Tam, Yiu Yan; Tsang, Cheuk Nam

    2016-09-01

    In 2012-2014, our laboratory had investigated a total of 9 suspected front blind spot crashes, in which the medium and heavy goods vehicles pulled away from rest and rolled over the pedestrians, who were crossing immediately in front of the vehicles. The drivers alleged that they did not see any pedestrians through the windscreens or the front blind spot mirrors. Forensic assessment of the goods vehicles revealed the existence of front blind spot zones in 3 out of these 9 accident vehicles, which were attributed to the poor mirror adjustments or even the absence of a front blind spot mirror altogether. In view of this, a small survey was devised involving 20 randomly selected volunteers and their goods vehicles and 5 out of these vehicles had blind spots at the front. Additionally, a short questionnaire was conducted on these 20 professional lorry drivers and it was shown that most of them were not aware of the hazards of blind spots immediately in front of their vehicles, and many did not use the front blind spot mirrors properly. A simple procedure for quick measurements of the coverage of front blind spot mirrors using a coloured plastic mat with dimensional grids was also introduced and described in this paper.

  12. Blind Equalization Based on Evolution Strategies

    Institute of Scientific and Technical Information of China (English)

    SongYu; ZhangXianda; 等

    1997-01-01

    Conventional blind equalization algorithms suffer from ill convergence to local minima and slow convergence speed.This paper proposes a novel blind equalization algorithm.using random search methods-evolution strategies and existing cost functions,Simulation results verify the fast and global convergence of the proposed algorithm.

  13. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrometer by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  14. Calibration and Validation of Measurement System

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Riemann, Sven; Knapp, Wilfried

    The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype.......The report deals with the calibration of the measuring equipment on board the Wave Dragon, Nissum Bredning prototype....

  15. Crop physiology calibration in the CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2015-04-01

    scalable and adaptive scheme based on sequential Monte Carlo (SMC. The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.

  16. Calibration of the solar radio spectrometer

    Institute of Scientific and Technical Information of China (English)

    TAN ChengMing; YAN YiHua; TAN BaoLin; XU GuiRong

    2009-01-01

    This paper shows some improvements and new results of calibration of Chinese solar radio spectrom-eter by analyzing the daily calibration data recorded in the period of 1997-2007. First, the calibration coefficient is fitted for three bands (1.0-2.0 GHz, 2.6-3.8 GHz, 5.2-7.6 GHz) of the spectrometer by using the moving-average method confined by the property of the daily calibration data. By this calibration coefficient, the standard deviation of the calibration result was less than 10 sfu for 95% frequencies of 2.6-3.8 GHz band in 2003. This result is better than that calibrated with the constant coefficient. Second, the calibration coefficient is found in good correlation with local air temperature for most frequencies of 2.6-3.8 GHz band. Moreover, these results are helpful in the research of the quiet solar radio emission.

  17. Astrid-2 EMMA Magnetic Calibration

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter; Risbo, Torben

    1998-01-01

    The Swedish micro-satellite Astrid-2 contains a tri-axial fluxgate magnetometer with the sensor co-located with a Technical University of Denmark (DTU) star camera for absolute attitude, and extended about 0.9 m on a hinged boom. The magnetometer is part of the RIT EMMA electric and magnetic fields...... experiment built as a collaboration between the DTU, Department of Automation and the Department of Plasma Physics, The Alfvenlaboratory, Royal Institute of Technology (RIT), Stockholm. The final magnetic calibration of the Astrid-2 satellite was done at the Lovoe Magnetic Observatory under the Geological...... the magnetometer orthogonalized axes and the star camera optical axes was determined from the observed stellar coordinates related to the Earth magnetic field from the Magnetic Observatory. The magnetic calibration of the magnetometer integrated into the flight configured satellite was done in the (almost...

  18. BLIND DIFFERENTIAL ADAPTIVE MULTIUSER DETECTION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, a new blind equalization cost function, termed differential mean output energy (DMOE), was presented, and a new multiuser detection algorithm with variable step size was designed. It is shown through simulation results for a co-channel system involving severe MAI that the DMOE algorithm gives significantly enhanced signal to interference ratio (SIR) performance and converges rapidly to the optimum MMSE detector, together with a low computational complexity requirement relative to the recursive least squares (RLS) algorithm. Thus, it is not necessary to switch to the decision-directed mode. Moreover, it also exhibits global convergence, and can be used in different interference environment without the requirement of estimating and restricting the surplus energy.

  19. Blind reconstruction of linear scrambler

    Institute of Scientific and Technical Information of China (English)

    Hui Xie; Fenghua Wang; Zhitao Huang

    2014-01-01

    An algorithm based on eigenanalysis technique and Walsh-Hadamard transform (WHT) is proposed. The algorithm contains two steps. Firstly, the received sequence is divided into temporal windows, and a covariance matrix is computed. The li-near feedback shift register (LFSR) sequence is reconstructed from the first eigenvector of this matrix. Secondly, equations ac-cording to the recovered LFSR sequence are constructed, and the Walsh spectrum corresponding to the equations is computed. The feedback polynomial of LFSR is estimated from the Walsh spec-trum. The validity of the algorithm is verified by the simulation result. Final y, case studies are presented to il ustrate the perfor-mance of the blind reconstruction method.

  20. Blind-date Conversation Joining

    Directory of Open Access Journals (Sweden)

    Luca Cesari

    2013-07-01

    Full Text Available We focus on a form of joining conversations among multiple parties in service-oriented applications where a client may asynchronously join an existing conversation without need to know in advance any information about it. More specifically, we show how the correlation mechanism provided by orchestration languages enables a form of conversation joining that is completely transparent to clients and that we call 'blind-date joining'. We provide an implementation of this strategy by using the standard orchestration language WS-BPEL. We then present its formal semantics by resorting to COWS, a process calculus specifically designed for modelling service-oriented applications. We illustrate our approach by means of a simple, but realistic, case study from the online games domain.

  1. Calibrating thermal behavior of electronics

    Science.gov (United States)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  2. Calibrating thermal behavior of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2017-07-11

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  3. Nonlinear Observers for Gyro Calibration

    Science.gov (United States)

    Thienel, Julie; Sanner, Robert M.

    2003-01-01

    Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.

  4. Calibrating thermal behavior of electronics

    Energy Technology Data Exchange (ETDEWEB)

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2017-01-03

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  5. Calibration of a Parallel Kinematic Machine Tool

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-mei; DING Hong-sheng; FU Tie; XIE Dian-huang; XU Jin-zhong; LI Hua-feng; LIU Hui-lin

    2006-01-01

    A calibration method is presented to enhance the static accuracy of a parallel kinematic machine tool by using a coordinate measuring machine and a laser tracker. According to the established calibration model and the calibration experiment, the factual 42 kinematic parameters of BKX-I parallel kinematic machine tool are obtained. By circular tests the comparison is made between the calibrated and the uncalibrated parameters and shows that there is 80% improvement in accuracy of this machine tool.

  6. Optimal Reliability-Based Code Calibration

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, M. H.

    1994-01-01

    Calibration of partial safety factors is considered in general, including classes of structures where no code exists beforehand. The partial safety factors are determined such that the difference between the reliability for the different structures in the class considered and a target reliability...... level is minimized. Code calibration on a decision theoretical basis is also considered and it is shown how target reliability indices can be calibrated. Results from code calibration for rubble mound breakwater designs are shown....

  7. A Careful Consideration of the Calibration Concept

    Science.gov (United States)

    Phillips, S. D.; Estler, W. T.; Doiron, T.; Eberhardt, K. R.; Levenson, M. S.

    2001-01-01

    This paper presents a detailed discussion of the technical aspects of the calibration process with emphasis on the definition of the measurand, the conditions under which the calibration results are valid, and the subsequent use of the calibration results in measurement uncertainty statements. The concepts of measurement uncertainty, error, systematic error, and reproducibility are also addressed as they pertain to the calibration process. PMID:27500027

  8. Reduced taste sensitivity in congenital blindness

    DEFF Research Database (Denmark)

    Gagnon, Lea; Kupers, Ron; Ptito, Maurice

    2013-01-01

    Sight is undoubtedly not only important for food identification and selection but also for the modulation of gustatory sensitivity. We can, therefore, assume that taste sensitivity and eating habits are affected by visual deprivation from birth. We measured taste detection and identification...... behavioral results showed that compared with the normal sighted, blind subjects have increased thresholds for taste detection and taste identification. This finding is at odds with the superior performance of congenitally blind subjects in several tactile, auditory and olfactory tasks. Our psychometric data...... further indicate that blind subjects more strongly rely on internal hunger and satiety cues, instead of external contextual or emotional cues, to decide when and what to eat. We suggest that the lower taste sensitivity observed in congenitally blind individuals is due to various blindness...

  9. Blind Braille readers mislocate tactile stimuli.

    Science.gov (United States)

    Sterr, Annette; Green, Lisa; Elbert, Thomas

    2003-05-01

    In a previous experiment, we observed that blind Braille readers produce errors when asked to identify on which finger of one hand a light tactile stimulus had occurred. With the present study, we aimed to specify the characteristics of this perceptual error in blind and sighted participants. The experiment confirmed that blind Braille readers mislocalised tactile stimuli more often than sighted controls, and that the localisation errors occurred significantly more often at the right reading hand than at the non-reading hand. Most importantly, we discovered that the reading fingers showed the smallest error frequency, but the highest rate of stimulus attribution. The dissociation of perceiving and locating tactile stimuli in the blind suggests altered tactile information processing. Neuroplasticity, changes in tactile attention mechanisms as well as the idea that blind persons may employ different strategies for tactile exploration and object localisation are discussed as possible explanations for the results obtained.

  10. User-centered Technologies For Blind Children

    Directory of Open Access Journals (Sweden)

    Jaime Sánchez

    2008-01-01

    Full Text Available The purpose of this paper is to review, summarize, and illustrate research work involving four audio-based games created within a user-centered design methodology through successive usability tasks and evaluations. These games were designed by considering the mental model of blind children and their styles of interaction to perceive and process data and information. The goal of these games was to enhance the cognitive development of spatial structures, memory, haptic perception, mathematical skills, navigation and orientation, and problem solving of blind children. Findings indicate significant improvements in learning and cognition from using audio-based tools specially tailored for the blind. That is, technologies for blind children, carefully tailored through user-centered design approaches, can make a significant contribution to cognitive development of these children. This paper contributes new insight into the design and implementation of audio-based virtual environments to facilitate learning and cognition in blind children.

  11. An ECC-Based Blind Signature Scheme

    Directory of Open Access Journals (Sweden)

    Fuh-Gwo Jeng

    2010-08-01

    Full Text Available Cryptography is increasingly applied to the E-commerce world, especially to the untraceable payment system and the electronic voting system. Protocols for these systems strongly require the anonymous digital signature property, and thus a blind signature strategy is the answer to it. Chaum stated that every blind signature protocol should hold two fundamental properties, blindness and intractableness. All blind signature schemes proposed previously almost are based on the integer factorization problems, discrete logarithm problems, or the quadratic residues, which are shown by Lee et al. that none of the schemes is able to meet the two fundamental properties above. Therefore, an ECC-based blind signature scheme that possesses both the above properties is proposed in this paper.

  12. Variability among polysulphone calibration curves

    Energy Technology Data Exchange (ETDEWEB)

    Casale, G R [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Borra, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Colosimo, A [University of Rome ' La Sapienza' , Department of Human Physiology and Pharmacology, P.le A. Moro 2, I-00185, Rome (Italy); Colucci, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Militello, A [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Siani, A M [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Sisto, R [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy)

    2006-09-07

    Within an epidemiological study regarding the correlation between skin pathologies and personal ultraviolet (UV) exposure due to solar radiation, 14 field campaigns using polysulphone (PS) dosemeters were carried out at three different Italian sites (urban, semi-rural and rural) in every season of the year. A polysulphone calibration curve for each field experiment was obtained by measuring the ambient UV dose under almost clear sky conditions and the corresponding change in the PS film absorbance, prior and post exposure. Ambient UV doses were measured by well-calibrated broad-band radiometers and by electronic dosemeters. The dose-response relation was represented by the typical best fit to a third-degree polynomial and it was parameterized by a coefficient multiplying a cubic polynomial function. It was observed that the fit curves differed from each other in the coefficient only. It was assessed that the multiplying coefficient was affected by the solar UV spectrum at the Earth's surface whilst the polynomial factor depended on the photoinduced reaction of the polysulphone film. The mismatch between the polysulphone spectral curve and the CIE erythemal action spectrum was responsible for the variability among polysulphone calibration curves. The variability of the coefficient was related to the total ozone amount and the solar zenith angle. A mathematical explanation of such a parameterization was also discussed.

  13. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  14. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  15. PACS photometer calibration block analysis

    CERN Document Server

    Moór, A; Kiss, Cs; Balog, Z; Billot, N; Marton, G

    2013-01-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5% (standard deviation) or about 8% peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2% (stdev) or 2% in the blue, 3% in the green and 5% in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic h...

  16. Blindness and severe visual impairment in pupils at schools for the blind in Burundi.

    Science.gov (United States)

    Ruhagaze, Patrick; Njuguna, Kahaki Kimani Margaret; Kandeke, Lévi; Courtright, Paul

    2013-01-01

    To determine the causes of childhood blindness and severe visual impairment in pupils attending schools for the blind in Burundi in order to assist planning for services in the country. All pupils attending three schools for the blind in Burundi were examined. A modified WHO/PBL eye examination record form for children with blindness and low vision was used to record the findings. Data was analyzed for those who became blind or severely visually impaired before the age of 16 years. Overall, 117 pupils who became visually impaired before 16 years of age were examined. Of these, 109 (93.2%) were blind or severely visually impaired. The major anatomical cause of blindness or severe visual impairment was cornea pathology/phthisis (23.9%), followed by lens pathology (18.3%), uveal lesions (14.7%) and optic nerve lesions (11.9%). In the majority of pupils with blindness or severe visual impairment, the underlying etiology of visual loss was unknown (74.3%). More than half of the pupils with lens related blindness had not had surgery; among those who had surgery, outcomes were generally poor. The causes identified indicate the importance of continuing preventive public health strategies, as well as the development of specialist pediatric ophthalmic services in the management of childhood blindness in Burundi. The geographic distribution of pupils at the schools for the blind indicates a need for community-based programs to identify and refer children in need of services.

  17. HCAL Calibration Status in Summer 2017

    CERN Document Server

    CMS Collaboration

    2017-01-01

    This note presents the status of the HCAL calibration in Summer 2017. In particular, results on the aging of the hadron endcap (HE) detector measured using the laser calibration system and the calibration of the hadron forward (HF) detector using electrons from Z boson decays are discussed.

  18. Net analyte signal calculation for multivariate calibration

    NARCIS (Netherlands)

    Ferre, J.; Faber, N.M.

    2003-01-01

    A unifying framework for calibration and prediction in multivariate calibration is shown based on the concept of the net analyte signal (NAS). From this perspective, the calibration step can be regarded as the calculation of a net sensitivity vector, whose length is the amount of net signal when the

  19. Code Calibration as a Decision Problem

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Kroon, I. B.; Faber, M. H.

    1993-01-01

    Calibration of partial coefficients for a class of structures where no code exists is considered. The partial coefficients are determined such that the difference between the reliability for the different structures in the class considered and a target reliability level is minimized. Code...... calibration on a decision theoretical basis is discussed. Results from code calibration for rubble mound breakwater designs are shown....

  20. Backscatter nephelometer to calibrate scanning lidar

    Science.gov (United States)

    Cyle E. Wold; Vladmir A. Kovalev; Wei Min Hao

    2008-01-01

    The general concept of an open-path backscatter nephelometer, its design, principles of calibration and the operational use are discussed. The research-grade instrument, which operates at the wavelength 355 nm, will be co-located with a scanning-lidar at measurement sites near wildfires, and used for the lidar calibration. Such a near-end calibration has significant...

  1. 14 CFR 33.45 - Calibration tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Calibration tests. 33.45 Section 33.45... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.45 Calibration tests. (a) Each engine must be subjected to the calibration tests necessary to establish its power characteristics...

  2. 14 CFR 33.85 - Calibration tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Calibration tests. 33.85 Section 33.85... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.85 Calibration tests. (a) Each engine must be subjected to those calibration tests necessary to establish its power characteristics and...

  3. Systems and methods of eye tracking calibration

    DEFF Research Database (Denmark)

    2014-01-01

    Methods and systems to facilitate eye tracking control calibration are provided. One or more objects are displayed on a display of a device, where the one or more objects are associated with a function unrelated to a calculation of one or more calibration parameters. The one or more calibration...

  4. The Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT): An Open-source Tool for Efficient Fitting of Astrometric and Radial Velocity Data

    Science.gov (United States)

    Mede, Kyle; Brandt, Timothy D.

    2017-03-01

    We present the Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT), a new, open-source suite to fit the orbital elements of planetary or stellar-mass companions to any combination of radial velocity and astrometric data. To explore the parameter space of Keplerian models, ExoSOFT may be operated with its own multistage sampling approach or interfaced with third-party tools such as emcee. In addition, ExoSOFT is packaged with a collection of post-processing tools to analyze and summarize the results. Although only a few systems have been observed with both radial velocity and direct imaging techniques, this number will increase, thanks to upcoming spacecraft and ground-based surveys. Providing both forms of data enables simultaneous fitting that can help break degeneracies in the orbital elements that arise when only one data type is available. The dynamical mass estimates this approach can produce are important when investigating the formation mechanisms and subsequent evolution of substellar companions. ExoSOFT was verified through fitting to artificial data and was implemented using the Python and Cython programming languages; it is available for public download at https://github.com/kylemede/ExoSOFT under GNU General Public License v3.

  5. AN ASTROMETRIC SEARCH FOR A SUB-STELLAR COMPANION OF THE M8.5 DWARF TVLM 513–46546 USING VERY LONG BASELINE INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan; Berger, Edo; Reid, Mark J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We conducted multi-epoch very long baseline interferometry observations to search for astrometric reflex motion that would be caused by a sub-stellar companion of the M8.5 dwarf TVLM 513–46546. The observations yield an absolute parallax corresponding to a distance of 10.762 ± 0.027 pc and a proper motion of 78.09 ± 0.17 mas yr{sup –1}. The averaged flux density per epoch varies by a factor of at least three. From the absence of significant residual motion, we place an upper limit on any reflex motion caused by a companion, extending the parameter space covered by previous near-infrared direct-imaging searches. The data exclude a phase space of companion masses and orbital periods ranging from 3.8 M{sub Jup} with an orbital radius of ∼0.05 AU (and an orbital period of 16 days) to 0.3 M{sub Jup} with an orbital radius of ∼0.7 AU (and an orbital period of 710 days)

  6. 42 CFR 493.1255 - Standard: Calibration and calibration verification procedures.

    Science.gov (United States)

    2010-10-01

    ..., if possible, traceable to a reference method or reference material of known value; and (ii) Including... 42 Public Health 5 2010-10-01 2010-10-01 false Standard: Calibration and calibration verification... for Nonwaived Testing Analytic Systems § 493.1255 Standard: Calibration and calibration...

  7. Spectral calibration for convex grating imaging spectrometer

    Science.gov (United States)

    Zhou, Jiankang; Chen, Xinhua; Ji, Yiqun; Chen, Yuheng; Shen, Weimin

    2013-12-01

    Spectral calibration of imaging spectrometer plays an important role for acquiring target accurate spectrum. There are two spectral calibration types in essence, the wavelength scanning and characteristic line sampling. Only the calibrated pixel is used for the wavelength scanning methods and he spectral response function (SRF) is constructed by the calibrated pixel itself. The different wavelength can be generated by the monochromator. The SRF is constructed by adjacent pixels of the calibrated one for the characteristic line sampling methods. And the pixels are illuminated by the narrow spectrum line and the center wavelength of the spectral line is exactly known. The calibration result comes from scanning method is precise, but it takes much time and data to deal with. The wavelength scanning method cannot be used in field or space environment. The characteristic line sampling method is simple, but the calibration precision is not easy to confirm. The standard spectroscopic lamp is used to calibrate our manufactured convex grating imaging spectrometer which has Offner concentric structure and can supply high resolution and uniform spectral signal. Gaussian fitting algorithm is used to determine the center position and the Full-Width-Half-Maximum(FWHM)of the characteristic spectrum line. The central wavelengths and FWHMs of spectral pixels are calibrated by cubic polynomial fitting. By setting a fitting error thresh hold and abandoning the maximum deviation point, an optimization calculation is achieved. The integrated calibration experiment equipment for spectral calibration is developed to enhance calibration efficiency. The spectral calibration result comes from spectral lamp method are verified by monochromator wavelength scanning calibration technique. The result shows that spectral calibration uncertainty of FWHM and center wavelength are both less than 0.08nm, or 5.2% of spectral FWHM.

  8. A Linear Viscoelastic Model Calibration of Sylgard 184.

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin Nicholas; Brown, Judith Alice

    2017-04-01

    We calibrate a linear thermoviscoelastic model for solid Sylgard 184 (90-10 formulation), a lightly cross-linked, highly flexible isotropic elastomer for use both in Sierra / Solid Mechanics via the Universal Polymer Model as well as in Sierra / Structural Dynamics (Salinas) for use as an isotropic viscoelastic material. Material inputs for the calibration in both codes are provided. The frequency domain master curve of oscillatory shear was obtained from a report from Los Alamos National Laboratory (LANL). However, because the form of that data is different from the constitutive models in Sierra, we also present the mapping of the LANL data onto Sandia’s constitutive models. Finally, blind predictions of cyclic tension and compression out to moderate strains of 40 and 20% respectively are compared with Sandia’s legacy cure schedule material. Although the strain rate of the data is unknown, the linear thermoviscoelastic model accurately predicts the experiments out to moderate strains for the slower strain rates, which is consistent with the expectation that quasistatic test procedures were likely followed. This good agreement comes despite the different cure schedules between the Sandia and LANL data.

  9. Gemini Planet Imager Observational Calibrations II: Detector Performance and Calibration

    CERN Document Server

    Ingraham, Patrick; Sadakuni, Naru; Ruffio, Jean-Baptiste; Maire, Jerome; Chilcote, Jeff; Larkin, James; Marchis, Franck; Galicher, Raphael; Weiss, Jason

    2014-01-01

    The Gemini Planet Imager is a newly commissioned facility instrument designed to measure the near-infrared spectra of young extrasolar planets in the solar neighborhood and obtain imaging polarimetry of circumstellar disks. GPI's science instrument is an integral field spectrograph that utilizes a HAWAII-2RG detector with a SIDECAR ASIC readout system. This paper describes the detector characterization and calibrations performed by the GPI Data Reduction Pipeline to compensate for effects including bad/hot/cold pixels, persistence, non-linearity, vibration induced microphonics and correlated read noise.

  10. Photometric Calibrations for the SIRTF Infrared Spectrograph

    CERN Document Server

    Morris, P W; Herter, T L; Armus, L; Houck, J; Sloan, G

    2002-01-01

    The SIRTF InfraRed Spectrograph (IRS) is faced with many of the same calibration challenges that were experienced in the ISO SWS calibration program, owing to similar wavelength coverage and overlapping spectral resolutions of the two instruments. Although the IRS is up to ~300 times more sensitive and without moving parts, imposing unique calibration challenges on their own, an overlap in photometric sensitivities of the high-resolution modules with the SWS grating sections allows lessons, resources, and certain techniques from the SWS calibration programs to be exploited. We explain where these apply in an overview of the IRS photometric calibration planning.

  11. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S. [Somerville College, Oxford (United Kingdom)

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  12. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S.

    2004-09-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.

  13. "Calibration-on-the-spot": How to calibrate an EMCCD camera from its images.

    Science.gov (United States)

    Mortensen, Kim I; Flyvbjerg, Henrik

    2016-07-06

    In order to count photons with a camera, the camera must be calibrated. Photon counting is necessary, e.g., to determine the precision of localization-based super-resolution microscopy. Here we present a protocol that calibrates an EMCCD camera from information contained in isolated, diffraction-limited spots in any image taken by the camera, thus making dedicated calibration procedures redundant by enabling calibration post festum, from images filed without calibration information.

  14. Calibration-on-the-spot”: How to calibrate an EMCCD camera from its images

    DEFF Research Database (Denmark)

    Mortensen, Kim; Flyvbjerg, Henrik

    2016-01-01

    In order to count photons with a camera, the camera must be calibrated. Photon counting is necessary, e.g., to determine the precision of localization-based super-resolution microscopy. Here we present a protocol that calibrates an EMCCD camera from information contained in isolated, diffraction......-limited spots in any image taken by the camera, thus making dedicated calibration procedures redundant by enabling calibration post festum, from images filed without calibration information....

  15. Calibration of the Cherenkov Telescope Array

    CERN Document Server

    Gaug, Markus; Berge, David; Reyes, Raquel de los; Doro, Michele; Foerster, Andreas; Maccarone, Maria Concetta; Parsons, Dan; van Eldik, Christopher

    2015-01-01

    The construction of the Cherenkov Telescope Array is expected to start soon. We will present the baseline methods and their extensions currently foreseen to calibrate the observatory. These are bound to achieve the strong requirements on allowed systematic uncertainties for the reconstructed gamma-ray energy and flux scales, as well as on the pointing resolution, and on the overall duty cycle of the observatory. Onsite calibration activities are designed to include a robust and efficient calibration of the telescope cameras, and various methods and instruments to achieve calibration of the overall optical throughput of each telescope, leading to both inter-telescope calibration and an absolute calibration of the entire observatory. One important aspect of the onsite calibration is a correct understanding of the atmosphere above the telescopes, which constitutes the calorimeter of this detection technique. It is planned to be constantly monitored with state-of-the-art instruments to obtain a full molecular and...

  16. Verification of L-band SAR calibration

    Science.gov (United States)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  17. Radio Interferometric Calibration Using The SAGE Algorithm

    CERN Document Server

    Kazemi, S; Zaroubi, S; de Bruyn, A G; Koopmans, L V E; Noordam, J

    2010-01-01

    The aim of the new generation of radio synthesis arrays such as LOFAR and SKA is to achieve much higher sensitivity, resolution and frequency coverage than what is available now. To accomplish this goal, the accuracy of the calibration techniques used is of considerable importance. Moreover, since these telescopes produce huge amounts of data, speed of convergence of calibration is a major bottleneck. The errors in calibration are due to system noise (sky and instrumental) as well as the estimation errors introduced by the calibration technique itself, which we call "solver noise". We define solver noise as the "distance" between the optimal solution, the true value of the unknowns corrupted by the system noise, and the solution obtained by calibration. We present the Space Alternating Generalized Expectation Maximization (SAGE) calibration technique, which is a modification of the Expectation Maximization algorithm, and compare its performance with the traditional Least Squares calibration based on the level...

  18. Reversible cortical blindness: posterior reversible encephalopathy syndrome.

    Science.gov (United States)

    Bandyopadhyay, Sabyasachi; Mondal, Kanchan Kumar; Das, Somnath; Gupta, Anindya; Biswas, Jaya; Bhattacharyya, Subir Kumar; Biswas, Gautam

    2010-11-01

    Cortical blindness is defined as visual failure with preserved pupillary reflexes in structurally intact eyes due to bilateral lesions affecting occipital cortex. Bilateral oedema and infarction of the posterior and middle cerebral arterial territory, trauma, glioma and meningioma of the occipital cortex are the main causes of cortical blindness. Posterior reversible encephalopathy syndrome (PRES) refers to the reversible subtype of cortical blindness and is usually associated with hypertension, diabetes, immunosuppression, puerperium with or without eclampsia. Here, 3 cases of PRES with complete or partial visual recovery following treatment in 6-month follow-up are reported.

  19. Blind image deconvolution methods and convergence

    CERN Document Server

    Chaudhuri, Subhasis; Rameshan, Renu

    2014-01-01

    Blind deconvolution is a classical image processing problem which has been investigated by a large number of researchers over the last four decades. The purpose of this monograph is not to propose yet another method for blind image restoration. Rather the basic issue of deconvolvability has been explored from a theoretical view point. Some authors claim very good results while quite a few claim that blind restoration does not work. The authors clearly detail when such methods are expected to work and when they will not. In order to avoid the assumptions needed for convergence analysis in the

  20. Ten years left to eliminate blinding trachoma

    Directory of Open Access Journals (Sweden)

    Haddad D.

    2010-09-01

    Full Text Available n 1997, the World Health Organization formed the Global Alliance to Eliminate Blinding Trachoma by 2020 (GET 2020, a coalition of governmental, non-governmental, research, and pharmaceutical partners. In 1998, the World Health Assembly urged member states to map blinding trachoma in endemic areas, implement the SAFE strategy (which stands for surgery for trichiasis, antibiotics, facial-cleanliness and environmental change, such as clean water and latrines and collaborate with the global alliance in its work to eliminate blinding trachoma.

  1. Internet Adaptation for Colour-Blind Persons

    Directory of Open Access Journals (Sweden)

    Rytė Žiūrienė

    2011-04-01

    Full Text Available Of all human race about 8% of males and 0,5% of females are colour-blind. It is estimated that in 2011 or 2012 there will be around 2 billion Internet users worldwide, so the number of colour-blind Internet users can reach about 200 million. Authors of this publication analyse issues that arise for colour-blind persons on the Internet and deliver the ways to make the Internet more comfortable. The special software is proposed as one of the ways together with comparison of its advantages.

  2. Helping the blind to find the floor of destination in multistory buildings using a barometer.

    Science.gov (United States)

    Bai, Yicheng; Jia, Wenyan; Zhang, Hong; Mao, Zhi-Hong; Sun, Mingui

    2013-01-01

    Propelled by rapid technological advances in smart phones and other mobile devices, indoor navigation for the blind and visually impaired individuals has become an active field of research. A reliable positioning and navigation system will reduce suffering of these individuals, help them live more independently, and promote their employment. Although much progress has been made, localization of the floor level in a multistory building is largely an unsolved problem despite its high significance in helping the blind to find their ways. In this paper, we present a novel approach using a miniature barometer in the form of a low-cost MEMS chip. The relationships among the atmospheric pressure, the absolute height, and the floor location are described along with a real-time calibration method and a hardware platform design. Our experiments in a building of twelve floors have shown high performance of our approach.

  3. Calibration of TOB+ Thermometer's Cards

    CERN Document Server

    Banitt, Daniel

    2014-01-01

    Motivation - Under the new upgrade of the CMS detector the working temperature of the trackers had been reduced to -27 Celsius degrees. Though the thermal sensors themselves (Murata and Fenwal thermistors) are effective at these temperatures, the max1542 PLC (programmable logic controller) cards, interpreting the resistance of the thermal sensors into DC counts usable by the DCS (detector control system), are not designed for these temperatures in which the counts exceed their saturation and therefor had to be replaced. In my project I was in charge of handling the emplacement and calibration of the new PLC cards to the TOB (tracker outer barrel) control system.

  4. AFFTC Standard Airspeed Calibration Procedures

    Science.gov (United States)

    1981-06-01

    25x0UIXQXQ Results of groundLpeed course calibration are normally pre- sented in the following plots: 1. .AvP vs Vi Ŗ. All vs V ic 3. AMPC vs Mic .4...8217Average AfPeavgpo, tion correction AM /AH 10-5 per and figure V 9 PC PC feet . fu V AYpc" x q3 @ , Average position avg corred ion (AM @ AMPC /AVPC...instrument error 0 M ic From and 0), Mach number p Chart 8.5 in reference’l (AFTR 6273) (DO AMPPacer poqition error calibra- Pc tion at9 S( AMpc /’,HpC)p

  5. Compressed Blind De-convolution

    CERN Document Server

    Saligrama, V

    2009-01-01

    Suppose the signal x is realized by driving a k-sparse signal u through an arbitrary unknown stable discrete-linear time invariant system H. These types of processes arise naturally in Reflection Seismology. In this paper we are interested in several problems: (a) Blind-Deconvolution: Can we recover both the filter $H$ and the sparse signal $u$ from noisy measurements? (b) Compressive Sensing: Is x compressible in the conventional sense of compressed sensing? Namely, can x, u and H be reconstructed from a sparse set of measurements. We develop novel L1 minimization methods to solve both cases and establish sufficient conditions for exact recovery for the case when the unknown system H is auto-regressive (i.e. all pole) of a known order. In the compressed sensing/sampling setting it turns out that both H and x can be reconstructed from O(k log(n)) measurements under certain technical conditions on the support structure of u. Our main idea is to pass x through a linear time invariant system G and collect O(k lo...

  6. Blindness of Johann Sebastian Bach.

    Science.gov (United States)

    Tarkkanen, Ahti

    2013-03-01

    Johann Sebastian Bach (1685-1750) was one of the greatest composers of all time. Apart from performing as a brilliant organist, he composed over 1.100 works in almost every musical genre. He was known as a hardworking, deeply Christian person, who had to support his family of 20 children and many students staying at his home. At the age of 64 years, his vision started to decline. Old biographies claim that it was the result of overstressing his vision in poor illumination. By persuasion of his friends, he had his both eyes operated by a travelling British eye surgeon. A cataract couching was performed. After surgery, Bach was totally blind and unable to play an organ, compose or direct choirs and orchestras. He was confined to bed and suffering from immense pain of the eyes and the body. He died <4 months after surgery. In this paper, as the plausible diagnosis, intractable glaucoma because of pupillary block or secondary to phacoanaphylactic endophthalmitis is suggested. © 2012 The Author. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  7. Night blindness and Crohn's disease.

    Science.gov (United States)

    da Rocha Lima, Breno; Pichi, Francesco; Lowder, Careen Y

    2014-10-01

    Signs of malnutrition are common clinical features in Crohn's disease; and bowel resection, commonly needed in these cases, can aggravate malnutrition. These patients are at risk of developing vitamin A deficiency, which can lead to night blindness. We present a 60-year-old male, with history of Crohn's disease and multiple resections for strictures and fistulas leading to short bowel syndrome, with progressive bilateral loss of night vision (nyctalopia). Serum vitamin A level was markedly depleted (11 µg/dL, reference 20-120 µg/dL), and full-field electroretinogram testing demonstrated extinguished scotopic (rod function) responses and decreased amplitudes of photopic responses on 30 Hz flicker (cone function). He was started on vitamin A supplementation (initially intramuscular). His vitamin A level was back to normal (78 µg/dL), and night vision problems subjectively improved. Patients with Crohn's disease should be inquired about night vision problems. The presence of nyctalopia should prompt vitamin A level measurement and ophthalmology referral for further evaluation.

  8. Pulse-based internal calibration of polarimetric SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Christensen, Erik Lintz

    1994-01-01

    Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops and devel......Internal calibration greatly diminishes the dependence on calibration target deployment compared to external calibration. Therefore the Electromagnetics Institute (EMI) at the Technical University of Denmark (TUD) has equipped its polarimetric SAR, EMISAR, with several calibration loops...

  9. Input calibration for negative originals

    Science.gov (United States)

    Tuijn, Chris

    1995-04-01

    One of the major challenges in the prepress environment consists of controlling the electronic color reproduction process such that a perfect match of any original can be realized. Whether this goal can be reached depends on many factors such as the dynamic range of the input device (scanner, camera), the color gamut of the output device (dye sublimation printer, ink-jet printer, offset), the color management software etc. The characterization of the color behavior of the peripheral devices is therefore very important. Photographs and positive transparents reflect the original scene pretty well; for negative originals, however, there is no obvious link to either the original scene or a particular print of the negative under consideration. In this paper, we establish a method to scan negatives and to convert the scanned data to a calibrated RGB space, which is known colorimetrically. This method is based on the reconstruction of the original exposure conditions (i.e., original scene) which generated the negative. Since the characteristics of negative film are quite diverse, a special calibration is required for each combination of scanner and film type.

  10. Calibration of atmospheric hydrogen measurements

    Directory of Open Access Journals (Sweden)

    A. Jordan

    2011-03-01

    Full Text Available Interest in atmospheric hydrogen (H2 has been growing in recent years with the prospect of H2 being a potential alternative to fossil fuels as an energy carrier. This has intensified research for a quantitative understanding of the atmospheric hydrogen cycle and its total budget, including the expansion of the global atmospheric measurement network. However, inconsistencies in published observational data constitute a major limitation in exploring such data sets. The discrepancies can be mainly attributed to difficulties in the calibration of the measurements. In this study various factors that may interfere with accurate quantification of atmospheric H2 were investigated including drifts of standard gases in high pressure cylinders. As an experimental basis a procedure to generate precise mixtures of H2 within the atmospheric concentration range was established. Application of this method has enabled a thorough linearity characterization of the commonly used GC-HgO reduction detector. We discovered that the detector response was sensitive to the composition of the matrix gas. Addressing these systematic errors, a new calibration scale has been generated defined by thirteen standards with dry air mole fractions ranging from 139–1226 nmol mol−1. This new scale has been accepted as the official World Meteorological Organisation's (WMO Global Atmospheric Watch (GAW H2 mole fraction scale.

  11. Crop physiology calibration in CLM

    Directory of Open Access Journals (Sweden)

    I. Bilionis

    2014-10-01

    Full Text Available Farming is using more terrestrial ground, as population increases and agriculture is increasingly used for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurements of gross primary productivity and net ecosystem exchange from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC.

  12. Ask a Scientist: What is Color Blindness?

    Science.gov (United States)

    ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  13. Altered sleep-wake patterns in blindness

    DEFF Research Database (Denmark)

    Aubin, S.; Gacon, C.; Jennum, P.

    2016-01-01

    discuss variability in the sleep–wake pattern between blind and normal-sighted individuals. Methods Thirty-day actigraphy recordings were collected from 11 blind individuals without residual light perception and 11 age- and sex-matched normal-sighted controls. From these recordings, we extracted...... the Pittsburgh Sleep Quality Index, and chronotype, using the Morningness-Eveningness Questionnaire. Results Although no group differences were found when averaging over the entire recording period, we found a greater variability throughout the 30-days in both sleep efficiency and timing of the night-time sleep...... episode in blind participants as compared to sighted control participants. We also confirm previous reports of reduced sleep quality in blind individuals. Notably, the variability in sleep efficiency and in the timing of sleep correlated with the severity of sleep disturbances. Conclusion The timing...

  14. Transient cortical blindness after coronary angiography.

    Science.gov (United States)

    Alp, B N; Bozbuğa, N; Tuncer, M A; Yakut, C

    2009-01-01

    Transient cortical blindness is rarely encountered after angiography of native coronary arteries or bypass grafts. This paper reports a case of transient cortical blindness that occurred 72 h after coronary angiography in a 56-year old patient. This was the patient's fourth exposure to contrast medium. Neurological examination demonstrated cortical blindness and the absence of any focal neurological deficit. A non-contrast-enhanced computed tomographic scan of the brain revealed bilateral contrast enhancement in the occipital lobes and no evidence of cerebral haemorrhage, and magnetic resonance imaging of the brain showed no pathology. Sight returned spontaneously within 4 days and his vision gradually improved. A search of the current literature for reported cases of transient cortical blindness suggested that this is a rarely encountered complication of coronary angiography.

  15. Reversible cortical blindness after lung transplantation.

    Science.gov (United States)

    Knower, Mark T; Pethke, Scott D; Valentine, Vincent G

    2003-06-01

    Cyclosporine (CYA) is a calcineurin inhibitor widely used in immunosuppressive regimens after organ transplantation. Several neurologic side effects are frequently associated with CYA use; however, reversible cortical blindness is a rare manifestation of CYA toxicity traditionally seen after liver and bone marrow transplantation. This report presents a case of reversible cortical blindness after lung transplantation, then details the risk factors and clinical course of 28 previously well-documented cases of CYA-induced cortical blindness after transplantation. Identification of known risk factors, clinical clues, and typical radiographic findings may aid in the diagnosis of CYA-induced cortical blindness, since reduction in CYA dose or cessation of CYA therapy usually permits resolution of the neurologic effects.

  16. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  17. National Center On Deaf-Blindness

    Science.gov (United States)

    ... Blind This is NICE! National Intervener Certification E-Portfolio ‹ › Make a Profile Save favorite resources Make connections ... Staff Site Help Community Jobs Site Accessibility Sitemap Feedback Survey Privacy Policy Terms of Use Follow Us ...

  18. Hypertension and color blindness in young men.

    Science.gov (United States)

    Morton, W E

    1975-05-01

    Medical data from Selective Service registrants born from 1939 to 1941 were studied in Oregon and Colorado. Among 29,119 registrants with medical information (41.3% of all registrants), 1,073 (3.6%) had definite hypertension, and 1,226 (4.2%) had some type of color blindness. In both states, there was a highly significant association between the prevalence of hypertension and the prevalence of color blindness. Thus, definite hypertension was present in 6.0% of color clind individuals but in only 3.6% of those with unimparied color vision, while color blindness occurred in 6.8% with definite hypertension, in 5.8% with borderline hypertension, and in only 4.0% with normal blood pressure. The data did not differentiate among types of color blindness, and the reason for the association is not yet evident.

  19. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... of visual function, preservation of sight, and the special health problems and requirements of the blind.” News & ... Emily Y. Chew, M.D., Deputy Clinical Director Education Programs National Eye Health Education Program (NEHEP) Diabetic ...

  20. Imagery limitations in totally congenitally blind subjects.

    Science.gov (United States)

    De Beni, R; Cornoldi, C

    1988-10-01

    Research on totally blind subjects performing tasks that involve visual imagery has often shown that they do not behave differently from matched sighted subjects, even when their blindness is congenital. If visual imagery is based on visual perception, such tasks may not required visual imagery. In the present article visual images are considered as representations maintaining some properties of visible objects and constructed on the basis of information from various sources. Owing to the absence of visual experience, the limitations of such representations are explored in a series of experiments requiring memorization of single nouns, pairs of nouns, or triplets of nouns associated with a cue noun. Recall by blind subjects was impaired when multiple interactive images (with noun pairs and triplets) are formed. The poorer recall of blind subjects reflected also loss of order information. Recall was better for both groups with locative noun cues and high-imagery targets.

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... problems and requirements of the blind.” News & Events ... Contacts Joe Balintfy - Media Lead joe.balintfy@nih.gov Anna Harper - Media Relations afh@nei.nih.gov NEI Office of Communications ( ...

  2. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Sheldon Miller answers questions about color blindness, whether it can be treated, and how people become color ... I’m sleeping? Click to Watch What does it mean to be nearsighted or farsighted? Click to ...

  3. Performance Evaluation of Blind Tropospheric Delay correction ...

    African Journals Online (AJOL)

    Performance Evaluation of Blind Tropospheric Delay correction Models over Africa. ... consisting of surface meteorological models and global empirical models. ... GPT2w and UNB3M models with accurate International GNSS Service (IGS)- ...

  4. Universal blind quantum computation for hybrid system

    Science.gov (United States)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Scientist Video Series Why can’t you see colors well in the dark? Do fish have eyelids? ... video series. Dr. Sheldon Miller answers questions about color blindness, whether it can be treated, and how ...

  6. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Sheldon Miller answers questions about color blindness, whether it can be treated, and how people become color ... I’m sleeping? Click to Watch What does it mean to be nearsighted or farsighted? Click to ...

  7. Enhanced heat discrimination in congenital blindness

    DEFF Research Database (Denmark)

    Slimani, Hocine; Ptito, Maurice; Kupers, Ron

    2015-01-01

    There is substantial evidence that congenitally blind individuals perform better than normally sighted controls in a variety of auditory, tactile and olfactory discrimination tasks. However, little is known about the capacity of blind individuals to make fine discriminatory judgments in the thermal...... discrimination. Thermal stimuli were delivered with either a 2.56 or 9 cm(2) Peltier-based thermode. We applied for 5-8s lasting non-painful thermal stimuli to the forearm and asked participants to detect small increments in temperature (ΔT = 0.4, 0.8, 1.2 or 1.6°C) that occurred at random time intervals. Blank...... of the stimulated skin surface or magnitude of the temperature shift. Increasing the size of the stimulated skin area increased the response criterion in the blind (p=0.022) but not in the sighted. Together, these findings show that congenitally blind individuals have enhanced temperature discrimination accuracy...

  8. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... programs with respect to blinding eye diseases, visual disorders, mechanisms of visual function, preservation of sight, and the special health problems and ... Health Information Frequently asked questions ...

  9. Fear of blindness and perceptions about blind people. The Andhra Pradesh Eye Disease Study.

    Science.gov (United States)

    Giridhar, Pyda; Dandona, Rakhi; Prasad, Mudigonda N; Kovai, Vilas; Dandona, Lalit

    2002-09-01

    This study assessed the fear of being affected by illness and disability including blindness, and perceptions of the population towards blind people in the Indian state of Andhra Pradesh. A total of 11,786 subjects of all ages were sampled from 94 clusters in one urban and three rural study areas of Andhra Pradesh using stratified, random, cluster, systematic sampling to represent the population of this state. A total of 10,293 subjects of all ages underwent a detailed interview and dilated ocular evaluation. Subjects > 15 years of age (7,432) were interviewed regarding fear of illness/disability and their perceptions of blind people. The fear of blindness was assessed in comparison to cancer, severe mental illness, heart attack, losing limbs, deafness, inability to speak, and paralysis. A majority of the study population feared all the illnesses and disabilities assessed. The prevalence of fear of blindness was 90.9% (95% confidence interval 89.1-92.8%) and 92.1% (95% confidence interval 90.6-93.6%) in urban and rural study areas respectively. With multiple logistic regression the fear of blindness was significantly higher for those with any level of education and for those living in the rural study areas. The proportion of those having positive feelings towards blind people was higher in the urban study area. A high prevalence of blindness, 1.84%, has been reported in this population previously. These data suggest that this population feared blindness, and yet there is a high rate of blindness. This reflects the need for increasing awareness about blindness in this population through eye health promotion strategies in order to reduce blindness, and awareness regarding the availability of rehabilitation services.

  10. Quantum group blind signature scheme without entanglement

    Science.gov (United States)

    Xu, Rui; Huang, Liusheng; Yang, Wei; He, Libao

    2011-07-01

    In this paper we propose a quantum group blind signature scheme designed for distributed e-voting system. Our scheme combines the properties of group signature and blind signature to provide anonymity of voters in an e-voting system. The unconditional security of our scheme is ensured by quantum mechanics. Without employing entanglement, the proposed scheme is easier to be realized comparing with other quantum signature schemes.

  11. Can acupuncture treatment be double-blinded?

    DEFF Research Database (Denmark)

    Vase, Lene; Baram, Sara; Takakura, Nobuari;

    2015-01-01

    and acupuncturists were asked about perceived treatment allocation at the end of the study. To test if there were clues which led to identification of the treatment, deep dull pain associated with needle application and rotation (termed "de qi" in East Asian medicine), and patients' pain levels were assessed...... is the only needle that allows some degree of practitioner blinding. The study raises questions about alternatives to double-blind randomized clinical trials in the assessment of acupuncture treatment....

  12. Blind source separation dependent component analysis

    CERN Document Server

    Xiang, Yong; Yang, Zuyuan

    2015-01-01

    This book provides readers a complete and self-contained set of knowledge about dependent source separation, including the latest development in this field. The book gives an overview on blind source separation where three promising blind separation techniques that can tackle mutually correlated sources are presented. The book further focuses on the non-negativity based methods, the time-frequency analysis based methods, and the pre-coding based methods, respectively.

  13. Blind Signature Scheme Based on Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Maheswara Rao Valluri

    2011-12-01

    Full Text Available A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  14. Blindness in a bladder cancer patient.

    Science.gov (United States)

    Remón, J; Guardeño, R; Badía, A; Cardona, T; Picaza, J M; Lianes, P

    2007-02-01

    Blindness is an unusual symptom in the clinical course of cancer. When it appears it is necessary to differentiate between benign and malign causes. Brain metastases in bladder cancer are extremely rare. MRI is the best diagnostic option. We present a deaf-and-dumb male with subacute blindness, 12 months after the diagnosis of a metastatic bladder cancer. Computerised tomography scan and MRI revealed a mass into the pituitary gland and sella, probably of metastatic origin.

  15. Blind Signature Scheme Based on Chebyshev Polynomials

    OpenAIRE

    Maheswara Rao Valluri

    2011-01-01

    A blind signature scheme is a cryptographic protocol to obtain a valid signature for a message from a signer such that signer’s view of the protocol can’t be linked to the resulting message signature pair. This paper presents blind signature scheme using Chebyshev polynomials. The security of the given scheme depends upon the intractability of the integer factorization problem and discrete logarithms ofChebyshev polynomials.

  16. Shape Perception and Navigation in Blind Adults

    Science.gov (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2017-01-01

    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  17. From perception to metacognition: Auditory and olfactory functions in early blind, late blind, and sighted individuals

    Directory of Open Access Journals (Sweden)

    Stina Cornell Kärnekull

    2016-09-01

    Full Text Available Although evidence is mixed, studies have shown that blind individuals perform better than sighted at specific auditory, tactile, and chemosensory tasks. However, few studies have assessed blind and sighted individuals across different sensory modalities in the same study. We tested early blind (n = 15, late blind (n = 15, and sighted (n = 30 participants with analogous olfactory and auditory tests in absolute threshold, discrimination, identification, episodic recognition, and metacognitive ability. Although the multivariate analysis of variance (MANOVA showed no overall effect of blindness and no interaction with modality, follow-up between-group contrasts indicated a blind-over-sighted advantage in auditory episodic recognition, that was most pronounced in early blind individuals. In contrast to the auditory modality, there was no empirical support for compensatory effects in any of the olfactory tasks. There was no conclusive evidence for group differences in metacognitive ability to predict episodic recognition performance. Taken together, the results showed no evidence of an overall superior performance in blind relative sighted individuals across olfactory and auditory functions, although early blind individuals exceled in episodic auditory recognition memory. This observation may be related to an experience-induced increase in auditory attentional capacity.

  18. From Perception to Metacognition: Auditory and Olfactory Functions in Early Blind, Late Blind, and Sighted Individuals

    Science.gov (United States)

    Cornell Kärnekull, Stina; Arshamian, Artin; Nilsson, Mats E.; Larsson, Maria

    2016-01-01

    Although evidence is mixed, studies have shown that blind individuals perform better than sighted at specific auditory, tactile, and chemosensory tasks. However, few studies have assessed blind and sighted individuals across different sensory modalities in the same study. We tested early blind (n = 15), late blind (n = 15), and sighted (n = 30) participants with analogous olfactory and auditory tests in absolute threshold, discrimination, identification, episodic recognition, and metacognitive ability. Although the multivariate analysis of variance (MANOVA) showed no overall effect of blindness and no interaction with modality, follow-up between-group contrasts indicated a blind-over-sighted advantage in auditory episodic recognition, that was most pronounced in early blind individuals. In contrast to the auditory modality, there was no empirical support for compensatory effects in any of the olfactory tasks. There was no conclusive evidence for group differences in metacognitive ability to predict episodic recognition performance. Taken together, the results showed no evidence of an overall superior performance in blind relative sighted individuals across olfactory and auditory functions, although early blind individuals exceled in episodic auditory recognition memory. This observation may be related to an experience-induced increase in auditory attentional capacity. PMID:27729884

  19. Third COS FUV Lifetime Calibration Program: Flatfield and Flux Calibrations

    Science.gov (United States)

    Debes, J. H.; Becker, G.; Roman-Duval, J.; Ely, J.; Massa, D.; Oliveira, C.; Plesha, R.; Proffitt, C.; Taylor, J.

    2016-10-01

    As part of the calibration of the third lifetime position (LP3) of the Cosmic Origins Spectrograph (COS) Far-Ultraviolet (FUV) detector, observations of WD 0308-565 were obtained with the G130M, G160M, and G140L gratings and observations of GD 71 were obtained in the G160M grating through the Point Source Aperture (PSA) to derive low-order flatfields (L-flats) and sensitivities at LP3. Observations were executed for all CENWAVES and all FP-POS with the exception of G130M/1055 and G130M/1096, which remained at LP2. The derivation of the L-flats and sensitivities at LP3 differed from their LP1 and LP2 counterparts in a few key ways, which we describe in this report. Firstly, we quantified a cut-off in spatial frequency that we assigned to the L-flats. Secondly, we derived a new method for simultaneously fitting both the L-flats, pixel-to-pixel flats (P-flats), and sensitvities which we compared to our previous method of separately fitting L-flats and sensitivities. These new methods produce comparable results, but provide us with an external test on the robustness of each approach individually. The results of our work show that with the new profile extraction routines, sensitivities, and L-flats, the relative and absolute flux calibration accuracies (1% and 2% respectively) at LP3 are slightly improved relative to previous locations on the COS FUV detector.

  20. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    Science.gov (United States)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  1. Reduced taste sensitivity in congenital blindness.

    Science.gov (United States)

    Gagnon, Lea; Kupers, Ron; Ptito, Maurice

    2013-07-01

    Sight is undoubtedly not only important for food identification and selection but also for the modulation of gustatory sensitivity. We can, therefore, assume that taste sensitivity and eating habits are affected by visual deprivation from birth. We measured taste detection and identification thresholds of the 5 basic tastants in 13 congenitally blind and 13 sighted control subjects. Participants also answered several eating habits questionnaires, including the Food Neophobia Scale, the Food Variety Seeking Tendency Scale, the Intuitive Eating Scale, and the Body Awareness Questionnaire. Our behavioral results showed that compared with the normal sighted, blind subjects have increased thresholds for taste detection and taste identification. This finding is at odds with the superior performance of congenitally blind subjects in several tactile, auditory and olfactory tasks. Our psychometric data further indicate that blind subjects more strongly rely on internal hunger and satiety cues, instead of external contextual or emotional cues, to decide when and what to eat. We suggest that the lower taste sensitivity observed in congenitally blind individuals is due to various blindness-related obstacles when shopping for food, cooking and eating out, all of which contribute to underexpose the gustatory system to a larger variety of taste stimuli.

  2. Auditory gap detection in the early blind.

    Science.gov (United States)

    Weaver, Kurt E; Stevens, Alexander A

    2006-01-01

    For blind individuals, audition provides critical information for interacting with the environment. Individuals blinded early in life (EB) typically show enhanced auditory abilities relative to sighted controls as measured by tasks requiring complex discrimination, attention and memory. In contrast, few deficits have been reported on tasks involving auditory sensory thresholds (e.g., Yates, J.T., Johnson, R.M., Starz, W.J., 1972. Loudness perception of the blind. Audiology 11(5), 368-376; Starlinger, I., Niemeyer, W., 1981. Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. I. Peripheral functions. Audiology 20(6), 503-509). A study of gap detection stands at odds with this distinction [Muchnik, C., Efrati, M., Nemeth, E., Malin, M., Hildesheimer, M., 1991. Central auditory skills in blind and sighted subjects. Scand. Audiol. 20(1), 19-23]. In the current investigation we re-examined gap detection abilities in the EB using a single-interval, yes/no method. A group of younger sighted control individuals (SCy) was included in the analysis in addition to EB and sighted age matched control individuals (SCm) in order to examine the effect of age on gap detection performance. Estimates of gap detection thresholds for EB subjects were nearly identical to SCm subjects and slightly poorer relative to the SCy subjects. These results suggest some limits on the extent of auditory temporal advantages in the EB.

  3. Numerical simulation of ventilation in blinding heading

    Institute of Scientific and Technical Information of China (English)

    CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi

    2008-01-01

    The way of ventilation in all its forms and characteristics in the blinding heading was studied. On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up, and the calculation boundary condi-tions were analyzed. According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics soft-ware. The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained. The ventilation in blinding heading under certain circumstances was calculated and simulated for optimiza-tion. The optimal ventilation form and related parameters under given condition were ob-tained. The rule of the ventilation in blinding heading was theoretical analyzed, which pro-vided reference for the research on the process of mass transfer, the rule of hazardous substances transportation and ventilation efficiency, provided a new method for the study of reasonable and effective ventilation in blinding heading.

  4. Numerical simulation of ventilation in blinding heading

    Institute of Scientific and Technical Information of China (English)

    CHANG De-qiang; LIU Jing-xian; CHEN Bao-zhi

    2008-01-01

    The way of ventilation in all its forms and characteristics in the blinding heading was studied.On the basis of computational fluid dynamics (CFD) the turbulence model of restrained ventilation in blinding heading was set up,and the calculation boundary conditions were analyzed.According to the practice application the three-dimensional flow field of ventilation in blinding heading was simulated by the computational fluid dynamics software.The characteristics of the ventilation flow field such as the temperature field zone and the flow filed zone and the rule of the flow velocity were obtained.The ventilation in blinding heading under certain circumstances was calculated and simulated for optimization.The optimal ventilation form and related parameters under given condition were obtained.The rule of the ventilation in blinding heading was theoretical analyzed,which provided reference for the research on the process of mass transfer,the rule of hazardous substances transportation and ventilation efficiency,provided a new method for the study of reasonable and effective ventilation in blinding heading.

  5. Unblinding the dark matter blind spots

    Science.gov (United States)

    Han, Tao; Kling, Felix; Su, Shufang; Wu, Yongcheng

    2017-02-01

    The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the Z-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relic DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. The dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.

  6. An Efficient Scheme for Sensitive Message Transmission using Blind Signcryption

    OpenAIRE

    Awasthi, Amit K; Lal, Sunder

    2005-01-01

    Blind signature schemes enable a useful protocol that guarantee the anonymity of the participants while Signcryption offers authentication of message and confidentiality of messages at the same time and more efficiently. In this paper, we present a blind signcryption scheme that combines the functionality of blind signature and signcryption. This blind Signcryption is useful for applications that are based on anonymity untracebility and unlinkability.

  7. Calibration Monitor for Dark Energy Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  8. Herschel SPIRE FTS Relative Spectral Response Calibration

    CERN Document Server

    Fulton, Trevor; Baluteau, Jean-Paul; Benielli, Dominique; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Marchili, Nicola; Naylor, David; Polehampton, Edward; Swinyard, Bruce; Valtchanov, Ivan

    2014-01-01

    Herschel/SPIRE Fourier transform spectrometer (FTS) observations contain emission from both the Herschel Telescope and the SPIRE Instrument itself, both of which are typically orders of magnitude greater than the emission from the astronomical source, and must be removed in order to recover the source spectrum. The effects of the Herschel Telescope and the SPIRE Instrument are removed during data reduction using relative spectral response calibration curves and emission models. We present the evolution of the methods used to derive the relative spectral response calibration curves for the SPIRE FTS. The relationship between the calibration curves and the ultimate sensitivity of calibrated SPIRE FTS data is discussed and the results from the derivation methods are compared. These comparisons show that the latest derivation methods result in calibration curves that impart a factor of between 2 and 100 less noise to the overall error budget, which results in calibrated spectra for individual observations whose n...

  9. New method to calibrate a spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    2014-01-01

    The spinner anemometer is a wind sensor, based on three one dimensional sonic sensor probes, mounted on the wind turbine spinner, and an algorithm to convert the wind speeds measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion...... to be stopped during calibration in order for the rotor induction not to influence on the calibration, so that the spinner anemometer measures ”free” wind values in stopped condition. The calibration of flow angle measurements is made by calibration of the ratio of the two algorithm constants k2=k1 = k......_. The calibration of k_ is made by relating the spinner anemometer yaw misalignment measurements to the yaw position when yawing the wind turbine in and out of the wind several times. The calibration of the constant k1 is made by comparing the spinner anemometer wind speed measurement with a free metmast or lidar...

  10. NASA AURA HIRDLS instrument calibration facility

    Science.gov (United States)

    Hepplewhite, Christopher L.; Barnett, John J.; Watkins, Robert E. J.; Row, Frederick; Wolfenden, Roger; Djotni, Karim; Oduleye, Olusoji O.; Whitney, John G.; Walton, Trevor W.; Arter, Philip I.

    2003-11-01

    A state-of-the-art calibration facility was designed and built for the calibration of the HIRDLS instrument at the University of Oxford, England. This paper describes the main features of the facility, the driving requirements and a summary of the performance that was achieved during the calibration. Specific technical requirements and a summary of the performance that was achieved during the calibration. Specific technical requirements and other constaints determined the design solutions that were adopted and the implementation methodology. The main features of the facility included a high performance clean room, vacuum chamber with thermal environmental control as well as the calibration sources. Particular attention was paid to maintenance of cleanliness (molecular and particulate), ESD control, mechanical isolation and high reliability. Schedule constraints required that all the calibration sources were integrated into the facility so that the number of re-press and warm up cycles was minimized and so that all the equipment could be operated at the same time.

  11. Research of Camera Calibration Based on DSP

    Directory of Open Access Journals (Sweden)

    Zheng Zhang

    2013-09-01

    Full Text Available To take advantage of the high-efficiency and stability of DSP in the data processing and the functions of OpenCV library, this study brought forward a scheme that camera calibration in DSP embedded system calibration. An arithmetic of camera calibration based on OpenCV is designed by analyzing the camera model and lens distortion. The transplantation of EMCV to DSP is completed and the arithmetic of camera calibration is migrated and optimized based on the CCS development environment and the DSP/BIOS system. On the premise of realizing calibration function, this arithmetic improves the efficiency of program execution and the precision of calibration and lays the foundation for further research of the visual location based on DSP embedded system.

  12. New method to calibrate a spinner anemometer

    DEFF Research Database (Denmark)

    Demurtas, Giorgio; Friis Pedersen, Troels

    2014-01-01

    The spinner anemometer is a wind sensor, based on three one dimensional sonic sensor probes, mounted on the wind turbine spinner, and an algorithm to convert the wind speeds measured by the three sonic sensors to horizontal wind speed, yaw misalignment and flow inclination angle. The conversion...... to be stopped during calibration in order for the rotor induction not to influence on the calibration, so that the spinner anemometer measures ”free” wind values in stopped condition. The calibration of flow angle measurements is made by calibration of the ratio of the two algorithm constants k2=k1 = k......_. The calibration of k_ is made by relating the spinner anemometer yaw misalignment measurements to the yaw position when yawing the wind turbine in and out of the wind several times. The calibration of the constant k1 is made by comparing the spinner anemometer wind speed measurement with a free metmast or lidar...

  13. GIFTS SM EDU Radiometric and Spectral Calibrations

    Science.gov (United States)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  14. Biogeographic calibrations for the molecular clock.

    Science.gov (United States)

    Ho, Simon Y W; Tong, K Jun; Foster, Charles S P; Ritchie, Andrew M; Lo, Nathan; Crisp, Michael D

    2015-09-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

  15. Radiocarbon calibration - past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Plicht, J. van der E-mail: plicht@phys.rug.nl

    2004-08-01

    Calibration of the Radiocarbon timescale is traditionally based on tree-rings dated by dendrochronology. At present, the tree-ring curve dates back to about 9900 BC. Beyond this limit, marine datasets extend the present calibration curve INTCAL98 to about 15 600 years ago. Since 1998, a wealth of AMS measurements became available, covering the complete {sup 14}C dating range. No calibration curve can presently be recommended for the older part of the dating range until discrepancies are resolved.

  16. Calibration Procedure for 3D Turning Dynamometer

    DEFF Research Database (Denmark)

    Axinte, Dragos Aurelian; Belluci, Walter

    1999-01-01

    The aim of the static calibration of the dynamometer is to obtain the matrix for evaluating cutting forces through the output voltage of the piezoelectric cells and charge amplifiers. In the same time, it is worth to evaluate the linearity of the dependencies between applied forces and output...... of the piezoelectric cells;5. Mounting of the dynamometer;6. Calibration of the dynamometer;7. Data analysis;8. Uncertainty budget of the calibration....

  17. Calibration of Avent Wind IRIS SN 01030167

    DEFF Research Database (Denmark)

    Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  18. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  19. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a four-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark.Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements...... with measurement uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  20. Calibration biases in logical reasoning tasks

    OpenAIRE

    Guillermo Macbeth; Alfredo López Alonso; Eugenia Razumiejczyk; Rodrigo Sosa; Carolina Pereyra; Humberto Fernández

    2013-01-01

    The aim of this contribution is to present an experimental study about calibration in deductive reasoning tasks. Calibration is defi ned as the empirical convergence or divergence between the objective and the subjective success. The underconfi dence bias is understood as the dominance of the former over the latter. The hypothesis of this study states that the form of the propositions presented in the experiment is critical for calibration phenomena. Affi rmative and negative propositions are...