Model composition in model checking
Felscher, Ingo
2014-01-01
Model-checking allows one to formally check properties of systems: these properties are modeled as logic formulas and the systems as structures like transition systems. These transition systems are often composed, i.e., they arise in form of products or sums. The composition technique allows us to deduce the truth of a formula in the composed system from "interface information": the truth of formulas for the component systems and information in which components which of these formulas hold. W...
Realistic Composite Higgs Models
Anastasiou, Charalampos; Santiago, Jose
2009-01-01
We study the role of fermionic resonances in realistic composite Higgs models. We consider the low energy effective description of a model in which the Higgs arises as the pseudo-Goldstone boson of an SO(5)/SO(4) global symmetry breaking pattern. Assuming that only fermionic resonances are present below the cut-off of our effective theory, we perform a detailed analysis of the electroweak constraints on such a model. This includes the exact one-loop calculation of the T parameter and the anomalous Zbb coupling for arbitrary new fermions and couplings. Other relevant observables, like b to s gamma and Delta B=2 processes have been also examined. We find that, while minimal models are difficult to make compatible with electroweak precision tests, models with several fermionic resonances, such as the ones that appear in the spectrum of viable composite Higgs models from warped extra dimensions, are fully realistic in a large region of parameter space. These fermionic resonances could be the first observable sign...
Directory of Open Access Journals (Sweden)
Simona Ramanauskaitė
2012-04-01
Full Text Available Preparation for potential threats is one of the most important phases ensuring system security. It allows evaluating possible losses, changes in the attack process, the effectiveness of used countermeasures, optimal system settings, etc. In cyber-attack cases, executing real experiments can be difficult for many reasons. However, mathematical or programming models can be used instead of conducting experiments in a real environment. This work proposes a composite denial of service attack model that combines bandwidth exhaustion, filtering and memory depletion models for a more real representation of similar cyber-attacks. On the basis of the introduced model, different experiments were done. They showed the main dependencies of the influence of attacker and victim’s properties on the success probability of denial of service attack. In the future, this model can be used for the denial of service attack or countermeasure optimization.
Taylor, Andrew M
2014-01-01
In light of the increasingly heavy UHECR composition at the highest energies, as observed by the Pierre Auger Observatory, the implications of these results on the actual source composition and spectra are investigated. Depending on the maximum energy of the particles accelerated, sources producing hard spectra and/or containing a considerably enhanced heavy component appear a necessary requirement. Consideration is made of two archetypal models compatible with these results. The secondary signatures expected , following the propagation of the nuclear species from source to Earth, are determined for these two example cases. Finally, the effect introduced by the presence of nG extragalactic magnetic fields in collaboration with a large (80 Mpc) distance to the nearest source is discussed.
Damage Modelling For Composite Structures
Lee, Hao
2015-01-01
Modelling damage in composite materials has played an important role in designing composite structures. Although numerical models for the progressive damage in laminated composites (e.g. transverse cracking, delamination and fibre breakage) have been developed in the literature, there is still a need for further improvement. This thesis aimed at developing damage models suitable for predicting intra-laminar and inter-laminar damage behaviour in fibre-reinforced composite materials. Several ap...
Stueckelberg model and Composite Z'
Hashimoto, Michio
2015-01-01
Based on Ref.[1], we study a composite Z' model which effectively induces the Stueckelberg model in low energy. It turns out that the mass of the composite Z' boson contains the Stueckelberg mass term in sharp contrast to the conventional Z' model. We also find that the masses of the composite scalar and the right-handed neutrinos are determined by the infrared fixed points. If future experiments confirm that the gauge coupling g of Z' is sufficiently large, say, $g^2/(4\\pi) > 0.015$ for the ...
Stueckelberg model and Composite Z'
Hashimoto, Michio
2015-01-01
Based on Ref.[1], we study a composite Z' model which effectively induces the Stueckelberg model in low energy. It turns out that the mass of the composite Z' boson contains the Stueckelberg mass term in sharp contrast to the conventional Z' model. We also find that the masses of the composite scalar and the right-handed neutrinos are determined by the infrared fixed points. If future experiments confirm that the gauge coupling g of Z' is sufficiently large, say, $g^2/(4\\pi) > 0.015$ for the U(1)_{B-L} model, and also establish the existence of the Stueckelberg mass term for Z', it might be evidence of the compositeness of Z'.
Composite-technicolor standard model
Sekhar Chivukula, B.; Georgi, Howard
1987-04-01
We characterize a class of composite models in which the quarks and leptons and technifermions are built from fermions (preons) bound by strong gauge interactions. We argue that if the preon dynamics has as [SU(3) × U(1)] 5 flavor symmetry that is explicitly broken only by preon mass terms proportional to the quark and lepton mass matrices, then the composite-tech-nicolor theory has a GIM mechanism that suppresses dangerous flavor changing neutral current effects. We show that the compositeness scale must be between ≈1 TeV and ≈2.5 TeV, giving rise to observable deviations from the standard electroweak interactions, and that B overlineB mixing and CP violation in K mesons can differ significantly from the standard model predictions. The lepton flavor symmetries may be observable in the near future in the comparison of the compositeness effects in e +e - → μ +μ - with those in e +e - → e +e -.
Light fermions in composite models
Khlebnikov, S. Yu.; Peccei, R. D.
1993-07-01
In preon models based on chiral gauge theories, we show that light composite fermions can ensue as a result of gauging a subset of preons in a vectorlike manner. After demonstrating how this mechanism works in a toy example, we construct a one-generation model of quarks which admits a hierarchy between the up and down quark masses as well as between these masses and the compositeness scale. In simple extensions of this model to more generations we discuss the challenges of obtaining any quark mixing. Some possible phenomenological implications of scenarios where quarks and leptons which are heavier are also less pointlike are also considered.
Light fermions in composite models
Khlebnikov, S Yu
1993-01-01
In preon models based on chiral gauge theories, we show that light composite fermions can ensue as a result of gauging a subset of preons in a vector-like manner. After demonstrating how this mechanism works in a toy example, we construct a one generation model of quarks which admits a hierarchy between the up and down quark masses as well as between these masses and the compositeness scale. In simple extensions of this model to more generations we discuss the challenges of obtaining any quark mixing. Some possible phenomenological implications of scenarios where quarks and leptons which are heavier are also less pointlike are also considered.
Meshfree modeling in laminated composites
Simkins, Daniel Craig
2012-09-27
A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.
Composite Model and CP Violation
Matsushima, Takeo
2007-01-01
A fermion-boson-type Composite Model is proposed. Elementary fields are only one kind of spin-1/2 and spin-0 {\\bf preon}. Both are in the global supersymmetric pair with the common electric charge of e/6 and belong to the fundamental representations of (3, 2, 2) under the spontaneously unbroken SU(3)_C\\otimes{SU(2)}_L^{h}\\otimes{SU(2)}_R^{h} gauge symmetry (h means hyper-color gauge). Preons are composed into subquarks which are intermediate clusters towards quarks and leptons. Weak interactions are residual ones of hyper-color gauge interactions. W-and Z-boson are also composite objects of subquarks, which introduces the idea of existence of their scalar partners (S) by hyper-fine-splitting whose masses would be around 110-120 GeV. The mechanism of making higher generations is obtained by adding neutral scalar subquark (y) composed of a preon-antipreon pair. Creation or annihilation of y inside quarks induces the coupling constants of flavor-mixing weak interactions which are all complex numbers (contrary to...
Exploring holographic Composite Higgs models
Croon, Djuna; Huber, Stephan J; Sanz, Veronica
2015-01-01
Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM5, to understand how far naive 4D predictions are from their 5D duals. Interestingly, we find that the usual hierarchy among the vector-like quarks is not generic, hence ameliorating the tuning issue. We also find that lowering the hierarchy of scales in the 5D picture allows for heavier top partners, while keeping the mass of the Higgs boson at its observed value. In the 4D dual this corresponds to increasing the number of colours N. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM5 with a small hierarchy of scales may not in ten...
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty examples from the literature. |
Adhesive joint and composites modeling in SIERRA.
Energy Technology Data Exchange (ETDEWEB)
Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III (.,; )
2005-11-01
Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.
Composite model with large mixing of neutrinos
Haba, N
1999-01-01
We suggest a simple composite model that induces the large flavor mixing of neutrino in the supersymmetric theory. This model has only one hyper-color in addition to the standard gauge group, which makes composite states of preons. In this model, {\\bf 10} and {\\bf 1} representations in SU(5) grand unified theory are composite states and produce the mass hierarchy. This explains why the large mixing is realized in the lepton sector, while the small mixing is realized in the quark sector. This model can naturally solve the atmospheric neutrino problem. We can also solve the solar neutrino problem by improving the model.
Contemplation on composite and string models
International Nuclear Information System (INIS)
Relations between composite models and string models are clarified. The subjects to discuss include 1) philosophy, 2) space-time, 3) matter, 4) symmetry, 5) dynamics, 6) principle, 7) predictions, 8) tests and 9) current and future problems. (author)
Modeling Composite Laminate Crushing for Crash Analysis
Fleming, David C.; Jones, Lisa (Technical Monitor)
2002-01-01
Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.
Composite Models of Quarks and Leptons.
Geng, Chaoqiang
1987-09-01
We review the various constraints on composite models of quarks and leptons. Some dynamical mechanisms for chiral symmetry breaking in chiral preon models are discussed. We have constructed several "realistic candidate" chiral preon models satisfying complementarity between the Higgs and confining phases. The models predict three to four generations of ordinary quarks and leptons.
Modelling of composite propellant properties
Keizers, H.L.J.; Hordijk, A.C.; Vliet, L.D. van; Bouquet, F.
2000-01-01
State-of-the-art composite propellants are based on solid particles (AP, Aluminium) in a polymeric HTPB based binder system. The usability of a propellant for a particular application is dependent on a large number of properties. These different properties sometimes result in contradictory requireme
Variational Asymptotic Micromechanics Modeling of Composite Materials
Tang, Tian
2008-01-01
The issue of accurately determining the effective properties of composite materials has received the attention of numerous researchers in the last few decades and continues to be in the forefront of material research. Micromechanics models have been proven to be very useful tools for design and analysis of composite materials. In the present work, a versatile micromechanics modeling framework, namely, the Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH), has been invented a...
Mathematical methods and models in composites
Mantic, Vladislav
2014-01-01
This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover
A Computational Model of Music Composition
Oberholtzer, Josiah W.
2015-01-01
This thesis documents my research into formalized score control, in order to demonstrate a computational model of music composition. When working computationally, models provide an explicit formal description of what objects exist within a given domain, how they behave, and what transformations they afford. The clearer the model becomes, the easier it is to extend and to construct increasingly higher-order abstractions around that model. In other words, a clear computational model of music no...
UV complete composite Higgs models
Agugliaro, Alessandro; Becciolini, Diego; De Curtis, Stefania; Redi, Michele
2016-01-01
We study confining gauge theories with fermions vectorial under the SM that produce a Higgs doublet as a Nambu-Goldstone boson. The vacuum misalignment required to break the electro-weak symmetry is induced by an elementary Higgs doublet with Yukawa couplings to the new fermions. The physical Higgs is a linear combination of elementary and composite Higgses while the SM fermions remain elementary. The full theory is renormalizable and the SM Yukawa couplings are generated from the ones of the elementary Higgs allowing to eliminate all flavour problems but with interesting effects for Electric Dipole Moments of SM particles. We also discuss how ideas on the relaxation of the electro-weak scale could be realised within this framework.
Virtual Composition of EMF Models
Clasen, Cauê; Jouault, Frédéric; Cabot, Jordi
2011-01-01
La composition de modèles est une tâche de modélisation très importante car elle permet de combiner différents points de vue d'un système (qui est représenté par divers modèles) en une seule vue spécialisée (un modèle composé). Plusieurs approches ont été proposées pour aborder ce problème, mais elles présentent d'importantes limitations concernant l'efficacité, l'interopérabilité, et/ou les problèmes de synchronisation (principalement en raison du mécanisme de clonage d'éléments utilisé pour...
Partially composite two-Higgs doublet model
Indian Academy of Sciences (India)
Dong-Won Jung
2007-11-01
In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive four-fermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale . The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.
Modelling the Crash Response of Composite Structures
Johnson, A.; Kohlgrüber, D.
1997-01-01
The paper describes recent progress on the materials modelling and numerical simulation of the dynamic crash response of fibre reinforced composite structures. The work is based on the application of explicit finite element analysis codes to composite aircraft structures and structural elements under low velocity impact conditions (up to 15 m/s). Structures studied are designed to absorb crash energy and reduce seat deceleration pulses in aircraft subfloor structures, and consist of an aircra...
Compositional and Quantitative Model Checking
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand
2010-01-01
on the existence of a quotient construction, allowing a property phi of a parallel system phi/A to be transformed into a sufficient and necessary quotient-property yolA to be satisfied by the component 13. Given a model checking problem involving a network Pi I and a property yo, the method gradually move (by...
The Composite OLAP-Object Data Model
Energy Technology Data Exchange (ETDEWEB)
Pourabbas, Elaheh; Shoshani, Arie
2005-12-07
In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.
Flavor and CP invariant composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-09-15
The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)
Yukawa Interaction from a SUSY Composite Model
Haba, N
1998-01-01
We present a composite model that is based on non-perturbative effects of N=1 supersymmetric SU(N_C) gauge theory with N_f=N_C+1 flavors. In this model, we consider N_C=7, where all matter fields in the supersymmetric standard model, that is, quarks, leptons and Higgs particles are bound states of preons and anti-preons. When SU(7)_H hyper-color coupling becomes strong, Yukawa couplings of quarks and leptons are generated dynamically. We show one generation model at first, and next we show models of three generations.
Standard-model coupling constants from compositeness
Besprosvany, J.
2003-01-01
A coupling-constant definition is given based on the compositeness property of some particle states with respect to the elementary states of other particles. It is applied in the context of the vector-spin-1/2-particle interaction vertices of a field theory, and the standard model. The definition reproduces Weinberg's angle in a grand-unified theory. One obtains coupling values close to the experimental ones for appropriate configurations of the standard-model vector particles, at the unifica...
Dark Matter constraints on composite Higgs models
Fonseca, Nayara; Funchal, Renata Zukanovich; Lessa, Andre; Lopez-Honorez, Laura
2015-06-01
In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) nature of the Higgs field is an interesting alternative for explaining the smallness of the electroweak scale with respect to the beyond the Standard Model scale. In non-minimal models additional pNGB states are present and can be a Dark Matter (DM) candidate, if there is an approximate symmetry suppressing their decay. Here we assume that the low energy effective theory (for scales much below the compositeness scale) corresponds to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We derive general effective DM Lagrangians for several possible DM representations (under the SM gauge group), including the singlet, doublet and triplet cases. Within this framework we discuss how the DM observables (relic abundance, direct and indirect detection) constrain the dimension-6 operators induced by the strong sector assuming that DM behaves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled through the freeze-out mechanism. We also apply our general results to two specific cosets: SO(6)/SO(5) and SO(6)/SO(4)×SO(2), which contain a singlet and doublet DM candidate, respectively. In particular we show that if compositeness is a solution to the little hierarchy problem, representations larger than the triplet are strongly disfavored. Furthermore, we find that composite models can have viable DM candidates with much smaller direct detection cross-sections than their non-composite counterparts, making DM detection much more challenging.
E6 inspired composite Higgs model
Nevzorov, R
2015-01-01
We consider a composite Higgs model embedded into a Grand Unified Theory(GUT) based on the E_6 gauge group. The phenomenological viability of this E_6 inspired composite Higgs model (E6CHM) implies that standard model (SM) elementary fermions with different baryon or lepton number should stem from different 27 representations of E_6. We present a six-dimensional orbifold GUT model in which the E_6 gauge symmetry is broken to the SM gauge group so that the appropriate splitting of the bulk 27-plets takes place. In this model the strongly coupled sector is localised on one of the branes and possesses an SU(6) global symmetry that contains the SU(3)_C\\times SU(2)_W\\times U(1)_Y subgroup. In this case the approximate gauge coupling unification can be attained if the right-handed top quark is a composite state and the elementary sector involves extra exotic matter beyond the SM which ensures anomaly cancellation. The breakdown of the approximate SU(6) symmetry at low energies in this model results in a set of the ...
Composite Higgs models, Dark Matter and Lambda
Diaz-Cruz, J Lorenzo
2009-01-01
We suggest that dark matter can be identified with a stable composite fermion X^0, that arises within the holographic AdS/CFT models, where the Higgs boson emerges as a composite pseudo-goldstone boson. The predicted properties of X^0 satisfies the cosmological bounds, with m_X = O(TeV). Thus, through a deeper understanding of the mechanism of electroweak symmetry breaking, a resolution of the Dark Matter enigma is found. Furthermore, by proposing a discrete structure of the Higgs vacuum, one can get a distinct approach to the cosmological constant problem.
Multi-scale modeling of composites
DEFF Research Database (Denmark)
Azizi, Reza
A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... behavior and the trapped free energy in the material, in addition to the plastic behavior in terms of the anisotropic development of the yield surface. It is shown that a generalization of Hill’s anisotropic yield criterion can be used to model the Bauschinger effect, in addition to the pressure and size...
Survey on Services Composition Synthesis Model
Directory of Open Access Journals (Sweden)
Ibrahima Kalil Toure
2013-01-01
Full Text Available Current web services development tools are more sophisticated though ease of use, which leverage the creation of more web services thereof. This is the fact that, web services are being created and updated frequently, this multiplication of web services cannot be easily controlled by human being because it is almost impossible to analyze them and generate the composition plan. Composition of web services is the issue of synthesizing a new composite web service, obtained by combining a set of available (component services, when a client request cannot be satisfied by available web services. To address this issue, three main models have been proposed as a solution. The OWL-S model, the Conversational model and the Roman model which is investigated here. In this paper, we propose a survey on the so-called Roman model and present the framework and all its extension. We also underline its drawback, shortcomings and some advantages, and then try to provide some research direction.
Composite dark matter from a model with composite Higgs boson
DEFF Research Database (Denmark)
Yu. Khlopov, Maxim; Kouvaris, Christoforos
2008-01-01
In a previous paper \\cite{Khlopov:2007ic}, we showed how the minimal walking technicolor model (WTC) can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a $^4He^{++}$. We studied the properties of these \\emph......{techni-O-helium} $tOHe$ "atoms", which behave as warmer dark matter rather than cold. In this paper we extend our work on several different aspects. We study the possibility of a mixed scenario where both $tOHe$ and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density....... We argue that these newly proposed bound states solely made of techniparticles, although they behave as Weakly Interacting Massive Particles (WIMPs), due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore we conclude that...
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio, E-mail: feruglio@pd.infn.it; Paradisi, Paride, E-mail: paride.paradisi@pd.infn.it [Sezione di Padova, Dipartimento di Fisica e Astronomia ‘G. Galilei’, INFN, Università di Padova, Via Marzolo 8, 35131, Padua (Italy); Pattori, Andrea, E-mail: pattori@physik.uzh.ch [Physik-Institut, Universität Zürich, 8057, Zurich (Switzerland)
2015-12-08
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ→e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis.
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio; Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padua (Italy); Pattori, Andrea [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland)
2015-12-15
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ → e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis. (orig.) 7.
A topological model of composite preons
Bilson-Thompson, S O
2005-01-01
We present a modification of the preon model proposed independently by Shupe and Harari. A basic dynamics is developed by treating the binding of preons as topological in nature and identifying the substructure of quarks, leptons and gauge bosons with elements of the braid group B_3. Topological considerations and a straightforward set of assumptions lead directly to behaviour consistent with much of the known phenomenology of the Standard Model. The preons of this model may be viewed as composite in nature, and composed of sub-preons, representing exactly two levels of substructure within quarks and leptons.
Standard-model coupling constants from compositeness
Besprosvany, J
2003-01-01
A coupling-constant definition is given based on the compositeness property of some particle states with respect to the elementary states of other particles. It is applied in the context of the vector-spin-1/2-particle interaction vertices of a field theory, and the standard model. The definition reproduces Weinberg's angle in a grand-unified theory. One obtains coupling values close to the experimental ones for appropriate configurations of the standard-model vector particles, at the unification scale within grand-unified models, and at the electroweak breaking scale.
FEM modelling of magnetostrictive composite materials
L.A. Dobrzański; A. Tomiczek; G. Dziatkiewicz
2012-01-01
Purpose: The paper presents a numerical model for the analysis of magnetostriction in composite materials in polymer matrix reinforced by Tb0.3Dy0.7Fe1.9 particles. The properties were determined by taking into account the applied stresses and magnetic field intensity.Design/methodology/approach: The finite element method for simulation the magnetostriction phenomenon was established by theoretical analysis based on experimental results.Findings: Thanks to the finite element method the numeri...
Body composition analysis: Cellular level modeling of body component ratios
Z. Wang; Heymsfield, S. B.; PI-SUNYER, F.X.; Gallagher, D.; PIERSON, R.N.
2008-01-01
During the past two decades, a major outgrowth of efforts by our research group at St. Luke’s-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growt...
Dark Matter Constraints on Composite Higgs Models
Fonseca, Nayara; Lessa, Andre; Lopez-Honorez, Laura
2015-01-01
In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) nature of the Higgs field is an interesting alternative for explaning the smallness of the electroweak scale with respect to the beyond the Standard Model scale. In non-minimal models additional pNGB states are present and can be a Dark Matter (DM) candidate, if there is an approximate symmetry suppressing their decay. Here we assume that the low energy effective theory (for scales much below the compositeness scale) corresponds to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We derive general effective DM Lagrangians for several possible DM representations (under the SM gauge group), including the singlet, doublet and triplet cases. Within this framework we discuss how the DM observables (relic abundance, direct and indirect detection) constrain the dimension-6 operators induced by the strong sector assuming that DM behaves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled through the free...
Combustion response modeling for composite solid propellants
1977-01-01
A computerized mathematical model of the combustion response function of composite solid propellants was developed with particular attention to the contributions of the solid phase heterogeneity. The one-dimensional model treats the solid phase as alternating layers of ammonium perchlorate and binder, with an exothermic melt layer at the surface. Solution of the Fourier heat equation in the solid provides temperature and heat flux distributions with space and time. The problem is solved by conserving the heat flux at the surface from that produced by a suitable model of the gas phase. An approximation of the BDP flame model is utilized to represent the gas phase. By the use of several reasonable assumptions, it is found that a significant portion of the problem can be solved in closed form. A method is presented by which the model can be applied to tetramodal particle size distributions. A computerized steady-state version of the model was completed, which served to validate the various approximations and lay a foundation for the combustion response modeling. The combustion response modeling was completed in a form which does not require an iterative solution, and some preliminary results were acquired.
Multilevel modelling of mechanical properties of textile composites: ITOOL Project
Van Den Broucke, Bjorn; Drechsler, Klaus; Hanisch, Vera; Hartung, Daniel; Ivanov, Dimitry S.; Koissin, Vitaly E.; Lomov, Stepan V.; Middendorf, Peter
2007-01-01
The paper presents an overview of the multi-level modelling of textile composites in the ITOOL project, focusing on the models of textile reinforcements, which serve as a basis for micromechanical models of textile composites on the unit cell level. The modelling is performed using finite element an
Multilevel modelling of mechanical properties of textile composites: ITOOL Project
Van Den Broucke, Bjorn; Drechsler, Klaus; Hanisch, Vera; Hartung, Daniel; Ivanov, Dimitry S.; Koissin, Vitaly E.; Lomov, Stepan V.; Middendorf, Peter
2007-01-01
The paper presents an overview of the multi-level modelling of textile composites in the ITOOL project, focusing on the models of textile reinforcements, which serve as a basis for micromechanical models of textile composites on the unit cell level. The modelling is performed using finite element analysis (FEA) or approximate methods (method of inclusions), which provide local stiffness and damage information to FEA of composite part on the macro-level.
Top partner searches and Composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Matsedonskyi, Oleksii [DESY Hamburg (Germany); Panico, Giuliano [Barcelona Univ. Autonoma (Spain). IFAE; Wulyer, Andrea [Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Padova (Italy)
2015-12-15
Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.
Top partner searches and Composite Higgs models
International Nuclear Information System (INIS)
Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.
Challenges for models with composite states
Cline, James M; Moore, Guy D
2016-01-01
Composite states of electrically charged and QCD-colored hyperquarks (HQs) in a confining SU(N_HC) hypercolor gauge sector are a plausible extension of the standard model at the TeV scale, and have been widely considered as an explanation for the tentative LHC diphoton excess. Additional new physics is required to avoid a stable charged hyperbaryon in such theories. We classify renormalizable models allowing the decay of this unwanted relic directly into standard model states, showing that they are significantly restricted if the new scalar states needed for UV completion are at the TeV scale. Alternatively, if hyperbaryon number is conserved, the charged relic can decay into a neutral hyperbaryon. Such theories are strongly constrained by direct detection, if the neutral constituent hyperquark carries color or weak isospin, and by LHC searches for leptoquarks if it is a color singlet. We show that the neutral hyperbaryon can have the observed relic abundance if the confinement scale and the hyperquark mass a...
Challenges for models with composite states
Cline, James M.; Huang, Weicong; Moore, Guy D.
2016-09-01
Composite states of electrically charged and QCD-colored hyperquarks (HQs) in a confining SU (NHC) hypercolor gauge sector are a plausible extension of the standard model at the TeV scale and have been widely considered as an explanation for the tentative LHC diphoton excess. Additional new physics is required to avoid a stable charged hyperbaryon in such theories. We classify renormalizable models allowing the decay of this unwanted relic directly into standard model states, showing that they are significantly restricted if the new scalar states needed for UV completion are at the TeV scale. Alternatively, if hyperbaryon number is conserved, the charged relic can decay into a neutral hyperbaryon. Such theories are strongly constrained by direct detection, if the neutral constituent hyperquark carries color or weak isospin, and by LHC searches for leptoquarks if it is a color singlet. We show that the neutral hyperbaryon can have the observed relic abundance if the confinement scale and the hyperquark mass are above TeV scale, even in the absence of any hyperbaryon asymmetry.
Scalar-Composite Model in 6 - 2\\epsilon Dimensions
Akama, K; Akama, Keiichi; Hattori, Takashi
2006-01-01
We study the model of a composite-scalar made of a pair of scalar fields in 6-2 epsilon dimensions, using equivalence to the renormalizable three-elementary-scalar model under the "compositeness condition." In this model, the composite-scalar field is induced by the quantum effects through the vacuum polarization of elementary-scalar fields with 2N species. We first investigate scale dependences of the coupling constant and masses, in the renormalizable three-elementary-scalar model, and derive the results for the composite model by imposing the compositeness condition. The model exhibits the formerly found general property that the coupling constant of the composite field is independent of the scale.
Fatigue damage modeling of composite structures: the onera viewpoint
Kaminski, M.; Laurin, F.; Maire, J.F.; Rakotoarisoa, C.; Hémon, E.
2015-01-01
International audience The aim of this paper is to present the fatigue damage modeling approach developed at ONERA for the fatigue life prediction of composite materials and structures. This paper is divided into five sections. The first one explains why the already developed and validated methods for fatigue life modeling of metals and alloys cannot be directly applied to composite materials. Thus, the proposal of an efficient fatigue model for composite materials necessitates a good unde...
A supersymmetric composite model of quarks and leptons
Luty, Markus A.; Mohapatra, Rabindra N.
1997-02-01
We present a class of supersymmetric models with complete generations of composite quarks and leptons using recent non-perturbative results for the low energy dynamics of supersymmetric QCD. In these models, the quarks arise as composite ``mesons'' and the leptons emerge as composite ``baryons''. The quark and lepton flavor symmetries are linked at the preon level. Baryon number violation is automatically suppressed by accidental symmetries. We give some speculations on how this model might be made realistic.
Computational Modeling and Impact Analysis of Textile Composite Structutres
Hur, Hae-Kyu
2006-01-01
This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems...
A Supersymmetric Composite Model of Quarks and Leptons
Luty, Markus A.; Mohapatra, Rabindra N.
1996-01-01
We present a class of supersymmetric models with complete generations of composite quarks and leptons using recent non-perturbative results for the low energy dynamics of supersymmetric QCD. In these models, the quarks arise as composite "mesons" and the leptons emerge as composite "baryons." The quark and lepton flavor symmetries are linked at the preon level. Baryon number violation is automatically suppressed by accidental symmetries. We give some speculations on how this model might be ma...
ACOUSTIC EMISSION MODEL WITH THERMOACTIVATIVE DESTRUCTION OF COMPOSITE MATERIAL SURFACE
Directory of Open Access Journals (Sweden)
Sergii Filonenko
2016-03-01
Full Text Available Modeling of acoustic emission energy during the composite material machining for termoactivativemodel of acoustic radiation is simulated. The regularities of resultant signals energy parameters change dependingon composite materials machining speed are determined. Obtained regularities with their statistical characteristicsare described. Sensitivity of acoustic emission energy parameters to the change of composite material machiningspeed is shown.
School Processes Mediate School Compositional Effects: Model Specification and Estimation
Liu, Hongqiang; Van Damme, Jan; Gielen, Sarah; Van Den Noortgate, Wim
2015-01-01
School composition effects have been consistently verified, but few studies ever attempted to study how school composition affects school achievement. Based on prior research findings, we employed multilevel mediation modeling to examine whether school processes mediate the effect of school composition upon school outcomes based on the data of 28…
Statistical Model of the 3-D Braided Composites Strength
Institute of Scientific and Technical Information of China (English)
XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun
2007-01-01
Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.
Survey of composite particle models of electroweak interaction
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Mahiko
1992-05-01
Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t{sub R}-quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, {sub t}{sub 2}/4{pi} = 0.1 for m{sub t} = 200 GeV, is too small for a coupling of a composite particle.
Model castings with composite surface layer - application
Directory of Open Access Journals (Sweden)
J. Szajnar
2008-10-01
Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.
Micromechanical modeling of strength and damage of fiber reinforced composites
Energy Technology Data Exchange (ETDEWEB)
Mishnaevsky, L. Jr.; Broendsted, P.
2007-03-15
The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)
Modeling Bistable Composite Laminates for Piezoelectric Morphing Structures
Murray, Darryl V.; Oliver J. Myers
2013-01-01
A sequential modeling effort for bistable composite laminates for piezoelectric morphing structures is presented. Thin unsymmetric carbon fiber composite laminates are examined for use of morphing structures using piezoelectric actuation. When cooling from the elevated cure temperature to room temperature, these unsymmetric composite laminates will deform. These postcure room temperature deformation shapes can be used as morphing structures. Applying a force to these deformed laminates will c...
A Plastic Damage Mechanics Model for Engineered Cementitious Composites
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe;
2007-01-01
This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...
A composite plasticity model for concrete
Feenstra, P.H.; Borst, R. de
1996-01-01
A composite yield function is used to describe the behavior of plain and reinforced concrete in biaxial stress under monotonic loading conditions. A Rankine yield criterion is used to monitor the in-plane tensile stresses and a Drucker Prager yield function controls the compressive stresses. A good
Multidimensional IRT Models for Composite Scores
Yen, Shu Jing; Walker, Leah
2007-01-01
Tests of English Language Proficiency are often designed such that each section of the test measures a single latent ability. For instance an English Proficiency Assessment might consist of sections measuring Speaking, Listening, and Reading ability. However, Overall English Proficiency and composite abilities are naturally multidimensional. This…
Blast Testing and Modelling of Composite Structures
DEFF Research Database (Denmark)
Giversen, Søren
, affecting for example the manoeuvrability and top speed negatively, which ultimately affects the safety of the personal in the vehicle. Strong and light materials, such as fibre reinforced composites, could therefore act as substitutes for the high strength steel, and minimize the impact on the vehicle...
A channel-based coordination model for component composition
Arbab, F.
2002-01-01
In this paper, we present $P epsilon omega$, a paradigm for composition of software components based on the notion of mobile channels. $P repsilon omega$ is a channel-based exogenous coordination model wherein complex coordinators, called {em connectors are compositionally built out of simpler ones.
Reo: A Channel-based Coordination Model for Component Composition
Arbab, F.
2004-01-01
In this paper, we present Reo, which forms a paradigm for composition of software components based on the notion of mobile channels. Reo is a channel-based exogenous coordination model in which complex coordinators, called connectors, are compositionally built out of simpler ones. The simplest conne
Imprints of Composite Higgs Models at e+e- Colliders
Barducci, Daniele; Moretti, Stefano; Pruna, Giovanni Marco
2015-01-01
We test the sensitivity of a future e+e- collider to composite Higgs scenarios encompassing partial compositeness. Besides the detailed study of the Higgs properties, such a machine will have a rich top-quark physics programme mainly in two domains: top property accurate determination at the $t \\bar t$ production threshold and search for New Physics with top quarks above it. In both domains, a composite Higgs scenario can manifest itself via sizable deviations in both cross-section and asymmetry observables. Herein we discuss such a possibility using a particular realisation, namely the 4-Dimensional Composite Higgs Model.
Energy Technology Data Exchange (ETDEWEB)
Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-11
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.
Modelling electrical properties of composite materials
Mårtensson, Eva
2003-01-01
Composite field grading materials are used to avoid stressconcentrations in high voltage applications such as cableaccessories and generator or motor end windings. The compositematerials consist of an insulating matrix filled with suitableconducting or semi-conducting particles. Silicon carbide (SiC)powder is one such filler that is being employed. The compositematerials display complex electrical characteristics that aredependent on filler properties, particle concentration,frequency and ele...
A double inclusion model for multiphase piezoelectric composites
Lin, Yirong; Sodano, Henry A.
2010-03-01
A novel active structural fiber (ASF; Lin and Sodano 2008 Compos. Sci. Technol. 68 1911-8) was developed that can be embedded in a composite material in order to perform sensing and actuation, in addition to providing load bearing functionality. In order to fully understand the electroelastic properties of the material, this paper will introduce a three-dimensional micromechanics model for estimating the effective electroelastic properties of the multifunctional composites with different design parameters. The three-dimensional model is formulated by extending the double inclusion model to multiphase composites with piezoelectric constituents. The double inclusion model has been chosen for the ASF studied here because it is designed to model composites reinforced by inclusions with multilayer coatings. The accuracy of our extended double inclusion model will be evaluated through a three-dimensional finite element analysis of a representative volume element of the ASF composite. The results will demonstrate that the micromechanics model developed here can very accurately predict the electroelastic properties of the multifunctional composites.
Supersymmetric Composite Models on Intersecting D-branes
Kitazawa, N
2004-01-01
We construct supersymmetric composite models of quarks and leptons from type IIA T^6/(Z_2 x Z_2) orientifolds with intersecting D6-branes. In case of T^6 = T^2 x T^2 x T^2 with no tilted T^2, a composite model of the supersymmetric SU(5) grand unified theory with three generations is constructed. In case of that one T^2 is tilted, a composite model with SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry with three generations is constructed. These models are not realistic, but contain fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The mu-term of Higgs fields can be naturally generated through the exponentially suppressed Yukawa interaction among "preons".
Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications.
Zhou, Xiang; Torabi, Mohsen; Lu, Jian; Shen, Ruiqi; Zhang, Kaili
2014-03-12
Nanotechnology has stimulated revolutionary advances in many scientific and industrial fields, particularly in energetic materials. Powder mixing is the simplest and most traditional method to prepare nanoenergetic composites, and preliminary findings have shown that these composites perform more effectively than their micro- or macro-sized counterparts in terms of energy release, ignition, and combustion. Powder mixing technology represents only the minimum capability of nanotechnology to boost the development of energetic material research, and it has intrinsic limitations, namely, random distribution of fuel and oxidizer particles, inevitable fuel pre-oxidation, and non-intimate contact between reactants. As an alternative, nanostructured energetic composites can be prepared through a delicately designed process. These composites outperform powder-mixed nanocomposites in numerous ways; therefore, we comprehensively discuss the preparation strategies adopted for nanostructured energetic composites and the research achievements thus far in this review. The latest ignition and reaction models are briefly introduced. Finally, the broad promising applications of nanostructured energetic composites are highlighted.
A Numerical Model for Torsion Analysis of Composite Ship Hulls
Directory of Open Access Journals (Sweden)
Ionel Chirica
2012-01-01
Full Text Available A new methodology based on a macroelement model proposed for torsional behaviour of the ship hull made of composite material is proposed in this paper. A computer program has been developed for the elastic analysis of linear torsion. The results are compared with the FEM-based licensed soft COSMOS/M results and measurements on the scale simplified model of a container ship, made of composite materials.
Physical and Model Uncertainty for Fatigue Design of Composite Material
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...... for linear damage accumulation. Test data analyzed are taken from the Optimat database [1] which is public available. The composite material tested within the Optimat project is normally used for wind turbine blades....
Coordination-theoretic approach to modelling grid service composition process
Institute of Scientific and Technical Information of China (English)
Meng Qian; Zhong Liu; Jing Wang; Li Yao; Weiming Zhang
2010-01-01
A grid service composite process is made up of complex coordinative activities.Developing the appropriate model of grid service coordinative activities is an important foundation for the grid service composition.According to the coordination theory,this paper elaborates the process of the grid service composition by using UML 2.0,and proposes an approach to modelling the grid service composition process based on the coordination theory.This approach helps not only to analyze accurately the task activities and relevant dependencies among task activities,but also to facilitate the adaptability of the grid service orchestration to further realize the connectivity,timeliness,appropriateness and expansibility of the grid service composition.
Compositional design and reuse of a generic agent model
Brazier, F.M.T.; Jonker, C.M.; Treur, J.
2000-01-01
This article introduces a formally specified design of a compositional generic agent model (GAM). This agent model abstracts from specific application domains; it provides a unified formal definition of a model for weak agenthood. It can be (re) used as a template or pattern for a large variety of a
Nonminimal t bar t models of composite Higgs bosons
International Nuclear Information System (INIS)
The relation between infrared-fixed point analysis and underlying fermion models of composite Higgs bosons is studied in a simple two-Higgs-doublet model and in a single-Higgs-doublet model with a singular interaction added. We examine how the infrared-fixed point analysis can be affected by a difference in fundamental interactions of constituents. 12 refs., 3 figs
Flavor Changing Neutral Currents in a Realistic Composite Technicolor Model
Carone, C D; Carone, Christopher D.; Hamilton, Rowan T.
1993-01-01
We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral $B$, $D$, and $K$ meson systems.
Derivation of Equivalent Material Models for Composite Laminated Materials
Directory of Open Access Journals (Sweden)
S. Gona
2009-09-01
Full Text Available In this paper, an original approach of derivation of equivalent electrical models for multilayer composite materials is presented. The purpose of the modeling is to approximate a given composite material by an equivalent dielectric slab or by a medium consisting from several dielectric layers. For each layer, an equivalent complex permittivity is set up by an optimization procedure in order to achieve the same values of reflection and transmission coefficients as are the measured values of reflection and transmission coefficients of the original composite material.
Computational modeling of failure in composite laminates
Van der Meer, F.P.
2010-01-01
There is no state of the art computational model that is good enough for predictive simulation of the complete failure process in laminates. Already on the single ply level controversy exists. Much work has been done in recent years in the development of continuum models, but these fail to predict t
A Local Composition Model for Paraffinic Solid Solutions
DEFF Research Database (Denmark)
Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar;
1996-01-01
The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd.......The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary...
Aggregation of Composite Solutions: strategies, models, examples
Levin, Mark Sh
2011-01-01
The paper addresses aggregation issues for composite (modular) solutions. A systemic view point is suggested for various aggregation problems. Several solution structures are considered: sets, set morphologies, trees, etc. Mainly, the aggregation approach is targeted to set morphologies. The aggregation problems are based on basic structures as substructure, superstructure, median/consensus, and extended median/consensus. In the last case, preliminary structure is built (e.g., substructure, median/consensus) and addition of solution elements is considered while taking into account profit of the additional elements and total resource constraint. Four aggregation strategies are examined: (i) extension strategy (designing a substructure of initial solutions as "system kernel" and extension of the substructure by additional elements); (ii) compression strategy (designing a superstructure of initial solutions and deletion of some its elements); (iii) combined strategy; and (iv) new design strategy to build a new s...
Edge impact modeling on stiffened composite structures
Ostré, Benjamin; Bouvet, Christophe; Minot, Clément; Aboissière, Jacky
2015-01-01
Finite Element Analysis of low velocity/low energy edge impact has been carried out on carbon fiber reinforced plastic structure. Edge impact experimental results were then compared to the numerical ‘‘Discrete Ply Model’’ in order to simulate the edge impact damage. This edge impact model is inspired to out-of-plan impact model on a laminate plate with addition of new friction and crushing behaviors. From a qualitative and quantitative point of view, this edge impact model reveals a relati...
A Review on the Mechanical Modeling of Composite Manufacturing Processes
DEFF Research Database (Denmark)
Baran, Ismet; Cinar, Kenan; Ersoy, Nuri;
2016-01-01
approaches. The process models as well as applications focusing on the prediction of residual stresses and shape distortions taking place in composite manufacturing are discussed in this study. The applications on both thermoset and thermoplastic based composites are reviewed in detail.......The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since...... the residual stresses alter the internal stress level of the composite part during the service life and the residual shape distortions may lead to not meeting the desired geometrical tolerances. The occurrence of residual stresses during the manufacturing process inherently contains diverse interactions...
Evaluation of Model Wheat/Hemp Composites
Directory of Open Access Journals (Sweden)
Ivan Švec
2014-02-01
Full Text Available Model cereal blends were prepared from commercial wheat fine flour and 5 samples of hemp flour (HF, including fine (2 of conventional form, 1 of organic form and wholemeal type (2 of conventional form. Wheat flour was substituted in 4 levels (5, 10, 15, 20%. HF addition has increased protein content independently on tested hemp flour form or type. Partial model cereal blends could be distinguished according to protein quality (Zeleny test values, especially between fine and wholemeal HF type. Both flour types affected also amylolytic activity, for which a relationship between hemp addition and determined level of Falling Number was confirmed for all five model cereal blends. Solvent retention capacity profiles (SRC of partial models were influenced by both HF form and type, as well as by its addition level. Between both mentioned groups of quality features, significant correlation were proved - relationships among protein content/quality and lactic acid SRC were verifiable on p <0.01 (-0.58, 0.91, respectively. By performed ANOVA, a possibility to distinguish the HF form used in model cereal blend according to the lactic acid SRC and the water SRC was demonstrated. Comparing partial cereal models containing fine and wholemeal hemp type, HF addition level demonstrated its impact on the sodium carbonate SRC and the water acid SRC. Normal 0 21 false false false CS JA X-NONE
Bayesian inference model for fatigue life of laminated composites
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian
2016-01-01
A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference....... The reference data used consists of constant-amplitude cycle test results for four laminates with different layup configurations. The paper describes the modeling techniques and the parameter estimation procedure, supported by an illustrative application....
Computational modeling and impact analysis of textile composite structures
Hur, Hae-Kyu
This study is devoted to the development of an integrated numerical modeling enabling one to investigate the static and the dynamic behaviors and failures of 2-D textile composite as well as 3-D orthogonal woven composite structures weakened by cracks and subjected to static-, impact- and ballistic-type loads. As more complicated modeling about textile composite structures is introduced, some of homogenization schemes, geometrical modeling and crack propagations become more difficult problems to solve. To overcome these problems, this study presents effective mesh-generation schemes, homogenization modeling based on a repeating unit cell and sinusoidal functions, and also a cohesive element to study micro-crack shapes. This proposed research has two: (1) studying behavior of textile composites under static loads, (2) studying dynamic responses of these textile composite structures subjected to the transient/ballistic loading. In the first part, efficient homogenization schemes are suggested to show the influence of textile architectures on mechanical characteristics considering the micro modeling of repeating unit cell. Furthermore, the structures of multi-layered or multi-phase composites combined with different laminar such as a sub-laminate, are considered to find the mechanical characteristics. A simple progressive failure mechanism for the textile composites is also presented. In the second part, this study focuses on three main phenomena to solve the dynamic problems: micro-crack shapes, textile architectures and textile effective moduli. To obtain a good solutions of the dynamic problems, this research attempts to use four approaches: (I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, (II) development of an efficient computational approach enabling one to perform transient
Modeling of Alternative Compositions of Recycled Wrought Aluminum Alloys
Kevorkijan, Varužan
2013-08-01
Nowadays, a significant part of postconsumed wrought aluminum scrap is still used for the production of comparatively cheaper cast alloys, in that way losing an important part of the potential added value. The share of postconsumed scrap in wrought aluminum alloys could be increased either by sorting to fractions with the required chemical composition and/or by broadening the standard compositional tolerance limits of alloying elements. The first solution requires hand or automatic sorting of postconsumed scrap as alloys or groups of alloys to the degree of separation sufficient to enable the blending of standard compositions of wrought alloys; the second solution is much more radical, predicting changes in the existing standards for wrought aluminum alloys toward nonstandard alloys but yet having properties acceptable for customers. In this case, the degree of separation of incoming postconsumed scrap required is much less demanding. The model presented in this work enables the design of optimal (standard and nonstandard recycling-friendly) compositions and properties of wrought aluminum alloys with significantly increased amounts of postconsumed scrap. The following two routes were modeled in detail: (I) the blending of standard and nonstandard compositions of wrought aluminum alloys starting from postconsumed aluminum scrap sorted to various degrees simulated by the model and (II) changing the initial standard composition of wrought aluminum alloys to nonstandard "recycling-friendly" ones, with broader concentration tolerance limits of alloying elements and without influencing the selected alloy properties, specified in advance. The applied algorithms were found to be very useful in the industrial design of both procedures: (I) the computation of the required chemical composition of the scrap streams obtained by sorting (or, in other words, the postconsumed scrap sorting level), necessary for achieving the standard wrought alloy composition and (II) the
Dust Composition in Climate Models: Current Status and Prospects
Pérez García-Pando, C.; Miller, R. L.; Perlwitz, J. P.; Kok, J. F.; Scanza, R.; Mahowald, N. M.
2015-12-01
Mineral dust created by wind erosion of soil particles is the dominant aerosol by mass in the atmosphere. It exerts significant effects on radiative fluxes, clouds, ocean biogeochemistry, and human health. Models that predict the lifecycle of mineral dust aerosols generally assume a globally uniform mineral composition. However, this simplification limits our understanding of the role of dust in the Earth system, since the effects of dust strongly depend on the particles' physical and chemical properties, which vary with their mineral composition. Hence, not only a detailed understanding of the processes determining the dust emission flux is needed, but also information about its size dependent mineral composition. Determining the mineral composition of dust aerosols is complicated. The largest uncertainty derives from the current atlases of soil mineral composition. These atlases provide global estimates of soil mineral fractions, but they are based upon massive extrapolation of a limited number of soil samples assuming that mineral composition is related to soil type. This disregards the potentially large variability of soil properties within each defined soil type. In addition, the analysis of these soil samples is based on wet sieving, a technique that breaks the aggregates found in the undisturbed parent soil. During wind erosion, these aggregates are subject to partial fragmentation, which generates differences on the size distribution and composition between the undisturbed parent soil and the emitted dust aerosols. We review recent progress on the representation of the mineral and chemical composition of dust in climate models. We discuss extensions of brittle fragmentation theory to prescribe the emitted size-resolved dust composition, and we identify key processes and uncertainties based upon model simulations and an unprecedented compilation of observations.
A compositional modelling framework for exploring MPSoC systems
DEFF Research Database (Denmark)
Tranberg-Hansen, Anders Sejer; Madsen, Jan
2009-01-01
This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried out...... throughout all design phases ranging from early functional specification to actual cycle accurate and bit true descriptions of the system. This is possible, because a seamless refinement of models is supported by allowing the existence of models described at multiple levels of abstraction to co...
A Material Model for FE-Simulation of UD Composites
Fischer, Sebastian
2016-04-01
Composite materials are being increasingly used for industrial applications. CFRP is particularly suitable for lightweight construction due to its high specific stiffness and strength properties. Simulation methods are needed during the development process in order to reduce the effort for prototypes and testing. This is particularly important for CFRP, as the material is costly. For accurate simulations, a realistic material model is needed. In this paper, a material model for the simulation of UD-composites including non-linear material behaviour and damage is developed and implemented in Abaqus. The material model is validated by comparison with test results on a range of test specimens.
Flavor changing neutral currents in a realistic composite technicolor model
Carone, Christopher D.; Hamilton, Rowan T.
1993-03-01
We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral K, B, and D meson systems. Notably, we find that this model gives rise to a typical value for {ɛ‧}/{ɛ} that is much smaller than most standard model estimates.
Simplified Analysis Model for Predicting Pyroshock Responses on Composite Panel
Iwasa, Takashi; Shi, Qinzhong
A simplified analysis model based on the frequency response analysis and the wave propagation analysis was established for predicting Shock Response Spectrum (SRS) on the composite panel subjected to pyroshock loadings. The complex composite panel was modeled as an isotropic single layer panel defined in NASA Lewis Method. Through the conductance of an impact excitation test on a composite panel with no equipment mounted on, it was presented that the simplified analysis model could estimate the SRS as well as the acceleration peak values in both near and far field in an accurate way. In addition, through the simulation for actual pyroshock tests on an actual satellite system, the simplified analysis model was proved to be applicable in predicting the actual pyroshock responses, while bringing forth several technical issues to estimate the pyroshock test specifications in early design stages.
Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis
Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.
2015-06-01
This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.
An orthotropic damage model for crash simulation of composites
Wang, W.; Swartjes, F.H.M.; Gan, M.D.
2006-01-01
In this paper, a practical orthotropic damage model is developed and tested for composite materials during crash. The model uses the Hashin's failure criteria in which the fibre and matrix failures are described explicitly, both in tension and compression. A linear softening degradation is proposed
Implications of a Light Higgs in Composite Models
Redi, Michele
2012-01-01
We study the Higgs mass in composite Higgs models with partial compositeness, extending the results of Ref. [1] to different representations of the composite sector for SO(5)/SO(4) and to the coset SO(6)/SO(5). For a given tuning we find in general a strong correlation between the mass of the top partners and the Higgs mass, akin to the one in supersymmetry. If the theory is natural a Higgs mass of 125 GeV typically requires fermionic partners below TeV which might be within the reach of the present run of LHC. A discussion of CP properties of both cosets is also presented.
Regional atmospheric composition modeling with CHIMERE
Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; Mailler, S.; Meleux, F.; Monge, J.-L.; Pison, I.; Turquety, S.; Valari, M.; Vautard, R.; Vivanco, M. G.
2013-01-01
Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources), stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM). The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.
Regional atmospheric composition modeling with CHIMERE
Directory of Open Access Journals (Sweden)
L. Menut
2013-01-01
Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, velocity and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative importance to the pollutants budgets can be quantified within a chemistry-transport models (CTM. The offline CTM CHIMERE model uses meteorological model fields and emissions fluxes and calculates deterministically their behavior in the troposphere. The calculated three-dimensional fields of chemical concentrations can be compared to measurements to analyze past periods or used to make air quality forecasts and CHIMERE has enabled a fine understanding of pollutants transport during numerous measurements campaigns. It is a part of the PREVAIR french national forecast platform, delivering pollutant concentrations up to three days in advance. The model also allows scenario studies and long term simulations for pollution trends. The modelling of photochemical air pollution has reached a good level of maturity, and the latest projects involving CHIMERE now aim at increasing our understanding of pollution impact on health at the urban scale or at the other end of the spectrum for long term air quality and climate change interlinkage studies, quantifying the emissions and transport of pollen, but also, at a larger scale, analyzing the transport of pollutants plumes emitted by volcanic eruptions and forest fires.
Asymptotic curved interface models in piezoelectric composites
Serpilli, Michele
2016-10-01
We study the electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic shell-like thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic analysis in a general curvilinear framework. After defining a small real dimensionless parameter ε, which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong piezoelectric curved interface models, respectively. Moreover, we identify the non-classical electromechanical transmission conditions at the interface between the two three-dimensional bodies.
Violation of lepton flavour universality in composite Higgs models
Niehoff, Christoph; Straub, David M
2015-01-01
We investigate whether the the $2.6\\sigma$ deviation from lepton flavour universality in $B^+\\to K^+\\ell^+\\ell^-$ decays recently observed at the LHCb experiment can be explained in minimal composite Higgs models. We show that a visible departure from universality is indeed possible if left-handed muons have a sizable degree of compositeness. Constraints from $Z$-pole observables are avoided by a custodial protection of the muon coupling.
Using UML to Model Web Services for Automatic Composition
Directory of Open Access Journals (Sweden)
Amal Elgammal
2010-07-01
Full Text Available There is a great interest paid to the web services paradigm nowadays. One of the most important problems related to the web service paradigm is the automatic composition of web services. Several frameworks have been proposed to achieve this novel goal. The most recent and richest framework (model is the Colombo model. However, even for experienced developers, working with Colombo formalisms is low-level, very complex and timeconsuming. We propose to use UML (Unified Modeling Language to model services and service composition in Colombo. By using UML, the web service developer will deal with the high level graphical models of UML avoiding the difficulties of working with the low-level and complex details of Colombo. To be able to use Colombo automatic composition algorithm, we propose to represent Colombo by a set of related XML document types that can be a base for a Colombo language. Moreover, we propose the transformation rules between UML and Colombo proposed XML documents. Next Colombo automatic composition algorithm can be applied to build a composite service that satisfies a given user request. A prototypical implementation of the proposed approach is developed using Visual Paradigm for UML.
Geochemical modelling baseline compositions of groundwater
DEFF Research Database (Denmark)
Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard;
2008-01-01
Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwater...
Loss of accuracy using smeared properties in composite beam modeling
Liu, Ning
Advanced composite materials have broad, proven applications in many engineering systems ranging from sports equipment sectors to components on the space shuttle because of their lightweight characteristics and significantly high stiffness. Together with this merit of composite materials is the challenge of improving computational simulation process for composites analysis. Composite structures, particularly composite laminates, usually consist of many layers with different lay-up angles. The anisotropic and heterogeneous features render 3D finite element analysis (FEA) computationally expensive in terms of the computational time and the computing power. At the constituent level, composite materials are heterogeneous. But quite often one homogenizes each layer of composites, i.e. lamina, and uses the homogenized material properties as averaged (smeared) values of those constituent materials for analysis. This is an approach extensively used in design and analysis of composite laminates. Furthermore, many industries tempted to use smeared properties at the laminate level to further reduce the model of composite structures. At this scale, smeared properties are averaged material properties that are weighted by the layer thickness. Although this approach has the advantage of saving computational time and cost of modeling significantly, the prediction of the structural responses may not be accurate, particularly the pointwise stress distribution. Therefore, it is important to quantify the loss of accuracy when one uses smeared properties. In this paper, several different benchmark problems are carefully investigated in order to exemplify the effect of the smeared properties on the global behavior and pointwise stress distribution of the composite beam. In the classical beam theory, both Newtonian method and variational method include several ad hoc assumptions to construct the model, however, these assumptions are avoided if one uses variational asymptotic method. VABS
Modeling of composite piezoelectric structures with the finite volume method.
Bolborici, Valentin; Dawson, Francis P; Pugh, Mary C
2012-01-01
Piezoelectric devices, such as piezoelectric traveling- wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, at least one of which is a piezoelectric transducer. Piezoelectric structures have mainly been numerically modeled using the finite element method. An alternative approach based on the finite volume method offers the following advantages: 1) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits; and 2) phenomena occurring at boundaries can be treated exactly. This paper presents a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures modeled with the finite volume method. The paper concludes with a modeling example of a unimorph structure. PMID:22293746
Composite bone models in orthopaedic surgery research and education.
Elfar, John; Menorca, Ron Martin Garcia; Reed, Jeffrey Douglas; Stanbury, Spencer
2014-02-01
Composite bone models are increasingly used in orthopaedic biomechanics research and surgical education-applications that traditionally relied on cadavers. Cadaver bones are suboptimal for many reasons, including issues of cost, availability, preservation, and inconsistency between specimens. Further, cadaver samples disproportionately represent the elderly, whose bone quality may not be representative of the greater orthopaedic population. The current fourth-generation composite bone models provide an accurate reproduction of the biomechanical properties of human bone when placed under bending, axial, and torsional loads. The combination of glass fiber and epoxy resin components into a single phase has enabled manufacturing by injection molding. The high level of anatomic fidelity of the cadaver-based molds and negligible shrinkage properties of the epoxy resin results in a process that allows for excellent definition of anatomic detail in the cortical wall and optimized consistency of features between models. Recent biomechanical studies of composites have validated their use as a suitable substitute for cadaver specimens. PMID:24486757
Consistent Static Models of Local Thermospheric Composition Profiles
Picone, J M; Drob, D P
2016-01-01
The authors investigate the ideal, nondriven multifluid equations of motion to identify consistent (i.e., truly stationary), mechanically static models for composition profiles within the thermosphere. These physically faithful functions are necessary to define the parametric core of future empirical atmospheric models and climatologies. Based on the strength of interspecies coupling, the thermosphere has three altitude regions: (1) the lower thermosphere (herein z ~200 km), in which the species flows are approximately uncoupled; and (3) a transition region in between, where the effective species particle mass and the effective species vertical flow interpolate between the solutions for the upper and lower thermosphere. We place this view in the context of current terminology within the community, i.e., a fully mixed (lower) region and an upper region in diffusive equilibrium (DE). The latter condition, DE, currently used in empirical composition models, does not represent a truly static composition profile ...
Mechanical validation of whole bone composite femur models.
Cristofolini, L; Viceconti, M; Cappello, A; Toni, A
1996-04-01
Composite synthetic models of the human femur have recently become commercially available as substitutes for cadaveric specimens. Their quick diffusion was justified by the advantages they offer as a substitute for real femurs. The present investigation concentrated on an extensive experimental validation of the mechanical behaviour of the whole bone composite model, compared to human fresh-frozen and dried-rehydrated specimens for different loading conditions. First, the viscoelastic behaviour of the models was investigated under simulated single leg stance loading, showing that the little time dependent phenomena observed tend to extinguish within a few minutes of the load application. The behaviour under axial loading was then studied by comparing the vertical displacement of the head as well as the axial strains, by application of a parametric descriptive model of the strain distribution. Finally, a four point bending test and a torsional test were performed to characterize the whole bone stiffness of the femur. In all these tests, the composite femurs were shown to fall well within the range for cadaveric specimens, with no significant differences being detected between the synthetic femurs and the two groups of cadaveric femurs. Moreover, the interfemur variability for the composite femurs was 20-200 times lower than that for the cadaveric specimens, thus allowing smaller differences to be characterized as significant using the same simple size, if the composite femurs are employed. PMID:8964782
Composite two-Higgs model with dynamical CP-violation
Andrianov, A A; Yudichev, V L
1996-01-01
Quark models with four-fermion interaction including derivatives of fields are exploited as prototypes for composite-Higgs extensions of the Standard Model. In the non-trivial case of two- and four-derivative insertions the dynamical breaking of chiral symmetry occurs in two channels, giving rise to two composite Higgs doublets. For special configuration of four-fermion coupling constants the dynamical CP-violation in the Higgs sector appears as a result of complexity of two v.e.v. for Higgs doublets. In this scenario the second Higgs doublet is regarded as a radial excitation of the first one.
Finite elements modeling of delaminations in composite laminates
DEFF Research Database (Denmark)
Gaiotti, m.; Rizzo, C.M.; Branner, Kim;
2011-01-01
.e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...... of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled...
Micromechanical modeling of unidirectional composites with uneven interfacial strengths
DEFF Research Database (Denmark)
Ashouri Vajari, Danial; Legarth, Brian Nyvang; Niordson, Christian Frithiof
2013-01-01
Composite materials under loads normal to the fiber orientation often fail due to debonding between fibers and matrix. In this paper a micromechanical model is developed to study the interfacial and geometrical effects in fiber-reinforced composites using generalized plane strain by means......, a trapezoidal cohesive zone model is used. A parametric study is carried out to evaluate the influence of the interfacial properties, fiber position and fiber volume fraction on the overall stressestrain response as well as the end-crack opening displacement and the opening crack angle. All the results...
Modeling of Moisture Diffusion in Carbon Braided Composites
Directory of Open Access Journals (Sweden)
S. Laurenzi
2008-01-01
Full Text Available In this study, we develop a methodology based on finite element analysis to predict the weight gain of carbon braided composite materials exposed to moisture. The analysis was based on the analogy between thermal conduction and diffusion processes, which allowed for a commercial code for finite element analysis to be used. A detailed finite element model using a repetitive unit cell (RUC was developed both for bundle and carbon braided composites. Conditioning tests were performed to estimate the diffusivity of both the resin and composite. When comparing numerical and experimental results, it was observed that the procedure introduces an average error of 20% and a maximum error of 31% if the RUC is assumed to be isotropic. On the other hand, the average error does not exceed 10% and the maximum error is less than 20% when the material is considered as orthotropic. The procedure is independent of the particular fiber architecture and can be extended to other composites.
Search Strategies for Top Partners in Composite Higgs models
Gripaios, Ben; Parker, M A; Sutherland, Dave
2014-01-01
We consider how best to search for top partners in generic composite Higgs models. We begin by classifying the possible group representations carried by top partners in models with and without a custodial $SU(2)\\times SU(2) \\rtimes \\mathbb{Z}_2$ symmetry protecting the rate for $Z \\rightarrow b\\overline{b}$ decays. We identify a number of minimal models whose top partners only have electric charges of $\\frac{1}{3}, \\frac{2}{3},$ or $\\frac{4}{3}$ and thus decay to top or bottom quarks via a single Higgs or electroweak gauge boson. We develop an inclusive search for these based on a top veto, which we find to be more effective than existing searches. Less minimal models feature light states that can be sought in final states with like-sign leptons and so we find that 2 straightforward LHC searches give a reasonable coverage of the gamut of composite Higgs models.
Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling
Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.
2015-01-01
Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on
Composite Panel Postbuckling Behavior and General Model of Joints in Composite Structures
Zamula, G. N.; Kutinov, V. F.; Vasilyev, V. V.; Grishin, V. I.; Ierusalimsky, K. M.; Azikov, N. S.; Begeyev, T. K.
1996-01-01
The present paper is a final technical report on the research programme NCCW-73 accomplished within co-operation between NASA of the USA and GOSKOMOBORONPROM of Russia in the field of aeronautics. The report contains basic results of studies in two areas, 'Analysis of postbuckling behavior of composite panels' and 'Development of general model of joints in composite structures'; these results were obtained in conformity with requirements of NCCW-73. In addition, consideration is given to some related issues, and proposals for further studies are formulated.
Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling
Directory of Open Access Journals (Sweden)
B. Novotný
2000-01-01
Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.
A conjugate thermo-electric model for a composite medium.
Chávez, Oscar; Godínez, Francisco A; Beltrán, Alberto; García, Armando; Zenit, Roberto
2014-01-01
Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests. PMID:24867618
A conjugate thermo-electric model for a composite medium.
Directory of Open Access Journals (Sweden)
Oscar Chávez
Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.
Modeling transport properties of inhomogeneous superconductor-metal composites
Energy Technology Data Exchange (ETDEWEB)
Borroto, A.; Altshuler, E., E-mail: ealtshuler@fisica.uh.cu [Superconductivity Laboratory and “Henri Poincarè” Group of Complex Systems, Physics Faculty-IMRE, University of Havana, 10400 Havana (Cuba); Del Río, L. [Superconductivity Laboratory and “Henri Poincarè” Group of Complex Systems, Physics Faculty-IMRE, University of Havana, 10400 Havana (Cuba); Physics Department, McGill University, Montreal, Quebec H3A 2T8 (Canada); Arronte, M. [BRALAX, S. de RL., Tampico, Tamaulipas (Mexico); Technological Laser Laboratory, IMRE, University of Havana, 10400 Havana (Cuba); Johansen, T. H. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, 0316 Oslo (Norway); Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)
2014-11-17
We propose a model for a superconductor-metal composite that allows to derive intrinsic transport properties of the superconducting phase based on 2D images of its cross section, and a minimal set of parameters. The method is tested experimentally by using, as model composite, a “transversal bridge” made on a Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x} (BSCCO)-Ag multi-filamentary tape. It is shown that the approach allows to predict the measured I−〈E〉 curves of the filaments. In addition, one can determine the critical current anisotropy between the longitudinal and transverse directions of the Ag-BSCCO tape, and also of its superconducting filaments separately, which emphasizes the role of the morphology of the composite in the transport properties.
Physiological models of body composition and human obesity
Directory of Open Access Journals (Sweden)
Shapses Sue A
2007-09-01
Full Text Available Abstract Background The body mass index (BMI is the standard parameter for predicting body fat fraction and for classifying degrees of obesity. Currently available regression equations between BMI and fat are based on 2 or 3 parameter empirical fits and have not been validated for highly obese subjects. We attempt to develop regression relations that are based on realistic models of body composition changes in obesity. These models, if valid, can then be extrapolated to the high fat fraction of the morbidly obese. Methods The analysis was applied to 3 compartment (density and total body water measurements of body fat. The data was collected at the New York Obesity Research Center, Body Composition Unit, as part of ongoing studies. A total of 1356 subjects were included, with a BMI range of 17 to 50 for males and 17 to 65 for females. The body composition model assumes that obese subjects can be represented by the sum of a standard lean reference subject plus an extra weight that has a constant adipose, bone and muscle fraction. Results There is marked age and sex dependence in the relationship between BMI and fat fraction. There was no significant difference among Caucasians, Blacks and Hispanics while Asians had significantly greater fat fraction for the same BMI. A linear relationship between BMI and fat fraction provides a good description for men but overestimates the fat fraction in morbidly obese women for whom a non-linear regression should be used. New regression relations for predicting body fat just from experimental measurements of body density are described that are more accurate then those currently used. From the fits to the experimental BMI and density data, a quantitative description of the bone, adipose and muscle body composition of lean and obese subjects is derived. Conclusion Physiologically realistic models of body composition provide both accurate regression relations and new insights about changes in body composition in
Recent developments in the modeling of composite structures
Energy Technology Data Exchange (ETDEWEB)
Reddy, J.N.; Robbins, D.H. Jr. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering
1996-10-01
The paper deals with an overview of the theories and the recent research of the authors on the variable kinematic modeling of laminated composite structures. A review of the computational models based on equivalent single-layer assumptions and layerwise expansions is presented, and the variable kinematic finite element model developed by the authors is discussed and sample applications are presented. The displacement field hierarchy included in the model may contain both conventional equivalent single-layer and full layerwise expansions. Depending on the accuracy desired, the variable kinematic finite element can use various terms from the composite displacement field, thus creating a hierarchy of different elements having a wide range of kinematic complexity and representing a number of different plate theories. Since the resulting model is hierarchic, the different element types can easily be connected together in the same computational domain to permit simultaneous multiple model analysis. The resulting model is used to analyze a number of laminated composite plate problems that contain localized subregions where significant 3-D stress fields exist (e.g., free edge effects).
Application of standards and models in body composition analysis.
Müller, Manfred J; Braun, Wiebke; Pourhassan, Maryam; Geisler, Corinna; Bosy-Westphal, Anja
2016-05-01
The aim of this review is to extend present concepts of body composition and to integrate it into physiology. In vivo body composition analysis (BCA) has a sound theoretical and methodological basis. Present methods used for BCA are reliable and valid. Individual data on body components, organs and tissues are included into different models, e.g. a 2-, 3-, 4- or multi-component model. Today the so-called 4-compartment model as well as whole body MRI (or computed tomography) scans are considered as gold standards of BCA. In practice the use of the appropriate method depends on the question of interest and the accuracy needed to address it. Body composition data are descriptive and used for normative analyses (e.g. generating normal values, centiles and cut offs). Advanced models of BCA go beyond description and normative approaches. The concept of functional body composition (FBC) takes into account the relationships between individual body components, organs and tissues and related metabolic and physical functions. FBC can be further extended to the model of healthy body composition (HBC) based on horizontal (i.e. structural) and vertical (e.g. metabolism and its neuroendocrine control) relationships between individual components as well as between component and body functions using mathematical modelling with a hierarchical multi-level multi-scale approach at the software level. HBC integrates into whole body systems of cardiovascular, respiratory, hepatic and renal functions. To conclude BCA is a prerequisite for detailed phenotyping of individuals providing a sound basis for in depth biomedical research and clinical decision making. PMID:26541411
FibreChain: characterization and modeling of thermoplastic composites processing
Rietman, A.D.; Niazi, M.S.; Akkerman, R.; Lomov, S.V.
2013-01-01
Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of thermopl
Modeling of Heat Transfer and Solidification of Composite Roll
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Modeling of heat transfer and solidification of composite roll was established and used to predict the thermal history and solidification process of roll during spray forming. Evolution of temperature field of the preform and cooling rate in the growing deposit during spray deposition and post-deposition were numerically simulated.
Extended propagation model for interfacial crack in composite material structure
Institute of Scientific and Technical Information of China (English)
闫相桥; 冯希金
2002-01-01
An interfacial crack is a common damage in a composite material structure . An extended propaga-tion model has been established for an interfacial crack to study the dependence of crack growth on the relativesizes of energy release rates at left and right crack tips and the properties of interfacial material characterize thegrowth of interfacial crack better.
Experimental Support for a Categorical Compositional Distributional Model of Meaning
Grefenstette, Edward
2011-01-01
Modelling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. We implement the abstract categorical model of Coecke et al. (arXiv:1003.4394v1 [cs.CL]) using data from the BNC and evaluate it. The implementation is based on unsupervised learning of matrices for relational words and applying them to the vectors of their arguments. The evaluation is based on the word disambiguation task developed by Mitchell and Lapata (2008) for intransitive sentences, and on a similar new experiment designed for transitive sentences. Our model matches the results of its competitors in the first experiment, and betters them in the second. The general improvement in results with increase in syntactic complexity showcases the compositional power of our model.
A study of composite models at LEP with ALEPH
International Nuclear Information System (INIS)
Tests of composite models are performed in e+ e- collisions in the vicinity of the Z0 pole using the ALEPH detector. Two kinds of substructure effects are searched for: deviations of differential cross section for reactions e+ e- → l+ l- and e+ e- → γ γ from standard model predictions, and direct search for excited neutrino. A new interaction, parametrized by a 4-fermion contact term, cell, is studied in lepton pair production reactions, assuming different chiralities of the currents. Lower limits on the compositeness scale Λ are obtained by fitting model predictions to the data. They are in the range from 1 to a few TeV depending on model and lepton flavour. Researches for the lightest excited particle that could be the excited neutrino, are presented
Composite modelling of interactions between beaches and structures
DEFF Research Database (Denmark)
Gerritsen, Herman; Sutherland, James; Deigaard, Rolf;
2011-01-01
An overview of Composite Modelling (CM) is presented, as elaborated in the EU/HYDRALAB joint research project Composite Modelling of the Interactions Between Beaches and Structures. An introduction and a review of the main literature on CM in the hydraulic community are given. In Section 3......, the case studies of CM of the seven partners participating in this project are discussed. The focus is on the methodologies used and their impact on the modelling approach, rather than the results of the experiments per se. A further section presents reflections on key elements in CM, as they emerged...... in the various case studies. The related subject of Good Modelling Practice is summarized in Section 5. Then guidelines are given on how to decide if CM may be beneficial, and how to set up a CM experiment. It is concluded that CM in the hydraulic community is still in its infancy but involves challenging...
Finite element modeling of consolidation of composite laminates
Institute of Scientific and Technical Information of China (English)
Xiangqiao Yan
2006-01-01
Advanced fiber reinforced polymer composites have been increasingly applied to various structural corn-ponents.One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up.Since the quality of laminated composites is largely affected by the cure cycle,selection of an appropriate cure cycle for each application is important and must be opti-mized.Thus.some fundamental model of the consolidation and cure processes is necessary for selecting suitable param-eters for a specific application.This article is concerned with the "flow-compaction" model during the autoclave process-ing of composite materials.By using a weighted residual method,two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed.Numerical examples.including comparison of the present numerical results with one-dimensional and two-dimensional analytical solutions,are given to illustrate the accuracy and effectiveness of the proposed finite element formulation.In addition,a consolidation simulation of As4/3501-6 graphite/epoxy laminate is carried out and compared with the experimental results available in the literature.
Modelling Impact Damage in Sandwich Structures with Folded Composite Cores
Johnson, Alastair; Kilchert, Sebastian
2010-01-01
The paper describes FE simulation methods for novel folded structural composite cores being developed for sandwich structures with enhanced performance for use in aircraft fuselage and wing primary structures. To support these materials and structural developments, computational methods were developed in the EU project CELPACT based on micromechanics cell models of the core with multiscale FE modelling techniques for understanding progressive damage and collapse mechanisms. The paper discusse...
Second quantization approach to composite hadron interactions in quark models
Hadjimichef, D.; Krein, G.; Szpigel, S.; da Veiga, J. S.
1995-01-01
Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonia...
A low composite scale preon model with complementarity
Geng, C. Q.; Marshak, R. E.
1987-12-01
We have constructed the first “realistic candidate” preon model with low composite scale satisfying complementarity between the Higgs and confining phases. The model is based on SU(4) metacolor and predicts four generations of ordinary quarks and leptons together with heavy neutrinos at the level of the standard gauge group SU(3) c × SU(2) L × U(1) Y . There are no exotic massless fermions. The global family group is SU(2)× U(1).
Modeling of carbon nanotubes, graphene and their composites
Silvestre, Nuno
2014-01-01
This book contains ten chapters, authored by world experts in the field of simulation at nano-scale and aims to demonstrate the potentialities of computational techniques to model the mechanical behavior of nano-materials, such as carbon nanotubes, graphene and their composites. A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes, graphene and their applications. In this process, computational modeling is a very attractive research tool due to the difficulties in manufacturing and testing of nano-materials. Both atomistic modeling methods, such as molecular mechanics and molecular dynamics, and continuum modeling methods are being intensively used. Continuum modeling offers significant advantages over atomistic modeling such as the reduced computational effort, the capability of modeling complex structures and bridging different analysis scales, thus enabling modeling from the nano- to the macro-scale. On the oth...
Context-aware Workflow Model for Supporting Composite Workflows
Institute of Scientific and Technical Information of China (English)
Jong-sun CHOI; Jae-young CHOI; Yong-yun CHO
2010-01-01
-In recent years,several researchers have applied workflow technologies for service automation on ubiquitous computing environments.However,most context-aware oprkflows do not offer a method to compose several workflows in order to get more large-scale or complicated workflow.They only provide a simple workflow model,not a composite workflow model.In this paper,the autorhs propose a context-aware worrkflow model to support composite workflows by expanding the patterns of the existing context-aware workflows,which support the basic workflow patterns.The suggested worklow modei offers composite workflow patterns for a context-aware workflow,which consists of various flow patterns,such as simple,split,parallel flows,and subflow.With the suggested model,the model can easily reuse few of existing workflows to make a new workflow.As a result,it can save the development efforts and time of cantext-aware workflows and increase the workflow reusability.Therefore,the suggested model is expected to make it easy to develop applications related to context-aware workflow services on ubiquitous computing environments.
New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization
Energy Technology Data Exchange (ETDEWEB)
2015-09-01
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.
Silkworm cocoons inspire models for random fiber and particulate composites
Chen, Fujia; Porter, David; Vollrath, Fritz
2010-10-01
The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.
Compositional Abstraction of PEPA Models for Transient Analysis
DEFF Research Database (Denmark)
Smith, Michael James Andrew
2010-01-01
Stochastic process algebras such as PEPA allow complex stochastic models to be described in a compositional way, but this leads to state space explosion problems. To combat this, there has been a great deal of work in developing techniques for abstracting Markov chains. In particular, abstract - or...... explicitly. In this paper, we present a compositional application of abstract Markov chains to PEPA, based on a Kronecker representation of the underlying CTMC. This can be used to bound probabilistic reachability properties in the Continuous Stochastic Logic (CSL), and we have implemented this as part of...
New Higgs Production Mechanism in Composite Higgs Models
Carmona, Adrian; Santiago, Jose
2012-01-01
Composite Higgs models are only now starting to be probed at the Large Hadron Collider by Higgs searches. We point out that new resonances, abundant in these models, can mediate new production mechanisms for the composite Higgs. The new channels involve the exchange of a massive color octet and single production of new fermion resonances with subsequent decays into the Higgs and a Standard Model quark. The sizable cross section and very distinctive kinematics allow for a very clean extraction of the signal over the background with high statistical significance. Heavy gluon masses up to 2.8 TeV can be probed with data collected during 2012 and up to 5 TeV after the energy upgrade to $\\sqrt{s}=14$ TeV.
Composite modeling method in dynamics of planar mechanical system
Institute of Scientific and Technical Information of China (English)
2008-01-01
This paper presents a composite modeling method of the forward dynamics in general planar mechanical system. In the modeling process, the system dynamic model is generated by assembling the model units which are kinematical determinate in planar mechanisms rather than the body/joint units in multi-body system. A state space formulation is employed to model both the unit and system models. The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism. The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure. The formulation reveals the relationship between the topology and dynamics of the planar mechanism to some extent.
Composite modeling method in dynamics of planar mechanical system
Institute of Scientific and Technical Information of China (English)
WANG Hao; LIN ZhongQin; LAI XinMin
2008-01-01
This paper presents a composite modeling method of the forward dynamics in general planar mechanical system.In the modeling process,the system dynamic model is generated by assembling the model units which are kinematical determi-nate in planar mechanisms rather than the body/joint units in multi-body system.A state space formulation is employed to model both the unit and system models.The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism.The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure.The formulation reveals the rela-tionship between the topology and dynamics of the planar mechanism to some extent.
Fabrication and modelling of 3-3 piezoelectric composites
International Nuclear Information System (INIS)
Three-dimensional modelling of a 3-3 piezoelectric structure was carried out using ANSYS finite element modelling software. Hydrophone figures of merit were calculated for structures with increasing amounts of interconnecting porosity. In addition to air being the second phase, polymer fillers were added to the three dimensional model in order to observe the effect of polymer Young's modulus and Poisson's ratio on the piezoelectric response of the composite material. Results show that increasing the porosity has the effect of improving the hydrostatic piezoelectric properties for applications such as low frequency hydrophones. The optimum amount of porosity depends on the figure of merit to be maximised. In order to validate model predictions, porous piezoelectric structures were fabricated by either the BurPS (Burnt out Polymer Spheres) method or polymer foam reticulation. Corresponding measurements of piezoelectric coefficients were carried out on the porous samples. Experimental results confirmed finite element modelling predictions. PZT-porosity composites and PZT-polymer composites were produced exhibiting superior hydrostatic strain constant (dh), hydrostatic voltage constant (gh) and hydrostatic figure of merit (dhgh compared to that of dense PZT. (author)
Macro Scale Independently Homogenized Subcells for Modeling Braided Composites
Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.
2012-01-01
An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.
Modeling of short fiber reinforced injection moulded composite
Kulkarni, A.; Aswini, N.; Dandekar, C. R.; Makhe, S.
2012-09-01
A micromechanics based finite element model (FEM) is developed to facilitate the design of a new production quality fiber reinforced plastic injection molded part. The composite part under study is composed of a polyetheretherketone (PEEK) matrix reinforced with 30% by volume fraction of short carbon fibers. The constitutive material models are obtained by using micromechanics based homogenization theories. The analysis is carried out by successfully coupling two commercial codes, Moldflow and ANSYS. Moldflow software is used to predict the fiber orientation by considering the flow kinetics and molding parameters. Material models are inputted into the commercial software ANSYS as per the predicted fiber orientation and the structural analysis is carried out. Thus in the present approach a coupling between two commercial codes namely Moldflow and ANSYS has been established to enable the analysis of the short fiber reinforced injection moulded composite parts. The load-deflection curve is obtained based on three constitutive material model namely an isotropy, transversely isotropy and orthotropy. Average values of the predicted quantities are compared to experimental results, obtaining a good correlation. In this manner, the coupled Moldflow-ANSYS model successfully predicts the load deflection curve of a composite injection molded part.
A generalized methodology to characterize composite materials for pyrolysis models
McKinnon, Mark B.
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to
DEFF Research Database (Denmark)
Liu, Ming; Thygesen, Anders; Meyer, Anne S.;
2016-01-01
The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...
Delamination Modeling of Composites for Improved Crash Analysis
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
Modeling and simulation of Polymer Composite laminate bolted Joint
Directory of Open Access Journals (Sweden)
B. Sutharson
2013-10-01
Full Text Available Environmental awareness today motivates the researchers, worldwide on the studies of natural fiber reinforced polymer composite and cost effective option to synthetic fiber reinforced composites. This work is concerned with the modeling and simulation of bearing properties of hybrid fiber polymer composite mechanical joint using Artificial Neural Network (ANN. In general it was found that increase in bearing capacity was always with increasing the e/d and w/d ratio. However, the extent of increase/decrease depends on the type of stacking sequence. There was increase in strength with rise in natural fiber loading. In this study, an artificial neural network is developed to predict the response of bolt-loaded fiber reinforced polymer composite plates. To predict the behavior of the laminate failure, a multilayered feed-forward neural network trained with the back-propagation algorithm is constructed. The ANN was trained and verified using experimental data. Comparisons of ANN results with desired values showed that there is a good agreement between input and output variables of the experimental data. The results indicate that ANN was illustrated to be a valid useful and powerful tool for the prediction of bearing properties predictions of bolted joints in composite laminates.
A lumped model for rotational modes in periodic solid composites
Peng, Pai
2013-10-01
We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.
A Wear Geometry Model of Plain Woven Fabric Composites
Gu Dapeng; Yang Yulin; Chen Suwen; Su Wenwen
2014-01-01
The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances,...
Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts
Mukhopadhyay, Vivek; Sorokach, Michael R.
2015-01-01
NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.
Tapered composite likelihood for spatial max-stable models
Sang, Huiyan
2014-05-01
Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.
Composite model of quark-leptons and duality
Das, C R; Laperashvili, Larisa
2006-01-01
In the present investigation the model of preons and their composites is constructed in the framework of the superstring-inspired flipped E_6\\times \\tilde E_6 gauge group of symmetry which reveals a generalized dual symmetry. We assume that preons are dyons, which in our model are confined by hyper-magnetic strings - composite N = 1 supersymmetric non-Abelian flux tubes created by the condensation of spreons near the Planck scale. We show that the six types of strings having fluxes \\Phi_n = n\\Phi_0 (n = \\pm 1,\\pm 2,\\pm 3) produce three generations of composite quark-leptons and bosons. We give an explanation of hierarchies of masses in the Standard Model. The following values of masses obtained in our preonic model: m_t\\approx 173 GeV, m_c\\approx 1 GeV and m_u\\approx 4 MeV, m_b \\approx 4 GeV, m_s\\approx 140 MeV and m_d\\approx 4 MeV, m_\\tau\\approx 2 GeV \\quad and m_\\mu \\approx 100 MeV, are in agreement with the experimentally known results. The following left-handed neutrino masses are predicted: m_1\\approx 1....
Crush testing, characterizing, and modeling the crashworthiness of composite laminates
Garner, David Michael, Jr.
Research in the field of crashworthiness of composite materials is presented. A new crush test method was produced to characterize the crush behavior of composite laminates. In addition, a model of the crush behavior and a method for rank ordering the energy absorption capability of various laminates were developed. The new crush test method was used for evaluating the crush behavior of flat carbon/epoxy composite specimens at quasi-static and dynamic rates. The University of Utah crush test fixture was designed to support the flat specimen against catastrophic buckling. A gap, where the specimen is unsupported, allowed unhindered crushing of the specimen. In addition, the specimen's failure modes could be clearly observed during crush testing. Extensive crush testing was conducted wherein the crush force and displacement data were collected to calculate the energy absorption, and high speed video was captured during dynamic testing. Crush tests were also performed over a range of fixture gap heights. The basic failure modes were buckling, crack growth, and fracture. Gap height variations resulted in poorly, properly, and overly constrained specimens. In addition, guidelines for designing a composite laminate for crashworthiness were developed. Modeling of the crush behavior consisted of the delamination and fracture of a single ply or group of like plies during crushing. Delamination crack extension was modeled using the mode I energy release rate, G lc, where an elastica approach was used to obtain the strain energy. Variations in Glc were briefly explored with double cantilever beam tests wherein crack extension occurred along a multidirectional ply interface. The model correctly predicted the failure modes for most of the test cases, and offered insight into how the input parameters affect the model. The ranking method related coefficients of the laminate and sublaminate stiffness matrices, the ply locations within the laminate, and the laminate thickness. The
A compositional and dynamic model for face aging.
Suo, Jinli; Zhu, Song-Chun; Shan, Shiguang; Chen, Xilin
2010-03-01
In this paper, we present a compositional and dynamic model for face aging. The compositional model represents faces in each age group by a hierarchical And-Or graph, in which And nodes decompose a face into parts to describe details (e.g., hair, wrinkles, etc.) crucial for age perception and Or nodes represent large diversity of faces by alternative selections. Then a face instance is a transverse of the And-Or graph-parse graph. Face aging is modeled as a Markov process on the parse graph representation. We learn the parameters of the dynamic model from a large annotated face data set and the stochasticity of face aging is modeled in the dynamics explicitly. Based on this model, we propose a face aging simulation and prediction algorithm. Inversely, an automatic age estimation algorithm is also developed under this representation. We study two criteria to evaluate the aging results using human perception experiments: 1) the accuracy of simulation: whether the aged faces are perceived of the intended age group, and 2) preservation of identity: whether the aged faces are perceived as the same person. Quantitative statistical analysis validates the performance of our aging model and age estimation algorithm. PMID:20075467
Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model
Pieterse, G.; Krol, M.C.; Batenburg, A.M.; Steele, L.P.; Krummel, P.B.; Langenfelds, R.L.; Röckmann, T.
2011-01-01
The isotopic composition of molecular hydrogen (H2) contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their isotopic composition, into the global chemistry transport model TM5. For the first time, a glob
CHIMERE 2013: a model for regional atmospheric composition modelling
Directory of Open Access Journals (Sweden)
L. Menut
2013-07-01
Full Text Available Tropospheric trace gas and aerosol pollutants have adverse effects on health, environment and climate. In order to quantify and mitigate such effects, a wide range of processes leading to the formation and transport of pollutants must be considered, understood and represented in numerical models. Regional scale pollution episodes result from the combination of several factors: high emissions (from anthropogenic or natural sources, stagnant meteorological conditions, kinetics and efficiency of the chemistry and the deposition. All these processes are highly variable in time and space, and their relative contribution to the pollutants budgets can be quantified with chemistry-transport models. The CHIMERE chemistry-transport model is dedicated to regional atmospheric pollution event studies. Since it has now reached a certain level a maturity, the new stable version, CHIMERE 2013, is described to provide a reference model paper. The successive developments of the model are reviewed on the basis of published investigations that are referenced in order to discuss the scientific choices and to provide an overview of the main results.
Modeling of solidification of MMC composites during gravity casting process
Directory of Open Access Journals (Sweden)
R. Zagórski
2013-04-01
Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.
A new model for analysing thermal stress in granular composite
Institute of Scientific and Technical Information of China (English)
郑茂盛; 金志浩; 浩宏奇
1995-01-01
A double embedding model of inletting reinforcement grain and hollow matrix ball into the effective media of the particulate-reinforced composite is advanced. And with this model the distributions of thermal stress in different phases of the composite during cooling are studied. Various expressions for predicting elastic and elastoplastic thermal stresses are derived. It is found that the reinforcement suffers compressive hydrostatic stress and the hydrostatic stress in matrix zone is a tensile one when temperature decreases; when temperature further decreases, yield area in matrix forms; when the volume fraction of reinforcement is enlarged, compressive stress on grain and tensile hydrostatic stress in matrix zone decrease; the initial temperature difference of the interface of reinforcement and matrix yielding rises, while that for the matrix yielding overall decreases.
Buckling induced delamination of graphene composites through hybrid molecular modeling
Cranford, Steven W.
2013-01-01
The efficiency of graphene-based composites relies on mechanical stability and cooperativity, whereby separation of layers (i.e., delamination) can severely hinder performance. Here we study buckling induced delamination of mono- and bilayer graphene-based composites, utilizing a hybrid full atomistic and coarse-grained molecular dynamics approach. The coarse-grain model allows exploration of an idealized model material to facilitate parametric variation beyond any particular molecular structure. Through theoretical and simulation analyses, we show a critical delamination condition, where ΔD∝kL4, where ΔD is the change in bending stiffness (eV), k the stiffness of adhesion (eV/Å4), and L the length of the adhered section (Å).
Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites
Institute of Scientific and Technical Information of China (English)
Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang
2011-01-01
For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.
Modeling of the Shape Forming of Composite Roll
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A shape modeling of spray formed composite roll, which is utilized to predict the shape and dimension of roll during spray forming process, is developed in this paper. The influences of the principal spray forming parameters, suich as the spatial distribution of melt mass flux, spray distance, rotating and translating speeds of substrate bar etc., on the geometry and dimension of spray formed product were investigated.
Modelling of textile reinforced composite barriers against electromagnetic radiations
López Caro, Alberto
2011-01-01
The advent of conductive textiles has allowed the design of much more lightweight and cheaper electromagnetic barriers than used to be with wire mesh and compact materials. Although nowadays it is possible to calculate the Shielding Effectiveness (SE) for wire mesh and compact shields, in case of conductive textiles the scenario becomes more complex. The aim of this work is to find a mathematical model dependent on frequency to determine the Shielding Effectiveness (SE) of several composit...
2014 Enhanced LAW Glass Property-Composition Models, Phase 2
Energy Technology Data Exchange (ETDEWEB)
Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)
2015-10-28
This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.
Searching for composite Higgs models at the LHC
Flacke, Thomas
2016-07-01
Composite Higgs models have the potential to provide a solution to the hierarchy problem and a dynamical explanation for the generation of the Higgs potential. They can be tested at the LHC as the new sector which underlies electroweak symmetry breaking must become strong in the TeV regime, which implies additional bound states beyond the Higgs. In this paper, we first discuss prospects and search strategies for top partners (and other quark partners) in the strongly coupled sector, which we study in an effective field theory setup. In the second part of the proceedings, we go beyond the effective field theory approach. We discuss potential UV embeddings for composite Higgs models which contain a Higgs as well as top partners. We show that in all of these models, additional pseudo-Nambu-Goldstone bosons beyond the Higgs are present. In particular, all of the models contain a pseudoscalar which couples to the Standard Model gauge fields through Wess-Zumino-Witten terms, providing a prime candidate for a di-boson (including a di-photon) resonance. The models also contain colored pNGBs which can be searched for at the LHC.
BlenX-based compositional modeling of complex reaction mechanisms
Directory of Open Access Journals (Sweden)
Judit Zámborszky
2010-02-01
Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.
A Wear Geometry Model of Plain Woven Fabric Composites
Directory of Open Access Journals (Sweden)
Gu Dapeng
2014-09-01
Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.
A web service for service composition to aid geospatial modelers
Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.
2012-04-01
The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and
Uncertainty modelling and code calibration for composite materials
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Branner, Kim; Mishnaevsky, Leon, Jr;
2013-01-01
and measurement uncertainties which are introduced on the different scales. Typically, these uncertainties are taken into account in the design process using characteristic values and partial safety factors specified in a design standard. The value of the partial safety factors should reflect a reasonable balance......Uncertainties related to the material properties of a composite material can be determined from the micro-, meso- or macro-scales. These three starting points for a stochastic modelling of the material properties are investigated. The uncertainties are divided into physical, model, statistical...
Generation labels in composite models for quarks and leptons
International Nuclear Information System (INIS)
Models in which quarks and leptons are approximately massless composites of fundamental massless fermions which are confined by a hypercolor force are considered. The fundamental Lagrangian exhibits an axial U(1)sub(X) symmetry which is broken by hypercolor instantons, leaving a conserved discrete subgroup. It is proposed that the distinction between different generations of quarks and leptons is given by the X-number. The resulting generation labelling scheme does not lead to massless Goldstone bosons or to new anomalies and is based on a quantum number which is already contained in the theory. The dynamical rishon model is described as an illustrative example. (H.K.)
Composite Higgs Models, Technicolor and The Muon Anomalous Magnetic Moment
Doff, A
2015-01-01
We revisit the muon magnetic moment (g-2) in the context of Composite Higgs models and Technicolor, and provide general analytical expressions for computing the muon magnetic moment stemming from new fields such as, neutral gauge bosons, charged gauge bosons, neutral scalar, charged scalars, and exotic charged leptons type of particles. Under general assumptions we assess which particle content could address the $g-2_{\\mu}$ excess. Moreover, we take a conservative approach and derive stringent limits on the particle masses in case the anomaly is otherwise resolved and comment on electroweak and collider bounds. Lastly, for concreteness we apply our results to a particular Technicolor model.
Towards a realistic composite model of quarks and leptons
International Nuclear Information System (INIS)
Within the context of the 't Hooft anomaly matching scheme, some guiding principles for the model building are discussed with an eye to low energy phenomenology. It is argued that Λsub(ch) (chiral symmetry breaking scale of the global color-flavor group Gsub(CF)) proportional Λsub(MC) (metacolor scale) and Λ sub(gsub(CF)) (unification scale of the gauge subgroup of Gsub(CF)) < or approx. Λsub(ch). As illustrations of the method, two composite models are suggested that can give rise to three or four generations of ordinary quarks and leptons without exotic fermions. (orig.)
A Composite Modelling Approach to Decision Support by the Use of the CBA-DK Model
DEFF Research Database (Denmark)
Barfod, Michael Bruhn; Salling, Kim Bang; Leleur, Steen
2007-01-01
This paper presents a decision support system for assessment of transport infrastructure projects. The composite modelling approach, COSIMA, combines a cost-benefit analysis by use of the CBA-DK model with multi-criteria analysis applying the AHP and SMARTER techniques. The modelling uncertaintie...
Resin infusion of large composite structures modeling and manufacturing process
Energy Technology Data Exchange (ETDEWEB)
Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)
2006-07-01
The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)
Modeling the in-plane tension failure of composite plates
Energy Technology Data Exchange (ETDEWEB)
Trinh, K.V. [Sandia National Labs., Livermore, CA (United States). Structural and Thermomechanical Modeling Dept.
1997-11-01
This study developed a modeling method to predict the final failure load of laminated composite plates which may contain cutouts and are subjected to quasi-static in-plane tensile loads. This study focused on overcoming numerical problems often encountered in analyses that exhibit significant stable damage growth in the composite materials. To keep the computational cost at a reasonable level, the modeling method uses a quasi-static solution procedure to solve composite plate problems with quasi-static load. The numerical problems in the quasi-static analyses are nonconvergence problems caused by the discontinuous material behavior from brittle fiber failure. This study adds artificial damping to the material model to suppress the discontinuous material behavior. The artificial damping essentially changes the material behavior, and could adversely change the final failure load prediction. Thus, a selective scheme for adding the damping was developed to minimize adverse damping effects. In addition, this modeling method uses multiple analyses at different levels of artificial damping to determine damping effects on the failure load prediction. Fracture strength experimental data for small coupons with small cutouts and large panels with larger cutouts available in the literature were selected and used to verify failure predictions of the developed modeling method. Results show that, without the artificial damping treatment, progressive damage analyses reasonably predicted the fracture strength of the small coupons, but severely underpredicted the fracture strength of the large panels. With the artificial damping treatment, the analyses predicted the failure load of both the small coupons and the large panels reasonably well.
A Composite Model Predictive Control Strategy for Furnaces
Institute of Scientific and Technical Information of China (English)
Hao Zang; Hongguang Li; Jingwen Huang; Jia Wang
2014-01-01
Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimi-zation of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control (CMPC) strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The control ers connected with two kinds of communi-cation networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reason-able CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.
Fabrication and modelling of 3-3 piezoelectric composites
Perry, A J
2002-01-01
Three-dimensional modelling of a 3-3 piezoelectric structure was carried out using ANSYS finite element modelling software. Hydrophone figures of merit were calculated for structures with increasing amounts of interconnecting porosity. In addition to air being the second phase, polymer fillers were added to the three dimensional model in order to observe the effect of polymer Young's modulus and Poisson's ratio on the piezoelectric response of the composite material. Results show that increasing the porosity has the effect of improving the hydrostatic piezoelectric properties for applications such as low frequency hydrophones. The optimum amount of porosity depends on the figure of merit to be maximised. In order to validate model predictions, porous piezoelectric structures were fabricated by either the BurPS (Burnt out Polymer Spheres) method or polymer foam reticulation. Corresponding measurements of piezoelectric coefficients were carried out on the porous samples. Experimental results confirmed finite el...
Calibration of a finite element composite delamination model by experiments
DEFF Research Database (Denmark)
Gaiotti, M.; Rizzo, C.M.; Branner, Kim;
2013-01-01
This paper deals with the mechanical behavior under in plane compressive loading of thick and mostly unidirectional glass fiber composite plates made with an initial embedded delamination. The delamination is rectangular in shape, causing the separation of the central part of the plate into two...... distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...... by a previously established modeling strategy (Branner et al., 2011; Gaiotti & Rizzo, 2011), using a pure shell model where the delamination is accounted for by properly offsetting its surfaces and connecting them to the intact plate via rigid link constraining algorithms. The numerical model developed...
Compendium of Material Composition Data for Radiation Transport Modeling
Energy Technology Data Exchange (ETDEWEB)
Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.
2006-10-31
Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: 1) to provide a quick reference of material compositions for analysts and 2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.
Nonextensive local composition models in theories of solutions
Borges, Ernesto P
2012-01-01
Thermodynamic models present binary interaction parameters, based on the Boltzmann weight. Discrepancies from experimental data lead to empirically consider temperature dependence of the parameters, but these modifications keep unchanged the exponential nature of the equations. We replace the Boltzmann weight by the nonextensive Tsallis weight, and generalize three models for nonelectrolyte solutions that use the local composition hypothesis, namely Wilson's, NRTL, and UNIQUAC models. The proposed generalizations present a nonexponential dependence on the temperature, and relies on a theoretical basis of nonextensive statistical mechanics. The $q$-models present one extra binary parameter $q_{ij}$, that recover the original cases in the limit $q_{ij} \\to 1$. Comparison with experimental data is illustrated with two examples of the activity coefficient of ethanol, infinitely diluted in toluene, and in decane.
Theoretical model of a piezoelectric composite spinal fusion interbody implant.
Tobaben, Nicholas E; Domann, John P; Arnold, Paul M; Friis, Elizabeth A
2014-04-01
Failure rates of spinal fusion are high in smokers and diabetics. The authors are investigating the development of a piezoelectric composite biomaterial and interbody device design that could generate clinically relevant levels of electrical stimulation to help improve the rate of fusion for these patients. A lumped parameter model of the piezoelectric composite implant was developed based on a model that has been utilized to successfully predict power generation for piezoceramics. Seven variables (fiber material, matrix material, fiber volume fraction, fiber aspect ratio, implant cross-sectional area, implant thickness, and electrical load resistance) were parametrically analyzed to determine their effects on power generation within reasonable implant constraints. Influences of implant geometry and fiber aspect ratio were independent of material parameters. For a cyclic force of constant magnitude, implant thickness was directly and cross-sectional area inversely proportional to power generation potential. Fiber aspect ratios above 30 yielded maximum power generation potential while volume fractions above 15% showed superior performance. This investigation demonstrates the feasibility of using composite piezoelectric biomaterials in medical implants to generate therapeutic levels of direct current electrical stimulation. The piezoelectric spinal fusion interbody implant shows promise for helping increase success rates of spinal fusion.
Consolidation modeling of fibre reinforced thermoplastic composite materials
International Nuclear Information System (INIS)
Thermoplastic matrix composites offer rapid, clean processing compared to their thermoset counterparts. In automotive applications they also provide useful toughness and recyclability. Recent developments in co- mingling technology consisting of uniform combination of reinforcement and matrix have provided a new hybrid yam which facilitates a range of fabrication options combined with the potential for relatively low pressure processing. Both isothermal and non-isothermal compression moulding processes have successfully been used to produce thermoplastic composite materials while maintaining various process parameters. These process parameters including mainly pressure and temperature have a major influence on the final quality of the component including void content due to high melt viscosity of thermoplastic. A mathematical model has been developed and described in this paper that monitors these process parameters and their effect on the quality of the composite material. The results thus obtained were compared with the experimental results obtained by making flat plaques and tubular parts. Co-mingled material used during the experimental and modeling consisted of glass fibre as a reinforcement and polypropylene as the matrix. (author)
Modeling and simulation of continuous fiber-reinforced ceramic composites
Bheemreddy, Venkata
Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.
Chattopadhyay, Soma; Kelly, S. D.; Shibata, Tomohiro; Balasubramanian, M.; Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi; Ayyub, Pushan
2016-02-01
We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu55Nb45. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.
Energy Technology Data Exchange (ETDEWEB)
Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)
2016-02-14
We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.
Atomic Models of Strong Solids Interfaces Viewed as Composite Structures
Staffell, I.; Shang, J. L.; Kendall, K.
2014-02-01
This paper looks back through the 1960s to the invention of carbon fibres and the theories of Strong Solids. In particular it focuses on the fracture mechanics paradox of strong composites containing weak interfaces. From Griffith theory, it is clear that three parameters must be considered in producing a high strength composite:- minimising defects; maximising the elastic modulus; and raising the fracture energy along the crack path. The interface then introduces two further factors:- elastic modulus mismatch causing crack stopping; and debonding along a brittle interface due to low interface fracture energy. Consequently, an understanding of the fracture energy of a composite interface is needed. Using an interface model based on atomic interaction forces, it is shown that a single layer of contaminant atoms between the matrix and the reinforcement can reduce the interface fracture energy by an order of magnitude, giving a large delamination effect. The paper also looks to a future in which cars will be made largely from composite materials. Radical improvements in automobile design are necessary because the number of cars worldwide is predicted to double. This paper predicts gains in fuel economy by suggesting a new theory of automobile fuel consumption using an adaptation of Coulomb's friction law. It is demonstrated both by experiment and by theoretical argument that the energy dissipated in standard vehicle tests depends only on weight. Consequently, moving from metal to fibre construction can give a factor 2 improved fuel economy performance, roughly the same as moving from a petrol combustion drive to hydrogen fuel cell propulsion. Using both options together can give a factor 4 improvement, as demonstrated by testing a composite car using the ECE15 protocol.
Vector-like bottom quarks in composite Higgs models
International Nuclear Information System (INIS)
Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility of heavy bottom partners. We show that they can have a significant impact on electroweak precision observables and the current Higgs results if there is a sizeable mixing with the bottom quark. We explicitly check that the constraints from the measurement of the CKM matrix element Vtb are fulfilled, and we test the compatibility with the electroweak precision observables. In particular we evaluate the constraint from the Z coupling to left-handed bottom quarks. General formulae have been derived which include the effects of new bottom partners in the loop corrections to this coupling and which can be applied to other models with similar particle content. Furthermore, the constraints from direct searches for heavy states at the LHC and from the Higgs search results have been included in our analysis. The best agreement with all the considered constraints is achieved for medium to large compositeness of the left-handed top and bottom quarks
Dynamic fiber debonding and push-out in model composites
Bi, Xiaopeng
2003-10-01
When a crack propagates in a fiber-reinforced composite material, a substantial part of energy is dissipated in the debonding and sliding of the bridging fibers located behind the advancing crack front. Because of the important effect they have on the fracture toughness of a composite, these processes have been the subject of extensive experimental, analytical and numerical work. However, the vast majority of existing work on this topic has been limited to quasi-static loading situations. The few investigations performed on various composite systems involving higher loading rates seem to indicate that the fiber sliding process presents some unusual and sometimes contradictory rate-dependent characteristics. To enhance the current understanding of dynamic fiber debonding and push-out in model fiber-reinforced composites, a combined experimental and numerical investigation was carried out. A modified split Hopkinson pressure bar was used to perform high-rate fiber push-out experiments on an aluminum/epoxy model composite system. An axisymmetric cohesive/volumetric finite element scheme was developed to simulate the push-out process. Effects of several important parameters such as interfacial strength, interfacial fracture toughness and fiber/matrix friction coefficient were investigated. Interface cohesive properties were extracted by comparison between experimental and numerical results. The comparison between numerics and experiments was made as close as possible by (a) simulating the entire experimental apparatus; (b) using loading directly measured in the experiments as input to the finite element analysis (FEA) code; (c) using measured material properties in the FEA simulations; and (d) accounting for effects such as large deformations, residual stresses (through a quasi-static pre-loading scheme), spontaneous crack formation (through a cohesive failure formulation) and dynamic frictional sliding. Details of the physical process were discussed by numerically
Liu, M.; Thygesen, A.; Meyer, AS; Madsen, B.
2016-07-01
The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre impregnation by the epoxy matrix, and the mechanical properties of the composites are thereby increased. The effective fibre stiffness and strength established from the modelling show that the enzymatic removal of pectin also leads to increased mechanical properties of the fibres. Among the investigated samples, the composites with hydrothermally pre-treated and enzymatically treated fibres have the lowest porosity factor of 0.08 and the highest mechanical properties. In these composites, the effective fibre stiffness and strength are determined to be 83 GPa and 667 MPa, respectively, when the porosity efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites.
Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model
Directory of Open Access Journals (Sweden)
R. L. Langenfelds
2011-07-01
Full Text Available The isotopic composition of molecular hydrogen (H2 contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their stable isotopic composition and isotope fractionation constants, into the global chemistry transport model TM5. For the first time, a global model now includes a simplified but explicit isotope reaction scheme for the photochemical production of H2. We present a comparison of modelled results for the H2 mixing ratio and isotope composition with available measurements on seasonal to inter annual time scales for the years 2001–2007. The base model results agree well with observations for H2 mixing ratios. For δD[H2], modelled values are slightly lower than measurements. A detailed sensitivity study is performed to identify the most important parameters for modelling the isotopic composition of H2. The results show that on the global scale, the discrepancy between model and measurements can be closed by adjusting the default values of the isotope effects in deposition, photochemistry and the stratosphere-troposphere exchange within the known range of uncertainty. However, the available isotope data do not provide sufficient information to uniquely constrain the global isotope budget. Therefore, additional studies focussing on the isotopic composition near the tropopause and on the isotope effects in the photochemistry and deposition are recommended.
Berry composition and climate: responses and empirical models
Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson
2014-08-01
Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry
Transparent composite model for DCT coefficients: design and analysis.
Yang, En-Hui; Yu, Xiang; Meng, Jin; Sun, Chang
2014-03-01
The distributions of discrete cosine transform (DCT) coefficients of images are revisited on a per image base. To better handle, the heavy tail phenomenon commonly seen in the DCT coefficients, a new model dubbed a transparent composite model (TCM) is proposed and justified for both modeling accuracy and an additional data reduction capability. Given a sequence of the DCT coefficients, a TCM first separates the tail from the main body of the sequence. Then, a uniform distribution is used to model the DCT coefficients in the heavy tail, whereas a different parametric distribution is used to model data in the main body. The separate boundary and other parameters of the TCM can be estimated via maximum likelihood estimation. Efficient online algorithms are proposed for parameter estimation and their convergence is also proved. Experimental results based on Kullback-Leibler divergence and χ(2) test show that for real-valued continuous ac coefficients, the TCM based on truncated Laplacian offers the best tradeoff between modeling accuracy and complexity. For discrete or integer DCT coefficients, the discrete TCM based on truncated geometric distributions (GMTCM) models the ac coefficients more accurately than pure Laplacian models and generalized Gaussian models in majority cases while having simplicity and practicality similar to those of pure Laplacian models. In addition, it is demonstrated that the GMTCM also exhibits a good capability of data reduction or feature extraction-the DCT coefficients in the heavy tail identified by the GMTCM are truly outliers, and these outliers represent an outlier image revealing some unique global features of the image. Overall, the modeling performance and the data reduction feature of the GMTCM make it a desirable choice for modeling discrete or integer DCT coefficients in the real-world image or video applications, as summarized in a few of our further studies on quantization design, entropy coding design, and image understanding
General Lepton Mixing in Holographic Composite Higgs Models
Hagedorn, Claudia
2011-01-01
We introduce a scenario of lepton mixing in holographic composite Higgs models based on non-abelian discrete symmetries of the form G_f=X x Z_N, broken to Z_2 x Z_2 x Z_N in the elementary sector and to Z_N^(D) in the composite sector with Z_N^(D) being the diagonal subgroup of a Z_N contained in X and the external Z_N. By choosing X = Delta(96) or Delta(384), a non-vanishing theta_{13} of order 0.1 is naturally obtained. We apply our considerations to a 5D model in warped space for the particular cases of X = S_4, A_5, Delta(96) and Delta(384) and N=3 or 5. Lepton flavour violating processes and electric dipole moments are well below the current bounds, with the exception of mu -> e gamma that puts a very mild constraint on the parameter space of the model, for all presented choices of G_f.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
A Composite Model of Quarks with the `Effective Supersymmetry'
Okada, N.
1998-04-01
We present a composite model of quarks with `effective supersymmetry'. The model is based on the gauge group (SU(2)S × SU(2)M) × (SU(2)U × SU(2)C × SU(2)T) × SU(5)SM , where SU(5)SM is the standard model gauge group. In the dynamical supersymmetry breaking sector based on the gauge group SU(2)S × SU(2)M , supersymmetry is dynamically broken. The preon sector is constructed by the model proposed by Nelson and Strassler. The fermion mass hierarchy among the up-type quarks originates from the SU(2)U × SU(2)C × SU(2)T gauge dynamics. The supersymmetry breaking is mediated to the minimal supersymmetric standard model sector by the `preon' superfields which compose the quarks in the first two generations. To obtain an experimentally acceptable mass spectrum, the scalar quarks in the first two generations need masses of order 10 TeV, while the other superpartners need masses less than 1 TeV. Therefore, the mass spectrum in our model is one example of the `effective supersymmetry' model proposed by Cohen, Kaplan and Nelson.
A Composite Model of Quarks with the "Effective Supersymmetry"
Okada, N
1998-01-01
We present a composite model of quarks with the `effective supersymmetry'. The model is based on the gauge group $(SU(2)_S \\times SU(2)_M) \\times (SU(2)_U standard model gauge group. In the dynamical supersymmetry breaking sector based on the gauge group $ SU(2)_S \\times SU(2)_M $, the supersymmetry is dynamically broken. The preon sector is constructed by the model proposed by Nelson and Strassler. The fermion mass hierarchy among the up-type quarks originates from the $ SU(2)_U \\times SU(2)_C \\times SU(2)_T $ gauge dynamics. The supersymmetry breaking is mediated to the minimal supersymmetric standard model sector by the `preon' superfields which compose the quarks in the first two generations. To obtain the experimentally acceptable mass spectrum, the scalar quarks in the first two generations have masses of order 10 TeV, while the other superpartners have masses of order 100 GeV. Therefore, the mass spectrum in our model is one of the type of the `effective supersymmetry' model proposed by Cohen, Kaplan a...
Higher order Godunov IMPES compositional modelling of oil reservoirs
Energy Technology Data Exchange (ETDEWEB)
Morton, A.
1996-12-31
Over the past few years, interest in the numerical modelling of fluid displacement processes in porous media has dramatically increased. The necessity for complex enhanced recovery procedures in the field of hydrocarbon extraction techniques has emphasised the need for more sophisticated mathematical models, capable of modelling intricate chemical and physical phenomena. Computer simulations of the mathematical models are important tools by which reservoir engineers develop and test recovery processes in order to determine the optimum production of oil. A review of multi-component, two phase isothermal fluid flow during chemical injection in the final stage of oil recovery in petroleum reservoirs is presented. The mathematical model describing such a process is commonly termed the Compositional model. This fluid flow model is solved using the IMplicit Pressure, Explicit Saturation (IMPES) splitting method, whereby the flow equations are manipulated to form a parabolic pressure equation coupled with a hyperbolic system of mass conservation laws. The Backward Euler method is used to solve the pressure equation. (UK)
Vertical circulation and thermospheric composition: a modelling study
Directory of Open Access Journals (Sweden)
H. Rishbeth
Full Text Available The coupled thermosphere-ionosphere-plasmasphere model CTIP is used to study the global three-dimensional circulation and its effect on neutral composition in the midlatitude F-layer. At equinox, the vertical air motion is basically up by day, down by night, and the atomic oxygen/molecular nitrogen [O/N_{2}] concentration ratio is symmetrical about the equator. At solstice there is a summer-to-winter flow of air, with downwelling at subauroral latitudes in winter that produces regions of large [O/N_{2}] ratio. Because the thermospheric circulation is influenced by the high-latitude energy inputs, which are related to the geometry of the Earth's magnetic field, the latitude of the downwelling regions varies with longitude. The downwelling regions give rise to large F2-layer electron densities when they are sunlit, but not when they are in darkness, with implications for the distribution of seasonal and semiannual variations of the F2-layer. It is also found that the vertical distributions of O and N_{2} may depart appreciably from diffusive equilibrium at heights up to about 160 km, especially in the summer hemisphere where there is strong upwelling.
Atmospheric composition and structure (thermosphere · composition and chemistry · Ionosphere (ionosphere · atmosphere interactions
Mathematical model of thermal destruction of polymer composition materials
Directory of Open Access Journals (Sweden)
В. В. Клюс
1999-09-01
Full Text Available Considered is the process of heat propagation in armored plastic both under moderate temperatures and binder thermal destruction. Worked out is the method of determining kinematic parameters of the thermal destruction process and thermophysical characteristics of materials when chemical reaction is going on in then. As the result a mathematical model was built which allows to carry out tests of polymer composition materials with the help of computer and to exercise optimal collection of components which would meet the desired conditions
Energy Technology Data Exchange (ETDEWEB)
Siranosian, Antranik Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schembri, Philip Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Luscher, Darby Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-04-20
The Los Alamos National Laboratory's Weapon Systems Engineering division's Advanced Engineering Analysis group employs material constitutive models of composites for use in simulations of components and assemblies of interest. Experimental characterization, modeling and prediction of the macro-scale (i.e. continuum) behaviors of these composite materials is generally difficult because they exhibit nonlinear behaviors on the meso- (e.g. micro-) and macro-scales. Furthermore, it can be difficult to measure and model the mechanical responses of the individual constituents and constituent interactions in the composites of interest. Current efforts to model such composite materials rely on semi-empirical models in which meso-scale properties are inferred from continuum level testing and modeling. The proposed approach involves removing the difficulties of interrogating and characterizing micro-scale behaviors by scaling-up the problem to work with macro-scale composites, with the intention of developing testing and modeling capabilities that will be applicable to the mesoscale. This approach assumes that the physical mechanisms governing the responses of the composites on the meso-scale are reproducible on the macro-scale. Working on the macro-scale simplifies the quantification of composite constituents and constituent interactions so that efforts can be focused on developing material models and the testing techniques needed for calibration and validation. Other benefits to working with macro-scale composites include the ability to engineer and manufacture—potentially using additive manufacturing techniques—composites that will support the application of advanced measurement techniques such as digital volume correlation and three-dimensional computed tomography imaging, which would aid in observing and quantifying complex behaviors that are exhibited in the macro-scale composites of interest. Ultimately, the goal of this new approach is to develop a meso
Document Flow Model: A Formal Notation for Modelling Asynchronous Web Services Composition
Yang, Jingtao; Cirstea, Corina; Henderson, Peter
2005-01-01
This paper presents a formal notation for modelling asynchronous web services composition, using context and coordination mechanisms. Our notation specifies the messages that can be handled by different web services, and describes a system of inter-related web services as the flow of documents between them. The notation allows the typical web services composition pattern, asynchronous messaging, and has the capability to deal with long-running service-to-service interactions and dynamic confi...
Finite element code development for modeling detonation of HMX composites
Duran, Adam; Sundararaghavan, Veera
2015-06-01
In this talk, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for sod shock and ZND strong detonation models and then used to perform 2D and 3D shock simulations. We will present benchmark problems for geometries in which a single HMX crystal is subjected to a shock condition. Our current progress towards developing microstructural models of HMX/binder composite will also be discussed.
Micromechanics Based Inelastic and Damage Modeling of Composites
Directory of Open Access Journals (Sweden)
P. P. Procházka
2004-01-01
Full Text Available Micromechanics based models are considered for application to viscoelasticity and damage in metal matrix composites. The method proposes a continuation and development of Dvooák’s transformation field analysis, considering the piecewise uniform eigenstrains in each material phase. Standard applications of the method to a two-phase are considered in this study model, i.e., only one sub-volume per phase is considered. A continuous model is used, employing transformation field analysis with softening in order to prevent the tensile stress overstepping the tensile strength. At the same time shear cracking occurs in the tangential direction of the possible crack. This is considered in the principal shear stresses and they make disconnections in displacements. In this case, discontinuous models are more promising. Because discrete models, that can describe the situation more realistically have not been worked out in detail, we retain a continuous model and substitute the slip caused by overstepping the damage law by introducing eigenparameters from TFA. The various aspects of the proposed methods are systematically checked by comparing with finite element unit cell analyses, made through periodic homogenization assumptions, for SiC/Ti unidirectional lay-ups.
Zhao, Hanqing; Guo, Yuanzheng
2014-01-01
This thesis was a literature study concerning composites. With composites becoming increasingly popular in various areas such as aerospace industry and construction, the research about composites has a significant meaning accordingly. This thesis was aim at introducing some basic information of polymer matrix composites including raw mate-rial, processing, testing, applications and recycling to make a rough understanding of this kind of material for readers. Polymeric matrices, fillers,...
DEFF Research Database (Denmark)
Bergstrøm-Nielsen, Carl
2010-01-01
New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...
Development of performance models for thick composites in compression
Energy Technology Data Exchange (ETDEWEB)
Blake, H.W.; Grimsby, H.J.; Starbuck, J.M.; Welch, D.E.
1991-11-01
This report details initial activities and results from an investigation into the failure of thick-section composite cylinders loaded in compression. The efforts are aimed at the development of models for predicting cylinder performance based on composite material strengths derived from ring and cylinder tests of unidirectional materials. Initial results indicate that existing failure theories are applicable provided that material strength allowables are based on representative tests, and that appropriate solutions for cylinder stresses are used. Both the failure criteria and stress solution must allow for the three-dimensional stress state and for the discrete layer construction. Predictions for an initial test cylinder, which achieved a record pressure in hydrotest, are consistent with the observed performance. Performance model results obtained for a range of laminate constructions indicate this design to be optimum. Improvements in test fixturing also contributed to the record performance for this first cylinder. This work is sponsored by the Director as a three-year project funded from the Oak Ridge National Laboratory seed-money program.
Flexible Multibody Systems Models Using Composite Materials Components
International Nuclear Information System (INIS)
The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method
Direct and indirect signals of natural composite Higgs models
Niehoff, Christoph; Straub, David M
2015-01-01
We present a comprehensive numerical analysis of a four-dimensional model with the Higgs as a composite pseudo-Nambu-Goldstone boson that features a calculable Higgs potential and protective custodial and flavour symmetries to reduce electroweak fine-tuning. We employ a novel numerical technique that allows us for the first time to study constraints from radiative electroweak symmetry breaking, Higgs physics, electroweak precision tests, flavour physics, and direct LHC bounds on fermion and vector boson resonances in a single framework. We consider four different flavour symmetries in the composite sector, one of which we show to not be viable anymore in view of strong precision constraints. In the other cases, all constraints can be passed with a sub-percent electroweak fine-tuning. The models can explain the excesses recently observed in $WW$, $WZ$, $Wh$ and $\\ell^+\\ell^-$ resonance searches by ATLAS and CMS and the anomalies in angular observables and branching ratios of rare semi-leptonic $B$ decays obser...
Long Fibre Composite Modelling Using Cohesive User's Element
Kozák, Vladislav; Chlup, Zdeněk
2010-09-01
The development glass matrix composites reinforced by unidirectional long ceramic fibre has resulted in a family of very perspective structural materials. The only disadvantage of such materials is relatively high brittleness at room temperature. The main micromechanisms acting as toughening mechanism are the pull out, crack bridging, matrix cracking. There are other mechanisms as crack deflection etc. but the primer mechanism is mentioned pull out which is governed by interface between fibre and matrix. The contribution shows a way how to predict and/or optimise mechanical behaviour of composite by application of cohesive zone method and write user's cohesive element into the FEM numerical package Abaqus. The presented results from numerical calculations are compared with experimental data. Crack extension is simulated by means of element extinction algorithms. The principal effort is concentrated on the application of the cohesive zone model with the special traction separation (bridging) law and on the cohesive zone modelling. Determination of micro-mechanical parameters is based on the combination of static tests, microscopic observations and numerical calibration procedures.
Flexible Multibody Systems Models Using Composite Materials Components
Energy Technology Data Exchange (ETDEWEB)
Neto, Maria Augusta [Faculdade de Ciencia e Tecnologia da Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica (Portugal); Ambr' osio, Jorge A. C. [Instituto Superior Tecnico, Instituto de Engenharia Mecanica (Portugal)], E-mail: jorge@dem.ist.utl.pt; Leal, Rog' erio Pereira [Faculdade de Ciencia e Tecnologia da Universidade de Coimbra (Polo II), Departamento de Engenharia Mecanica (Portugal)
2004-12-15
The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method.
Perturbative Unitarity Bounds in Composite 2-Higgs Doublet Models
De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine
2016-01-01
We study bounds from perturbative unitarity in a Composite 2-Higgs Doublet Model (C2HDM) based on the spontaneous breakdown of a global symmetry $SO(6)\\to SO(4)\\times SO(2)$ at the compositeness scale $f$. The eight pseudo Nambu-Goldstone Bosons (pNGBs) emerging from such a dynamics are identified as two isospin doublet Higgs fields. We calculate the $S$-wave amplitude for all possible 2-to-2-body elastic (pseudo)scalar boson scatterings at energy scales $\\sqrt{s}$ reachable at the Large Hadron Collider (LHC) and beyond it, including the longitudinal components of weak gauge boson states as the corresponding pNGB states. In our calculation, the Higgs potential is assumed to have the same form as that in the Elementary 2-Higgs Doublet Model (E2HDM) with a discrete $Z_2$ symmetry, which is expected to be generated at the one-loop level via the Coleman-Weinberg (CW) mechanism. We find that the $S$-wave amplitude matrix can be block-diagonalized with maximally $2\\times 2$ submatrices in a way similar to the E2HDM...
Dispersion Relations for Electroweak Observables in Composite Higgs Models
Contino, Roberto
2015-01-01
We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.
Molecular modeling of cracks at interfaces in nanoceramic composites
Pavia, F.; Curtin, W. A.
2013-10-01
Toughness in Ceramic Matrix Composites (CMCs) is achieved if crack deflection can occur at the fiber/matrix interface, preventing crack penetration into the fiber and enabling energy-dissipating fiber pullout. To investigate toughening in nanoscale CMCs, direct atomistic models are used to study how matrix cracks behave as a function of the degree of interfacial bonding/sliding, as controlled by the density of C interstitial atoms, at the interface between carbon nanotubes (CNTs) and a diamond matrix. Under all interface conditions studied, incident matrix cracks do not penetrate into the nanotube. Under increased loading, weaker interfaces fail in shear while stronger interfaces do not fail and, instead, the CNT fails once the stress on the CNT reaches its tensile strength. An analytic shear lag model captures all of the micromechanical details as a function of loading and material parameters. Interface deflection versus fiber penetration is found to depend on the relative bond strengths of the interface and the CNT, with CNT failure occurring well below the prediction of the toughness-based continuum He-Hutchinson model. The shear lag model, in contrast, predicts the CNT failure point and shows that the nanoscale embrittlement transition occurs at an interface shear strength scaling as τs~ɛσ rather than τs~σ typically prevailing for micron scale composites, where ɛ and σ are the CNT failure strain and stress, respectively. Interface bonding also lowers the effective fracture strength in SWCNTs, due to formation of defects, but does not play a role in DWCNTs having interwall coupling, which are weaker than SWCNTs but less prone to damage in the outerwall.
Modeling the carbon isotope composition of bivalve shells (Invited)
Romanek, C.
2010-12-01
The stable carbon isotope composition of bivalve shells is a valuable archive of paleobiological and paleoenvironmental information. Previous work has shown that the carbon isotope composition of the shell is related to the carbon isotope composition of dissolved inorganic carbon (DIC) in the ambient water in which a bivalve lives, as well as metabolic carbon derived from bivalve respiration. The contribution of metabolic carbon varies among organisms, but it is generally thought to be relatively low (e.g., organism and high (>90%) in the shells from terrestrial organisms. Because metabolic carbon contains significantly more C-12 than DIC, negative excursions from the expected environmental (DIC) signal are interpreted to reflect an increased contribution of metabolic carbon in the shell. This observation contrasts sharply with modeled carbon isotope compositions for shell layers deposited from the inner extrapallial fluid (EPF). Previous studies have shown that growth lines within the inner shell layer of bivalves are produced during periods of anaerobiosis when acidic metabolic byproducts (e.g., succinic acid) are neutralized (or buffered) by shell dissolution. This requires the pH of EPF to decrease below ambient levels (~7.5) until a state of undersaturation is achieved that promotes shell dissolution. This condition may occur when aquatic bivalves are subjected to external stressors originating from ecological (predation) or environmental (exposure to atm; low dissolved oxygen; contaminant release) pressures; normal physiological processes will restore the pH of EPF when the pressure is removed. As a consequence of this process, a temporal window should also exist in EPF at relatively low pH where shell carbonate is deposited at a reduced saturation state and precipitation rate. For example, EPF chemistry should remain slightly supersaturated with respect to aragonite given a drop of one pH unit (6.5), but under closed conditions, equilibrium carbon isotope
Fabrication, Modelling and Application of Conductive Polymer Composites
Price, Aaron David
Electroactive polymers (EAP) are an emerging branch of smart materials that possess the capability to change shape in the presence of an electric field. Opportunities for the advancement of knowledge were identified in the branch of EAP consisting of inherently electrically conductive polymers. This dissertation explores methods by which the unique properties of composite materials having conductive polymers as a constituent may be exploited. Chapter 3 describes the blending of polyaniline with conventional thermoplastics. Processing these polyblends into foams yielded a porous conductive material. The effect of blend composition and processing parameters on the resulting porous morphology and electrical conductivity was investigated. These findings represent the first systematic study of porous conductive polymer blends. In Chapter 4, multilayer electroactive polymer actuators consisting of polypyrrole films electropolymerized on a passive polymer membrane core were harnessed as actuators. The membrane is vital in the transport of ionic species and largely dictates the stiffness of the layered configuration. The impact of the mechanical properties of the membrane on the actuation response of polypyrrole-based trilayer bending actuators was investigated. Candidate materials with distinct morphologies were identified and their mechanical properties were evaluated. These results indicated that polyvinylidene difluoride membranes were superior to the other candidates. An electrochemical synthesis procedure was proposed, and the design of a novel polymerization vessel was reported. These facilities were utilized to prepare actuators under a variety of synthesis conditions to investigate the impact of conductive polymer morphology on the electromechanical response. Characterization techniques were implemented to quantitatively assess physical and electrochemical properties of the layered composite. Chapter 5 proposes a new unified multiphysics model that captures the
Human body composition models and methodology: theory and experiment.
Z. M. Wang
1997-01-01
The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors. Accordingly, the study of human body composition is composed of three interrelated research areas, body composition rules, body composition methodology, and body composition alterations. This thesis describes the authors recent ...
Composition of Petri nets models in service-oriented industrial automation
Mendes, João M.; Leitão, Paulo; Restivo, Francisco; Colombo, Armando W.
2010-01-01
In service-oriented systems, composition of services is required to build new, distributed and more complex services, based on the logic behavior of individual ones. This paper discusses the formal composition of Petri nets models used for the process description and control in service-oriented automation systems. The proposed approach considers two forms for the composition of services, notably the offline composition, applied during the design phase, and the online composition, related to t...
Implications of solar wind measurements for solar models and composition
Serenelli, Aldo; Villante, Francesco L; Vincent, Aaron C; Asplund, Martin; Basu, Sarbani; Grevesse, Nicolas; Pena-Garay, Carlos
2016-01-01
We critically examine recent claims of a high solar metallicity by von Steiger \\& Zurbuchen (2016; vSZ16) based on in situ measurements of the solar wind, rather than the standard spectroscopically-inferred abundances (Asplund et al. 2009). We test the claim by Vagnozzi et al. (2016) that a composition based on the solar wind enables one to construct a standard solar model in agreement with helioseismological observations and thus solve the decades-old solar modelling problem. We show that, although some helioseismological observables are improved compared to models computed with established abundances, most are in fact worse. The high abundance of refractory elements leads to an overproduction of neutrinos, with a predicted $^8$B flux that is nearly twice its observed value, and $^7$Be and CNO fluxes that are experimentally ruled out at high confidence. A combined likelihood analysis shows that models using the vSZ16 abundances fare much worse than AGSS09 despite a higher metallicity. We also present ast...
Modeling of carbon nanotubes and carbon nanotube-polymer composites
Pal, G.; Kumar, S.
2016-01-01
In order to meet stringent environmental, safety and performance requirements from respective regulatory bodies, various technology-based industries are promoting the use of advanced carbon nanotube (CNT) reinforced lightweight and high strength polymer nanocomposites (PNCs) as a substitute to conventional materials both in structural and non-structural applications. The superior mechanical properties of PNCs made up of CNTs or bundles of CNTs can be attributed to the interfacial interaction between the CNTs and matrix, CNT's morphologies and to their uniform dispersion in the matrix. In PNCs, CNTs physically bond with polymeric matrix at a level where the assumption of continuum level interactions is not applicable. Modeling and prediction of mechanical response and failure behavior of CNTs and their composites becomes a complex task and is dealt with the help of up-scale modeling strategies involving multiple spatial and temporal scales in hierarchical or concurrent manner. Firstly, the article offers an insight into various modeling techniques in studying the mechanical response of CNTs; namely, equivalent continuum approach, quasi-continuum approach and molecular dynamics (MD) simulation. In the subsequent steps, these approaches are combined with analytical and numerical micromechanics models in a multiscale framework to predict the average macroscopic response of PNCs. The review also discusses the implementation aspects of these computational approaches, their current status and associated challenges with a future outlook.
Compendium of Material Composition Data for Radiation Transport Modeling
Energy Technology Data Exchange (ETDEWEB)
McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert
2011-03-04
Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library
Towards robust and effective shape modeling: sparse shape composition.
Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean
2012-01-01
Organ shape plays an important role in various clinical practices, e.g., diagnosis, surgical planning and treatment evaluation. It is usually derived from low level appearance cues in medical images. However, due to diseases and imaging artifacts, low level appearance cues might be weak or misleading. In this situation, shape priors become critical to infer and refine the shape derived by image appearances. Effective modeling of shape priors is challenging because: (1) shape variation is complex and cannot always be modeled by a parametric probability distribution; (2) a shape instance derived from image appearance cues (input shape) may have gross errors; and (3) local details of the input shape are difficult to preserve if they are not statistically significant in the training data. In this paper we propose a novel Sparse Shape Composition model (SSC) to deal with these three challenges in a unified framework. In our method, a sparse set of shapes in the shape repository is selected and composed together to infer/refine an input shape. The a priori information is thus implicitly incorporated on-the-fly. Our model leverages two sparsity observations of the input shape instance: (1) the input shape can be approximately represented by a sparse linear combination of shapes in the shape repository; (2) parts of the input shape may contain gross errors but such errors are sparse. Our model is formulated as a sparse learning problem. Using L1 norm relaxation, it can be solved by an efficient expectation-maximization (EM) type of framework. Our method is extensively validated on two medical applications, 2D lung localization in X-ray images and 3D liver segmentation in low-dose CT scans. Compared to state-of-the-art methods, our model exhibits better performance in both studies. PMID:21963296
Numerical framework for modeling of cementitious composites at the meso-scale
Jerábek, Jakub
2011-01-01
The application of composite materials as a building material has been constantly growing in popularity during the last decades. Composite materials combine several material components to allow for an optimal utilization of their favorable properties. The focus of this work is the modeling of the cementitious composites at the extit{meso-scale}. In particular, the motivation of the thesis is to model textile reinforced concrete, a new composite material combining a high-strength textile reinf...
Hysteresis in Magnetic Shape Memory Composites: Modeling and Simulation
Conti, Sergio; Rumpf, Martin
2015-01-01
Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimali...
Metamodels composition strategy for the model driven engineering context
Directory of Open Access Journals (Sweden)
Héctor Arturo Flórez Fernández
2015-04-01
Full Text Available In Model Driven Engineering (MDE approaches, metamodelers usually need to create a metamodel based on existing metamodels, where each one abstracts a specific domain, in order to abstract a new domain, which includes elements that could be taken from the other already created metamodels. This kind of constructions allows getting advantage of the knowledge obtained in the construction of the previous built metamodels. This paper presents a proposal to solve metamodel composition through a Domain Specific Language (DSL. This DSL is used by metamodelers, who are the people that know the domains abstracted by the different metamodels and know how to combine those metamodels in order to generate the new one. Moreover, a simple case study is presented so as to demonstrate the low level of complexity of the DSL.
Sulfur systematics in model glass compositions from West Valley
International Nuclear Information System (INIS)
Sulfur is incorporated into model glass melts, representative of West Valley compositions for the vitrification of high level nuclear waste, as the sulfate ion under oxidizing conditions and as the sulfide ion under reducing conditions. A narrow range of oxygen fugacities, around 10-8.8 atm at 1150 degrees C, under which the two redox forms of sulfur coexist is also the minimum in the sulfur solubility. Under the redox conditions prescribed for waste processing, sulfur dissolves as the sulfate ion. The capacity to dissolve sulfur as sulfate is about 1 to 2.5 wt% sulfur; an immiscible sulfate layer floats on the glass melt if waste loading introduces sulfur contents greater than this under oxidizing conditions. If the waste/melt system is exposed to sufficiently reducing conditions, the first phase to separate from the melt is likely nickel sulfide. The presence of the immiscible sulfate or sulfide layer buffers the iron redox ratio of the resulting glass
Spectrophotometry and organic matter on Iapetus. 1: Composition models
Wilson, Peter D.; Sagan, Carl
1995-01-01
Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.
Material Model Evaluation of a Composite Honeycomb Energy Absorber
Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.
LHC Phenomenology of Composite 2-Higgs Doublet Models
De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine
2016-01-01
We investigate the phenomenology of Composite 2-Higgs Doublet Models (C2HDMs) of various Yukawa types based on the global symmetry breaking $SO(6)\\to SO(4)\\times SO(2)$. The kinetic term and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under $SO(6)$. The scalar potential is assumed to be the same as that of the Elementary 2-Higgs Doublet Model (E2HDM) with a softly-broken discrete $Z_2$ symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from Standard Model (SM) couplings of the discovered Higgs state ($h$) as well as on the production cross sections and Branching Ratios (BRs) at the Large Hadron Collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the $hVV$ ($V=W,Z$) coupling is assumed in both scenarios, there appear significant differences between E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay fea...
Anisotropic magnetoresistivity in structured elastomer composites: modelling and experiments.
Mietta, José Luis; Tamborenea, Pablo I; Martin Negri, R
2016-08-14
A constitutive model for the anisotropic magnetoresistivity in structured elastomer composites (SECs) is proposed. The SECs considered here are oriented pseudo-chains of conductive-magnetic inorganic materials inside an elastomer organic matrix. The pseudo-chains are formed by fillers which are simultaneously conductive and magnetic dispersed in the polymer before curing or solvent evaporation. The SEC is then prepared in the presence of a uniform magnetic field, referred to as Hcuring. This procedure generates the pseudo-chains, which are preferentially aligned in the direction of Hcuring. Electrical conduction is present in that direction only. The constitutive model for the magnetoresistance considers the magnetic pressure, Pmag, induced on the pseudo-chains by an external magnetic field, H, applied in the direction of the pseudo-chains. The relative changes in conductivity as a function of H are calculated by evaluating the relative increase of the electron tunnelling probability with Pmag, a magneto-elastic coupling which produces an increase of conductivity with magnetization. The model is used to adjust experimental results of magnetoresistance in a specific SEC where the polymer is polydimethylsiloxane, PDMS, and fillers are microparticles of magnetite-silver (referred to as Fe3O4[Ag]). Simulations of the expected response for other materials in both superparamagnetic and blocked magnetic states are presented, showing the influence of the Young's modulus of the matrix and filler's saturation magnetization. PMID:27418417
Modelling of composite concrete block pavement systems applying a cohesive zone model
DEFF Research Database (Denmark)
Skar, Asmus; Poulsen, Peter Noe
This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests...... that the cohesive model is suitable for simulation of crack propagation in cement bound materials subjected to monotonic loading. The methodology implemented gives a new understanding of the mechanical behaviour of cement bound materials which can be used in further refinements of mechanical models for composite...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....
A Formal Model for Compliance Verification of Service Compositions
Groefsema, Heerko; van Beest, Nick; Aiello, Marco
2016-01-01
Business processes design and execution environments increasingly need support from modular services in service compositions to offer the flexibility required by rapidly changing requirements. With each evolution, however, the service composition must continue to adhere to laws and regulations, resu
Modelling the impact of aircraft emissions on atmospheric composition
Wasiuk, D. K.; Lowenberg, M. H.; Shallcross, D. E.
2012-12-01
Emissions of the trace gases CO2, CO, H2O, HC, NOx, and SOx that have the potential to perturb large scale atmospheric composition are accumulating in the atmosphere at an unprecedented rate as the demand for air traffic continues to grow. We investigate the global and regional effects of aircraft emissions on the atmosphere and climate using mathematical modelling, sensitivity simulations, and perturbation simulations and present historical and spatial distribution evolution of the global and regional number of departures, fuel burn and emissions. A comprehensive aircraft movement database spanning years 2005 - 2012, covering 225 countries and over 223 million departures on approximately 41000 unique routes serves as a basis for our investigation. We combine air traffic data with output from an aircraft performance model (fuel burn and emissions) including 80 distinct aircraft types, representing 216 of all the aircraft flown in the world in 2005 - 2012. This accounts for fuel burn and emissions for 99.5% of the total number of departures during that time. Simulations are being performed using a state of the art 3D Lagrangian global chemical transport model (CTM) CRI-STOCHEM for simulation of tropospheric chemistry. The model is applied with the CRI (Common Representative Intermediates) chemistry scheme with 220 chemical species, and 609 reactions. This allows us to study in detail the chemical cycles driven by NOx, governing the rate of formation of O3 which controls the production of OH and indirectly determines the lifetime of other greenhouse gases. We also investigate the impact of the Eyjafjallajökull eruption on the European air traffic and present a model response to the perturbation of NOx emissions that followed.
Architecture in motion: A model for music composition
Variego, Jorge Elias
2011-12-01
Speculations regarding the relationship between music and architecture go back to the very origins of these disciplines. Throughout history, these links have always reaffirmed that music and architecture are analogous art forms that only diverge in their object of study. In the 1 st c. BCE Vitruvius conceived Architecture as "one of the most inclusive and universal human activities" where the architect should be educated in all the arts, having a vast knowledge in history, music and philosophy. In the 18th c., the German thinker Johann Wolfgang von Goethe, described Architecture as "frozen music". More recently, in the 20th c., Iannis Xenakis studied the similar structuring principles between Music and Architecture creating his own "models" of musical composition based on mathematical principles and geometric constructions. The goal of this document is to propose a compositional method that will function as a translator between the acoustical properties of a room and music, to facilitate the creation of musical works that will not only happen within an enclosed space but will also intentionally interact with the space. Acoustical measurements of rooms such as reverberation time, frequency response and volume will be measured and systematically organized in correspondence with orchestrational parameters. The musical compositions created after the proposed model are evocative of the spaces on which they are based. They are meant to be performed in any space, not exclusively in the one where the acoustical measurements were obtained. The visual component of architectural design is disregarded; the room is considered a musical instrument, with its particular sound qualities and resonances. Compositions using the proposed model will not result as sonified shapes, they will be musical works literally "tuned" to a specific space. This Architecture in motion is an attempt to adopt scientific research to the service of a creative activity and to let the aural properties of
Measurement and model on thermal properties of sintered diamond composites
Energy Technology Data Exchange (ETDEWEB)
Moussa, Tala, E-mail: Tala.moussa@univ-nantes.fr [Laboratoire de Thermocinetique UMR CNRS 6607, Polytech, Universite de nantes, BP 50609, rue Christian Pauc, 44306 Nantes (France); Garnier, Bertrand; Peerhossaini, Hassan [Laboratoire de Thermocinetique UMR CNRS 6607, Polytech, Universite de nantes, BP 50609, rue Christian Pauc, 44306 Nantes (France)
2013-02-25
Highlights: Black-Right-Pointing-Pointer Thermal properties of sintered diamond used for grinding is studied. Black-Right-Pointing-Pointer Flash method with infrared temperature measurement is used to investigate. Black-Right-Pointing-Pointer Thermal conductivity increases with the amount of diamond. Black-Right-Pointing-Pointer It is very sensitive to binder conductivity. Black-Right-Pointing-Pointer Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime Horizontal-Ellipsis ) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data
ENSO Forecasts in the North American Multi-Model Ensemble: Composite Analysis and Verification
Chen, L. C.
2015-12-01
In this study, we examine precipitation and temperature forecasts during El Nino/Southern Oscillation (ENSO) events in six models in the North American Multi-Model Ensemble (NMME), including the CFSv2, CanCM3, CanCM4, FLOR, GEOS5, and CCSM4 models, by comparing the model-based ENSO composites to the observed. The composite analysis is conducted using the 1982-2010 hindcasts for each of the six models with selected ENSO episodes based on the seasonal Ocean Nino Index (ONI) just prior to the date the forecasts were initiated. Two sets of composites are constructed over the North American continent: one based on precipitation and temperature anomalies, the other based on their probability of occurrence in a tercile-based system. The composites apply to monthly mean conditions in November, December, January, February, and March, respectively, as well as to the five-month aggregates representing the winter conditions. For the anomaly composites, we use the anomaly correlation coefficient and root-mean-square error against the observed composites for evaluation. For the probability composites, unlike conventional probabilistic forecast verification assuming binary outcomes to the observations, both model and observed composites are expressed in probability terms. Performance metrics for such validation are limited. Therefore, we develop a probability anomaly correlation measure and a probability score for assessment, so the results are comparable to the anomaly composite evaluation. We found that all NMME models predict ENSO precipitation patterns well during wintertime; however, some models have large discrepancies between the model temperature composites and the observed. The skill is higher for the multi-model ensemble, as well as the five-month aggregates. Comparing to the anomaly composites, the probability composites have superior skill in predicting ENSO temperature patterns and are less sensitive to the sample used to construct the composites, suggesting that
Modal characterization of composite flat plate models using piezoelectric transducers
Oliveira, É. L.; Maia, N. M. M.; Marto, A. G.; da Silva, R. G. A.; Afonso, F. J.; Suleman, A.
2016-10-01
This paper aims to estimate the modal parameters of composite flat plate models through Experimental Modal Analysis (EMA) using piezoelectric transducers. The flat plates are composed of three ply carbon-epoxy fibers oriented in the same direction. Five specimens with different unidirectional fiber nominal orientations θk (0o, 30o, 45o, 60o and 90o) were tested. These models were instrumented with one PZT (Lead Zirconate Titanate) actuator and one PVDF (Polyvinylidene Fluoride) sensor and an EMA was performed. The natural frequencies and damping factors estimated using only a single PVDF response were compared with the estimated results using twelve measurement points acquired by laser doppler vibrometry. For comparison purposes, the percentage error of each natural frequency estimation and the percentage error of the damping factor estimations were computed, as well as their averages. Even though the comparison was made between a SISO (Single-Input, Single-Output) and a SIMO (Single-Input, Multiple-Output) techniques, both results are very close. The vibration modes were estimated by means of laser measurements and were used in the modal validation. In order to verify the accuracy of the modal parameters, the Modal Assurance Criterion (MAC) was employed and a high correlation among mode shapes was observed.
Fine Tuning in the Holographic Minimal Composite Higgs Model
Archer, Paul R
2014-01-01
In the minimal composite Higgs model (MCHM), the size of the Higgs mass and vacuum expectation value is determined, via the Higgs potential, by the size of operators that violate the global SO(5) symmetry. In 5D holographic realisations of this model, this translates into the inclusion of brane localised operators. However, the inclusion of all such operators results in a large and under-constrained parameter space. In this paper we study the level of fine-tuning involved in such a parameter space, focusing on the MCHM${}_5$. It is demonstrated that the gauge contribution to the Higgs potential can be suppressed by brane localised kinetic terms, but this is correlated with an enhancement to the S parameter. The fermion contribution, on the other hand, can be enhanced or suppressed. However this does not significantly improve the level of fine tunings, since the Higgs squared term, in the potential, requires a cancellation between the fermion and gauge contributions. Although we focus on the MCHM${}_5$, the fe...
A Compositional Relevance Model for Adaptive Information Retrieval
Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)
1994-01-01
There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.
Oil composition and properties for oil spill modelling
Energy Technology Data Exchange (ETDEWEB)
Wang, Z.D.; Hollebone, B.P.; Yang, C.; Fieldhouse, B.; Fingas, M.; Landriault, M.; Gamble, L.; Peng, X. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre; Weaver, J. [National Exposure Research Laboratory, Athens, GA (United States)
2005-07-01
The methods and procedures for measuring the physical properties and chemical compositions of 9 commonly used crude oils that have the potential to be spilled at sea were presented. The 9 oils have API gravities ranging from 11 to 42 degrees and have large differences in their physical and chemical properties. The oils are fractioned into groups of compounds with similar structures and properties. The hydrocarbon groups include TPHCWG fractions with different carbon ranges, total petroleum hydrocarbon, total saturates, total aromatics, asphaltenes and polars. The target hydrocarbons characterized include n-alkanes, volatile BTEX and other alkyl benzenes, oil-characteristic alkylated PAH homologous series and other EPA priority PAH and biomarker compounds. This paper also presented a set of physical and chemical property data for the Cook Inlet Crude Oil. The physical and chemical properties reported were those that are most likely to determine the environmental fate and impact of spilled oil. Results of this project have been integrated into existing Environmental Protection Agency (EPA) and Environment Canada oil properties databases to advance oil spill modelling. The data will be particularly useful for an oil spill model that is being developed by the National Exposure Research Laboratory in Athens, Georgia to determine the fate and transport of oil components under a range of oil spill scenarios. The data reflects the changes to an oil over the course of a spill. 20 refs., 8 tabs., 4 figs.
Composite tissue allotransplantation of the face: Decision analysis model
Cugno, Sabrina; Sprague, Sheila; Duku, Eric; Thoma, Achilleas
2007-01-01
BACKGROUND: Facial composite tissue allotransplantation is a potential reconstructive option for severe facial disfigurement. The purpose of the present investigation was to use decision analysis modelling to ascertain the expected quality-adjusted life years (QALYs) gained with face transplantation (versus remaining in a disfigured state) in an effort to assist surgeons with the decision of whether to adopt this procedure. STUDY DESIGN: The probabilities of potential complications associated with facial allotransplantation were identified by a comprehensive review of kidney and hand transplant literature. A decision analysis tree illustrating possible health states for face allotransplantation was then constructed. Utilities were obtained from 30 participants, using the standard gamble and time trade-off measures. The utilities were then translated into QALYs, and the expected QALYs gained with transplantation were computed. RESULTS: Severe facial deformity was associated with an average of 7.34 QALYs. Allotransplantation of the face imparted an expected gain in QALYs of between 16.2 and 27.3 years. CONCLUSIONS: The current debate within the medical community surrounding facial composite tissue allotransplantation has centred on the issue of inducing a state of immunocompromise in a physically healthy individual for a non-life-saving procedure. However, the latter must be weighed against the potential social and psychological benefits that transplantation would confer. As demonstrated by a gain of 26.9 QALYs, participants’ valuation of quality of life is notably greater for face transplantation with its side effects of immunosuppression than for a state of uncompromised physical health with severe facial disfigurement. PMID:19554146
Constitutive modeling of fiber-reinforced cement composites
Boulfiza, Mohamed
The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts
ACES Model Composition and Development Toolkit to Support NGATS Concepts Project
National Aeronautics and Space Administration — Building on recent advances in formal agent specification, protocol composition, model composers, and visualization capabilities provided by development...
Formal Modeling of Trust Web Service Composition Using Pi-calculus
Directory of Open Access Journals (Sweden)
Bensheng YUN
2013-08-01
Full Text Available To enhance the credibility of Web service composition, Pi-calculus based formal modeling of trust Web service composition is proposed. Trust Web service composition is firstly defined abstractly; then Pi-calculus is used to depict structure and internal interaction of Trust Web service composition, the mapping relation between trust entity and Pi-calculus is provided. Automatic reasoner MWB is adopted to analyze and reason the Trust Web service composition system, which is aimed at finding and correcting the faults before the implementation of trust authentication of Web service composition. It thus meets the users’ demands on trust quality effectively.
Directory of Open Access Journals (Sweden)
Huili eYuan
2016-04-01
Full Text Available The biomass composition represented in constraint-based metabolic models is a key component for predicting cellular metabolism using flux balance analysis (FBA. Despite major advances in analytical technologies, it is often challenging to obtain a detailed composition of all major biomass components experimentally. Studies examining the influence of the biomass composition on the predictions of metabolic models have so far mostly been done on models of microorganisms. Little is known about the impact of varying biomass composition on flux prediction in FBA models of plants, whose metabolism is very versatile and complex because of the presence of multiple subcellular compartments. Also, the published metabolic models of plants differ in size and complexity. In this study, we examined the sensitivity of the predicted fluxes of plant metabolic models to biomass composition and model structure. These questions were addressed by evaluating the sensitivity of predictions of growth rates and central carbon metabolic fluxes to varying biomass compositions in three different genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed that fluxes through the central carbon metabolism were robust to changes in biomass composition. Nevertheless, comparisons between the predictions from three models using identical modelling constraints and objective function showed that model predictions were sensitive to the structure of the models, highlighting large discrepancies between the published models.
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
Constitutive modelling of cork-polyurethane gel composites
Antunes, Paulo Jorge da Rocha Soares
2009-01-01
Tese de doutoramento em Engenharia de Polímeros (ramo de conhecimento em Ciência de Materiais Poliméricos) The CPGC - Cork-Polyurethane Gel Composite is a rubber-like material produced by ACC-Amorim Cork Composites. The non-conventional combination of cork with polyurethane gel results in a composite material with particular mechanical characteristics that must be clearly understanded for potentiate new applications or optimize products already produced with CPGC. The applicati...
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Dai, Gaoming
2014-01-01
by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....
Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling Element
National Aeronautics and Space Administration — CIM encompassed computational methods, tools and processes that go into the materials, design, manufacturing and qualification of composite aerospace structures....
Predictive Modeling of Complex Contoured Composite Structures Project
National Aeronautics and Space Administration — The existing HDWLT (pictured) contoured composite structure design, its analyses and manufacturing tools, will be used to validate key analyses inputs through...
Micromechanical Models for Composite NDE and Diagnostics Project
National Aeronautics and Space Administration — Modern aircraft (and next generation spacecraft) increasingly rely on composite components due to their excellent specific strength and stiffness, as well as...
Micromechanical Models for Composite NDE and Diagnostics Project
National Aeronautics and Space Administration — Modern aircraft increasingly rely on composite components, due to their excellent material properties. However, fastening/joining and design methodologies in...
Hysteresis in magnetic shape memory composites: Modeling and simulation
Conti, Sergio; Lenz, Martin; Rumpf, Martin
2016-04-01
Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.
Stable isotope composition of atmospheric carbon monoxide. A modelling study
International Nuclear Information System (INIS)
This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Simplified prediction model for elastic modulus of particulate reinforced metal matrix composites
Institute of Scientific and Technical Information of China (English)
WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min
2006-01-01
Some structural parameters of the metal matrix composite, including particulate shape and distribution do not influence the elastic modulus. A prediction model for the elastic modulus of particulate reinforced metal matrix Al composite was developed and improved. Expressions of rigidity and flexibility of the rule of mixing were proposed. A five-zone model for elasticity performance calculation of the composite was proposed. The five-zone model is thought to be able to reflect the effects of the MMC interface on elastic modulus of the composite. The model overcomes limitations of the currently-understood rigidity and flexibility of the rule of mixing. The original idea of a five-zone model is to propose particulate/interface interactive zone and matrix/interface interactive zone. By integrating organically with the law of mixing, the new model is found to be capable of predicting the engineering elastic constants of the MMC composite.
Future electron-positron colliders and the 4-dimensional composite Higgs model
Energy Technology Data Exchange (ETDEWEB)
Barducci, D. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Curtis, S. De [INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Moretti, S. [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Pruna, G.M. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)
2014-02-03
In this note we analyse the prospects of a future electron-positron collider in testing a particular realisation of a composite Higgs model encompassing partial compositeness, namely, the 4-Dimensional Composite Higgs Model. We study the main Higgs production channels for three possible energy stages and different luminosity options of such a machine and confront our results to the expected experimental accuracies in the various Higgs decay channels accessible herein and, for comparison, also at the Large Hadron Collider.
Peridynamic modeling and simulation of polymer-nanotube composites
Henke, Steven F.
In this document, we develop and demonstrate a framework for simulating the mechanics of polymer materials that are reinforced by carbon nanotubes. Our model utilizes peridynamic theory to describe the mechanical response of the polymer and polymer-nanotube interfaces. We benefit from the continuum formulation used in peridynamics because (1) it allows the polymer material to be coarse-grained to the scale of the reinforcing nanofibers, and (2) failure via nanotube pull-out and matrix tearing are possible based on energetic considerations alone (i.e. without special treatment). To reduce the degrees of freedom that must be simulated, the reinforcement effect of the nanotubes is represented by a mesoscale bead-spring model. This approach permits the arbitrary placement of reinforcement ``strands'' in the problem domain and motivates the need for irregular quadrature point distributions, which have not yet been explored in the peridynamic setting. We address this matter in detail and report on aspects of mesh sensitivity that we uncovered in peridynamic simulations. Using a manufactured solution, we study the effects of quadrature point placement on the accuracy of the solution scheme in one and two dimensions. We demonstrate that square grids and the generator points of a centroidal Voronoi tessellation (CVT) support solutions of similar accuracy, but CVT grids have desirable characteristics that may justify the additional computational cost required for their construction. Impact simulations provide evidence that CVT grids support fracture patterns that resemble those obtained on higher resolution cubic Cartesian grids with a reduced computational burden. With the efficacy of irregular meshing schemes established, we exercise our model by dynamically stretching a cylindrical specimen composed of the polymer-nanotube composite. We vary the number of reinforcements, alignment of the filler, and the properties of the polymer-nanotube interface. Our results suggest
A Formal Model for BPEL4WS Description of Web Service Composition
Institute of Scientific and Technical Information of China (English)
GU Xiwu; LU Zhengding
2006-01-01
Communicating Sequential Processes (CSP) is a kind of process algebra, which is suitable for modeling and verifying Web service composition.This paper describes how to model Web service composition with CSP.A set of rules for translating composition constructor of Business Process Execution Language for Web Services (BPEL4WS) to CSP notations is defined.According to the rules that have been defined, the corresponding translation algorithm is designed and illustrated with examples.The methods for model checking,model verification and model simulation are also introduced.
Compositional Models of Glass/Melt Properties and their Use for Glass Formulation
International Nuclear Information System (INIS)
Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples of these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant
Micro-Scale Experiments and Models for Composite Materials with Materials Research
DEFF Research Database (Denmark)
Zike, Sanita
Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... on polymer and polymer/composite materials....
Hierarchical composites: Analysis of damage evolution based on fiber bundle model
DEFF Research Database (Denmark)
Mishnaevsky, Leon
2011-01-01
A computational model of multiscale composites is developed on the basis of the fiber bundle model with the hierarchical load sharing rule, and employed to study the effect of the microstructures of hierarchical composites on their damage resistance. Two types of hierarchical materials were consi...
Biomechanical comparison of the human cadaveric pelvis with a fourth generation composite model.
Girardi, Brandon L; Attia, Tarik; Backstein, David; Safir, Oleg; Willett, Thomas L; Kuzyk, Paul R T
2016-02-29
The use of cadavers for orthopaedic biomechanics research is well established, but presents difficulties to researchers in terms of cost, biosafety, availability, and ease of use. High fidelity composite models of human bone have been developed for use in biomechanical studies. While several studies have utilized composite models of the human pelvis for testing orthopaedic reconstruction techniques, few biomechanical comparisons of the properties of cadaveric and composite pelves exist. The aim of this study was to compare the mechanical properties of cadaveric pelves to those of the 4th generation composite model. An Instron ElectroPuls E10000 mechanical testing machine was used to load specimens with orientation, boundary conditions and degrees of freedom that approximated those occurring during the single legged phase of walking, including hip abductor force. Each specimen was instrumented with strain gauge rosettes. Overall specimen stiffness and principal strains were calculated from the test data. Composite specimens showed significantly higher overall stiffness and slightly less overall variability between specimens (composite K=1448±54N/m, cadaver K=832±62N/m; pcomposite models and cadavers were similar (but did differ) only when the applied load was scaled to overall construct stiffness. This finding regarding strain distribution and the difference in overall stiffness must be accounted for when using these composite models for biomechanics research. Altering the cortical wall thickness or tuning the elastic moduli of the composite material may improve future generations of the composite model.
GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY
Energy Technology Data Exchange (ETDEWEB)
Millings, M.; Denham, M.; Looney, B.
2012-05-08
affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.
Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus
DEFF Research Database (Denmark)
Peng, R.D.; Zhou, H.W.; Wang, H.W.;
2012-01-01
A computational numerical-analytical model of nano-reinforced polymer composites is developed taking into account the interface and particle clustering effects. The model was employed to analyze the interrelationships between microstructures and mechanical properties of nanocomposites. An improved...
A classical lamination model of bi-stable woven composite tape-springs
Prigent, Yoann; Mallol, Pau; Tibert, Gunnar
2011-01-01
This extended abstract presents the work done so far on modeling woven composite materials, specifically two carbon fiber reinforced plastics materials: twill and plain weave. The material model has been initially verified against data available in a database. QC 20120215
Modeling compositional dynamics based on GC and purine contents of protein-coding sequences
Zhang, Zhang
2010-11-08
Background: Understanding the compositional dynamics of genomes and their coding sequences is of great significance in gaining clues into molecular evolution and a large number of publically-available genome sequences have allowed us to quantitatively predict deviations of empirical data from their theoretical counterparts. However, the quantification of theoretical compositional variations for a wide diversity of genomes remains a major challenge.Results: To model the compositional dynamics of protein-coding sequences, we propose two simple models that take into account both mutation and selection effects, which act differently at the three codon positions, and use both GC and purine contents as compositional parameters. The two models concern the theoretical composition of nucleotides, codons, and amino acids, with no prerequisite of homologous sequences or their alignments. We evaluated the two models by quantifying theoretical compositions of a large collection of protein-coding sequences (including 46 of Archaea, 686 of Bacteria, and 826 of Eukarya), yielding consistent theoretical compositions across all the collected sequences.Conclusions: We show that the compositions of nucleotides, codons, and amino acids are largely determined by both GC and purine contents and suggest that deviations of the observed from the expected compositions may reflect compositional signatures that arise from a complex interplay between mutation and selection via DNA replication and repair mechanisms.Reviewers: This article was reviewed by Zhaolei Zhang (nominated by Mark Gerstein), Guruprasad Ananda (nominated by Kateryna Makova), and Daniel Haft. 2010 Zhang and Yu; licensee BioMed Central Ltd.
Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites
Fasanella, Nicholas A.; Sundararaghavan, Veera
2016-05-01
The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.
International Nuclear Information System (INIS)
Basing on the experimental results of the hardenability investigations, which employed Jominy method, the model of the neural networks was developed and fully verified experimentally. The model makes it possible to obtain Jominy hardenability curves basing on the steel chemical composition. The model of neural networks, making it possible to design the steel chemical composition, basing on the known Jominy hardenability curve shape, was developed also and fully verified numerically. The practical usability of the models developed is presented. (author)
Modeling of properties of fiber reinforced cement composites
Directory of Open Access Journals (Sweden)
Jevtić Dragica
2008-01-01
Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.
Interface structure and strength in model dental resin composites
DEFF Research Database (Denmark)
Nielsen, Mette Skovgaard
. This will facilitate discoloration by colorants from e.g. coffee and red wine entering the crack, or even worse lead to secondary caries and infection of dental pulp due to bacteria. The aim of this study was to develop a low shrinkage dental composite based on an expandable metastable zirconia filler A metastable...... the polymer shrinkage and reduces the overall shrinkage of the composite. In this thesis the zirconia filler is characterized and tested for the potential as a filler for use in dental composites. The zirconia powder is composed of highly agglomerated particles of nanosized crystals. The average particle size...... upon radiation with blue light. After 30 min light exposure a monoclinic volume fraction of 0.6 was observed, when using 2-(4-methoxystyryl)- 4,6-bis(trichloromethyl)-1,3,5-triazine as the photoacid generator. Surface modification is very important in order to obtain a dental composite with good...
Validation and modeling of earthquake strong ground motion using a composite source model
Zeng, Y.
2001-12-01
Zeng et al. (1994) have proposed a composite source model for synthetic strong ground motion prediction. In that model, the source is taken as a superposition of circular subevents with a constant stress drop. The number of subevents and their radius follows a power law distribution equivalent to the Gutenberg and Richter's magnitude-frequency relation for seismicity. The heterogeneous nature of the composite source model is characterized by its maximum subevent size and subevent stress drop. As rupture propagates through each subevent, it radiates a Brune's pulse or a Sato and Hirasawa's circular crack pulse. The method has been proved to be successful in generating realistic strong motion seismograms in comparison with observations from earthquakes in California, eastern US, Guerrero of Mexico, Turkey and India. The model has since been improved by including scattering waves from small scale heterogeneity structure of the earth, site specific ground motion prediction using weak motion site amplification, and nonlinear soil response using geotechnical engineering models. Last year, I have introduced an asymmetric circular rupture to improve the subevent source radiation and to provide a consistent rupture model between overall fault rupture process and its subevents. In this study, I revisit the Landers, Loma Prieta, Northridge, Imperial Valley and Kobe earthquakes using the improved source model. The results show that the improved subevent ruptures provide an improved effect of rupture directivity compared to our previous studies. Additional validation includes comparison of synthetic strong ground motions to the observed ground accelerations from the Chi-Chi, Taiwan and Izmit, Turkey earthquakes. Since the method has evolved considerably when it was first proposed, I will also compare results between each major modification of the model and demonstrate its backward compatibility to any of its early simulation procedures.
Taylor, John G.
The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.
Institute of Scientific and Technical Information of China (English)
WANG Wen-ming; PAN Fu-sheng; LU Yun; ZENG Su-min
2006-01-01
In this paper, we proposed a five-zone model to predict the elastic modulus of particulate reinforced metal matrix composite. We simplified the calculation by ignoring structural parameters including particulate shape, arrangement pattern and dimensional variance mode which have no obvious influence on the elastic modulus of a composite, and improved the precision of the method by stressing the interaction of interfaces with pariculates and maxtrix of the composite. The five- zone model can reflect effects of interface modulus on elastic modulus of composite. It overcomes limitations of expressions of rigidity mixed law and flexibility mixed law. The original idea of five zone model is to put forward the particulate/interface interactive zone and matrix/interface interactive zone. By organically integrating the rigidity mixed law and flexibility mixed law,the model can predict the engineering elastic constant of a composite effectively.
Yan, Su
2007-12-01
To improve the fuel consumption of a satellite, maintain the position and orientation and eliminate the unwanted thruster vibration, intelligent composite structure technology was proposed in the ADPICAS (Adaptive Damping and Positioning using Intelligent Composite Active Structures) project funded by the ONR (Office of Naval Research) in collaboration with the NRL (Naval Research Laboratory) in 2000. This dissertation introduces the author's research achievements in developing smart composite panels for the ADPICAS project, including modeling, actuator optimization, and vibration control. The method of separation of variables is presented to derive the analytical shape functions for complex composite structures with asymmetric constraints, i.e., the 2-D Adaptive Composite Circular Plate (ACCP) in cylindrical coordinates and the 3-D Adaptive Composite Satellite Dish (ACSD) in spherical coordinates. Following these solutions, two modeling approaches are developed to obtain the models of adaptive composite panels including an adaptive composite beam, the ACCP, and the ACSD. One model approach is to employ the Lagrange-Rayleigh-Ritz method based on the developed analytical shape functions. Meanwhile, the transfer function estimation technique, combining the finite element analyses, is applied to obtain the numerical model of the composite panels. Aiming at improving the actuation efficiency, a Genetic Algorithm is presented to optimize the piezoelectric actuator placement on the composite panels. Taking the inertia and stiffness characteristics of the piezoelectric actuators into account, this algorithm defines the performance index as a weighted summation of control error and control energy consumption, and obtained the optimal solution that minimizes the performance index. Furthermore, an adaptive disturbance observer/feed-forward (ADOB/FF) controller is proposed to achieve simultaneous precision positioning and vibration suppression of the adaptive composite panels
Same-sign W pair production in composite Higgs models
Englert, Christoph; Spannowsky, Michael
2016-01-01
Non-minimal composite Higgs scenarios can contain exotic Higgs states which, if getting observed at the Large Hadron Collider, will help to constrain the underlying UV structure of the strong dynamics. Doubly charged Higgs bosons are well-motivated scalar degrees of freedom in this context. Their phenomenology in typical composite scenarios can differ from well-established Higgs triplet extensions of the SM. Related search strategies are not necessarily adapted to such a scenario as a consequence. In this paper we discuss the sensitivity reach to doubly charged Higgs bosons with decays into pairs of same-sign $W$ bosons. While production cross sections are small, we show that significant constraints on $H^{\\pm\\pm}\\to W^{\\pm}W^{\\pm}$ can be obtained, providing a new opportunity to constrain the potential composite structure of the TeV scale up to $m_{H^{\\pm\\pm}}\\simeq 800$~GeV.
On the elastic properties of carbon nanotube-based composites: modelling and characterization
Thostenson, E T
2003-01-01
The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...
Modelling anisotropic water transport in polymer composite reinforced with aligned triangular bars
Indian Academy of Sciences (India)
Bryan Pajarito; Masatoshi Kubouchi; Saiko Aoki
2014-02-01
This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite. Through transient FE diffusion analysis, anisotropic water transport in thickness direction of the polymer composite was numerically predicted and validated against experimental results. The case of using impermeable triangular bars was also numerically simulated. The diffusivity of reinforced aligned triangular bars was confirmed to affect anisotropic water transport in the composite. The results of this work suggest possible use of polymer composite for barrier and fluid removal applications.
Natural composition of tree species as a basis for model development of stumpage price
Košir, Boštjan; Košir, Živko; Krč, Janez
2006-01-01
Model development and use play a significant role in research and forest management of Slovenian forests. As co-natural and sustainable forest management is traditional, it is essential to rely on available knowledge of the composition of natural plant associations. This paper describes the need for stumpage price modelling, and the basic concept of developing models which can behave dynamically as forest structure approaches the final goal – tree composition close to nature. The main plan...
Steady polarization process modelling of noble metal-electrolyte cermet composite electrode
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Cermet composites containing mixture of noble metal phase and electrolyte phase are the state-of-the-art electrode materials used for electrochemical sensor and solid oxide fuel cell(SOFC). A steady polarization model was developed. The model was based on electronic and ionic transfer process together with the electrochemical reaction regardless of mass transport in the electrode. The modelling results can help to understand the electrochemistry of cermet composite electrode.
Ion composition measurements and modelling at altitudes from 140 to 350 km using EISCAT measurements
Directory of Open Access Journals (Sweden)
A. Litvin
Full Text Available This work aims at processing the data of CP1 and CP2 programs of EISCAT ionospheric radar from 1987 to 1994 using the "full profile" method which allows to solve the "temperature-composition" ambiguity problem in the lower F region. The program of data analysis was developed in the CEPHAG in 1995–1996. To improve this program, we implemented another analytical function to model the ion composition profile. This new function better reflects the real profile of the composition. Secondly, we chose the best method to select the initial conditions for the "full profile" procedure. A statistical analysis of the results was made to obtain the averages of various parameters: electron concentration and temperature, ion temperature, composition and bulk velocity. The aim is to obtain models of the parameter behaviour defining the ion composition profiles : z_{50} (transition altitude between atomic and molecular ions and dz (width of the profile, for various seasons and for high and low solar activities. These models are then compared to other models. To explain the principal features of parameters z_{50} and dz, we made an analysis of the processes leading to composition changes and related them to production and electron density profile. A new experimental model of ion composition is now available.
Key words. Auroral ionosphere · Ion chemistry and composition · Instruments and techniques · EISCAT
Lee, Chien-Sing
2007-01-01
Models represent a set of generic patterns to test hypotheses. This paper presents the CogMoLab student model in the context of an integrated learning environment. Three aspects are discussed: diagnostic and predictive modeling with respect to the issues of credit assignment and scalability and compositional modeling of the student profile in the…
Human body composition models and methodology: theory and experiment.
Wang, Z.M.
1997-01-01
The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors. Accordingly, the study of human
Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus
DEFF Research Database (Denmark)
Madsen, Bo; Joffe, Roberts; Peltola, Heidi;
2011-01-01
This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... fraction is used as the basic independent variable. The values of the input model parameters are derived from experimental studies of the configuration of the composites (volumetric composition, dimensions, and orientation of fibers), as well as the properties of the constituent fiber and matrix phases...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....
Lee, Dock-Jin; Kim, Young-Jin; Kim, Moon-Ki; Choi, Jae-Boong; Chang, Yoon-Suk; Liu, Wing Kam
2011-01-01
New advanced composite materials have recently been of great interest. Especially, many researchers have studied on nano/micro composites based on matrix filled with nano-particles, nano-tubes, nano-wires and so forth, which have outstanding characteristics on thermal, electrical, optical, chemical and mechanical properties. Therefore, the need of numerical approach for design and development of the advanced materials has been recognized. In this paper, finite element analysis based on multi-resolution continuum theory is carried out to predict the anisotropic behavior of nano/micro composites based on damage mechanics with a cell modeling. The cell modeling systematically evaluates constitutive relationships from microstructure of the composite material. Effects of plastic anisotropy on deformation behavior and damage evolution of nano/micro composite are investigated by using Hill's 48 yield function and also compared with those obtained from Gurson-Tvergaard-Needleman isotropic damage model based on von Mises yield function.
Grace, J.B.; Bollen, K.A.
2008-01-01
Structural equation modeling (SEM) holds the promise of providing natural scientists the capacity to evaluate complex multivariate hypotheses about ecological systems. Building on its predecessors, path analysis and factor analysis, SEM allows for the incorporation of both observed and unobserved (latent) variables into theoretically-based probabilistic models. In this paper we discuss the interface between theory and data in SEM and the use of an additional variable type, the composite. In simple terms, composite variables specify the influences of collections of other variables and can be helpful in modeling heterogeneous concepts of the sort commonly of interest to ecologists. While long recognized as a potentially important element of SEM, composite variables have received very limited use, in part because of a lack of theoretical consideration, but also because of difficulties that arise in parameter estimation when using conventional solution procedures. In this paper we present a framework for discussing composites and demonstrate how the use of partially-reduced-form models can help to overcome some of the parameter estimation and evaluation problems associated with models containing composites. Diagnostic procedures for evaluating the most appropriate and effective use of composites are illustrated with an example from the ecological literature. It is argued that an ability to incorporate composite variables into structural equation models may be particularly valuable in the study of natural systems, where concepts are frequently multifaceted and the influence of suites of variables are often of interest. ?? Springer Science+Business Media, LLC 2007.
A model study of the size and composition distribution of aerosols in an aircraft exhaust
Energy Technology Data Exchange (ETDEWEB)
Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)
1997-12-31
A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.
A mechanical model for surface layer formation on self-lubricating ceramic composites
Song, Jiupeng; Valefi, Mahdiar; Rooij, de Matthijn; Schipper, Dirk J.
2010-01-01
To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,
Modular, Semantics-Based Composition of Biosimulation Models
Neal, Maxwell Lewis
2010-01-01
Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…
Application of feature method to the modelling of composite structural elements
Directory of Open Access Journals (Sweden)
A. Baier
2011-03-01
Full Text Available Purpose: The paper describes the use of object-oriented methods in modelling and analysis of components made of fibre-based composites. Defined and specified the method for creating fibre primitives. An algorithm for the design of composite structures using object-oriented methods.Design/methodology/approach: The basic tool is an algorithm to build fibre facilities. Material properties can be found in the previously created databases of material objects. The whole is linked to the relevant formulas and diagrams.Findings: The basis for the introduction of object-oriented method was to systematize the processes of modelling and analysis of composite materials. Application issue features possible to determine the final form of composite structure.Research limitations/implications: Research direction is to create tools to support the work of the constructor during the construction of composite components. Material created a database of individual components of laminates, allows to build optimal in terms of established criteria of composite elements.Practical implications: The practical aspect of using object-oriented method is to use it to define the structure of the laminates. At the modelling stage it is possible to perform the parameterization formula of each phase of the composite. This recipe is especially important during the manufacture of composites.Originality/value: The paper presents a new approach to modelling of composites by defining a new elementary objects forming the basis for during the composite design process. Algorithms used in the work are particularly important for designers of new technical components made on the basis of fibre composites.
Su-Yuen, Hsu
2011-01-01
Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on study of strain distribution in whisker reinforced metal matrix composites, an explicit precise stiffness tensor is derived. In the present theory, the effect of whisker orientation on the macro property of composites is considered, but the effect of random whisker position and the complicated strain field at whisker ends are averaged. The derived formula is able to predict the stiffness modulus of composites with arbitrary whisker orientation under any loading condition. Compared with the models of micro-mechanics, the present theory is competent for modulus prediction of actual engineering composites. The verification and application of the present theory are given in a subsequent paper published in the same issue.
Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites
Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.
2010-01-01
In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix
Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.
Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H
2015-01-01
Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.
Modelling the elastic behaviour of carbon nanotube-reinforced composites
Otero-Gruer, Fermín; Oller Martínez, Sergio Horacio; Martínez García, Javier; Salomón, Ramón Omar
2011-01-01
Carbon nanotubes (CNTs), since their discovery by Lij ima in 1991 [1], are considered a new generation of reinforcement [2]. Their "nano" size structure makes them potentially free of defects, which provides them with excellent physical properties [3,4]. There are two main nanotube types: single wall nanotubes (SWNT), which are made of a single wall tube; and multiwall nanotubes (MWNT), which consist in several concentric walls, one inside the other. In a composite, one the most importa...
Numerical modelling of behaviour of carbon nanotube-reinforced composites
Otero-Gruer, Fermín; Oller Martínez, Sergio Horacio; Martínez García, Javier; Salomón, Ramón Omar
2011-01-01
Since their discovery by Lijima in 1991[1], carbon nanotubes (CNTs), are considered a new generation of reinforcement [2]. Their "nano" size structure makes them potentially free of defects, which provides them with excellent physical properties [3,4]. There are two main nanotube types: single wall nanotubes (SWNT) and multi wall nanotubes (MWNT). These last ones consist in several concentric walls, one inside the other. In a composite, one the most important factors that condition thei...
Micromechanical modelling of thermoplastic elastomer composite with a Polypropylene matrix
Parenteau, Thomas
2009-01-01
Due to their high consumption, the vulcanized elastomeric products are an important source of waste. One way of recycling these materials is their reuse under the form of particles in polymer matrix composites to reduce stiffness and increase their resistance to low-energy impacts. This study is born of a collaboration between the LIMATB and the Technische Universität Chemnitz, which develops this concept of materials.The aim of this study is to conduct experimental characterization and to de...
DEFF Research Database (Denmark)
Kushch, V.I.; Shmegera, S.V.; Mishnaevsky, Leon
2011-01-01
Two micromechanical, representative unit cell type models of fiber reinforced composite (FRC) are applied to simulate explicitly onset and accumulation of scattered local damage in the form of interface debonding. The first model is based on the analytical, multipole expansion type solution...... of the multiple inclusion problem by means of complex potentials. The second, finite element model of FRC is based on the cohesive zone model of interface. Simulation of progressive debonding in FRC using the many-fiber models of composite has been performed. The advantageous features and applicability areas...... of both models are discussed. It has been shown that the developed models provide detailed analysis of the progressive debonding phenomena including the interface crack cluster formation, overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite....
Dynamic modeling and analysis of the PZT-bonded composite Timoshenko beams: Spectral element method
Lee, Usik; Kim, Daehwan; Park, Ilwook
2013-03-01
The health of thin laminated composite beams is often monitored using the ultrasonic guided waves excited by wafer-type piezoelectric transducers (PZTs). Thus, for the smart composite beams which consist of a laminated composite base beam and PZT layers, it is very important to develop a very reliable mathematical model and to use a very accurate computational method to predict accurate dynamic characteristics at very high ultrasonic frequency. In this paper, the axial-bending-shear-lateral contraction coupled differential equations of motion are derived first by the Hamilton's principle with Lagrange multipliers. The smart composite beam is represented by a Timoshenko beam model by adopting the first-order shear deformation theory (FSDT) for the laminated composite base beam. The axial deformation of smart composite beam is improved by taking into account the effects of lateral contraction by adopting the concept of Mindlin-Herrmann rod theory. The spectral element model is then formulated by the variation approach from coupled differential equations of motion transformed into the frequency domain via the discrete Fourier transform. The high accuracy of the present spectral element model is verified by comparing with other solution methods: the finite element model developed in this paper and the commercial FEA package ANSYS. Finally the dynamics and wave characteristics of some example smart composite beams are investigated through the numerical studies.
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
The use of numerical models for the fire analysis of reinforced concrete and composite structures
Dotreppe, Jean-Claude; Franssen, Jean-Marc
1985-01-01
This paper axplains how the fibre model is used in the thermal and in the mechan ical analysis to determine the fire resistance of reinforced concrete and composite steel-concrete beam elements with the numerical software CEFICOSS Peer reviewed
Directory of Open Access Journals (Sweden)
Saleh Alsubari
2011-09-01
Full Text Available In this paper, we present the mechanical models that are devoted to the elastic properties of one-dimensional composite. We have compared the equivalent coefficients of one-dimensional composite, resulting from different models. The validation of the results was made through effective experiments on a one-dimensional composite consisting of fibers of alumina and a matrix of aluminum. This study allows us to better assess the rigidity of composite structures, and the results of calculation of the mechanical behavior, resulting from each model. It appears that the finite element model is the best suited to the approach of a refined conception. For more insurance, we have chosen to make our calculations by finite element in the three-dimensional case, using the technique of homogenization by asymptotic development.
ACES Model Composition and Development Toolkit to Support NGATS Concepts Project
National Aeronautics and Space Administration — The key innovation proposed in this effort is the development of a model composition toolkit that will enable NASA Airspace Concept Evaluation System (ACES) users...
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
Composite models of quarks and leptons, dynamical symmetry-breaking, and hypercolor
International Nuclear Information System (INIS)
Composite models of quarks, leptons and Higgs bosons are described and discussed. The fermion models considered are those in which the basic concepts are abstracted from the quark model of nucleon structure; the quark model paradigm thus serves as a convenient frame of reference for discussion of the problems encountered in describing quarks and leptons as composite entities. The hypercolor-based scenario, for dynamical symmetry breaking and generation of composite Higgs bosons, is briefly reviewed and the contribution of hyperquarks to the problem of quark proliferation is noted. Experimental signatures of composite fermions and the hypercolor scenario are contrasted with those of the canonical theory with elementary quarks, leptons and spin-0 bosons. It is tacitly assumed that the structure of elementary particle interactions, at the energy-regimes considered here, can be discussed in a meaningful way without bringing gravity into the picture
A promising way to model cracks in composite using Discrete Element Method
Maheo, Laurent; Dau, Frédéric; Andre, Damien; Charles, Jean-Luc; Iordanoff, Ivan
2015-01-01
International audience In this article, the Discrete Element Method (DEM) is taking advantage for the damage modeling of a composite material. At this stage of work, a Representative Elementary Volume (REV) of an unidirectional composite material modeled in 3D is considered to prove the relevance of the approach. The interest to introduce the Discrete Elements (DE) on the scale of constituents (fiber and matrix) is to be able to report local mechanisms of degradation such as the matrix mic...
Wei Sun; Ying Liu; Guangyu Du
2015-01-01
Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytica...
The physics of the theta-angle for composite extensions of the standard model
DEFF Research Database (Denmark)
di Vecchia, Paolo; Sannino, Francesco
2014-01-01
We analyse the θ-angle physics associated to extensions of the standard model of particle interactions featuring new strongly coupled sectors. We start by providing a pedagogical review of the θ-angle physics for Quantum Chromodynamics (QCD) including also the axion properties. We then move to an...... representations. Our analysis is of immediate use for different models of composite Higgs dynamics, composite dark matter and inflation....
van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.
2011-01-01
Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).
Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model
Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther
2014-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
Analysis of delamination in thick section composite materials using homogenized FE modeling
Lee, One-Chul
Composite materials have various failure modes, which often coexist and interact. Interply delamination is the most frequently observed of these failure modes in laminated composite. Much previous research has been conducted to investigate the delamination phenomenon, often using computational mechanics approaches. The majority of the existing analytical models employ a zero thickness interface element to represent the delaminating interply region. This type of modeling requires explicit modeling of the delamination, which is not suitable for thick section composites. This type of modeling also introduces difficulties in predicting mode mixture. Two structural modeling approaches are proposed herein. The first one involves explicit modeling of the delamination crack, which is suitable for thin section composites. The second incorporates the delamination behavior into a homogenized constitutive model, which is appropriate for thick section composites. Both approaches utilize a nonlinear interface model with finite thickness, which models the resin rich interply zone explicitly. The thickness of the interface is treated as a constitutive parameter. An Elastic damaging model is adopted to characterize the nonlinear behavior of the interface. Several interlaminar fracture toughness tests are simulated for calibration and validation purposes. Pure mode nonlinear properties of the interface are calibrated by trial-and-error matching of P-delta curves from selected experiments. These properties are then used to simulate independent mixed mode tests for validation. Predictions of behavior and mode mixture are reasonably good, and dissipated energy due to damage also exhibits good agreement with experimentally obtained energy release rate values. For thick section composites, the proposed interface model is incorporated into an existing homogenized constitutive model. The interface is treated as one of the layers constituting the repeating sublaminate, which is the basic
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
Trout, Dawn H.; Burford, Janessa
2013-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
g-2 of the muon from compositeness in the model of Abbott and Farhi
Brodsky, Stanley J.; Davies, Andrew J.; Volkas, Raymond R.
1989-05-01
We use a simple model to estimate the contribution to g-2 for the muon in the composite model of Abbott and Farhi. Dimension-5 operators must be introduced to describe the effective coupling of the composite left-handed muon to its constituents. We find an interesting suppression, which operates in the region of low scalar preon mass, of the leading-order term for g-2. The contribution of compositeness to g-2 is thus smaller than might naively be expected and is within experimental limits.
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Brøndsted, Povl
2009-01-01
A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...
Schumacher, Shane Christian
2002-01-01
A conventional composite material for structural applications is composed of stiff reinforcing fibers embedded in a relatively soft polymer matrix, e.g. glass fibers in an epoxy matrix. Although composites have numerous advantages over traditional materials, the presence of two vastly different constituent materials has confounded analysts trying to predict failure. The inability to accurately predict the inelastic response of polymer based composites along with their ultimate failure is a significant barrier to their introduction to new applications. Polymer based composite materials also tend to exhibit rate and time dependent failure characteristics. Lack of knowledge about the rate dependent response and progressive failure of composite structures has led to the current practice of designing these structures with static properties. However, high strain rate mechanical properties can vary greatly from the static properties. The objective of this research is to develop a finite element based failure analysis tool for composite materials that incorporates strain rate hardening effects in the material failure model. The analysis method, referred to as multicontinuum theory (MCT) retains the identity of individual constituents by treating them as separate but linked continua. Retaining the constituent identities allows one to extract continuum phase averaged stress/strain fields for the constituents in a routine structural analysis. Time dependent failure is incorporated in MCT by introducing a continuum damage model into MCT. In addition to modeling time and rate dependent failure, the damage model is capable of capturing the nonlinear stress-strain response observed in composite materials.
Composite Pressure Vessel Variability in Geometry and Filament Winding Model
Green, Steven J.; Greene, Nathanael J.
2012-01-01
Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
Composite Eshelby model and domain band geometries of ferroelectric ceramics
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
A method of composite Eshelby inclusion is proposed for aferroelectric grain with domain switching embedded in a polycrystalline ferroelectric matrix. The method quantifies the twinning structure due to spontaneous polarization, as well as the conventional and non-conventional domain structures after poling induced domain reorientation of 90 degree. The predicted parameters include the volume fraction, the thickness, and the surface inclination angle of switched domain plates. The domain wall energy for non-conventional domain structures is derived in terms of the arrays of misfit dislocations. The domain geometries predicted by the present work agree with the measured domain morphology near an indentation crack tip when subjected to lateral electric field.
Rigid Biological Systems as Models for Synthetic Composites
Mayer, George
2005-11-01
Advances that have been made in understanding the mechanisms underlying the mechanical behavior of a number of biological materials (namely mollusk shells and sponge spicules) are discussed here. Attempts at biomimicry of the structure of a nacreous layer of a mollusk shell have shown reasonable success. However, they have revealed additional issues that must be addressed if new synthetic composite materials that are based on natural systems are to be constructed. Some of the important advantages and limitations of copying from nature are also described here.
Stochastic failure modelling of unidirectional composite ply failure
International Nuclear Information System (INIS)
Stochastic failure envelopes are generated through parallelised Monte Carlo Simulation of a physically based failure criteria for unidirectional carbon fibre/epoxy matrix composite plies. Two examples are presented to demonstrate the consequence on failure prediction of both statistical interaction of failure modes and uncertainty in global misalignment. Global variance-based Sobol sensitivity indices are computed to decompose the observed variance within the stochastic failure envelopes into contributions from physical input parameters. The paper highlights a selection of the potential advantages stochastic methodologies offer over the traditional deterministic approach.
Kilic, Mustafa Hakan
This study presents a new three-dimensional (3D) micromechanics-based nonlinear framework for the analysis of pultruded composite structures. The proposed material modeling framework is a nested micromechanical approach that explicitly recognizes the different composite systems within the cross-section of a pultruded composite member. The 3D lamination theory is used to generate a homogenized nonlinear effective response using a through-thickness representative stacking sequence. Different 3D micromechanical models can be used to represent the composite layers within the repeating stacking sequence, e.g. roving layer, continuous filament mat (CFM), and woven fabrics. The proposed modeling framework is applied for pultruded composite material systems made from roving and CFM. The roving layer is idealized using an existing 3D nonlinear micromechanics model for a unidirectional fiber reinforced material. A simple nonlinear micromechanical model for the CFM layer is introduced and implemented. The overall modeling approach is able to predict both the elastic and nonlinear response of the composite material based on the in-situ properties and response of the fiber and matrix constituents. Experimental data, from off-axis tests of pultruded plates, is used to verify the proposed modeling approach. The 3D modeling framework shows good prediction capabilities for the overall effective elastic constants, as well as the nonlinear multi-axial stress-strain response. In addition, a simple degradation and damage modeling is coupled with the proposed analysis framework. Several applications are performed for the nonlinear analysis of pultruded composite structures, such as progressive failure analysis of notched plates, bending of short beams, and damage analysis of pultruded FRP bolted connections.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A micromechanical approach based on a two-layer built-in model and a numerical simulation based on boundary element method are proposed to predict the effective properties of the multi-inclusion composite with imperfect interfaces.The spring model is introduced to simulate the interface imperfection.These two methods are compared with each other,and good agreement is achieved.The effects of interface spring stiffness,volume ratio and stiffness of inclusions on the micro-and macro-mechanical behaviors of fiber-reinforced composites are investigated.It is shown that the developed micromechanical method is very comprehensive and efficient for fast prediction of effective properties of composites,while the numerical method is very accurate in detailed modeling of the mechanical behavior of composites with multiple inclusions.
Composite Weak Vector Bosons in a Left-Right Symmetric Preon Model
Sekiguchi, M.; Ishida, S.; Wada, H.
1996-09-01
We take the viewpoint that the standard model is a low energy effective theory among composite quarks, leptons and weak bosons in a left-right (LR) symmetric preon model with a hypercolor SU(N)HC gauge interaction. Starting from NJL-type interactions with global SU(2)L × SU(2)R symmetry, we construct the composite weak vector bosons from a pair of spinor preons and derive their effective interactions with quarks and leptons, which are essentially identical, at the tree-diagram level, to those in the LR symmetric gauge model. Through the process of this approach, some physical aspects of the LR gauge model are clarified.
A systematic composite service design modeling method using graph-based theory.
Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh
2015-01-01
The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.
Institute of Scientific and Technical Information of China (English)
Wu Fuqiang; Yao Weixing
2008-01-01
The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article.It is concluded that the inner original defects,which derived from the manufacturing process of composite laminates,are the common and major reason of causing the random distributions of the static strength and the fatigue life.And there is a correlative relation between the two distributions.With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material,the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained.And then the model which is used to describe the distributions of fatigue life of composites,based on their distributions of static strength,is set up.This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates.The experimental data of three kinds of composite laminates are employed to verify this model,and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.
Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites
Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy
1997-01-01
The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.
Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.
2015-12-01
Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated
SHOCK INITIATION EXPERIMENTS AND MODELING OF COMPOSITION B AND C-4
Energy Technology Data Exchange (ETDEWEB)
Urtiew, P A; Vandersall, K S; Tarver, C M; Garcia, F; Forbes, J W
2006-06-13
Shock initiation experiments on the explosives Composition B and C-4 were performed to obtain in-situ pressure gauge data for the purpose of determining the Ignition and Growth reactive flow model with proper modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity versus particle velocity relationship for each of the investigated materials in their respective pressure range. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data, and Ignition and Growth modeling calculations resulted in a good fit to the experimental data. These experimental data were used to determine Ignition and Growth reactive flow model parameters for these explosives. Identical ignition and growth reaction rate parameters were used for C-4 and Composition B, and the Composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. The Composition B model was then tested on existing short pulse duration, gap test, and projectile impact shock initiation with good results. This Composition B model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions.
A random effects generalized linear model for reliability compositive evaluation
Institute of Scientific and Technical Information of China (English)
ZHAO Hui; YU Dan
2009-01-01
This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments.The relevant algorithms are also provided.Simulation results manifest the soundness and effectiveness of the proposed model.
A random effects generalized linear model for reliability compositive evaluation
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
This paper first proposes a random effects generalized linear model to evaluate the storage life of one kind of high reliable and small sample-sized products by combining multi-sources information of products coming from the same population but stored at different environments. The relevant algorithms are also provided. Simulation results manifest the soundness and effectiveness of the proposed model.
A Semi-Empirical Airborne Particle Erosion Model for Polyesteric Matrix Fiberglass Composites
Directory of Open Access Journals (Sweden)
Valeriu DRAGAN
2013-12-01
Full Text Available The paper deals with the mathematical modeling of the airborne solid particle erosion rate of composite materials, in particular non-oriented fiberglass reinforced polyesteric matrices. Using the mathematical tool of non-linear regression, based on experimental data available in the state of the art, an algebraic equation has been determined to estimate the relative erosion rate of such composites. The formulation is tailored so that it relates to classical erosion models such as Finnie’s, Bitter’s or Tulsa angle dependent model which can be implemented into commercial computational fluid dynamics software. Although the implementation - per se - is not described herein, the model proposed can be useful in estimating the global effect of solid particle erosion on composite materials in this class. Further theoretical developments may add to the model the capacity to evaluate the erosion rate for a wider class of matrices as well as more types of weavings.
Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites
Min, J. B.; Xue, D.; Shi, Y.
2013-01-01
A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.
Molecular Dynamics Modeling of Carbon Nanotubes and Their Composites
Jensen, Lars R.; Pyrz, Ryszard
2004-06-01
The tensile modulus of individual nanotubes and nanotube-polypropylene composites has been determined using molecular dynamics simulations. Simulations of individual single-walled carbon nanotubes showed that their tensile modulus was dependent on the tube structure and the diameter if the diameter was below 1,6 nm. The tensile modulus was determined for an infinite single-walled carbon nanotube embedded in an amorphous polypropylene matrix and for a finite and capped single-walled carbon nanotube embedded in a polypropylene matrix. For the infinite nanotube-polypropylene system the modulus was found to correspond to the one given by the Voigt approximation. For the finite nanotube-polypropylene system the reinforcing effect of the nanotube was not very pronounced. A pull out simulation showed that the length of the nanotube in the simulation was much smaller than the critical length and hence no load transfer between the nanotube and the matrix existed.
The Composition of GRB Jets and the ICMART Model
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bing [University of Nevada, Las Vegas; Guo, Fan [Los Alamos National Laboratory
2015-07-16
Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.
Zhang, Pu; Heyne, Mary A.; To, Albert C.
2015-10-01
We investigate the damping enhancement in a class of biomimetic staggered composites via a combination of design, modeling, and experiment. In total, three kinds of staggered composites are designed by mimicking the structure of bone and nacre. These composite designs are realized by 3D printing a rigid plastic and a viscous elastomer simultaneously. Greatly-enhanced energy dissipation in the designed composites is observed from both the experimental results and theoretical prediction. The designed polymer composites have loss modulus up to ~500 MPa, higher than most of the existing polymers. In addition, their specific loss modulus (up to 0.43 km2/s2) is among the highest of damping materials. The damping enhancement is attributed to the large shear deformation of the viscous soft matrix and the large strengthening effect from the rigid inclusion phase.
Polymer Matrix Composites using Fused Deposition Modeling Technology Project
National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...
Stumpf, H.
1987-03-01
The model is defined by a selfregularizing nonlinear preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of the fermionic preon fields. In particular electroweak gauge bosons are two-particle composites, leptons and quarks are three-particle composites, and gluons are six-particle composites. Electroweak gauge bosons, leptons and quarks and their effective interactions etc. were studied in preceding papers. In this paper gluons and their effective dynamics are discussed. Due to the complications of a six-particle bound state dynamics the formation of gluons is performed in two steps: First the effective dynamics of three-particle composites (quarks) is derived, and secondly gluons are fusioned from two quarks respectively. The resulting effective gluon dynamics is a non-abelian SU(3) dynamics, i.e. this local gauge dynamics is produced by the properties of the composites and need not be introduced in the original preon field equation. Mathematically these results are achieved by the application of functional quantum theory to the model under consideration and subsequent evaluation of weak mapping procedures, both introduced in preceding papers. PACS 11.10 Field theory. PACS 12.10 Unified field theories and models. PACS 12.35 Composite models of particles.
Institute of Scientific and Technical Information of China (English)
江冰; 方岱宁; 黄克智
1999-01-01
Based on micromechanics and Laplace transformation, a constitutive model of ferroelectric composites with a linear elastic and linear dielectric matrix is developed and extended to the ferroelectric composites with a viscoelastic and dielectric relaxation matrix. Thus, a constitutive model for ferroelectric composites with a viscoelastic and dielectric relaxation matrix has been set up.
The Behaviour of Naturally Debonded Composites Due to Bending Using a Meso-Level Model
Lord, C. E.; Rongong, J. A.; Hodzic, A.
2012-06-01
Numerical simulations and analytical models are increasingly being sought for the design and behaviour prediction of composite materials. The use of high-performance composite materials is growing in both civilian and defence related applications. With this growth comes the necessity to understand and predict how these new materials will behave under their exposed environments. In this study, the displacement behaviour of naturally debonded composites under out-of-plane bending conditions has been investigated. An analytical approach has been developed to predict the displacement response behaviour. The analytical model supports multi-layered composites with full and partial delaminations. The model can be used to extract bulk effective material properties in which can be represented, later, as an ESL (Equivalent Single Layer). The friction between each of the layers is included in the analytical model and is shown to have distinct behaviour for these types of composites. Acceptable agreement was observed between the model predictions, the ANSYS finite element model, and the experiments.
Modelling of composition and stress profiles in low temperature surface engineered stainless steel
DEFF Research Database (Denmark)
Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.
2015-01-01
stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....
Multiscale modeling of microscale fiber reinforced composites with nano-engineered interphases
Kundalwalal, S I; Wardle, B L
2015-01-01
This study is focused on the mechanical properties and stress transfer behavior of multiscale composite containing nano- and micro-scale fillers. A novel concept has been proposed to exploit the remarkable mechanical properties of carbon nanotubes (CNTs) to improve the stress transfer through the interphases, enabling their additional functionalities not available otherwise at the microscale. The distinctive feature of construction of this composite is such that CNTs are dispersed around the microscale fiber to modify fiber-matrix interfacial adhesion. Accordingly, models are developed for hybrid composites. First, molecular dynamics simulations in conjunction with the Mori-Tanaka method are used to determine the effective elastic properties of nano-engineered interphase layer comprised of CNT bundles and epoxy. Subsequently, a micromechanical pull-out model is developed for the resulting multiscale composite and its stress transfer behavior is studied for different orientations of CNT bundles. The current pu...
Institute of Scientific and Technical Information of China (English)
Qingsheng YANG; Fang XU
2009-01-01
Fiber reinforced polymer (FRP) composites exhibit nonlinear and hyperelastic characteristics under finite deformation. This paper investigates the macroscopic hyperelastic behavior of fiber reinforced polymer compo-sites using a micromechanical model and finite deforma-tion theory based on the hyperelastic constitutive law. The local stress and deformation of a representative volume element are calculated by the nonlinear finite element method. Then, an averaging procedure is used to find the homogenized stress and strain, and the macroscopic stress-strain curves are obtained. Numerical examples are given to demonstrate hyperelastic behavior and deformation of the composites, and the effects of the distribution pattern of fibers are also investigated to model the mechanical behavior of FRP composites.
The performance of composite forecast models of value-at-risk in the energy market
International Nuclear Information System (INIS)
This paper examines a comparative evaluation of the predictive performance of various Value-at-Risk (VaR) models in the energy market. This study extends the conventional research in literature, by proposing composite forecast models for applying to Brent and WTI crude oil prices. Forecasting techniques considered here include the EWMA, stable density, Kernel density, Hull and White, GARCH-GPD, plus composite forecasts from linearly combining two or more of the competing models above. Findings show Hull and White to be the most powerful approach for capturing downside risk in the energy market. Reasonable results are also available from carefully combining VaR forecasts. (author)
Composite spectral functions for solving Volterra's population model
Energy Technology Data Exchange (ETDEWEB)
Ramezani, M. [Department of Applied Mathematics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Razzaghi, M. [Department of Applied Mathematics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) and Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762 (United States)]. E-mail: razzaghi@math.msstate.edu; Dehghan, M. [Department of Applied Mathematics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)
2007-10-15
An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result.
Vector and Axial-vector resonances in composite models of the Higgs boson
Franzosi, Diogo Buarque; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.
Melis, Matthew E.
1990-01-01
COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.
Optimal composite scores for longitudinal clinical trials under the linear mixed effects model.
Ard, M Colin; Raghavan, Nandini; Edland, Steven D
2015-01-01
Clinical trials of chronic, progressive conditions use rate of change on continuous measures as the primary outcome measure, with slowing of progression on the measure as evidence of clinical efficacy. For clinical trials with a single prespecified primary endpoint, it is important to choose an endpoint with the best signal-to-noise properties to optimize statistical power to detect a treatment effect. Composite endpoints composed of a linear weighted average of candidate outcome measures have also been proposed. Composites constructed as simple sums or averages of component tests, as well as composites constructed using weights derived from more sophisticated approaches, can be suboptimal, in some cases performing worse than individual outcome measures. We extend recent research on the construction of efficient linearly weighted composites by establishing the often overlooked connection between trial design and composite performance under linear mixed effects model assumptions and derive a formula for calculating composites that are optimal for longitudinal clinical trials of known, arbitrary design. Using data from a completed trial, we provide example calculations showing that the optimally weighted linear combination of scales can improve the efficiency of trials by almost 20% compared with the most efficient of the individual component scales. Additional simulations and analytical results demonstrate the potential losses in efficiency that can result from alternative published approaches to composite construction and explore the impact of weight estimation on composite performance.
Modeling of compressive stiffness of a multilayered graphite-reinforced magnesium-matrix composite
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, A.K.; Hong, S.I. (Los Alamos National Lab., NM (United States))
1993-06-01
Short graphite fiber-reinforced magnesium-matrix composites are of considerable interest due to their superior specific strength, stiffness and low coefficient of thermal expansion. The problem of non-wetting of fibers with molten metal in these composites seems to have been considerably improved and such types of composites are now being commercially produced. However, an understanding of the mechanical properties of these composites is very limited and less amenable to rigorous analysis because of the discontinuous fiber arrangements. Also, a part of the difficulty is due to a large number of geometrical and material variables arising in the analysis. The situation is further complicated when the composites are made of layered structure, each layer having different fiber orientations. Moreover, inherent porosity and its distribution in the layered composites cause further complicacy for it to be amenable for the mathematical analysis. In this note the authors discuss a finite element approach to the analysis of compressive stiffness behavior in such a composite and compare model predictions with experimental data on the modulus of such composites.
A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini
2012-01-01
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
Micromechanical modeling of damage and fracture of unidirectional fiber reinforced composites
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Brøndsted, Povl
2009-01-01
and continuum damage mechanics based models and numerical continuum mechanical models. Advantages, limitations and perspectives of different approaches to the simulation of deformation, damage and fracture of fiber reinforced composites are analyzed. (C) 2008 Elsevier B.V. All rights reserved....
Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der
2014-01-01
A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations...
Non-minimal Maxwell-Chern-Simons theory and the composite Fermion model
Paschoal, Ricardo C.; Helayël-Neto, José A.
2003-01-01
The magnetic field redefinition in Jain's composite fermion model for the fractional quantum Hall effect is shown to be effectively described by a mean-field approximation of a model containing a Maxwell-Chern-Simons gauge field non-minimally coupled to matter. Also an explicit non-relativistic limit of the non-minimal (2+1)D Dirac equation is derived.
Directory of Open Access Journals (Sweden)
Manuel Rodriguez
2010-11-01
Full Text Available Worldwide cultivation of corn is expanding, due in part to the increasing production of bioethanol. In consequence, huge amounts of corn stalks residues are been produced. Instead of incineration, we transformed the corn stalks into a semichemical pulp and successfully applied it as reinforcement in polypropylene composites. PP composites reinforced with 40% wt corn stalk single fibers were prepared, and their mechanical properties were evaluated. Through mechanical properties modeling of the composites, the intrinsic tensile strength of the cellulosic fibers that constitute the corn stalk have been determined.
A new simple model for composite fading channels: Second order statistics and channel capacity
Yilmaz, Ferkan
2010-09-01
In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.
Mechanical Model of Steel-concrete Composite Joint under Sagging Bending Moment
Pisarek, Zdzisław
2012-06-01
In buildings with steel-concrete composite floors, joints are designed to transmit mainly hogging bending moment. In case of the large horizontal loads due to wind, earthquake or accidental events, sagging bending moments in a joint can also occur. Additionally, large deformations of the structure cause tying and prying effects. In the paper, a mechanical model based on "component method" for evaluation of characteristics of the composite joint is presented. The influence of tying and prying actions on distribution of the internal forces in a joint is also analyzed. The procedure for calculation of the characteristics of the composite joint with bolted endplate connection is elaborated too.
Nonlocal quark model description of a composite Higgs particle
Kachanovich, Aliaksei
2016-01-01
We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.
Perez, Michel; Courtois, E.; Acevedo, D.; T. Epicier; Maugis, Philippe
2007-01-01
High-resolution transmission electron microscopy and electron-energy loss spectroscopy have been used to characterize the structure and chemical composition of niobium carbonitrides in the ferrite of a Fe–Nb–C–N model alloy at different precipitation stages. Experiments seem to indicate the coexistence of two types of precipitates: pure niobium nitrides and mixed substoichiometric niobium carbonitrides. In order to understand the chemical composition of these precipitates, a thermodynamic for...
A linear dynamic model for rotor-spun composite yarn spinning process
International Nuclear Information System (INIS)
A linear dynamic model is established for the stable rotor-spun composite yarn spinning process. Approximate oscillating frequencies in the vertical and horizontal directions are obtained. By suitable choice of certain processing parameters, the mixture construction after the convergent point can be optimally matched. The presented study is expected to provide a general pathway to understand the motion of the rotor-spun composite yarn spinning process
Lauridsen, Holly M; Pober, Jordan S; Gonzalez, Anjelica L.
2014-01-01
Neutrophil extravasation occurs across postcapillary venules, structures composed of endothelial cells (ECs), pericytes (PCs), and basement membrane (BM). We constructed composite models of the human postcapillary venule, combining ECs with PCs or PC-deposited BM, to better study this process. Quiescent and tumor necrosis factor α (TNF-α)-activated composites demonstrated in situ-like expression of cadherins, E-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molec...
Manuel Rodriguez; Alejandro Rodriguez; Jordi Bayer R.; Fabiola Vilaseca; Jordi Girones; Pere Mutje
2010-01-01
Worldwide cultivation of corn is expanding, due in part to the increasing production of bioethanol. In consequence, huge amounts of corn stalks residues are been produced. Instead of incineration, we transformed the corn stalks into a semichemical pulp and successfully applied it as reinforcement in polypropylene composites. PP composites reinforced with 40% wt corn stalk single fibers were prepared, and their mechanical properties were evaluated. Through mechanical properties modeling of the...
Non-crimp 3D woven composites unit cell: from geometric modelling to damage simulation
Bedogni, Enrico
2013-01-01
In the last twenty years, the research on composite materials has increased and many progresses have been made. However, there are still unresolved issues concerning the geometric modelling of a material at the meso-level (i.e. on a unit cell) and its damage simulation. In particular, the complexity of the internal geometry of some composite materials, such as 3D textiles, yields to new challenges for the research community. A correct definition of the internal structure in all the important ...
Application of feature method to the modelling of composite structural elements
A. Baier; M. Majzner
2011-01-01
Purpose: The paper describes the use of object-oriented methods in modelling and analysis of components made of fibre-based composites. Defined and specified the method for creating fibre primitives. An algorithm for the design of composite structures using object-oriented methods.Design/methodology/approach: The basic tool is an algorithm to build fibre facilities. Material properties can be found in the previously created databases of material objects. The whole is linked to the relevant fo...
Modeling of composite latex particle morphology by off-lattice Monte Carlo simulation.
Duda, Yurko; Vázquez, Flavio
2005-02-01
Composite latex particles have shown a great range of applications such as paint resins, varnishes, water borne adhesives, impact modifiers, etc. The high-performance properties of this kind of materials may be explained in terms of a synergistical combination of two different polymers (usually a rubber and a thermoplastic). A great variety of composite latex particles with very different morphologies may be obtained by two-step emulsion polymerization processes. The formation of specific particle morphology depends on the chemical and physical nature of the monomers used during the synthesis, the process temperature, the reaction initiator, the surfactants, etc. Only a few models have been proposed to explain the appearance of the composite particle morphologies. These models have been based on the change of the interfacial energies during the synthesis. In this work, we present a new three-component model: Polymer blend (flexible and rigid chain particles) is dispersed in water by forming spherical cavities. Monte Carlo simulations of the model in two dimensions are used to determine the density distribution of chains and water molecules inside the suspended particle. This approach allows us to study the dependence of the morphology of the composite latex particles on the relative hydrophilicity and flexibility of the chain molecules as well as on their density and composition. It has been shown that our simple model is capable of reproducing the main features of the various morphologies observed in synthesis experiments.
Student Success in College Composition through the Puente Project Model.
Jaffe, Barbara
Much can be learned from California's Puente Project Model that would help students' success in classrooms as well as in college in general, and in their daily lives. Puente, which means "bridge" in Spanish, began in 1982 at Chabot College in northern California and is now in 38 colleges and 19 high schools statewide. Originally designed for…
MODELING THE MOLECULAR COMPOSITION IN AN ACTIVE GALACTIC NUCLEUS DISK
Energy Technology Data Exchange (ETDEWEB)
Harada, Nanase [Max Planck Institute for Radio Astronomy, D-53121 Bonn (Germany); Thompson, Todd A. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); Herbst, Eric [Departments of Chemistry, Astronomy, and Physics, University of Virginia, Charlottesville, VA 22904 (United States)
2013-03-10
We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic-ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO{sup +}, HC{sub 3}N, C{sub 2}H, and c-C{sub 3}H{sub 2} using a variety of plausible disk structures. These simple models have molecular regions with an X-ray-dominated region layer, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C{sub n}H{sub 2}) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlight molecular abundance observations and ratios that may distinguish among theoretical models of the density distribution in AGN disks. Finally, we assess the importance of the shock crossing time and the accretion time relative to the formation time for various chemical species. Vertical column densities are tabulated for a number of molecular species at both the characteristic shock crossing time and steady state. Although we do not attempt to fit any particular system or set of observations, we discuss our models and results in the context of the nearby AGN NGC 1068.
Towards Remotely Sensed Composite Global Drought Risk Modelling
Dercas, Nicholas; Dalezios, Nicolas
2015-04-01
, wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.
Energy Technology Data Exchange (ETDEWEB)
Lu, W.R.; Gao, C.Y., E-mail: lxgao@zju.edu.cn; Ke, Y.L.
2014-01-13
The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models.
Munteanu, Cristian Robert; González-Díaz, Humberto; Magalhães, Alexandre L
2008-09-21
The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model. PMID:18606172
Paulraj, D.; Swamynathan, S.; Madhaiyan, M.
2012-11-01
Web Service composition has become indispensable as a single web service cannot satisfy complex functional requirements. Composition of services has received much interest to support business-to-business (B2B) or enterprise application integration. An important component of the service composition is the discovery of relevant services. In Semantic Web Services (SWS), service discovery is generally achieved by using service profile of Ontology Web Languages for Services (OWL-S). The profile of the service is a derived and concise description but not a functional part of the service. The information contained in the service profile is sufficient for atomic service discovery, but it is not sufficient for the discovery of composite semantic web services (CSWS). The purpose of this article is two-fold: first to prove that the process model is a better choice than the service profile for service discovery. Second, to facilitate the composition of inter-organisational CSWS by proposing a new composition method which uses process ontology. The proposed service composition approach uses an algorithm which performs a fine grained match at the level of atomic process rather than at the level of the entire service in a composite semantic web service. Many works carried out in this area have proposed solutions only for the composition of atomic services and this article proposes a solution for the composition of composite semantic web services.
Modeling Mechanical Properties of Aluminum Composite Produced Using Stir Casting Method
Directory of Open Access Journals (Sweden)
Muhammad Hayat Jokhio
2011-01-01
Full Text Available ANN (Artificial Neural Networks modeling methodology was adopted for predicting mechanical properties of aluminum cast composite materials. For this purpose aluminum alloy were developed using conventional foundry method. The composite materials have complex nature which posses the nonlinear relationship among heat treatment, processing parameters, and composition and affects their mechanical properties. These nonlinear relation ships with properties can more efficiently be modeled by ANNs. Neural networks modeling needs sufficient data base consisting of mechanical properties, chemical composition and processing parameters. Such data base is not available for modeling. Therefore, a large range of experimental work was carried out for the development of aluminum composite materials. Alloys containing Cu, Mg and Zn as matrix were reinforced with 1- 15% Al2O3 particles using stir casting method. Alloys composites were cast in a metal mold. More than eighty standard samples were prepared for tensile tests. Sixty samples were given solution treatments at 580oC for half an hour and tempered at 120oC for 24 hours. The samples were characterized to investigate mechanical properties using Scanning Electron Microscope, X-Ray Spectrometer, Optical Metallurgical Microscope, Vickers Hardness, Universal Testing Machine and Abrasive Wear Testing Machine. A MLP (Multilayer Perceptron feedforward was developed and used for modeling purpose. Training, testing and validation of the model were carried out using back propagation learning algorithm. The modeling results show that an architecture of 14 inputs with 9 hidden neurons and 4 outputs which includes the tensile strength, elongation, hardness and abrasive wear resistance gives reasonably accurate results with an error within the range of 2-7 % in training, testing and validation.
El Said, Bassam; Ivanov, Dmitry; Long, Andrew C.; Hallett, Stephen R.
2016-03-01
3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite's mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven
Alemi-Ardakani, M; Milani, A S; Yannacopoulos, S
2014-01-01
Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study. PMID:25431787
A successful solar model using new solar composition data
Vagnozzi, Sunny; Zurbuchen, Thomas H
2016-01-01
A resolution is proposed to the "solar abundance problem", that is, the discrepancy between helioseismological observations and the predictions of solar models, computed implementing state-of-the-art photospheric abundances. We reassess the problem considering a newly determined set of abundances, which indicate a lower limit to the metallicity of $Z_{\\odot} = 0.0196 \\pm 0.0014$, significantly higher than findings during the past decade. Such value for the metallicity is determined in situ, measuring the least fractionated solar winds over the poles of the Sun, rather than spectroscopically. We determine the response of helioseismological observables to the corresponding changes in elemental abundances. Our findings indicate that, taking inversion errors into account, good agreement between models and observations is achieved. The definitive test for these abundances will be measurements of the CNO neutrino fluxes by SNO$^+$ (which we expect to be $\\sim$ 30-50\\% higher than predictions using abundances based ...
A Model of Foam Density Prediction for Expanded Perlite Composites
Arifuzzaman Md; Kim Ho Sung
2015-01-01
Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at dif...
Flexible Multibody Systems Models Using Composite Materials Components
Neto, Maria Augusta; Ambrósio, Jorge A. C.; Leal, Rogério Pereira
2004-01-01
The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of compos...
Modeling The Molecular Composition in an AGN Disk
Harada, Nanase; Herbst, Eric
2013-01-01
We use a high-temperature chemical network to derive the molecular abundances in axisymmetric accretion disk models around active galactic nuclei (AGNs) within 100 pc using simple radial and vertical density and temperature distributions motivated by more detailed physical models. We explore the effects of X-ray irradiation and cosmic ray ionization on the spatial distribution of the molecular abundances of CO, CN, CS, HCN, HCO+, HC3N, C2H, and c-C3H2 using a variety of plausible disk structures. These simple models have molecular regions with a layer of X-ray dominated regions, a midplane without the strong influence of X-rays, and a high-temperature region in the inner portion with moderate X-ray flux where families of polyynes (C$_{\\rm n}$H$_{2}$) and cyanopolyynes can be enhanced. For the high midplane density disks we explore, we find that cosmic rays produced by supernovae do not significantly affect the regions unless the star formation efficiency significantly exceeds that of the Milky Way. We highlig...
Antunes, P. J.; Dias, Gustavo R.; Coelho, A. T.; Rebelo, F.; Pereira, Tiago
2008-01-01
The CPGC – Cork-Polyurethane Gel Composite is a material that is mechanically characterized by non-linear elastic behaviour at large deformations. The non-linear behaviour can be modelled by hyperelastic constitutive models based on strain energy functions enabling a structured phenomenological framework for CPGC material modelling. The CPGC is a promising material for human comfort enhancement and dynamic damping/control applications. This paper presents the experimental methodology used for...
Navarro-Barrientos, J-Emeterio; Rivera, Daniel E; Collins, Linda M
2011-01-12
We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change.
Navarro-Barrientos, J-Emeterio; Rivera, Daniel E; Collins, Linda M
2011-01-12
We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change. PMID:21673826
Computational modeling of structure of metal matrix composite in centrifugal casting process
Zagórski, Roman
2007-04-01
The structure of alumina matrix composite reinforced with crystalline particles obtained during centrifugal casting process are studied. Several parameters of cast process like pouring temperature, temperature, rotating speed and size of casting mould which influent on structure of composite are examined. Segregation of crystalline particles depended on other factors such as: the gradient of density of the liquid matrix and reinforcement, thermal processes connected with solidifying of the cast, processes leading to changes in physical and structural properties of liquid composite are also investigated. All simulation are carried out by CFD program Fluent. Numerical simulations are performed using the FLUENT two-phase free surface (air and matrix) unsteady flow model (volume of fluid model — VOF) and discrete phase model (DPM).
Biomechanical model produced from light-activated dental composite resins: a holographic analysis
Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko
2013-11-01
Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.
Directory of Open Access Journals (Sweden)
Dimitrijević M.M.
2014-01-01
Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012
INTERACTION MODELS FOR EFFECTIVE THERMAL AND ELECTRIC CONDUCTIVITIES OF CARBON NANOTUBE COMPOSITES
Institute of Scientific and Technical Information of China (English)
Fei Deng; Quanshui Zheng
2009-01-01
The present article provides supplementary information of previous works of ana-lytic models for predicting conductivity enhancements of carbon nanotube composites. The mod-els, though fairly simple, are able to take account of the effects of conductivity anisotropy, non-straightness, and aspect ratio of the CNT additives on the conductivity enhancement of the com-posite and to give predictions agreeing well with existing experimental data. The omitted detailed derivation of this model is demonstrated in the present article with a more systematical analysis, which may help with further development in this direction. Furthermore, the effects of various orientation distributions of CNTs are reported here for the first time. The information may be useful in design or fabrication technology of CNT composites for better or specified conductivities.
Lee; Look; Harris; McCormick
1997-10-01
29Si-NMR, conductimetry, and photon correlation spectroscopy are used to monitor the temporal profile of intermediate concentrations in Stober synthesis (i.e., ammonia-catalyzed hydrolysis of tetraethoxysilane in a batch reactor). Extreme models of the process are assessed by examining the effect of initial composition on these transients (over a wider range of composition than attempted previously). The trends with initial composition suggest that the nucleation is rate-limited by the hydrolysis of the singly hydrolyzed monomer, the product of which probably phase separates. Moreover, the trends are consistent with the aggregation model discussed by G. H. Bogush and C. F. Zukoski (J. Colloid Interface Sci. 142, 1, 19 (1991) and by M. T. Harris (Ph.D. dissertation, Univ. of Tennessee, 1992). The trends are not consistent with a growth model without aggregation. Copyright 1997 Academic Press. Copyright 1997Academic Press
Compressive Loading and Modeling of Stitched Composite Stiffeners
Leone, Frank A., Jr.; Jegley, Dawn C.; Linton, Kim A.
2016-01-01
A series of single-frame and single-stringer compression tests were conducted at NASA Langley Research Center on specimens harvested from a large panel built using the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. Different frame and stringer designs were used in fabrication of the PRSEUS panel. In this paper, the details of the experimental testing of single-frame and single-stringer compression specimens are presented, as well as discussions on the performance of the various structural configurations included in the panel. Nonlinear finite element models were developed to further understand the failure processes observed during the experimental campaign.
Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT
Energy Technology Data Exchange (ETDEWEB)
Das, Palash, E-mail: d.palash@gmail.com; Biswas, Dhrubes, E-mail: d.palash@gmail.com [Indian Institute of Technology Kharagpur, Kharagpur - 721302, West Bengal (India)
2014-04-24
The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.
Kovanen, T.; Tarhasaari, T.; Kettunen, L.; Korppi-Tommola, J.
2010-01-01
Abstract Classical electromagnetism provides limited means to model electric generators. To extend the classical theory in this respect, additional information on microscopic processes is required. In semiconductor devices and electrochemical generators such information may be obtained by modelling chemical composition. Here we use this approach for the modelling of dye-sensitised solar cells. We simulate the steady-state current-voltage characteristics of such a cell, as well as i...
Mass Ansatze for the standard model fermions from a composite perspective
Fariborz, Amir H; Nasri, Salah
2016-01-01
We consider a composite model in which the standard model fermions are bound states of elementary spin $\\frac{1}{2}$ particles, the preons, situated in the conjugate product representation of the color group. In this framework we propose and analyze two mass Ansatze one for the leptons, the other one for the quarks, based on mass formulae of the Gell-Mann Okubo type. We find that these mass Ansatze can give an adequate description of the known standard model fermion masses.
Modelling heated composite floor slabs with reference to the Cardington experiments
Gillie, Martin; Usmani, Asif; Rotter, J. Michael
2001-01-01
This paper describes a method of modelling composite floor slabs in fire conditions using a stress-resultant approach. The FEAST suite, which consists of two main computer programs is described. The first, SRAS, is designed to model the behaviour of arbitrary orthotropic plate sections at elevated temperatures. The second program, FEAI, interfaces with the finite element package ABAQUS, allowing realistic models of the behaviour of whole structures in fire conditions to be obtained. The paper...
A Model of Foam Density Prediction for Expanded Perlite Composites
Directory of Open Access Journals (Sweden)
Arifuzzaman Md
2015-01-01
Full Text Available Multiple sets of variables associated with expanded perlite particle consolidation in foam manufacturing were analyzed to develop a model for predicting perlite foam density. The consolidation of perlite particles based on the flotation method and compaction involves numerous variables leading to the final perlite foam density. The variables include binder content, compaction ratio, perlite particle size, various perlite particle densities and porosities, and various volumes of perlite at different stages of process. The developed model was found to be useful not only for prediction of foam density but also for optimization between compaction ratio and binder content to achieve a desired density. Experimental verification was conducted using a range of foam densities (0.15 – 0.5 g/cm3 produced with a range of compaction ratios (1.5 – 3.5, a range of sodium silicate contents (0.05 – 0.35 g/ml in dilution, a range of expanded perlite particle sizes (1 – 4 mm, and various perlite densities (such as skeletal, material, bulk, and envelope densities. A close agreement between predictions and experimental results was found.
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
Li, Longbiao
2016-06-01
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.
Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid
Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius
2016-06-01
In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.
International Nuclear Information System (INIS)
Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.
Krizmanic, John; Sokolsky, Pierre
2013-01-01
In its initial deployment, the Non-Imaging CHErenkov Array (NICHE)will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to 10^18 eV by using measurements of the amplitude and time-spread of the air-shower Cherenkov signal to achieve a robust event-by-event measurement of Xmax and energy. NICHE will have sufficient area and angular acceptance to have significant overlap with TA/TALE, within which NICHE is located, to allow for energy cross-calibration. In order to quantify NICHE's ability to measure the cosmic ray nuclear composition, 4-component composition models were constructed based upon a poly-gonato model of J. Hoerandel using simulated Xmax distributions of the composite composition as a function of energy. These composition distributions were then unfolded into individual components via an analysis technique that included NICHE's simulated Xmax and energy resolution performance as a function of energy as well as the effects of finite event statistics. Details of the construc...
LHC physics of extra gauge bosons in the 4D Composite Higgs Model
Directory of Open Access Journals (Sweden)
Barducci D.
2013-11-01
Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.
Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2009-01-01
Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.
Quantitative modelling of viscoelasticity of isotropic fibrous composites with viscoelastic matrices
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Despite the wide usage of isotropic fibrous composites with a viscoelastic polymer matrix,no analytic model for their mechanical behaviour is known.This paper develops such a model for time-dependent Young's modulus,showing that for typical constituents the time constants of composites are up to about 6% greater than the matrix shear time constant.Viscoelasticity is strongly suppressed for stiff fibres even at modest fibre volume fractions.Comparison with known results for particle and oriented fibre compos...
Vector and Axial-vector resonances in composite models of the Higgs boson
DEFF Research Database (Denmark)
Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying;
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...... as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC....
The Half-composite Two Higgs Doublet Model and the Relaxion
Antipin, Oleg
2015-01-01
We study a new confining gauge theory with fermions in a vectorial representation under the SM gauge group that allows for Yukawa interactions with the Higgs. If the fermion masses are smaller than the confinement scale this realizes a type I two Higgs doublet model where a composite Higgs mixes with the elementary Higgs. This class of models interpolates between an elementary and a composite Higgs and has interesting phenomenology with potentially observables effects in collider physics, EDMs and SM couplings but very weak bounds from indirect searches. The very same framework can be used to realize the cosmological relaxation of the electro-weak scale recently discussed in the literature.
A composite model for subgroup identification and prediction via bicluster analysis.
Directory of Open Access Journals (Sweden)
Hung-Chia Chen
Full Text Available A major challenges in the analysis of large and complex biomedical data is to develop an approach for 1 identifying distinct subgroups in the sampled populations, 2 characterizing their relationships among subgroups, and 3 developing a prediction model to classify subgroup memberships of new samples by finding a set of predictors. Each subgroup can represent different pathogen serotypes of microorganisms, different tumor subtypes in cancer patients, or different genetic makeups of patients related to treatment response.This paper proposes a composite model for subgroup identification and prediction using biclusters. A biclustering technique is first used to identify a set of biclusters from the sampled data. For each bicluster, a subgroup-specific binary classifier is built to determine if a particular sample is either inside or outside the bicluster. A composite model, which consists of all binary classifiers, is constructed to classify samples into several disjoint subgroups. The proposed composite model neither depends on any specific biclustering algorithm or patterns of biclusters, nor on any classification algorithms.The composite model was shown to have an overall accuracy of 97.4% for a synthetic dataset consisting of four subgroups. The model was applied to two datasets where the sample's subgroup memberships were known. The procedure showed 83.7% accuracy in discriminating lung cancer adenocarcinoma and squamous carcinoma subtypes, and was able to identify 5 serotypes and several subtypes with about 94% accuracy in a pathogen dataset.The composite model presents a novel approach to developing a biclustering-based classification model from unlabeled sampled data. The proposed approach combines unsupervised biclustering and supervised classification techniques to classify samples into disjoint subgroups based on their associated attributes, such as genotypic factors, phenotypic outcomes, efficacy/safety measures, or responses to
Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model
Pieterse, G.; Krol, M.C.; Batenburg, A.M.; Steele, L.P.; Krummel, P.B.; Langenfelds, R.L.; Röckmann, T.
2011-01-01
The isotopic composition of molecular hydrogen (H2) contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their stable isotopic composition and isotope fractionation constants, into the global chemistry tran
Characterization and Empirical Modelling of Sliding Wear on Sintered Aluminium-Graphite Composites
Directory of Open Access Journals (Sweden)
Amrishraj Doraisamy
2014-01-01
Full Text Available Aluminium-graphite composites were synthesized using powder metallurgy route. Graphite was added as reinforcement in the range of 0, 3, and 6 weight % and composites were prepared by P/M. Microstructural analysis of the newly synthesized composites was carried out using SEM. The hardness of the composites was studied using Vickers microhardness tester, by applying a load of 1 kg for 5 sec. Also the amount of porosity was determined. Further the wear test was conducted on the sintered specimens using pin-on-disc wear apparatus according to ASTM-G99 standards. A regression model was developed to predict the wear rate of the specimen. Then the worn images were studied using SEM based on response surface methodology in order to understand the various wear mechanisms involved. The study revealed that mild wear, oxidational wear, plowing, cutting, and plastic deformation are the main mechanisms responsible for causing the wear.
Theoretical Calculation Model of Single Rip Tearing Strength for the Nonwoven Composites
Institute of Scientific and Technical Information of China (English)
QIAN Cheng
2005-01-01
The nonwoven composites have sandwich structure, with the first and third layers being nonwovens and the middle layer of woven fabric. On the basis of tests of the single rip tearing strength and drawing out resistances of both the nonwoven composites and the woven fabric, the single rip tearing failure mechanism of the composites were analyzed.Then theoretical calculation model for the single rip tearing strength was established, which indicates that the breaking strength of warp and weft yarns in the nonwoven composites, the density of warp and weft yarns and drawing out resistances are the main influencing factors. In the end,experimental verification was made, which shows that theoretical values conform to the measured values well.
Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites
Hilfi, H.; Brar, N. S.
1996-05-01
High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.
Institute of Scientific and Technical Information of China (English)
A.Suresh Babu; V.Jayabalan
2009-01-01
In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus.Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function.In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 μm)reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model.Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained.Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications.An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
The Flushing of Ligeia: Composition variations in a simple hydrological model of Titan's Seas
Lorenz, Ralph
2014-11-01
I use a simple box model to explore possible differences in the liquid composition of Titan’s seas. Major variations in the abundance of involatile ethane, somewhat analogous to salinity in terrestrial waters, arise from the hydrological cycle, which introduces more “fresh” methane rainfall at the highest latitudes in summer. The observed composition of Ligeia Mare, flushed by methane rainfall and exporting its solutes to Kraken via a narrow labyrinth of channels, may have a methane-rich (>80%)composition, well out of thermodynamic equilibrium with the atmosphere, whereas the basins of Kraken are relatively well mixed and will have an ethane-dominated (60%)composition. These variations, analogous to Earth’s salinity gradient between the Black Sea and the Mediterranean, may be detectable with Cassini measurements and are important for future exploration.
Multi-scale modeling of fiber and fabric reinforced cement based composites
Soranakom, Chote
With an increased use of fiber reinforced concrete in structural applications, proper characterization techniques and development of design guides are needed. This dissertation presents a multi-scale modeling approach for fiber and fabric reinforced cement-based composites. A micromechanics-based model of the yarn pullout mechanism due to the failure of the interfacial zone is presented. The effect of mechanical anchorage of transverse yarns is simulated using nonlinear spring elements. The yarn pullout mechanism was used in a meso-scale modeling approach to simulate the yarn bridging force in the crack evolution process. The tensile stress-strain response of a tension specimen that experiences distributed cracking can be simulated using a generalized finite difference approach. The stiffness degradation, tension stiffening, crack spacing evolution, and crack width characteristics of cement composites can be derived using matrix, interface and fiber properties. The theoretical models developed for fabric reinforced cement composites were then extended to cover other types of fiber reinforced concrete such as shotcrete, glass fiber reinforced concrete (GFRC), steel fiber reinforced concrete (SFRC), ferrocement and other conventional composite systems. The uniaxial tensile stress-strain response was used to formulate a generalized parametric closed-form solution for predicting flexural behavior of various composites at the macro-structural level. The flexural behaviors of these composites were modeled in a unified manner by means of a moment-curvature relationship based on the uniaxial material models. A variety of theoretical models were developed to address the various mechanisms including: an analytical yarn pullout model; a nonlinear finite difference fabric pullout model; a nonlinear finite difference tension model; closed-form solutions for strain-softening materials; closed-form solutions for strain-softening/hardening materials; and closed-form solutions for
Synthesizing Service Composition Models on the Basis of Temporal Business Rules
Institute of Scientific and Technical Information of China (English)
Jian Yu; Yan-Bo Han; Jun Han; Yan Jin; Paolo Falcarin; Maurizio Morisio
2008-01-01
Transformational approaches to generating design and implementation models from requirements can bring effectiveness and quality to software development. In this paper we present a framework and associated techniques to generate the process model of a service composition from a set of temporal business rules. Dedicated techniques including pathfinding, branching structure identification and parallel structure identification are used for semi-automatically synthesizing the process model from the semantics-equivalent Finite State Automata of the rules. These process models naturally satisfy the prescribed behavioral constraints of the rules. With the domain knowledge encoded in the temporal business rules,an executable service composition program, e.g., a BPEL program, can be further generated from the process models. A running example in the e-business domain is used for illustrating our approach throughout this paper.
Micromechanical Models of Mechanical Response of High Performance Fibre Reinforced Cement Composites
DEFF Research Database (Denmark)
Li, V. C.; Mihashi, H.; Alwan, J.;
1996-01-01
The state-of-the-art in micromechanical modeling of the mechanical response of HPFRCC is reviewed. Much advances in modeling has been made over the last decade to the point that certain properties of composites can be carefully designed using the models as analytic tools. As a result, a new...... generation of FRC with high performance and economical viability, is in sight. However, utilization of micromechanical models for a more comprehensive set of important HPFRCC properties awaits further investigations into fundamental mechanisms governing composite properties, as well as intergrative efforts...... across responses to different load types. Further, micromechanical models for HPFRCC behavior under complex loading histories, including those in fracture, fatigue and multuaxial loading are urgently needed in order to optimize HPFRCC microstrcuctures and enable predictions of such material in structures...
Mechanical Behavior and Analytical Modeling of Melt-Infiltrated SiC/SiC Woven Composite
Lang, J.; Sankar, J.; Kelkar, A. D.; Bhatt, R. T.; Baaklini, G.; Lua, J.
1998-01-01
The desirable properties in ceramic matrix composites (CMCs), such as high temperature strength, corrosion resistance, high toughness, low density, or good creep resistance have led to increased use of CMCs in high-speed engine structural components and structures that operate in extreme temperature and hostile aero-thermo-chemical environments. Ceramic matrix composites have been chosen for turbine material in the design of 21st century civil propulsion systems to achieve high fuel economy, improved reliability, extended life, and reduced cost. Most commercial CMCs are manufactured using a chemical vapor infiltration (CVI) process. However, a lower cost fabrication known as melt-infiltration process is also providing CMCs marked for use in hot sections of high-speed civil transports. Limited samples of a SiC/SiC melt-infiltrated woven composites are being investigated at room and elevated temperature below and above matrix cracking. These samples show graceful failure and toughness at room temperature with a reduction in strength and modulus at elevated temperatures. A generic finite element model is also being developed to predict monotonic and cyclic loading behavior of the woven composite. Use of the initial test data from the woven composite is being used for the development of the analytical model. This model is the first of a iterative process leading towards the development the model's capability to predict behavior at room and elevated temperature for monotonic and cyclic loading. The purpose of this paper is to report on the material and mechanical findings of the SiC/SiC melt-infiltrated woven composite and progress on the development of the finite element model.
Modelling of polypropylene fibre-matrix composites using finite element analysis
Directory of Open Access Journals (Sweden)
2009-01-01
Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.
Pragmatics Driven Land Cover Service Composition Utilizing Behavior-Intention Model
Wu, Hao; Chen, Jun; Xing, Huaqiao; Li, Songnian; Hu, Juju
2016-06-01
Web service composition is one of the key issues to develop a global land cover (GLC) information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.
PRAGMATICS DRIVEN LAND COVER SERVICE COMPOSITION UTILIZING BEHAVIOR-INTENTION MODEL
Directory of Open Access Journals (Sweden)
H. Wu
2016-06-01
Full Text Available Web service composition is one of the key issues to develop a global land cover (GLC information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.
Lee, Junggil
2015-01-10
This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.
Variations of thermospheric composition according to AE-C data and CTIP modelling
Directory of Open Access Journals (Sweden)
H. Rishbeth
2004-01-01
Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer.
Key words. Atmospheric composition and structure (thermosphere – composition and chemistry
Validation of body composition models for high school wrestlers.
Williford, H N; Smith, J F; Mansfield, E R; Conerly, M D; Bishop, P A
1986-04-01
This study investigates the utility of two equations for predicting minimum wrestling weight and three equations for predicting body density for the population of high school wrestlers. A sample of 54 wrestlers was assessed for body density by underwater weighing, residual volume by helium dilution, and selected anthropometric measures. The differences between observed and predicted responses were analyzed for the five models. Four statistical tests were used to validate the equations, including tests for the mean of differences, proportion of positive differences, equality of standard errors from regression, and equivalence of regression coefficients between original and second sample data. The Michael and Katch equation and two Forsyth and Sinning equations (FS1 and FS21) for body density did not predict as well as expected. The Michael and Katch equation tends to overpredict body density while FS1 underpredicts. The FS2 equation, consisting of a constant adjustment to FS1, predicts well near the mean but not at the ends of the sample range. The two Tcheng and Tipton equations produce estimates which slightly but consistently overpredict minimum wrestling weight, the long form equation by 2.5 pounds and the short form by 3.8 pounds. As a result the proportion of positive differences is less than would be expected. But based on the tests for the standard errors and regression coefficients, the evidence does not uniformly reject these two equations.
A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints
Directory of Open Access Journals (Sweden)
Libin ZHAO
2014-12-01
Full Text Available Effective and convenient stress analysis techniques play important roles in the analysis and design of adhesively bonded composite joints. A new material model is presented at the level of composite ply according to the orthotropic elastic mechanics theory and plane strain assumption. The model proposed has the potential to reserve nature properties of laminates with ply-to-ply modeling. The equivalent engineering constants in the model are obtained only by the material properties of unidirectional composites. Based on commercial FE software ABAQUS, a 2D FE model of a single-lap adhesively bonded joint was established conveniently by using the new model without complex modeling process and much professional knowledge. Stress distributions in adhesive were compared with the numerical results by Tsai and Morton and interlaminar stresses between adhesive and adherents were compared with the results from a detailed 3D FE analysis. Good agreements in both cases verify the validity of the proposed model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.5960
On the origin and composition of Theia: Constraints from new models of the Giant Impact
Meier, Matthias M M; Wieler, Rainer
2014-01-01
Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner solar system at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other solar system materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cuk & Stewart, 2012; and "merger", Canup, 2012) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer et al., 2012) allows for a Theia similar to enstatit...
Russell, L. M.; Frossard, A. A.; Sanchez, K.; Massoli, P.; Elliott, S.; Burrows, S. M.; Bates, T. S.; Quinn, P.
2015-12-01
In much of the marine atmosphere, organic components in aerosol particles have many sources other than sea spray that contribute organic constituents. For this reason, physical sea spray models provide an important technique for studying the organic composition of particles from marine biogenic sources. The organic composition of particles produced by two different physical sea spray models were measured in three open ocean seawater types: (i) Coastal California in the northeastern Pacific, which is influenced by wind-driven, large-scale upwelling leading to productive or eutrophic (nutrient-rich) seawater and high chl-a concentrations, (ii) George's Bank in the northwestern Atlantic, which is also influenced by nutrient upwelling and eutrophic seawater with phytoplankton productivity and high chl-a concentrations, and (iii) the Sargasso Sea in the subtropical western Atlantic, which is oligotrophic and nutrient-limited, reflected in low phytoplankton productivity and low chl-a concentrations. Fourier transform infrared spectroscopy provides information about the functional group composition that represents the marine organic fraction more completely than is possible with techniques that measure non-refractory mass (vaporizable at 650°C). After separating biogenic marine particles from those from other sources, the measured compositions of atmospheric marine aerosol particles from three ocean regions is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. The organic composition of atmospheric primary marine (ocean-derived) aerosol particles is nearly identical to model generated primary marine aerosol particles from bubbled seawater. Variability in productive and non-productive seawater may be caused by the presence of surfactants that can stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components without substantial changes in overall group composition
Technical Report: Modeling of Composite Piezoelectric Structures with the Finite Volume Method
Bolborici, Valentin; Pugh, Mary C
2011-01-01
Piezoelectric devices, such as piezoelectric traveling wave rotary ultrasonic motors, have composite piezoelectric structures. A composite piezoelectric structure consists of a combination of two or more bonded materials, where at least one of them is a piezoelectric transducer. Numerical modeling of piezoelectric structures has been done in the past mainly with the finite element method. Alternatively, a finite volume based approach offers the following advantages: (a) the ordinary differential equations resulting from the discretization process can be interpreted directly as corresponding circuits and (b) phenomena occurring at boundaries can be treated exactly. This report extends the work of IEEE Transactions on UFFC 57(2010)7:1673-1691 by presenting a method for implementing the boundary conditions between the bonded materials in composite piezoelectric structures. The report concludes with one modeling example of a unimorph structure.
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
Application of discrete model in analyzes of built and tested composite bridge construction
Directory of Open Access Journals (Sweden)
Tarić Mirsad
2011-01-01
Full Text Available Designing problem and theoretical analyses of steel-concrete composite structures are especially emphasized in bridge engineering. Method of modelling composite constructions developed and established by standards had been improved by use of finite element method and modern software. By this paper authors wanted to point out the importance of adequate structure modelling assuming all features of steel-concrete bond, and comparing results of experimental research with results of software calculation based on FEM and calculation based on plane theory approach with certain simplifications. Because of research tests necessities the bridge was loaded with four heavy test vehicles. Results, which are represented graphically and numerically were essence for suggestion of giving advantages to area element discretization of composite section over the other one.
Review of strongly-coupled composite dark matter models and lattice simulations
Kribs, Graham D
2016-01-01
We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.
Micromechanical modeling of damage growth in titanium based metal-matrix composites
Sherwood, James A.; Quimby, Howard M.
1994-01-01
The thermomechanical behavior of continuous-fiber reinforced titanium based metal-matrix composites (MMC) is studied using the finite element method. A thermoviscoplastic unified state variable constitutive theory is employed to capture inelastic and strain-rate sensitive behavior in the Timetal-21s matrix. The SCS-6 fibers are modeled as thermoplastic. The effects of residual stresses generated during the consolidation process on the tensile response of the composites are investigated. Unidirectional and cross-ply geometries are considered. Differences between the tensile responses in composites with perfectly bonded and completely debonded fiber/matrix interfaces are discussed. Model simulations for the completely debonded-interface condition are shown to correlate well with experimental results.
Singlets in composite Higgs models in light of the LHC 750 GeV diphoton excess
Belyaev, Alexander; Cacciapaglia, Giacomo; Cai, Haiying; Flacke, Thomas; Parolini, Alberto; Serôdio, Hugo
2016-07-01
Models of compositeness can successfully address the origin of the Higgs boson, as a pseudo-Nambu-Goldstone boson (pNGB) of a spontaneously broken global symmetry, and flavor physics via the partial compositeness mechanism. If the dynamics is generated by a confining gauge group with fermionic matter content, there exists only a finite set of models that have the correct properties to account for the Higgs and top partners at the same time. In this paper, we explore the theory space of this class of models; remarkably, all of them contain—beyond the pNGB Higgs—a pNGB singlet, a , which couples to Standard Model gauge bosons via Wess-Zumino-Witten interactions, thus providing naturally a resonance in the diboson at the LHC. With the assumption that the recently reported diphoton excess at 750 GeV at the LHC arises from the a resonance, we propose a generic approach on how to delineate the best candidate for composite Higgs models with top partners. We find that constraints from other diboson searches severely reduce the theory space of the models under consideration. For the models which can explain the diphoton excess, we make precise and testable predictions for the width and other diboson resonance searches.
Benefits of X-Ray CMT for the modeling of C/C composites
Energy Technology Data Exchange (ETDEWEB)
Coindreau, Olivia; Lachaud, Jean; Vignoles, Gerard L. [LCTS - UMR 5801 CNRS-Universite Bordeaux 1-Safran-CEA 3, Allee La Boetie, Pessac, F33600 (France); Mulat, Christianne [LCTS - UMR 5801 CNRS-Universite Bordeaux 1-Safran-CEA 3, Allee La Boetie, Pessac, F33600 (France); IMS - UMR5218 CNRS-Universite Bordeaux 1-IPB 351, Avenue de la Liberation, Talence, F33410 (France); Germain, Christian [IMS - UMR5218 CNRS-Universite Bordeaux 1-IPB 351, Avenue de la Liberation, Talence, F33410 (France)
2011-03-15
C/C composites have application in very demanding areas like aerospace, fusion technology, etc. and thus their optimization is crucial, both in the control of processing routes and in the prediction of their behavior in use. Intense modeling efforts have been performed in these directions. To help a direct application on actual materials, with possibly complex reinforcement architectures, X-ray computerized micro-tomography (CMT) is a beneficial technique, since it allows producing extremely detailed representations of these architectures. However, there is a long way from the crude X-ray projections to the information that is directly usable in C/C composite modeling. This paper summarizes several achievements in this domain and discusses the obtained results, concerning (i) composites imaging by phase contrast CMT and holographic CMT, (ii) evaluation of effective geometrical and transfer properties in fiber arrangements and actual fiber-reinforced composites, (iii) modeling of degradation by ablation, and (iv) modeling of processing by chemical vapor infiltration. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2006-01-01
are implemented. It is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. A comparison between the numerical and an analytical model for fiber pull-out is performed....
An Object-Oriented Language-Database Integration Model: The Composition-Filters Approach
Aksit, Mehmet; Bergmans, Lodewijk; Vural, Sinan
1992-01-01
This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access, integr
Fibre distribution inside yarns of textile composite: gemetrical and FE modelling
Koissin, V.; Ivanov, D.S.; Lomov, S.V.; Verpoest, I.
2006-01-01
This article addresses the experimental investigation and modelling of the uneven fibre distribution inside yarns of a textile composite. The test data is given for the tri-axial carbon-fibre braid; a considerable irregularity is revealed for the fibre distribution along and across the yarns. The im
THE QUANTUM – MECHANICAL MODEL OF FORMING CONTACT AREAS IN COMPOSITE MATERIALS WITH SPHERICAL FILLER
Directory of Open Access Journals (Sweden)
E. V. Suhovaya
2011-01-01
Full Text Available The structure and properties of the composites having Fe-C-B-Р binders alloyed with molybdenum and strengthened by the W-C quickly-cooled filler were investigated in this work. The model based on quantum mechanics principles explaining the dependencies of contact interaction zones width on filler diameter was suggested.
Advanced modeling of thermal NDT problems: from buried landmines to defects in composites
Vavilov, Vladimir P.; Burleigh, Douglas D.; Klimov, Alexey G.
2002-03-01
Advanced thermal models that can be used in the detection of buried landmines and the TNDT (thermographic nondestructive testing) of composites are discussed. The interdependence between surface temperature signals and various complex parameters, such as surface and volumetric moisture, the shape of a heat pulse, material anisotropy, etc., is demonstrated.
Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2009-01-01
A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...
DEFF Research Database (Denmark)
Nielsen, Jan; Parner, Erik
2010-01-01
In this paper, we model multivariate time-to-event data by composite likelihood of pairwise frailty likelihoods and marginal hazards using natural cubic splines. Both right- and interval-censored data are considered. The suggested approach is applied on two types of family studies using the gamma...
Kolesar, K. R.; Cappa, C. D.; Wilson, K. R.
2011-12-01
Heterogeneously oxidized squalane particles are used here as a model system to investigate the interplay between chemical composition and particle volatility. Reaction of squalane particles by OH radicals leads to the production of oxygenated products. Here we use the vacuum ultra-violet Aerosol Mass Spectrometer (VUV-AMS) at beamline 9.0.2 at the Advanced Light Source to monitor the evolution of specific oxidation products that result from increasing OH exposures, and how the composition changes as the oxidized particles evaporate. The soft ionization in the VUV-AMS allows us to uniquely track the parent squalane molecule and the various oxidation products over multiple generations of oxidation. Compositional changes of the oxidized particles resulting from evaporation have been measured in three sets of laboratory experiments. In the first set, a thermodenuder at varying temperatures was used to induce evaporation of particles at a fixed OH exposure. Second, the OH exposure was varied along with temperature to create a cross-sectional observation of particle composition at 50% mass fraction remaining for ten different oxidation levels. The combination of these two experiments provides information as to the compositional changes that occur during evaporation due to heating. In the third set of experiments, VUV-AMS spectra of oxidized squalane particles following dilution-induced evaporation were measured for comparison with the thermodenuder experiments. These experiments provide insights into the relationships between particle oxidation, composition and evaporation kinetics.
DEFF Research Database (Denmark)
Skar, Asmus; Poulsen, Peter Noe
2015-01-01
The problem of stiffness degradation in composite pavement systems from localised fracture damage in the quasibrittle cement bound granular mixture are today taken into account only by empirical formulas. These formulas deals with a limited number of materials in a restricted range of design...... this paper presents a numerical analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block pavement systems applying a cohesive model. The functionality of the proposed model is compared to experimental investigations of beam bending tests. The pavement is modelled...... as a slab on grade and parameters influencing the response such as geometry, material parameters and loading position are studied and compared to experimental results. It is found that a cohesive model is suitable for the description of the fracture behaviour of cement bound granular mixtures. Moreover...
Rao, M. N.; Tarun, S.; Schmidt, R.; Schröder, K.-U.
2016-05-01
In this article, we focus on static finite element (FE) simulation of piezoelectric laminated composite plates and shells, considering the nonlinear constitutive behavior of piezoelectric materials under large applied electric fields. Under the assumptions of small strains and large electric fields, the second-order nonlinear constitutive equations are used in the variational principle approach, to develop a nonlinear FE model. Numerical simulations are performed to study the effect of material nonlinearity for piezoelectric bimorph and laminated composite plates as well as cylindrical shells. In comparison to the experimental investigations existing in the literature, the results predicted by the present model agree very well. The importance of the present nonlinear model is highlighted especially in large applied electric fields, and it is shown that the difference between the results simulated by linear and nonlinear constitutive FE models cannot be omitted.
Directory of Open Access Journals (Sweden)
Paula Andrea Rodríguez Marín
2014-04-01
Full Text Available Learning objects (LOs repositories are important in building educational content and should allow search, retrieval and composition processes to be successfully developed to reach educational goals. However, such processes require so much time-consuming and not always provide the desired results. Thus, the aim of this paper is to propose a model for the semiautomatic composition of LOs, which are automatically recovered from open repositories. For the development of model, various text similarity measures are discussed, while for calibration and validation some comparison experiments were performed using the results obtained by teachers. Experimental results show that when using a value of k (number of LOs selected of at least 3, the percentage of similarities between the model and such made by experts exceeds 75%. To conclude, it can be established that the model proposed allows teachers to save time and effort for LOs selection by performing a pre-filter process.
Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring
Moncada, Albert
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and
The Flushing of Ligeia : Composition Variations Across Titan's Seas in a Simple Hydrological Model
Lorenz, R. D.
2014-12-01
I use a simple box model to explore possible differences in the liquid composition of Titan's seas. Major variations in the abundance of involatile ethane, somewhat analogous to salinity in terrestrial waters, arise from the hydrological cycle, which introduces more "fresh" methane rainfall at the highest latitudes in summer and keeps the system 'off balance'. Comparing the precipitation and evaporation fluxes with likely tidal mixing fluxes, I find the composition of Ligeia Mare to be substantially flushed by methane rainfall which causes it to export its solutes to Kraken via a narrow labyrinth of channels. Ligeia therefore may have a methane-rich (~80%) composition, well out of thermodynamic equilibrium with the atmosphere, whereas the basins of Kraken are relatively well-mixed and will be ethane-dominated (~60%). These composition variations, analogous to Earth's salinity gradient between the Black Sea and the Mediterranean (or the Baltic and the North Sea) may be detectable with Cassini measurements and are important for future exploration. Comparing the depth of Ligeia measured at 160m with the annual rainfall predicted by Global Circulation Models of about 10m at the highest latitudes, and assuming a modest catchment area, suggests that Ligeia Mare should undergo only modest seasonal changes in composition, assuming surface 'waters' are mixed into the depths.
Energy Technology Data Exchange (ETDEWEB)
Lorrette, Ch
2007-04-15
This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)
Directory of Open Access Journals (Sweden)
Luciano Ribeiro CORREA NETTO
2015-10-01
Full Text Available Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations.Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS.Material and Methods A base composite (B was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25. The composites P90 and TPH3 (TP3 were used as positive and negative controls, respectively. Marginal integrity (%MI was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS and the polymerization shrinkage stress (Pss - MPa were also evaluated.Results The values for %MI were as follows: P90 (100% = TP3 (98.3% = B (96.9% > P25 (93.2%, (p<0.05. The %VS ranged from 1.4% (P90 to 4.9% (P25, while Pss ranged from 2.3 MPa (P90 to 3.9 MPa (B. For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa. Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97, whereas the correlation between Pss and %MI was found to be moderate (r=0.76.Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite.
Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana
2016-07-01
Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.
A model of the response of thermoplastic composites to bend-forming operations
Energy Technology Data Exchange (ETDEWEB)
Talbott, M.F.
1991-01-01
The model discussed in this dissertation describes the response of a thermoplastic composite laminate made from unidirection prepreg tape to operations which bend it into an arbitrarily complex singly-curved shape. It predicts, for any such bending, the extent of relative ply sliding and the stresses and strains which arise. The model contains several options for the process definition: for different locations along the laminate, the user may specify the curvatures, the perpendicular forces imposed, or the vertical displacements.
Pearce, M.T.
2005-01-01
The prevalent approach to developing cognitive models of music perception and composition is to construct systems of symbolic rules and constraints on the basis of extensive music-theoretic and music-analytic knowledge. The thesis proposed in this dissertation is that statistical models which acquire knowledge through the induction of regularities in corpora of existing music can, if examined with appropriate methodologies, provide significant insights into the cognitive processing involved i...
Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.
2013-03-01
NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.
Allen, David H.; Groves, Scott E.; Harris, Charles E.
1988-01-01
The present cumulative damage model for the prediction of stiffness loss in graphite/epoxy laminates applies a thermomechanical constitutive theory for elastic composites with distributed damage. The model proceeds from a continuum mechanics and thermodynamics approach in which the distributed damage is characterized by a set of second-order tensor-valued internal state variables. A set of damage-dependent laminated plate equations is obtained; this is developed by modifying classical Kirchhoff plate theory.
Modeling of robotic fish propelled by an ionic polymer-metal composite caudal fin
Chen, Zheng; Shatara, Stephan; Tan, Xiaobo
2009-03-01
In this paper, a model is proposed for a biomimetic robotic fish propelled by an ionic polymer metal composite (IPMC) actuator with a rigid passive fin at the end. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state speed of the robot under a periodic actuation voltage. Experimental results have shown that the proposed model can predict the fish motion for different tail dimensions. Since its parameters are expressed in terms of physical properties and geometric dimensions, the model is expected to be instrumental in optimal design of the robotic fish.
Three-dimensional modeling of chloroprene rubber surface topography upon composition
Energy Technology Data Exchange (ETDEWEB)
Žukienė, Kristina, E-mail: kristina.zukiene@ktu.lt [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Jankauskaitė, Virginija [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Petraitienė, Stase [Department of Applied Mathematics, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)
2014-02-15
In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.
Modeling of coating optical fibers with polymer-magnetic powder composite coating
Milutinović-Nikolić Aleksandra; Talijan Nadežda M.; Aleksić Radoslav R.
2002-01-01
A mathematical model of forming a composite coating on optical fiber was established. The model is based on existing mathematical models for coating optical fibers with polymer coating and experimentally defined rheological behavior of the investigated dispersed system. The model was developed for a dispersed system consisting of poly(ethylene-co-vinyl acetate) - EVA in a form of toluene solution and powders of magnetic materials (BaFe12O19 and SmCo5). The influence of the die diameter, diame...
Multi-layer composite mechanical modeling for the inhomogeneous biofilm mechanical behavior.
Wang, Xiaoling; Han, Jingshi; Li, Kui; Wang, Guoqing; Hao, Mudong
2016-08-01
Experiments showed that bacterial biofilms are heterogeneous, for example, the density, the diffusion coefficient, and mechanical properties of the biofilm are different along the biofilm thickness. In this paper, we establish a multi-layer composite model to describe the biofilm mechanical inhomogeneity based on unified multiple-component cellular automaton (UMCCA) model. By using our model, we develop finite element simulation procedure for biofilm tension experiment. The failure limit and biofilm extension displacement obtained from our model agree well with experimental measurements. This method provides an alternative theory to study the mechanical inhomogeneity in biological materials. PMID:27122202
OWL-S based Service Composition of Three-dimensional Geometry Modeling
Directory of Open Access Journals (Sweden)
Jiangning Yu
2012-02-01
Full Text Available This paper proposes an OWL-S framework for distributed CAD system based on the combination of semantic web service and CAD technology. Service ontology mapping mechanism is analyzed in detail and semantic model is built with the study of the correlation across the geometry modeling service. On the purpose of accommodating the design pattern of network modeling, this framework supports the service composition of three-dimensional geometry modeling and achieves further integration of service information. At last, a case study from the developed prototype system shows the feasibility and flexibility of this method under distributed CAD environment.
Quantum Scent Dynamics (QSD): A new composite model of physical particles
Darvas, György
2008-01-01
The paper introduces an alternative rishon model for a composite structure of quarks and leptons. The model builds matter from six basic blocks (and their antiparticles). For this reason it introduces new properties of rishons, called "scents", that can take two values, called masculine and feminine scents, which can appear in three colours both. The Quantum Scent Dynamics (QSD) model calculates new electric charges for the rishons. Then it discusses the construction of the known families of particles from scents, as well as the constraints and advantages of the proposed hypothetic model.
Iacobellis, Vincent
Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within
Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes
Bradley, Luke R.
The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of
Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites
Directory of Open Access Journals (Sweden)
Jang Min Park
2011-01-01
Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.
Reliability Analysis of a Composite Blade Structure Using the Model Correction Factor Method
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimiroy; Friis-Hansen, Peter; Berggreen, Christian
2010-01-01
in a probabilistic sense is model corrected so that it, close to the design point, represents the same structural behaviour as a realistic FE model. This approach leads to considerable improvement of computational efficiency over classical response surface methods, because the numerically “cheap......” idealistic model is used as the response surface, while the time-consuming detailed model is called only a few times until the simplified model is calibrated to the detailed model.......This paper presents a reliability analysis of a composite blade profile. The so-called Model Correction Factor technique is applied as an effective alternate approach to the response surface technique. The structural reliability is determined by use of a simplified idealised analytical model which...
Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen
2016-06-01
In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.
2016-08-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.
A simple model for characterizing non-uniform fibre-based composites and networks.
Chatterjee, Avik P
2011-04-20
A mean-field model is presented that describes non-uniformities in the spatial distribution of fibres in networks and composites in terms of fluctuations in the local composition. The mean pore radius, specific surface area, lineal path function, and chord length probability density are expressed as functions of the fibre volume fraction within a heuristic formalism. The impact of statistical heterogeneities in the fibre distribution upon the elastic moduli is assessed within the semi-empirical Reuss-Voigt-Hill averaging scheme. Results from illustrative calculations suggest that such macroscopically averaged material properties are particularly sensitive to variations in the mean pore radius. PMID:21436504
Modeling deformation behavior of Cu-Zr-Al bulk metallic glass matrix composites
Pauly, S.; Liu, G.; Wang, G.; Das, J.; Kim, K. B.; Kühn, U.; Kim, D. H.; Eckert, J.
2009-09-01
In the present work we prepared an in situ Cu47.5Zr47.5Al5 bulk metallic glass matrix composite derived from the shape memory alloy CuZr. We use a strength model, which considers percolation and a three-microstructural-element body approach, to understand the effect of the crystalline phase on the yield stress and the fracture strain under compressive loading, respectively. The intrinsic work-hardenability due to the martensitic transformation of the crystalline phase causes significant work hardening also of the composite material.
International Nuclear Information System (INIS)
The Defense Waste Processing Facility will incorporate high-level liquid waste into borosilicate glass for stabilization and permanent disposal in a geologic repository. The viscosity of the melt determines the rate of melting of the raw feed, the rate of gas bubble release due to foaming and fining, the rate of homogenization, and thus, the quality of the glass produced. The viscosity of the glass is in turn, a function of both glass composition and temperature. A model describing the viscosity dependence on composition, temperature, and glass structure (bonding) has been derived for glasses ranging from pure frits to frit plus 35 wt % simulated waste. 17 refs., 37 figs
Modeling and mesoscopic damage constitutive relation of brittle short-fiber-reinforced composites
Institute of Scientific and Technical Information of China (English)
刘洪秋; 梁乃刚; 夏蒙棼
1999-01-01
Aimed at brittle composites reinforced by randomly distributed short-fibers with a relatively large aspect ratio, stiffness modulus and strength, a mesoscopic material model was proposed. Based on the statistical description,damage mechanisms, damage-induced anisotropy, damage rate effect and stress redistribution, the constitutive relation were derived. By taking glass fiber reinforced polypropylene polymers as an example, the effect of initial orientation distribution of fibers, damage-induced anisotropy, and damage-rate effect on macro-behaviors of composites were quantitatively analyzed. The theoretical predictions compared favorably with the experimental results.
Gavrilik, A M
2013-01-01
We consider the deformed Bose gas model with the deformation structure function that is the combination of a q-deformation and a quadratically polynomial deformation. Such a choice of the unifying deformation structure function enables us to describe the interacting gas of composite (two-fermionic or two-bosonic) bosons. Using the relevant generalization of the Jackson derivative, we derive a two-parametric expression for the total number of particles, from which the deformed virial expansion of the equation of state is obtained. The latter is interpreted as the virial expansion for the effective description of a gas of interacting composite bosons with some interaction potential.
Modelling and interpreting the isotopic composition of water vapour in convective updrafts
Directory of Open Access Journals (Sweden)
M. Bolot
2013-08-01
Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Compositional Fragmentation Model for the Oxidation of Sulfide Particles in a Flash Reactor
Parra-Sánchez, Víctor Roberto; Pérez-Tello, Manuel; Duarte-Ruiz, Cirilo Andrés; Sohn, Hong Yong
2014-04-01
A mathematical model to predict the size distribution and chemical composition of a cloud of sulfide particles during high-temperature oxidation in a flash reactor is presented. The model incorporates the expansion and further fragmentation of the reacting particles along their trajectories throughout the reaction chamber. A relevant feature of the present formulation is its flexibility to treat a variety of flash reacting systems, such as the flash smelting and flash converting processes. This is accomplished by computing the chemical composition of individual particles and the size distribution and overall composition of the particle cloud in separate modules, which are coupled through a database of particle properties previously stored on disk. The flash converting of solid copper mattes is considered as an example. The model predictions showed good agreement with the experimental data collected in a large laboratory reactor in terms of particle size distribution and sulfur remaining in the population of particles. The cumulative contribution and distribution coefficients are introduced to quantify the relationship between specific particle sizes in the feed and those in the reacted products upon oxidation, the latter of which has practical implications on the amount and chemical composition of dust particles produced during the industrial operation.
Neutrino Masses from an A4 Symmetry in Holographic Composite Higgs Models
del Aguila, Francisco; Santiago, Jose
2010-01-01
We show that holographic composite Higgs Models with a discrete A4 symmetry naturally predict hierarchical charged lepton masses and an approximate tri-bimaximal lepton mixing with the correct scale of neutrino masses. They also satisfy current constraints from electroweak precision tests, lepton flavor violation and lepton mixing in a large region of parameter space. Two phenomenologically relevant features arise in these models. First, an extra suppression on the lepton Yukawa couplings makes the tau lepton more composite than naively expected from its mass. As a consequence new light leptonic resonances, with masses as low as few hundreds of GeV, large couplings to tau and a very characteristic collider phenomenology, are quite likely. Second, the discrete symmetry A4 together with the model structure provide a double-layer of flavor protection that allows to keep tree-level mediated processes below present experimental limits. One-loop processes violating lepton flavor, like mu -> e gamma, may be however ...
SHOCK INITIATION OF COMPOSITION B AND C-4 EXPLOSIVES; EXPERIMENTS AND MODELING
Energy Technology Data Exchange (ETDEWEB)
Urtiew, P A; Vandersall, K S; Tarver, C M; Garcia, F; Forbes, J W
2006-08-18
Shock initiation experiments on the explosives Composition B and C-4 were performed to obtain in-situ pressure gauge data for the purpose of providing the Ignition and Growth reactive flow model with proper modeling parameters. A 100 mm diameter propellant driven gas gun was utilized to initiate the explosive charges containing manganin piezoresistive pressure gauge packages embedded in the explosive sample. Experimental data provided new information on the shock velocity--particle velocity relationship for each of the investigated material in their respective pressure range. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data, and Ignition and Growth modeling calculations resulted in a good fit to the experimental data. Identical ignition and growth reaction rate parameters were used for C-4 and Composition B, and the Composition B model also included a third reaction rate to simulate the completion of reaction by the TNT component. This model can be applied to shock initiation scenarios that have not or cannot be tested experimentally with a high level of confidence in its predictions.
Verification of Beam Models for Ionic Polymer-Metal Composite Actuator
Institute of Scientific and Technical Information of China (English)
Ai-hong Ji; Hoon Cheol Park; Quoc Viet Nguyen; Jang Woo Lee; Young Tai Yoo
2009-01-01
Ionic Polymer-Metal Composite (IPMC) can work as an actuator by applying a few voltages. A thick IPMC actuator, where Nation-117 membrane was synthesized with polypyrrole/alumina composite tiller, was analyzed to verify the equivalent beam and equivalent bimorph beam models. The blocking force and tip displacement of the IPMC actuator were measured with a DC power supply and Young's modulus of the IPMC strip was measured by bending and tensile tests respectively. The calculated maximum tip displacement and the Young's modulus by the equivalent beam model were almost identical to the corresponding measured data. Finite element analysis with thermal analogy technique was utilized in the equivalent bimorph beam model to numerically reproduce the force-displacement relationship of the IPMC actuator. The results by the equivalent bimorph beam model agreed well with the force-displacement relationship acquired by the measured data. It is confirmed that the equivalent beam and equivalent bimorph beam models are practically and effectively suitable for predicting the tip displacement, blocking force and Young's modulus of IPMC actuators with different thickness and different composite of ionic polymer membrane.
Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings
Yamada, Yoshiki; Zhu, Dongming
2011-01-01
Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.
Mathematical Model For Autoclave Curing Of Unsaturated Polyester Based Composite Materials
Directory of Open Access Journals (Sweden)
Adnan A. Abdul Razak
2013-05-01
Full Text Available Heat transfer process involved in the autoclave curing of fiber-reinforced thermosetting composites is investigated numerically. A model for the prediction of the temperature and the extent of the reaction across the laminate thickness during curing process in the autoclave of unsaturated polyester based composite has been developed. The governing equation for one dimensional heat transfer, and accounting for the heat generation due to the exothermic cure reaction in the composites had been used. It was found that the temperature at the central of the laminate increases up to the external imposed temperature, because of the thermal conductivity of the resin and fiber. The heat generated by the exothermic reaction of the resin is not adequately removed; the increase in the temperature at the center increases the resins rate reaction, which in turn generates more heat.
Institute of Scientific and Technical Information of China (English)
Li Meng-Meng; Long Yun-Ze; Yin Hong-Xing; Zhang Zhi-Ming
2011-01-01
Cerium (III)nitrate/poly(vinylpyrrolidone)(Ce(NO3)3/PVP)composite fibres have been prepared by electrospinning. After calcining the composite fibres in air at 500℃, CeO2 nanowires were obtained. The characterizations of the as-spun composite fibres and resultant nanowires have been carried out by a scanning electron microscope (SEM),an infrared spectrometer, an x-ray diffractometer and a fluorescence spectrophotometer. Interestingly, some unusual ribbon-like or twin fibres were observed besides the common fibres with circular or elliptic cross sections. We developed a fibre-division model resulting from Coulomb repulsion and solvent vaporization to interpret the formation of the ribbona or twin fibres, which has been confirmed by the SEM studies. Our results also indicate that the formation of the ribbons or twin fibres is less dependent on operation voltage and work distance.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Arrieta, J. S.; Diani, J.; Gilormini, P.
2014-09-01
Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP.
Sima, A.; Paul, A.; Schulz, M.; Oerlemans, J.
2006-01-01
We used a 2.5-dimensional thermomechanical icesheet model including the oxygen-isotope ratio 18O/16O as a passive tracer to simulate the isotopic composition (d18O) of the North American Ice Sheet (NAIS) during the last glacial cycle. This model allowed us to estimate the NAIS contribution to the ch
Lauridsen, Holly M; Pober, Jordan S; Gonzalez, Anjelica L
2014-03-01
Neutrophil extravasation occurs across postcapillary venules, structures composed of endothelial cells (ECs), pericytes (PCs), and basement membrane (BM). We constructed composite models of the human postcapillary venule, combining ECs with PCs or PC-deposited BM, to better study this process. Quiescent and tumor necrosis factor α (TNF-α)-activated composites demonstrated in situ-like expression of cadherins, E-selectin, intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), platelet-endothelial cell adhesion molecule 1 (PECAM-1), CD99, and interleukin 8 (IL-8). After TNF-α activation, the ECs supported greater neutrophil adhesion (66.1 vs. 23.7% of input cells) and transmigration (35.1 vs. 7.20% of input cells) than did the PCs, but the composites behaved comparably (no significant difference) to ECs in both assays. TNF-α-activated EC-conditioned medium (CM) increased transmigration across the PCs, whereas TNF-α-activated PC-CM decreased transmigration across the ECs, and culturing on PC-derived BM decreased both adhesion to and transmigration across the ECs. Anti-very late antigen 4 (VLA-4; on neutrophils) inhibited adhesion to TNF-α-activated composites, but not to ECs alone. Anti-CD99 (expressed on all 3 cell types) inhibited transmigration across the composites (14.5% of control) more than across the ECs (39.0% of control), and venular shear stress reduced transmigration across the ECs (17.3% of static) more than across the composites (36.7% of static). These results provide proof of concept that our composite human EC/PC/BM venular construct can reveal new interactions in the inflammatory cascade. PMID:24297702
Matveev, S. V.; S. S. Kotelnikova
2013-01-01
The article describes the features of the technology of casting using consumable models derived from photopolymer composition IPLIT-3. Shows feature of applied tiered gating system intended for the removal of the products of thermal destruction model material.
A composite state method for ensemble data assimilation with multiple limited-area models
Directory of Open Access Journals (Sweden)
Matthew Kretschmer
2015-04-01
Full Text Available Limited-area models (LAMs allow high-resolution forecasts to be made for geographic regions of interest when resources are limited. Typically, boundary conditions for these models are provided through one-way boundary coupling from a coarser resolution global model. Here, data assimilation is considered in a situation in which a global model supplies boundary conditions to multiple LAMs. The data assimilation method presented combines information from all of the models to construct a single ‘composite state’, on which data assimilation is subsequently performed. The analysis composite state is then used to form the initial conditions of the global model and all of the LAMs for the next forecast cycle. The method is tested by using numerical experiments with simple, chaotic models. The results of the experiments show that there is a clear forecast benefit to allowing LAM states to influence one another during the analysis. In addition, adding LAM information at analysis time has a strong positive impact on global model forecast performance, even at points not covered by the LAMs.
Directory of Open Access Journals (Sweden)
L. Loosvelt
2013-02-01
Full Text Available Compositional data, such as soil texture, are hard to deal with in the geosciences as standard statistical methods are often inappropriate to analyse this type of data. Especially in sensitivity analysis, the closed character of the data is often ignored. To that end, we developed a method to assess the local sensitivity of a model output with resect to a compositional model input. We adapted the finite difference technique such that the different parts of the input are perturbed simultaneously while the closed character of the data is preserved. This method was applied to a hydrologic model and the sensitivity of the simulated soil moisture content to local changes in soil texture was assessed. Based on a high number of model runs, in which the soil texture was varied across the entire texture triangle, we identified zones of high sensitivity in the texture triangle. In such zones, the model output uncertainty induced by the discrepancy between the scale of measurement and the scale of model application, is advised to be reduced through additional data collection. Furthermore, the sensitivity analysis provided more insight into the hydrologic model behaviour as it revealed how the model sensitivity is related to the shape of the soil moistureretention curve.
Directory of Open Access Journals (Sweden)
L. Loosvelt
2012-07-01
Full Text Available Compositional data, such as soil texture, are hard to deal with in the geosciences as standard statistical methods are often inappropriate to analyse this type of data. Especially in sensitivity analysis, the closed character of the data is often ignored. To that end, we developed a method to assess the local sensitivity of a model output w.r.t. a compositional model input. We adapted the finite difference technique such that the different parts of the input are perturbed simultaneously while the closed character of the data is preserved. We applied this method to a hydrologic model and assessed the sensitivity of the simulated soil moisture content to local changes in soil texture. Based on a high number of model runs, in which the soil texture was varied across the entire texture triangle, we identified zones of high sensitivity in the texture triangle. In such zones, the model output uncertainty induced by the discrepancy between the scale of measurement and the scale of model application, is advised to be reduced through additional data collection. Furthermore, the sensitivity analysis provided more insight into the hydrologic model behaviour as it revealed how the model sensitivity is related to the shape of the soil moisture retention curve.
Loosvelt, L.; Vernieuwe, H.; Pauwels, V. R. N.; De Baets, B.; Verhoest, N. E. C.
2013-02-01
Compositional data, such as soil texture, are hard to deal with in the geosciences as standard statistical methods are often inappropriate to analyse this type of data. Especially in sensitivity analysis, the closed character of the data is often ignored. To that end, we developed a method to assess the local sensitivity of a model output with resect to a compositional model input. We adapted the finite difference technique such that the different parts of the input are perturbed simultaneously while the closed character of the data is preserved. This method was applied to a hydrologic model and the sensitivity of the simulated soil moisture content to local changes in soil texture was assessed. Based on a high number of model runs, in which the soil texture was varied across the entire texture triangle, we identified zones of high sensitivity in the texture triangle. In such zones, the model output uncertainty induced by the discrepancy between the scale of measurement and the scale of model application, is advised to be reduced through additional data collection. Furthermore, the sensitivity analysis provided more insight into the hydrologic model behaviour as it revealed how the model sensitivity is related to the shape of the soil moistureretention curve.
A single-level composite structure optimization method based on a blending tapered model
Institute of Scientific and Technical Information of China (English)
An Weigang; Chen Dianyu; Jin Peng
2013-01-01
In order to decrease the number of design variables and improve the efficiency of composite structure optimal design,a single-level composite structure optimization method based on a tapered model is presented.Compared with the conventional multi-level composite structure optimization method,this single-level method has many advantages.First,by using a distance variable and a ply group variable,the number of design variables is decreased evidently and independent with the density of sub-regions,which makes the single-level method very suitable for large-scale composite structures.Second,it is very convenient to optimize laminate thickness and stacking sequence in the same level,which probably improves the quality of optimal result.Third,ply continuity can be guaranteed between sub-regions in the single-level method,which could reduce stress concentration and manufacturing difficulty.An example of a composite wing is used to demonstrate the advantages and competence of the single-level method proposed.
Shear-flexible finite-element models of laminated composite plates and shells
Noor, A. K.; Mathers, M. D.
1975-01-01
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.
Radiative contribution to the effective potential in a composite Higgs model
DeGrand, T A; Jay, W I; Neil, E T; Shamir, Y; Svetitsky, B
2016-01-01
The SU(4) gauge theory with two flavors of Dirac fermions in the sextet representation shares features of a candidate for a composite Higgs model. The analogue of the Higgs multiplet of the Standard Model lives in the Goldstone manifold resulting from spontaneous breaking of the global symmetry SU(4) to SO(4). The Higgs potential arises from interaction with the particles of the Standard Model. We have computed the gauge boson contribution to the Higgs potential, using valence overlap fermions on a Wilson-clover sea. The calculation is similar to that of the electromagnetic mass splitting of the pion multiplet in QCD.
Support for Dynamic Service Composition with Role-Based Interaction Model
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
This paper aims to present a role-based interaction model for dynamic service composition in Grid environments. Assigning roles to a service means to associate with it capabilities that describes all the operations the service intends to perform. When all of the services can be recognized by their roles, the appropriate services can be selected. Based on the interaction policy, a role-based interaction model not only facilitates access control, but also offers flexible interaction mechanism for adapting service-oriented applications. This interaction model adopts programmable reactive tuple space to facilitate context-dependent coordination.
The Composite Particles Model (CPM), Vacuum Structure and ~ 125 GeV Higgs Mass
Popovic, Marko B
2012-01-01
The Composite Particles Model (CPM) is characterized by composite Higgs, composite top quark, cancelation of the scalar leading quadratic divergences, and a particular ground state such that top anti-top channel is neither attractive or repulsive at tree level at the Z pole mass. The radiatively generated scalar mass in 2D is m_H=\\sqrt((6m_t^2 -M_Z^2-2M_w^2)/3(1+{\\pi}/k))= 113 GeV/c^2,143 GeV/c^2,...,230 GeV/c^2 for k = 1,2,...\\infty. As first proposed by Nambu in the simplest models with dynamical mass generation and fermion condensate in 4D, one expects the Higgs mass on the order of twice the heaviest fermion mass. Hence, if this is applied to the CPM one could expect scalar mass dynamically generated by top constituent quarks and composite top quarks to be equal to 2 m_t/3 and 2m_t respectively. When Bose-Einstein statistics for kT \\cong M_W c^2 is applied to the two lowest energy states in 2D (113 GeV and 143 GeV) and 4D (115 GeV and 346 GeV), the CPM suggests physical Higgs mass equal to m_H \\cong 125 G...
Gupta, Vikas
The purpose of this research is to develop an analytical tool which, when coupled with accelerated material characterization, is capable of predicting long-term durability of polymers and their composites. Conducting creep test on each composite laminate with different fibers, fiber volume fractions, and weave architectures is impractical. Moreover, in case of thin laminates, accurately characterizing the out-of-plane matrix dominated viscoelastic response is not easily achievable. Therefore, the primary objective of this paper is to present a multi-scale modeling methodology to simulate the long-term interlaminar properties in polymer matrix woven composites and then predict the critical regions where failure is most likely to occur. A micromechanics approach towards modeling the out-of-plane viscoelastic behavior of a five-harness satin woven-fiber cross-ply composite laminate is presented, taking into consideration the weave architecture and time-dependent effects. Short-term creep tests were performed on neat resin at different test temperatures and stress levels to characterize physical aging of the resin matrix. In addition, creep and recovery experiments were conducted on un-aged resin specimens in order to characterize the pronounced stress-dependent nonlinear viscoelastic response of the PR500 resin. Two-dimensional micromechanics analysis was carried out using a test-bed finite element code, NOVA-3D, including interactions between non-linear material constitutive behavior, geometric nonlinearity, aging and environmental effects.
Sliding mechanics of coated composite wires and the development of an engineering model for binding.
Zufall, S W; Kusy, R P
2000-02-01
A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.
Long, E. R., Jr.
1979-01-01
The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-09-01
This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin–Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-09-01
This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.
A subregional model for delamination prediction of rubber composite under fatigue loading
Institute of Scientific and Technical Information of China (English)
TIAN Zhen-hui; TAN Hui-feng
2005-01-01
Results from fatigue experiments of cross-laminated steel cord-rubber composites (SCRC) indicate that fatigue damage life can be categorized into three regimes. In terms of fatigue modes, a subregional fatigue model is developed to describe the damages evolution of SCRC under fatigue loads. Firstly, finite element analysis is introduced to determine interply stress distribution of the specimen. Then, based on the experimental fatigue data, subregional models are introduced to simulate relations between maximum strain, effective stiffness,delamination shear stress and fatigue cycles. Relations between crack density, delamination length growth rate,macro crack density and cycles are modeled by two semi-empirical models. A reasonable prediction result was achieved by the current model, where model parameters can be determined by basic outputs of fatigue testing.
Unified continuum damage model for matrix cracking in composite rotor blades
Energy Technology Data Exchange (ETDEWEB)
Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)
2015-03-10
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.
A unified composite model of inflation and dark matter in the Nambu-Jona-Lasinio theory
Channuie, Phongpichit
2016-01-01
In this work, we propose a cosmological scenario inherently based on the effective Nambu-Jona-Lasinio (NJL) model that comic inflation and dark matter can be successfully described by a single framework. On the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI) and we show that it is viable to achieve successful inflation via a non-minimal coupling to gravity. For model of inflation, we compute the inflationary parameters and confront them with recent Planck 2015 data. We discover that the predictions of the model are in excellent agreement with the Planck analysis. We also present in our model a simple connection of physics from the high scales to low scales via renormalization group equations of the physical parameters. On the other hand, the pseudoscalar channel can be assigned as a candidate for composite dark matter (CD). For model of dark matter, we couple the pseudoscalar to the Higgs sector of the standard model with the coupling strength $\\kappa$ and estimate it...
Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure
Leone, Frank A., Jr.
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications
Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.
2016-01-01
Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work
Srinivasagupta, Deepak
2002-01-01
High material and manufacturing costs have hindered the introduction of advanced polymer composite materials into mainstream civilian applications such as automotive. Even though high-fidelity models for several polymer composite manufacturing processes have become available over the past several years and offer significant benefits in manufacturing cost reduction, concerns about their inflexibility and maintenance has adversely affected their widespread usage. This research seeks to advance process modeling and design in polymer composites manufacturing to address these concerns. Other more general issues in measurement validation and distributed control are also addressed. Using a rigorous 3-D model of the injected pultrusion (IP) process validated recently, an algorithm was developed for process and equipment design with integrated economic, operability and environmental considerations. The optimum design promised enhanced throughput as well as reduction in the time and expenses of the current purely experimental approaches. Scale-up issues in IP were analyzed, and refinements to overcome some drawbacks in the model were suggested. The process model was then extended to simulate the co-injection resin transfer molding (CIRTM) process used for manufacture of foam-core sandwich composites. A 1-D isothermal model for real-time control was also developed. Process optimization using these models and experimental parametric studies increased the debond fracture toughness of sandwiches by 78% over current technology. To ensure the availability of validated measurements from process instrumentation, a novel in-situ sensor modeling approach to sensor validation was proposed. Both active and passive, time and frequency domain techniques were developed, and experimentally verified using temperature and flow sensors. A model-based dynamic estimator to predict the true measurement online was also validated. The effect of network communication delay on stability and control