WorldWideScience

Sample records for blenx-based compositional modeling

  1. Compositional Modeling with DPNs

    Science.gov (United States)

    2007-11-02

    Technical Report Compositional Modeling with DPNs 6. AUTHOR(S) Geoffrey Zweig and Stuart Russell 7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES...Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102 Compositional Modeling With DPNs Geoffrey Zweig Stuart Russell Report No. UCB...Modeling With DPNs Geoffrey Zweig * Stuart Russell * Sept. 8, 1997 Abstract Dynamic probabilistic networks (DPNs) are a powerful and efficient method for

  2. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    , and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding......This report is part of a research project on "Control of Early Age Cracking" - which, in turn, is part of the major research programme, "High Performance Concrete - The Contractor's Technology (HETEK)", coordinated by the Danish Road Directorate, Copenhagen, Denmark, 1997.A composite......-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one approach.The model...

  3. Composite Dos Attack Model

    Directory of Open Access Journals (Sweden)

    Simona Ramanauskaitė

    2012-04-01

    Full Text Available Preparation for potential threats is one of the most important phases ensuring system security. It allows evaluating possible losses, changes in the attack process, the effectiveness of used countermeasures, optimal system settings, etc. In cyber-attack cases, executing real experiments can be difficult for many reasons. However, mathematical or programming models can be used instead of conducting experiments in a real environment. This work proposes a composite denial of service attack model that combines bandwidth exhaustion, filtering and memory depletion models for a more real representation of similar cyber-attacks. On the basis of the introduced model, different experiments were done. They showed the main dependencies of the influence of attacker and victim’s properties on the success probability of denial of service attack. In the future, this model can be used for the denial of service attack or countermeasure optimization.

  4. General Composite Higgs Models

    CERN Document Server

    Marzocca, David; Shu, Jing

    2012-01-01

    We construct a general class of pseudo-Goldstone composite Higgs models, within the minimal $SO(5)/SO(4)$ coset structure, that are not necessarily of moose-type. We characterize the main properties these models should have in order to give rise to a Higgs mass at around 125 GeV. We assume the existence of relatively light and weakly coupled spin 1 and 1/2 resonances. In absence of a symmetry principle, we introduce the Minimal Higgs Potential (MHP) hypothesis: the Higgs potential is assumed to be one-loop dominated by the SM fields and the above resonances, with a contribution that is made calculable by imposing suitable generalizations of the first and second Weinberg sum rules. We show that a 125 GeV Higgs requires light, often sub-TeV, fermion resonances. Their presence can also be important for the model to successfully pass the electroweak precision tests. Interestingly enough, the latter can be passed also by models with a heavy Higgs around 320 GeV. The composite Higgs models of the moose-type conside...

  5. Composite-technicolor standard model

    Science.gov (United States)

    Sekhar Chivukula, B.; Georgi, Howard

    1987-04-01

    We characterize a class of composite models in which the quarks and leptons and technifermions are built from fermions (preons) bound by strong gauge interactions. We argue that if the preon dynamics has as [SU(3) × U(1)] 5 flavor symmetry that is explicitly broken only by preon mass terms proportional to the quark and lepton mass matrices, then the composite-tech-nicolor theory has a GIM mechanism that suppresses dangerous flavor changing neutral current effects. We show that the compositeness scale must be between ≈1 TeV and ≈2.5 TeV, giving rise to observable deviations from the standard electroweak interactions, and that B overlineB mixing and CP violation in K mesons can differ significantly from the standard model predictions. The lepton flavor symmetries may be observable in the near future in the comparison of the compositeness effects in e +e - → μ +μ - with those in e +e - → e +e -.

  6. Light fermions in composite models

    Science.gov (United States)

    Khlebnikov, S. Yu.; Peccei, R. D.

    1993-07-01

    In preon models based on chiral gauge theories, we show that light composite fermions can ensue as a result of gauging a subset of preons in a vectorlike manner. After demonstrating how this mechanism works in a toy example, we construct a one-generation model of quarks which admits a hierarchy between the up and down quark masses as well as between these masses and the compositeness scale. In simple extensions of this model to more generations we discuss the challenges of obtaining any quark mixing. Some possible phenomenological implications of scenarios where quarks and leptons which are heavier are also less pointlike are also considered.

  7. Light fermions in composite models

    CERN Document Server

    Khlebnikov, S Yu

    1993-01-01

    In preon models based on chiral gauge theories, we show that light composite fermions can ensue as a result of gauging a subset of preons in a vector-like manner. After demonstrating how this mechanism works in a toy example, we construct a one generation model of quarks which admits a hierarchy between the up and down quark masses as well as between these masses and the compositeness scale. In simple extensions of this model to more generations we discuss the challenges of obtaining any quark mixing. Some possible phenomenological implications of scenarios where quarks and leptons which are heavier are also less pointlike are also considered.

  8. Compositional and Quantitative Model Checking

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand

    2010-01-01

    This paper gives a survey of a composition model checking methodology and its succesfull instantiation to the model checking of networks of finite-state, timed, hybrid and probabilistic systems with respect; to suitable quantitative versions of the modal mu-calculus [Koz82]. The method is based...

  9. Meshfree modeling in laminated composites

    KAUST Repository

    Simkins, Daniel Craig

    2012-09-27

    A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.

  10. Composite Model and CP Violation

    CERN Document Server

    Matsushima, Takeo

    2007-01-01

    A fermion-boson-type Composite Model is proposed. Elementary fields are only one kind of spin-1/2 and spin-0 {\\bf preon}. Both are in the global supersymmetric pair with the common electric charge of e/6 and belong to the fundamental representations of (3, 2, 2) under the spontaneously unbroken SU(3)_C\\otimes{SU(2)}_L^{h}\\otimes{SU(2)}_R^{h} gauge symmetry (h means hyper-color gauge). Preons are composed into subquarks which are intermediate clusters towards quarks and leptons. Weak interactions are residual ones of hyper-color gauge interactions. W-and Z-boson are also composite objects of subquarks, which introduces the idea of existence of their scalar partners (S) by hyper-fine-splitting whose masses would be around 110-120 GeV. The mechanism of making higher generations is obtained by adding neutral scalar subquark (y) composed of a preon-antipreon pair. Creation or annihilation of y inside quarks induces the coupling constants of flavor-mixing weak interactions which are all complex numbers (contrary to...

  11. Exploring holographic Composite Higgs models

    CERN Document Server

    Croon, Djuna; Huber, Stephan J; Sanz, Veronica

    2015-01-01

    Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to understand how far naive 4D predictions are from their 5D duals. Interestingly, we find that the usual hierarchy among the vector-like quarks is not generic, hence ameliorating the tuning issue. We also find that lowering the hierarchy of scales in the 5D picture allows for heavier top partners, while keeping the mass of the Higgs boson at its observed value. In the 4D dual this corresponds to increasing the number of colours N. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small hierarchy of scales may not in ten...

  12. Composite Linear Models | Division of Cancer Prevention

    Science.gov (United States)

    By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty examples from the literature. |

  13. Adhesive joint and composites modeling in SIERRA.

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )

    2005-11-01

    Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.

  14. Composite model with large mixing of neutrinos

    CERN Document Server

    Haba, N

    1999-01-01

    We suggest a simple composite model that induces the large flavor mixing of neutrino in the supersymmetric theory. This model has only one hyper-color in addition to the standard gauge group, which makes composite states of preons. In this model, {\\bf 10} and {\\bf 1} representations in SU(5) grand unified theory are composite states and produce the mass hierarchy. This explains why the large mixing is realized in the lepton sector, while the small mixing is realized in the quark sector. This model can naturally solve the atmospheric neutrino problem. We can also solve the solar neutrino problem by improving the model.

  15. Composite Models of Quarks and Leptons.

    Science.gov (United States)

    Geng, Chaoqiang

    1987-09-01

    We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons.

  16. Modelling of composite propellant properties

    NARCIS (Netherlands)

    Keizers, H.L.J.; Hordijk, A.C.; Vliet, L.D. van; Bouquet, F.

    2000-01-01

    State-of-the-art composite propellants are based on solid particles (AP, Aluminium) in a polymeric HTPB based binder system. The usability of a propellant for a particular application is dependent on a large number of properties. These different properties sometimes result in contradictory requireme

  17. Micromechanical models for graded composite materials

    DEFF Research Database (Denmark)

    Reiter, T; Dvorak, G.J.; Tvergaard, Viggo

    1997-01-01

    Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... transverse shear stress; The results suggest that the averaging methods originally developed for statistically homogeneous aggregates may be selectively applied, with a reasonable degree of confidence, to aggregates dth composition gradients, subjected to both uniform and nonuniform overall loads. (C) 1997...

  18. Modelling the crush behaviour of thermoplastic composites

    OpenAIRE

    Tan, Wei; Falzon, Brian G.

    2016-01-01

    Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough ...

  19. Computer Modeling of Ceramic Boride Composites

    Science.gov (United States)

    2014-11-01

    AFRL-AFOSR-UK-TR-2015-0016 Computer Modeling of Ceramic Boride Composites Dr. Valeriy V. Kartuzov SCIENCE AND TECHNOLOGY...Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and Development Unit 4515, APO AE 09421-4515...4. TITLE AND SUBTITLE Computer Modeling of Ceramic Boride Composites  5a. CONTRACT NUMBER STCU P-510 5b. GRANT NUMBER STCU 11-8003 5c

  20. Mathematical methods and models in composites

    CERN Document Server

    Mantic, Vladislav

    2014-01-01

    This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover

  1. Compositional encoding for bounded model checking

    Institute of Scientific and Technical Information of China (English)

    Jun SUN; Yang LIU; Jin Song DONG; Jing SUN

    2008-01-01

    Verification techniques like SAT-based bounded model checking have been successfully applied to a variety of system models. Applying bounded model checking to compositional process algebras is, however, a highly non-trivial task. One challenge is that the number of system states for process algebra models is not statically known, whereas exploring the full state space is computa-tionally expensive. This paper presents a compositional encoding of hierarchical processes as SAT problems and then applies state-of-the-art SAT solvers for bounded model checking. The encoding avoids exploring the full state space for complex systems so as to deal with state space explosion. We developed an automated analyzer which combines complementing model checking tech-niques (I.e., bounded model checking and explicit on-the-fly model checking) to validate system models against event-based temporal properties. The experiment results show the analyzer handles large systems.

  2. UV complete composite Higgs models

    CERN Document Server

    Agugliaro, Alessandro; Becciolini, Diego; De Curtis, Stefania; Redi, Michele

    2016-01-01

    We study confining gauge theories with fermions vectorial under the SM that produce a Higgs doublet as a Nambu-Goldstone boson. The vacuum misalignment required to break the electro-weak symmetry is induced by an elementary Higgs doublet with Yukawa couplings to the new fermions. The physical Higgs is a linear combination of elementary and composite Higgses while the SM fermions remain elementary. The full theory is renormalizable and the SM Yukawa couplings are generated from the ones of the elementary Higgs allowing to eliminate all flavour problems but with interesting effects for Electric Dipole Moments of SM particles. We also discuss how ideas on the relaxation of the electro-weak scale could be realised within this framework.

  3. Partially composite two-Higgs doublet model

    Indian Academy of Sciences (India)

    Dong-Won Jung

    2007-11-01

    In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive four-fermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale . The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.

  4. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  5. Component Composition Using Feature Models

    DEFF Research Database (Denmark)

    Eichberg, Michael; Klose, Karl; Mitschke, Ralf;

    2010-01-01

    In general, components provide and require services and two components are bound if the first component provides a service required by the second component. However, certain variability in services - w.r.t. how and which functionality is provided or required - cannot be described using standard...... interface description languages. If this variability is relevant when selecting a matching component then human interaction is required to decide which components can be bound. We propose to use feature models for making this variability explicit and (re-)enabling automatic component binding. In our...... approach, feature models are one part of service specifications. This enables to declaratively specify which service variant is provided by a component. By referring to a service's variation points, a component that requires a specific service can list the requirements on the desired variant. Using...

  6. The Composite OLAP-Object Data Model

    Energy Technology Data Exchange (ETDEWEB)

    Pourabbas, Elaheh; Shoshani, Arie

    2005-12-07

    In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.

  7. Dynamical CP violation in composite Higgs models

    OpenAIRE

    Hashimoto, S.; Inagaki, Tomohiro; Muta, Taizo

    1993-01-01

    The dynamical origin of the CP violation in electroweak theory is investigated in composite Higgs models. The mechanism of the spontaneous CP violation proposed in other context by Dashen is adopted to construct simple models of the dynamical CP violation. Within the models the size of the neutron electric dipole moment is estimated and the constraint on the $\\varepsilon$-parameter in K-meson decays is discussed.

  8. Flavor and CP invariant composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-09-15

    The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)

  9. Consolidation modelling for thermoplastic composites forming simulation

    Science.gov (United States)

    Xiong, H.; Rusanov, A.; Hamila, N.; Boisse, P.

    2016-10-01

    Pre-impregnated thermoplastic composites are widely used in the aerospace industry for their excellent mechanical properties, Thermoforming thermoplastic prepregs is a fast manufacturing process, the automotive industry has shown increasing interest in this manufacturing processes, in which the reconsolidation is an essential stage. The model of intimate contact is investigated as the consolidation model, compression experiments have been launched to identify the material parameters, several numerical tests show the influents of the temperature and pressure applied during processing. Finally, a new solid-shell prismatic element has been presented for the simulation of consolidation step in the thermoplastic composites forming process.

  10. Yukawa Interaction from a SUSY Composite Model

    CERN Document Server

    Haba, N

    1998-01-01

    We present a composite model that is based on non-perturbative effects of N=1 supersymmetric SU(N_C) gauge theory with N_f=N_C+1 flavors. In this model, we consider N_C=7, where all matter fields in the supersymmetric standard model, that is, quarks, leptons and Higgs particles are bound states of preons and anti-preons. When SU(7)_H hyper-color coupling becomes strong, Yukawa couplings of quarks and leptons are generated dynamically. We show one generation model at first, and next we show models of three generations.

  11. Progressive Damage Modeling of Notched Composites

    Science.gov (United States)

    Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid; Satyanarayana, Arunkumar; Bogert, Philip

    2016-01-01

    There is an increased interest in using non-crimp fabric reinforced composites for primary and secondary structural weight savings in high performance automobile applications. However, one of the main challenges in implementing these composites is the lack of understanding of damage progression under a wide variety of loading conditions for general configurations. Towards that end, researchers at GM and NASA are developing new damage models to predict accurately the progressive failure of these composites. In this investigation, the developed progressive failure analysis model was applied to study damage progression in center-notched and open-hole tension specimens for various laminate schemes. The results of a detailed study with respect to the effect of element size on the analysis outcome are presented.

  12. Fabrication, characterization, and modeling of microvascular composites

    Science.gov (United States)

    Ryan, Thomas J.

    Composite laminates of glass fiber and epoxy pre-preg were fabricated with microvascular channels. The channels were created using polylactic acid (PLA) filament that evaporates at a temperature of 392 °F (200 °C) above the resin cure temperature of 250 °F (121 °C). After the composite is cured, the panel was removed from the oven and allowed to cool to room temperature. The panel is then reheated to 392 °F to vaporize the filament, leaving a cylindrical channel. A microvascular channel can be used for withdrawing heat, damage detection and self-healing. However, increasing the temperatures of the laminate above the cure temperature of the resin causes excess cross linking, potentially decreasing the mechanical properties. Tensile and flexural mechanical tests were performed on composite specimens and tensile tests were performed on neat resin specimens. A three-dimensional finite element model (FEM) was developed to study the progressive deformation and damage mechanics under tensile loading. The load carrying capacity of the microvascular composite was shown to decrease by 40% from a standard composite material. This paper will present the details of the fabrication, characterization and modeling techniques that were used in this study.

  13. VARTM Process Modeling of Aerospace Composite Structures

    Science.gov (United States)

    Song, Xiao-Lan; Grimsley, Brian W.; Hubert, Pascal; Cano, Roberto J.; Loos, Alfred C.

    2003-01-01

    A three-dimensional model was developed to simulate the VARTM composite manufacturing process. The model considers the two important mechanisms that occur during the process: resin flow, and compaction and relaxation of the preform. The model was used to simulate infiltration of a carbon preform with an epoxy resin by the VARTM process. The model predicted flow patterns and preform thickness changes agreed qualitatively with the measured values. However, the predicted total infiltration times were much longer than measured most likely due to the inaccurate preform permeability values used in the simulation.

  14. Modeling the VARTM Composite Manufacturing Process

    Science.gov (United States)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  15. Dark Matter constraints on composite Higgs models

    Science.gov (United States)

    Fonseca, Nayara; Funchal, Renata Zukanovich; Lessa, Andre; Lopez-Honorez, Laura

    2015-06-01

    In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) nature of the Higgs field is an interesting alternative for explaining the smallness of the electroweak scale with respect to the beyond the Standard Model scale. In non-minimal models additional pNGB states are present and can be a Dark Matter (DM) candidate, if there is an approximate symmetry suppressing their decay. Here we assume that the low energy effective theory (for scales much below the compositeness scale) corresponds to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We derive general effective DM Lagrangians for several possible DM representations (under the SM gauge group), including the singlet, doublet and triplet cases. Within this framework we discuss how the DM observables (relic abundance, direct and indirect detection) constrain the dimension-6 operators induced by the strong sector assuming that DM behaves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled through the freeze-out mechanism. We also apply our general results to two specific cosets: SO(6)/SO(5) and SO(6)/SO(4)×SO(2), which contain a singlet and doublet DM candidate, respectively. In particular we show that if compositeness is a solution to the little hierarchy problem, representations larger than the triplet are strongly disfavored. Furthermore, we find that composite models can have viable DM candidates with much smaller direct detection cross-sections than their non-composite counterparts, making DM detection much more challenging.

  16. E6 inspired composite Higgs model

    CERN Document Server

    Nevzorov, R

    2015-01-01

    We consider a composite Higgs model embedded into a Grand Unified Theory(GUT) based on the E_6 gauge group. The phenomenological viability of this E_6 inspired composite Higgs model (E6CHM) implies that standard model (SM) elementary fermions with different baryon or lepton number should stem from different 27 representations of E_6. We present a six-dimensional orbifold GUT model in which the E_6 gauge symmetry is broken to the SM gauge group so that the appropriate splitting of the bulk 27-plets takes place. In this model the strongly coupled sector is localised on one of the branes and possesses an SU(6) global symmetry that contains the SU(3)_C\\times SU(2)_W\\times U(1)_Y subgroup. In this case the approximate gauge coupling unification can be attained if the right-handed top quark is a composite state and the elementary sector involves extra exotic matter beyond the SM which ensures anomaly cancellation. The breakdown of the approximate SU(6) symmetry at low energies in this model results in a set of the ...

  17. Composite Higgs models, Dark Matter and Lambda

    CERN Document Server

    Diaz-Cruz, J Lorenzo

    2009-01-01

    We suggest that dark matter can be identified with a stable composite fermion X^0, that arises within the holographic AdS/CFT models, where the Higgs boson emerges as a composite pseudo-goldstone boson. The predicted properties of X^0 satisfies the cosmological bounds, with m_X = O(TeV). Thus, through a deeper understanding of the mechanism of electroweak symmetry breaking, a resolution of the Dark Matter enigma is found. Furthermore, by proposing a discrete structure of the Higgs vacuum, one can get a distinct approach to the cosmological constant problem.

  18. Multi-scale modeling of composites

    DEFF Research Database (Denmark)

    Azizi, Reza

    A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... behavior and the trapped free energy in the material, in addition to the plastic behavior in terms of the anisotropic development of the yield surface. It is shown that a generalization of Hill’s anisotropic yield criterion can be used to model the Bauschinger effect, in addition to the pressure and size...

  19. Survey on Services Composition Synthesis Model

    Directory of Open Access Journals (Sweden)

    Ibrahima Kalil Toure

    2013-01-01

    Full Text Available Current web services development tools are more sophisticated though ease of use, which leverage the creation of more web services thereof. This is the fact that, web services are being created and updated frequently, this multiplication of web services cannot be easily controlled by human being because it is almost impossible to analyze them and generate the composition plan. Composition of web services is the issue of synthesizing a new composite web service, obtained by combining a set of available (component services, when a client request cannot be satisfied by available web services. To address this issue, three main models have been proposed as a solution. The OWL-S model, the Conversational model and the Roman model which is investigated here. In this paper, we propose a survey on the so-called Roman model and present the framework and all its extension. We also underline its drawback, shortcomings and some advantages, and then try to provide some research direction.

  20. Lepton flavour violation in composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Feruglio, Ferruccio, E-mail: feruglio@pd.infn.it; Paradisi, Paride, E-mail: paride.paradisi@pd.infn.it [Sezione di Padova, Dipartimento di Fisica e Astronomia ‘G. Galilei’, INFN, Università di Padova, Via Marzolo 8, 35131, Padua (Italy); Pattori, Andrea, E-mail: pattori@physik.uzh.ch [Physik-Institut, Universität Zürich, 8057, Zurich (Switzerland)

    2015-12-08

    We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ→e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis.

  1. Lepton flavour violation in composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Feruglio, Ferruccio; Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padua (Italy); Pattori, Andrea [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland)

    2015-12-15

    We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ → e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis. (orig.) 7.

  2. Standard-model coupling constants from compositeness

    CERN Document Server

    Besprosvany, J

    2003-01-01

    A coupling-constant definition is given based on the compositeness property of some particle states with respect to the elementary states of other particles. It is applied in the context of the vector-spin-1/2-particle interaction vertices of a field theory, and the standard model. The definition reproduces Weinberg's angle in a grand-unified theory. One obtains coupling values close to the experimental ones for appropriate configurations of the standard-model vector particles, at the unification scale within grand-unified models, and at the electroweak breaking scale.

  3. A topological model of composite preons

    CERN Document Server

    Bilson-Thompson, S O

    2005-01-01

    We present a modification of the preon model proposed independently by Shupe and Harari. A basic dynamics is developed by treating the binding of preons as topological in nature and identifying the substructure of quarks, leptons and gauge bosons with elements of the braid group B_3. Topological considerations and a straightforward set of assumptions lead directly to behaviour consistent with much of the known phenomenology of the Standard Model. The preons of this model may be viewed as composite in nature, and composed of sub-preons, representing exactly two levels of substructure within quarks and leptons.

  4. Laminated composites modeling in ADAGIO/PRESTO.

    Energy Technology Data Exchange (ETDEWEB)

    Hammerand, Daniel Carl

    2004-05-01

    A linear elastic constitutive equation for modeling fiber-reinforced laminated composites via shell elements is specified. The effects of transverse shear are included using first-order shear deformation theory. The proposed model is written in a rate form for numerical evaluation in the Sandia quasi-statics code ADAGIO and explicit dynamics code PRESTO. The equation for the critical time step needed for explicit dynamics is listed assuming that a flat bilinear Mindlin shell element is used in the finite element representation. Details of the finite element implementation and usage are given. Finally, some of the verification examples that have been included in the ADAGIO regression test suite are presented.

  5. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 2; Composite Micromechanical Model

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this second paper of a two part report, a three-dimensional composite micromechanical model is described which allows for the analysis of the rate dependent, nonlinear deformation response of a polymer matrix composite. Strain rate dependent inelastic constitutive equations utilized to model the deformation response of a polymer are implemented within the micromechanics method. The deformation response of two representative laminated carbon fiber reinforced composite materials with varying fiber orientation has been predicted using the described technique. The predicted results compare favorably to both experimental values and the response predicted by the Generalized Method of Cells, a well-established micromechanics analysis method.

  6. Dark Matter Constraints on Composite Higgs Models

    CERN Document Server

    Fonseca, Nayara; Lessa, Andre; Lopez-Honorez, Laura

    2015-01-01

    In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) nature of the Higgs field is an interesting alternative for explaning the smallness of the electroweak scale with respect to the beyond the Standard Model scale. In non-minimal models additional pNGB states are present and can be a Dark Matter (DM) candidate, if there is an approximate symmetry suppressing their decay. Here we assume that the low energy effective theory (for scales much below the compositeness scale) corresponds to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We derive general effective DM Lagrangians for several possible DM representations (under the SM gauge group), including the singlet, doublet and triplet cases. Within this framework we discuss how the DM observables (relic abundance, direct and indirect detection) constrain the dimension-6 operators induced by the strong sector assuming that DM behaves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled through the free...

  7. Combustion response modeling for composite solid propellants

    Science.gov (United States)

    1977-01-01

    A computerized mathematical model of the combustion response function of composite solid propellants was developed with particular attention to the contributions of the solid phase heterogeneity. The one-dimensional model treats the solid phase as alternating layers of ammonium perchlorate and binder, with an exothermic melt layer at the surface. Solution of the Fourier heat equation in the solid provides temperature and heat flux distributions with space and time. The problem is solved by conserving the heat flux at the surface from that produced by a suitable model of the gas phase. An approximation of the BDP flame model is utilized to represent the gas phase. By the use of several reasonable assumptions, it is found that a significant portion of the problem can be solved in closed form. A method is presented by which the model can be applied to tetramodal particle size distributions. A computerized steady-state version of the model was completed, which served to validate the various approximations and lay a foundation for the combustion response modeling. The combustion response modeling was completed in a form which does not require an iterative solution, and some preliminary results were acquired.

  8. Modeling of 3D Woven Composites Containing Multiple Delaminations

    Science.gov (United States)

    2012-08-20

    researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were

  9. Integrated model of a composite propellant rocket

    Science.gov (United States)

    Miccio, Francesco

    2016-12-01

    The combustion of composite solid propellants was investigated and an available numerical model was improved for taking into account the change of pressure, when the process occurs in a confined environment, as inside a rocket. The pressure increase upon ignition is correctly described by the improved model for both sandwich and dispersed particles propellants. In the latter case, self-induced fluctuations in the pressure and in all other computed variables occur, as consequence of the periodic rise and depletion of oxidizer particles from the binder matrix. The comparison with the results of the constant pressure model shows a different fluctuating profile of gas velocity, with a possible second order effect induced by the pressure fluctuations.

  10. Multilevel modelling of mechanical properties of textile composites: ITOOL Project

    NARCIS (Netherlands)

    Van Den Broucke, Bjorn; Drechsler, Klaus; Hanisch, Vera; Hartung, Daniel; Ivanov, Dimitry S.; Koissin, Vitaly E.; Lomov, Stepan V.; Middendorf, Peter

    2007-01-01

    The paper presents an overview of the multi-level modelling of textile composites in the ITOOL project, focusing on the models of textile reinforcements, which serve as a basis for micromechanical models of textile composites on the unit cell level. The modelling is performed using finite element an

  11. Models of electromagnetic properties of composite media

    Science.gov (United States)

    Liu, Jin

    Electromagnetic composite materials have attracted much interest in recent years, due to their desirable microwave and optical applications. One class of these is negative refractive index materials, or double negative materials, in which both permittivity and permeability of materials are simultaneously negative. Many exciting potential applications of double negative materials have been proposed, such as the perfect lens and the cloaking device. Here, a simple-cubic lattice of identical, homogeneous or coated non-metallic spherical particles embedded in a matrix is analyzed. One contribution of this work is the derivation of an analytical formula for the threshold dielectric loss angle of spherical inclusions, above which DNG behavior of the system is extinguished. In addition, analytical formulas are derived from which double negative bandwidth of a simple-cubic lattice of identical, magnetodielectric homogeneous or coated spheres can be determined. Another case of interest is nanocomposites, which commonly consist of nanoparticles embedded in a polymer matrix. These materials show superior dielectric or mechanical performance by taking advantage of the merits of their individual non-hybrid components. In one manifestation, diblock copolymers can be utilized to spatially separate nanoparticles by incorporating them in one block, preferentially, to form a long-range ordered structure. By designing this structure, the electromagnetic properties can be tailored for potential applications in novel devices. Here, molecular dynamics of polymer matrices and nanocomposites is analyzed by parametric modeling of their dielectric spectra, supporting design of a composite with desired electromagnetic properties.

  12. Top Partners Searches and Composite Higgs Models

    CERN Document Server

    Matsedonskyi, Oleksii; Wulzer, Andrea

    2015-01-01

    Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.

  13. Top partners searches and composite Higgs models

    Science.gov (United States)

    Matsedonskyi, Oleksii; Panico, Giuliano; Wulzer, Andrea

    2016-04-01

    Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.

  14. Top partner searches and Composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Matsedonskyi, Oleksii [DESY Hamburg (Germany); Panico, Giuliano [Barcelona Univ. Autonoma (Spain). IFAE; Wulyer, Andrea [Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Padova (Italy)

    2015-12-15

    Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.

  15. Challenges for models with composite states

    CERN Document Server

    Cline, James M; Moore, Guy D

    2016-01-01

    Composite states of electrically charged and QCD-colored hyperquarks (HQs) in a confining SU(N_HC) hypercolor gauge sector are a plausible extension of the standard model at the TeV scale, and have been widely considered as an explanation for the tentative LHC diphoton excess. Additional new physics is required to avoid a stable charged hyperbaryon in such theories. We classify renormalizable models allowing the decay of this unwanted relic directly into standard model states, showing that they are significantly restricted if the new scalar states needed for UV completion are at the TeV scale. Alternatively, if hyperbaryon number is conserved, the charged relic can decay into a neutral hyperbaryon. Such theories are strongly constrained by direct detection, if the neutral constituent hyperquark carries color or weak isospin, and by LHC searches for leptoquarks if it is a color singlet. We show that the neutral hyperbaryon can have the observed relic abundance if the confinement scale and the hyperquark mass a...

  16. Challenges for models with composite states

    Science.gov (United States)

    Cline, James M.; Huang, Weicong; Moore, Guy D.

    2016-09-01

    Composite states of electrically charged and QCD-colored hyperquarks (HQs) in a confining SU (NHC) hypercolor gauge sector are a plausible extension of the standard model at the TeV scale and have been widely considered as an explanation for the tentative LHC diphoton excess. Additional new physics is required to avoid a stable charged hyperbaryon in such theories. We classify renormalizable models allowing the decay of this unwanted relic directly into standard model states, showing that they are significantly restricted if the new scalar states needed for UV completion are at the TeV scale. Alternatively, if hyperbaryon number is conserved, the charged relic can decay into a neutral hyperbaryon. Such theories are strongly constrained by direct detection, if the neutral constituent hyperquark carries color or weak isospin, and by LHC searches for leptoquarks if it is a color singlet. We show that the neutral hyperbaryon can have the observed relic abundance if the confinement scale and the hyperquark mass are above TeV scale, even in the absence of any hyperbaryon asymmetry.

  17. Scalar-Composite Model in 6 - 2\\epsilon Dimensions

    CERN Document Server

    Akama, K; Akama, Keiichi; Hattori, Takashi

    2006-01-01

    We study the model of a composite-scalar made of a pair of scalar fields in 6-2 epsilon dimensions, using equivalence to the renormalizable three-elementary-scalar model under the "compositeness condition." In this model, the composite-scalar field is induced by the quantum effects through the vacuum polarization of elementary-scalar fields with 2N species. We first investigate scale dependences of the coupling constant and masses, in the renormalizable three-elementary-scalar model, and derive the results for the composite model by imposing the compositeness condition. The model exhibits the formerly found general property that the coupling constant of the composite field is independent of the scale.

  18. Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites

    Science.gov (United States)

    2016-03-09

    AFRL-AFOSR-VA-TR-2016-0154 Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Gregory Odegard MICHIGAN TECHNOLOGICAL UNIVERSITY Final Report...SUBTITLE Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0030 5c. PROGRAM ELEMENT NUMBER...DISTRIBUTION A: Distribution approved for public release. Final Report Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Grant FA9550-13-1-0030 PI

  19. A supersymmetric composite model of quarks and leptons

    Science.gov (United States)

    Luty, Markus A.; Mohapatra, Rabindra N.

    1997-02-01

    We present a class of supersymmetric models with complete generations of composite quarks and leptons using recent non-perturbative results for the low energy dynamics of supersymmetric QCD. In these models, the quarks arise as composite ``mesons'' and the leptons emerge as composite ``baryons''. The quark and lepton flavor symmetries are linked at the preon level. Baryon number violation is automatically suppressed by accidental symmetries. We give some speculations on how this model might be made realistic.

  20. Model Lung Surfactant Films: Why Composition Matters

    Energy Technology Data Exchange (ETDEWEB)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  1. School Processes Mediate School Compositional Effects: Model Specification and Estimation

    Science.gov (United States)

    Liu, Hongqiang; Van Damme, Jan; Gielen, Sarah; Van Den Noortgate, Wim

    2015-01-01

    School composition effects have been consistently verified, but few studies ever attempted to study how school composition affects school achievement. Based on prior research findings, we employed multilevel mediation modeling to examine whether school processes mediate the effect of school composition upon school outcomes based on the data of 28…

  2. ACOUSTIC EMISSION MODEL WITH THERMOACTIVATIVE DESTRUCTION OF COMPOSITE MATERIAL SURFACE

    Directory of Open Access Journals (Sweden)

    Sergii Filonenko

    2016-03-01

    Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.

  3. Statistical Model of the 3-D Braided Composites Strength

    Institute of Scientific and Technical Information of China (English)

    XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun

    2007-01-01

    Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.

  4. Finite elements modeling of delaminations in composite laminates

    DEFF Research Database (Denmark)

    Gaiotti, m.; Rizzo, C.M.; Branner, Kim;

    2011-01-01

    The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.e., d...... by finite elements using different techniques. Results obtained with different finite element models are compared and discussed.......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i...... of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled...

  5. Cumulative Damage Model for Advanced Composite Materials.

    Science.gov (United States)

    1982-07-01

    ultimately used an exponential in the present example for added simplicity) and we norma - lize the function so that it becomes the modifier that determines...Testing and Design (Second Conference), ASTM STP 497, ASTM (1972) pp. 170-188. 5. Halpin, J. C., et al., "Characterization of Composites for the...Graphite Epoxy Composites," Proc. Symposium on Composite Materials: Testing and Design, ASTM , (Ma’rch 20, 1978) New Orleans, LA. 18. Hashin, Z. and Rotem

  6. Survey of composite particle models of electroweak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mahiko

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t{sub R}-quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, {sub t}{sub 2}/4{pi} = 0.1 for m{sub t} = 200 GeV, is too small for a coupling of a composite particle.

  7. Lepton Flavour Violation in Composite Higgs Models

    CERN Document Server

    Feruglio, Ferruccio; Pattori, Andrea

    2015-01-01

    We discuss in detail the constraints on partial compositeness coming from flavour and CP violation in the leptonic sector. In a first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well-above 10 TeV. However, if in the composite sectors mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged lepton...

  8. Model castings with composite surface layer - application

    Directory of Open Access Journals (Sweden)

    J. Szajnar

    2008-10-01

    Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.

  9. An automatic composition model of Chinese folk music

    Science.gov (United States)

    Zheng, Xiaomei; Li, Dongyang; Wang, Lei; Shen, Lin; Gao, Yanyuan; Zhu, Yuanyuan

    2017-03-01

    The automatic composition has achieved rich results in recent decades, including Western and some other areas of music. However, the automatic composition of Chinese music is less involved. After thousands of years of development, Chinese folk music has a wealth of resources. To design an automatic composition mode, learn the characters of Chinese folk melody and imitate the creative process of music is of some significance. According to the melodic features of Chinese folk music, a Chinese folk music composition based on Markov model is proposed to analyze Chinese traditional music. Folk songs with typical Chinese national characteristics are selected for analysis. In this paper, an example of automatic composition is given. The experimental results show that this composition model can produce music with characteristics of Chinese folk music.

  10. Composite GUTs: models and expectations at the LHC

    CERN Document Server

    Frigerio, Michele; Varagnolo, Alvise

    2011-01-01

    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Hi...

  11. Micromechanical modeling of strength and damage of fiber reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishnaevsky, L. Jr.; Broendsted, P.

    2007-03-15

    The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)

  12. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides in...

  13. A model for the burning rates of composite propellants

    Science.gov (United States)

    Cohen, N. S.; Strand, L. D.

    1980-01-01

    An analytical model of the steady-state burning of composite solid propellants is presented. An improved burning rate model is achieved by incorporating an improved AP monopropellant model, a separate energy balance for the binder in which a portion of the diffusion flame is used to heat the binder, proper use of the binder regression rate in the model, and a model for the combustion of the energetic binder component of CMDB propellants. Also, an improved correlation and model of aluminum agglomeration is developed which properly describes compositional trends.

  14. Contemporary Choreographers as Models for Teaching Composition

    Science.gov (United States)

    Morgenroth, Joyce

    2006-01-01

    Traditional composition classes teach the tools of choreographic craft, yet leave students in an odd limbo in which they create a special breed of "college dance" that has little to do with the current dance world. In the twenty-first century, choreography teachers must go beyond an emphasis on traditional craft and help students find their own…

  15. Multidimensional IRT Models for Composite Scores

    Science.gov (United States)

    Yen, Shu Jing; Walker, Leah

    2007-01-01

    Tests of English Language Proficiency are often designed such that each section of the test measures a single latent ability. For instance an English Proficiency Assessment might consist of sections measuring Speaking, Listening, and Reading ability. However, Overall English Proficiency and composite abilities are naturally multidimensional. This…

  16. Reo: A Channel-based Coordination Model for Component Composition

    NARCIS (Netherlands)

    Arbab, F.

    2004-01-01

    In this paper, we present Reo, which forms a paradigm for composition of software components based on the notion of mobile channels. Reo is a channel-based exogenous coordination model in which complex coordinators, called connectors, are compositionally built out of simpler ones. The simplest conne

  17. Heuristic Model Of The Composite Quality Index Of Environmental Assessment

    Science.gov (United States)

    Khabarov, A. N.; Knyaginin, A. A.; Bondarenko, D. V.; Shepet, I. P.; Korolkova, L. N.

    2017-01-01

    The goal of the paper is to present the heuristic model of the composite environmental quality index based on the integrated application of the elements of utility theory, multidimensional scaling, expert evaluation and decision-making. The composite index is synthesized in linear-quadratic form, it provides higher adequacy of the results of the assessment preferences of experts and decision-makers.

  18. A channel-based coordination model for component composition

    NARCIS (Netherlands)

    Arbab, F.

    2002-01-01

    In this paper, we present $P epsilon omega$, a paradigm for composition of software components based on the notion of mobile channels. $P repsilon omega$ is a channel-based exogenous coordination model wherein complex coordinators, called {em connectors are compositionally built out of simpler ones.

  19. A compositional modelling framework for exploring MPSoC systems

    DEFF Research Database (Denmark)

    Tranberg-Hansen, Anders Sejer; Madsen, Jan

    2009-01-01

    This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried ou...

  20. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    Energy Technology Data Exchange (ETDEWEB)

    Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.

  1. A double inclusion model for multiphase piezoelectric composites

    Science.gov (United States)

    Lin, Yirong; Sodano, Henry A.

    2010-03-01

    A novel active structural fiber (ASF; Lin and Sodano 2008 Compos. Sci. Technol. 68 1911-8) was developed that can be embedded in a composite material in order to perform sensing and actuation, in addition to providing load bearing functionality. In order to fully understand the electroelastic properties of the material, this paper will introduce a three-dimensional micromechanics model for estimating the effective electroelastic properties of the multifunctional composites with different design parameters. The three-dimensional model is formulated by extending the double inclusion model to multiphase composites with piezoelectric constituents. The double inclusion model has been chosen for the ASF studied here because it is designed to model composites reinforced by inclusions with multilayer coatings. The accuracy of our extended double inclusion model will be evaluated through a three-dimensional finite element analysis of a representative volume element of the ASF composite. The results will demonstrate that the micromechanics model developed here can very accurately predict the electroelastic properties of the multifunctional composites.

  2. Preclinical Models in Vascularized Composite Allotransplantation

    Science.gov (United States)

    2015-06-28

    mechanism [31]. Small animal research is typically less resource intensive enabling a larger study population, and re- sults can be realised faster. They...functional recovery of vital structures is one predic- tor of the value of vascularized composite allografts. For ex- ample, facial nerve regeneration...Nonetheless, measuring functional recovery is a chal- lenge and various strategies have been attempted. Clinical measurements of function include the use

  3. Supersymmetric Composite Models on Intersecting D-branes

    CERN Document Server

    Kitazawa, N

    2004-01-01

    We construct supersymmetric composite models of quarks and leptons from type IIA T^6/(Z_2 x Z_2) orientifolds with intersecting D6-branes. In case of T^6 = T^2 x T^2 x T^2 with no tilted T^2, a composite model of the supersymmetric SU(5) grand unified theory with three generations is constructed. In case of that one T^2 is tilted, a composite model with SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry with three generations is constructed. These models are not realistic, but contain fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The mu-term of Higgs fields can be naturally generated through the exponentially suppressed Yukawa interaction among "preons".

  4. Preliminary characterization and modeling of SMA-based textile composites

    Science.gov (United States)

    Masuda, Arata; Ni, Qing-Qing; Sone, Akira; Zhang, Run-Xin; Yamamura, Takahiko

    2004-07-01

    In this paper, we conduct a feasibility study to investigate the future potential of textile composites with shape memory alloys. Two different types of SMA-based textile composites are presented. First, a composite plate with embedded woven SMA layer is fabricated, and the stiffness tuning capability is evaluated by impact vibration tests. The results are not favorable, but may be improved by increasing the volume fraction of SMA, and by controlling the prestrain more accurately during the lamination process. The modeling and analysis methodology for woven SMA-based composites are briefly discussed. Then, the possibility of textile composites with SMA stitching is discussed, that is expected to give the composites multi-functions such as tunable stiffness, shape control and sensing capability, selectively distributed on demand.

  5. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications.

    Science.gov (United States)

    Zhou, Xiang; Torabi, Mohsen; Lu, Jian; Shen, Ruiqi; Zhang, Kaili

    2014-03-12

    Nanotechnology has stimulated revolutionary advances in many scientific and industrial fields, particularly in energetic materials. Powder mixing is the simplest and most traditional method to prepare nanoenergetic composites, and preliminary findings have shown that these composites perform more effectively than their micro- or macro-sized counterparts in terms of energy release, ignition, and combustion. Powder mixing technology represents only the minimum capability of nanotechnology to boost the development of energetic material research, and it has intrinsic limitations, namely, random distribution of fuel and oxidizer particles, inevitable fuel pre-oxidation, and non-intimate contact between reactants. As an alternative, nanostructured energetic composites can be prepared through a delicately designed process. These composites outperform powder-mixed nanocomposites in numerous ways; therefore, we comprehensively discuss the preparation strategies adopted for nanostructured energetic composites and the research achievements thus far in this review. The latest ignition and reaction models are briefly introduced. Finally, the broad promising applications of nanostructured energetic composites are highlighted.

  6. Coordination-theoretic approach to modelling grid service composition process

    Institute of Scientific and Technical Information of China (English)

    Meng Qian; Zhong Liu; Jing Wang; Li Yao; Weiming Zhang

    2010-01-01

    A grid service composite process is made up of complex coordinative activities.Developing the appropriate model of grid service coordinative activities is an important foundation for the grid service composition.According to the coordination theory,this paper elaborates the process of the grid service composition by using UML 2.0,and proposes an approach to modelling the grid service composition process based on the coordination theory.This approach helps not only to analyze accurately the task activities and relevant dependencies among task activities,but also to facilitate the adaptability of the grid service orchestration to further realize the connectivity,timeliness,appropriateness and expansibility of the grid service composition.

  7. A Numerical Model for Torsion Analysis of Composite Ship Hulls

    Directory of Open Access Journals (Sweden)

    Ionel Chirica

    2012-01-01

    Full Text Available A new methodology based on a macroelement model proposed for torsional behaviour of the ship hull made of composite material is proposed in this paper. A computer program has been developed for the elastic analysis of linear torsion. The results are compared with the FEM-based licensed soft COSMOS/M results and measurements on the scale simplified model of a container ship, made of composite materials.

  8. Compositional design and reuse of a generic agent model

    NARCIS (Netherlands)

    Brazier, F.M.T.; Jonker, C.M.; Treur, J.

    2000-01-01

    This article introduces a formally specified design of a compositional generic agent model (GAM). This agent model abstracts from specific application domains; it provides a unified formal definition of a model for weak agenthood. It can be (re) used as a template or pattern for a large variety of a

  9. Flavor Changing Neutral Currents in a Realistic Composite Technicolor Model

    CERN Document Server

    Carone, C D; Carone, Christopher D.; Hamilton, Rowan T.

    1993-01-01

    We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral $B$, $D$, and $K$ meson systems.

  10. Blast Testing and Modelling of Composite Structures

    DEFF Research Database (Denmark)

    Giversen, Søren

    The motivation for this work is based on a desire for finding light weight alternatives to high strength steel as the material to use for armouring in military vehicles. With the use of high strength steel, an increase in the level of armouring has a significant impact on the vehicle weight......, affecting for example the manoeuvrability and top speed negatively, which ultimately affects the safety of the personal in the vehicle. Strong and light materials, such as fibre reinforced composites, could therefore act as substitutes for the high strength steel, and minimize the impact on the vehicle...

  11. Computational modeling of failure in composite laminates

    NARCIS (Netherlands)

    Van der Meer, F.P.

    2010-01-01

    There is no state of the art computational model that is good enough for predictive simulation of the complete failure process in laminates. Already on the single ply level controversy exists. Much work has been done in recent years in the development of continuum models, but these fail to predict t

  12. Aggregation of Composite Solutions: strategies, models, examples

    CERN Document Server

    Levin, Mark Sh

    2011-01-01

    The paper addresses aggregation issues for composite (modular) solutions. A systemic view point is suggested for various aggregation problems. Several solution structures are considered: sets, set morphologies, trees, etc. Mainly, the aggregation approach is targeted to set morphologies. The aggregation problems are based on basic structures as substructure, superstructure, median/consensus, and extended median/consensus. In the last case, preliminary structure is built (e.g., substructure, median/consensus) and addition of solution elements is considered while taking into account profit of the additional elements and total resource constraint. Four aggregation strategies are examined: (i) extension strategy (designing a substructure of initial solutions as "system kernel" and extension of the substructure by additional elements); (ii) compression strategy (designing a superstructure of initial solutions and deletion of some its elements); (iii) combined strategy; and (iv) new design strategy to build a new s...

  13. A Review on the Mechanical Modeling of Composite Manufacturing Processes

    DEFF Research Database (Denmark)

    Baran, Ismet; Cinar, Kenan; Ersoy, Nuri;

    2016-01-01

    approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail.......The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...

  14. Multiple ontologies in action: composite annotations for biosimulation models.

    Science.gov (United States)

    Gennari, John H; Neal, Maxwell L; Galdzicki, Michal; Cook, Daniel L

    2011-02-01

    There now exists a rich set of ontologies that provide detailed semantics for biological entities of interest. However, there is not (nor should there be) a single source ontology that provides all the necessary semantics for describing biological phenomena. In the domain of physiological biosimulation models, researchers use annotations to convey semantics, and many of these annotations require the use of multiple reference ontologies. Therefore, we have developed the idea of composite annotations that access multiple ontologies to capture the physics-based meaning of model variables. These composite annotations provide the semantic expressivity needed to disambiguate the often-complex features of biosimulation models, and can be used to assist with model merging and interoperability. In this paper, we demonstrate the utility of composite annotations for model merging by describing their use within SemGen, our semantics-based model composition software. More broadly, if orthogonal reference ontologies are to meet their full potential, users need tools and methods to connect and link these ontologies. Our composite annotations and the SemGen tool provide one mechanism for leveraging multiple reference ontologies.

  15. Fallacies of composition in nonlinear marketing models

    Science.gov (United States)

    Bischi, Gian Italo; Cerboni Baiardi, Lorenzo

    2015-01-01

    In this paper we consider some nonlinear discrete-time dynamic models proposed in the literature to represent marketing competition, and we use these models to critically discuss the statement, often made in economic literature, that identical agents behave identically and quasi-identical ones behave in a similar way. We show, through examples and some general mathematical statements, that the one-dimensional model of a representative agent, whose dynamics summarize the common behavior of identical interacting agents, may be misleading. In order to discuss these topics some simple methods for the study of local stability and bifurcations are employed, as well as numerical examples where some results taken from the literature on chaos synchronization are applied to two-dimensional marketing models that exhibit riddling, blowout and other global phenomena related to the existence of measure-theoretic attractors.

  16. Computational modeling and impact analysis of textile composite structures

    Science.gov (United States)

    Hur, Hae-Kyu

    This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems to solve. To overcome these problems, this study presents effective mesh-generation schemes, homogenization modeling based on a repeating unit cell and sinusoidal functions, and also a cohesive element to study micro-crack shapes. This proposed research has two: (1) studying behavior of textile composites under static loads, (2) studying dynamic responses of these textile composite structures subjected to the transient/ballistic loading. In the first part, efficient homogenization schemes are suggested to show the influence of textile architectures on mechanical characteristics considering the micro modeling of repeating unit cell. Furthermore, the structures of multi-layered or multi-phase composites combined with different laminar such as a sub-laminate, are considered to find the mechanical characteristics. A simple progressive failure mechanism for the textile composites is also presented. In the second part, this study focuses on three main phenomena to solve the dynamic problems: micro-crack shapes, textile architectures and textile effective moduli. To obtain a good solutions of the dynamic problems, this research attempts to use four approaches: (I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, (II) development of an efficient computational approach enabling one to perform transient

  17. Dust Composition in Climate Models: Current Status and Prospects

    Science.gov (United States)

    Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.

    2015-12-01

    Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.

  18. Modeling of Alternative Compositions of Recycled Wrought Aluminum Alloys

    Science.gov (United States)

    Kevorkijan, Varužan

    2013-08-01

    Nowadays, a significant part of postconsumed wrought aluminum scrap is still used for the production of comparatively cheaper cast alloys, in that way losing an important part of the potential added value. The share of postconsumed scrap in wrought aluminum alloys could be increased either by sorting to fractions with the required chemical composition and/or by broadening the standard compositional tolerance limits of alloying elements. The first solution requires hand or automatic sorting of postconsumed scrap as alloys or groups of alloys to the degree of separation sufficient to enable the blending of standard compositions of wrought alloys; the second solution is much more radical, predicting changes in the existing standards for wrought aluminum alloys toward nonstandard alloys but yet having properties acceptable for customers. In this case, the degree of separation of incoming postconsumed scrap required is much less demanding. The model presented in this work enables the design of optimal (standard and nonstandard recycling-friendly) compositions and properties of wrought aluminum alloys with significantly increased amounts of postconsumed scrap. The following two routes were modeled in detail: (I) the blending of standard and nonstandard compositions of wrought aluminum alloys starting from postconsumed aluminum scrap sorted to various degrees simulated by the model and (II) changing the initial standard composition of wrought aluminum alloys to nonstandard "recycling-friendly" ones, with broader concentration tolerance limits of alloying elements and without influencing the selected alloy properties, specified in advance. The applied algorithms were found to be very useful in the industrial design of both procedures: (I) the computation of the required chemical composition of the scrap streams obtained by sorting (or, in other words, the postconsumed scrap sorting level), necessary for achieving the standard wrought alloy composition and (II) the

  19. Modeling the Permittivity of Ferrite-Dielectric Composites

    Directory of Open Access Journals (Sweden)

    V.A. Astakhov

    2016-10-01

    Full Text Available The paper presents the model of ferrite-dielectric (ferroelectric composites with semiconductive powder fillers. Such media have the potential for designing systems with controlled frequency dispersion. Experimentally observed significant increase of effective dielectric permittivity in Mn-Zn ferrite composites with the semiconductor pellet is explained on the basis of the capacitance effect. Composites based on Ni-Zn ferrite, which have significantly higher electrical resistance, do not exhibit such phenomena and their behavior is described in the framework of the traditional models of effective medium approximation. There is proposed an analytical solution for the dielectric constant of the composite, based on consideration of the impedances of equivalent circuit involving initial materials (matrix and filler.

  20. Composite modelling of interactions between beaches and structures

    DEFF Research Database (Denmark)

    Gerritsen, Herman; Sutherland, James; Deigaard, Rolf

    2011-01-01

    An overview of Composite Modelling (CM) is presented, as elaborated in the EU/HYDRALAB joint research project Composite Modelling of the Interactions Between Beaches and Structures. An introduction and a review of the main literature on CM in the hydraulic community are given. In Section 3...... in the various case studies. The related subject of Good Modelling Practice is summarized in Section 5. Then guidelines are given on how to decide if CM may be beneficial, and how to set up a CM experiment. It is concluded that CM in the hydraulic community is still in its infancy but involves challenging...... research with significant potential....

  1. A Local Composition Model for Paraffinic Solid Solutions

    DEFF Research Database (Denmark)

    Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar

    1996-01-01

    The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....

  2. A physically-based abrasive wear model for composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  3. Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis

    Science.gov (United States)

    Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.

    2015-06-01

    This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.

  4. Flavor changing neutral currents in a realistic composite technicolor model

    Science.gov (United States)

    Carone, Christopher D.; Hamilton, Rowan T.

    1993-03-01

    We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral K, B, and D meson systems. Notably, we find that this model gives rise to a typical value for {ɛ‧}/{ɛ} that is much smaller than most standard model estimates.

  5. Implications of a Light Higgs in Composite Models

    CERN Document Server

    Redi, Michele

    2012-01-01

    We study the Higgs mass in composite Higgs models with partial compositeness, extending the results of Ref. [1] to different representations of the composite sector for SO(5)/SO(4) and to the coset SO(6)/SO(5). For a given tuning we find in general a strong correlation between the mass of the top partners and the Higgs mass, akin to the one in supersymmetry. If the theory is natural a Higgs mass of 125 GeV typically requires fermionic partners below TeV which might be within the reach of the present run of LHC. A discussion of CP properties of both cosets is also presented.

  6. Physical and Model Uncertainty for Fatigue Design of Composite Material

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...

  7. Violation of lepton flavour universality in composite Higgs models

    CERN Document Server

    Niehoff, Christoph; Straub, David M

    2015-01-01

    We investigate whether the the $2.6\\sigma$ deviation from lepton flavour universality in $B^+\\to K^+\\ell^+\\ell^-$ decays recently observed at the LHCb experiment can be explained in minimal composite Higgs models. We show that a visible departure from universality is indeed possible if left-handed muons have a sizable degree of compositeness. Constraints from $Z$-pole observables are avoided by a custodial protection of the muon coupling.

  8. Hygrothermal modeling and testing of polymers and polymer matrix composites

    Science.gov (United States)

    Xu, Weiqun

    2000-10-01

    The dissertation, consisting of four papers, presents the results of the research investigation on environmental effects on polymers and polymer matrix composites. Hygrothermal models were developed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data. Hygrothermal testing was also conducted to provide the necessary data for characterizing of model coefficients and model verification. In part 1, a methodology is proposed that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for a polymer adhesive below its Tg. Subsequently, these diffusion coefficients are used for predicting moisture concentration profiles through the thickness of a polymer. In part 2, a modeling methodology based on irreversible thermodynamics applied within the framework of composite macro-mechanics is presented, that would allow characterization of non-Fickian diffusion coefficients from moisture weight gain data for laminated composites with distributed uniaxial damage. Comparisons with test data for a 5-harness satin textile composite with uniaxial micro-cracks are provided for model verifications. In part 3, the same modeling methodology based on irreversible thermodynamics is extended to the case of a bi-axially damaged laminate. The model allows characterization of nonFickian diffusion coefficients as well as moisture saturation level from moisture weight gain data for laminates with pre-existing damage. Comparisons with test data for a bi-axially damaged Graphite/Epoxy woven composite are provided for model verifications. Finally, in part 4, hygrothermal tests conducted on AS4/PR500 5HS textile composite laminates are summarized. The objectives of the hygrothermal tests are to determine the diffusivity and maximum moisture content of the laminate.

  9. Pyrolysis of reinforced polymer composites: Parameterizing a model for multiple compositions

    Science.gov (United States)

    Martin, Geraldine E.

    A single set of material properties was developed to describe the pyrolysis of fiberglass reinforced polyester composites at multiple composition ratios. Milligram-scale testing was performed on the unsaturated polyester (UP) resin using thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) to establish and characterize an effective semi-global reaction mechanism, of three consecutive first-order reactions. Radiation-driven gasification experiments were conducted on UP resin and the fiberglass composites at compositions ranging from 41 to 54 wt% resin at external heat fluxes from 30 to 70 kW m -2. The back surface temperature was recorded with an infrared camera and used as the target for inverse analysis to determine the thermal conductivity of the systematically isolated constituent species. Manual iterations were performed in a comprehensive pyrolysis model, ThermaKin. The complete set of properties was validated for the ability to reproduce the mass loss rate during gasification testing.

  10. Regional atmospheric composition modeling with CHIMERE

    Science.gov (United States)

    Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.

    2013-01-01

    Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  11. Regional atmospheric composition modeling with CHIMERE

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-01-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.

  12. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard;

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  13. Asymptotic curved interface models in piezoelectric composites

    Science.gov (United States)

    Serpilli, Michele

    2016-10-01

    We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.

  14. Loss of accuracy using smeared properties in composite beam modeling

    Science.gov (United States)

    Liu, Ning

    Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS

  15. Consistent Static Models of Local Thermospheric Composition Profiles

    CERN Document Server

    Picone, J M; Drob, D P

    2016-01-01

    The authors investigate the ideal, nondriven multifluid equations of motion to identify consistent (i.e., truly stationary), mechanically static models for composition profiles within the thermosphere. These physically faithful functions are necessary to define the parametric core of future empirical atmospheric models and climatologies. Based on the strength of interspecies coupling, the thermosphere has three altitude regions: (1) the lower thermosphere (herein z ~200 km), in which the species flows are approximately uncoupled; and (3) a transition region in between, where the effective species particle mass and the effective species vertical flow interpolate between the solutions for the upper and lower thermosphere. We place this view in the context of current terminology within the community, i.e., a fully mixed (lower) region and an upper region in diffusive equilibrium (DE). The latter condition, DE, currently used in empirical composition models, does not represent a truly static composition profile ...

  16. Modeling of composite piezoelectric structures with the finite volume method.

    Science.gov (United States)

    Bolborici, Valentin; Dawson, Francis P; Pugh, Mary C

    2012-01-01

    Piezoelectric devices, such as piezoelectric traveling- wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, at least one of which is a piezoelectric transducer. Piezoelectric structures have mainly been numerically modeled using the finite element method. An alternative approach based on the finite volume method offers the following advantages: 1) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits; and 2) phenomena occurring at boundaries can be treated exactly. This paper presents a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures modeled with the finite volume method. The paper concludes with a modeling example of a unimorph structure.

  17. Strain Rate Dependent Modeling of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1999-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Strain rate dependent inelastic constitutive equations have been developed to model the polymer matrix, and have been incorporated into a micromechanics approach to analyze polymer matrix composites. The Hashin failure criterion has been implemented within the micromechanics results to predict ply failure strengths. The deformation model has been implemented within LS-DYNA, a commercially available transient dynamic finite element code. The deformation response and ply failure stresses for the representative polymer matrix composite AS4/PEEK have been predicted for a variety of fiber orientations and strain rates. The predicted results compare favorably to experimentally obtained values.

  18. Composite two-Higgs model with dynamical CP-violation

    CERN Document Server

    Andrianov, A A; Yudichev, V L

    1996-01-01

    Quark models with four-fermion interaction including derivatives of fields are exploited as prototypes for composite-Higgs extensions of the Standard Model. In the non-trivial case of two- and four-derivative insertions the dynamical breaking of chiral symmetry occurs in two channels, giving rise to two composite Higgs doublets. For special configuration of four-fermion coupling constants the dynamical CP-violation in the Higgs sector appears as a result of complexity of two v.e.v. for Higgs doublets. In this scenario the second Higgs doublet is regarded as a radial excitation of the first one.

  19. Micromechanical modeling of unidirectional composites with uneven interfacial strengths

    DEFF Research Database (Denmark)

    Ashouri Vajari, Danial; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Composite materials under loads normal to the fiber orientation often fail due to debonding between fibers and matrix. In this paper a micromechanical model is developed to study the interfacial and geometrical effects in fiber-reinforced composites using generalized plane strain by means......, a trapezoidal cohesive zone model is used. A parametric study is carried out to evaluate the influence of the interfacial properties, fiber position and fiber volume fraction on the overall stressestrain response as well as the end-crack opening displacement and the opening crack angle. All the results...

  20. Bayesian modelling of compositional heterogeneity in molecular phylogenetics.

    Science.gov (United States)

    Heaps, Sarah E; Nye, Tom M W; Boys, Richard J; Williams, Tom A; Embley, T Martin

    2014-10-01

    In molecular phylogenetics, standard models of sequence evolution generally assume that sequence composition remains constant over evolutionary time. However, this assumption is violated in many datasets which show substantial heterogeneity in sequence composition across taxa. We propose a model which allows compositional heterogeneity across branches, and formulate the model in a Bayesian framework. Specifically, the root and each branch of the tree is associated with its own composition vector whilst a global matrix of exchangeability parameters applies everywhere on the tree. We encourage borrowing of strength between branches by developing two possible priors for the composition vectors: one in which information can be exchanged equally amongst all branches of the tree and another in which more information is exchanged between neighbouring branches than between distant branches. We also propose a Markov chain Monte Carlo (MCMC) algorithm for posterior inference which uses data augmentation of substitutional histories to yield a simple complete data likelihood function that factorises over branches and allows Gibbs updates for most parameters. Standard phylogenetic models are not informative about the root position. Therefore a significant advantage of the proposed model is that it allows inference about rooted trees. The position of the root is fundamental to the biological interpretation of trees, both for polarising trait evolution and for establishing the order of divergence among lineages. Furthermore, unlike some other related models from the literature, inference in the model we propose can be carried out through a simple MCMC scheme which does not require problematic dimension-changing moves. We investigate the performance of the model and priors in analyses of two alignments for which there is strong biological opinion about the tree topology and root position.

  1. Modeling of Moisture Diffusion in Carbon Braided Composites

    Directory of Open Access Journals (Sweden)

    S. Laurenzi

    2008-01-01

    Full Text Available In this study, we develop a methodology based on finite element analysis to predict the weight gain of carbon braided composite materials exposed to moisture. The analysis was based on the analogy between thermal conduction and diffusion processes, which allowed for a commercial code for finite element analysis to be used. A detailed finite element model using a repetitive unit cell (RUC was developed both for bundle and carbon braided composites. Conditioning tests were performed to estimate the diffusivity of both the resin and composite. When comparing numerical and experimental results, it was observed that the procedure introduces an average error of 20% and a maximum error of 31% if the RUC is assumed to be isotropic. On the other hand, the average error does not exceed 10% and the maximum error is less than 20% when the material is considered as orthotropic. The procedure is independent of the particular fiber architecture and can be extended to other composites.

  2. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  3. Search Strategies for Top Partners in Composite Higgs models

    CERN Document Server

    Gripaios, Ben; Parker, M A; Sutherland, Dave

    2014-01-01

    We consider how best to search for top partners in generic composite Higgs models. We begin by classifying the possible group representations carried by top partners in models with and without a custodial $SU(2)\\times SU(2) \\rtimes \\mathbb{Z}_2$ symmetry protecting the rate for $Z \\rightarrow b\\overline{b}$ decays. We identify a number of minimal models whose top partners only have electric charges of $\\frac{1}{3}, \\frac{2}{3},$ or $\\frac{4}{3}$ and thus decay to top or bottom quarks via a single Higgs or electroweak gauge boson. We develop an inclusive search for these based on a top veto, which we find to be more effective than existing searches. Less minimal models feature light states that can be sought in final states with like-sign leptons and so we find that 2 straightforward LHC searches give a reasonable coverage of the gamut of composite Higgs models.

  4. Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Science.gov (United States)

    Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.

    2015-01-01

    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on

  5. A conjugate thermo-electric model for a composite medium.

    Directory of Open Access Journals (Sweden)

    Oscar Chávez

    Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.

  6. Modeling transport properties of inhomogeneous superconductor-metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Borroto, A.; Altshuler, E., E-mail: ealtshuler@fisica.uh.cu [Superconductivity Laboratory and “Henri Poincarè” Group of Complex Systems, Physics Faculty-IMRE, University of Havana, 10400 Havana (Cuba); Del Río, L. [Superconductivity Laboratory and “Henri Poincarè” Group of Complex Systems, Physics Faculty-IMRE, University of Havana, 10400 Havana (Cuba); Physics Department, McGill University, Montreal, Quebec H3A 2T8 (Canada); Arronte, M. [BRALAX, S. de RL., Tampico, Tamaulipas (Mexico); Technological Laser Laboratory, IMRE, University of Havana, 10400 Havana (Cuba); Johansen, T. H. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo (Norway); Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2014-11-17

    We propose a model for a superconductor-metal composite that allows to derive intrinsic transport properties of the superconducting phase based on 2D images of its cross section, and a minimal set of parameters. The method is tested experimentally by using, as model composite, a “transversal bridge” made on a Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} (BSCCO)-Ag multi-filamentary tape. It is shown that the approach allows to predict the measured I−〈E〉 curves of the filaments. In addition, one can determine the critical current anisotropy between the longitudinal and transverse directions of the Ag-BSCCO tape, and also of its superconducting filaments separately, which emphasizes the role of the morphology of the composite in the transport properties.

  7. Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling

    Directory of Open Access Journals (Sweden)

    B. Novotný

    2000-01-01

    Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.

  8. Mathematical models of carbon-carbon composite deformation

    Science.gov (United States)

    Golovin, N. N.; Kuvyrkin, G. N.

    2016-09-01

    Mathematical models of carbon-carbon composites (CCC) intended for describing the processes of deformation of structures produced by using CCC under high-temperature loading are considered. A phenomenological theory of CCC inelastic deformation is proposed, where such materials are considered as homogeneous ones with effective characteristics and where their high anisotropy of mechanical characteristics and different ways of resistance to extension and compression are taken into account. Micromechanical models are proposed for spatially reinforced CCC, where the difference between mechanical characteristics of components and the reinforcement scheme are taken into account. Themodel parameters are determined from the results of experiments of composite macrospecimens in the directions typical of the material. A version of endochronictype theory with several internal times "launched" for each composite component and related to some damage accumulation mechanisms is proposed for describing the inelastic deformation. Some practical examples are considered.

  9. Physiological models of body composition and human obesity

    Directory of Open Access Journals (Sweden)

    Shapses Sue A

    2007-09-01

    Full Text Available Abstract Background The body mass index (BMI is the standard parameter for predicting body fat fraction and for classifying degrees of obesity. Currently available regression equations between BMI and fat are based on 2 or 3 parameter empirical fits and have not been validated for highly obese subjects. We attempt to develop regression relations that are based on realistic models of body composition changes in obesity. These models, if valid, can then be extrapolated to the high fat fraction of the morbidly obese. Methods The analysis was applied to 3 compartment (density and total body water measurements of body fat. The data was collected at the New York Obesity Research Center, Body Composition Unit, as part of ongoing studies. A total of 1356 subjects were included, with a BMI range of 17 to 50 for males and 17 to 65 for females. The body composition model assumes that obese subjects can be represented by the sum of a standard lean reference subject plus an extra weight that has a constant adipose, bone and muscle fraction. Results There is marked age and sex dependence in the relationship between BMI and fat fraction. There was no significant difference among Caucasians, Blacks and Hispanics while Asians had significantly greater fat fraction for the same BMI. A linear relationship between BMI and fat fraction provides a good description for men but overestimates the fat fraction in morbidly obese women for whom a non-linear regression should be used. New regression relations for predicting body fat just from experimental measurements of body density are described that are more accurate then those currently used. From the fits to the experimental BMI and density data, a quantitative description of the bone, adipose and muscle body composition of lean and obese subjects is derived. Conclusion Physiologically realistic models of body composition provide both accurate regression relations and new insights about changes in body composition in

  10. Model-driven development of service compositions for enterprise interoperability

    NARCIS (Netherlands)

    Khadka, Ravi; Sapkota, Brahmananda; Ferreira Pires, Luis; Sinderen, van Marten; Jansen, Slinger; Sinderen, van Marten; Johnson, Pontus

    2011-01-01

    Service-Oriented Architecture (SOA) has emerged as an architectural style to foster enterprise interoperability, as it claims to facilitate the flexible composition of loosely coupled enterprise applications and thus alleviates the heterogeneity problem among enterprises. Meanwhile, Model-Driven Arc

  11. FibreChain: characterization and modeling of thermoplastic composites processing

    NARCIS (Netherlands)

    Rietman, A.D.; Niazi, M.S.; Akkerman, R.; Lomov, S.V.

    2013-01-01

    Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of thermopl

  12. Extended propagation model for interfacial crack in composite material structure

    Institute of Scientific and Technical Information of China (English)

    闫相桥; 冯希金

    2002-01-01

    An interfacial crack is a common damage in a composite material structure . An extended propaga-tion model has been established for an interfacial crack to study the dependence of crack growth on the relativesizes of energy release rates at left and right crack tips and the properties of interfacial material characterize thegrowth of interfacial crack better.

  13. Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains

    NARCIS (Netherlands)

    Han, T.; Katoen, J.P.; Mereacre, A.

    2008-01-01

    This paper presents a compositional framework for the modeling of interactive continuous-time Markov chains with time-dependent rates, a subclass of communicating piecewise deterministic Markov processes. A poly-time algorithm is presented for computing the coarsest quotient under strong bisimulatio

  14. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  15. Experimental Support for a Categorical Compositional Distributional Model of Meaning

    CERN Document Server

    Grefenstette, Edward

    2011-01-01

    Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.

  16. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.;

    2014-01-01

    Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility...... of heavy bottom partners. We show that they can have a significant impact on electroweak precision observables and the current Higgs results if there is a sizeable mixing with the bottom quark. We explicitly check that the constraints from the measurement of the CKM matrix element V-tb are fulfilled...... be applied to other models with similar particle content. Furthermore, the constraints from direct searches for heavy states at the LHC and from the Higgs search results have been included in our analysis. The best agreement with all the considered constraints is achieved for medium to large compositeness...

  17. Finite element modeling of consolidation of composite laminates

    Institute of Scientific and Technical Information of China (English)

    Xiangqiao Yan

    2006-01-01

    Advanced fiber reinforced polymer composites have been increasingly applied to various structural corn-ponents.One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up.Since the quality of laminated composites is largely affected by the cure cycle,selection of an appropriate cure cycle for each application is important and must be opti-mized.Thus.some fundamental model of the consolidation and cure processes is necessary for selecting suitable param-eters for a specific application.This article is concerned with the "flow-compaction" model during the autoclave process-ing of composite materials.By using a weighted residual method,two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed.Numerical examples.including comparison of the present numerical results with one-dimensional and two-dimensional analytical solutions,are given to illustrate the accuracy and effectiveness of the proposed finite element formulation.In addition,a consolidation simulation of As4/3501-6 graphite/epoxy laminate is carried out and compared with the experimental results available in the literature.

  18. Physiological models of body composition and human obesity

    OpenAIRE

    Shapses Sue A; Pierson Richard N; Heymsfield Steven B; Levitt David G; Kral John G

    2007-01-01

    Abstract Background The body mass index (BMI) is the standard parameter for predicting body fat fraction and for classifying degrees of obesity. Currently available regression equations between BMI and fat are based on 2 or 3 parameter empirical fits and have not been validated for highly obese subjects. We attempt to develop regression relations that are based on realistic models of body composition changes in obesity. These models, if valid, can then be extrapolated to the high fat fraction...

  19. Properties of the W boson in some composite models

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, G. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Narison, S. (European Organization for Nuclear Research, Geneva (Switzerland)); Perrottet, M. (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique)

    1983-12-15

    We analyze the effects of some electroweak interaction models with a composite W at present energies. We find that the width of the W into pairs of pseudoscalar bosons can be appreciable and may reduce its leptonic branching ratio by about 20%. The front-back asymmetry of leptons at the proton-antiproton collider is similar to the one obtained in the standard model.

  20. A low composite scale preon model with complementarity

    Science.gov (United States)

    Geng, C. Q.; Marshak, R. E.

    1987-12-01

    We have constructed the first “realistic candidate” preon model with low composite scale satisfying complementarity between the Higgs and confining phases. The model is based on SU(4) metacolor and predicts four generations of ordinary quarks and leptons together with heavy neutrinos at the level of the standard gauge group SU(3) c × SU(2) L × U(1) Y . There are no exotic massless fermions. The global family group is SU(2)× U(1).

  1. Modeling of carbon nanotubes, graphene and their composites

    CERN Document Server

    Silvestre, Nuno

    2014-01-01

    This book contains ten chapters, authored by world experts in the field of simulation at nano-scale and aims to demonstrate the potentialities of computational techniques to model the mechanical behavior of nano-materials, such as carbon nanotubes, graphene and their composites. A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes, graphene and their applications. In this process, computational modeling is a very attractive research tool due to the difficulties in manufacturing and testing of nano-materials. Both atomistic modeling methods, such as molecular mechanics and molecular dynamics, and continuum modeling methods are being intensively used. Continuum modeling offers significant advantages over atomistic modeling such as the reduced computational effort, the capability of modeling complex structures and bridging different analysis scales, thus enabling modeling from the nano- to the macro-scale. On the oth...

  2. Context-aware Workflow Model for Supporting Composite Workflows

    Institute of Scientific and Technical Information of China (English)

    Jong-sun CHOI; Jae-young CHOI; Yong-yun CHO

    2010-01-01

    -In recent years,several researchers have applied workflow technologies for service automation on ubiquitous computing environments.However,most context-aware oprkflows do not offer a method to compose several workflows in order to get more large-scale or complicated workflow.They only provide a simple workflow model,not a composite workflow model.In this paper,the autorhs propose a context-aware worrkflow model to support composite workflows by expanding the patterns of the existing context-aware workflows,which support the basic workflow patterns.The suggested worklow modei offers composite workflow patterns for a context-aware workflow,which consists of various flow patterns,such as simple,split,parallel flows,and subflow.With the suggested model,the model can easily reuse few of existing workflows to make a new workflow.As a result,it can save the development efforts and time of cantext-aware workflows and increase the workflow reusability.Therefore,the suggested model is expected to make it easy to develop applications related to context-aware workflow services on ubiquitous computing environments.

  3. The Advantages of Four Dimensions for Composite Higgs Models

    CERN Document Server

    Baumgart, Matthew

    2007-01-01

    We examine the relationship between little Higgs and 5d composite models with identical symmetry structures. By performing an "extreme" deconstruction, one can reduce any warped composite model to a little Higgs theory on a handful of sites. This allows us to use 4d intuition and the powerful constraints of nonlinear sigma models to elucidate obscure points in the original setup. We find that the finiteness of the Higgs potential in 5d is due to the same collective symmetry breaking as in the little Higgs. We compare a 4d and a 5d model with the same symmetry to the data. Reviewing the constraints on models related to the Minimal Composite Higgs (hep-ph/0412089), we see that it has difficulty in producing acceptable values for S, T, and m_{top} simultaneously. By contrast, in a global analysis, the Minimal Moose with custodial symmetry is viable in a large region of its parameter space and suffers from no numeric tunings. We conjecture that this result is generic for 4d and 5d models with identical symmetries...

  4. Numerical Modelling of Double-Steel Plate Composite Shear Walls

    Directory of Open Access Journals (Sweden)

    Michaela Elmatzoglou

    2017-02-01

    Full Text Available Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have used the Finite Element Method to investigate the behaviour of double-steel plate concrete walls. The majority of them model every element explicitly leading to a rather time-consuming solution, which cannot be easily used for design purposes. In the present paper, the main objective is the introduction of a three-dimensional finite element model, which can efficiently predict the overall performance of a double-steel plate concrete wall in terms of accuracy and time saving. At first, empirical formulations and design relations established in current design codes for shear connectors are evaluated. Then, a simplified finite element model is used to investigate the nonlinear response of composite walls. The developed model is validated using results from tests reported in the literature in terms of axial compression and monotonic, cyclic in-plane shear loading. Several finite element modelling issues related to potential convergence problems, loading strategies and computer efficiency are also discussed. The accuracy and simplicity of the proposed model make it suitable for further numerical studies on the shear connection behaviour at the steel-concrete interface.

  5. New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.

  6. Silkworm cocoons inspire models for random fiber and particulate composites

    Science.gov (United States)

    Chen, Fujia; Porter, David; Vollrath, Fritz

    2010-10-01

    The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.

  7. Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials

    Science.gov (United States)

    Muñoz, Raúl; Delgado, Sofía; González, Carlos; López-Romano, Bernardo; Wang, De-Yi; LLorca, Javier

    2014-02-01

    Carbon fiber-reinforced polymers, used in primary structures for aircraft due to an excellent strength-to-weight ratio when compared with conventional aluminium alloy counterparts, may nowadays be considered as mature structural materials. Their use has been extended in recent decades, with several aircraft manufacturers delivering fuselages entirely manufactured with carbon composites and using advanced processing technologies. However, one of the main drawbacks of using such composites entails their poor electrical conductivity when compared with aluminium alloy competitors that leads to lightning strikes being considered a significant threat during the service life of the aircraft. Traditionally, this problem was overcome with the use of a protective copper/bronze mesh that added additional weight and reduced the effectiveness of use of the material. Moreover, this traditional sizing method is based on vast experimental campaigns carried out by subjecting composite panels to simulated lightning strike events. While this method has proven its validity, and is necessary for certification of the structure, it may be optimized with the aid provided by physically based numerical models. This paper presents a model based on the finite element method that includes the sources of damage observed in a lightning strike, such as thermal damage caused by Joule overheating and electromagnetic/acoustic pressures induced by the arc around the attachment points. The results of the model are compared with lightning strike experiments carried out in a carbon woven composite.

  8. BlenX-based compositional modeling of complex reaction mechanisms

    CERN Document Server

    Zámborszky, Judit; 10.4204/EPTCS.19.6

    2010-01-01

    Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model buildin...

  9. Electromagnetomechanical elastodynamic model for Lamb wave damage quantification in composites

    Science.gov (United States)

    Borkowski, Luke; Chattopadhyay, Aditi

    2014-03-01

    Physics-based wave propagation computational models play a key role in structural health monitoring (SHM) and the development of improved damage quantification methodologies. Guided waves (GWs), such as Lamb waves, provide the capability to monitor large plate-like aerospace structures with limited actuators and sensors and are sensitive to small scale damage; however due to the complex nature of GWs, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, the local interaction simulation approach (LISA) coupled with the sharp interface model (SIM) solution methodology is used to solve the fully coupled electro-magneto-mechanical elastodynamic equations for the piezoelectric and piezomagnetic actuation and sensing of GWs in fiber reinforced composite material systems. The final framework provides the full three-dimensional displacement as well as electrical and magnetic potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated experimentally and proven computationally efficient for a laminated composite plate. Studies are performed with surface bonded piezoelectric and embedded piezomagnetic sensors to gain insight into the physics of experimental techniques used for SHM. The symmetric collocation of piezoelectric actuators is modeled to demonstrate mode suppression in laminated composites for the purpose of damage detection. The effect of delamination and damage (i.e., matrix cracking) on the GW propagation is demonstrated and quantified. The developed model provides a valuable tool for the improvement of SHM techniques due to its proven accuracy and computational efficiency.

  10. Macro Scale Independently Homogenized Subcells for Modeling Braided Composites

    Science.gov (United States)

    Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.

    2012-01-01

    An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.

  11. Composite modeling method in dynamics of planar mechanical system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a composite modeling method of the forward dynamics in general planar mechanical system. In the modeling process, the system dynamic model is generated by assembling the model units which are kinematical determinate in planar mechanisms rather than the body/joint units in multi-body system. A state space formulation is employed to model both the unit and system models. The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism. The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure. The formulation reveals the relationship between the topology and dynamics of the planar mechanism to some extent.

  12. Composite modeling method in dynamics of planar mechanical system

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; LIN ZhongQin; LAI XinMin

    2008-01-01

    This paper presents a composite modeling method of the forward dynamics in general planar mechanical system.In the modeling process,the system dynamic model is generated by assembling the model units which are kinematical determi-nate in planar mechanisms rather than the body/joint units in multi-body system.A state space formulation is employed to model both the unit and system models.The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism.The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure.The formulation reveals the rela-tionship between the topology and dynamics of the planar mechanism to some extent.

  13. A generalized methodology to characterize composite materials for pyrolysis models

    Science.gov (United States)

    McKinnon, Mark B.

    The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to

  14. Tow collapse model for compression strength of textile composites

    Energy Technology Data Exchange (ETDEWEB)

    Emehel, T.C.; Shivakumar, K.N. [North Carolina A and T State Univ., Greensboro, NC (United States)

    1995-12-31

    The unidirectional composite compression strength model based on microbuckling of fibers embedded in a rigid-plastic matrix was extended to multiaxial laminates and textile composites. The resulting expression is a function of matrix yield strength under the fiber constraint, fiber misalignment angle, fiber volume fraction, and the area fractions of various sets of inclined tows. The analysis was verified by experimentation. Compression tests were conducted on laminated, three-dimensional triaxially braided and orthogonally woven composites using the IITRI test specimen. The laminate specimens were made up of AS4/3501-6 graphite/epoxy composite with (0){sub 24}, (0/30/0/{minus}30){sub 3S}, and ((0/90)6/0){sub S} stacking sequence. Textile composites were made of BASF G30-500 graphite fiber tows (tow size is 6K) and Dow Chemicals Tactix 123 matrix. Fiber preform architecture of braided and woven composites before resin consolidation was 0/{+-}17 and 0/90, respectively and after consolidation it was about (7/{+-}20) and (5/90/90), respectively. The analysis agreed reasonably well with the test data for all cases considered. The axial fiber/tow misalignment angle for laminated, braided, and woven composites were about 4, 7, and 5 degrees, respectively. The compression strength was found to be strongly dependent on the percentage of axial tows and its misalignment angle. A small variation in the off-axis fiber/tow orientation had marginal effect on the compression strength. Hence, the off axis tow misalignment angle can be assumed to be same as the initial laminate or the two orientation angle.

  15. Modeling HVDC links in composite reliability evaluation: issues and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Lineu B. de [Sao Paulo Univ., SP (Brazil). Escola Politecnica; Ramos, Dorel S. [Centrais Eletricas de Sao Paulo, SP (Brazil); Morozowski Filho, Marciano [Santa Catarina Univ., Florianopolis, SC (Brazil)

    1992-12-31

    This paper deals with theoretical and practical aspects of HVDC link modeling for composite (generation and transmission) system reliability evaluation purposes. The conceptual framework used in the analysis, as well as the practical aspects, are illustrated through an application example. Initially, two distinct HVDC link operation models are described: synchronous and asynchronous. An analysis of the most significant internal failure modes and their effects on HVDC link transmission capability is presented and a reliability model is proposed. Finally, a historical performance data of the Itaipu HVDC system is shown. 6 refs., 5 figs., 8 tabs.

  16. A lumped model for rotational modes in periodic solid composites

    KAUST Repository

    Peng, Pai

    2013-10-01

    We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.

  17. Tapered composite likelihood for spatial max-stable models

    KAUST Repository

    Sang, Huiyan

    2014-05-01

    Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.

  18. Composite model of quark-leptons and duality

    CERN Document Server

    Das, C R; Laperashvili, Larisa

    2006-01-01

    In the present investigation the model of preons and their composites is constructed in the framework of the superstring-inspired flipped E_6\\times \\tilde E_6 gauge group of symmetry which reveals a generalized dual symmetry. We assume that preons are dyons, which in our model are confined by hyper-magnetic strings - composite N = 1 supersymmetric non-Abelian flux tubes created by the condensation of spreons near the Planck scale. We show that the six types of strings having fluxes \\Phi_n = n\\Phi_0 (n = \\pm 1,\\pm 2,\\pm 3) produce three generations of composite quark-leptons and bosons. We give an explanation of hierarchies of masses in the Standard Model. The following values of masses obtained in our preonic model: m_t\\approx 173 GeV, m_c\\approx 1 GeV and m_u\\approx 4 MeV, m_b \\approx 4 GeV, m_s\\approx 140 MeV and m_d\\approx 4 MeV, m_\\tau\\approx 2 GeV \\quad and m_\\mu \\approx 100 MeV, are in agreement with the experimentally known results. The following left-handed neutrino masses are predicted: m_1\\approx 1....

  19. Crush testing, characterizing, and modeling the crashworthiness of composite laminates

    Science.gov (United States)

    Garner, David Michael, Jr.

    Research in the field of crashworthiness of composite materials is presented. A new crush test method was produced to characterize the crush behavior of composite laminates. In addition, a model of the crush behavior and a method for rank ordering the energy absorption capability of various laminates were developed. The new crush test method was used for evaluating the crush behavior of flat carbon/epoxy composite specimens at quasi-static and dynamic rates. The University of Utah crush test fixture was designed to support the flat specimen against catastrophic buckling. A gap, where the specimen is unsupported, allowed unhindered crushing of the specimen. In addition, the specimen's failure modes could be clearly observed during crush testing. Extensive crush testing was conducted wherein the crush force and displacement data were collected to calculate the energy absorption, and high speed video was captured during dynamic testing. Crush tests were also performed over a range of fixture gap heights. The basic failure modes were buckling, crack growth, and fracture. Gap height variations resulted in poorly, properly, and overly constrained specimens. In addition, guidelines for designing a composite laminate for crashworthiness were developed. Modeling of the crush behavior consisted of the delamination and fracture of a single ply or group of like plies during crushing. Delamination crack extension was modeled using the mode I energy release rate, G lc, where an elastica approach was used to obtain the strain energy. Variations in Glc were briefly explored with double cantilever beam tests wherein crack extension occurred along a multidirectional ply interface. The model correctly predicted the failure modes for most of the test cases, and offered insight into how the input parameters affect the model. The ranking method related coefficients of the laminate and sublaminate stiffness matrices, the ply locations within the laminate, and the laminate thickness. The

  20. A compositional and dynamic model for face aging.

    Science.gov (United States)

    Suo, Jinli; Zhu, Song-Chun; Shan, Shiguang; Chen, Xilin

    2010-03-01

    In this paper, we present a compositional and dynamic model for face aging. The compositional model represents faces in each age group by a hierarchical And-Or graph, in which And nodes decompose a face into parts to describe details (e.g., hair, wrinkles, etc.) crucial for age perception and Or nodes represent large diversity of faces by alternative selections. Then a face instance is a transverse of the And-Or graph-parse graph. Face aging is modeled as a Markov process on the parse graph representation. We learn the parameters of the dynamic model from a large annotated face data set and the stochasticity of face aging is modeled in the dynamics explicitly. Based on this model, we propose a face aging simulation and prediction algorithm. Inversely, an automatic age estimation algorithm is also developed under this representation. We study two criteria to evaluate the aging results using human perception experiments: 1) the accuracy of simulation: whether the aged faces are perceived of the intended age group, and 2) preservation of identity: whether the aged faces are perceived as the same person. Quantitative statistical analysis validates the performance of our aging model and age estimation algorithm.

  1. Modeling the Inner Magnetosphere: Radiation Belts, Ring Current, and Composition

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    The space environment is a complex system defined by regions of differing length scales, characteristic energies, and physical processes. It is often difficult, or impossible, to treat all aspects of the space environment relative to a particular problem with a single model. In our studies, we utilize several models working in tandem to examine this highly interconnected system. The methodology and results will be presented for three focused topics: 1) Rapid radiation belt electron enhancements, 2) Ring current study of Energetic Neutral Atoms (ENAs), Dst, and plasma composition, and 3) Examination of the outflow of ionospheric ions. In the first study, we use a coupled MHD magnetosphere - kinetic radiation belt model to explain recent Akebono/RDM observations of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. In the second study, we present initial results of a ring current study using a newly coupled kinetic ring current model with an MHD magnetosphere model. Results of a dst study for four geomagnetic events are shown. Moreover, direct comparison with TWINS ENA images are used to infer the role that composition plays in the ring current. In the final study, we directly model the transport of plasma from the ionosphere to the magnetosphere. We especially focus on the role of photoelectrons and and wave-particle interactions. The modeling methodology for each of these studies will be detailed along with the results.

  2. Buckling induced delamination of graphene composites through hybrid molecular modeling

    Science.gov (United States)

    Cranford, Steven W.

    2013-01-01

    The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).

  3. A new model for analysing thermal stress in granular composite

    Institute of Scientific and Technical Information of China (English)

    郑茂盛; 金志浩; 浩宏奇

    1995-01-01

    A double embedding model of inletting reinforcement grain and hollow matrix ball into the effective media of the particulate-reinforced composite is advanced. And with this model the distributions of thermal stress in different phases of the composite during cooling are studied. Various expressions for predicting elastic and elastoplastic thermal stresses are derived. It is found that the reinforcement suffers compressive hydrostatic stress and the hydrostatic stress in matrix zone is a tensile one when temperature decreases; when temperature further decreases, yield area in matrix forms; when the volume fraction of reinforcement is enlarged, compressive stress on grain and tensile hydrostatic stress in matrix zone decrease; the initial temperature difference of the interface of reinforcement and matrix yielding rises, while that for the matrix yielding overall decreases.

  4. Modeling of solidification of MMC composites during gravity casting process

    Directory of Open Access Journals (Sweden)

    R. Zagórski

    2013-04-01

    Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.

  5. Modelling of a Multi-Temperature Plasma Composition

    Institute of Scientific and Technical Information of China (English)

    B. Liani; R.Benallal; Z.Bentalha

    2005-01-01

    @@ Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. We use the Saha equation and Debye length equation to calculate the non-local thermodynamicequilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32 (1999)1711]can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature Te varies in the range 8000*20000 K at atmospheric pressure.

  6. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  7. CHIMERE 2013: a model for regional atmospheric composition modelling

    Directory of Open Access Journals (Sweden)

    L. Menut

    2013-07-01

    Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, kinetics and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative contribution to the pollutants budgets can be quantified with chemistry-transport models. The CHIMERE chemistry-transport model is dedicated to regional atmospheric pollution event studies. Since it has now reached a certain level a maturity, the new stable version, CHIMERE 2013, is described to provide a reference model paper. The successive developments of the model are reviewed on the basis of published investigations that are referenced in order to discuss the scientific choices and to provide an overview of the main results.

  8. Spontaneous symmetry breaking in the composite-vector-boson model

    Energy Technology Data Exchange (ETDEWEB)

    Garavaglia, T.

    1986-11-15

    Spontaneous symmetry breaking is discussed in the Abelian, QED-like, composite-vector-boson model. When the auxiliary vector field has a nonzero vacuum expectation value, a global symmetry, Lorentz invariance, is broken. It is shown that the regularization of the saddle-point conditions for the quantum fluctuation generating functional is consistent only with a spacelike vacuum expectation value for the auxiliary vector field.

  9. 2014 Enhanced LAW Glass Property-Composition Models, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)

    2015-10-28

    This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.

  10. Searching for Composite Higgs Models at the LHC

    Science.gov (United States)

    Flacke, Thomas

    Composite Higgs models have the potential to provide a solution to the hierarchy problem and a dynamical explanation for the generation of the Higgs potential. They can be tested at the LHC as the new sector which underlies electroweak symmetry breaking must become strong in the TeV regime, which implies additional bound states beyond the Higgs. In this paper, we first discuss prospects and search strategies for top partners (and other quark partners) in the strongly coupled sector, which we study in an effective field theory setup. In the second part of the proceedings, we go beyond the effective field theory approach. We discuss potential UV embeddings for composite Higgs models which contain a Higgs as well as top partners. We show that in all of these models, additional pseudo-Nambu-Goldstone bosons beyond the Higgs are present. In particular, all of the models contain a pseudoscalar which couples to the Standard Model gauge fields through Wess-Zumino-Witten terms, providing a prime candidate for a di-boson (including a di-photon) resonance. The models also contain colored pNGBs which can be searched for at the LHC.

  11. Searching for composite Higgs models at the LHC

    Science.gov (United States)

    Flacke, Thomas

    2016-07-01

    Composite Higgs models have the potential to provide a solution to the hierarchy problem and a dynamical explanation for the generation of the Higgs potential. They can be tested at the LHC as the new sector which underlies electroweak symmetry breaking must become strong in the TeV regime, which implies additional bound states beyond the Higgs. In this paper, we first discuss prospects and search strategies for top partners (and other quark partners) in the strongly coupled sector, which we study in an effective field theory setup. In the second part of the proceedings, we go beyond the effective field theory approach. We discuss potential UV embeddings for composite Higgs models which contain a Higgs as well as top partners. We show that in all of these models, additional pseudo-Nambu-Goldstone bosons beyond the Higgs are present. In particular, all of the models contain a pseudoscalar which couples to the Standard Model gauge fields through Wess-Zumino-Witten terms, providing a prime candidate for a di-boson (including a di-photon) resonance. The models also contain colored pNGBs which can be searched for at the LHC.

  12. BlenX-based compositional modeling of complex reaction mechanisms

    Directory of Open Access Journals (Sweden)

    Judit Zámborszky

    2010-02-01

    Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.

  13. A Wear Geometry Model of Plain Woven Fabric Composites

    Directory of Open Access Journals (Sweden)

    Gu Dapeng

    2014-09-01

    Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.

  14. A web service for service composition to aid geospatial modelers

    Science.gov (United States)

    Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.

    2012-04-01

    The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and

  15. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre......The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites....

  16. A Composite Modelling Approach to Decision Support by the Use of the CBA-DK Model

    DEFF Research Database (Denmark)

    Barfod, Michael Bruhn; Salling, Kim Bang; Leleur, Steen

    2007-01-01

    This paper presents a decision support system for assessment of transport infrastructure projects. The composite modelling approach, COSIMA, combines a cost-benefit analysis by use of the CBA-DK model with multi-criteria analysis applying the AHP and SMARTER techniques. The modelling uncertainties...

  17. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  18. Development and validation of a liquid composite molding model

    Science.gov (United States)

    Bayldon, John Michael

    2007-12-01

    In composite manufacturing, Vacuum Assisted Resin Transfer Molding (VARTM) is becoming increasingly important as a cost effective manufacturing method of structural composites. In this process the dry preform (reinforcement) is placed on a rigid tool and covered by a flexible film to form an airtight vacuum bag. Liquid resin is drawn under vacuum through the preform inside the vacuum bag. Modeling of this process relies on a good understanding of closely coupled phenomena. The resin flow depends on the preform permeability, which in turn depends on the local fluid pressure and the preform compaction behavior. VARTM models for predicting the flow rate in this process do exist, however, they are not able to properly predict the flow for all classes of reinforcement material. In this thesis, the continuity equation used in VARTM models is reexamined and a modified form proposed. In addition, the compaction behavior of the preform in both saturated and dry states is studied in detail and new models are proposed for the compaction behavior. To assess the validity of the proposed models, the shadow moire method was adapted and used to perform full field measurement of the preform thickness during infusion, in addition to the usual measurements of flow front position. A new method was developed and evaluated for the analysis of the moire data related to the VARTM process, however, the method has wider applicability to other full field thickness measurements. The use of this measurement method demonstrated that although the new compaction models work well in the characterization tests, they do not properly describe all the preform features required for modeling the process. In particular the effect of varying saturation on the preform's behavior requires additional study. The flow models developed did, however, improve the prediction of the flow rate for the more compliant preform material tested, and the experimental techniques have shown where additional test methods

  19. Modeling the in-plane tension failure of composite plates

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, K.V. [Sandia National Labs., Livermore, CA (United States). Structural and Thermomechanical Modeling Dept.

    1997-11-01

    This study developed a modeling method to predict the final failure load of laminated composite plates which may contain cutouts and are subjected to quasi-static in-plane tensile loads. This study focused on overcoming numerical problems often encountered in analyses that exhibit significant stable damage growth in the composite materials. To keep the computational cost at a reasonable level, the modeling method uses a quasi-static solution procedure to solve composite plate problems with quasi-static load. The numerical problems in the quasi-static analyses are nonconvergence problems caused by the discontinuous material behavior from brittle fiber failure. This study adds artificial damping to the material model to suppress the discontinuous material behavior. The artificial damping essentially changes the material behavior, and could adversely change the final failure load prediction. Thus, a selective scheme for adding the damping was developed to minimize adverse damping effects. In addition, this modeling method uses multiple analyses at different levels of artificial damping to determine damping effects on the failure load prediction. Fracture strength experimental data for small coupons with small cutouts and large panels with larger cutouts available in the literature were selected and used to verify failure predictions of the developed modeling method. Results show that, without the artificial damping treatment, progressive damage analyses reasonably predicted the fracture strength of the small coupons, but severely underpredicted the fracture strength of the large panels. With the artificial damping treatment, the analyses predicted the failure load of both the small coupons and the large panels reasonably well.

  20. Modeling the effects of atmospheric emissions on groundwater composition

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.J.

    1994-12-31

    A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport.

  1. On fractional order composite model reference adaptive control

    Science.gov (United States)

    Wei, Yiheng; Sun, Zhenyuan; Hu, Yangsheng; Wang, Yong

    2016-08-01

    This paper presents a novel composite model reference adaptive control approach for a class of fractional order linear systems with unknown constant parameters. The method is extended from the model reference adaptive control. The parameter estimation error of our method depends on both the tracking error and the prediction error, whereas the existing method only depends on the tracking error, which makes our method has better transient performance in the sense of generating smooth system output. By the aid of the continuous frequency distributed model, stability of the proposed approach is established in the Lyapunov sense. Furthermore, the convergence property of the model parameters estimation is presented, on the premise that the closed-loop control system is stable. Finally, numerical simulation examples are given to demonstrate the effectiveness of the proposed schemes.

  2. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.

    2006-10-31

    Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.

  3. A new model of composite interstellar dust grains

    CERN Document Server

    Voshchinnikov, N V; Henning, T; Dubkova, D N; Henning, Th.

    2003-01-01

    The approach to model composite interstellar dust grains, using the exact solution to the light scattering problem for multi-layered spheres as suggested by Voshchinnikov & Mathis (1999), is further developed. Heterogeneous scatteres are represented by particles with very large number of shells, each including a homogeneous layer per material considered (amorphous carbon, astronomical silicate and vacuum). The applicability of the effective medium theory (EMT) mostly utilized earlier to approximate inhomogeneous interstellar grains is examined on the basis of the new model. It is shown that the EMT rules generally have an accuracy of several percent in the whole range of particle sizes provided the porosity does not exceed about 50%. For larger porosity, the EMT rules give wrong results. Using the model, we reanalyze various basic features of cosmic dust -- interstellar extinction, scattered radiation, infrared radiation, radiation pressure, etc. As an example of the potential of the model, it is applied ...

  4. A Composite Model Predictive Control Strategy for Furnaces

    Institute of Scientific and Technical Information of China (English)

    Hao Zang; Hongguang Li; Jingwen Huang; Jia Wang

    2014-01-01

    Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimi-zation of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control (CMPC) strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The control ers connected with two kinds of communi-cation networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reason-able CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.

  5. Nonextensive local composition models in theories of solutions

    CERN Document Server

    Borges, Ernesto P

    2012-01-01

    Thermodynamic models present binary interaction parameters, based on the Boltzmann weight. Discrepancies from experimental data lead to empirically consider temperature dependence of the parameters, but these modifications keep unchanged the exponential nature of the equations. We replace the Boltzmann weight by the nonextensive Tsallis weight, and generalize three models for nonelectrolyte solutions that use the local composition hypothesis, namely Wilson's, NRTL, and UNIQUAC models. The proposed generalizations present a nonexponential dependence on the temperature, and relies on a theoretical basis of nonextensive statistical mechanics. The $q$-models present one extra binary parameter $q_{ij}$, that recover the original cases in the limit $q_{ij} \\to 1$. Comparison with experimental data is illustrated with two examples of the activity coefficient of ethanol, infinitely diluted in toluene, and in decane.

  6. Theoretical model of a piezoelectric composite spinal fusion interbody implant.

    Science.gov (United States)

    Tobaben, Nicholas E; Domann, John P; Arnold, Paul M; Friis, Elizabeth A

    2014-04-01

    Failure rates of spinal fusion are high in smokers and diabetics. The authors are investigating the development of a piezoelectric composite biomaterial and interbody device design that could generate clinically relevant levels of electrical stimulation to help improve the rate of fusion for these patients. A lumped parameter model of the piezoelectric composite implant was developed based on a model that has been utilized to successfully predict power generation for piezoceramics. Seven variables (fiber material, matrix material, fiber volume fraction, fiber aspect ratio, implant cross-sectional area, implant thickness, and electrical load resistance) were parametrically analyzed to determine their effects on power generation within reasonable implant constraints. Influences of implant geometry and fiber aspect ratio were independent of material parameters. For a cyclic force of constant magnitude, implant thickness was directly and cross-sectional area inversely proportional to power generation potential. Fiber aspect ratios above 30 yielded maximum power generation potential while volume fractions above 15% showed superior performance. This investigation demonstrates the feasibility of using composite piezoelectric biomaterials in medical implants to generate therapeutic levels of direct current electrical stimulation. The piezoelectric spinal fusion interbody implant shows promise for helping increase success rates of spinal fusion.

  7. Local structure, composition, and crystallization mechanism of a model two-phase "composite nanoglass"

    Science.gov (United States)

    Chattopadhyay, Soma; Kelly, S. D.; Shibata, Tomohiro; Balasubramanian, M.; Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi; Ayyub, Pushan

    2016-02-01

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  8. Local structure, composition, and crystallization mechanism of a model two-phase “composite nanoglass”

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2016-02-14

    We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.

  9. Modeling and simulation of continuous fiber-reinforced ceramic composites

    Science.gov (United States)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  10. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    Science.gov (United States)

    Liu, M.; Thygesen, A.; Meyer, AS; Madsen, B.

    2016-07-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre impregnation by the epoxy matrix, and the mechanical properties of the composites are thereby increased. The effective fibre stiffness and strength established from the modelling show that the enzymatic removal of pectin also leads to increased mechanical properties of the fibres. Among the investigated samples, the composites with hydrothermally pre-treated and enzymatically treated fibres have the lowest porosity factor of 0.08 and the highest mechanical properties. In these composites, the effective fibre stiffness and strength are determined to be 83 GPa and 667 MPa, respectively, when the porosity efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites.

  11. Benchmarking of Computational Models for NDE and SHM of Composites

    Science.gov (United States)

    Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna

    2016-01-01

    Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.

  12. A Deformation Model for Dispersely Failing Elastoplastic Unidirectionally Reinforced Composites

    Science.gov (United States)

    Lagzdins, A.

    2001-09-01

    A calculation model is proposed for unidirectionally reinforced elastoplastic composites capable of gradually accumulating disperse microdamages under loading. The composite is assumed to be a homogeneous transversely isotropic solid. To describe its elastoplastic behavior, an incremental plasticity theory with a nonlinear combined hardening mechanism is invoked. At each point of the solid, its damage is characterized by a centrally symmetric scalar function on a unit sphere. This function is approximated by a fourth-rank tensor, which is used for describing the degradation of the elastic properties of the solid due to the accumulation of disperse microdamages. It is shown how to determine, using the known experimental data, all material constants appearing in the theoretical relations suggested.

  13. Dynamic fiber debonding and push-out in model composites

    Science.gov (United States)

    Bi, Xiaopeng

    2003-10-01

    When a crack propagates in a fiber-reinforced composite material, a substantial part of energy is dissipated in the debonding and sliding of the bridging fibers located behind the advancing crack front. Because of the important effect they have on the fracture toughness of a composite, these processes have been the subject of extensive experimental, analytical and numerical work. However, the vast majority of existing work on this topic has been limited to quasi-static loading situations. The few investigations performed on various composite systems involving higher loading rates seem to indicate that the fiber sliding process presents some unusual and sometimes contradictory rate-dependent characteristics. To enhance the current understanding of dynamic fiber debonding and push-out in model fiber-reinforced composites, a combined experimental and numerical investigation was carried out. A modified split Hopkinson pressure bar was used to perform high-rate fiber push-out experiments on an aluminum/epoxy model composite system. An axisymmetric cohesive/volumetric finite element scheme was developed to simulate the push-out process. Effects of several important parameters such as interfacial strength, interfacial fracture toughness and fiber/matrix friction coefficient were investigated. Interface cohesive properties were extracted by comparison between experimental and numerical results. The comparison between numerics and experiments was made as close as possible by (a) simulating the entire experimental apparatus; (b) using loading directly measured in the experiments as input to the finite element analysis (FEA) code; (c) using measured material properties in the FEA simulations; and (d) accounting for effects such as large deformations, residual stresses (through a quasi-static pre-loading scheme), spontaneous crack formation (through a cohesive failure formulation) and dynamic frictional sliding. Details of the physical process were discussed by numerically

  14. NUMERICAL MODELLING OF PROGRESSIVE FAILURE IN PARTICULATE COMPOSITES LIKE SANDSTONE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The beam-particle model is presented for analyzing the progressive failure of particulate composites such as sandstone and concrete. In the model, the medium is schematized as an assembly of particles which are linked through a network of brittle-breaking beam elements. The mechanical behaviour of particle elements is governed by the distinct element method and finite element method. The propagation of the cracking process in particulate composites is mimicked by removing the beam element from the mesh as soon as the stress in the beam exceeds the strength assigned to that particular beam. The new model can be utilized at a meso-scale and in different loading conditions. Two physical experiments are performed to verify the numerical results. The crack patterns and load-displacement response obtained with the proposed numerical model are in good agreement with the experimental results. Moreover, the influence of heterogeneity on crack patterns is also discussed and the correlation existing between the fracture evolution and the loads imposed on the specimen is characterized by fractal dimensions.

  15. Implications of solar wind measurements for solar models and composition

    Science.gov (United States)

    Serenelli, Aldo; Scott, Pat; Villante, Francesco L.; Vincent, Aaron C.; Asplund, Martin; Basu, Sarbani; Grevesse, Nicolas; Peña-Garay, Carlos

    2016-11-01

    We critically examine recent claims of a high solar metallicity by von Steiger & Zurbuchen (2016, vSZ16) based on in situ measurements of the solar wind, rather than the standard spectroscopically inferred abundances (Asplund et al. 2009, hereafter AGSS09). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with spectroscopic abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted 8B flux that is nearly twice its observed value, and 7Be and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances are worse than AGSS09 despite a higher metallicity. We also present astrophysical and spectroscopic arguments showing the vSZ16 composition to be an implausible representation of the solar interior, identifying the first ionization potential effect in the outer solar atmosphere and wind as the likely culprit.

  16. EDITORIAL: Modelling and simulation in polymer and composites processing

    Science.gov (United States)

    Castro, Josè M.

    2004-05-01

    The general theme of this special section is modelling and simulation in polymer and composite processing. Composite processing in general involves reactive processing. During the last decade there have been numerous advances in modelling and simulation in both thermoplastic and reactive processing. This fact, coupled with the enormous advances in computing capability, has made Computer Aided Engineering (CAE) a reality. Industry nowadays depends on CAE to improve and/or develop new processes. There is no excuse not to take advantage of modelling and simulation. Another tendency is a clear move towards environmentally benign manufacturing; thus several papers in this issue discuss environmentally benign alternatives to traditional manufacturing for both composite and thermoplastics. The first two papers are a review of modelling and simulation; the first paper by Castro, Cabrera Rios and Mount-Campbell focuses on reactive processing, while the second by Kim and Turng discusses thermoplastics moulding. Another important issue is the need to use empirical modelling for cases where physics-based models are not available or are too cumbersome to use. For that reason the paper by Castro et al focuses on empirical modelling and the paper by Kim and Turng discusses exclusively physics-based modelling. The next three papers, two by Advani and collaborators and the third by Srinivasagupta and Kardos, refer to composite manufacturing. Advani's papers cover recent advances in Reactive Liquid Moulding, a process that has gained great acceptance as an environmentally benign alternative to open moulding. The paper by Srinivasagupta and Kardos covers the important issue of addressing simultaneously both environmental and economical design. In general the environmental optimum does not coincide with the economic optimum; this gives rise to the need to compromise. The Data Envelopment Analysis (DEA) technique, discussed in the first paper, can be used to identify the best set of

  17. Berry composition and climate: responses and empirical models

    Science.gov (United States)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson

    2014-08-01

    Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry

  18. Transparent composite model for DCT coefficients: design and analysis.

    Science.gov (United States)

    Yang, En-Hui; Yu, Xiang; Meng, Jin; Sun, Chang

    2014-03-01

    The distributions of discrete cosine transform (DCT) coefficients of images are revisited on a per image base. To better handle, the heavy tail phenomenon commonly seen in the DCT coefficients, a new model dubbed a transparent composite model (TCM) is proposed and justified for both modeling accuracy and an additional data reduction capability. Given a sequence of the DCT coefficients, a TCM first separates the tail from the main body of the sequence. Then, a uniform distribution is used to model the DCT coefficients in the heavy tail, whereas a different parametric distribution is used to model data in the main body. The separate boundary and other parameters of the TCM can be estimated via maximum likelihood estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. Experimental results based on Kullback-Leibler divergence and χ(2) test show that for real-valued continuous ac coefficients, the TCM based on truncated Laplacian offers the best tradeoff between modeling accuracy and complexity. For discrete or integer DCT coefficients, the discrete TCM based on truncated geometric distributions (GMTCM) models the ac coefficients more accurately than pure Laplacian models and generalized Gaussian models in majority cases while having simplicity and practicality similar to those of pure Laplacian models. In addition, it is demonstrated that the GMTCM also exhibits a good capability of data reduction or feature extraction-the DCT coefficients in the heavy tail identified by the GMTCM are truly outliers, and these outliers represent an outlier image revealing some unique global features of the image. Overall, the modeling performance and the data reduction feature of the GMTCM make it a desirable choice for modeling discrete or integer DCT coefficients in the real-world image or video applications, as summarized in a few of our further studies on quantization design, entropy coding design, and image understanding

  19. Materials and electromagnetism. The modeling of composite materials; Materiaux en electromagnetisme. Modelisation des materiaux composites

    Energy Technology Data Exchange (ETDEWEB)

    Priou, A. [Institut Universitaire de Technologie, 92 - Ville-d' Avray (France)

    1999-01-01

    Maxwell laws are briefly described and the different types of electromagnetic materials are presented. Composite materials are made up of at least 2 phases: a host phase and an inclusion. The inclusion is a discontinuous phase coming from a conducting material (metal, carbon based material, semi-conductor, solid electrolytes or conducting polymers) and is spread within the host phase either in an aleatory or organized way. The modeling of such media can be made by 3 different approaches. In the multi-diffusion approach, the size of the particles enclosed in the host material and their mutual interactions are taken into account. The quasi-static approach allows the definition of an equivalent medium in order to describe percolation phenomena. The approach based on cluster theory gives a complete mathematical description of composite materials. The modeling of dielectric-conducting multilayer is also presented. The last part of the article is dedicated to the characteristics and applications of chiral media and of last generation electromagnetic materials. (A.C.)

  20. A Supersymmetric Composite Model with Dynamical Supersymmetry Breaking

    CERN Document Server

    Kitazawa, N; Kitazawa, Noriaki; Okada, Nobuchika

    1997-01-01

    We present a supersymmetric composite model with dynamical supersymmetry breaking. The model is based on the gauge group $SU(2)_S \\times SU(2)_H \\times SU(3)_c \\times SU(2)_L \\times U(1)_Y$. Supersymmetry is dynamically broken by the non-perturbative effect of the $SU(2)_S$ `supercolor' interaction. The large top Yukawa coupling is naturally generated by the $SU(2)_H$ `hypercolor' interaction as recently proposed by Nelson and Strassler. The supersymmetry breaking is mediated to the standard model sector by a new mechanism. The electroweak symmetry breaking is caused by the radiative correction due to the large top Yukawa coupling with the supersymmetry breaking. This is the `radiative breaking scenario', which originates from the dynamics of the supercolor and hypercolor gauge interactions.

  1. Water Diffusion Modelling of CFB Fly Ash Thermoset Composite

    Directory of Open Access Journals (Sweden)

    Villa Ralph P.

    2016-01-01

    Full Text Available The shift in coal-fired power plants from pulverized coal (PC boiler technology into the greener circulating fluidized bed (CFB boiler technology resulted into a major deviation in the properties of the waste fly ash generated making it less suitable for its previous application as additives for construction materials. A new market for CFB fly ash had to be found for it not to end up as a zero value by-product. Using CFB fly ash as filler for thermoset composites is a new and remarkable application. Only a few studies, however, have been done to characterize the properties of this new material. Further experimentation and analysis may be costly and time-consuming since common procedures are material destructive. A computer-aided modeling of the composite’s water sorption behavior was done. The effect of particle loading, size and shape were considered. These properties were varied and the resulting overall diffusivities were compared to previous experimental studies. The comparison of the model and experimental diffusivity values showed satisfactory results. This model may then provide a cheaper and more time-efficient method for the characterization of the water sorption properties of CFB fly ash thermoset composites. In the future, this may lead to further studies on its application as a green material.

  2. 2-D Composite Model for Numerical Simulations of Nonlinear Waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    - A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.

  3. A Composite Model of Quarks with the `Effective Supersymmetry'

    Science.gov (United States)

    Okada, N.

    1998-04-01

    We present a composite model of quarks with `effective supersymmetry'. The model is based on the gauge group (SU(2)S × SU(2)M) × (SU(2)U × SU(2)C × SU(2)T) × SU(5)SM , where SU(5)SM is the standard model gauge group. In the dynamical supersymmetry breaking sector based on the gauge group SU(2)S × SU(2)M , supersymmetry is dynamically broken. The preon sector is constructed by the model proposed by Nelson and Strassler. The fermion mass hierarchy among the up-type quarks originates from the SU(2)U × SU(2)C × SU(2)T gauge dynamics. The supersymmetry breaking is mediated to the minimal supersymmetric standard model sector by the `preon' superfields which compose the quarks in the first two generations. To obtain an experimentally acceptable mass spectrum, the scalar quarks in the first two generations need masses of order 10 TeV, while the other superpartners need masses less than 1 TeV. Therefore, the mass spectrum in our model is one example of the `effective supersymmetry' model proposed by Cohen, Kaplan and Nelson.

  4. A Composite Model of Quarks with the "Effective Supersymmetry"

    CERN Document Server

    Okada, N

    1998-01-01

    We present a composite model of quarks with the `effective supersymmetry'. The model is based on the gauge group $(SU(2)_S \\times SU(2)_M) \\times (SU(2)_U standard model gauge group. In the dynamical supersymmetry breaking sector based on the gauge group $ SU(2)_S \\times SU(2)_M $, the supersymmetry is dynamically broken. The preon sector is constructed by the model proposed by Nelson and Strassler. The fermion mass hierarchy among the up-type quarks originates from the $ SU(2)_U \\times SU(2)_C \\times SU(2)_T $ gauge dynamics. The supersymmetry breaking is mediated to the minimal supersymmetric standard model sector by the `preon' superfields which compose the quarks in the first two generations. To obtain the experimentally acceptable mass spectrum, the scalar quarks in the first two generations have masses of order 10 TeV, while the other superpartners have masses of order 100 GeV. Therefore, the mass spectrum in our model is one of the type of the `effective supersymmetry' model proposed by Cohen, Kaplan a...

  5. Proposal of a Novel Approach to Developing Material Models for Micro-scale Composites Based on Testing and Modeling of Macro-scale Composites

    Energy Technology Data Exchange (ETDEWEB)

    Siranosian, Antranik Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schembri, Philip Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-20

    The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferred from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso

  6. Viscous and thermal modelling of thermoplastic composites forming process

    Science.gov (United States)

    Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe

    2016-10-01

    Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.

  7. Modelling of composite concrete block pavement systems applying a cohesive zone model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests...

  8. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all...

  9. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  10. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2010-01-01

    New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...

  11. On the structure of anomalous composite Higgs models

    Science.gov (United States)

    Gripaios, Ben; Nardecchia, Marco; You, Tevong

    2017-01-01

    We describe the anomaly structure of a composite Higgs model in which the SO(5) / SO(4) coset structure of the minimal model is extended by an additional, non-linearly realised U(1)_{η }. In addition, we show that the effective Lagrangian admits a term that, like the Wess-Zumino-Witten term in the chiral Lagrangian for QCD, is not invariant under the non-linearly realised symmetries, but rather changes by a total derivative. This term is unlike the Wess-Zumino-Witten term in that it does not arise from anomalies. If present, it may give rise to the rare decay η → h W^+ W^-Z. The phenomenology of the singlet in this model differs from that in a model based on SO(6) / SO(5), in that couplings to both gluons and photons, arising via anomalies, are present. We show that while some tuning is needed to accommodate flavour and electroweak precision constraints, the model is no worse than the minimal model in this regard.

  12. Long Fibre Composite Modelling Using Cohesive User's Element

    Science.gov (United States)

    Kozák, Vladislav; Chlup, Zdeněk

    2010-09-01

    The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.

  13. Effects of model layer simplification using composite hydraulic properties

    Science.gov (United States)

    Sepulveda, Nicasio; Kuniansky, Eve L.

    2010-01-01

    The effects of simplifying hydraulic property layering within an unconfined aquifer and the underlying confining unit were assessed. The hydraulic properties of lithologic units within the unconfined aquifer and confining unit were computed by analyzing the aquifer-test data using radial, axisymmetric two-dimensional (2D) flow. Time-varying recharge to the unconfined aquifer and pumping from the confined Upper Floridan aquifer (USA) were simulated using 3D flow. Conceptual flow models were developed by gradually reducing the number of lithologic units in the unconfined aquifer and confining unit by calculating composite hydraulic properties for the simplified lithologic units. Composite hydraulic properties were calculated using either thickness-weighted averages or inverse modeling using regression-based parameter estimation. No significant residuals were simulated when all lithologic units comprising the unconfined aquifer were simulated as one layer. The largest residuals occurred when the unconfined aquifer and confining unit were aggregated into a single layer (quasi-3D), with residuals over 100% for the leakage rates to the confined aquifer and the heads in the confining unit. Residuals increased with contrasts in vertical hydraulic conductivity between the unconfined aquifer and confining unit. Residuals increased when the constant-head boundary at the bottom of the Upper Floridan aquifer was replaced with a no-flow boundary.

  14. Direct and indirect signals of natural composite Higgs models

    CERN Document Server

    Niehoff, Christoph; Straub, David M

    2015-01-01

    We present a comprehensive numerical analysis of a four-dimensional model with the Higgs as a composite pseudo-Nambu-Goldstone boson that features a calculable Higgs potential and protective custodial and flavour symmetries to reduce electroweak fine-tuning. We employ a novel numerical technique that allows us for the first time to study constraints from radiative electroweak symmetry breaking, Higgs physics, electroweak precision tests, flavour physics, and direct LHC bounds on fermion and vector boson resonances in a single framework. We consider four different flavour symmetries in the composite sector, one of which we show to not be viable anymore in view of strong precision constraints. In the other cases, all constraints can be passed with a sub-percent electroweak fine-tuning. The models can explain the excesses recently observed in $WW$, $WZ$, $Wh$ and $\\ell^+\\ell^-$ resonance searches by ATLAS and CMS and the anomalies in angular observables and branching ratios of rare semi-leptonic $B$ decays obser...

  15. Perturbative Unitarity Bounds in Composite 2-Higgs Doublet Models

    CERN Document Server

    De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine

    2016-01-01

    We study bounds from perturbative unitarity in a Composite 2-Higgs Doublet Model (C2HDM) based on the spontaneous breakdown of a global symmetry $SO(6)\\to SO(4)\\times SO(2)$ at the compositeness scale $f$. The eight pseudo Nambu-Goldstone Bosons (pNGBs) emerging from such a dynamics are identified as two isospin doublet Higgs fields. We calculate the $S$-wave amplitude for all possible 2-to-2-body elastic (pseudo)scalar boson scatterings at energy scales $\\sqrt{s}$ reachable at the Large Hadron Collider (LHC) and beyond it, including the longitudinal components of weak gauge boson states as the corresponding pNGB states. In our calculation, the Higgs potential is assumed to have the same form as that in the Elementary 2-Higgs Doublet Model (E2HDM) with a discrete $Z_2$ symmetry, which is expected to be generated at the one-loop level via the Coleman-Weinberg (CW) mechanism. We find that the $S$-wave amplitude matrix can be block-diagonalized with maximally $2\\times 2$ submatrices in a way similar to the E2HDM...

  16. Percolation modeling of self-damaging of composite materials

    Science.gov (United States)

    Domanskyi, Sergii; Privman, Vladimir

    2014-07-01

    We propose the concept of autonomous self-damaging in “smart” composite materials, controlled by activation of added nanosize “damaging” capsules. Percolation-type modeling approach earlier applied to the related concept of self-healing materials, is used to investigate the behavior of the initial material's fatigue. We aim at achieving a relatively sharp drop in the material's integrity after some initial limited fatigue develops in the course of the sample's usage. Our theoretical study considers a two-dimensional lattice model and involves Monte Carlo simulations of the connectivity and conductance in the high-connectivity regime of percolation. We give several examples of local capsule-lattice and capsule-capsule activation rules and show that the desired self-damaging property can only be obtained with rather sophisticated “smart” material's response involving not just damaging but also healing capsules.

  17. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-01-01

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  18. Damage Prediction Models for Advanced Materials and Composites

    Science.gov (United States)

    Xie, Ming; Ahmad, Jalees; Grady, Joseph E. (Technical Monitor)

    2005-01-01

    In the present study, the assessment and evaluation of various acoustic tile designs were conducted using three-dimensional finite element analysis, which included static analysis, thermal analysis and modal analysis of integral and non-integral tile design options. Various benchmark specimens for acoustic tile designs, including CMC integral T-joint and notched CMC plate, were tested in both room and elevated temperature environment. Various candidate ceramic matrix composite materials were used in the numerical modeling and experimental study. The research effort in this program evolved from numerical modeling and concept design to a combined numerical analysis and experimental study. Many subjects associated with the design and performance of the acoustic tile in jet engine exhaust nozzle have been investigated.

  19. Sphalerons in composite and non-standard Higgs models

    CERN Document Server

    Spannowsky, Michael

    2016-01-01

    After the discovery of the Higgs boson and the rather precise measurement of all electroweak boson's masses the local structure of the electroweak symmetry breaking potential is already quite well established. However, despite being a key ingredient to a fundamental understanding of the underlying mechanism of electroweak symmetry breaking, the global structure of the electroweak potential remains entirely unknown. The existence of sphalerons, unstable solutions of the classical action of motion that are interpolating between topologically distinct vacua, is a direct consequence of the Standard Model's $\\mathrm{SU}(2)_L$ gauge group. Nevertheless, the sphaleron energy depends on the shape of the Higgs potential away from the minimum and can therefore be a litmus test for its global structure. Focusing on two scenarios, the minimal composite Higgs model $\\mathrm{SO}(5)/\\mathrm{SO}(4)$ or an elementary Higgs with a deformed electroweak potential, we calculate the change of the sphaleron energy compared to the S...

  20. Modeling the carbon isotope composition of bivalve shells (Invited)

    Science.gov (United States)

    Romanek, C.

    2010-12-01

    The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope

  1. COMPLEX PROGRAMS FOR MODELING HIGHWAY: PARK, PROFILE AND COMPOSITION

    Directory of Open Access Journals (Sweden)

    M. Iu. Smirnov

    2014-01-01

    Full Text Available The main part of developing computer-aided design of roads are simulation systems to see the road in action. Modeling of the functioning of the road in such a simulation system - this test road design in the computer. This article describes three modules: PARK, PROFILE, COMPOSITION and comprising a set of process simulation programs functioning road. A significant increase in the accuracy of simulation results provides software parks established normative reference database of technical and economic parameters of vehicles belonging to the stream. Completeness framework allows continuous adjustment and constant up-dating of the parameters types of cars in different scales calculation excludes construction and operating costs in justifying economic calculations optimality design solutions and increases the reliability of evaluating the effectiveness of capital investments in the construction and reconstruction of roads. Optimization of the design solutions in general, as a single continuous sequence of combinations of elements contributes to road profile program that analyzes the geometric elements of the plan, longitudinal section, compressing the geometry information of the way for the subsequent modeling of the functioning of the road. Program PROFILE (and built on its basis BASIS program, PROFILE is a nexus between the projecting programs and programs that simulate traffic. Transport and road performance computer modeled for a particular stream of automobile. Technical and economic parameters of vehicles belonging to the flow (up to 20, which is sufficient for practical and research tasks and their percentage in the flow of the program selects COMPOSITION regulatory reference framework articulated earlier PARK module and writes them to a working file for their subsequent use module RIDE.

  2. Implications of solar wind measurements for solar models and composition

    CERN Document Server

    Serenelli, Aldo; Villante, Francesco L; Vincent, Aaron C; Asplund, Martin; Basu, Sarbani; Grevesse, Nicolas; Pena-Garay, Carlos

    2016-01-01

    We critically examine recent claims of a high solar metallicity by von Steiger \\& Zurbuchen (2016; vSZ16) based on in situ measurements of the solar wind, rather than the standard spectroscopically-inferred abundances (Asplund et al. 2009). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with established abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted $^8$B flux that is nearly twice its observed value, and $^7$Be and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances fare much worse than AGSS09 despite a higher metallicity. We also present ast...

  3. Compendium of Material Composition Data for Radiation Transport Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert

    2011-03-04

    Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library

  4. Modeling the Jovian subnebula: II - Composition of regular satellites ices

    CERN Document Server

    Mousis, O; Mousis, Olivier; Alibert, Yann

    2005-01-01

    We use the evolutionary turbulent model of Jupiter's subnebula described by Alibert et al. (2005a) to constrain the composition of ices incorporated in its regular icy satellites. We consider CO2, CO, CH4, N2, NH3, H2S, Ar, Kr, and Xe as the major volatile species existing in the gas-phase of the solar nebula. All these volatile species, except CO2 which crystallized as a pure condensate, are assumed to be trapped by H2O to form hydrates or clathrate hydrates in the solar nebula. Once condensed, these ices were incorporated into the growing planetesimals produced in the feeding zone of proto-Jupiter. Some of these solids then flowed from the solar nebula to the subnebula, and may have been accreted by the forming Jovian regular satellites. We show that ices embedded in solids entering at early epochs into the Jovian subdisk were all vaporized. This leads us to consider two different scenarios of regular icy satellites formation in order to estimate the composition of the ices they contain. In the first scenar...

  5. Hysteresis in Magnetic Shape Memory Composites: Modeling and Simulation

    CERN Document Server

    Conti, Sergio; Rumpf, Martin

    2015-01-01

    Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimali...

  6. Multiphysics modeling and uncertainty quantification for an active composite reflector

    Science.gov (United States)

    Peterson, Lee D.; Bradford, S. C.; Schiermeier, John E.; Agnes, Gregory S.; Basinger, Scott A.

    2013-09-01

    A multiphysics, high resolution simulation of an actively controlled, composite reflector panel is developed to extrapolate from ground test results to flight performance. The subject test article has previously demonstrated sub-micron corrected shape in a controlled laboratory thermal load. This paper develops a model of the on-orbit performance of the panel under realistic thermal loads, with an active heater control system, and performs an uncertainty quantification of the predicted response. The primary contribution of this paper is the first reported application of the Sandia developed Sierra mechanics simulation tools to a spacecraft multiphysics simulation of a closed-loop system, including uncertainty quantification. The simulation was developed so as to have sufficient resolution to capture the residual panel shape error that remains after the thermal and mechanical control loops are closed. An uncertainty quantification analysis was performed to assess the predicted tolerance in the closed-loop wavefront error. Key tools used for the uncertainty quantification are also described.

  7. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    Science.gov (United States)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  8. LHC Phenomenology of Composite 2-Higgs Doublet Models

    CERN Document Server

    De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine

    2016-01-01

    We investigate the phenomenology of Composite 2-Higgs Doublet Models (C2HDMs) of various Yukawa types based on the global symmetry breaking $SO(6)\\to SO(4)\\times SO(2)$. The kinetic term and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under $SO(6)$. The scalar potential is assumed to be the same as that of the Elementary 2-Higgs Doublet Model (E2HDM) with a softly-broken discrete $Z_2$ symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from Standard Model (SM) couplings of the discovered Higgs state ($h$) as well as on the production cross sections and Branching Ratios (BRs) at the Large Hadron Collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the $hVV$ ($V=W,Z$) coupling is assumed in both scenarios, there appear significant differences between E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay fea...

  9. Spectrophotometry and organic matter on Iapetus. 1: Composition models

    Science.gov (United States)

    Wilson, Peter D.; Sagan, Carl

    1995-01-01

    Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.

  10. A Formal Model for Compliance Verification of Service Compositions

    NARCIS (Netherlands)

    Groefsema, Heerko; van Beest, Nick; Aiello, Marco

    2016-01-01

    Business processes design and execution environments increasingly need support from modular services in service compositions to offer the flexibility required by rapidly changing requirements. With each evolution, however, the service composition must continue to adhere to laws and regulations, resu

  11. ENSO Forecasts in the North American Multi-Model Ensemble: Composite Analysis and Verification

    Science.gov (United States)

    Chen, L. C.

    2015-12-01

    In this study, we examine precipitation and temperature forecasts during El Nino/Southern Oscillation (ENSO) events in six models in the North American Multi-Model Ensemble (NMME), including the CFSv2, CanCM3, CanCM4, FLOR, GEOS5, and CCSM4 models, by comparing the model-based ENSO composites to the observed. The composite analysis is conducted using the 1982-2010 hindcasts for each of the six models with selected ENSO episodes based on the seasonal Ocean Nino Index (ONI) just prior to the date the forecasts were initiated. Two sets of composites are constructed over the North American continent: one based on precipitation and temperature anomalies, the other based on their probability of occurrence in a tercile-based system. The composites apply to monthly mean conditions in November, December, January, February, and March, respectively, as well as to the five-month aggregates representing the winter conditions. For the anomaly composites, we use the anomaly correlation coefficient and root-mean-square error against the observed composites for evaluation. For the probability composites, unlike conventional probabilistic forecast verification assuming binary outcomes to the observations, both model and observed composites are expressed in probability terms. Performance metrics for such validation are limited. Therefore, we develop a probability anomaly correlation measure and a probability score for assessment, so the results are comparable to the anomaly composite evaluation. We found that all NMME models predict ENSO precipitation patterns well during wintertime; however, some models have large discrepancies between the model temperature composites and the observed. The skill is higher for the multi-model ensemble, as well as the five-month aggregates. Comparing to the anomaly composites, the probability composites have superior skill in predicting ENSO temperature patterns and are less sensitive to the sample used to construct the composites, suggesting that

  12. Architecture in motion: A model for music composition

    Science.gov (United States)

    Variego, Jorge Elias

    2011-12-01

    Speculations regarding the relationship between music and architecture go back to the very origins of these disciplines. Throughout history, these links have always reaffirmed that music and architecture are analogous art forms that only diverge in their object of study. In the 1 st c. BCE Vitruvius conceived Architecture as "one of the most inclusive and universal human activities" where the architect should be educated in all the arts, having a vast knowledge in history, music and philosophy. In the 18th c., the German thinker Johann Wolfgang von Goethe, described Architecture as "frozen music". More recently, in the 20th c., Iannis Xenakis studied the similar structuring principles between Music and Architecture creating his own "models" of musical composition based on mathematical principles and geometric constructions. The goal of this document is to propose a compositional method that will function as a translator between the acoustical properties of a room and music, to facilitate the creation of musical works that will not only happen within an enclosed space but will also intentionally interact with the space. Acoustical measurements of rooms such as reverberation time, frequency response and volume will be measured and systematically organized in correspondence with orchestrational parameters. The musical compositions created after the proposed model are evocative of the spaces on which they are based. They are meant to be performed in any space, not exclusively in the one where the acoustical measurements were obtained. The visual component of architectural design is disregarded; the room is considered a musical instrument, with its particular sound qualities and resonances. Compositions using the proposed model will not result as sonified shapes, they will be musical works literally "tuned" to a specific space. This Architecture in motion is an attempt to adopt scientific research to the service of a creative activity and to let the aural properties of

  13. Measurement and model on thermal properties of sintered diamond composites

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Tala, E-mail: Tala.moussa@univ-nantes.fr [Laboratoire de Thermocinetique UMR CNRS 6607, Polytech, Universite de nantes, BP 50609, rue Christian Pauc, 44306 Nantes (France); Garnier, Bertrand; Peerhossaini, Hassan [Laboratoire de Thermocinetique UMR CNRS 6607, Polytech, Universite de nantes, BP 50609, rue Christian Pauc, 44306 Nantes (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Thermal properties of sintered diamond used for grinding is studied. Black-Right-Pointing-Pointer Flash method with infrared temperature measurement is used to investigate. Black-Right-Pointing-Pointer Thermal conductivity increases with the amount of diamond. Black-Right-Pointing-Pointer It is very sensitive to binder conductivity. Black-Right-Pointing-Pointer Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime Horizontal-Ellipsis ) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data

  14. Material Models Used to Predict Spring-in of Composite Elements: a Comparative Study

    Science.gov (United States)

    Galińska, Anna

    2017-02-01

    There have been several approaches used in the modelling of the process-induced deformations of composite parts developed so far. The most universal and most frequently used approach is the FEM modelling. In the scope of the FEM modelling several material models have been used to model the composite behaviour. In the present work two of the most popular material models: elastic and CHILE (cure hardening instantaneous linear elastic) are used to model the spring-in deformations of composite specimens and a structure fragment. The elastic model is more effective, whereas the CHILE model is considered more accurate. The results of the models are compared with each other and with the measured deformations of the real composite parts. Such a comparison shows that both models allow to predict the deformations reasonably well and that there is little difference between their results. This leads to a conclusion that the use of the simpler elastic model is a valid engineering practice.

  15. Modelling compression sensing in ionic polymer metal composites

    Science.gov (United States)

    Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio

    2017-03-01

    Ionic polymer metal composites (IPMCs) consist of an ionomeric membrane, including mobile counterions, sandwiched between two thin noble metal electrodes. IPMCs find application as sensors and actuators, where an imposed mechanical loading generates a voltage across the electrodes, and, vice versa, an imposed electric field causes deformation. Here, we present a predictive modelling approach to elucidate the dynamic sensing response of IPMCs subject to a time-varying through-the-thickness compression (‘compression sensing’). The model relies on the continuum theory recently developed by Porfiri and co-workers, which couples finite deformations to the modified Poisson–Nernst–Planck (PNP) system governing the IPMC electrochemistry. For the ‘compression sensing’ problem we establish a perturbative closed-form solution along with a finite element (FE) solution. The systematic comparison between these two solutions is a central contribution of this study, offering insight on accuracy and mathematical complexity. The method of matched asymptotic expansions is employed to find the analytical solution. To this end, we uncouple the force balance from the modified PNP system and separately linearise the PNP equations in the ionomer bulk and in the boundary layers at the ionomer–electrode interfaces. Comparison with FE results for the fully coupled nonlinear system demonstrates the accuracy of the analytical solution to describe IPMC sensing for moderate deformation levels. We finally demonstrate the potential of the modelling scheme to accurately reproduce experimental results from the literature. The proposed model is expected to aid in the design of IPMC sensors, contribute to an improved understanding of IPMC electrochemomechanical response, and offer insight into the role of nonlinear phenomena across mechanics and electrochemistry.

  16. Mathematical Foundations for a Compositional Distributional Model of Meaning

    CERN Document Server

    Coecke, Bob; Clark, Stephen

    2010-01-01

    We propose a mathematical framework for a unification of the distributional theory of meaning in terms of vector space models, and a compositional theory for grammatical types, for which we rely on the algebra of Pregroups, introduced by Lambek. This mathematical framework enables us to compute the meaning of a well-typed sentence from the meanings of its constituents. Concretely, the type reductions of Pregroups are `lifted' to morphisms in a category, a procedure that transforms meanings of constituents into a meaning of the (well-typed) whole. Importantly, meanings of whole sentences live in a single space, independent of the grammatical structure of the sentence. Hence the inner-product can be used to compare meanings of arbitrary sentences, as it is for comparing the meanings of words in the distributional model. The mathematical structure we employ admits a purely diagrammatic calculus which exposes how the information flows between the words in a sentence in order to make up the meaning of the whole se...

  17. Modal characterization of composite flat plate models using piezoelectric transducers

    Science.gov (United States)

    Oliveira, É. L.; Maia, N. M. M.; Marto, A. G.; da Silva, R. G. A.; Afonso, F. J.; Suleman, A.

    2016-10-01

    This paper aims to estimate the modal parameters of composite flat plate models through Experimental Modal Analysis (EMA) using piezoelectric transducers. The flat plates are composed of three ply carbon-epoxy fibers oriented in the same direction. Five specimens with different unidirectional fiber nominal orientations θk (0o, 30o, 45o, 60o and 90o) were tested. These models were instrumented with one PZT (Lead Zirconate Titanate) actuator and one PVDF (Polyvinylidene Fluoride) sensor and an EMA was performed. The natural frequencies and damping factors estimated using only a single PVDF response were compared with the estimated results using twelve measurement points acquired by laser doppler vibrometry. For comparison purposes, the percentage error of each natural frequency estimation and the percentage error of the damping factor estimations were computed, as well as their averages. Even though the comparison was made between a SISO (Single-Input, Single-Output) and a SIMO (Single-Input, Multiple-Output) techniques, both results are very close. The vibration modes were estimated by means of laser measurements and were used in the modal validation. In order to verify the accuracy of the modal parameters, the Modal Assurance Criterion (MAC) was employed and a high correlation among mode shapes was observed.

  18. A Compositional Relevance Model for Adaptive Information Retrieval

    Science.gov (United States)

    Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.

  19. Fine Tuning in the Holographic Minimal Composite Higgs Model

    CERN Document Server

    Archer, Paul R

    2014-01-01

    In the minimal composite Higgs model (MCHM), the size of the Higgs mass and vacuum expectation value is determined, via the Higgs potential, by the size of operators that violate the global SO(5) symmetry. In 5D holographic realisations of this model, this translates into the inclusion of brane localised operators. However, the inclusion of all such operators results in a large and under-constrained parameter space. In this paper we study the level of fine-tuning involved in such a parameter space, focusing on the MCHM${}_5$. It is demonstrated that the gauge contribution to the Higgs potential can be suppressed by brane localised kinetic terms, but this is correlated with an enhancement to the S parameter. The fermion contribution, on the other hand, can be enhanced or suppressed. However this does not significantly improve the level of fine tunings, since the Higgs squared term, in the potential, requires a cancellation between the fermion and gauge contributions. Although we focus on the MCHM${}_5$, the fe...

  20. ACES Model Composition and Development Toolkit to Support NGATS Concepts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Building on recent advances in formal agent specification, protocol composition, model composers, and visualization capabilities provided by development environments...

  1. Formal Modeling of Trust Web Service Composition Using Pi-calculus

    Directory of Open Access Journals (Sweden)

    Bensheng YUN

    2013-08-01

    Full Text Available To enhance the credibility of Web service composition, Pi-calculus based formal modeling of trust Web service composition is proposed. Trust Web service composition is firstly defined abstractly; then Pi-calculus is used to depict structure and internal interaction of Trust Web service composition, the mapping relation between trust entity and Pi-calculus is provided. Automatic reasoner MWB is adopted to analyze and reason the Trust Web service composition system, which is aimed at finding and correcting the faults before the implementation of trust authentication of Web service composition. It thus meets the users’ demands on trust quality effectively.

  2. Flux balance analysis of plant metabolism: the effect of biomass composition and model structure on model predictions

    Directory of Open Access Journals (Sweden)

    Huili eYuan

    2016-04-01

    Full Text Available The biomass composition represented in constraint-based metabolic models is a key component for predicting cellular metabolism using flux balance analysis (FBA. Despite major advances in analytical technologies, it is often challenging to obtain a detailed composition of all major biomass components experimentally. Studies examining the influence of the biomass composition on the predictions of metabolic models have so far mostly been done on models of microorganisms. Little is known about the impact of varying biomass composition on flux prediction in FBA models of plants, whose metabolism is very versatile and complex because of the presence of multiple subcellular compartments. Also, the published metabolic models of plants differ in size and complexity. In this study, we examined the sensitivity of the predicted fluxes of plant metabolic models to biomass composition and model structure. These questions were addressed by evaluating the sensitivity of predictions of growth rates and central carbon metabolic fluxes to varying biomass compositions in three different genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed that fluxes through the central carbon metabolism were robust to changes in biomass composition. Nevertheless, comparisons between the predictions from three models using identical modelling constraints and objective function showed that model predictions were sensitive to the structure of the models, highlighting large discrepancies between the published models.

  3. Modelling the Oceanic Nd Isotopic Composition With a North Atlantic Eddy Permitting Model

    Science.gov (United States)

    Peronne, S.; Treguier, A.; Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.

    2006-12-01

    The oceanic water masses differ by their temperatures, salinity, but also a number of geochemical tracers characterized by their weak concentrations and their ability to quantify oceanic processes (mixing, scavenging rates etc). Among these tracers, the Nd isotopic composition (hereafter epsilon-Nd) is a (quasi) conservative tracer of water mass mixing in the ocean interior, far from any lithogenic inputs. It has been recently established that exchange of Nd at the oceanic margins could be the dominant process controlling both its concentration and isotopic composition distribution in the ocean. This was demonstrated using in situ measurements and budget calculations and has recently been confirmed by a low resolution (2°) modeling approach (Arsouze et al., 2006). However, the currents flowing on the ocean margins are not correctly represented in coarse ocean models. It is the case in the North Atlantic ocean, which is of particular interest since i) it is the area of deep water formation and ii) these deep waters are characterized by the most negative epsilon-Nd values of the world ocean, which are used as "imprint" of the present and past thermohaline circulation. It is therefore essential to understand how these water masses acquire their epsilon-Nd signature. We propose here the first results of the modeling of oceanic Nd isotopic composition at eddy-permitting resolution, with the North Atlantic 0.25° version of the NEMO model used for the DRAKKAR European project. A 150 years off-line experiment and a shorter on-line experiment are performed. Simulated Nd distributions are compared to the present-day data base, vertical profiles, and the results of the low resolution model (in the North Atlantic). The eddy permitting model generally provides improved results, provided a high enough exchange rate is imposed in the deep ocean. Deficiencies of the simulated distribution in the Nordic Seas and the subpolar gyre are explained by errors in the input function on

  4. Biomechanical comparison of the human cadaveric pelvis with a fourth generation composite model.

    Science.gov (United States)

    Girardi, Brandon L; Attia, Tarik; Backstein, David; Safir, Oleg; Willett, Thomas L; Kuzyk, Paul R T

    2016-02-29

    The use of cadavers for orthopaedic biomechanics research is well established, but presents difficulties to researchers in terms of cost, biosafety, availability, and ease of use. High fidelity composite models of human bone have been developed for use in biomechanical studies. While several studies have utilized composite models of the human pelvis for testing orthopaedic reconstruction techniques, few biomechanical comparisons of the properties of cadaveric and composite pelves exist. The aim of this study was to compare the mechanical properties of cadaveric pelves to those of the 4th generation composite model. An Instron ElectroPuls E10000 mechanical testing machine was used to load specimens with orientation, boundary conditions and degrees of freedom that approximated those occurring during the single legged phase of walking, including hip abductor force. Each specimen was instrumented with strain gauge rosettes. Overall specimen stiffness and principal strains were calculated from the test data. Composite specimens showed significantly higher overall stiffness and slightly less overall variability between specimens (composite K=1448±54N/m, cadaver K=832±62N/m; p<0.0001). Strains measured at specific sites in the composite models and cadavers were similar (but did differ) only when the applied load was scaled to overall construct stiffness. This finding regarding strain distribution and the difference in overall stiffness must be accounted for when using these composite models for biomechanics research. Altering the cortical wall thickness or tuning the elastic moduli of the composite material may improve future generations of the composite model.

  5. Finite element based micro-mechanics modeling of textile composites

    Science.gov (United States)

    Glaessgen, E. H.; Griffin, O. H., Jr.

    1995-01-01

    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.

  6. Predictive Modeling of Complex Contoured Composite Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The existing HDWLT (pictured) contoured composite structure design, its analyses and manufacturing tools, will be used to validate key analyses inputs through...

  7. Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling Element

    Data.gov (United States)

    National Aeronautics and Space Administration — CIM encompassed computational methods, tools and processes that go into the materials, design, manufacturing and qualification of composite aerospace structures....

  8. Micromechanical Models for Composite NDE and Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern aircraft increasingly rely on composite components, due to their excellent material properties. However, fastening/joining and design methodologies in current...

  9. Micromechanical Models for Composite NDE and Diagnostics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern aircraft (and next generation spacecraft) increasingly rely on composite components due to their excellent specific strength and stiffness, as well as...

  10. Hysteresis in magnetic shape memory composites: Modeling and simulation

    Science.gov (United States)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  11. The running coupling of the minimal sextet composite Higgs model

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2015-01-01

    We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the beta-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop beta-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop beta-functions in ...

  12. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    Science.gov (United States)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  13. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  14. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  15. Simplified prediction model for elastic modulus of particulate reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min

    2006-01-01

    Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.

  16. Interface structure and strength in model dental resin composites

    DEFF Research Database (Denmark)

    Nielsen, Mette Skovgaard

    Most composites for dental restoration are based on a methacrylate polymer matrix and a ceramic filler, often silanized silica or silicate glasses. A problem with these composites is the polymerization shrinkage, which causes the filling to loosen from the tooth under formation of a crack....... This will facilitate discoloration by colorants from e.g. coffee and red wine entering the crack, or even worse lead to secondary caries and infection of dental pulp due to bacteria. The aim of this study was to develop a low shrinkage dental composite based on an expandable metastable zirconia filler A metastable...... the polymer shrinkage and reduces the overall shrinkage of the composite. In this thesis the zirconia filler is characterized and tested for the potential as a filler for use in dental composites. The zirconia powder is composed of highly agglomerated particles of nanosized crystals. The average particle size...

  17. A Model for Estimating Nonlinear Deformation and Damage in Ceramic Matrix Composites (Preprint)

    Science.gov (United States)

    2011-07-01

    AFRL-RX-WP-TP-2011-4232 A MODEL FOR ESTIMATING NONLINEAR DEFORMATION AND DAMAGE IN CERAMIC MATRIX COMPOSITES (PREPRINT) Unni Santhosh and...5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6. AUTHOR(S) Unni Santhosh and Jalees Ahmad 5d. PROJECT...Composite Materials, 2010 A Model for Estimating Nonlinear Deformation and Damage in Ceramic Matrix Composites Unni Santhosh and Jalees Ahmad Research

  18. A Formal Model for BPEL4WS Description of Web Service Composition

    Institute of Scientific and Technical Information of China (English)

    GU Xiwu; LU Zhengding

    2006-01-01

    Communicating Sequential Processes (CSP) is a kind of process algebra, which is suitable for modeling and verifying Web service composition.This paper describes how to model Web service composition with CSP.A set of rules for translating composition constructor of Business Process Execution Language for Web Services (BPEL4WS) to CSP notations is defined.According to the rules that have been defined, the corresponding translation algorithm is designed and illustrated with examples.The methods for model checking,model verification and model simulation are also introduced.

  19. Peridynamic modeling and simulation of polymer-nanotube composites

    Science.gov (United States)

    Henke, Steven F.

    In this document, we develop and demonstrate a framework for simulating the mechanics of polymer materials that are reinforced by carbon nanotubes. Our model utilizes peridynamic theory to describe the mechanical response of the polymer and polymer-nanotube interfaces. We benefit from the continuum formulation used in peridynamics because (1) it allows the polymer material to be coarse-grained to the scale of the reinforcing nanofibers, and (2) failure via nanotube pull-out and matrix tearing are possible based on energetic considerations alone (i.e. without special treatment). To reduce the degrees of freedom that must be simulated, the reinforcement effect of the nanotubes is represented by a mesoscale bead-spring model. This approach permits the arbitrary placement of reinforcement ``strands'' in the problem domain and motivates the need for irregular quadrature point distributions, which have not yet been explored in the peridynamic setting. We address this matter in detail and report on aspects of mesh sensitivity that we uncovered in peridynamic simulations. Using a manufactured solution, we study the effects of quadrature point placement on the accuracy of the solution scheme in one and two dimensions. We demonstrate that square grids and the generator points of a centroidal Voronoi tessellation (CVT) support solutions of similar accuracy, but CVT grids have desirable characteristics that may justify the additional computational cost required for their construction. Impact simulations provide evidence that CVT grids support fracture patterns that resemble those obtained on higher resolution cubic Cartesian grids with a reduced computational burden. With the efficacy of irregular meshing schemes established, we exercise our model by dynamically stretching a cylindrical specimen composed of the polymer-nanotube composite. We vary the number of reinforcements, alignment of the filler, and the properties of the polymer-nanotube interface. Our results suggest

  20. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.;

    2012-01-01

    A computational numerical-analytical model of nano-reinforced polymer composites is developed taking into account the interface and particle clustering effects. The model was employed to analyze the interrelationships between microstructures and mechanical properties of nanocomposites. An improved...

  1. A classical lamination model of bi-stable woven composite tape-springs

    OpenAIRE

    Prigent, Yoann; Mallol, Pau; Tibert, Gunnar

    2011-01-01

    This extended abstract presents the work done so far on modeling woven composite materials, specifically two carbon fiber reinforced plastics materials: twill and plain weave. The material model has been initially verified against data available in a database. QC 20120215

  2. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08

    affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

  3. Modeling compositional dynamics based on GC and purine contents of protein-coding sequences

    KAUST Repository

    Zhang, Zhang

    2010-11-08

    Background: Understanding the compositional dynamics of genomes and their coding sequences is of great significance in gaining clues into molecular evolution and a large number of publically-available genome sequences have allowed us to quantitatively predict deviations of empirical data from their theoretical counterparts. However, the quantification of theoretical compositional variations for a wide diversity of genomes remains a major challenge.Results: To model the compositional dynamics of protein-coding sequences, we propose two simple models that take into account both mutation and selection effects, which act differently at the three codon positions, and use both GC and purine contents as compositional parameters. The two models concern the theoretical composition of nucleotides, codons, and amino acids, with no prerequisite of homologous sequences or their alignments. We evaluated the two models by quantifying theoretical compositions of a large collection of protein-coding sequences (including 46 of Archaea, 686 of Bacteria, and 826 of Eukarya), yielding consistent theoretical compositions across all the collected sequences.Conclusions: We show that the compositions of nucleotides, codons, and amino acids are largely determined by both GC and purine contents and suggest that deviations of the observed from the expected compositions may reflect compositional signatures that arise from a complex interplay between mutation and selection via DNA replication and repair mechanisms.Reviewers: This article was reviewed by Zhaolei Zhang (nominated by Mark Gerstein), Guruprasad Ananda (nominated by Kateryna Makova), and Daniel Haft. 2010 Zhang and Yu; licensee BioMed Central Ltd.

  4. A Phenomenological Thermal-Mechanical Viscoelastic Constitutive Modeling for Polypropylene Wood Composites

    Directory of Open Access Journals (Sweden)

    Xiongqi Peng

    2012-01-01

    Full Text Available This paper presents a phenomenological thermal-mechanical viscoelastic constitutive modeling for polypropylene wood composites. Polypropylene (PP wood composite specimens are compressed at strain rates from 10−4 to 10−2 s−1 and at temperature of , , and , respectively. The mechanical responses are shown to be sensitive both to strain rate and to temperature. Based on the Maxwell viscoelastic model, a nonlinear thermal-mechanical viscoelastic constitutive model is developed for the PP wood composite by decoupling the effect of temperature with that of the strain rate. Corresponding viscoelastic parameters are obtained through curve fitting with experimental data. Then the model is used to simulate thermal compression of the PP wood composite. The predicted theoretical results coincide quite well with experimental data. The proposed constitutive model is then applied to the thermoforming simulation of an automobile interior part with the PP wood composites.

  5. Modeling Damage in Composite Materials Using an Enrichment Based Multiscale Method

    Science.gov (United States)

    2015-03-01

    Technical Report ARWSB-TR-15002 Modeling Damage in Composite Materials Using an Enrichment Based Multiscale Method Michael F...4. TITLE AND SUBTITLE Modeling Damage in Composite Materials Using an Enrichment Based Multiscale Method 5a. CONTRACT NUMBER 5b...the RVE and how microdamage can be incorporated into the model . For many applications the material used in the multiscale model is some type of fiber

  6. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  7. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    Science.gov (United States)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  8. Empirical model of the composition of the Venus ionosphere Repeatable characteristics and key features not modeled

    Science.gov (United States)

    Taylor, H. A., Jr.; Mayr, H. G.; Niemann, H. B.; Larson, J.

    1985-01-01

    In-situ measurements of positive ion composition of the ionosphere of Venus are combined in an empirical model which is a key element for the Venus International Reference Atmosphere (VIRA) model. The ion data are obtained from the Pioneer Venus Orbiter Ion Mass Spectrometer (OIMS) which obtained daily measurements beginning in December 1978 and extending to July 1980 when the uncontrolled rise of satellite periapsis height precluded further measurements in the main body of the ionosphere. For this period, measurements of 12 ion species are sorted into altitude and local time bins with altitude extending from 150 to 1000 km. The model results exhibit the appreciable nightside ionosphere found at Venus, the dominance of atomic oxygen ions in the dayside upper ionosphere and the increase in prominence of atomic oxygen and deuterium ions on the nightside. Short term variations, such as the abrupt changes observed in the ionopause, cannot be represented in the model.

  9. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  10. Composites

    Science.gov (United States)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  11. Multi-length Scale Material Model Development for Armorgrade Composites

    Science.gov (United States)

    2014-05-02

    synthesis -/processing-induced defects; (c) effect of 3 synthesis -/processing-induced defects on PPTA-fiber properties; (d) effect of fiber-/ yarn ...Derivation of the Materials Constitutive Relations for Carbon Nanotube Reinforced Poly-Vinyl-Ester-Epoxy Based Composites,” Journal of Materials Science, 42...fabric or PPTA-fiber-reinforced polymer-matrix composites. Specifically, the role of various material- synthesis -/fiber-processing-induced defects, as

  12. Validation and modeling of earthquake strong ground motion using a composite source model

    Science.gov (United States)

    Zeng, Y.

    2001-12-01

    Zeng et al. (1994) have proposed a composite source model for synthetic strong ground motion prediction. In that model, the source is taken as a superposition of circular subevents with a constant stress drop. The number of subevents and their radius follows a power law distribution equivalent to the Gutenberg and Richter's magnitude-frequency relation for seismicity. The heterogeneous nature of the composite source model is characterized by its maximum subevent size and subevent stress drop. As rupture propagates through each subevent, it radiates a Brune's pulse or a Sato and Hirasawa's circular crack pulse. The method has been proved to be successful in generating realistic strong motion seismograms in comparison with observations from earthquakes in California, eastern US, Guerrero of Mexico, Turkey and India. The model has since been improved by including scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using geotechnical engineering models. Last year, I have introduced an asymmetric circular rupture to improve the subevent source radiation and to provide a consistent rupture model between overall fault rupture process and its subevents. In this study, I revisit the Landers, Loma Prieta, Northridge, Imperial Valley and Kobe earthquakes using the improved source model. The results show that the improved subevent ruptures provide an improved effect of rupture directivity compared to our previous studies. Additional validation includes comparison of synthetic strong ground motions to the observed ground accelerations from the Chi-Chi, Taiwan and Izmit, Turkey earthquakes. Since the method has evolved considerably when it was first proposed, I will also compare results between each major modification of the model and demonstrate its backward compatibility to any of its early simulation procedures.

  13. Simplification and improvement of prediction model for elastic modulus of particulate reinforced metal matrix composite

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min

    2006-01-01

    In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law,the model can predict the engineering elastic constant of a composite effectively.

  14. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Sergey S.

    2014-11-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ{sup 13}C, δ{sup 18}O and Δ{sup 17}O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated {sup 13}CO/{sup 12}CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in {sup 13}C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH{sub 4}) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH{sub 4} to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in {sup 13}C, were found significant

  15. Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials

    Science.gov (United States)

    Jordan, William

    1998-01-01

    Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).

  16. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  17. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  18. Modelling anisotropic water transport in polymer composite reinforced with aligned triangular bars

    Indian Academy of Sciences (India)

    Bryan Pajarito; Masatoshi Kubouchi; Saiko Aoki

    2014-02-01

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite. Through transient FE diffusion analysis, anisotropic water transport in thickness direction of the polymer composite was numerically predicted and validated against experimental results. The case of using impermeable triangular bars was also numerically simulated. The diffusivity of reinforced aligned triangular bars was confirmed to affect anisotropic water transport in the composite. The results of this work suggest possible use of polymer composite for barrier and fluid removal applications.

  19. Same-sign W pair production in composite Higgs models

    CERN Document Server

    Englert, Christoph; Spannowsky, Michael

    2016-01-01

    Non-minimal composite Higgs scenarios can contain exotic Higgs states which, if getting observed at the Large Hadron Collider, will help to constrain the underlying UV structure of the strong dynamics. Doubly charged Higgs bosons are well-motivated scalar degrees of freedom in this context. Their phenomenology in typical composite scenarios can differ from well-established Higgs triplet extensions of the SM. Related search strategies are not necessarily adapted to such a scenario as a consequence. In this paper we discuss the sensitivity reach to doubly charged Higgs bosons with decays into pairs of same-sign $W$ bosons. While production cross sections are small, we show that significant constraints on $H^{\\pm\\pm}\\to W^{\\pm}W^{\\pm}$ can be obtained, providing a new opportunity to constrain the potential composite structure of the TeV scale up to $m_{H^{\\pm\\pm}}\\simeq 800$~GeV.

  20. A Geometric Model of Multiaxial Warp-knitted Preform for Composite Reinforcement

    Institute of Scientific and Technical Information of China (English)

    周荣星; 李炜; 陈南梁; 冯勋伟

    2003-01-01

    A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites.

  1. Ion composition measurements and modelling at altitudes from 140 to 350 km using EISCAT measurements

    Directory of Open Access Journals (Sweden)

    A. Litvin

    Full Text Available This work aims at processing the data of CP1 and CP2 programs of EISCAT ionospheric radar from 1987 to 1994 using the "full profile" method which allows to solve the "temperature-composition" ambiguity problem in the lower F region. The program of data analysis was developed in the CEPHAG in 1995–1996. To improve this program, we implemented another analytical function to model the ion composition profile. This new function better reflects the real profile of the composition. Secondly, we chose the best method to select the initial conditions for the "full profile" procedure. A statistical analysis of the results was made to obtain the averages of various parameters: electron concentration and temperature, ion temperature, composition and bulk velocity. The aim is to obtain models of the parameter behaviour defining the ion composition profiles : z50 (transition altitude between atomic and molecular ions and dz (width of the profile, for various seasons and for high and low solar activities. These models are then compared to other models. To explain the principal features of parameters z50 and dz, we made an analysis of the processes leading to composition changes and related them to production and electron density profile. A new experimental model of ion composition is now available.

    Key words. Auroral ionosphere · Ion chemistry and composition · Instruments and techniques · EISCAT

  2. High-Strain-Rate Constitutive Characterization and Modeling of Metal Matrix Composites

    Science.gov (United States)

    2014-03-07

    impact fracture of carbon fiber reinforced 7075 -T6 aluminum matrix composite , Materials Transactions, Japan Institute of Metals, 41, 1055-1063...MODELING OF METAL MATRIX COMPOSITES Report Title The mechanical response of three different types of materials are examined: unidirectionally...conditions. This report also documents some of the highlights of the material response of Saffil filled aluminum matrix composite and a Nextel satin

  3. Diagnostic, Predictive and Compositional Modeling with Data Mining in Integrated Learning Environments

    Science.gov (United States)

    Lee, Chien-Sing

    2007-01-01

    Models represent a set of generic patterns to test hypotheses. This paper presents the CogMoLab student model in the context of an integrated learning environment. Three aspects are discussed: diagnostic and predictive modeling with respect to the issues of credit assignment and scalability and compositional modeling of the student profile in the…

  4. Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    An overview of methods of the mathematical modeling of deformation, damage and fracture in fiber reinforced composites is presented. The models are classified into five main groups: shear lag-based, analytical models, fiber bundle model and its generalizations, fracture mechanics based and contin...

  5. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi;

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... fraction is used as the basic independent variable. The values of the input model parameters are derived from experimental studies of the configuration of the composites (volumetric composition, dimensions, and orientation of fibers), as well as the properties of the constituent fiber and matrix phases...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  6. Prediction of anisotropic behavior of nano/micro composite based on damage mechanics with cell modeling.

    Science.gov (United States)

    Lee, Dock-Jin; Kim, Young-Jin; Kim, Moon-Ki; Choi, Jae-Boong; Chang, Yoon-Suk; Liu, Wing Kam

    2011-01-01

    New advanced composite materials have recently been of great interest. Especially, many researchers have studied on nano/micro composites based on matrix filled with nano-particles, nano-tubes, nano-wires and so forth, which have outstanding characteristics on thermal, electrical, optical, chemical and mechanical properties. Therefore, the need of numerical approach for design and development of the advanced materials has been recognized. In this paper, finite element analysis based on multi-resolution continuum theory is carried out to predict the anisotropic behavior of nano/micro composites based on damage mechanics with a cell modeling. The cell modeling systematically evaluates constitutive relationships from microstructure of the composite material. Effects of plastic anisotropy on deformation behavior and damage evolution of nano/micro composite are investigated by using Hill's 48 yield function and also compared with those obtained from Gurson-Tvergaard-Needleman isotropic damage model based on von Mises yield function.

  7. A Fuzzy Directed Graph-Based QoS Model for Service Composition

    Institute of Scientific and Technical Information of China (English)

    GUO Sanjun; DOU Wanchun; FAN Shaokun

    2007-01-01

    Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model,a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.

  8. Human body composition models and methodology: theory and experiment.

    NARCIS (Netherlands)

    Wang, Z.M.

    1997-01-01

    The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors. Accordingly, the study of human

  9. Uncertainty modelling and code calibration for composite materials

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Mishnaevsky, Leon, Jr

    2013-01-01

    between risk of failure and cost of the structure. Consideration related to calibration of partial safety factors for composite material is described, including the probability of failure, format for the partial safety factor method and weight factors for different load cases. In a numerical example...

  10. Integrated Modeling of Polymer Composites Under High Energy Laser Irradiation

    Science.gov (United States)

    2015-10-30

    interfacial thermal transport characteristics.18,20,23,24,27,29,30 In principle, apart from interface functionalization, several other parameters...engineering (ICMSE) approach was used to investigate the role of fiber-matrix interfaces in controlling optical and thermal energy flow in structural composite...characterize optical and thermal transport at multiple length scales spanning from nanometers to millimeters. Advanced experimental characterization

  11. Representing general theoretical concepts in structural equation models: The role of composite variables

    Science.gov (United States)

    Grace, J.B.; Bollen, K.A.

    2008-01-01

    Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.

  12. Modelling and analysis of CVD processes in porous media for ceramic composite preparation

    NARCIS (Netherlands)

    Lin, Y.S.; Burggraaf, A.J.

    1991-01-01

    A continuum phenomenological model is presented to describe chemical vapour deposition (CVD) of solid product inside porous substrate media for the preparation of reinforced ceramic-matrix composites [by the chemical vapour infiltration (CVI) process] and ceramic membrane composites (by a modified C

  13. Models for composing software : an analysis of software composition and objects

    NARCIS (Netherlands)

    Bergmans, Lodewijk

    1999-01-01

    In this report, we investigate component-based software construction with a focus on composition. In particular we try to analyze the requirements and issues for components and software composition. As a means to understand this research area, we introduce a canonical model for representing software

  14. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)

    1997-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  15. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; Rooij, de Matthijn; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  16. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    Science.gov (United States)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix

  17. PREDICTION OF MECHANICAL PROPERTY OF WHISKER REINFORCED METAL MATRIX COMPOSITE: PART-Ⅰ. MODEL AND FORMULATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on study of strain distribution in whisker reinforced metal matrix composites, an explicit precise stiffness tensor is derived. In the present theory, the effect of whisker orientation on the macro property of composites is considered, but the effect of random whisker position and the complicated strain field at whisker ends are averaged. The derived formula is able to predict the stiffness modulus of composites with arbitrary whisker orientation under any loading condition. Compared with the models of micro-mechanics, the present theory is competent for modulus prediction of actual engineering composites. The verification and application of the present theory are given in a subsequent paper published in the same issue.

  18. Literature Reviews on Modeling Internal Geometry of Textile Composites and Rate-Independent Continuum Damage

    Science.gov (United States)

    Su-Yuen, Hsu

    2011-01-01

    Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.

  19. Possibilities of modeling masonry as a composite softening material: Interface modeling and anisotropic continuum modeling

    NARCIS (Netherlands)

    Lourenço, P.B.; Rots, J.G.

    1998-01-01

    Results of using recently developed material models for the analysis of masonry structures are shown. Both interface modeling, in which masonry components (units and joints) are represented, as continuum modeling, in which masonry is represented as a homogeneous continuum, are addressed. It is shown

  20. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.

    Science.gov (United States)

    Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.

  1. Modeling the Nd isotopic composition in the North Atlantic basin using an eddy-permitting model

    Science.gov (United States)

    Arsouze, T.; Treguier, A. M.; Peronne, S.; Dutay, J.-C.; Lacan, F.; Jeandel, C.

    2010-09-01

    Boundary Exchange (BE - exchange of elements between continental margins and the open ocean) has been emphasized as a key process in the oceanic cycle of neodymium (Nd) (Lacan and Jeandel, 2005a). Here, we use a regional eddy-permitting resolution Ocean General Circulation Model (1/4°) of the North Atlantic basin to simulate the distribution of the Nd isotopic composition, considering BE as the only source. Results show good agreement with the data, confirming previous results obtained using the same parameterization of the source in a coarse resolution global model (Arsouze et al., 2007), and therefore the major control played by the BE processes in the Nd cycle on the regional scale. We quantified the exchange rate of the BE, and found that the time needed for the continental margins to significantly imprint the chemical composition of the surrounding seawater (further referred as characteristic exchange time) is of the order of 0.2 years. However, the timescale of the BE may be subject to large variations as a very short exchange time (a few days) is needed to reproduce the highly negative values of surface waters in the Labrador Sea, whereas a longer one (up to 0.5 years) is required to simulate the radiogenic influence of basaltic margins and distinguish the negative isotopic signatures of North Atlantic Deep Water from the more radiogenic southern origin water masses. This likely represents geographical variations in erosion fluxes and the subsequent particle load onto the continental margins. Although the parameterization of the BE is the same in both configurations of the model, the characteristic exchange time in the eddy-permitting configuration is significantly lower than the previous evaluations using a low resolution configuration (6 months to 10 years), but however in agreement with the available seawater Nd isotope data. This results highlights the importance of the model dynamics in simulating the BE process.

  2. Modular, Semantics-Based Composition of Biosimulation Models

    Science.gov (United States)

    Neal, Maxwell Lewis

    2010-01-01

    Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…

  3. Explicit modeling the progressive interface damage in fibrous composite: Analytical vs. numerical approach

    DEFF Research Database (Denmark)

    Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon

    2011-01-01

    Two micromechanical, representative unit cell type models of fiber reinforced composite (FRC) are applied to simulate explicitly onset and accumulation of scattered local damage in the form of interface debonding. The first model is based on the analytical, multipole expansion type solution...... of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....

  4. Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method

    Science.gov (United States)

    Lee, Usik; Kim, Daehwan; Park, Ilwook

    2013-03-01

    The health of thin laminated composite beams is often monitored using the ultrasonic guided waves excited by wafer-type piezoelectric transducers (PZTs). Thus, for the smart composite beams which consist of a laminated composite base beam and PZT layers, it is very important to develop a very reliable mathematical model and to use a very accurate computational method to predict accurate dynamic characteristics at very high ultrasonic frequency. In this paper, the axial-bending-shear-lateral contraction coupled differential equations of motion are derived first by the Hamilton's principle with Lagrange multipliers. The smart composite beam is represented by a Timoshenko beam model by adopting the first-order shear deformation theory (FSDT) for the laminated composite base beam. The axial deformation of smart composite beam is improved by taking into account the effects of lateral contraction by adopting the concept of Mindlin-Herrmann rod theory. The spectral element model is then formulated by the variation approach from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The high accuracy of the present spectral element model is verified by comparing with other solution methods: the finite element model developed in this paper and the commercial FEA package ANSYS. Finally the dynamics and wave characteristics of some example smart composite beams are investigated through the numerical studies.

  5. Primordial heavy elements in composite dark matter models

    CERN Document Server

    Khlopov, M Yu

    2008-01-01

    A widely accepted viewpoint is to consider candidates for cosmological dark matter as neutral and weakly interacting particles, as well as to consider only light elements in the pregalactic chemical composition. It is shown that stable charged leptons and quarks can exist and, hidden in elusive atoms, play the role of dark matter. The inevitable consequence of realistic scenarios with such composite atom-like dark matter is existence of significant or even dominant fraction of "atoms", binding heavy -2 charged particles and He-4 nuclei. Being alpha-particles with shielded electric charge, such atoms catalyse a new path of nuclear transformations in the period of Big Bang Nucleosynthesis, which result in primordial heavy elements. The arguments are given, why such scenario escapes immediate contradiction with observations and challenges search for heavy stable charged particles in cosmic rays and at accelerators.

  6. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties.

    Science.gov (United States)

    Dimas, Leon S; Buehler, Markus J

    2014-07-07

    Flaws, imperfections and cracks are ubiquitous in material systems and are commonly the catalysts of catastrophic material failure. As stresses and strains tend to concentrate around cracks and imperfections, structures tend to fail far before large regions of material have ever been subjected to significant loading. Therefore, a major challenge in material design is to engineer systems that perform on par with pristine structures despite the presence of imperfections. In this work we integrate knowledge of biological systems with computational modeling and state of the art additive manufacturing to synthesize advanced composites with tunable fracture mechanical properties. Supported by extensive mesoscale computer simulations, we demonstrate the design and manufacturing of composites that exhibit deformation mechanisms characteristic of pristine systems, featuring flaw-tolerant properties. We analyze the results by directly comparing strain fields for the synthesized composites, obtained through digital image correlation (DIC), and the computationally tested composites. Moreover, we plot Ashby diagrams for the range of simulated and experimental composites. Our findings show good agreement between simulation and experiment, confirming that the proposed mechanisms have a significant potential for vastly improving the fracture response of composite materials. We elucidate the role of stiffness ratio variations of composite constituents as an important feature in determining the composite properties. Moreover, our work validates the predictive ability of our models, presenting them as useful tools for guiding further material design. This work enables the tailored design and manufacturing of composites assembled from inferior building blocks, that obtain optimal combinations of stiffness and toughness.

  7. ACES Model Composition and Development Toolkit to Support NGATS Concepts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation proposed in this effort is the development of a model composition toolkit that will enable NASA Airspace Concept Evaluation System (ACES) users to...

  8. Estimation of pyrethroid pesticide intake using regression modeling of food groups based on composite dietary samples

    Science.gov (United States)

    Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression modeling performed on measurements of selected pesticides in composited duplicate diet samples allowed (1) estimation ...

  9. Structural analysis of composite wind turbine blades nonlinear mechanics and finite element models with material damping

    CERN Document Server

    Chortis, Dimitris I

    2013-01-01

    This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...

  10. Comparison of the elastic coefficients and Calculation Models of the Mechanical Behavior one- Dimensional Composites

    Directory of Open Access Journals (Sweden)

    Saleh Alsubari

    2011-09-01

    Full Text Available In this paper, we present the mechanical models that are devoted to the elastic properties of one-dimensional composite. We have compared the equivalent coefficients of one-dimensional composite, resulting from different models. The validation of the results was made through effective experiments on a one-dimensional composite consisting of fibers of alumina and a matrix of aluminum. This study allows us to better assess the rigidity of composite structures, and the results of calculation of the mechanical behavior, resulting from each model. It appears that the finite element model is the best suited to the approach of a refined conception. For more insurance, we have chosen to make our calculations by finite element in the three-dimensional case, using the technique of homogenization by asymptotic development.

  11. A Trusted Composition Evaluation Model to Support Web Services Coordination in Multi Domains

    Directory of Open Access Journals (Sweden)

    Li Qilong

    2012-03-01

    Full Text Available With the widespread development of web services application in multi-domains, more and more researchers have focused on the quality of web services composition. However, the research on the evaluation method for web services composition is still little nowadays. Therefore, a QoS-driven Trusted Composition Evaluation Model (TCEM is proposed in this study, it can judge the business stream effectively and comprehensively by choosing an appropriate and trusted evaluation method for the generated services composition chains. Furthermore, on the basis of Case-Based Reasoning (CBR and the retrieval mechanism oriented to web services coordination, the TCEM-based execution engine and algorithm is implemented to evaluate the quality of service composition. The proposed algorithm has the satisfied result compared with the traditional method, and it shows more efficient and trustworthy where web services composition is widely used in multi domains.

  12. Multi-physics modeling of multifunctional composite materials for damage detection

    Science.gov (United States)

    Sujidkul, Thanyawalai

    This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to

  13. Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2006-01-01

    This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation...

  14. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    Science.gov (United States)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  15. Modal analysis of additive manufactured carbon fiber reinforced polymer composite framework: Experiment and modeling

    Science.gov (United States)

    Dryginin, N. V.; Krasnoveikin, V. A.; Filippov, A. V.; Tarasov, S. Yu.; Rubtsov, V. E.

    2016-11-01

    Additive manufacturing by 3D printing is the most advanced and promising trend for making the multicomponent composites. Polymer-based carbon fiber reinforced composites demonstrate high mechanical properties combined with low weight characteristics of the component. This paper shows the results of 3D modeling and experimental modal analysis on a polymer composite framework obtained using additive manufacturing. By the example of three oscillation modes it was shown the agreement between the results of modeling and experimental modal analysis with the use of laser Doppler vibrometry.

  16. Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...

  17. g-2 of the muon from compositeness in the model of Abbott and Farhi

    Science.gov (United States)

    Brodsky, Stanley J.; Davies, Andrew J.; Volkas, Raymond R.

    1989-05-01

    We use a simple model to estimate the contribution to g-2 for the muon in the composite model of Abbott and Farhi. Dimension-5 operators must be introduced to describe the effective coupling of the composite left-handed muon to its constituents. We find an interesting suppression, which operates in the region of low scalar preon mass, of the leading-order term for g-2. The contribution of compositeness to g-2 is thus smaller than might naively be expected and is within experimental limits.

  18. An experimental investigation into the trapping model core pillars with reinforced fly ash composites

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.K. [National Inst. of Technology, Rourkela (India); Karanam, U.M. [Indian Inst. of Technology, Kharagpur (India)

    2008-06-15

    This paper presented details of a study which examined the use of fly ash composite materials for backfilling mine voids in room-and-pillar mining techniques. The study examined the load deformation characteristics of model core pillars confined by wire mesh reinforced fly ash composite materials. Anhydrous chemical-grade lime and gypsum were added in various quantities to class F fly ash samples. The model core pillars were 57 mm in diameter and 200 mm in length. The engineering properties of the model core pillars were then determined using unconfined compressive strength and Brazilian indirect tensile strength tests. The experimental investigations showed that the percentage increases in the strength of the trapped model core pillars varied with the different types of composite materials, and was also influenced by the length of the curing period and the ratio of the annular thickness of the fill area to the model core pillar radius. Results demonstrated that the addition of excess lime to fly ash composites was not beneficial. Maximum strength gains of 14 per cent were achieved with model cores of a cement-sand ratio of 1:2.5 for fly ash composites containing 15 per cent lime and 5 per cent gypsum. It was concluded that suitable fly ash composites reinforced with wire ropes can enhance the strength of the load bearing element and alter the post-peak characteristics of trapped cores.

  19. A multicontinuum progressive damage model for composite materials motivated by the kinetic theory of fracture

    Science.gov (United States)

    Schumacher, Shane Christian

    2002-01-01

    A conventional composite material for structural applications is composed of stiff reinforcing fibers embedded in a relatively soft polymer matrix, e.g. glass fibers in an epoxy matrix. Although composites have numerous advantages over traditional materials, the presence of two vastly different constituent materials has confounded analysts trying to predict failure. The inability to accurately predict the inelastic response of polymer based composites along with their ultimate failure is a significant barrier to their introduction to new applications. Polymer based composite materials also tend to exhibit rate and time dependent failure characteristics. Lack of knowledge about the rate dependent response and progressive failure of composite structures has led to the current practice of designing these structures with static properties. However, high strain rate mechanical properties can vary greatly from the static properties. The objective of this research is to develop a finite element based failure analysis tool for composite materials that incorporates strain rate hardening effects in the material failure model. The analysis method, referred to as multicontinuum theory (MCT) retains the identity of individual constituents by treating them as separate but linked continua. Retaining the constituent identities allows one to extract continuum phase averaged stress/strain fields for the constituents in a routine structural analysis. Time dependent failure is incorporated in MCT by introducing a continuum damage model into MCT. In addition to modeling time and rate dependent failure, the damage model is capable of capturing the nonlinear stress-strain response observed in composite materials.

  20. Compositional Model-Views with Generic Graphical User Interfaces

    NARCIS (Netherlands)

    Achten, P.M.; Eekelen, M.C.J.D. van; Plasmeijer, M.J.

    2004-01-01

    Creating GUI programs is hard even for prototyping purposes. Using the model-view paradigm makes it somewhat simpler since the model-view paradigm dictates that the model contains no GUI programming, as this is done by the views. Still, a lot of GUI programming is needed to implement the views. We

  1. Mixed isoparametric finite element models of laminated composite shells

    Science.gov (United States)

    Noor, A. K.; Andersen, C. M.

    1977-01-01

    Mixed shear-flexible isoparametric elements are presented for the stress and free vibration analysis of laminated composite shallow shells. Both triangular and quadrilateral elements are considered. The 'generalized' element stiffness, consistent mass, and consistent load coefficients are obtained by using a modified form of the Hellinger-Reissner mixed variational principle. Group-theoretic techniques are used in conjunction with computerized symbolic integration to obtain analytic expressions for the stiffness, mass and load coefficients. A procedure is outlined for efficiently handling the resulting system of algebraic equations. The accuracy of the mixed isoparametric elements developed is demonstrated by means of numerical examples, and their advantages over commonly used displacement elements are discussed.

  2. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    Science.gov (United States)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  3. Compositions and methods for modeling Saccharomyces cerevisiae metabolism

    DEFF Research Database (Denmark)

    2012-01-01

    The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions......, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods...... for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention. The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S...

  4. Modeling of multi-inclusion composites with interfacial imperfections:Micromechanical and numerical simulations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A micromechanical approach based on a two-layer built-in model and a numerical simulation based on boundary element method are proposed to predict the effective properties of the multi-inclusion composite with imperfect interfaces.The spring model is introduced to simulate the interface imperfection.These two methods are compared with each other,and good agreement is achieved.The effects of interface spring stiffness,volume ratio and stiffness of inclusions on the micro-and macro-mechanical behaviors of fiber-reinforced composites are investigated.It is shown that the developed micromechanical method is very comprehensive and efficient for fast prediction of effective properties of composites,while the numerical method is very accurate in detailed modeling of the mechanical behavior of composites with multiple inclusions.

  5. Testing and modeling of damages in composite laminates subject to low velocity impact

    Directory of Open Access Journals (Sweden)

    Al-Hadrayi Ziadoon M. R, Zhang Yunlai, Zhou Chuwei

    2016-01-01

    Full Text Available In recent years, composite materials were used extensively in the most important industries, especially in aerospace industries and aircraft structures due to its high strength, high stiffness, resistance of corrosion, and lightweight. The problem is how to choose the perfect design for composite laminates. And study the effects of modeling of the stacking sequences of composite laminates on failure modes (delamination, matrix cracking, and fiber failure under the test of low velocity impact. This paper has validating to the experimental results that has published. The composite used was carbon fiber /epoxy (CFRE, (UD ASTM/D6641 as three groups [A, B, C]. It had same material system. The difference was only in stacking sequences as random design. These models were simulated numerically by the commercial software implemented into the FEM/ABAQUS 6.9.1 with subroutine file (VUMAT a user-define 3D damage model. The results had good agreement with experimental results.

  6. High-energy suppression of the Higgsstrahlung cross-section in the Minimal Composite Higgs Model

    CERN Document Server

    Hartling, Katy

    2012-01-01

    If the Higgs boson is composite, signs of this compositeness should appear via a formfactor-like suppression of Higgs scattering cross sections at momentum transfers above the compositeness scale. We explore this by computing the cross section for e+e- ---> ZH (Higgsstrahlung) in a warped five-dimensional gauge-Higgs unification model known as the Minimal Composite Higgs Model (MCHM). We observe that the Higgsstrahlung cross section in the MCHM is strongly suppressed compared to that in the Standard Model at center-of-mass energies above the scale of the first Kaluza-Klein excitations, due to cancellations among the contributions of successive Z boson Kaluza-Klein modes. We also show that the magnitude and sign of the coupling of the first Kaluza-Klein mode can be measured at a future electron-positron collider such as the proposed International Linear Collider or Compact Linear Collider.

  7. Micromechanical Models of Mechanical Response of High Performance Fibre Reinforced Cement Composites

    DEFF Research Database (Denmark)

    Li, V. C.; Mihashi, H.; Alwan, J.;

    1996-01-01

    generation of FRC with high performance and economical viability, is in sight. However, utilization of micromechanical models for a more comprehensive set of important HPFRCC properties awaits further investigations into fundamental mechanisms governing composite properties, as well as intergrative efforts......The state-of-the-art in micromechanical modeling of the mechanical response of HPFRCC is reviewed. Much advances in modeling has been made over the last decade to the point that certain properties of composites can be carefully designed using the models as analytic tools. As a result, a new...

  8. Composite Weak Vector Bosons in a Left-Right Symmetric Preon Model

    Science.gov (United States)

    Sekiguchi, M.; Ishida, S.; Wada, H.

    1996-09-01

    We take the viewpoint that the standard model is a low energy effective theory among composite quarks, leptons and weak bosons in a left-right (LR) symmetric preon model with a hypercolor SU(N)HC gauge interaction. Starting from NJL-type interactions with global SU(2)L × SU(2)R symmetry, we construct the composite weak vector bosons from a pair of spinor preons and derive their effective interactions with quarks and leptons, which are essentially identical, at the tree-diagram level, to those in the LR symmetric gauge model. Through the process of this approach, some physical aspects of the LR gauge model are clarified.

  9. An anisotropic constitutive model with biaxial-tension coupling for woven composite reinforcements

    Science.gov (United States)

    Yao, Yuan; Huang, Xiaoshuang; Peng, Xiongqi; Gong, Youkun

    2016-10-01

    Based on fiber reinforced continuum mechanics theory, an anisotropic hyperelastic constitutive model with biaxial tension coupling for woven composite reinforcements is developed. Experimental data from literature are used to identify material parameters in the constitutive model for a specific balanced plain woven fabric. The developed model is validated by comparing numerical results with experimental biaxial tension data under different stretch ratios and picture-frame shear data, demonstrating that the developed constitutive model is highly suitable to characterize the highly non-linear and strongly anisotropic mechanical behaviors of woven composite reinforcements under large deformation.

  10. A systematic composite service design modeling method using graph-based theory.

    Science.gov (United States)

    Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh

    2015-01-01

    The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.

  11. A Model of the Fatigue Life Distribution of Composite Laminates Based on Their Static Strength Distribution

    Institute of Scientific and Technical Information of China (English)

    Wu Fuqiang; Yao Weixing

    2008-01-01

    The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article.It is concluded that the inner original defects,which derived from the manufacturing process of composite laminates,are the common and major reason of causing the random distributions of the static strength and the fatigue life.And there is a correlative relation between the two distributions.With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material,the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained.And then the model which is used to describe the distributions of fatigue life of composites,based on their distributions of static strength,is set up.This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates.The experimental data of three kinds of composite laminates are employed to verify this model,and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.

  12. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  13. Application of the Refined Zigzag Theory to the Modeling of Delaminations in Laminated Composites

    Science.gov (United States)

    Groh, Rainer M. J.; Weaver, Paul M.; Tessler, Alexander

    2015-01-01

    The Refined Zigzag Theory is applied to the modeling of delaminations in laminated composites. The commonly used cohesive zone approach is adapted for use within a continuum mechanics model, and then used to predict the onset and propagation of delamination in five cross-ply composite beams. The resin-rich area between individual composite plies is modeled explicitly using thin, discrete layers with isotropic material properties. A damage model is applied to these resin-rich layers to enable tracking of delamination propagation. The displacement jump across the damaged interfacial resin layer is captured using the zigzag function of the Refined Zigzag Theory. The overall model predicts the initiation of delamination to within 8% compared to experimental results and the load drop after propagation is represented accurately.

  14. LS-DYNA Implementation of Polymer Matrix Composite Model Under High Strain Rate Impact

    Science.gov (United States)

    Zheng, Xia-Hua; Goldberg, Robert K.; Binienda, Wieslaw K.; Roberts, Gary D.

    2003-01-01

    A recently developed constitutive model is implemented into LS-DYNA as a user defined material model (UMAT) to characterize the nonlinear strain rate dependent behavior of polymers. By utilizing this model within a micromechanics technique based on a laminate analogy, an algorithm to analyze the strain rate dependent, nonlinear deformation of a fiber reinforced polymer matrix composite is then developed as a UMAT to simulate the response of these composites under high strain rate impact. The models are designed for shell elements in order to ensure computational efficiency. Experimental and numerical stress-strain curves are compared for two representative polymers and a representative polymer matrix composite, with the analytical model predicting the experimental response reasonably well.

  15. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; YU Dan

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments.The relevant algorithms are also provided.Simulation results manifest the soundness and effectiveness of the proposed model.

  16. A random effects generalized linear model for reliability compositive evaluation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments. The relevant algorithms are also provided. Simulation results manifest the soundness and effectiveness of the proposed model.

  17. Compositional Abstraction of PEPA Models for Transient Analysis

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2010-01-01

    - or interval - Markov chains allow us to aggregate states in such a way as to safely bound transient probabilities of the original Markov chain. Whilst we can apply this technique directly to a PEPA model, it requires us to obtain the CTMC of the model, whose state space may be too large to construct...

  18. Analytical Modeling of Composite-to-Composite (Scarf) Joints in Tension and Compression

    Science.gov (United States)

    2007-06-01

    Laminate Properties ............................................................................19 Table 3. Neat Resin Properties .......................................................................................19...Table 3. Table 3. Neat Resin Properties (from Ref [4]) E 1.21 Msi G 0.47 Msi ν 0.28 20 Figure 10. Local isotropic model with the resin

  19. Bio-electrosprayed living composite matrix implanted into mouse models.

    Science.gov (United States)

    Jayasinghe, Suwan N; Warnes, Gary; Scotton, Chris J

    2011-10-10

    We show that composite de novo structures can be generated using bio-electrosprays. Mouse lung fibroblasts are bio-electrosprayed directly with a biopolymer to form cell-bearing matrices, which are viable even when implanted subcutaneously into murine hosts. Generated cell-bearing matrices are assessed in-vitro and found to undergo all expected cellular behaviour. Subsequent in-vivo studies demonstrate the implanted living matrices integrating as expected with the surrounding microenvironment. The in-vitro and in-vivo studies elucidate and validate the ability for either bio-electrosprays or cell electrospinning to form a desired living architecture for undergoing investigation for repairing, replacing and rejuvenating damaged and/or ageing tissues.

  20. Constitutive model of ferroelectric composites with a viscoelastic and dielectric relaxation matrix Ⅰ——Theory

    Institute of Scientific and Technical Information of China (English)

    江冰; 方岱宁; 黄克智

    1999-01-01

    Based on micromechanics and Laplace transformation, a constitutive model of ferroelectric composites with a linear elastic and linear dielectric matrix is developed and extended to the ferroelectric composites with a viscoelastic and dielectric relaxation matrix. Thus, a constitutive model for ferroelectric composites with a viscoelastic and dielectric relaxation matrix has been set up.

  1. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3D printing, and testing

    Science.gov (United States)

    Zhang, Pu; Heyne, Mary A.; To, Albert C.

    2015-10-01

    We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.

  2. Tensile Property Analysis and Prediction Model Building for Coir Rope Reinforced Unsaturated Polyester Composite

    Directory of Open Access Journals (Sweden)

    Jia Yao

    2014-12-01

    Full Text Available Because of the light weight and environmental advantages of natural fibers, an increasing amount of natural fibers have been used to replace synthetic fibers in reinforced unsaturated polyester (UPE. Because of the impact property advantage of coir fibers, coir toughened UPE composites can achieve excellent impacting toughness, but at the cost of a lower tensile performance. In order to get the better comprehensive performance, the tensile strength must be maintained in a higher level, so coir ropes as an appropriate reinforced form were added to UPE matrix. The different weight-percent contents for the coir rope addition were set to achieve coir rope reinforced UPE composites with different coir contents. The tensile test results showed increasing tensile strength with the increased content of coir ropes. To reasonably and accurately predict the composite performance, taking the original performance prediction model based on a continuous reinforced fiber composite (using the Classical Mixed Law as a reference and assuming each coir rope was ideally continuous fiber, the destructive principle of coir rope reinforced UPE composite under the action of tensile load was analyzed and the tensile failure mechanics model was improved. According to the experimental proof, the new model can be proven to have higher precision accuracy, which can provide new train of thought for the building of the theoretical models for natural fiber reinforced composites, thus guiding the actual production application.

  3. Composite Gluons and Effective Nonabelian Gluon Dynamics in a Unified Spinor-Isospinor Preon Field Model

    Science.gov (United States)

    Stumpf, H.

    1987-03-01

    The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.

  4. The Composition of GRB Jets and the ICMART Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing [University of Nevada, Las Vegas; Guo, Fan [Los Alamos National Laboratory

    2015-07-16

    Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.

  5. Modelling heat generation and transfer during cure of thermoset composites processed by resin transfer moulding (RTM)

    OpenAIRE

    Skordos, Alexandros A.; Maistros, George M.; Turmel, Denis J-P; Partridge, Ivana K

    1997-01-01

    The development of a heat transfer model for the curing stage of the RTM process is presented. Despite the intense interest in the modelling and simulation of this process the relevant work is currently limited to development of flow models of the filling stage. The principles of heat transfer modelling of composites cure have already been reported and applied to the autoclave process by many investigators. In the present investigation, the same concept is used for the imple...

  6. Polymer Matrix Composites using Fused Deposition Modeling Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...

  7. Multiscale modeling of microscale fiber reinforced composites with nano-engineered interphases

    CERN Document Server

    Kundalwalal, S I; Wardle, B L

    2015-01-01

    This study is focused on the mechanical properties and stress transfer behavior of multiscale composite containing nano- and micro-scale fillers. A novel concept has been proposed to exploit the remarkable mechanical properties of carbon nanotubes (CNTs) to improve the stress transfer through the interphases, enabling their additional functionalities not available otherwise at the microscale. The distinctive feature of construction of this composite is such that CNTs are dispersed around the microscale fiber to modify fiber-matrix interfacial adhesion. Accordingly, models are developed for hybrid composites. First, molecular dynamics simulations in conjunction with the Mori-Tanaka method are used to determine the effective elastic properties of nano-engineered interphase layer comprised of CNT bundles and epoxy. Subsequently, a micromechanical pull-out model is developed for the resulting multiscale composite and its stress transfer behavior is studied for different orientations of CNT bundles. The current pu...

  8. Petri Net-Based R&D Process Modeling and Optimization for Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomei Hu

    2013-01-01

    Full Text Available Considering the current R&D process for new composite materials involves some complex details, such as formula design, specimen/sample production, materials/sample test, assessment, materials/sample feedback from customers, and mass production, the workflow model of Petri net-based R&D process for new composite materials’ is proposed. By analyzing the time property of the whole Petri net, the optimized model for new composite materials R&D workflow is further proposed. By analyzing the experiment data and application in some materials R&D enterprise, it is demonstrated that the workflow optimization model shortens the period of R&D on new materials for 15%, definitely improving the R&D efficiency. This indicates the feasibility and availability of the model.

  9. Vector and axial-vector resonances in composite models of the Higgs boson

    Science.gov (United States)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads

    2016-11-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  10. COMGEN: A computer program for generating finite element models of composite materials at the micro level

    Science.gov (United States)

    Melis, Matthew E.

    1990-01-01

    COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.

  11. Vector and Axial-vector resonances in composite models of the Higgs boson

    CERN Document Server

    Franzosi, Diogo Buarque; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.

  12. Optimal composite scores for longitudinal clinical trials under the linear mixed effects model.

    Science.gov (United States)

    Ard, M Colin; Raghavan, Nandini; Edland, Steven D

    2015-01-01

    Clinical trials of chronic, progressive conditions use rate of change on continuous measures as the primary outcome measure, with slowing of progression on the measure as evidence of clinical efficacy. For clinical trials with a single prespecified primary endpoint, it is important to choose an endpoint with the best signal-to-noise properties to optimize statistical power to detect a treatment effect. Composite endpoints composed of a linear weighted average of candidate outcome measures have also been proposed. Composites constructed as simple sums or averages of component tests, as well as composites constructed using weights derived from more sophisticated approaches, can be suboptimal, in some cases performing worse than individual outcome measures. We extend recent research on the construction of efficient linearly weighted composites by establishing the often overlooked connection between trial design and composite performance under linear mixed effects model assumptions and derive a formula for calculating composites that are optimal for longitudinal clinical trials of known, arbitrary design. Using data from a completed trial, we provide example calculations showing that the optimally weighted linear combination of scales can improve the efficiency of trials by almost 20% compared with the most efficient of the individual component scales. Additional simulations and analytical results demonstrate the potential losses in efficiency that can result from alternative published approaches to composite construction and explore the impact of weight estimation on composite performance.

  13. Modeling of compressive stiffness of a multilayered graphite-reinforced magnesium-matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, A.K.; Hong, S.I. (Los Alamos National Lab., NM (United States))

    1993-06-01

    Short graphite fiber-reinforced magnesium-matrix composites are of considerable interest due to their superior specific strength, stiffness and low coefficient of thermal expansion. The problem of non-wetting of fibers with molten metal in these composites seems to have been considerably improved and such types of composites are now being commercially produced. However, an understanding of the mechanical properties of these composites is very limited and less amenable to rigorous analysis because of the discontinuous fiber arrangements. Also, a part of the difficulty is due to a large number of geometrical and material variables arising in the analysis. The situation is further complicated when the composites are made of layered structure, each layer having different fiber orientations. Moreover, inherent porosity and its distribution in the layered composites cause further complicacy for it to be amenable for the mathematical analysis. In this note the authors discuss a finite element approach to the analysis of compressive stiffness behavior in such a composite and compare model predictions with experimental data on the modulus of such composites.

  14. Hierarchical nanoreinforced composites for highly reliable large wind turbines: Computational modelling and optimization

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2014-01-01

    , with modified, hybridor nanomodified structures. In this project, we seek to explore the potential of hybrid (carbon/glass),nanoreinforced and hierarchical composites (with secondary CNT, graphene or nanoclay reinforcement) as future materials for highly reliable large wind turbines. Using 3D multiscale...... computational models ofthe composites, we study the effect of hybrid structure and of nanomodifications on the strength, lifetime and service properties of the materials (see Figure 1). As a result, a series of recommendations toward the improvement of composites for structural applications under long term...

  15. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan

    2010-09-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.

  16. Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der

    2014-01-01

    A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configuratio...

  17. A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses

    Science.gov (United States)

    Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini

    2012-01-01

    The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…

  18. Modeling continuous-fiber reinforced polymer composites for exploration of damage tolerant concepts

    Science.gov (United States)

    Matthews, Peter J.

    This work aims to improve the predictive capability for fiber-reinforced polymer matrix composite laminates using the finite element method. A new tool for modeling composite damage was developed which considers important modes of failure. Well-known micromechanical models were implemented to predict material values for material systems of interest to aerospace applications. These generated material values served as input to intralaminar and interlaminar damage models. A three-dimensional in-plane damage material model was implemented and behavior verified. Deficiencies in current state-of-the-art interlaminar capabilities were explored using the virtual crack closure technique and the cohesive zone model. A user-defined cohesive element was implemented to discover the importance of traction-separation material constitutive behavior. A novel method for correlation of traction-separation parameters was created. This new damage modeling tool was used for evaluation of novel material systems to improve damage tolerance. Classical laminate plate theory was used in a full-factorial study of layerwise-hybrid laminates. Filament-wound laminated composite cylindrical shells were subjected to quasi-static loading to validate the finite element computational composite damage model. The new tool for modeling provides sufficient accuracy and generality for use on a wide-range of problems.

  19. Multi-scale modeling of composites subjected to high speed impact

    Science.gov (United States)

    Lee, Minhyung; Cha, Myung S.; Kim, Nam H.

    2017-01-01

    In this paper, multi-scale modeling methodology has been applied to simulate the relatively thick composite panels subjected to high speed local impact loading. Instead of massive parallel processing, we propose to use surrogate modeling to bridge micro-scale and macro-scale. Multi-scale modeling of fracture phenomena of composite materials will consist of (1) micro-scale modeling of fiber-matrix structure using the unit-volume-element technique, which can incorporate the boundary effect, and the level set method for crack modeling, which can model the crack propagation independent of finite element mesh; (2) macro-scale simulation of composite panels under high strain-rate impact using material response calculated from micro-scale modeling; and (3) surrogate modeling to integrate the two scales. In order to validate the predictions, first we did the material level lab experiment such as tensile test. We also did the field test of bullet impact into composite panels made of 4 plies fiber. The impact velocity ranges from 300 ˜ 600 m/s.

  20. Finite element code development for modeling detonation of HMX composites

    Science.gov (United States)

    Duran, Adam V.; Sundararaghavan, Veera

    2017-01-01

    In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.

  1. Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.

    Science.gov (United States)

    Duda, Yurko; Vázquez, Flavio

    2005-02-01

    Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.

  2. Nonlocal quark model description of a composite Higgs particle

    CERN Document Server

    Kachanovich, Aliaksei

    2016-01-01

    We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.

  3. A Paired Compositions Model for Round-Robin Experiments

    Science.gov (United States)

    Gleason, John R.; Halperin, Silas

    1975-01-01

    Investigation of the effects of a series of treatment conditions upon some social behaviors may require observation of subjects mutually paired, in round-robin fashion. Data arising from such experiments are difficult to analyze, partly because they do not fit neatly into standard designs. A model is presented. (Author/BJG)

  4. Verifying OCL specifications of UML models : tool support and compositionality

    NARCIS (Netherlands)

    Kyas, Marcel

    2006-01-01

    The Unified Modelling Language (UML) and the Object Constraint Language (OCL) serve as specification languages for embedded and real-time systems used in a safety-critical environment. In this dissertation class diagrams, object diagrams, and OCL constraints are formalised. The formalisation serve

  5. Cold, warm, and composite (cool) cosmic string models

    CERN Document Server

    Carter, B

    1994-01-01

    The dynamical behaviour of a cosmic string is strongly affected by any reduction of the effective string tension $T$ below the constant value $T=m^2$ say that characterizes the simple, longitudinally Lorentz invariant, Goto Nambu string model in terms of a fixed mass scale $m$ whose magnitude depends on that of the Higgs field responsible for the existence of the string. Such a reduction occurs in the standard "hot" cosmic string model in which the effect of thermal perturbations of a simple Goto Nambu model is expressed by the formula $T^2=m^2(m^2-2\\pi\\Theta^2/3)$, where $\\Theta$ is the string temperature. A qualitatively similar though analytically more complicated tension reduction phenomenon occurs in "cold" conducting cosmic string models where the role of the temperature is played by an effective chemical potential $\\mu$ that is constructed as the magnitude of the phase $\\phi$ of a bosonic condensate of the kind whose existence was first proposed by Witten. The present article describes the construction...

  6. Student Success in College Composition through the Puente Project Model.

    Science.gov (United States)

    Jaffe, Barbara

    Much can be learned from California's Puente Project Model that would help students' success in classrooms as well as in college in general, and in their daily lives. Puente, which means "bridge" in Spanish, began in 1982 at Chabot College in northern California and is now in 38 colleges and 19 high schools statewide. Originally designed…

  7. A Composite Model for Employees' Performance Appraisal and Improvement

    Science.gov (United States)

    Manoharan, T. R.; Muralidharan, C.; Deshmukh, S. G.

    2012-01-01

    Purpose: The purpose of this paper is to develop an innovative method of performance appraisal that will be useful for designing a structured training programme. Design/methodology/approach: Employees' performance appraisals are conducted using new approaches, namely data envelopment analysis and an integrated fuzzy model. Interpretive structural…

  8. MODELING THE MOLECULAR COMPOSITION IN AN ACTIVE GALACTIC NUCLEUS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Nanase [Max Planck Institute for Radio Astronomy, D-53121 Bonn (Germany); Thompson, Todd A. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Herbst, Eric [Departments of Chemistry, Astronomy, and Physics, University of Virginia, Charlottesville, VA 22904 (United States)

    2013-03-10

    We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic-ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO{sup +}, HC{sub 3}N, C{sub 2}H, and c-C{sub 3}H{sub 2} using a variety of plausible disk structures. These simple models have molecular regions with an X-ray-dominated region layer, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C{sub n}H{sub 2}) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlight molecular abundance observations and ratios that may distinguish among theoretical models of the density distribution in AGN disks. Finally, we assess the importance of the shock crossing time and the accretion time relative to the formation time for various chemical species. Vertical column densities are tabulated for a number of molecular species at both the characteristic shock crossing time and steady state. Although we do not attempt to fit any particular system or set of observations, we discuss our models and results in the context of the nearby AGN NGC 1068.

  9. Towards Remotely Sensed Composite Global Drought Risk Modelling

    Science.gov (United States)

    Dercas, Nicholas; Dalezios, Nicolas

    2015-04-01

    , wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.

  10. A successful solar model using new solar composition data

    CERN Document Server

    Vagnozzi, Sunny; Zurbuchen, Thomas H

    2016-01-01

    A resolution is proposed to the "solar abundance problem", that is, the discrepancy between helioseismological observations and the predictions of solar models, computed implementing state-of-the-art photospheric abundances. We reassess the problem considering a newly determined set of abundances, which indicate a lower limit to the metallicity of $Z_{\\odot} = 0.0196 \\pm 0.0014$, significantly higher than findings during the past decade. Such value for the metallicity is determined in situ, measuring the least fractionated solar winds over the poles of the Sun, rather than spectroscopically. We determine the response of helioseismological observables to the corresponding changes in elemental abundances. Our findings indicate that, taking inversion errors into account, good agreement between models and observations is achieved. The definitive test for these abundances will be measurements of the CNO neutrino fluxes by SNO$^+$ (which we expect to be $\\sim$ 30-50\\% higher than predictions using abundances based ...

  11. Micromechanism Based Modeling of Structural Life in Metal Matrix Composites

    Science.gov (United States)

    2007-11-02

    subsequent radial cracking. The work performed under this grant also included a program to experimentally characterize the morphology of Ti02 , one of...experimentally characterize the morphology of Ti02 , one of the primary stoichiometric oxides formed during oxidation of titanium, in order to develop more...accurate oxide layer growth models. An part of dm iffuu, Lhi growtn ana structure uf(thj— Ti02 mrirlr Inyrr, mnnnlilliii, rinmpli i i dlM! lllllilj

  12. Calibration of a finite element composite delamination model by experiments

    DEFF Research Database (Denmark)

    Gaiotti, M.; Rizzo, C.M.; Branner, Kim;

    2013-01-01

    distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...... modes related to the production methods is presented in this paper. A microscopic analysis of the fracture surfaces was carried out in order to better understand the failure mechanisms. © 2013 Taylor & Francis Group....

  13. Modeling The Molecular Composition in an AGN Disk

    CERN Document Server

    Harada, Nanase; Herbst, Eric

    2013-01-01

    We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO+, HC3N, C2H, and c-C3H2 using a variety of plausible disk structures. These simple models have molecular regions with a layer of X-ray dominated regions, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C$_{\\rm n}$H$_{2}$) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlig...

  14. A dynamical model for describing behavioural interventions for weight loss and body composition change.

    Science.gov (United States)

    Navarro-Barrientos, J-Emeterio; Rivera, Daniel E; Collins, Linda M

    2011-01-12

    We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change.

  15. Biomechanical model produced from light-activated dental composite resins: a holographic analysis

    Science.gov (United States)

    Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko

    2013-11-01

    Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.

  16. Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data

    Science.gov (United States)

    Withers, Paul; Vogt, Marissa; Mayyasi, Majd; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Bougher, Stephen; Dong, Chuanfei; Chaufray, Jean-Yves; Ma, Yingjuan; Jakosky, Bruce

    2015-11-01

    Prior to the arrival of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft at Mars, the only available measurements of the composition of the planet's ionosphere were those acquired by the two Viking Landers during their atmospheric entries. Many numerical models of the composition of the ionosphere of Mars have been developed, but these have only been validated for species, altitudes, and conditions for which Viking data exist. Here we compare the ionospheric composition and structure predicted by 10 ionospheric models at solar zenith angles of 45-60° against ion density measurements acquired by the MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS). The most successful models included three-dimensional plasma transport driven by interactions with the surrounding space environment but had relatively simple ionospheric chemistry.

  17. Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2014-01-01

    Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012

  18. Assessing Extreme Models of the Stober Synthesis Using Transients under a Range of Initial Composition

    Science.gov (United States)

    Lee; Look; Harris; McCormick

    1997-10-01

    29Si-NMR, conductimetry, and photon correlation spectroscopy are used to monitor the temporal profile of intermediate concentrations in Stober synthesis (i.e., ammonia-catalyzed hydrolysis of tetraethoxysilane in a batch reactor). Extreme models of the process are assessed by examining the effect of initial composition on these transients (over a wider range of composition than attempted previously). The trends with initial composition suggest that the nucleation is rate-limited by the hydrolysis of the singly hydrolyzed monomer, the product of which probably phase separates. Moreover, the trends are consistent with the aggregation model discussed by G. H. Bogush and C. F. Zukoski (J. Colloid Interface Sci. 142, 1, 19 (1991) and by M. T. Harris (Ph.D. dissertation, Univ. of Tennessee, 1992). The trends are not consistent with a growth model without aggregation. Copyright 1997 Academic Press. Copyright 1997Academic Press

  19. INTERACTION MODELS FOR EFFECTIVE THERMAL AND ELECTRIC CONDUCTIVITIES OF CARBON NANOTUBE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Fei Deng; Quanshui Zheng

    2009-01-01

    The present article provides supplementary information of previous works of ana-lytic models for predicting conductivity enhancements of carbon nanotube composites. The mod-els, though fairly simple, are able to take account of the effects of conductivity anisotropy, non-straightness, and aspect ratio of the CNT additives on the conductivity enhancement of the com-posite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.

  20. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    Science.gov (United States)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  1. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    Energy Technology Data Exchange (ETDEWEB)

    Das, Palash, E-mail: d.palash@gmail.com; Biswas, Dhrubes, E-mail: d.palash@gmail.com [Indian Institute of Technology Kharagpur, Kharagpur - 721302, West Bengal (India)

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  2. Mass Ansatze for the standard model fermions from a composite perspective

    CERN Document Server

    Fariborz, Amir H; Nasri, Salah

    2016-01-01

    We consider a composite model in which the standard model fermions are bound states of elementary spin $\\frac{1}{2}$ particles, the preons, situated in the conjugate product representation of the color group. In this framework we propose and analyze two mass Ansatze one for the leptons, the other one for the quarks, based on mass formulae of the Gell-Mann Okubo type. We find that these mass Ansatze can give an adequate description of the known standard model fermion masses.

  3. Temperature- and Time-Dependent Dielectric Measurements and Modelling on Curing of Polymer Composites

    OpenAIRE

    Prastiyanto, Dhidik

    2016-01-01

    In this work a test set for dielectric measurements at 2.45 GHz during curing of polymer composites is developed. Fast reconstruction of dielectric properties is solved using a neural network algorithm. Modelling of the curing process at 2.45 GHz using both dielectric constant and dielectric loss factor results in a more accurate model compared to low frequency modeling that only uses the loss factor. Effects of various harderners and different amount of filler are investigated.

  4. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    Science.gov (United States)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  5. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    Science.gov (United States)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  6. Compressive Loading and Modeling of Stitched Composite Stiffeners

    Science.gov (United States)

    Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.

    2016-01-01

    A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.

  7. Composite and elementary nature of a resonance in the sigma model

    CERN Document Server

    Nagahiro, Hideko

    2013-01-01

    We analyze the mixing nature of the low-lying scalar resonance consisting of the pipi composite and the elementary particle within the sigma model. A method to disentangle the mixing is formulated in the scattering theory with the concept of the two-level problem. We investigate the composite and elementary components of the sigma meson by changing a mixing parameter. We also study the dependence of the results on model parameters such as the cut-off value and the mass of the elementary sigma meson.

  8. LHC physics of extra gauge bosons in the 4D Composite Higgs Model

    Directory of Open Access Journals (Sweden)

    Barducci D.

    2013-11-01

    Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.

  9. Quantitative modelling of viscoelasticity of isotropic fibrous composites with viscoelastic matrices

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Despite the wide usage of isotropic fibrous composites with a viscoelastic polymer matrix,no analytic model for their mechanical behaviour is known.This paper develops such a model for time-dependent Young's modulus,showing that for typical constituents the time constants of composites are up to about 6% greater than the matrix shear time constant.Viscoelasticity is strongly suppressed for stiff fibres even at modest fibre volume fractions.Comparison with known results for particle and oriented fibre compos...

  10. The Half-composite Two Higgs Doublet Model and the Relaxion

    CERN Document Server

    Antipin, Oleg

    2015-01-01

    We study a new confining gauge theory with fermions in a vectorial representation under the SM gauge group that allows for Yukawa interactions with the Higgs. If the fermion masses are smaller than the confinement scale this realizes a type I two Higgs doublet model where a composite Higgs mixes with the elementary Higgs. This class of models interpolates between an elementary and a composite Higgs and has interesting phenomenology with potentially observables effects in collider physics, EDMs and SM couplings but very weak bounds from indirect searches. The very same framework can be used to realize the cosmological relaxation of the electro-weak scale recently discussed in the literature.

  11. The half-composite two Higgs doublet model and the relaxion

    Science.gov (United States)

    Antipin, Oleg; Redi, Michele

    2015-12-01

    We study a new confining gauge theory with fermions in a vectorial representation under the SM gauge group that allows for Yukawa interactions with the Higgs. If the fermion masses are smaller than the confinement scale this realizes a type I two Higgs doublet model where a composite Higgs mixes with the elementary Higgs. This class of models interpolates between an elementary and a composite Higgs and has interesting phenomenology with potentially observable effects in collider physics, EDMs and SM couplings but very weak bounds from indirect searches. The very same framework can be used to realize the cosmological relaxation of the electro-weak scale recently discussed in the literature.

  12. A Model of Foam Density Prediction for Expanded Perlite Composites

    Directory of Open Access Journals (Sweden)

    Arifuzzaman Md

    2015-01-01

    Full Text Available Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15 – 0.5 g/cm3 produced with a range of compaction ratios (1.5 – 3.5, a range of sodium silicate contents (0.05 – 0.35 g/ml in dilution, a range of expanded perlite particle sizes (1 – 4 mm, and various perlite densities (such as skeletal, material, bulk, and envelope densities. A close agreement between predictions and experimental results was found.

  13. Theoretical Calculation Model of Single Rip Tearing Strength for the Nonwoven Composites

    Institute of Scientific and Technical Information of China (English)

    QIAN Cheng

    2005-01-01

    The nonwoven composites have sandwich structure, with the first and third layers being nonwovens and the middle layer of woven fabric. On the basis of tests of the single rip tearing strength and drawing out resistances of both the nonwoven composites and the woven fabric, the single rip tearing failure mechanism of the composites were analyzed.Then theoretical calculation model for the single rip tearing strength was established, which indicates that the breaking strength of warp and weft yarns in the nonwoven composites, the density of warp and weft yarns and drawing out resistances are the main influencing factors. In the end,experimental verification was made, which shows that theoretical values conform to the measured values well.

  14. Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites

    Science.gov (United States)

    Hilfi, H.; Brar, N. S.

    1996-05-01

    High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.

  15. Characterization and Empirical Modelling of Sliding Wear on Sintered Aluminium-Graphite Composites

    Directory of Open Access Journals (Sweden)

    Amrishraj Doraisamy

    2014-01-01

    Full Text Available Aluminium-graphite composites were synthesized using powder metallurgy route. Graphite was added as reinforcement in the range of 0, 3, and 6 weight % and composites were prepared by P/M. Microstructural analysis of the newly synthesized composites was carried out using SEM. The hardness of the composites was studied using Vickers microhardness tester, by applying a load of 1 kg for 5 sec. Also the amount of porosity was determined. Further the wear test was conducted on the sintered specimens using pin-on-disc wear apparatus according to ASTM-G99 standards. A regression model was developed to predict the wear rate of the specimen. Then the worn images were studied using SEM based on response surface methodology in order to understand the various wear mechanisms involved. The study revealed that mild wear, oxidational wear, plowing, cutting, and plastic deformation are the main mechanisms responsible for causing the wear.

  16. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  17. Weibull Probability Model for Fracture Strength of Aluminium (1101)-Alumina Particle Reinforced Metal Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    A.Suresh Babu; V.Jayabalan

    2009-01-01

    In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus.Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function.In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 μm)reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model.Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained.Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications.An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.

  18. Preparation and properties of dough-modeling compound/fly ash/reclaim powder composites

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W.L. [Qiqihar University, Qiqihar (China)

    2007-12-15

    A novel composite was prepared with reclaim powder (RP) matrix, dough-modeling compound (DMC) reinforcement and fly ash (FA) filler in this article. The compatibility and crosslinking construction of the FA/RP composites were respectively, studied by the polarizing microscope and IR, the optimal formulation and experimental process were determined by measuring the mechanical properties such as shore A hardness, tensile strength, elongation at break, wear resistance and the thermal stability. The results showed that DMC/FA/RP composites exhibited extremely high mechanical and thermal properties when the mass ratio of the DMC/FA/RP composites was 45/25/100, and the cure condition is at 145 {sup o}C for 30 min under 9 MPa.

  19. A unified approach to modeling delamination and matrix cracking in smart composite structures

    Science.gov (United States)

    Thornburgh, Robert Preston

    The development of smart structures technology has coincided with the increased use of composite materials in structural design. Composite laminates have forms of damage that are not found in other materials, specifically delamination and transverse matrix cracking. An in-depth understanding of the effects of damage on smart composite structures is necessary for predicting not only the life of the structure, but also for modeling any method to be used for damage detection. The objective of this research was to develop a comprehensive model for accurately and efficiently modeling smart composite structures including the effects of composite damage. First, a new, efficient method for modeling smart structures with piezoelectric devices was developed. The coupled model simultaneously solves for the mechanical and electrical response of the system using mechanical displacements and electrical displacements. The developed theory utilizes a refined higher order displacement field that accurately captures the transverse shear deformation in moderately thick laminates. The model was then extended to include internal damage in the form of delamination and matrix cracking. When delamination is present, the sublaminates are modeled as individual plates and continuity is enforced at the interfaces. Matrix cracking was modeled as a reduction in laminate stiffness using parameters determined using finite element analysis of a representative crack. Finally, the simultaneous optimization of both mechanical and electrical parameters in an adaptive structural system was studied. This study demonstrates how multidisciplinary optimization techniques, such as the Kreisselmeier-Steinhauser function, can be utilized to optimize both structural and electrical aspects of an adaptive structural system. Optimization of piezoelectric actuator placement and electrical circuitry was performed on passive electrical damping systems. Results show that the developed model is capable of accurately

  20. Modeling the Phase Composition of Gas Condensate in Pipelines

    Science.gov (United States)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  1. 3-D cohesive finite element model for application in structural analysis of heavy duty composite pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    2015-01-01

    , it can be shown that adequately good prediction of the structural response of composite pavements is obtained for monotonic loading without significant computational cost, making the model applicable for engineering design purpose. It is envisaged that the methodology implemented in this study can...... options and would yield unrealistic results in ultimate loading conditions. Cohesive modelling is one of the primary methods to handle localised damage in quasi-brittle materials, e.g., concrete, describing the potential crack in a discrete manner. To increase the versatility of existing methods...... this paper presents a numerical analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block pavement systems applying a cohesive model. The functionality of the proposed model is compared to experimental investigations of beam bending tests. The pavement is modelled...

  2. Synthesizing Service Composition Models on the Basis of Temporal Business Rules

    Institute of Scientific and Technical Information of China (English)

    Jian Yu; Yan-Bo Han; Jun Han; Yan Jin; Paolo Falcarin; Maurizio Morisio

    2008-01-01

    Transformational approaches to generating design and implementation models from requirements can bring effectiveness and quality to software development. In this paper we present a framework and associated techniques to generate the process model of a service composition from a set of temporal business rules. Dedicated techniques including pathfinding, branching structure identification and parallel structure identification are used for semi-automatically synthesizing the process model from the semantics-equivalent Finite State Automata of the rules. These process models naturally satisfy the prescribed behavioral constraints of the rules. With the domain knowledge encoded in the temporal business rules,an executable service composition program, e.g., a BPEL program, can be further generated from the process models. A running example in the e-business domain is used for illustrating our approach throughout this paper.

  3. Modeling Small Exoplanets Interiors: a Numerical Scheme to Explore Possible Compositions

    Science.gov (United States)

    Brugger, B.; Mousis, O.; Deleuil, M.

    2016-12-01

    Despite the huge number of discovered exoplanets, our knowledge of their compositions remains extremely limited. Modeling the interiors of such bodies is necessary to go further than the first approximation given by their mean density. Here we present a numerical model aiming at computing the internal structure of a given exoplanet from its measured mass and radius, and providing a range of compositions compatible with these data. Our model assumes the presence of a metal core surrounded by a silicate mantle and a water layer. Depending on their respective proportions, we can model various compositions, typically from terrestrial planets to ocean or Mercury-like planets. We apply this model to the case of CoRoT-7b, whose mass and radius values have recently been updated to 4.73 ± 0.95% mearth and 1.585 ± 0.064 rearth, respectively. We show that these values are fully compatible with a solid composition, and find that CoRoT-7b may present a core mass fraction of 80% at maximum, or on the opposite, a maximum water mass fraction of 51%. If this latter composition is compatible with that of several icy moons in the solar system, a 80% core in mass is less conceivable and a lower limit can be placed from solar system formation conditions. These results confirm the Super-Earth status of CoRoT-7b, and show that an Earth-like composition may be obtained more easily compared to previous conclusions.

  4. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  5. Variations of thermospheric composition according to AE-C data and CTIP modelling

    Directory of Open Access Journals (Sweden)

    H. Rishbeth

    2004-01-01

    Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer.

    Key words. Atmospheric composition and structure (thermosphere – composition and chemistry

  6. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    Science.gov (United States)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  7. PRAGMATICS DRIVEN LAND COVER SERVICE COMPOSITION UTILIZING BEHAVIOR-INTENTION MODEL

    Directory of Open Access Journals (Sweden)

    H. Wu

    2016-06-01

    Full Text Available Web service composition is one of the key issues to develop a global land cover (GLC information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.

  8. An Analytical Model for Predicting Stab Resistance of Flexible Woven Composites

    Science.gov (United States)

    Hou, Limin; Sun, Baozhong; Gu, Bohong

    2013-08-01

    Flexible woven composites have been widely used in geotextiles and light weight building structures. The stab resistance behavior of the flexible woven composite is an important factor for the application design. This paper reports an analytical model for predicting stab resistance of flexible woven composites under perpendicular stab with a blunt steel penetrator. The analytical model was established based on the microstructure and the deformation shape of the flexible woven composite under normal penetration. During the quasi-static stab penetration, the strain energies of warp and weft yarns and resins have been calculated. The stab resistance was calculated from the strain energies of the flexible woven composite. Furthermore, the contributions of the warp and weft yarns, resins to the stab resistance have been analyzed. It was found the three constituents have near the same contribution to the stab resistance. The higher value of weaving density, strength of yarns and especially the higher strength coating resins will lead the higher stab resistance. With the analytical model, the stab resistance would be expected to be designed in an efficient way with an acceptable precision.

  9. Pragmatics Driven Land Cover Service Composition Utilizing Behavior-Intention Model

    Science.gov (United States)

    Wu, Hao; Chen, Jun; Xing, Huaqiao; Li, Songnian; Hu, Juju

    2016-06-01

    Web service composition is one of the key issues to develop a global land cover (GLC) information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.

  10. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  11. THE CORRELATION OF EXPERIMENTAL RESULTS OF THE COMPOSITE MATERIALS HARDNESS WITH THEORETICAL RESULTS OF A MATHEMATICAL MODEL

    Directory of Open Access Journals (Sweden)

    Minodora Maria PASARE

    2014-05-01

    Full Text Available In this paper is about of the Hays-Kendall theoretical model of testing the microhardness of the composites materials of NiP/SiC type. We used an indenter to establish the microhardness of the composite and different types of loads. The microhardness can be interpreted using a theoretical model Hays-Kendall and the Kick model.

  12. Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents

    Science.gov (United States)

    Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.

    2010-01-01

    The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.

  13. On the origin and composition of Theia: Constraints from new models of the Giant Impact

    CERN Document Server

    Meier, Matthias M M; Wieler, Rainer

    2014-01-01

    Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner solar system at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other solar system materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cuk & Stewart, 2012; and "merger", Canup, 2012) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer et al., 2012) allows for a Theia similar to enstatit...

  14. Property-Composition-Temperature Modeling of Waste Glass Melt Data Subject to a Randomization Restriction

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Heredia-Langner, Alejandro; Cooley, Scott K.

    2008-10-01

    Properties such as viscosity and electrical conductivity of glass melts are functions of melt temperature as well as glass composition. When measuring such a property for several glasses, the property is typically measured at several temperatures for one glass, then at several temperatures for the next glass, and so on. This data-collection process involves a restriction on randomization, which is referred to as split-plot experiment. The split-plot data structure must be accounted for in developing property-composition-temperature models and the corresponding uncertainty equations for model predictions. Instead of ordinary least squares (OLS) regression methods, generalized least squares (GLS) regression methods using restricted maximum likelihood (REML) estimation must be used. This article describes the methodology for developing property-composition-temperature models and corresponding prediction uncertainty equations using the GLS/REML regression approach. Viscosity data collected on 197 simulated nuclear waste glasses are used to illustrate the GLS/REML methods for developing a viscosity-composition-temperature model and corresponding equations for model prediction uncertainties. The correct results using GLS/REML regression are compared to the incorrect results obtained using OLS regression.

  15. Vector and Axial-vector resonances in composite models of the Higgs boson

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying;

    2016-01-01

    We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.......We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT...... constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used...

  16. High Strain Rate Deformation Modeling of a Polymer Matrix Composite. Part 1; Matrix Constitutive Equations

    Science.gov (United States)

    Goldberg, Robert K.; Stouffer, Donald C.

    1998-01-01

    Recently applications have exposed polymer matrix composite materials to very high strain rate loading conditions, requiring an ability to understand and predict the material behavior under these extreme conditions. In this first paper of a two part report, background information is presented, along with the constitutive equations which will be used to model the rate dependent nonlinear deformation response of the polymer matrix. Strain rate dependent inelastic constitutive models which were originally developed to model the viscoplastic deformation of metals have been adapted to model the nonlinear viscoelastic deformation of polymers. The modified equations were correlated by analyzing the tensile/ compressive response of both 977-2 toughened epoxy matrix and PEEK thermoplastic matrix over a variety of strain rates. For the cases examined, the modified constitutive equations appear to do an adequate job of modeling the polymer deformation response. A second follow-up paper will describe the implementation of the polymer deformation model into a composite micromechanical model, to allow for the modeling of the nonlinear, rate dependent deformation response of polymer matrix composites.

  17. Modeling the Effect of Helical Fiber Structure on Wood Fiber Composite Elastic Properties

    Science.gov (United States)

    Marklund, Erik; Varna, Janis

    2009-08-01

    The effect of the helical wood fiber structure on in-plane composite properties has been analyzed. The used analytical concentric cylinder model is valid for an arbitrary number of phases with monoclinic material properties in a global coordinate system. The wood fiber was modeled as a three concentric cylinder assembly with lumen in the middle followed by the S3, S2 and S1 layers. Due to its helical structure the fiber tends to rotate upon loading in axial direction. In most studies on the mechanical behavior of wood fiber composites this extension-twist coupling is overlooked since it is assumed that the fiber will be restricted from rotation within the composite. Therefore, two extreme cases, first modeling fiber then modeling composite were examined: (i) free rotation and (ii) no rotation of the cylinder assembly. It was found that longitudinal fiber modulus depending on the microfibril angle in S2 layer is very sensitive with respect to restrictions for fiber rotation. In-plane Poisson’s ratio was also shown to be greatly influenced. The results were compared to a model representing the fiber by its cell wall and using classical laminate theory to model the fiber. It was found that longitudinal fiber modulus correlates quite well with results obtained with the concentric cylinder model, whereas Poisson’s ratio gave unsatisfactory matching. Finally using typical thermoset resin properties the longitudinal modulus and Poisson’s ratio of an aligned softwood fiber composite with varying fiber content were calculated for various microfibril angles in the S2 layer.

  18. Validation of body composition models for high school wrestlers.

    Science.gov (United States)

    Williford, H N; Smith, J F; Mansfield, E R; Conerly, M D; Bishop, P A

    1986-04-01

    This study investigates the utility of two equations for predicting minimum wrestling weight and three equations for predicting body density for the population of high school wrestlers. A sample of 54 wrestlers was assessed for body density by underwater weighing, residual volume by helium dilution, and selected anthropometric measures. The differences between observed and predicted responses were analyzed for the five models. Four statistical tests were used to validate the equations, including tests for the mean of differences, proportion of positive differences, equality of standard errors from regression, and equivalence of regression coefficients between original and second sample data. The Michael and Katch equation and two Forsyth and Sinning equations (FS1 and FS21) for body density did not predict as well as expected. The Michael and Katch equation tends to overpredict body density while FS1 underpredicts. The FS2 equation, consisting of a constant adjustment to FS1, predicts well near the mean but not at the ends of the sample range. The two Tcheng and Tipton equations produce estimates which slightly but consistently overpredict minimum wrestling weight, the long form equation by 2.5 pounds and the short form by 3.8 pounds. As a result the proportion of positive differences is less than would be expected. But based on the tests for the standard errors and regression coefficients, the evidence does not uniformly reject these two equations.

  19. Three-dimensional percolation modeling of self-healing composites.

    Science.gov (United States)

    Dementsov, Alexander; Privman, Vladimir

    2008-08-01

    We study the self-healing process of materials with embedded "glue"-carrying cells, in the regime of the onset of the initial fatigue. Three-dimensional numerical simulations within the percolation-model approach are reported. The main numerical challenge taken up in the present work has been to extend the calculation of the conductance to three-dimensional lattices. Our results confirm the general features of the process: The onset of material fatigue is delayed, by development of a plateaulike time dependence of the material quality. We demonstrate that, in this low-damage regime, the changes in the conductance and thus in similar transport and response properties of the material can be used as measures of the material quality degradation. A new feature found for three dimensions, where it is much more profound than in earlier-studied two-dimensional systems, is the competition between the healing cells. Even for low initial densities of the healing cells, they interfere with each other and reduce each other's effective healing efficiency.

  20. Technical Report: Modeling of Composite Piezoelectric Structures with the Finite Volume Method

    CERN Document Server

    Bolborici, Valentin; Pugh, Mary C

    2011-01-01

    Piezoelectric devices, such as piezoelectric traveling wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, where at least one of them is a piezoelectric transducer. Numerical modeling of piezoelectric structures has been done in the past mainly with the finite element method. Alternatively, a finite volume based approach offers the following advantages: (a) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits and (b) phenomena occurring at boundaries can be treated exactly. This report extends the work of IEEE Transactions on UFFC 57(2010)7:1673-1691 by presenting a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures. The report concludes with one modeling example of a unimorph structure.

  1. Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level

    Directory of Open Access Journals (Sweden)

    Kang Guan

    2016-12-01

    Full Text Available The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.

  2. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  3. Review of strongly-coupled composite dark matter models and lattice simulations

    CERN Document Server

    Kribs, Graham D

    2016-01-01

    We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.

  4. Innovative Mechanism-Based Textile Composite Damage Modeling Basing on a Nonlinear Fiber Model and Enhanced Homogenization Method

    Science.gov (United States)

    2006-08-31

    Orientation Layer Type - Woven/ Nonwoven Layer Type - Woven/ Nonwoven Figure 29. A completed design model for fiber-reinforced composites 0 2 4 6 8 10 12 14...crew survivability of tactical wheeled vehicles subject to mine blast. However, these CPK’s were based on a conventional steel/aluminum construction

  5. A Quality of Service Broker Based Process Model for Dynamic Web Service Composition

    Directory of Open Access Journals (Sweden)

    Maya Rathore

    2011-01-01

    Full Text Available Problem statement: With fast spreading of web services technology over the Internet, the quality aspects of a web service has received significant attention to the practitioners. The quality of web service includes both functional and nonfunctional details. In order to provide the correct and meaningful information to web service consumer, sometimes there is a need to compose existing web services in order to create new web service. Approach: We have proposed a Quality of Service (QoS broker based process model for Dynamic Web Service Composition (DWSC. The QoS broker in the proposed model is responsible for web service collection, selection, optimization and composition based on the service consumer’s requirements. It also verifies and certifies the functional and QoS specifications provided by service provider at the time of web service registration before publishing it in Universal Description, Discovery and Integration (UDDI registry. The detailed working of QoS broker is also presented in the study with functionality of each component. We will also discuss the process flowchart for new web service registration and web service composition at runtime. Results: The proposed QoS broker based model for dynamic web service composition solves the problems associated with quality of web service. It also prevents the central repository from malicious service provider to publish wrong information. Conclusion: The QoS broker-based process model for dynamic web service composition guarantees the quality of delivered service to web service consumers and improve the efficiency of composition.

  6. Advanced modeling of thermal NDT problems: from buried landmines to defects in composites

    Science.gov (United States)

    Vavilov, Vladimir P.; Burleigh, Douglas D.; Klimov, Alexey G.

    2002-03-01

    Advanced thermal models that can be used in the detection of buried landmines and the TNDT (thermographic nondestructive testing) of composites are discussed. The interdependence between surface temperature signals and various complex parameters, such as surface and volumetric moisture, the shape of a heat pulse, material anisotropy, etc., is demonstrated.

  7. THE QUANTUM – MECHANICAL MODEL OF FORMING CONTACT AREAS IN COMPOSITE MATERIALS WITH SPHERICAL FILLER

    Directory of Open Access Journals (Sweden)

    E. V. Suhovaya

    2011-01-01

    Full Text Available The structure and properties of the composites having Fe-C-B-Р binders alloyed with molybdenum and strengthened by the W-C quickly-cooled filler were investigated in this work. The model based on quantum mechanics principles explaining the dependencies of contact interaction zones width on filler diameter was suggested.

  8. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    Science.gov (United States)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  9. Modeling of Self-Healing Polymer Composites Reinforced with Nanoporous Glass Fibers

    OpenAIRE

    Privman, Vladimir; Dementsov, Alexander; Sokolov, Igor

    2006-01-01

    We report on our progress towards continuum rate equation modeling, as well as numerical simulations, of self-healing of fatigue in composites reinforced with glue carrying nanoporous fibers. We conclude that with the proper choice of the material parameters, effects of fatigue can be partially overcome and degradation of mechanical properties can be delayed.

  10. Benefits of X-Ray CMT for the modeling of C/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Coindreau, Olivia; Lachaud, Jean; Vignoles, Gerard L. [LCTS - UMR 5801 CNRS-Universite Bordeaux 1-Safran-CEA 3, Allee La Boetie, Pessac, F33600 (France); Mulat, Christianne [LCTS - UMR 5801 CNRS-Universite Bordeaux 1-Safran-CEA 3, Allee La Boetie, Pessac, F33600 (France); IMS - UMR5218 CNRS-Universite Bordeaux 1-IPB 351, Avenue de la Liberation, Talence, F33410 (France); Germain, Christian [IMS - UMR5218 CNRS-Universite Bordeaux 1-IPB 351, Avenue de la Liberation, Talence, F33410 (France)

    2011-03-15

    C/C composites have application in very demanding areas like aerospace, fusion technology, etc. and thus their optimization is crucial, both in the control of processing routes and in the prediction of their behavior in use. Intense modeling efforts have been performed in these directions. To help a direct application on actual materials, with possibly complex reinforcement architectures, X-ray computerized micro-tomography (CMT) is a beneficial technique, since it allows producing extremely detailed representations of these architectures. However, there is a long way from the crude X-ray projections to the information that is directly usable in C/C composite modeling. This paper summarizes several achievements in this domain and discusses the obtained results, concerning (i) composites imaging by phase contrast CMT and holographic CMT, (ii) evaluation of effective geometrical and transfer properties in fiber arrangements and actual fiber-reinforced composites, (iii) modeling of degradation by ablation, and (iv) modeling of processing by chemical vapor infiltration. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2009-01-01

    A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...

  12. Influence of Heterogeneous OH Oxidation on the Evaporation Behavior and Composition of a Model Organic Aerosol

    Science.gov (United States)

    Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.

    2011-12-01

    Heterogeneously oxidized squalane particles are used here as a model system to investigate the interplay between chemical composition and particle volatility. Reaction of squalane particles by OH radicals leads to the production of oxygenated products. Here we use the vacuum ultra-violet Aerosol Mass Spectrometer (VUV-AMS) at beamline 9.0.2 at the Advanced Light Source to monitor the evolution of specific oxidation products that result from increasing OH exposures, and how the composition changes as the oxidized particles evaporate. The soft ionization in the VUV-AMS allows us to uniquely track the parent squalane molecule and the various oxidation products over multiple generations of oxidation. Compositional changes of the oxidized particles resulting from evaporation have been measured in three sets of laboratory experiments. In the first set, a thermodenuder at varying temperatures was used to induce evaporation of particles at a fixed OH exposure. Second, the OH exposure was varied along with temperature to create a cross-sectional observation of particle composition at 50% mass fraction remaining for ten different oxidation levels. The combination of these two experiments provides information as to the compositional changes that occur during evaporation due to heating. In the third set of experiments, VUV-AMS spectra of oxidized squalane particles following dilution-induced evaporation were measured for comparison with the thermodenuder experiments. These experiments provide insights into the relationships between particle oxidation, composition and evaporation kinetics.

  13. High-frequency Heating Behavior of Veneer-based Composites: Modelling and Validation

    Directory of Open Access Journals (Sweden)

    Peixing Wei

    2014-04-01

    Full Text Available A one-dimensional theoretical heat and mass transfer model was developed for high-frequency (HF heating of veneer-based composites, such as laminated veneer lumber (LVL and plywood. This model was based on the basic principles of energy and mass conservation, momentum conservation of gas flow, and gas thermodynamic relations. The response variables, including temperature, gas pressure, and moisture content (MC, were linked to basic material properties, such as veneer density, thermal conductivity, permeability, and dielectric properties. Initial and boundary conditions for solving the governing equations were also considered. The model was further validated by experiments with veneer HF heating and LVL HF heating. The model predictions agreed well with the experimental results. During veneer HF heating, the inner veneer core layers had lower MC than the outer surface layers. Compared to conventional hot platen heating, HF heating was proven to be an efficient and robust method for manufacturing veneer-based composites.

  14. A Model for Semi-Automatic Composition of Educational Content from Open Repositories of Learning Objects

    Directory of Open Access Journals (Sweden)

    Paula Andrea Rodríguez Marín

    2014-04-01

    Full Text Available Learning objects (LOs repositories are important in building educational content and should allow search, retrieval and composition processes to be successfully developed to reach educational goals. However, such processes require so much time-consuming and not always provide the desired results. Thus, the aim of this paper is to propose a model for the semiautomatic composition of LOs, which are automatically recovered from open repositories. For the development of model, various text similarity measures are discussed, while for calibration and validation some comparison experiments were performed using the results obtained by teachers. Experimental results show that when using a value of k (number of LOs selected of at least 3, the percentage of similarities between the model and such made by experts exceeds 75%. To conclude, it can be established that the model proposed allows teachers to save time and effort for LOs selection by performing a pre-filter process.

  15. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    DEFF Research Database (Denmark)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon

    2016-01-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model...... by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors....

  16. An analytical model for particulate reinforced composites (PRCs) taking account of particle debonding and matrix cracking

    Science.gov (United States)

    Jiang, Yunpeng

    2016-10-01

    In this work, a simple micromechanics-based model was developed to describe the overall stress-strain relations of particulate reinforced composites (PRCs), taking into account both particle debonding and matrix cracking damage. Based on the secant homogenization frame, the effective compliance tensor could be firstly given for the perfect composites without any damage. The progressive interface debonding damage is controlled by a Weibull probability function, and then the volume fraction of detached particles is involved in the equivalent compliance tensor to account for the impact of particle debonding. The matrix cracking was introduced in the present model to embody the stress softening stage in the deformation of PRCs. The analytical model was firstly verified by comparing with the corresponding experiment, and then parameter analyses were conducted. This modeling will shed some light on optimizing the microstructures in effectively improving the mechanical behaviors of PRCs.

  17. A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading

    Science.gov (United States)

    Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.

    2006-01-01

    A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.

  18. Finite element modeling and analysis of piezo-integrated composite structures under large applied electric fields

    Science.gov (United States)

    Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.

    2016-05-01

    In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.

  19. Marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS

    Directory of Open Access Journals (Sweden)

    Luciano Ribeiro CORREA NETTO

    2015-10-01

    Full Text Available Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations.Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS.Material and Methods A base composite (B was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25. The composites P90 and TPH3 (TP3 were used as positive and negative controls, respectively. Marginal integrity (%MI was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS and the polymerization shrinkage stress (Pss - MPa were also evaluated.Results The values for %MI were as follows: P90 (100% = TP3 (98.3% = B (96.9% > P25 (93.2%, (p<0.05. The %VS ranged from 1.4% (P90 to 4.9% (P25, while Pss ranged from 2.3 MPa (P90 to 3.9 MPa (B. For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa. Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97, whereas the correlation between Pss and %MI was found to be moderate (r=0.76.Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite.

  20. Micromechanics model for predicting anisotropic electrical conductivity of carbon fiber composite materials

    Science.gov (United States)

    Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana

    2016-07-01

    Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.

  1. A model of the response of thermoplastic composites to bend-forming operations

    Energy Technology Data Exchange (ETDEWEB)

    Talbott, M.F.

    1991-01-01

    The model discussed in this dissertation describes the response of a thermoplastic composite laminate made from unidirection prepreg tape to operations which bend it into an arbitrarily complex singly-curved shape. It predicts, for any such bending, the extent of relative ply sliding and the stresses and strains which arise. The model contains several options for the process definition: for different locations along the laminate, the user may specify the curvatures, the perpendicular forces imposed, or the vertical displacements.

  2. A Central Composite Face-Centered Design for Parameters Estimation of PEM Fuel Cell Electrochemical Model

    OpenAIRE

    Khaled MAMMAR; CHAKER, Abdelkader

    2013-01-01

    In this paper, a new approach based on Experimental of design methodology (DoE) is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC). This proposed approach combines the central composite face-centered (CCF) and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value o...

  3. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  4. Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model

    Energy Technology Data Exchange (ETDEWEB)

    Paschoal, Ricardo C. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Servico Nacional de Aprendizagem Industrial (SENAI), Rio de Janeiro, RJ (Brazil). Centro de Tecnologia da Industria Quimica e Textil (CETIQT); Helayel Neto, Jose A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: paschoal@cbpf.br; helayel@cbpf.br

    2003-01-01

    The magnetic field redefinition in Jain's composite fermion model for the fractional quantum Hall effect is shown to be effective described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field nominally coupled to matter. Also an explicit non-relativistic limit of the non-minimal (2+1) D Dirac's equation is derived. (author)

  5. Modeling relations between the composition and properties of French light water reactor waste containment glass

    Energy Technology Data Exchange (ETDEWEB)

    Ghaleb, D.; Dussossoy, J.L.; Fillet, C.; Pacaud, F.; Jacquet-Francillon, N.

    1994-12-31

    Models have been developed to calculate the density, molten-state viscosity and initial corrosion rate according to the chemical composition of glass formulations used to vitrify high-level fission product solutions from reprocessed light water reactor fuel. Developed from other published work, these models have been adapted to allow for the effects of platinoid (Ru, Pd, Rh) inclusions on the molten glass rheology. (authors). 15 refs., 10 figs., 1 tab.

  6. (Original article) Investigation of structure and composition of executive functions: analysis of theoretical models

    OpenAIRE

    Dias, Natália Martins; Gomes,Cristiano Mauro Assis; Reppold, Caroline Tozzi; Fioravanti-Bastos, Ana Carolina; Pires,Emmy Uehara; Carreiro, Luiz Renato Rodrigues; SEABRA,Alessandra Gotuzo

    2015-01-01

    Despite relative consensus on the existence of three basic executive functions (EF) (inhibition, working memory and cognitive flexibility) there is narrower knowledge on its organization and contribution to task solution. The study tested different theoretical models about the structure and composition of EF. The correlation matrix of Miyake et al. (2000), which evaluated university students in a set of 15 EF tasks, was adopted. Model 1 displays a general factor and specific components. In mo...

  7. Thermophysical characterization tools and numerical models for high temperature thermo-structural composite materials; Outils de caracterisation thermophysique et modeles numeriques pour les composites thermostructuraux a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lorrette, Ch

    2007-04-15

    This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)

  8. Three-dimensional modeling of chloroprene rubber surface topography upon composition

    Energy Technology Data Exchange (ETDEWEB)

    Žukienė, Kristina, E-mail: kristina.zukiene@ktu.lt [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Jankauskaitė, Virginija [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Petraitienė, Stase [Department of Applied Mathematics, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2014-02-15

    In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.

  9. A Bridging Cell Multiscale Methodology to Model the Structural Behaviour of Polymer Matrix Composites

    Science.gov (United States)

    Iacobellis, Vincent

    Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within

  10. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    Science.gov (United States)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of

  11. Reliability Analysis of a Composite Blade Structure Using the Model Correction Factor Method

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimiroy; Friis-Hansen, Peter; Berggreen, Christian

    2010-01-01

    This paper presents a reliability analysis of a composite blade profile. The so-called Model Correction Factor technique is applied as an effective alternate approach to the response surface technique. The structural reliability is determined by use of a simplified idealised analytical model which...... in a probabilistic sense is model corrected so that it, close to the design point, represents the same structural behaviour as a realistic FE model. This approach leads to considerable improvement of computational efficiency over classical response surface methods, because the numerically “cheap” idealistic model...... is used as the response surface, while the time-consuming detailed model is called only a few times until the simplified model is calibrated to the detailed model....

  12. Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites

    Directory of Open Access Journals (Sweden)

    Jang Min Park

    2011-01-01

    Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.

  13. Verification and Validation of a Three-Dimensional Orthotropic Plasticity Constitutive Model Using a Unidirectional Composite

    Directory of Open Access Journals (Sweden)

    Canio Hoffarth

    2017-03-01

    Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.

  14. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    Science.gov (United States)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.

    2016-08-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.

  15. An analytical nonlinear model for laminate multiferroic composites reproducing the DC magnetic bias dependent magnetoelectric properties.

    Science.gov (United States)

    Lin, Lizhi; Wan, Yongping; Li, Faxin

    2012-07-01

    In this work, we propose an analytical nonlinear model for laminate multiferroic composites in which the magnetic-field-induced strain in magnetostrictive phase is described by a standard square law taking the stress effect into account, whereas the ferroelectric phase retains a linear piezoelectric response. Furthermore, differing from previous models which assume uniform deformation, we take into account the stress attenuation and adopt non-uniform deformation along the layer thickness in both piezoelectric and magnetostrictive phases. Analysis of this model on L-T and L-L modes of sandwiched Terfenol-D/lead zirconate titanate/Terfenol-D composites can well reproduce the observed dc magnetic field (H(dc)) dependent magnetoelectric coefficients, which reach their maximum with the H(dc) all at about 500 Oe. The model also suggests that stress attenuation along the layer thickness in practical composites should be taken into account. Furthermore, the model also indicates that a high volume fraction of magnetostrictive phase is required to get giant magnetoelectric coupling, coinciding with existing models.

  16. A nonlinear model for magnetocapacitance effect in PZT-ring/Terfenol-D-strip magnetoelectric composites

    Science.gov (United States)

    Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen

    2016-06-01

    In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.

  17. Composite Avenue beyond the Standard Model - Legacy of Sakata in LHC Era

    CERN Document Server

    Yamawaki, Koichi

    2012-01-01

    Higgs boson may be a composite particle as Sakata vigorously looked for never-ending substructures of Nature. He proposed the Sakata model for hadrons, which was the prototype of the quark model and thus lauched the last Revolution in particle physics continued all the way up to Kabayashi-Maskawa work which completed the Standard Model today. Inspired by the Sakata's spirit we shall discuss composite Higgs boson in various models of our own for the dynamical symmetry breaking with large anomalous dimension: The techni-dilaton in the walking technicolor (WTC) with $\\gamma_m \\simeq 1$, the $\\bar t t$ composite ("top-Higgs") in the top-quark condensate model with $\\gamma_m \\simeq 2$, and their variants in the models with $1<\\gamma_m <2$ (strong ETC Technicolor, etc.). Among others we will focus on WTC which has an approximate scale symmetry in the region relevant to the dynamical mass generation. Such a conformal gauge dynamics is characterized by the essential singularity scaling, breakdown of the Ginzbur...

  18. Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites

    Science.gov (United States)

    Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.

    2009-09-01

    In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.

  19. Deformed Bose gas models aimed at taking into account both compositeness of particles and their interaction

    CERN Document Server

    Gavrilik, A M

    2013-01-01

    We consider the deformed Bose gas model with the deformation structure function that is the combination of a q-deformation and a quadratically polynomial deformation. Such a choice of the unifying deformation structure function enables us to describe the interacting gas of composite (two-fermionic or two-bosonic) bosons. Using the relevant generalization of the Jackson derivative, we derive a two-parametric expression for the total number of particles, from which the deformed virial expansion of the equation of state is obtained. The latter is interpreted as the virial expansion for the effective description of a gas of interacting composite bosons with some interaction potential.

  20. X-ray based micromechanical finite element modeling of composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Emerson, Monica Jane; Jespersen, Kristine Munk;

    2016-01-01

    This is a study of a uni-directional non-crimp fabric reinforced epoxy composite material typically used as the load carrying laminate in wind turbine blades. Based on a 3D xray tomography scan, the bundle and fibre/matrix structure of the composite is segmented. This segmentation is used in a mu...... in a multi-scale finite element model bridging the gap from the individual fibers organized in bundles to the stitched non-crimp fabric used for building up the load carrying laminates....

  1. Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites

    Institute of Scientific and Technical Information of China (English)

    刘洪秋; 梁乃刚; 夏蒙棼

    1999-01-01

    Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.

  2. Oxidation of Carbon Fibers in a Cracked Ceramic Matrix Composite Modeled as a Function of Temperature

    Science.gov (United States)

    Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.

    2003-01-01

    The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and

  3. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  4. Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor

    Science.gov (United States)

    Parra-Sánchez, Víctor Roberto; Pérez-Tello, Manuel; Duarte-Ruiz, Cirilo Andrés; Sohn, Hong Yong

    2014-04-01

    A mathematical model to predict the size distribution and chemical composition of a cloud of sulfide particles during high-temperature oxidation in a flash reactor is presented. The model incorporates the expansion and further fragmentation of the reacting particles along their trajectories throughout the reaction chamber. A relevant feature of the present formulation is its flexibility to treat a variety of flash reacting systems, such as the flash smelting and flash converting processes. This is accomplished by computing the chemical composition of individual particles and the size distribution and overall composition of the particle cloud in separate modules, which are coupled through a database of particle properties previously stored on disk. The flash converting of solid copper mattes is considered as an example. The model predictions showed good agreement with the experimental data collected in a large laboratory reactor in terms of particle size distribution and sulfur remaining in the population of particles. The cumulative contribution and distribution coefficients are introduced to quantify the relationship between specific particle sizes in the feed and those in the reacted products upon oxidation, the latter of which has practical implications on the amount and chemical composition of dust particles produced during the industrial operation.

  5. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  6. Micromechanical Modeling of the Thermal Expansion of Graphite/copper Composites with Nonuniform Microstructure

    Science.gov (United States)

    Bednarcyk, Brett A.; Pindera, Marek-Jerzy

    1994-01-01

    Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical

  7. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data.

    Science.gov (United States)

    Tassaing, T; Garrain, P A; Bégué, D; Baraille, I

    2010-07-21

    The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.

  8. Micro-Scale Experiments and Models for Composite Materials with Materials Research

    DEFF Research Database (Denmark)

    Zike, Sanita

    Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... properties acquired at macro-scale are used for micro-mechanical models. This is because material properties at the macro-scale are much more available and the test procedures to obtain them are well defined. The aim of this research was to find methods to extract the micro-mechanical properties of the epoxy...... resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam...

  9. A model for biodegradation of composite materials made of polyesters and tricalcium phosphates.

    Science.gov (United States)

    Pan, Jingzhe; Han, Xiaoxiao; Niu, Wenjuan; Cameron, Ruth E

    2011-03-01

    A saturation behaviour has been observed when incorporating tricalcium phosphate (TCP) in various polyesters to control the degradation rate. This paper presents an understanding of this behaviour using a mathematical model. The coupled process of hydrolysis reaction of the ester bonds, acid dissociation of the carboxylic end groups, dissolution of the calcium phosphates and buffering reactions by the dissolved phosphate ions is modelled together using a set of differential equations. Two non-dimensional groups of the material and chemical parameters are identified which control the degradation rate of the composites. An effectiveness map is established to show the conditions under which incorporating TCP into polyesters is effective, saturated or ineffective. Comparisons are made between the model predictions and existing experimental data in the literature. The map provides a useful tool to guide the design of polyester/TCP composites for tissue engineering and orthopaedic fixation applications.

  10. Neutrino Masses from an A4 Symmetry in Holographic Composite Higgs Models

    CERN Document Server

    del Aguila, Francisco; Santiago, Jose

    2010-01-01

    We show that holographic composite Higgs Models with a discrete A4 symmetry naturally predict hierarchical charged lepton masses and an approximate tri-bimaximal lepton mixing with the correct scale of neutrino masses. They also satisfy current constraints from electroweak precision tests, lepton flavor violation and lepton mixing in a large region of parameter space. Two phenomenologically relevant features arise in these models. First, an extra suppression on the lepton Yukawa couplings makes the tau lepton more composite than naively expected from its mass. As a consequence new light leptonic resonances, with masses as low as few hundreds of GeV, large couplings to tau and a very characteristic collider phenomenology, are quite likely. Second, the discrete symmetry A4 together with the model structure provide a double-layer of flavor protection that allows to keep tree-level mediated processes below present experimental limits. One-loop processes violating lepton flavor, like mu -> e gamma, may be however ...

  11. A Critique of a Phenomenological Fiber Breakage Model for Stress Rupture of Composite Materials

    Science.gov (United States)

    Reeder, James R.

    2010-01-01

    Stress rupture is not a critical failure mode for most composite structures, but there are a few applications where it can be critical. One application where stress rupture can be a critical design issue is in Composite Overwrapped Pressure Vessels (COPV's), where the composite material is highly and uniformly loaded for long periods of time and where very high reliability is required. COPV's are normally required to be proof loaded before being put into service to insure strength, but it is feared that the proof load may cause damage that reduces the stress rupture reliability. Recently, a fiber breakage model was proposed specifically to estimate a reduced reliability due to proof loading. The fiber breakage model attempts to model physics believed to occur at the microscopic scale, but validation of the model has not occurred. In this paper, the fiber breakage model is re-derived while highlighting assumptions that were made during the derivation. Some of the assumptions are examined to assess their effect on the final predicted reliability.

  12. Finite element model updating of natural fibre reinforced composite structure in structural dynamics

    Directory of Open Access Journals (Sweden)

    Sani M.S.M.

    2016-01-01

    Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.

  13. Verification of Beam Models for Ionic Polymer-Metal Composite Actuator

    Institute of Scientific and Technical Information of China (English)

    Ai-hong Ji; Hoon Cheol Park; Quoc Viet Nguyen; Jang Woo Lee; Young Tai Yoo

    2009-01-01

    Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages. A thick IPMC actuator, where Nation-117 membrane was synthesized with polypyrrole/alumina composite tiller, was analyzed to verify the equivalent beam and equivalent bimorph beam models. The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively. The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data. Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator. The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data. It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement, blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.

  14. IGE Model: An Extension of the Ideal Gas Model to Include Chemical Composition as Part of the Equilibrium State

    Directory of Open Access Journals (Sweden)

    Christopher P. Paolini

    2012-01-01

    Full Text Available The ideal gas (IG model is probably the most well-known gas models in engineering thermodynamics. In this paper, we extend the IG model into an ideal gas equilibrium (IGE model mixture model by incorporating chemical equilibrium calculations as part of the state evaluation. Through a simple graphical interface, users can set the atomic composition of a gas mixture. We have integrated this model into a thermodynamic web portal TEST (http://thermofluids.sdsu.edu/ that contains Java applets for various models for properties of pure substances. In the state panel of the IGE model, the known thermodynamic properties are entered. For a given pressure and temperature, the mixture's Gibbs function is minimized subject to atomic constraints and the equilibrium composition along with thermodynamic properties of the mixture are calculated and displayed. What is unique about this approach is that equilibrium computations are performed in the background, without requiring any major change in the familiar user interface used in other state daemons. Properties calculated by this equilibrium state daemon are compared with results from other established applications such as NASA CEA and STANJAN. Also, two different algorithms, an iterative approach and a direct approach based on minimizing different thermodynamic functions in different situation, are compared.

  15. Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings

    Science.gov (United States)

    Yamada, Yoshiki; Zhu, Dongming

    2011-01-01

    Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.

  16. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    Science.gov (United States)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  17. Electrospun cerium nitrate/polymer composite fibres:synthesis, characterization and fibre-division model

    Institute of Scientific and Technical Information of China (English)

    Li Meng-Meng; Long Yun-Ze; Yin Hong-Xing; Zhang Zhi-Ming

    2011-01-01

    Cerium (III)nitrate/poly(vinylpyrrolidone)(Ce(NO3)3/PVP)composite fibres have been prepared by electrospinning. After calcining the composite fibres in air at 500℃, CeO2 nanowires were obtained. The characterizations of the as-spun composite fibres and resultant nanowires have been carried out by a scanning electron microscope (SEM),an infrared spectrometer, an x-ray diffractometer and a fluorescence spectrophotometer. Interestingly, some unusual ribbon-like or twin fibres were observed besides the common fibres with circular or elliptic cross sections. We developed a fibre-division model resulting from Coulomb repulsion and solvent vaporization to interpret the formation of the ribbona or twin fibres, which has been confirmed by the SEM studies. Our results also indicate that the formation of the ribbons or twin fibres is less dependent on operation voltage and work distance.

  18. Mathematical Model For Autoclave Curing Of Unsaturated Polyester Based Composite Materials

    Directory of Open Access Journals (Sweden)

    Adnan A. Abdul Razak

    2013-05-01

    Full Text Available Heat transfer process involved in the autoclave curing of fiber-reinforced thermosetting composites is investigated numerically. A model for the prediction of the temperature and the extent of the reaction across the laminate thickness during curing process in the autoclave of unsaturated polyester based composite has been developed. The governing equation for one dimensional heat transfer, and accounting for the heat generation due to the exothermic cure reaction in the composites had been used.  It was found that the temperature at the central of the laminate increases up to the external imposed temperature, because of the thermal conductivity of the resin and fiber. The heat generated by the exothermic reaction of the resin is not adequately removed; the increase in the temperature at the center increases the resins rate reaction, which in turn generates more heat.

  19. A micromechanical model for the failure and damage assessment of woven composites

    Science.gov (United States)

    Abdelrahman, Wael Gamal Eldin

    A micromechanical model is advanced in order to study the stress transfer and associated damage and failure in classes of conventional and textile type fibrous composites. Unidirectionally reinforced matrix with straight and undulated fibers define the repeating constructing cell for conventional and textile composites, respectively. Starting with the case of straight reinforcement, we approximate and model the actual discrete composite as a concentric cylindrical system. For axisymmetric loading, and upon adopting some appropriate restrictions on the radial behavior of some field quantities, an elasticity-based procedure reduces the two-dimensional field equations, which hold in both fiber and matrix components together with the appropriate interface, symmetry and boundary conditions, to a quasi-one-dimensional system. This analysis is further extended to cases involving undulated fibers. Based upon local directions (slopes) of the undulated fibers, the linear transformation is used to obtain local stress distributions along the undulated fibers. The total stress field is found to be combinations of these local stresses and the inherent contributions obtained from the transformations of the normal loads along the undulated directions in the absence of reinforcement. This simple system retains total account of the system's physics and presents itself in the form of coupled partial differential equations in the longitudinal displacements and stresses of both the fiber and matrix components. According to this model, damage is simulated in the form of stress free boundary conditions. Perpetuation of damage is based upon the maximum normal stress criterion. The adverse effect of such damage on the stiffness properties of the composite is predicted. Results show the favorable effect of undulation in decreasing the rate of property degradation with increasing damage. The model is quite general and has been applied to several situations. These include response to static

  20. A composite state method for ensemble data assimilation with multiple limited-area models

    Directory of Open Access Journals (Sweden)

    Matthew Kretschmer

    2015-04-01

    Full Text Available Limited-area models (LAMs allow high-resolution forecasts to be made for geographic regions of interest when resources are limited. Typically, boundary conditions for these models are provided through one-way boundary coupling from a coarser resolution global model. Here, data assimilation is considered in a situation in which a global model supplies boundary conditions to multiple LAMs. The data assimilation method presented combines information from all of the models to construct a single ‘composite state’, on which data assimilation is subsequently performed. The analysis composite state is then used to form the initial conditions of the global model and all of the LAMs for the next forecast cycle. The method is tested by using numerical experiments with simple, chaotic models. The results of the experiments show that there is a clear forecast benefit to allowing LAM states to influence one another during the analysis. In addition, adding LAM information at analysis time has a strong positive impact on global model forecast performance, even at points not covered by the LAMs.

  1. A single-level composite structure optimization method based on a blending tapered model

    Institute of Scientific and Technical Information of China (English)

    An Weigang; Chen Dianyu; Jin Peng

    2013-01-01

    In order to decrease the number of design variables and improve the efficiency of composite structure optimal design,a single-level composite structure optimization method based on a tapered model is presented.Compared with the conventional multi-level composite structure optimization method,this single-level method has many advantages.First,by using a distance variable and a ply group variable,the number of design variables is decreased evidently and independent with the density of sub-regions,which makes the single-level method very suitable for large-scale composite structures.Second,it is very convenient to optimize laminate thickness and stacking sequence in the same level,which probably improves the quality of optimal result.Third,ply continuity can be guaranteed between sub-regions in the single-level method,which could reduce stress concentration and manufacturing difficulty.An example of a composite wing is used to demonstrate the advantages and competence of the single-level method proposed.

  2. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    Science.gov (United States)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-01-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  3. Support for Dynamic Service Composition with Role-Based Interaction Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper aims to present a role-based interaction model for dynamic service composition in Grid environments. Assigning roles to a service means to associate with it capabilities that describes all the operations the service intends to perform. When all of the services can be recognized by their roles, the appropriate services can be selected. Based on the interaction policy, a role-based interaction model not only facilitates access control, but also offers flexible interaction mechanism for adapting service-oriented applications. This interaction model adopts programmable reactive tuple space to facilitate context-dependent coordination.

  4. Radiative contribution to the effective potential in a composite Higgs model

    CERN Document Server

    DeGrand, T A; Jay, W I; Neil, E T; Shamir, Y; Svetitsky, B

    2016-01-01

    The SU(4) gauge theory with two flavors of Dirac fermions in the sextet representation shares features of a candidate for a composite Higgs model. The analogue of the Higgs multiplet of the Standard Model lives in the Goldstone manifold resulting from spontaneous breaking of the global symmetry SU(4) to SO(4). The Higgs potential arises from interaction with the particles of the Standard Model. We have computed the gauge boson contribution to the Higgs potential, using valence overlap fermions on a Wilson-clover sea. The calculation is similar to that of the electromagnetic mass splitting of the pion multiplet in QCD.

  5. Shear-flexible finite-element models of laminated composite plates and shells

    Science.gov (United States)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  6. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    Science.gov (United States)

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  7. Modeling and characterization of long term material behavior in polymer composites with woven fiber architecture

    Science.gov (United States)

    Gupta, Vikas

    The purpose of this research is to develop an analytical tool which, when coupled with accelerated material characterization, is capable of predicting long-term durability of polymers and their composites. Conducting creep test on each composite laminate with different fibers, fiber volume fractions, and weave architectures is impractical. Moreover, in case of thin laminates, accurately characterizing the out-of-plane matrix dominated viscoelastic response is not easily achievable. Therefore, the primary objective of this paper is to present a multi-scale modeling methodology to simulate the long-term interlaminar properties in polymer matrix woven composites and then predict the critical regions where failure is most likely to occur. A micromechanics approach towards modeling the out-of-plane viscoelastic behavior of a five-harness satin woven-fiber cross-ply composite laminate is presented, taking into consideration the weave architecture and time-dependent effects. Short-term creep tests were performed on neat resin at different test temperatures and stress levels to characterize physical aging of the resin matrix. In addition, creep and recovery experiments were conducted on un-aged resin specimens in order to characterize the pronounced stress-dependent nonlinear viscoelastic response of the PR500 resin. Two-dimensional micromechanics analysis was carried out using a test-bed finite element code, NOVA-3D, including interactions between non-linear material constitutive behavior, geometric nonlinearity, aging and environmental effects.

  8. The Composite Particles Model (CPM), Vacuum Structure and ~ 125 GeV Higgs Mass

    CERN Document Server

    Popovic, Marko B

    2012-01-01

    The Composite Particles Model (CPM) is characterized by composite Higgs, composite top quark, cancelation of the scalar leading quadratic divergences, and a particular ground state such that top anti-top channel is neither attractive or repulsive at tree level at the Z pole mass. The radiatively generated scalar mass in 2D is m_H=\\sqrt((6m_t^2 -M_Z^2-2M_w^2)/3(1+{\\pi}/k))= 113 GeV/c^2,143 GeV/c^2,...,230 GeV/c^2 for k = 1,2,...\\infty. As first proposed by Nambu in the simplest models with dynamical mass generation and fermion condensate in 4D, one expects the Higgs mass on the order of twice the heaviest fermion mass. Hence, if this is applied to the CPM one could expect scalar mass dynamically generated by top constituent quarks and composite top quarks to be equal to 2 m_t/3 and 2m_t respectively. When Bose-Einstein statistics for kT \\cong M_W c^2 is applied to the two lowest energy states in 2D (113 GeV and 143 GeV) and 4D (115 GeV and 346 GeV), the CPM suggests physical Higgs mass equal to m_H \\cong 125 G...

  9. Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures

    Science.gov (United States)

    Shen, Yanfeng; Cesnik, Carlos E. S.

    2016-09-01

    This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.

  10. Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite

    Science.gov (United States)

    Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli

    2016-10-01

    Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.

  11. A subregional model for delamination prediction of rubber composite under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhen-hui; TAN Hui-feng

    2005-01-01

    Results from fatigue experiments of cross-laminated steel cord-rubber composites (SCRC) indicate that fatigue damage life can be categorized into three regimes. In terms of fatigue modes, a subregional fatigue model is developed to describe the damages evolution of SCRC under fatigue loads. Firstly, finite element analysis is introduced to determine interply stress distribution of the specimen. Then, based on the experimental fatigue data, subregional models are introduced to simulate relations between maximum strain, effective stiffness,delamination shear stress and fatigue cycles. Relations between crack density, delamination length growth rate,macro crack density and cycles are modeled by two semi-empirical models. A reasonable prediction result was achieved by the current model, where model parameters can be determined by basic outputs of fatigue testing.

  12. Europa's surface composition from near-infrared observations: A comparison of results from linear mixture modeling and radiative transfer modeling

    Science.gov (United States)

    Shirley, James H.; Jamieson, Corey S.; Dalton, J. Bradley

    2016-08-01

    Quantitative estimates of the abundance of surface materials and of water ice particle grain sizes at five widely separated locations on the surface of Europa have been obtained by two independent methods in order to search for possible discrepancies that may be attributed to differences in the methods employed. Results of radiative transfer (RT) compositional modeling (also known as intimate mixture modeling) from two prior studies are here employed without modification. Areal (or "checkerboard") mixture modeling, also known as linear mixture (LM) modeling, was performed to allow direct comparisons. The failure to model scattering processes (whose effects may be strongly nonlinear) in the LM approach is recognized as a potential source of errors. RT modeling accounts for nonlinear spectral responses due to scattering but is subject to other uncertainties. By comparing abundance estimates for H2SO4 · nH2O and water ice, obtained through both methods as applied to identical spectra, we may gain some insight into the importance of "volume scattering" effects for investigations of Europa's surface composition. We find that both methods return similar abundances for each location analyzed; linear correlation coefficients of ≥ 0.98 are found between the derived H2SO4 · nH2O and water ice abundances returned by both methods. We thus find no evidence of a significant influence of volume scattering on the compositional solutions obtained by LM modeling for these locations. Some differences in the results obtained for water ice grain sizes are attributed to the limited selection of candidate materials allowed in the RT investigations.

  13. A unified composite model of inflation and dark matter in the Nambu-Jona-Lasinio theory

    CERN Document Server

    Channuie, Phongpichit

    2016-01-01

    In this work, we propose a cosmological scenario inherently based on the effective Nambu-Jona-Lasinio (NJL) model that comic inflation and dark matter can be successfully described by a single framework. On the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI) and we show that it is viable to achieve successful inflation via a non-minimal coupling to gravity. For model of inflation, we compute the inflationary parameters and confront them with recent Planck 2015 data. We discover that the predictions of the model are in excellent agreement with the Planck analysis. We also present in our model a simple connection of physics from the high scales to low scales via renormalization group equations of the physical parameters. On the other hand, the pseudoscalar channel can be assigned as a candidate for composite dark matter (CD). For model of dark matter, we couple the pseudoscalar to the Higgs sector of the standard model with the coupling strength $\\kappa$ and estimate it...

  14. A QoS-Satisfied Prediction Model for Cloud-Service Composition Based on a Hidden Markov Model

    OpenAIRE

    Qingtao Wu; Mingchuan Zhang; Ruijuan Zheng; Ying Lou; Wangyang Wei

    2013-01-01

    Various significant issues in cloud computing, such as service provision, service matching, and service assessment, have attracted researchers’ attention recently. Quality of service (QoS) plays an increasingly important role in the provision of cloud-based services, by aiming for the seamless and dynamic integration of cloud-service components. In this paper, we focus on QoS-satisfied predictions about the composition of cloud-service components and present a QoS-satisfied prediction model b...

  15. An Investigation of Stimulating the Autoclave Curing Process of Resin Matrix/Fiber Reinforced Composite Material,Ⅰ: Process model

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A mathematical model is made which describes the curing process of composites constructed from continuous fiber-reinforced, thermosetting resin matrix prepreg materials, and the consolidation of the composite is developed. The model provides the variation of temperature distribution, the cure reaction process in the resin, the resin flow and fibers stress inside the composite, and the void variation and the residual stress distribution. It can be used to illustrate the mechanism of curing process and optimize the cure cycle of composite material in order to ensure the quality of a product.

  16. Constitutive models of ferroelectric composites with a viscoelastic and dielectric relaxation matrix (Ⅱ)——Experiment, calculation and analysis

    Institute of Scientific and Technical Information of China (English)

    江冰; 方岱宁; 黄克智

    2000-01-01

    Experimental analysis of ferroelectric composites with a viscoelastic and dieiectric relax-ation matrix is carried out, and the electromechanical coupling behavior of the ferroelectric composites is calculated by means of the constitutive model proposed in this paper. Comparisons between the ex-perimental results and the calculations show that the constitutive model can reflect the electromechanical coupling behavior of the ferroelectric composites. The analysis indicates that the effect of viscoelas-ticity and dieiectric relaxation of the matrix on the electromechanical coupling behavior of ferroelectric composites cannot be neglected.

  17. Analysis of DC Electrical Conductivity Models of Carbon Nanotube-Polymer Composites with Potential Application to Nanometric Electronic Devices

    Directory of Open Access Journals (Sweden)

    Rafael Vargas-Bernal

    2013-01-01

    Full Text Available The design of nanometric electronic devices requires novel materials for improving their electrical performance from stages of design until their fabrication. Until now, several DC electrical conductivity models for composite materials have been proposed. However, these models must be valued to identify main design parameters that more efficiently control the electrical properties of the materials to be developed. In this paper, four different models used for modeling DC electrical conductivity of carbon nanotube-polymer composites are studied with the aim of obtaining a complete list of design parameters that allow guarantying to the designer an increase in electrical properties of the composite by means of carbon nanotubes.

  18. Development of a Subcell Based Modeling Approach for Modeling the Architecturally Dependent Impact Response of Triaxially Braided Polymer Matrix Composites

    Science.gov (United States)

    Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.

    2016-01-01

    Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work

  19. 3D finite element modeling of chip formation and induced damage in machining Fiber reinforced composites

    Directory of Open Access Journals (Sweden)

    R. El Alaiji

    2015-07-01

    Full Text Available With the increasing demand for composite materials in many applications such as aerospace and automotive, their behavior needs to be thoroughly investigated, especially during and after failure. In the present work a three-dimensional (3D finite element (FE model is developed to study the machining of unidirectional (UD carbon fiber reinforced polymer composite (CFRP. Chip formation process and ply damage modes such as matrix cracking, fiber matrix shear, and fiber failure are modeled by degrading the material properties. The 3D Hashin failure criteria are used and implemented in the commercial finite element program Abaqus, using a VUMAT subroutine. The objective of this study is to understand the 3D chip formation process and to analyze the cutting induced damage from initiation stage until complete chip formation. The effect of fiber orientation on cutting forces is investigated. The numerical results have been compared with experimental results taken from the literature and showing a good agreement.

  20. Circuit models for Salisbury screens made from unidirectional carbon fiber composite sandwich structures

    Science.gov (United States)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2016-05-01

    Carbon fiber composite materials have many useful structural material properties. The electromagnetic perfor- mance of these materials is of great interest for future applications. The work presented in this paper deals with the construction of Salisbury screen microwave absorbers made from unidirectional carbon fiber composite sand- wich structures. Specifically, absorbers centered at 7.25 GHz and 12.56 GHz are investigated. Circuit models are created to match the measured performance of the carbon fiber Salisbury screens using a genetic algorithm to extract lumped element circuit values. The screens presented in this paper utilize unidirectional carbon fiber sheets in place of the resistive sheet utilized in the classic Salisbury screen. The theory, models, prototypes, and measurements of these absorbers are discussed.