International Nuclear Information System (INIS)
Peccei, R.D.
If quarks and leptons are composite, it should be possible eventually to calculate their mass spectrum and understand the reasons for the observed family replications, questions which lie beyond the standard model. Alas, all experimental evidence to date points towards quark and lepton elemenarity with the typical momentum scale Λsub(comp), beyond which effects of inner structure may be seen, probably being greater than ITeV. One supersymmetric preon model explained provides a new dynamical alternative for obtaining light fermions which is that these states are quasi Goldstone fermions. This, and similar models are discussed. Although quasi Goldstone fermions provide an answer to the 0sup(th)-order question of composite models the questions of how masses and families are generated remain unanswered. (U.K.)
Partially composite Higgs models
DEFF Research Database (Denmark)
Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.
2018-01-01
We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...
Directory of Open Access Journals (Sweden)
Simona Ramanauskaitė
2012-04-01
Full Text Available Preparation for potential threats is one of the most important phases ensuring system security. It allows evaluating possible losses, changes in the attack process, the effectiveness of used countermeasures, optimal system settings, etc. In cyber-attack cases, executing real experiments can be difficult for many reasons. However, mathematical or programming models can be used instead of conducting experiments in a real environment. This work proposes a composite denial of service attack model that combines bandwidth exhaustion, filtering and memory depletion models for a more real representation of similar cyber-attacks. On the basis of the introduced model, different experiments were done. They showed the main dependencies of the influence of attacker and victim’s properties on the success probability of denial of service attack. In the future, this model can be used for the denial of service attack or countermeasure optimization.
Material Modelling - Composite Approach
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1997-01-01
This report is part of a research project on "Control of Early Age Cracking" - which, in turn, is part of the major research programme, "High Performance Concrete - The Contractor's Technology (HETEK)", coordinated by the Danish Road Directorate, Copenhagen, Denmark, 1997.A composite-rheological ......This report is part of a research project on "Control of Early Age Cracking" - which, in turn, is part of the major research programme, "High Performance Concrete - The Contractor's Technology (HETEK)", coordinated by the Danish Road Directorate, Copenhagen, Denmark, 1997.A composite......-rheological model of concrete is presented by which consistent predictions of creep, relaxation, and internal stresses can be made from known concrete composition, age at loading, and climatic conditions. No other existing "creep prediction method" offers these possibilities in one approach.The model...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...
Software Frameworks for Model Composition
Directory of Open Access Journals (Sweden)
Mikel D. Petty
2014-01-01
Full Text Available A software framework is an architecture or infrastructure intended to enable the integration and interoperation of software components. Specialized types of software frameworks are those specifically intended to support the composition of models or other components within a simulation system. Such frameworks are intended to simplify the process of assembling a complex model or simulation system from simpler component models as well as to promote the reuse of the component models. Several different types of software frameworks for model composition have been designed and implemented; those types include common library, product line architecture, interoperability protocol, object model, formal, and integrative environment. The various framework types have different components, processes for composing models, and intended applications. In this survey the fundamental terms and concepts of software frameworks for model composition are presented, the different types of such frameworks are explained and compared, and important examples of each type are described.
Maximally Symmetric Composite Higgs Models.
Csáki, Csaba; Ma, Teng; Shu, Jing
2017-09-29
Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.
Sneaking up on composite models
International Nuclear Information System (INIS)
Georgi, H.
1985-01-01
I discuss the effective low energy theories describing models with a composite Higgs boson and composite fermions in which all explicit global symmetry breaking is done by weak gauge couplings like SU(3)xSU(2)xU(1). In such models, the fermions are lighter than the W and Z by powers of weak gauge couplings. Nontrivial family structure may arise if the theory has a spontaneously broken family symmetry. (orig.)
Micromechanical models for textile composites
Sankar, Bhavani V.; Marrey, Ramesh V.
1995-01-01
Numerical and analytical micromechanical models are presented to predict the thermoelastic behavior of a textile composite. In the numerical model, the unit-cell is discretized with finite elements, and periodic boundary conditions are imposed between opposite faces of the unit-cell. For a thin textile composite, stress gradients effects through the thickness are demonstrated. The consequent difference in the stiffness and strength behavior of thick and thin composites are discussed. The numerical model is implemented to predict 3-D thermo-elastic constants for a thick textile composite, and the plate thermo-mechanical properties for a thin textile composite. The numerical model is extended to compute the thermal residual microstresses due to processing to predict the composite failure envelopes. An analytical model - Selective Averaging Method (SAM) - is proposed, which is based on a judicious combination of stiffness and compliance averaging to estimate the 3-D elastic constants. Both the models are tested and verified for several examples by comparing the stiffness properties with elasticity solutions and available results.
Compositional and Quantitative Model Checking
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand
2010-01-01
This paper gives a survey of a composition model checking methodology and its succesfull instantiation to the model checking of networks of finite-state, timed, hybrid and probabilistic systems with respect; to suitable quantitative versions of the modal mu-calculus [Koz82]. The method is based...
Foundations of compositional model theory
Czech Academy of Sciences Publication Activity Database
Jiroušek, Radim
2011-01-01
Roč. 40, č. 6 (2011), s. 623-678 ISSN 0308-1079 R&D Projects: GA MŠk 1M0572; GA ČR GA201/09/1891; GA ČR GEICC/08/E010 Institutional research plan: CEZ:AV0Z10750506 Keywords : multidimensional probability distribution * conditional independence * graphical Markov model * composition of distributions Subject RIV: IN - Informatics, Computer Science Impact factor: 0.667, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/jirousek-foundations of compositional model theory.pdf
Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling
National Aeronautics and Space Administration — The Composites Integrated Modeling (CIM) Element developed low cost, lightweight, and efficient composite structures, materials and manufacturing technologies with...
Compositional Modeling of Biological Systems
Zámborszky, Judit
2010-01-01
Molecular interactions are wired in a fascinating way resulting in complex behavior of bio-logical systems. Theoretical modeling provides us a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological systems calls for conceptual tools that manage the combinatorial explosion of the set of possible interac-tions. A suitable conceptual tool to attack complexity is compositionality, already success-fully used in the process algebra field ...
Meshfree modeling in laminated composites
Simkins, Daniel Craig
2012-09-27
A problem of increasing importance in the aerospace industry is in detailed modeling of explicit fracture in laminated composite materials. For design applications, the simulation must be capable of initiation and propagation of changes in the problem domain. Further, these changes must be able to be incorporated within a design-scale simulation. The use of a visibility condition, coupled with the local and dynamic nature of meshfree shape function construction allows one to initiate and explicitly open and propagate holes inside a previously continuous problem domain. The method to be presented naturally couples to a hierarchical multi-scale material model incorporating external knowldege bases to achieve the goal of a practical explicit fracture modeling capability for full-scale problems. © 2013 Springer-Verlag.
Composite superstring model for hadron amplitudes
Energy Technology Data Exchange (ETDEWEB)
Kudryavtsev, V.A. [Petersburg Nuclear Physics Institute, P.O. Box 188300, Gatchina (Russian Federation)
2010-01-15
Hadron dynamics is formulated in terms of interacting composite strings. These composite string amplitudes give other possible solution of duality equations for crossing channels in addition to classical string amplitudes. The composite strings carry quark flavour and spin degrees of freedom on edging two-dimensional surfaces. Consistent composite string models with extended N=3 Virasoro superconformal symmetry are found. Simple amplitudes for interaction of pi and K-mesons in this model are represented.
Preon representations and composite models
International Nuclear Information System (INIS)
Kang, Kyungsik
1982-01-01
This is a brief report on the preon models which are investigated by In-Gyu Koh, A. N. Schellekens and myself and based on complex, anomaly-free and asymptotically free representations of SU(3) to SU(8), SO(4N+2) and E 6 with no more than two different preons. Complete list of the representations that are complex anomaly-free and asymptotically free has been given by E. Eichten, I.-G. Koh and myself. The assumptions made about the ground state composites and the role of Fermi statistics to determine the metaflavor wave functions are discussed in some detail. We explain the method of decompositions of tensor products with definite permutation properties which has been developed for this purpose by I.-G. Koh, A.N. Schellekens and myself. An example based on an anomaly-free representation of the confining metacolor group SU(5) is discussed
Exploring holographic Composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Croon, Djuna [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom); Perimeter Institute for Theoretical Physics,Waterloo, ON (Canada); Dillon, Barry M.; Huber, Stephan J.; Sanz, Veronica [Department of Physics and Astronomy, University of Sussex,BN1 9QH Brighton (United Kingdom)
2016-07-13
Simple Composite Higgs models predict new vector-like fermions not too far from the electroweak scale, yet LHC limits are now sensitive to the TeV scale. Motivated by this tension, we explore the holographic dual of the minimal model, MCHM{sub 5}, to try and alleviate this tension without increasing the fine-tuning in the Higgs potential. Interestingly, we find that lowering the UV cutoff in the 5D picture allows for heavier top partners and less fine-tuning. In the 4D dual this corresponds to increasing the number of “colours” N, thus increasing the decay constant of the Goldstone Higgs. This is essentially a ‘Little Randall-Sundrum Model’, which are known to reduce some flavour and electroweak constraints. Furthermore, in anticipation of the ongoing efforts at the LHC to put bounds on the top Yukawa, we demonstrate that deviations from the SM can be suppressed or enhanced with respect to what is expected from mere symmetry arguments in 4D. We conclude that the 5D holographic realisation of the MCHM{sub 5} with a small UV cutoff is not in tension with the current experimental data.
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty examples from the literature. |
Modelling anisotropic water transport in polymer composite ...
Indian Academy of Sciences (India)
and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite.
Micromechanical models for textile structural composites
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
Constitutive modelling for composite forming
Akkerman, Remko; Lamers, E.A.D.; Long, A.C.
2007-01-01
Fibre reorientation occurs when forming a reinforced structure such as a fabric onto a doubly curved surface. This leads to a change in the angle between warp and fill yarns. The composite properties change inhomogeneously, corresponding to the varying angle between warp and fill yarns. Many
Micromechanical Modeling of Woven Metal Matrix Composites
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1997-01-01
This report presents the results of an extensive micromechanical modeling effort for woven metal matrix composites. The model is employed to predict the mechanical response of 8-harness (8H) satin weave carbon/copper (C/Cu) composites. Experimental mechanical results for this novel high thermal conductivity material were recently reported by Bednarcyk et al. along with preliminary model results. The micromechanics model developed herein is based on an embedded approach. A micromechanics model for the local (micro-scale) behavior of the woven composite, the original method of cells (Aboudi), is embedded in a global (macro-scale) micromechanics model (the three-dimensional generalized method of cells (GMC-3D) (Aboudi). This approach allows representation of true repeating unit cells for woven metal matrix composites via GMC-3D, and representation of local effects, such as matrix plasticity, yarn porosity, and imperfect fiber-matrix bonding. In addition, the equations of GMC-3D were reformulated to significantly reduce the number of unknown quantities that characterize the deformation fields at the microlevel in order to make possible the analysis of actual microstructures of woven composites. The resulting micromechanical model (WCGMC) provides an intermediate level of geometric representation, versatility, and computational efficiency with respect to previous analytical and numerical models for woven composites, but surpasses all previous modeling work by allowing the mechanical response of a woven metal matrix composite, with an elastoplastic matrix, to be examined for the first time. WCGMC is employed to examine the effects of composite microstructure, porosity, residual stresses, and imperfect fiber-matrix bonding on the predicted mechanical response of 8H satin C/Cu. The previously reported experimental results are summarized, and the model predictions are compared to monotonic and cyclic tensile and shear test data. By considering appropriate levels of porosity
A class of 'natural' composite models
International Nuclear Information System (INIS)
Schrempp, B.; Schrempp, F.; Hamburg Univ.
1984-01-01
The starting point is the attractive class of composite models where quarks and leptons appear as fermion-scalar bound states (FPHI). The aim is to resolve the 'naturality' problem associated with fundamental scalars without losing the appealing properties of FPHI-type composite models. A systematic construction of such models is given, where the scalar constituents automatically qualify as light dynamical scalars, i.e. as composite (pseudo) Goldstone bosons. A comfortably large class of composite models then results, where all standard 'naturality' requirements are satisfied: the quark and lepton masses are kept small through 't Hooft's chiral protection mechanism; the dynamical scalar 'constituents' are light and the CP problem of QCD finds an automatic solution. Further characteristics are economy, absence of light exotics, possibility of three generations and elegance of anomaly matching. It is shown that existing attractive models with fundamental scalars can be made 'natural' in the sense defined above. (orig.)
Mechanical Model Development for Composite Structural Supercapacitors
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.
2016-01-01
Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.
Modelling anisotropic water transport in polymer composite
Indian Academy of Sciences (India)
This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...
SECURE MATHEMATICALLY- ASSURED COMPOSITION OF CONTROL MODELS
2017-09-27
SECURE MATHEMATICALLY-ASSURED COMPOSITION OF CONTROL MODELS ROCKWELL COLLINS SEPTEMBER 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE...MATHEMATICALLY-ASSURED COMPOSITION OF CONTROL MODELS 5a. CONTRACT NUMBER FA8750-12-9-0179 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 62303E
Mathematical methods and models in composites
Mantic, Vladislav
2014-01-01
This book provides a representative selection of the most relevant, innovative, and useful mathematical methods and models applied to the analysis and characterization of composites and their behaviour on micro-, meso-, and macroscale. It establishes the fundamentals for meaningful and accurate theoretical and computer modelling of these materials in the future. Although the book is primarily concerned with fibre-reinforced composites, which have ever-increasing applications in fields such as aerospace, many of the results presented can be applied to other kinds of composites. The topics cover
Present status of composite models in particle physics
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1986-03-01
The present status of composite models in particle physics is reviewed with emphasis on the minimal composite model. The subjects to discuss include 1) minimal composite model, 2) generations, 3) mass spectrum and 4) Miyazawa's SUSY and Nambu's SUSY. (author)
Multifunctional multiscale composites: Processing, modeling and characterization
Qiu, Jingjing
Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon
Compositional Modelling of Stochastic Hybrid Systems
Strubbe, S.N.
2005-01-01
In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete
Modelling the Crash Response of Composite Structures
Johnson, A.; Kohlgrüber, D.
1997-01-01
The paper describes recent progress on the materials modelling and numerical simulation of the dynamic crash response of fibre reinforced composite structures. The work is based on the application of explicit finite element analysis codes to composite aircraft structures and structural elements under low velocity impact conditions (up to 15 m/s). Structures studied are designed to absorb crash energy and reduce seat deceleration pulses in aircraft subfloor structures, and consist of an aircra...
Compositional models for credal sets
Czech Academy of Sciences Publication Activity Database
Vejnarová, Jiřina
2017-01-01
Roč. 90, č. 1 (2017), s. 359-373 ISSN 0888-613X R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : Imprecise probabilities * Credal sets * Multidimensional models * Conditional independence Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/vejnarova-0483288.pdf
The Composite OLAP-Object Data Model
Energy Technology Data Exchange (ETDEWEB)
Pourabbas, Elaheh; Shoshani, Arie
2005-12-07
In this paper, we define an OLAP-Object model that combines the main characteristics of OLAP and Object data models in order to achieve their functionalities in a common framework. We classify three different object classes: primitive, regular and composite. Then, we define a query language which uses the path concept in order to facilitate data navigation and data manipulation. The main feature of the proposed language is an anchor. It allows us to fix dynamically an object class (primitive, regular or composite) along the paths over the OLAP-Object data model for expressing queries. The queries can be formulated on objects, composite objects and combination of both. The power of the proposed query language is investigated through multiple query examples. The semantic of different clauses and syntax of the proposed language are investigated.
Micromechanical models for graded composite materials
DEFF Research Database (Denmark)
Reiter, T; Dvorak, G.J.; Tvergaard, Viggo
1997-01-01
Elastic response of selected plane-array models of graded composite microstructures is examined under both uniform and linearly varying boundary tractions and displacements, by means of detailed finite element studies of large domains containing up to several thousand inclusions. Models consisting...... of piecewise homogeneous layers with equivalent elastic properties estimated by Mori-Tanaka and self-consistent methods are also analysed under similar boundary conditions. Comparisons of the overall and local fields predicted by the discrete and homogenized models are made using a C/SiC composite system...... with very different Young's moduli of the phases, and relatively steep composition gradients. The conclusions reached from these comparisons suggest that in those parts of the graded microstructure which have a well-defined continuous matrix and discontinuous second phase, the overall properties and local...
Compositional and Quantitative Model Checking
DEFF Research Database (Denmark)
Larsen, Kim Guldstrand
2010-01-01
on the existence of a quotient construction, allowing a property phi of a parallel system phi/A to be transformed into a sufficient and necessary quotient-property yolA to be satisfied by the component 13. Given a model checking problem involving a network Pi I and a property yo, the method gradually move (by...... quotienting) components Pi from the network into the formula co. Crucial to the success of the method is the ability to manage the size of the intermediate quotient-properties by a suitable collection of efficient minimization heuristics....
Dipole operator constraints on composite Higgs models.
König, Matthias; Neubert, Matthias; Straub, David M
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the [Formula: see text] branching ratio and [Formula: see text]. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and [Formula: see text] or [Formula: see text] flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.
Dipole operator constraints on composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Koenig, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Neubert, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Cornell University, Department of Physics, LEPP, Ithaca, NY (United States); Straub, David M. [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany)
2014-07-15
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipolemoment and observables sensitive to flavour-changing neutral currents, such as the B→ X{sub s}γ branching ratio and ε'/ε. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and U(3){sup 3} or U(2){sup 3} flavour symmetries in the strong sector. In models with ''wrong-chirality'' Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models. (orig.)
Flavor and CP invariant composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Redi, Michele [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; INFN, Firenze (Italy); Weiler, Andreas [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2011-09-15
The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3){sub U} x SU(3){sub D} which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively ''Minimal CP Violation'' and is compatible with a dynamical generation of flavor at low scales. (orig.)
Flavor and CP Invariant Composite Higgs Models
Redi, Michele
2011-01-01
The flavor protection in composite Higgs models with partial compositeness is known to be insufficient. We explore the possibility to alleviate the tension with CP odd observables by assuming that flavor or CP are symmetries of the composite sector, broken by the coupling to Standard Model fields. One realization is that the composite sector has a flavor symmetry SU(3) or SU(3)_U x SU(3)_D which allows us to realize Minimal Flavor Violation. We show how to avoid the previously problematic tension between a flavor symmetric composite sector and electro-weak precision tests. Some of the light quarks are substantially or even fully composite with striking signals at the LHC. We discuss the constraints from recent dijet mass measurements and give an outlook on the discovery potential. We also present a different protection mechanism where we separate the generation of flavor hierarchies and the origin of CP violation. This can eliminate or safely reduce unwanted CP violating effects, realizing effectively "Minima...
Composite dark matter from a model with composite Higgs boson
International Nuclear Information System (INIS)
Khlopov, Maxim Yu.; Kouvaris, Chris
2008-01-01
In a previous paper [Phys. Rev. D77, 065002 (2008)], we showed how the minimal walking technicolor model can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a 4 He ++ . We studied the properties of these techni-O-helium tOHe''atoms,'' which behave as warmer dark matter rather than cold. In this paper, we extend our work on several different aspects. We study the possibility of a mixed scenario where both tOHe and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density. We argue that these newly proposed bound states are solely made of techniparticles, although they behave as weakly interacting massive particles, due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore, we conclude that within the minimal walking technicolor model, composite dark matter should be mostly composed of tOHe. Moreover, in this paper, we put cosmological bounds in the masses of the techniparticles, if they compose the dark matter density. Finally, we propose within this setup, a possible explanation of the discrepancy between the DAMA/NaI and DAMA/LIBRA findings and the negative results of CDMS and other direct dark matter searches that imply nuclear recoil measurement, which should accompany ionization.
Impact damages modeling in laminated composite structures
Directory of Open Access Journals (Sweden)
Kreculj Dragan D.
2014-01-01
Full Text Available Laminated composites have an important application in modern engineering structures. They are characterized by extraordinary properties, such as: high strength and stiffness and lightweight. Nevertheless, a serious obstacle to more widespread use of those materials is their sensitivity to the impact loads. Impacts cause initiation and development of certain types of damages. Failures that occur in laminated composite structures can be intralaminar and interlaminar. To date it was developed a lot of simulation models for impact damages analysis in laminates. Those models can replace real and expensive testing in laminated structures with a certain accuracy. By using specialized software the damage parameters and distributions can be determined (at certain conditions on laminate structures. With performing numerical simulation of impact on composite laminates there are corresponding results valid for the analysis of these structures.
Modelling shape distortions in composite products
Lamers, E.A.D.; Wijskamp, Sebastiaan; Akkerman, Remko; Storen, A.
2004-01-01
Shape distortions often occur after the forming of woven fabric reinforced composite products. The thermomechanical behaviour of the product must be known in order to predict these product distortions. A two-step strategy is proposed to model the thermomechanical behaviour of a product. First, the
Family gauge symmetry from a composite model
International Nuclear Information System (INIS)
Zhou, B.R.; Chang, C.H.; Princeton Univ., NJ
1983-01-01
A family gauge symmetry SUsup(F)(2) could emerge from a composite model of quarks and leptons under some assumptions of chiral hyperflavor symmetry-breaking pattern. Possible dynamical mechanisms which break the family and electroweak gauge group and produce quark-lepton masses are indicated and their phenomenologies are discussed qualitatively. (orig.)
Finite element modelling of composite castellated beam
Directory of Open Access Journals (Sweden)
Frans Richard
2017-01-01
Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.
Minimal composite Higgs models at the LHC
International Nuclear Information System (INIS)
Carena, Marcela; Rold, Leandro Da; Pontón, Eduardo
2014-01-01
We consider composite Higgs models where the Higgs is a pseudo-Nambu Goldstone boson arising from the spontaneous breaking of an approximate global symmetry by some underlying strong dynamics. We focus on the SO(5)→SO(4) symmetry breaking pattern, assuming the “partial compositeness" paradigm. We study the consequences on Higgs physics of the fermionic representations produced by the strong dynamics, that mix with the Standard Model (SM) degrees of freedom. We consider models based on the lowest-dimensional representations of SO(5) that allow for the custodial protection of the Zb-barb coupling, i.e. the 5, 10 and 14. We find a generic suppression of the gluon fusion process, while the Higgs branching fractions can be enhanced or suppressed compared to the SM. Interestingly, a precise measurement of the Higgs boson couplings can distinguish between different realizations in the fermionic sector, thus providing crucial information about the nature of the UV dynamics.
Composite dark matter from a model with composite Higgs boson
DEFF Research Database (Denmark)
Yu. Khlopov, Maxim; Kouvaris, Christoforos
2008-01-01
In a previous paper \\cite{Khlopov:2007ic}, we showed how the minimal walking technicolor model (WTC) can provide a composite dark matter candidate, by forming bound states between a -2 electrically charged techniparticle and a $^4He^{++}$. We studied the properties of these \\emph......{techni-O-helium} $tOHe$ "atoms", which behave as warmer dark matter rather than cold. In this paper we extend our work on several different aspects. We study the possibility of a mixed scenario where both $tOHe$ and bound states between +2 and -2 electrically charged techniparticles coexist in the dark matter density....... We argue that these newly proposed bound states solely made of techniparticles, although they behave as Weakly Interacting Massive Particles (WIMPs), due to their large elastic cross section with nuclei, can only account for a small percentage of the dark matter density. Therefore we conclude...
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio, E-mail: feruglio@pd.infn.it; Paradisi, Paride, E-mail: paride.paradisi@pd.infn.it [Sezione di Padova, Dipartimento di Fisica e Astronomia ‘G. Galilei’, INFN, Università di Padova, Via Marzolo 8, 35131, Padua (Italy); Pattori, Andrea, E-mail: pattori@physik.uzh.ch [Physik-Institut, Universität Zürich, 8057, Zurich (Switzerland)
2015-12-08
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ→e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis.
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio; Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padua (Italy); Pattori, Andrea [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland)
2015-12-15
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ → e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis. (orig.) 7.
Multi-scale modeling of composites
DEFF Research Database (Denmark)
Azizi, Reza
A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale...... is analyzed using a Representative Volume Element (RVE), while the homogenized data are saved and used as an input to the macro scale. The dependence of fiber size is analyzed using a higher order plasticity theory, where the free energy is stored due to plastic strain gradients at the micron scale. Hill...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....
Beyond the Minimal Composite Higgs Model
Gripaios, Ben; Riva, Francesco; Serra, Javi
2009-01-01
The Higgs spectrum of the minimal composite Higgs model, based on the SO(5)/SO(4) coset, consists of a unique Higgs doublet whose phenomenology does not differ greatly from the Standard Model (SM). Nevertheless, extensions beyond this minimal coset structure exhibit a richer Higgs spectrum and therefore very different Higgs physics. We explore one of these extensions, the SO(6)/SO(5) model, whose Higgs spectrum contains a CP-odd singlet scalar, eta, in addition to the Higgs doublet. Due to the pseudo-Nambu-Goldstone nature of these Higgs bosons, their physical properties can be derived from symmetry considerations alone. We find that the mass of eta can be naturally light, opening up the possibility that the SM Higgs decays predominantly to the singlet, and therefore lowering the LEP bound on its mass to 86 GeV. We also show that eta can have interesting consequences in flavour-violating processes, as well as induce spontaneous CP-violation in the Higgs sector. The model can also have anomalies, giving rise t...
Constraining composite Higgs models using LHC data
Banerjee, Avik; Bhattacharyya, Gautam; Kumar, Nilanjana; Ray, Tirtha Sankar
2018-03-01
We systematically study the modifications in the couplings of the Higgs boson, when identified as a pseudo Nambu-Goldstone boson of a strong sector, in the light of LHC Run 1 and Run 2 data. For the minimal coset SO(5)/SO(4) of the strong sector, we focus on scenarios where the standard model left- and right-handed fermions (specifically, the top and bottom quarks) are either in 5 or in the symmetric 14 representation of SO(5). Going beyond the minimal 5 L - 5 R representation, to what we call here the `extended' models, we observe that it is possible to construct more than one invariant in the Yukawa sector. In such models, the Yukawa couplings of the 125 GeV Higgs boson undergo nontrivial modifications. The pattern of such modifications can be encoded in a generic phenomenological Lagrangian which applies to a wide class of such models. We show that the presence of more than one Yukawa invariant allows the gauge and Yukawa coupling modifiers to be decorrelated in the `extended' models, and this decorrelation leads to a relaxation of the bound on the compositeness scale ( f ≥ 640 GeV at 95% CL, as compared to f ≥ 1 TeV for the minimal 5 L - 5 R representation model). We also study the Yukawa coupling modifications in the context of the next-to-minimal strong sector coset SO(6)/SO(5) for fermion-embedding up to representations of dimension 20. While quantifying our observations, we have performed a detailed χ 2 fit using the ATLAS and CMS combined Run 1 and available Run 2 data.
Top partner searches and Composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Matsedonskyi, Oleksii [DESY Hamburg (Germany); Panico, Giuliano [Barcelona Univ. Autonoma (Spain). IFAE; Wulyer, Andrea [Padova Univ. (Italy). Dipt. di Fisica e Astronomia; INFN, Padova (Italy)
2015-12-15
Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.
Top partners searches and composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Matsedonskyi, Oleksii [DESY,Notkestrasse 85, 22607 Hamburg (Germany); Panico, Giuliano [IFAE, Universitat Autònoma de Barcelona,E-08193 Bellaterra, Barcelona (Spain); Wulzer, Andrea [Dipartimento di Fisica e Astronomia and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)
2016-04-01
Colored fermionic partners of the top quark are well-known signatures of the Composite Higgs scenario and for this reason they have been and will be subject of an intensive experimental study at the LHC. Performing an assessment of the theoretical implications of this experimental effort is the goal of the present paper. We proceed by analyzing a set of simple benchmark models, characterized by simple two-dimensional parameter spaces where the results of the searches are conveniently visualized and their impact quantified. We only draw exclusion contours, in the hypothesis of no signal, but of course our formalism could equally well be used to report discoveries in a theoretically useful format.
Analysis Models for Polymer Composites Across Different Length Scales
Camanho, Pedro P.; Arteiro, Albertino
This chapter presents the analysis models, developed at different length scales, for the prediction of inelastic deformation and fracture of polymer composite materials reinforced by unidirectional fibers. Three different length scales are covered. Micro-mechanical models are used to understand in detail the effects of the constituents on the response of the composite material, and to support the development of analysis models based on homogenized representations of composite materials. Meso-mechanical models are used to predict the strength of composite structural components under general loading conditions. Finally, macro-mechanical models based on Finite Fracture Mechanics, which enable fast strength predictions of simple structural details, are discussed.
School Processes Mediate School Compositional Effects: Model Specification and Estimation
Liu, Hongqiang; Van Damme, Jan; Gielen, Sarah; Van Den Noortgate, Wim
2015-01-01
School composition effects have been consistently verified, but few studies ever attempted to study how school composition affects school achievement. Based on prior research findings, we employed multilevel mediation modeling to examine whether school processes mediate the effect of school composition upon school outcomes based on the data of 28…
Component-based event composition modeling for CPS
Yin, Zhonghai; Chu, Yanan
2017-06-01
In order to combine event-drive model with component-based architecture design, this paper proposes a component-based event composition model to realize CPS’s event processing. Firstly, the formal representations of component and attribute-oriented event are defined. Every component is consisted of subcomponents and the corresponding event sets. The attribute “type” is added to attribute-oriented event definition so as to describe the responsiveness to the component. Secondly, component-based event composition model is constructed. Concept lattice-based event algebra system is built to describe the relations between events, and the rules for drawing Hasse diagram are discussed. Thirdly, as there are redundancies among composite events, two simplification methods are proposed. Finally, the communication-based train control system is simulated to verify the event composition model. Results show that the event composition model we have constructed can be applied to express composite events correctly and effectively.
Modelling anisotropic water transport in polymer composite ...
Indian Academy of Sciences (India)
Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...
Advanced moisture modeling of polymer composites.
2014-04-01
Long term moisture exposure has been shown to affect the mechanical performance of polymeric composite structures. This reduction : in mechanical performance must be considered during product design in order to ensure long term structure survival. In...
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
Model for the resistive critical current transition in composite superconductors
International Nuclear Information System (INIS)
Warnes, W.H.
1988-01-01
Much of the research investigating technological type-II superconducting composites relies on the measurement of the resistive critical current transition. We have developed a model for the resistive transition which improves on older models by allowing for the very different nature of monofilamentary and multifilamentary composite structures. The monofilamentary model allows for axial current flow around critical current weak links in the superconducting filament. The multifilamentary model incorporates an additional radial current transfer between neighboring filaments. The development of both models is presented. It is shown that the models are useful for extracting more information from the experimental data than was formerly possible. Specific information obtainable from the experimental voltage-current characteristic includes the distribution of critical currents in the composite, the average critical current of the distribution, the range of critical currents in the composite, the field and temperature dependence of the distribution, and the fraction of the composite dissipating energy in flux flow at any current. This additional information about the distribution of critical currents may be helpful in leading toward a better understanding of flux pinning in technological superconductors. Comparison of the models with several experiments is given and shown to be in reasonable agreement. Implications of the models for the measurement of critical currents in technological composites is presented and discussed with reference to basic flux pinning studies in such composites
Model castings with composite surface layer - application
Directory of Open Access Journals (Sweden)
J. Szajnar
2008-10-01
Full Text Available The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in foundingprocess a composite surface layer on the basis of Fe-Cr-C alloy. Technology of composite surface layer guarantee mainly increase inhardness and aberasive wear resistance of cast steel castings on machine elements. This technology can be competition for generallyapplied welding technology (surfacing by welding and thermal spraying. In range of studies was made cast steel test castings withcomposite surface layer, which usability for industrial applications was estimated by criterion of hardness and aberasive wear resistance of type metal-mineral and quality of joint cast steel – (Fe-Cr-C. Based on conducted studies a thesis, that composite surface layer arise from liquid state, was formulated. Moreover, possible is control of composite layer thickness and its hardness by suitable selection of parameters i.e. thickness of insert, pouring temperature and solidification modulus of casting. Possibility of technology application of composite surface layer in manufacture of cast steel slide bush for combined cutter loader is presented.
An automatic composition model of Chinese folk music
Zheng, Xiaomei; Li, Dongyang; Wang, Lei; Shen, Lin; Gao, Yanyuan; Zhu, Yuanyuan
2017-03-01
The automatic composition has achieved rich results in recent decades, including Western and some other areas of music. However, the automatic composition of Chinese music is less involved. After thousands of years of development, Chinese folk music has a wealth of resources. To design an automatic composition mode, learn the characters of Chinese folk melody and imitate the creative process of music is of some significance. According to the melodic features of Chinese folk music, a Chinese folk music composition based on Markov model is proposed to analyze Chinese traditional music. Folk songs with typical Chinese national characteristics are selected for analysis. In this paper, an example of automatic composition is given. The experimental results show that this composition model can produce music with characteristics of Chinese folk music.
Resin flow/fiber deformation model for composites
International Nuclear Information System (INIS)
Gutowski, T.G.
1985-01-01
This paper presents a resin flow/fiber deformation model that can be used to predict the behavior of composites during the molding cycle. The model can take into account time varying pressure and viscosity and output the time history of the fiber volume fraction. With this known, the composite thickness, resin pressure, and fiber pressure can all be determined as a function of time. The results of this model are in good agreement with experimentally measured values. 10 references, 9 figures
Micromechanical modeling of strength and damage of fiber reinforced composites
Energy Technology Data Exchange (ETDEWEB)
Mishnaevsky, L. Jr.; Broendsted, P.
2007-03-15
The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)
DC modeling of composite MOS transistors
de Haan, P.; de Haan, P.E.; Klumperink, Eric A.M.; van Leeuwen, M.G.; Wallinga, Hans
1995-01-01
Mixed-signal circuit design on sea-of-gates arrays requires the use of composite MOSTs, combinations of in-series and in-parallel connected unit MOSTs. To avoid an increase in circuit simulation complexity these are in general replaced by artificial single MOSTs. The analysis in this paper shows
Contemporary Choreographers as Models for Teaching Composition
Morgenroth, Joyce
2006-01-01
Traditional composition classes teach the tools of choreographic craft, yet leave students in an odd limbo in which they create a special breed of "college dance" that has little to do with the current dance world. In the twenty-first century, choreography teachers must go beyond an emphasis on traditional craft and help students find their own…
A composite plasticity model for concrete
Feenstra, P.H.; Borst, R. de
1996-01-01
A composite yield function is used to describe the behavior of plain and reinforced concrete in biaxial stress under monotonic loading conditions. A Rankine yield criterion is used to monitor the in-plane tensile stresses and a Drucker Prager yield function controls the compressive stresses. A good
LIMIT STRESS SPLINE MODELS FOR GRP COMPOSITES
African Journals Online (AJOL)
ES OBE
Compressive failure of. GRP composites manifests as kinking failure. Kink bands are formed which are bounded by fiber breaks resulting from deformations ..... measured with micrometer screw gauge and. 85 percentile was used to determine where about 85% of the measured thicknesses would fall. For F, G and H 85 ...
Partially composite two-Higgs doublet model
Indian Academy of Sciences (India)
Abstract. In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza–. Klein (KK) gauge bosons can induce Nambu–Jona–Lasinio (NJL) type attractive four- fermion interactions, which can break electroweak symmetry dynamically with accompa- nying composite Higgs fields. We consider a possibility that ...
Thermodynamic modeling to analyse composition of carbonaceous ...
Indian Academy of Sciences (India)
Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams” have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as ...
A Plastic Damage Mechanics Model for Engineered Cementitious Composites
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2007-01-01
This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...
Modeling 1-3 composite piezoelectrics: thickness-mode oscillations.
Smith, W A; Auld, B A
1991-01-01
A simple physical model of 1-3 composite piezoelectrics is advanced for the material properties that are relevant to thickness-mode oscillations. This model is valid when the lateral spatial scale of the composite is sufficiently fine that the composite can be treated as an effective homogeneous medium. Expressions for the composite's material parameters in terms of the volume fraction of piezoelectric ceramic and the properties of the constituent piezoelectric ceramic and passive polymer are derived. A number of examples illustrate the implications of using piezocomposites in medical ultrasonic imaging transducers. While most material properties of the composite roughly interpolate between their values for pure polymer and pure ceramic, the composite's thickness-mode electromechanical coupling can exceed that of the component ceramic. This enhanced electromechanical coupling stems from partially freeing the lateral clamping of the ceramic in the composite structure. Their higher coupling and lower acoustic impedance recommend composites for medical ultrasonic imaging transducers. The model also reveals that the composite's material properties cannot be optimized simultaneously; tradeoffs must be made. Of most significance is the tradeoff between the desired lower acoustic impedance and the undesired smaller electromechanical coupling that occurs as the volume fraction of piezoceramic is reduced.
A channel-based coordination model for component composition
F. Arbab (Farhad)
2002-01-01
textabstractIn this paper, we present $P epsilon omega$, a paradigm for composition of software components based on the notion of mobile channels. $P repsilon omega$ is a channel-based exogenous coordination model wherein complex coordinators, called {em connectors are compositionally built out of
Energy Technology Data Exchange (ETDEWEB)
Weisbrod, Kirk Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Veirs, Douglas Kirk [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Funk, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-11
This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Stream Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.
Modeling Unidirectional Composite Laminates Using XFEM
2015-06-30
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding...composite cylinder, incorporating both cohesive interface failure as well as the XFEM capability available in Abaqus v6.13. A traction-separation...into established finite- element codes. Recently, commercial software packages such as Abaqus have included an XFEM capability. With these new
Computer Modeling of Ceramic Boride Composites
2014-11-01
hardness of the films are given in Fig. 101. Fig. 101. Correlation between the fractal dimensionality and the hardness of the chromium films...with the dissipative microstructural alloy dynamics described by the parabolic equations for phase variables determining the local phase (liquid or... microstructure of the composite — diboride fibers uniformly distributed in the matrix of lanthanum hexaboride. Computer simulation of the formation of
Development of constitutive model for composites exhibiting time dependent properties
International Nuclear Information System (INIS)
Pupure, L; Joffe, R; Varna, J; Nyström, B
2013-01-01
Regenerated cellulose fibres and their composites exhibit highly nonlinear behaviour. The mechanical response of these materials can be successfully described by the model developed by Schapery for time-dependent materials. However, this model requires input parameters that are experimentally determined via large number of time-consuming tests on the studied composite material. If, for example, the volume fraction of fibres is changed we have a different material and new series of experiments on this new material are required. Therefore the ultimate objective of our studies is to develop model which determines the composite behaviour based on behaviour of constituents of the composite. This paper gives an overview of problems and difficulties, associated with development, implementation and verification of such model
Model-driven development of service compositions for enterprise interoperability
Khadka, Ravi; Sapkota, Brahmananda; Ferreira Pires, Luis; Jansen, Slinger; van Sinderen, Marten J.; Johnson, Pontus
2011-01-01
Service-Oriented Architecture (SOA) has emerged as an architectural style to foster enterprise interoperability, as it claims to facilitate the flexible composition of loosely coupled enterprise applications and thus alleviates the heterogeneity problem among enterprises. Meanwhile, Model-Driven
Finite elements modeling of delaminations in composite laminates
DEFF Research Database (Denmark)
Gaiotti, m.; Rizzo, C.M.; Branner, Kim
2011-01-01
of the buckling strength of composite laminates containing delaminations. Namely, non-linear buckling and post-buckling analyses are carried out to predict the critical buckling load of elementary composite laminates affected by rectangular delaminations of different sizes and locations, which are modelled......The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.......e., delaminations, which may affect the stiffness and stability of structural components. Especially deep delaminations in the mid surface of laminates are expected to reduce the effective flexural stiffness and lead to collapse, often due to buckling behaviour. This paper deals with the numerical modelling...
Fire Response of Loaded Composite Structures - Experiments and Modeling
Burdette, Jason A.
2001-01-01
In this work, the thermo-mechanical response and failure of loaded, fire-exposed composite structures was studied. Unique experimental equipment and procedures were developed and experiments were performed to assess the effects of mechanical loading and fire exposure on the service life of composite beams. A series of analytical models was assembled to describe the fire growth and structural response processes for the system used in the experiments. This series of models consists of a fire...
Physical and Model Uncertainty for Fatigue Design of Composite Material
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
The main aim of the present report is to establish stochastic models for the uncertainties related to fatigue design of composite materials. The uncertainties considered are the physical uncertainty related to the static and fatigue strength and the model uncertainty related to Miners rule...... for linear damage accumulation. Test data analyzed are taken from the Optimat database [1] which is public available. The composite material tested within the Optimat project is normally used for wind turbine blades....
Foundations of compositional models: structural properties
Czech Academy of Sciences Publication Activity Database
Jiroušek, Radim; Kratochvíl, Václav
2015-01-01
Roč. 44, č. 1 (2015), s. 2-25 ISSN 0308-1079 R&D Projects: GA ČR GA13-20012S Grant - others:GA ČR(CZ) GAP403/12/2175 Program:GA Institutional support: RVO:67985556 Keywords : multidimensional distribution * conditional independence * composition * semigraphoid properties * running intersection property Subject RIV: BA - General Mathematics Impact factor: 1.677, year: 2015 http://library.utia.cas.cz/separaty/2015/MTR/jirousek-0442412.pdf
Vector-like bottom quarks in composite Higgs models
DEFF Research Database (Denmark)
Gillioz, M.; Grober, R.; Kapuvari, A.
2014-01-01
Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility...... be applied to other models with similar particle content. Furthermore, the constraints from direct searches for heavy states at the LHC and from the Higgs search results have been included in our analysis. The best agreement with all the considered constraints is achieved for medium to large compositeness...
Modelling of Damage Evolution in Braided Composites: Recent Developments
Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong
2017-12-01
Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.
Geochemical modelling baseline compositions of groundwater
DEFF Research Database (Denmark)
Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard
2008-01-01
dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...
Modeling of carbon nanotube composites for vibration damping
Dai, R. L.; Liao, W. H.
2007-04-01
In recent years, it has been found that the composites of carbon nanotubes (CNTs) and epoxy resin could greatly enhance damping ability while the stiffness is kept at a very high level. In this research, carbon nanotube enhanced epoxy resin is fabricated. The dynamic properties of the nanotube composites are experimentally studied. Experimental results show that CNT additive can provide the composite with significant damping without undergoing large shear strain as compared to the VEMs, and the dynamic stiffness of the nanotube composite could be even higher than that of the pure epoxy resin. In order to further study the damping mechanism of the CNT composite, models are developed. Composite unit cell model containing single CNT segment is built by using finite element method (FEM). Models with different CNT orientations are solved in order to describe the behaviors of the randomly oriented CNTs inside the epoxy matrix. Composite loss factor is calculated based on average ratio of the unit cell energy loss to the unit cell energy input. Calculated loss factors under different strain level are compared with experiment results.
Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)
Energy Technology Data Exchange (ETDEWEB)
Chassin, David P.; Cezar, Gustavo V.; /SLAC
2017-07-17
This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliable and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.
Multiscale modeling of PVDF matrix carbon fiber composites
Greminger, Michael; Haghiashtiani, Ghazaleh
2017-06-01
Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.
Fallacies of composition in nonlinear marketing models
Bischi, Gian Italo; Cerboni Baiardi, Lorenzo
2015-01-01
In this paper we consider some nonlinear discrete-time dynamic models proposed in the literature to represent marketing competition, and we use these models to critically discuss the statement, often made in economic literature, that identical agents behave identically and quasi-identical ones behave in a similar way. We show, through examples and some general mathematical statements, that the one-dimensional model of a representative agent, whose dynamics summarize the common behavior of identical interacting agents, may be misleading. In order to discuss these topics some simple methods for the study of local stability and bifurcations are employed, as well as numerical examples where some results taken from the literature on chaos synchronization are applied to two-dimensional marketing models that exhibit riddling, blowout and other global phenomena related to the existence of measure-theoretic attractors.
Composite models of quarks, leptons and gauge bosons
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1984-04-01
The current topics on composite models, in which quarks and leptons are made of subquarks, that is, more fundamental particles, are discussed. Among various topics, the discussion is concentrated on the flavor mixing, the minimal composite model of quarks and leptons is introduced as a standard of reference for discussions in this work. It consists of an isodoublet of subquarks and a color quartet of scalar subquarks. The quarks and leptons of the first generation can be taken as the composite states of these subquarks. The gauge bosons as well as the Higgs scalars can also be taken as the composite states of subquark-antisubquark pairs. This minimal composite model may reproduce QFD, QCD and some results of the grand unifified SU(5) gauge theory of Georgi and Glashow. Nucleon decay, the mass spectra of quarks and leptons, mass scale for the sub-structure, and quarks and leptons as Nambu-Goldstone fermions are briefly discussed on the basis of the composite model. The mixing matrix of quarks can be defined by the matrix element of the subquark current between the m-th up-like quark and the n-th down-like quark. The mixing matrix elements may vary as the functions of momentum transfer between quarks. The results of calculation showed that the quark mixing matrix elements drastically changed when the momentum transfer between quarks grew up to an order of the size inverse of quarks. (Kato, T.)
Multiscale modeling of composites subjected to high speed impact
Lee, Minhyung; Cha, Myung S.; Shang, Shu; Kim, Nam H.
2015-06-01
The simulation of high speed impact into composite panels is a challenging task. This is partly due to the fact macro-scale simulation requires integrating the local response at various locations, i.e. integration points. If a huge number of integration points exist for enhanced accuracy, it is often suggested to calculate the micro-scale simulation using massive parallel processing. In this paper, multiscale modeling methodology has been applied to simulate the relatively thick composite panels subjected to high speed local impact loading. Instead of massive parallel processing, we propose to use surrogate modeling to bridge micro-scale and macro-scale. Multiscale modeling of fracture phenomena of composite materials will consist of (1) micro-scale modeling of fiber-matrix structure using the unit-volume-element technique; (2) macro-scale simulation of composite panels under high strain-rate impact using material response calculated from micro-scale modeling; and (3) surrogate modeling to integrate the two scales. In order to validate the predictions, first we did the material level lab experiment such as tension test. And later we also did the field test of bullet impact into composite panels made of 4 ply and 8 ply fibers. The impact velocity ranges from 300 ~ 600 m/s. Special Thanks to grants (UD120053GD).
Bayesian inference model for fatigue life of laminated composites
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der; Berggreen, Christian
2016-01-01
A probabilistic model for estimating the fatigue life of laminated composite plates is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations. Model parameters are estimated by Bayesian inference....... The reference data used consists of constant-amplitude cycle test results for four laminates with different layup configurations. The paper describes the modeling techniques and the parameter estimation procedure, supported by an illustrative application....
Review of probabilistic models of the strength of composite materials
International Nuclear Information System (INIS)
Sutherland, L.S.; Guedes Soares, C.
1997-01-01
The available literature concerning probabilistic models describing the strength of composite materials has been reviewed to highlight the important aspects of this behaviour which will be of interest to the modelling and analysis of a complex system. The success with which these theories have been used to predict experimental results has been discussed. Since the brittle reinforcement phase largely controls the strength of composites, the probabilistic theories used to describe the strength of brittle materials, fibres and bundles of fibres have been detailed. The use of these theories to predict the strength of composite materials has been considered, along with further developments incorporating the damage accumulation observed in the failure of such materials. Probabilistic theories of the strength of short-fibre composites have been outlined. Emphasis has been placed throughout on straightforward engineering explanations of these theories and how they may be used, rather than providing comprehensive statistical descriptions
Modeling of composite synthesis in conditions of controlled thermal explosion
Kukta, Yaroslav; Knyazeva, Anna
2017-12-01
The paper proposes the model for the titanium-based composite synthesis from powders of titanium and carbon of non-stoichiometric composition. The model takes into account the mixture heating from chamber walls, the dependence of liquidus and solidus temperatures on the composition of reacting mixture and the formation of possible irreversible phases. The reaction retardation by the reaction product is taken into consideration in kinetic laws. As an example, the results of temperature and conversion level calculation are presented for the system Ti-C with the summary reaction for different temperatures of chamber walls heating. It was revealed that the reaction retardation being the reaction product can be the cause of incomplete conversion in the thermal explosion conditions. Non-stoichiometric composition leads to the conditions of degenerated mode when some additional heating is necessary to complete the reaction.
Composite spectral functions for solving Volterra's population model
International Nuclear Information System (INIS)
Ramezani, M.; Razzaghi, M.; Dehghan, M.
2007-01-01
An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
A Local Composition Model for Paraffinic Solid Solutions
DEFF Research Database (Denmark)
Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar
1996-01-01
The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....
Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs
DEFF Research Database (Denmark)
Kwok, Kawai; Pellegrino, Sergio
2017-01-01
The viscoelastic behavior of polymer composites decreases the deployment force and the postdeployment shape accuracy of composite deployable space structures. This paper presents a viscoelastic model for single-ply cylindrical shells (tape springs) that are deployed after being held folded...... homogenization leads to the lamina relaxation ABD matrix. The accuracy of the proposed model is verified against the experimentally measured time-dependent compliance of single lamina in either pure tension or pure bending. Finite element simulations of single-ply tape springs based on the proposed model...
Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis
Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.
2015-06-01
This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.
Blast Testing and Modelling of Composite Structures
DEFF Research Database (Denmark)
Giversen, Søren
The motivation for this work is based on a desire for finding light weight alternatives to high strength steel as the material to use for armouring in military vehicles. With the use of high strength steel, an increase in the level of armouring has a significant impact on the vehicle weight......-up proved functional and provided consistent data of the panel response. The tests reviled that the sandwich panels did not provide a decrease in panel deflection compared with the monolithic laminates, which was expected due to their higher flexural rigidity. This was found to be because membrane effects...... a pressure distribution on a selected surfaces and has been based on experimental pressure measurement data, and (ii) with a designed 3 step numerical load model, where the blast pressure and FSI (Fluid Structure Interaction) between the pressure wave and modelled panel is modelled numerically. The tested...
Implications of a Light Higgs in Composite Models
Redi, Michele
2012-01-01
We study the Higgs mass in composite Higgs models with partial compositeness, extending the results of Ref. [1] to different representations of the composite sector for SO(5)/SO(4) and to the coset SO(6)/SO(5). For a given tuning we find in general a strong correlation between the mass of the top partners and the Higgs mass, akin to the one in supersymmetry. If the theory is natural a Higgs mass of 125 GeV typically requires fermionic partners below TeV which might be within the reach of the present run of LHC. A discussion of CP properties of both cosets is also presented.
Predicting Plywood Properties with Wood-based Composite Models
Christopher Adam Senalik; Robert J. Ross
2015-01-01
Previous research revealed that stress wave nondestructive testing techniques could be used to evaluate the tensile and flexural properties of wood-based composite materials. Regression models were developed that related stress wave transmission characteristics (velocity and attenuation) to modulus of elasticity and strength. The developed regression models accounted...
Modelling and arrangement of composite panels in modernized freight cars
Directory of Open Access Journals (Sweden)
Płaczek Marek
2017-01-01
Full Text Available A process of modelling in a CAD system and designing of arrangement of composite panels used for freight cars’ body shell protection against corrosion and for easier unloading of transported cargo in winter conditions is presented in this work. Arrangement of used composite panels was designing in order to fulfil assumed criteria and thus to improve the process of freight cars modernization during periodic repairs.
Modelling and arrangement of composite panels in modernized freight cars
Płaczek Marek; Wróbel Andrzej; Olesiejuk Maciej
2017-01-01
A process of modelling in a CAD system and designing of arrangement of composite panels used for freight cars’ body shell protection against corrosion and for easier unloading of transported cargo in winter conditions is presented in this work. Arrangement of used composite panels was designing in order to fulfil assumed criteria and thus to improve the process of freight cars modernization during periodic repairs.
A compositional modelling framework for exploring MPSoC systems
DEFF Research Database (Denmark)
Tranberg-Hansen, Anders Sejer; Madsen, Jan
2009-01-01
This paper presents a novel compositional framework for system level performance estimation and exploration of Multi-Processor System On Chip (MPSoC) based systems. The main contributions are the definition of a compositional model which allows quantitative performance estimation to be carried out......-exist and communicate. In order to illustrate the use of the framework, a mobile digital audio processing platform, supplied by the company Bang & Olufsen ICEpower a/s, is considered....
LIMIT STRESS SPLINE MODELS FOR GRP COMPOSITES
African Journals Online (AJOL)
ES OBE
Department of Mechanical Engineering, Anambra State. University of Science and Technology, Uli ... 12 were established. The optimization of quadratic and cubic models by gradient search optimization gave the critical strain as 0.024, .... 2.2.1 Derivation of Cubic Spline Equation. The basic assumptions to be used are: 1.
Pyrolysis of reinforced polymer composites: Parameterizing a model for multiple compositions
Martin, Geraldine E.
A single set of material properties was developed to describe the pyrolysis of fiberglass reinforced polyester composites at multiple composition ratios. Milligram-scale testing was performed on the unsaturated polyester (UP) resin using thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) to establish and characterize an effective semi-global reaction mechanism, of three consecutive first-order reactions. Radiation-driven gasification experiments were conducted on UP resin and the fiberglass composites at compositions ranging from 41 to 54 wt% resin at external heat fluxes from 30 to 70 kW m -2. The back surface temperature was recorded with an infrared camera and used as the target for inverse analysis to determine the thermal conductivity of the systematically isolated constituent species. Manual iterations were performed in a comprehensive pyrolysis model, ThermaKin. The complete set of properties was validated for the ability to reproduce the mass loss rate during gasification testing.
MODELLING OF HEAT CONDUCTIVITY OF COMPOSITE MATERIALS WITH BALL INCLUSIONS
Directory of Open Access Journals (Sweden)
V. Pugachev Oleg
2017-01-01
Full Text Available A number of papers deals with the heat conductivity of composite materials: Zarubin et al used new approaches to the problem of evaluation of the effective heat conductivity coefficients of composite material with ball inclusions. We used variational analysis for a simplified model in a vicinity of inclusion. Contemporary computers allow implementing another approach to solving the problem of the effective heat conductivity: it may be modelled by the Brownian motion of virtual heat particles. The main idea is to obtain the exact formula for the heat conductivity for a homogeneous material and subsequently obtain a statistical evaluation of this formula for a composite material.In the present paper we compare two methods for finding the effective heat conductivity coefficients of composite materials by modeling the process of heat conduction via the Brownian motion of virtual heat particles. We consider a composite with ball inclusions of a material with heat conductivity and heat capacity coefficientsdiffering from those of the matrix material. In a computational experiment, we simulate the process of heatconduction through a flat layer of the composite material, which has been heated on one side at the initial moment. In order to find the confidence interval for the effective heat conductivity coefficient, we find, by means of statistics, either the displacement of the center of heat energy, or the probability of a virtual particle to pass through the layer during a certain time. We compare our results with theoretical assessments suggested by other authors.
Compositional model checking of concurrent systems, with Petri nets
Directory of Open Access Journals (Sweden)
Paweł Sobociński
2016-03-01
Full Text Available Compositionality and process equivalence are both standard concepts of process algebra. Compositionality means that the behaviour of a compound system relies only on the behaviour of its components, i.e. there is no emergent behaviour. Process equivalence means that the explicit statespace of a system takes a back seat to its interaction patterns: the information that an environment can obtain though interaction. Petri nets are a classical, yet widely used and understood, model of concurrency. Nevertheless, they have often been described as a non-compositional model, and tools tend to deal with monolithic, globally-specified models. This tutorial paper concentrates on Petri Nets with Boundaries (PNB: a compositional, graphical algebra of 1-safe nets, and its applications to reachability checking within the tool Penrose. The algorithms feature the use of compositionality and process equivalence, a powerful combination that can be harnessed to improve the performance of checking reachability and coverability in several common examples where Petri nets model realistic concurrent systems.
Towards Quantitative Spatial Models of Seabed Sediment Composition.
Directory of Open Access Journals (Sweden)
David Stephens
Full Text Available There is a need for fit-for-purpose maps for accurately depicting the types of seabed substrate and habitat and the properties of the seabed for the benefits of research, resource management, conservation and spatial planning. The aim of this study is to determine whether it is possible to predict substrate composition across a large area of seabed using legacy grain-size data and environmental predictors. The study area includes the North Sea up to approximately 58.44°N and the United Kingdom's parts of the English Channel and the Celtic Seas. The analysis combines outputs from hydrodynamic models as well as optical remote sensing data from satellite platforms and bathymetric variables, which are mainly derived from acoustic remote sensing. We build a statistical regression model to make quantitative predictions of sediment composition (fractions of mud, sand and gravel using the random forest algorithm. The compositional data is analysed on the additive log-ratio scale. An independent test set indicates that approximately 66% and 71% of the variability of the two log-ratio variables are explained by the predictive models. A EUNIS substrate model, derived from the predicted sediment composition, achieved an overall accuracy of 83% and a kappa coefficient of 0.60. We demonstrate that it is feasible to spatially predict the seabed sediment composition across a large area of continental shelf in a repeatable and validated way. We also highlight the potential for further improvements to the method.
Using UML to Model Web Services for Automatic Composition
Amal Elgammal; Mohamed El-Sharkawi
2010-01-01
There is a great interest paid to the web services paradigm nowadays. One of the most important problems related to the web service paradigm is the automatic composition of web services. Several frameworks have been proposed to achieve this novel goal. The most recent and richest framework (model) is the Colombo model. However, even for experienced developers, working with Colombo formalisms is low-level, very complex and timeconsuming. We propose to use UML (Unified Modeling Language) to mod...
Micromechanical modeling of strength and damage of fiber reinforced composites
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Brøndsted, P.
The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromecha......The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D...
A Plastic Damage Mechanics Model for Engineered Cementitious Composites
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2007-01-01
This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides in...... information about crack opening and spacing, which makes it possible to assess the condition of a structure in the serviceability state. A simulation of a four point bending beam is performed to demonstrate the capability of the model....
Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling
Jensen, Benjamin D.; Wise, Kristopher E.; Odegard, Gregory M.
2015-01-01
Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on
Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.
2004-01-01
The objective of the present paper was to evaluate a dynamic mechanistic model for growing and fattening pigs presented in a companion paper. The model predicted the rate of protein and fat deposition (chemical composition), rate of tissue deposition (anatomical composition) and performance of pigs
A seismologically consistent compositional model of Earth's core.
Badro, James; Côté, Alexander S; Brodholt, John P
2014-05-27
Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.
Mechanical properties of Composite Engineering Structures by Multivolume Micromechanical Modelling
Directory of Open Access Journals (Sweden)
B. Novotný
2000-01-01
Full Text Available Engineering structures often consist of elements having the character of a periodically repeated composite structure. A multivolume micromechanical model based on a representative cell division into r1 × r2 × r3 subcells with different elastic material properties has been used in this paper to derive macromechanical characteristics of the composite construction response to applied load and temperature changes. The multivolume method is based on ensuring the equilibrium of the considered volume on an average basis. In the same (average way, the continuity conditions of displacements and tractions at the interfaces between subcells and between neighboring representative elements are imposed, resulting in a homogenization procedure that eliminates the discrete nature of the composite model. The details of the method are shown for the case of a concrete block pavement. A parametric study is presented illustrating the influence of joint thickness, joint filling material properties and the quality of bonding between block and filler elements.
A conjugate thermo-electric model for a composite medium.
Directory of Open Access Journals (Sweden)
Oscar Chávez
Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.
Comprehensive model for predicting elemental composition of coal pyrolysis products
Energy Technology Data Exchange (ETDEWEB)
Ricahrds, Andrew P. [Brigham Young Univ., Provo, UT (United States); Shutt, Tim [Brigham Young Univ., Provo, UT (United States); Fletcher, Thomas H. [Brigham Young Univ., Provo, UT (United States)
2017-04-23
Large-scale coal combustion simulations depend highly on the accuracy and utility of the physical submodels used to describe the various physical behaviors of the system. Coal combustion simulations depend on the particle physics to predict product compositions, temperatures, energy outputs, and other useful information. The focus of this paper is to improve the accuracy of devolatilization submodels, to be used in conjunction with other particle physics models. Many large simulations today rely on inaccurate assumptions about particle compositions, including that the volatiles that are released during pyrolysis are of the same elemental composition as the char particle. Another common assumption is that the char particle can be approximated by pure carbon. These assumptions will lead to inaccuracies in the overall simulation. There are many factors that influence pyrolysis product composition, including parent coal composition, pyrolysis conditions (including particle temperature history and heating rate), and others. All of these factors are incorporated into the correlations to predict the elemental composition of the major pyrolysis products, including coal tar, char, and light gases.
FibreChain: characterization and modeling of thermoplastic composites processing
Rietman, Bert; Niazi, Muhammad Sohail; Akkerman, Remko; Lomov, S.V.
2013-01-01
Thermoplastic composites feature the advantage of melting and shaping. The material properties during processing and the final product properties are to a large extent determined by the thermal history of the material. The approach in the FP7-project FibreChain for process chain modeling of
Modeling the Properties of 3D Woven Composites
Cox, Brian N.
1995-01-01
An extensive study has been completed of the internal geometry, the mechanisms of failure, and the micromechanics of local failure events in graphite/epoxy composites with three dimensional (3D) woven reinforcement. This work has led to the development of models for predicting elastic constants, strength, notch sensitivity, and fatigue life. A summary is presented here.
A fermion-boson composite model of quarks and leptons
Directory of Open Access Journals (Sweden)
Yoshio Koide
1983-01-01
Full Text Available Quark and lepton masses and flavor-mixing angles are estimated on the basis of a fermion-boson composite model where the (u, d, (c, s and (t, b quarks are assigned to the diagonal elements π8, η8 and η1, respectively, in3 × 3* = 8 + 1 of the SU(3-generation symmetry.
Theoretical modeling and experimental analyses of laminated wood composite poles
Cheng Piao; Todd F. Shupe; Vijaya Gopu; Chung Y. Hse
2005-01-01
Wood laminated composite poles consist of trapezoid-shaped wood strips bonded with synthetic resin. The thick-walled hollow poles had adequate strength and stiffness properties and were a promising substitute for solid wood poles. It was necessary to develop theoretical models to facilitate the manufacture and future installation and maintenance of this novel...
A theoretical model for gas permeability in a composite membrane
International Nuclear Information System (INIS)
Serrano, D. A
2009-01-01
We present in this work an analytical expression for permeability in a two-layer composite membrane, which was derived assuming the same hypothesis as those of Adzumi model for permeability in a homogeneous membrane. Whereas in Adzumi model permeability shows a linear dependence on the mean pressure, our model for a composite membrane related permeability to pressure through a rather complex expression, which covers the whole range of flow, from molecular-Knudsen to viscous-Poiseuille regimes. The expression obtained for permeability contained information of membrane structural properties as pore size, porosity and thickness of each layer, as well as gas nature and operational conditions. Our two-layer-model expression turns into Adzumi formula when the structure of the layers approach to each other. [es
Uncertainty modelling and code calibration for composite materials
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Branner, Kim; Mishnaevsky, Leon, Jr
2013-01-01
Uncertainties related to the material properties of a composite material can be determined from the micro-, meso- or macro-scales. These three starting points for a stochastic modelling of the material properties are investigated. The uncertainties are divided into physical, model, statistical...... between risk of failure and cost of the structure. Consideration related to calibration of partial safety factors for composite material is described, including the probability of failure, format for the partial safety factor method and weight factors for different load cases. In a numerical example......, it is demonstrated how probabilistic models for the material properties formulated on micro-scale can be calibrated using tests on the meso- and macro-scales. The results are compared to probabilistic models estimated directly from tests on the macro-scale. In another example, partial safety factors for application...
A study of composite models at LEP with ALEPH
International Nuclear Information System (INIS)
Badaud, F.
1992-04-01
Tests of composite models are performed in e + e - collisions in the vicinity of the Z 0 pole using the ALEPH detector. Two kinds of substructure effects are searched for: deviations of differential cross section for reactions e + e - → l + l - and e + e - → γ γ from standard model predictions, and direct search for excited neutrino. A new interaction, parametrized by a 4-fermion contact term, cell, is studied in lepton pair production reactions, assuming different chiralities of the currents. Lower limits on the compositeness scale Λ are obtained by fitting model predictions to the data. They are in the range from 1 to a few TeV depending on model and lepton flavour. Researches for the lightest excited particle that could be the excited neutrino, are presented
Probabilistic Compositional Models: solution of an equivalence problem
Czech Academy of Sciences Publication Activity Database
Kratochvíl, Václav
2013-01-01
Roč. 54, č. 5 (2013), s. 590-601 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Probabilistic model * Compositional model * Independence * Equivalence Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kratochvil-0391079.pdf
Modeling of carbon nanotubes, graphene and their composites
Silvestre, Nuno
2014-01-01
This book contains ten chapters, authored by world experts in the field of simulation at nano-scale and aims to demonstrate the potentialities of computational techniques to model the mechanical behavior of nano-materials, such as carbon nanotubes, graphene and their composites. A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes, graphene and their applications. In this process, computational modeling is a very attractive research tool due to the difficulties in manufacturing and testing of nano-materials. Both atomistic modeling methods, such as molecular mechanics and molecular dynamics, and continuum modeling methods are being intensively used. Continuum modeling offers significant advantages over atomistic modeling such as the reduced computational effort, the capability of modeling complex structures and bridging different analysis scales, thus enabling modeling from the nano- to the macro-scale. On the oth...
Numerical Modelling of Double-Steel Plate Composite Shear Walls
Directory of Open Access Journals (Sweden)
Michaela Elmatzoglou
2017-02-01
Full Text Available Double-steel plate concrete composite shear walls are being used for nuclear plants and high-rise buildings. They consist of thick concrete walls, exterior steel faceplates serving as reinforcement and shear connectors, which guarantee the composite action between the two different materials. Several researchers have used the Finite Element Method to investigate the behaviour of double-steel plate concrete walls. The majority of them model every element explicitly leading to a rather time-consuming solution, which cannot be easily used for design purposes. In the present paper, the main objective is the introduction of a three-dimensional finite element model, which can efficiently predict the overall performance of a double-steel plate concrete wall in terms of accuracy and time saving. At first, empirical formulations and design relations established in current design codes for shear connectors are evaluated. Then, a simplified finite element model is used to investigate the nonlinear response of composite walls. The developed model is validated using results from tests reported in the literature in terms of axial compression and monotonic, cyclic in-plane shear loading. Several finite element modelling issues related to potential convergence problems, loading strategies and computer efficiency are also discussed. The accuracy and simplicity of the proposed model make it suitable for further numerical studies on the shear connection behaviour at the steel-concrete interface.
Silkworm cocoons inspire models for random fiber and particulate composites
Chen, Fujia; Porter, David; Vollrath, Fritz
2010-10-01
The bioengineering design principles evolved in silkworm cocoons make them ideal natural prototypes and models for structural composites. Cocoons depend for their stiffness and strength on the connectivity of bonding between their constituent materials of silk fibers and sericin binder. Strain-activated mechanisms for loss of bonding connectivity in cocoons can be translated directly into a surprisingly simple yet universal set of physically realistic as well as predictive quantitative structure-property relations for a wide range of technologically important fiber and particulate composite materials.
New NIR Calibration Models Speed Biomass Composition and Reactivity Characterization
Energy Technology Data Exchange (ETDEWEB)
2015-09-01
Obtaining accurate chemical composition and reactivity (measures of carbohydrate release and yield) information for biomass feedstocks in a timely manner is necessary for the commercialization of biofuels. This highlight describes NREL's work to use near-infrared (NIR) spectroscopy and partial least squares multivariate analysis to develop calibration models to predict the feedstock composition and the release and yield of soluble carbohydrates generated by a bench-scale dilute acid pretreatment and enzymatic hydrolysis assay. This highlight is being developed for the September 2015 Alliance S&T Board meeting.
On flavour and naturalness of composite Higgs models
International Nuclear Information System (INIS)
Matsedonskyi, Oleksii
2015-01-01
We analyse the interplay of the constraints imposed on flavour-symmetric Composite Higgs models by Naturalness considerations and the constraints derived from Flavour Physics and Electroweak Precision Tests. Our analysis is based on the Effective Field Theory which describes the Higgs as a pseudo-Nambu-Goldstone boson and also includes the composite fermionic resonances. Within this approach one is able to identify the directions in the parameter space where the U(3)-symmetric flavour models can pass the current experimental constraints, without conflicting with the light Higgs mass. We also derive the general features of the U(2)-symmetric models required by the experimental bounds, in case of elementary and totally composite t R . An effect in the Zb-barb coupling, which can potentially allow for sizable deviations in Z→b-barb decay parameters without modifying flavour physics observables, is identified. We also present the analysis of the mixed scenario, where the top quark mass is generated due to Partial Compositeness while the light quark masses are Technicolor-like.
Multiscale Modeling of Composites: Toward Virtual Testing … and Beyond
LLorca, J.; González, C.; Molina-Aldareguía, J. M.; Lópes, C. S.
2013-02-01
Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separation of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical simulations of the mechanical behavior of composite coupons and small components are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.
Macro Scale Independently Homogenized Subcells for Modeling Braided Composites
Blinzler, Brina J.; Goldberg, Robert K.; Binienda, Wieslaw K.
2012-01-01
An analytical method has been developed to analyze the impact response of triaxially braided carbon fiber composites, including the penetration velocity and impact damage patterns. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. Currently, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. To determine the stiffness and strength properties required for the constitutive model, a top-down approach for determining the strength properties is merged with a bottom-up approach for determining the stiffness properties. The top-down portion uses global strengths obtained from macro-scale coupon level testing to characterize the material strengths for each subcell. The bottom-up portion uses micro-scale fiber and matrix stiffness properties to characterize the material stiffness for each subcell. Simulations of quasi-static coupon level tests for several representative composites are conducted along with impact simulations.
Fabrication and modelling of 3-3 piezoelectric composites
International Nuclear Information System (INIS)
Perry, Andrew John
2002-01-01
Three-dimensional modelling of a 3-3 piezoelectric structure was carried out using ANSYS finite element modelling software. Hydrophone figures of merit were calculated for structures with increasing amounts of interconnecting porosity. In addition to air being the second phase, polymer fillers were added to the three dimensional model in order to observe the effect of polymer Young's modulus and Poisson's ratio on the piezoelectric response of the composite material. Results show that increasing the porosity has the effect of improving the hydrostatic piezoelectric properties for applications such as low frequency hydrophones. The optimum amount of porosity depends on the figure of merit to be maximised. In order to validate model predictions, porous piezoelectric structures were fabricated by either the BurPS (Burnt out Polymer Spheres) method or polymer foam reticulation. Corresponding measurements of piezoelectric coefficients were carried out on the porous samples. Experimental results confirmed finite element modelling predictions. PZT-porosity composites and PZT-polymer composites were produced exhibiting superior hydrostatic strain constant (d h ), hydrostatic voltage constant (g h ) and hydrostatic figure of merit (d h g h compared to that of dense PZT. (author)
DEFF Research Database (Denmark)
Liu, Ming; Thygesen, Anders; Meyer, Anne S.
2016-01-01
The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...
A generalized methodology to characterize composite materials for pyrolysis models
McKinnon, Mark B.
The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to
Applications of a composite model of microstructural evolution
International Nuclear Information System (INIS)
Stoller, R.E.
1986-01-01
Near-term fusion reactors will have to be designed using radiation effects data from experiments conducted in fast fission reactors. These fast reactors generate atomic displacements at a rate similar to that expected in a DT fusion reactor first wall. However, the transmutant helium production in an austenitic stainless steel first wall will exceed that in fast reactor fuel cladding by about a factor of 30. Hence, the use of the fast reactor data will involve some extrapolation. A major goal of this work is to develop theoretical models of microstructural evolution to aid in this extrapolation. In the present work a detailed rate-theory-based model of microstructural evolution under fast neutron irradiation has been developed. The prominent new aspect of this model is a treatment of dislocation evolution in which Frank faulted loops nucleate, grow and unfault to provide a source for network dislocations while the dislocation network can be simultaneously annihilated by a climb/glide process. The predictions of this model compare very favorably with the observed dose and temperature dependence of these key microstructural features over a broad range. In addition, this new description of dislocation evolution has been coupled with a previously developed model of cavity evolution and good agreement has been obtained between the predictions of the composite model and fast reactor swelling data. The results from the composite model also reveal that the various components of the irradiation-induced microstructure evolve in a highly coupled manner. The predictions of the composite model are more sensitive to parametric variations than more simple models. Hence, its value as a tool in data analysis and extrapolation is enhanced
Delamination Modeling of Composites for Improved Crash Analysis
Fleming, David C.
1999-01-01
Finite element crash modeling of composite structures is limited by the inability of current commercial crash codes to accurately model delamination growth. Efforts are made to implement and assess delamination modeling techniques using a current finite element crash code, MSC/DYTRAN. Three methods are evaluated, including a straightforward method based on monitoring forces in elements or constraints representing an interface; a cohesive fracture model proposed in the literature; and the virtual crack closure technique commonly used in fracture mechanics. Results are compared with dynamic double cantilever beam test data from the literature. Examples show that it is possible to accurately model delamination propagation in this case. However, the computational demands required for accurate solution are great and reliable property data may not be available to support general crash modeling efforts. Additional examples are modeled including an impact-loaded beam, damage initiation in laminated crushing specimens, and a scaled aircraft subfloor structures in which composite sandwich structures are used as energy-absorbing elements. These examples illustrate some of the difficulties in modeling delamination as part of a finite element crash analysis.
A lumped model for rotational modes in periodic solid composites
Peng, Pai
2013-10-01
We present a lumped model to study the rotational modes in a type of two-dimensional periodic solid composites comprised of a square array of rubber-coated steel cylinders embedded in an epoxy matrix. The model captures the physical essence of rotational modes in such systems for various combinations of material parameters, and, therefore it is able to describe the transition behaviour when the system is gradually adjusted from an elastic metamaterial to an elastic phononic crystal. From the model, we can define a transition zone which separates the typical elastic metamaterials and the phononic crystals.
Diboson resonant production in non-custodial composite Higgs models
Carmona, Adrian; Quirós, Mariano; Santiago, Jose
2015-01-01
We show that the recently reported excess in resonant diboson production can be explained in the context of non-custodial composite Higgs models. Dibosons are generated via the s-channel exchange of massive vector bosons present in these models. We discuss the compatibility of the signal excess with other diboson experimental searches. We also discuss the tension between diboson production and other experimental tests of the model that include electroweak precision data, dilepton, dijet and top pair production and show that there is a region of parameter space in which they are all compatible with the excess.
A composite model of the space-time and 'colors'
International Nuclear Information System (INIS)
Terazawa, Hidezumi.
1987-03-01
A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)
Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts
Mukhopadhyay, Vivek; Sorokach, Michael R.
2015-01-01
NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.
Modeling influenza-like illnesses through composite compartmental models
Levy, Nir; , Michael, Iv; Yom-Tov, Elad
2018-03-01
Epidemiological models for the spread of pathogens in a population are usually only able to describe a single pathogen. This makes their application unrealistic in cases where multiple pathogens with similar symptoms are spreading concurrently within the same population. Here we describe a method which makes possible the application of multiple single-strain models under minimal conditions. As such, our method provides a bridge between theoretical models of epidemiology and data-driven approaches for modeling of influenza and other similar viruses. Our model extends the Susceptible-Infected-Recovered model to higher dimensions, allowing the modeling of a population infected by multiple viruses. We further provide a method, based on an overcomplete dictionary of feasible realizations of SIR solutions, to blindly partition the time series representing the number of infected people in a population into individual components, each representing the effect of a single pathogen. We demonstrate the applicability of our proposed method on five years of seasonal influenza-like illness (ILI) rates, estimated from Twitter data. We demonstrate that our method describes, on average, 44% of the variance in the ILI time series. The individual infectious components derived from our model are matched to known viral profiles in the populations, which we demonstrate matches that of independently collected epidemiological data. We further show that the basic reproductive numbers (R 0) of the matched components are in range known for these pathogens. Our results suggest that the proposed method can be applied to other pathogens and geographies, providing a simple method for estimating the parameters of epidemics in a population.
Tapered composite likelihood for spatial max-stable models
Sang, Huiyan
2014-05-01
Spatial extreme value analysis is useful to environmental studies, in which extreme value phenomena are of interest and meaningful spatial patterns can be discerned. Max-stable process models are able to describe such phenomena. This class of models is asymptotically justified to characterize the spatial dependence among extremes. However, likelihood inference is challenging for such models because their corresponding joint likelihood is unavailable and only bivariate or trivariate distributions are known. In this paper, we propose a tapered composite likelihood approach by utilizing lower dimensional marginal likelihoods for inference on parameters of various max-stable process models. We consider a weighting strategy based on a "taper range" to exclude distant pairs or triples. The "optimal taper range" is selected to maximize various measures of the Godambe information associated with the tapered composite likelihood function. This method substantially reduces the computational cost and improves the efficiency over equally weighted composite likelihood estimators. We illustrate its utility with simulation experiments and an analysis of rainfall data in Switzerland.
Modelling a soft composite accumulator for human mobility assist devices.
Shaheen, Robert; Doumit, Marc
2018-04-01
Research in the field of human mobility assist devices, aiming to reduce the metabolic cost of daily activities, is seeing the benefits of the exclusive use of accumulators to store and release energy during the gait cycle. The Pneumatic Artificial Muscle, used in a passive state, has proven to be a superior choice for these devices when compared to its alternatives, however, challenges regarding muscle pressure dissipation and a limited elongation potential have been identified. A recently developed, novel Soft Composite material has been shown to experimentally replicate the distinctive mechanical behaviour of the Pneumatic Artificial Muscle, without the need for internal pressurization. This paper presents two separate constitutive models to provide a closer insight into the behaviour of these Soft Composite accumulators. Both models were derived from methods involving finite elasticity theory and employed either a structural strain energy function of Holzapfel, Gasser, and Ogden's type or a phenomenological strain energy function of Fung's type. Both models were in good agreement with the experimental data that were collected through a modified extension-inflation test and, therefore, provide a basis for further examination as a Soft Composite design model. Copyright © 2018 Elsevier Ltd. All rights reserved.
On self-consistent N=1 supersymmetric composite models
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1984-01-01
A class of fermion-boson N=1 supersymmetric composite models is considered. The models satisfy the anomaly matching condition, n-independence and the survival hypothesis. A unique admissible set of light states has been found under additional requirements for the two-particle metacolour force saturation, left-right discrete symmetry and observability of spectator states, on a par with the composite ones, the formey being necessary to compensate for axial anomalies. With respect to the unbroken chiral symmetry Gsup((MF))=SU(n)sub(L)xSU(n)sub(R), the light set has in left-chiral notations the form [(n(n-1)/2, 1)+(1, anti n(n-1)/2]+2(anti n, n)+[(n(n+1)/2/, 1)+(1, anti n(n-1)/2] independent of the metacolo group Gsup((MC)). The effective interaction theory for the light set on the mass scales, smaller than that of compositeness, is the N=1 supersymmetric grand unified model Gsup((MF))=SU(n)sub(L)xSU(n)sub(R). Here n=6, 8 are phenomenologically acceptable. On low mass scales, the light set transforms exactly into four families of ordinary leptons and quarks. In accordance with the survival hypothesis, all exotic states are naturally heavy under the spontaneous breaking of Gsup((MF)) to the low-energy standard model symmetry
Stress transfer modeling in CNT reinforced composites using continuum mechanics
International Nuclear Information System (INIS)
Chaboki Khiabani, A.; Sadrnejad, S. A.; Yahyaeii, M.
2008-01-01
Because of the substantial difference in stiffness between matrix and nano tube in CNT composite, the stress transfer between them controls their mechanical properties. This paper investigates the said issue, analytically and numerically, in axial load using representative volume element. The analytical model was established based on the modified Cox's shear lag model with the use of some simplified assumptions. Some, in the developed shear lag model, the CNT assumes hollow fiber. Solving the governing differential equation. led the high shear stress, in interface especially in the CNT cap. In addition, some finite element models were performed with different aspect ratios and the shear stress pattern especially in interface was calculated numerically. Despite some simplified assumptions that were performed with these two models such as elastic behavior and full connectivity, and the comparison of their results with other numerical models show adequate agreement
Modeling of solidification of MMC composites during gravity casting process
Directory of Open Access Journals (Sweden)
R. Zagórski
2013-04-01
Full Text Available The paper deals with computer simulation of gravity casting of the metal matrix composites reinforced with ceramics (MMC into sand mold. The subject of our interest is aluminum matrix composite (AlMMC reinforced with ceramic particles i.e. silicon carbide SiC and glass carbon Cg. The created model describes the process taking into account solidification and its influence on the distribution of reinforcement particles. The computer calculation has been carried out in 2D system with the use of Navier-Stokes equations using ANSYS FLUENT 13. The Volume of Fluid approach (VOF and enthalpy method have been used to model the air-fluid free surface (and also volume fraction of particular continuous phases and the solidification of the cast, respectively.
A Component-based Programming Model for Composite, Distributed Applications
Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.
Modelling low velocity impact induced damage in composite laminates
Shi, Yu; Soutis, Constantinos
2017-12-01
The paper presents recent progress on modelling low velocity impact induced damage in fibre reinforced composite laminates. It is important to understand the mechanisms of barely visible impact damage (BVID) and how it affects structural performance. To reduce labour intensive testing, the development of finite element (FE) techniques for simulating impact damage becomes essential and recent effort by the composites research community is reviewed in this work. The FE predicted damage initiation and propagation can be validated by Non Destructive Techniques (NDT) that gives confidence to the developed numerical damage models. A reliable damage simulation can assist the design process to optimise laminate configurations, reduce weight and improve performance of components and structures used in aircraft construction.
Modelling of a multi-temperature plasma composition
International Nuclear Information System (INIS)
Liani, B.; Benallal, R.; Bentalha, Z.
2005-01-01
Knowledge of plasma composition is very important for various plasma applications and prediction of plasma properties. The authors use the Saha equation and Debye length equation to calculate the non-local thermodynamic-equilibrium plasma composition. It has been shown that the model to 2T with T representing the temperature (electron temperature and heavy-particle temperature) described by Chen and Han [J. Phys. D 32(1999)1711] can be applied for a mixture of gases, where each atomic species has its own temperature, but the model to 4T is more general because it can be applicable to temperatures distant enough of the heavy particles. This can occur in a plasma composed of big- or macro-molecules. The electron temperature T e varies in the range 8000∼20000 K at atmospheric pressure. (authors)
A Model of Workflow Composition for Emergency Management
Xin, Chen; Bin-ge, Cui; Feng, Zhang; Xue-hui, Xu; Shan-shan, Fu
The common-used workflow technology is not flexible enough in dealing with concurrent emergency situations. The paper proposes a novel model for defining emergency plans, in which workflow segments appear as a constituent part. A formal abstraction, which contains four operations, is defined to compose workflow segments under constraint rule. The software system of the business process resources construction and composition is implemented and integrated into Emergency Plan Management Application System.
2014 Enhanced LAW Glass Property-Composition Models, Phase 2
Energy Technology Data Exchange (ETDEWEB)
Muller, Isabelle [The Catholic Univ. of America, Washington, DC (United States); Pegg, Ian L. [The Catholic Univ. of America, Washington, DC (United States); Joseph, Innocent [Energy Solutions, Salt Lake City, UT (United States); Gilbo, Konstantin [The Catholic Univ. of America, Washington, DC (United States)
2015-10-28
This report describes the results of testing specified by the Enhanced LAW Glass Property-Composition Models, VSL-13T3050-1, Rev. 0 Test Plan. The work was performed in compliance with the quality assurance requirements specified in the Test Plan. Results required by the Test Plan are reported. The te4st results and this report have been reviewed for correctness, technical adequacy, completeness, and accuracy.
Structural Acoustic Physics Based Modeling of Curved Composite Shells
2017-09-19
various geometries and materials. This can help drive future research on composite material applications and enhance design methods for future Navy...both the plate and the water is 0.15 inch. The plate elements are eight-node, linear , brick stress/displacement continuum elements (C3D8R) while the...water elements are eight-node, linear , brick acoustic continuum elements (AC3D8). The analyses of the flat plate model were completed using Abaqus
BlenX-based compositional modeling of complex reaction mechanisms
Directory of Open Access Journals (Sweden)
Judit Zámborszky
2010-02-01
Full Text Available Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model building in stochastic process algebras are discussed. A biological example on circadian clock is presented as a case study of BlenX compositionality.
A Wear Geometry Model of Plain Woven Fabric Composites
Directory of Open Access Journals (Sweden)
Gu Dapeng
2014-09-01
Full Text Available The paper g describes a model meant for analysis of the wear geometry of plain woven fabric composites. The referred model consists of a mathematical description of plain woven fabric based on Peirce’s model coupled with a stratified method for the solution of the wear geometry. The evolutions of the wear area ratio of weft yarn, warp yarn and matrix resin on the worn surface are simulated by MatLab software in combination of warp and weft yarn diameters, warp and weft yarn-to-yarn distances, fabric structure phases (SPs. By comparing theoretical and experimental results from the PTFE/Kevlar fabric wear experiment, it can be concluded that the model can present a trend of the component area ratio variations along with the thickness of fabric, but has a inherently large error in quantitative analysis as an idealized model.
A web service for service composition to aid geospatial modelers
Bigagli, L.; Santoro, M.; Roncella, R.; Mazzetti, P.
2012-04-01
The identification of appropriate mechanisms for process reuse, chaining and composition is considered a key enabler for the effective uptake of a global Earth Observation infrastructure, currently pursued by the international geospatial research community. In the Earth and Space Sciences, such a facility could primarily enable integrated and interoperable modeling, for what several approaches have been proposed and developed, over the last years. In fact, GEOSS is specifically tasked with the development of the so-called "Model Web". At increasing levels of abstraction and generalization, the initial stove-pipe software tools have evolved to community-wide modeling frameworks, to Component-Based Architecture solution, and, more recently, started to embrace Service-Oriented Architectures technologies, such as the OGC WPS specification and the WS-* stack of W3C standards for service composition. However, so far, the level of abstraction seems too low for implementing the Model Web vision, and far too complex technological aspects must still be addressed by both providers and users, resulting in limited usability and, eventually, difficult uptake. As by the recent ICT trend of resource virtualization, it has been suggested that users in need of a particular processing capability, required by a given modeling workflow, may benefit from outsourcing the composition activities into an external first-class service, according to the Composition as a Service (CaaS) approach. A CaaS system provides the necessary interoperability service framework for adaptation, reuse and complementation of existing processing resources (including models and geospatial services in general) in the form of executable workflows. This work introduces the architecture of a CaaS system, as a distributed information system for creating, validating, editing, storing, publishing, and executing geospatial workflows. This way, the users can be freed from the need of a composition infrastructure and
A compositional method to model dependent failure behavior based on PoF models
Directory of Open Access Journals (Sweden)
Zhiguo ZENG
2017-10-01
Full Text Available In this paper, a new method is developed to model dependent failure behavior among failure mechanisms. Unlike the existing methods, the developed method models the root cause of the dependency explicitly, so that a deterministic model, rather than a probabilistic one, can be established. Three steps comprise the developed method. First, physics-of-failure (PoF models are utilized to model each failure mechanism. Then, interactions among failure mechanisms are modeled as a combination of three basic relations, competition, superposition and coupling. This is the reason why the method is referred to as “compositional method”. Finally, the PoF models and the interaction model are combined to develop a deterministic model of the dependent failure behavior. As a demonstration, the method is applied on an actual spool and the developed failure behavior model is validated by a wear test. The result demonstrates that the compositional method is an effective way to model dependent failure behavior.
Towards a realistic composite model of quarks and leptons
International Nuclear Information System (INIS)
Li Xiaoyuan; Marshak, R.E.
1985-06-01
Within the context of the 't Hooft anomaly matching scheme, some guiding principles for the model building are discussed with an eye to low energy phenomenology. It is argued that Λsub(ch) (chiral symmetry breaking scale of the global color-flavor group Gsub(CF)) proportional Λsub(MC) (metacolor scale) and Λ sub(gsub(CF)) (unification scale of the gauge subgroup of Gsub(CF)) < or approx. Λsub(ch). As illustrations of the method, two composite models are suggested that can give rise to three or four generations of ordinary quarks and leptons without exotic fermions. (orig.)
Generation labels in composite models for quarks and leptons
International Nuclear Information System (INIS)
Harari, H.; Seiberg, N.
1981-03-01
Models in which quarks and leptons are approximately massless composites of fundamental massless fermions which are confined by a hypercolor force are considered. The fundamental Lagrangian exhibits an axial U(1)sub(X) symmetry which is broken by hypercolor instantons, leaving a conserved discrete subgroup. It is proposed that the distinction between different generations of quarks and leptons is given by the X-number. The resulting generation labelling scheme does not lead to massless Goldstone bosons or to new anomalies and is based on a quantum number which is already contained in the theory. The dynamical rishon model is described as an illustrative example. (H.K.)
Top and Higgs masses in a composite boson model
International Nuclear Information System (INIS)
Kahana, D.E.
1993-01-01
Recently Nambu as well as Bardeen, Hill and Linden have suggested replacing the Higgs mechanism with a dynamical symmetry breaking generated by four fermion interactions of the top quark. In fact the model for replacing the scalar sector is that of Nambu and Jona-Lasinio (NJL) and one recovers the Higgs as a tt composite. Earlier authors have also treated vector mesons as composites within the NJL framework, with perhaps the earliest suggestion being that of Bjorken for a composite photon. Here we attempt to generate the entire electroweak interaction from a specific current-current, baryon number conserving form of the four fermion interaction. The W, Z and Higgs boson appear as coherent composites of all fermions, quarks and lepton, and not just of the top quark. The four fermion interaction is assumed to be valid at some high mass scale μ, perhaps the low energy limit resulting by the elimination of non-fermionic degrees of freedom from a more basic theory. The cutoff Λ, necessary in the non-renormalizable NJL may be viewed then as the proper scale for this more basic theory
Cellulose-reinforced composites and SRIM and RTM modeling
Fahrurrozi, Mohammad
Structural reaction injection molding (SRIM) cellulosic/polyurethane composites were prepared from various forms of cellulosic mats, and elastomeric polyurea-urethane (PUU) and rigid polyurethane (PU) formulations. Mats (woven and non-woven) prepared from different sources of fibers with lignin content ranging from zero (cotton) to at least 10% (sugar cane and kenaf fibers) performed comparably in PUU/cellulosic composites. Young's modulus and tensile strength of PUU/cellulosic composites were doubled with 5% and 7% fiber loading respectively. Young's modulus and tensile strength of PU/cellulosic composites were improved by 300% and 30%, respectively, with 7% fiber loading, whereas their bending moduli and strengths were improved up to 100% and 50%, respectively, with 18% fiber loading. However, the mechanical properties of PU composites were more sensitive to the fiber properties and fiber macroscopic arrangements. The study with chemical ratio variations indicates that as the fiber loading increases, the cellulose hydroxyl presence starts shifting the chemical balance and thus should be accounted for. Mats prepared from sugar cane fibers extracted from rind with low alkali concentration (0.2 N) followed by steam explosion require lower injection pressures compared to the ones prepared from fiber obtained from higher alkali treatment (above 0.5 N) without steam explosion. Hence, the steam exploded mats are more suitable for SRIM purposes. The PU kinetics was studied using an adiabatic temperature rise method. An Arrhenius type empirical equation was used to fit the data. The fitted equation was second order to the partial conversion, and the gelling time at adiabatic condition is less than 5 seconds (much quicker than the 10 to 12 seconds in mold gel time quoted by the manufacturer). FORTRAN programs were written to solve the SRIM model based on Darcy's equation. The model incorporated heat transfer and chemical reaction. The modeling was intended to aid in
A Composite Modelling Approach to Decision Support by the Use of the CBA-DK Model
DEFF Research Database (Denmark)
Barfod, Michael Bruhn; Salling, Kim Bang; Leleur, Steen
2007-01-01
This paper presents a decision support system for assessment of transport infrastructure projects. The composite modelling approach, COSIMA, combines a cost-benefit analysis by use of the CBA-DK model with multi-criteria analysis applying the AHP and SMARTER techniques. The modelling uncertaintie...
Halas, V.; Dijkstra, J.; Babinszky, L.; Verstegen, M.W.A.; Gerrits, W.J.J.
2004-01-01
A dynamic mechanistic model was developed for growing and fattening pigs. The aim of the model was to predict growth rate and the chemical and anatomical body compositions from the digestible nutrient intake of gilts (20-105 kg live weight). The model represents the partitioning of digestible
Development and validation of a liquid composite molding model
Bayldon, John Michael
2007-12-01
In composite manufacturing, Vacuum Assisted Resin Transfer Molding (VARTM) is becoming increasingly important as a cost effective manufacturing method of structural composites. In this process the dry preform (reinforcement) is placed on a rigid tool and covered by a flexible film to form an airtight vacuum bag. Liquid resin is drawn under vacuum through the preform inside the vacuum bag. Modeling of this process relies on a good understanding of closely coupled phenomena. The resin flow depends on the preform permeability, which in turn depends on the local fluid pressure and the preform compaction behavior. VARTM models for predicting the flow rate in this process do exist, however, they are not able to properly predict the flow for all classes of reinforcement material. In this thesis, the continuity equation used in VARTM models is reexamined and a modified form proposed. In addition, the compaction behavior of the preform in both saturated and dry states is studied in detail and new models are proposed for the compaction behavior. To assess the validity of the proposed models, the shadow moire method was adapted and used to perform full field measurement of the preform thickness during infusion, in addition to the usual measurements of flow front position. A new method was developed and evaluated for the analysis of the moire data related to the VARTM process, however, the method has wider applicability to other full field thickness measurements. The use of this measurement method demonstrated that although the new compaction models work well in the characterization tests, they do not properly describe all the preform features required for modeling the process. In particular the effect of varying saturation on the preform's behavior requires additional study. The flow models developed did, however, improve the prediction of the flow rate for the more compliant preform material tested, and the experimental techniques have shown where additional test methods
Statistical Models for Inferring Vegetation Composition from Fossil Pollen
Paciorek, C.; McLachlan, J. S.; Shang, Z.
2011-12-01
Fossil pollen provide information about vegetation composition that can be used to help understand how vegetation has changed over the past. However, these data have not traditionally been analyzed in a way that allows for statistical inference about spatio-temporal patterns and trends. We build a Bayesian hierarchical model called STEPPS (Spatio-Temporal Empirical Prediction from Pollen in Sediments) that predicts forest composition in southern New England, USA, over the last two millenia based on fossil pollen. The critical relationships between abundances of tree taxa in the pollen record and abundances in actual vegetation are estimated using modern (Forest Inventory Analysis) data and (witness tree) data from colonial records. This gives us two time points at which both pollen and direct vegetation data are available. Based on these relationships, and incorporating our uncertainty about them, we predict forest composition using fossil pollen. We estimate the spatial distribution and relative abundances of tree species and draw inference about how these patterns have changed over time. Finally, we describe ongoing work to extend the modeling to the upper Midwest of the U.S., including an approach to infer tree density and thereby estimate the prairie-forest boundary in Minnesota and Wisconsin. This work is part of the PalEON project, which brings together a team of ecosystem modelers, paleoecologists, and statisticians with the goal of reconstructing vegetation responses to climate during the last two millenia in the northeastern and midwestern United States. The estimates from the statistical modeling will be used to assess and calibrate ecosystem models that are used to project ecological changes in response to global change.
Modeling the effects of atmospheric emissions on groundwater composition
International Nuclear Information System (INIS)
Brown, T.J.
1994-01-01
A composite model of atmospheric, unsaturated and groundwater transport is developed to evaluate the processes determining the distribution of atmospherically derived contaminants in groundwater systems and to test the sensitivity of simulated contaminant concentrations to input parameters and model linkages. One application is to screen specific atmospheric emissions for their potential in determining groundwater age. Temporal changes in atmospheric emissions could provide a recognizable pattern in the groundwater system. The model also provides a way for quantifying the significance of uncertainties in the tracer source term and transport parameters on the contaminant distribution in the groundwater system, an essential step in using the distribution of contaminants from local, point source atmospheric emissions to examine conceptual models of groundwater flow and transport
Compendium of Material Composition Data for Radiation Transport Modeling
International Nuclear Information System (INIS)
Williams, Ralph G.; Gesh, Christopher J.; Pagh, Richard T.
2006-01-01
Computational modeling of radiation transport problems including homeland security, radiation shielding and protection, and criticality safety all depend upon material definitions. This document has been created to serve two purposes: (1) to provide a quick reference of material compositions for analysts and (2) a standardized reference to reduce the differences between results from two independent analysts. Analysts are always encountering a variety of materials for which elemental definitions are not readily available or densities are not defined. This document provides a location where unique or hard to define materials will be located to reduce duplication in research for modeling purposes. Additionally, having a common set of material definitions helps to standardize modeling across PNNL and provide two separate researchers the ability to compare different modeling results from a common materials basis.
Modeling of Bullet Penetration in Explosively Welded Composite Armor Plate
Joshi, Vasant S.; Carney, Theodore C.
2006-07-01
Normal impact of high-speed armor piercing bullet on titanium-steel composite has been investigated using smooth particle hydrodynamics (SPH) code. The objective is to understand the effects of impact during the ballistic testing of explosively welded armor plates. These plates have significant microstructural differences within the weld region, heat-affected zone and the base metal. The variances result in substantial ductility, hardness and strength differences, important criteria in determining the failure mode, specifically whether it occurs at the joint or within the virgin base metal. Several configurations of composite plates with different material combinations were modeled. The results were used to modify the heat treatment process of explosively welded plates, making them more likely to survive impact.
Modeling of Bullet Penetration in Explosively Welded Composite Armor Plate
International Nuclear Information System (INIS)
Joshi, Vasant S.; Carney, Theodore C.
2006-01-01
Normal impact of high-speed armor piercing bullet on titanium-steel composite has been investigated using smooth particle hydrodynamics (SPH) code. The objective is to understand the effects of impact during the ballistic testing of explosively welded armor plates. These plates have significant microstructural differences within the weld region, heat-affected zone and the base metal. The variances result in substantial ductility, hardness and strength differences, important criteria in determining the failure mode, specifically whether it occurs at the joint or within the virgin base metal. Several configurations of composite plates with different material combinations were modeled. The results were used to modify the heat treatment process of explosively welded plates, making them more likely to survive impact
Benchmarking of Computational Models for NDE and SHM of Composites
Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna
2016-01-01
Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.
Liu, M.; Thygesen, A.; Meyer, AS; Madsen, B.
2016-07-01
The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre impregnation by the epoxy matrix, and the mechanical properties of the composites are thereby increased. The effective fibre stiffness and strength established from the modelling show that the enzymatic removal of pectin also leads to increased mechanical properties of the fibres. Among the investigated samples, the composites with hydrothermally pre-treated and enzymatically treated fibres have the lowest porosity factor of 0.08 and the highest mechanical properties. In these composites, the effective fibre stiffness and strength are determined to be 83 GPa and 667 MPa, respectively, when the porosity efficiency exponent is set equal to 2. Altogether, it is demonstrated that the applied models provide a concept to be used for the evaluation of performance of treated fibres in composites.
Energy Technology Data Exchange (ETDEWEB)
Priou, A. [Institut Universitaire de Technologie, 92 - Ville-d' Avray (France)
1999-01-01
Maxwell laws are briefly described and the different types of electromagnetic materials are presented. Composite materials are made up of at least 2 phases: a host phase and an inclusion. The inclusion is a discontinuous phase coming from a conducting material (metal, carbon based material, semi-conductor, solid electrolytes or conducting polymers) and is spread within the host phase either in an aleatory or organized way. The modeling of such media can be made by 3 different approaches. In the multi-diffusion approach, the size of the particles enclosed in the host material and their mutual interactions are taken into account. The quasi-static approach allows the definition of an equivalent medium in order to describe percolation phenomena. The approach based on cluster theory gives a complete mathematical description of composite materials. The modeling of dielectric-conducting multilayer is also presented. The last part of the article is dedicated to the characteristics and applications of chiral media and of last generation electromagnetic materials. (A.C.)
Transport in highly contrasted composite media: the billiards model
International Nuclear Information System (INIS)
Golse, F.
1992-11-01
The subject matter of the present article is a method of computing absorption and scattering cross-sections for a simplified model of highly contrasted composite media. The model considered in this paper is a periodic array of infinitely diffusive spherical obstacles immersed in a non diffusive media. Particles are reflected on these obstacles following Descartes' specular reflection law. The method proposed in this article can also be applied to similar models with non spherical obstacles and more general reflection laws than Descartes'. The computation of the cross-section is treated by homogenizing the Liouville equation for the particle density in the different cases of scaling laws for the distribution of inhomogeneities. The homogenization techniques used in this paper are based on asymptotic expansions approaching the solution of the Liouville equation in the sense of weak consistency
Water Diffusion Modelling of CFB Fly Ash Thermoset Composite
Directory of Open Access Journals (Sweden)
Villa Ralph P.
2016-01-01
Full Text Available The shift in coal-fired power plants from pulverized coal (PC boiler technology into the greener circulating fluidized bed (CFB boiler technology resulted into a major deviation in the properties of the waste fly ash generated making it less suitable for its previous application as additives for construction materials. A new market for CFB fly ash had to be found for it not to end up as a zero value by-product. Using CFB fly ash as filler for thermoset composites is a new and remarkable application. Only a few studies, however, have been done to characterize the properties of this new material. Further experimentation and analysis may be costly and time-consuming since common procedures are material destructive. A computer-aided modeling of the composite’s water sorption behavior was done. The effect of particle loading, size and shape were considered. These properties were varied and the resulting overall diffusivities were compared to previous experimental studies. The comparison of the model and experimental diffusivity values showed satisfactory results. This model may then provide a cheaper and more time-efficient method for the characterization of the water sorption properties of CFB fly ash thermoset composites. In the future, this may lead to further studies on its application as a green material.
Life Modeling and Design Analysis for Ceramic Matrix Composite Materials
2005-01-01
The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.
Characteristic Properties of Equivalent Structures in Compositional Models
Czech Academy of Sciences Publication Activity Database
Kratochvíl, Václav
2011-01-01
Roč. 52, č. 5 (2011), s. 599-612 ISSN 0888-613X R&D Projects: GA MŠk 1M0572; GA ČR GA201/09/1891; GA ČR GEICC/08/E010 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Equivalence problem * Compositional model * Persegram * Characteristic properties Subject RIV: BA - General Mathematics Impact factor: 1.948, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/kratochvil-0359927.pdf
Viscous and thermal modelling of thermoplastic composites forming process
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Calibration of a finite element composite delamination model by experiments
DEFF Research Database (Denmark)
Gaiotti, M.; Rizzo, C.M.; Branner, Kim
2013-01-01
This paper deals with the mechanical behavior under in plane compressive loading of thick and mostly unidirectional glass fiber composite plates made with an initial embedded delamination. The delamination is rectangular in shape, causing the separation of the central part of the plate into two...... distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...
Zhao, Hanqing; Guo, Yuanzheng
2014-01-01
This thesis was a literature study concerning composites. With composites becoming increasingly popular in various areas such as aerospace industry and construction, the research about composites has a significant meaning accordingly. This thesis was aim at introducing some basic information of polymer matrix composites including raw mate-rial, processing, testing, applications and recycling to make a rough understanding of this kind of material for readers. Polymeric matrices, fillers,...
On the structure of anomalous composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gripaios, Ben [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Nardecchia, Marco [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom); CERN, Theoretical Physics Department, Geneva (Switzerland); You, Tevong [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); DAMTP, University of Cambridge, Cambridge (United Kingdom)
2017-01-15
We describe the anomaly structure of a composite Higgs model in which the SO(5)/SO(4) coset structure of the minimal model is extended by an additional, non-linearly realised U(1){sub η}. In addition, we show that the effective Lagrangian admits a term that, like the Wess-Zumino-Witten term in the chiral Lagrangian for QCD, is not invariant under the non-linearly realised symmetries, but rather changes by a total derivative. This term is unlike the Wess-Zumino-Witten term in that it does not arise from anomalies. If present, it may give rise to the rare decay η → hW{sup +}W{sup -}Z. The phenomenology of the singlet in this model differs from that in a model based on SO(6)/SO(5), in that couplings to both gluons and photons, arising via anomalies, are present. We show that while some tuning is needed to accommodate flavour and electroweak precision constraints, the model is no worse than the minimal model in this regard. (orig.)
Micromechanics Based Inelastic and Damage Modeling of Composites
Directory of Open Access Journals (Sweden)
P. P. Procházka
2004-01-01
Full Text Available Micromechanics based models are considered for application to viscoelasticity and damage in metal matrix composites. The method proposes a continuation and development of Dvooák’s transformation field analysis, considering the piecewise uniform eigenstrains in each material phase. Standard applications of the method to a two-phase are considered in this study model, i.e., only one sub-volume per phase is considered. A continuous model is used, employing transformation field analysis with softening in order to prevent the tensile stress overstepping the tensile strength. At the same time shear cracking occurs in the tangential direction of the possible crack. This is considered in the principal shear stresses and they make disconnections in displacements. In this case, discontinuous models are more promising. Because discrete models, that can describe the situation more realistically have not been worked out in detail, we retain a continuous model and substitute the slip caused by overstepping the damage law by introducing eigenparameters from TFA. The various aspects of the proposed methods are systematically checked by comparing with finite element unit cell analyses, made through periodic homogenization assumptions, for SiC/Ti unidirectional lay-ups.
DEFF Research Database (Denmark)
Bergstrøm-Nielsen, Carl
2011-01-01
Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...
DEFF Research Database (Denmark)
2014-01-01
Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...
DEFF Research Database (Denmark)
Bergstrøm-Nielsen, Carl
2010-01-01
New Year is an open composition to be realised by improvising musicians. It is included in "From the Danish Seasons" (see under this title). See more about my composition practise in the entry "Composition - General Introduction". This work is licensed under a Creative Commons "by-nc" License. You...
Flexible Multibody Systems Models Using Composite Materials Components
International Nuclear Information System (INIS)
Neto, Maria Augusta; Ambr'osio, Jorge A. C.; Leal, Rog'erio Pereira
2004-01-01
The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method
Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments
Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.
2017-11-01
Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.
Dispersion Relations for Electroweak Observables in Composite Higgs Models
Contino, Roberto
2015-12-14
We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.
Thermal modelling of extrusion based additive manufacturing of composite materials
DEFF Research Database (Denmark)
Jensen, Mathias Laustsen; Sonne, Mads Rostgaard; Hattel, Jesper Henri
One of the hottest topics regarding manufacturing these years is additive manufacturing (AM). AM is a young branch of manufacturing techniques, which by nature is disruptive due to its completely different manufacturing approach, wherein material is added instead of removed. By adding material...... of composite parts not feasible by conventional manufacturing techniques. This sets up new requirements to the part verification and validation, while conventional destructive tests become too expensive. This initial study aims to investigate alternative options to this destructive testing by increasing......-butadiene-styrene (ABS) and thermosetting polyurethane (PU) material extrusion processes. During the experimental evaluation of the produced models it is found that some critical material properties needs to be further investigated to increase the precision of the model. It is however also found that even with only...
Compositional Model Based Fisher Vector Coding for Image Classification.
Liu, Lingqiao; Wang, Peng; Shen, Chunhua; Wang, Lei; Hengel, Anton van den; Wang, Chao; Shen, Heng Tao
2017-12-01
Deriving from the gradient vector of a generative model of local features, Fisher vector coding (FVC) has been identified as an effective coding method for image classification. Most, if not all, FVC implementations employ the Gaussian mixture model (GMM) as the generative model for local features. However, the representative power of a GMM can be limited because it essentially assumes that local features can be characterized by a fixed number of feature prototypes, and the number of prototypes is usually small in FVC. To alleviate this limitation, in this work, we break the convention which assumes that a local feature is drawn from one of a few Gaussian distributions. Instead, we adopt a compositional mechanism which assumes that a local feature is drawn from a Gaussian distribution whose mean vector is composed as a linear combination of multiple key components, and the combination weight is a latent random variable. In doing so we greatly enhance the representative power of the generative model underlying FVC. To implement our idea, we design two particular generative models following this compositional approach. In our first model, the mean vector is sampled from the subspace spanned by a set of bases and the combination weight is drawn from a Laplace distribution. In our second model, we further assume that a local feature is composed of a discriminative part and a residual part. As a result, a local feature is generated by the linear combination of discriminative part bases and residual part bases. The decomposition of the discriminative and residual parts is achieved via the guidance of a pre-trained supervised coding method. By calculating the gradient vector of the proposed models, we derive two new Fisher vector coding strategies. The first is termed Sparse Coding-based Fisher Vector Coding (SCFVC) and can be used as the substitute of traditional GMM based FVC. The second is termed Hybrid Sparse Coding-based Fisher vector coding (HSCFVC) since it
Modelling of composite concrete block pavement systems applying a cohesive zone model
DEFF Research Database (Denmark)
Skar, Asmus; Poulsen, Peter Noe
This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... that the cohesive model is suitable for simulation of crack propagation in cement bound materials subjected to monotonic loading. The methodology implemented gives a new understanding of the mechanical behaviour of cement bound materials which can be used in further refinements of mechanical models for composite...
National Research Council Canada - National Science Library
Ghosh, Somnath
2001-01-01
.... Interfacial Debonding Analysis in Multiple Fiber Reinforced Composites: Decohesion at multiple fiber interfaces of elastic fiber reinforced composites is modeled by the Voronoi cell finite element model (VCFEM...
National Research Council Canada - National Science Library
Buryachenko, V
2002-01-01
.... Systems successfully examined include the single filament cruciform test, identification of failure modes in composites, woven fabric composite, carbon foams, the fiber pushout test, and slanted free-edge plies...
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Dai, Gaoming
2014-01-01
Hybrid and hierarchical polymer composites represent a promising group of materials for engineering applications. In this paper, computational studies of the strength and damage resistance of hybrid and hierarchical composites are reviewed. The reserves of the composite improvement are explored...... by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...
Multiscale modeling of damage in multidirectional composite laminates
Singh, Chandra Veer
90°-plies. The predictions agree well with published experimental data as well as independent FE computations. Limited parametric studies are performed to show usability of SDM for more general laminates. To predict the initiation and growth of intralaminar cracks, an energy based model is proposed in which these cracks initiate and multiply when the work required to form new set of cracks exceeds a laminate dependent critical energy release rate. The approach requires determination of average crack opening and sliding displacements at varying crack spacing. This task is performed through a suitable 3-D FE analysis. In case of off-axis ply cracking, a mixed mode fracture criterion is utilized, where the critical energy release rates in normal and shear modes are determined by fitting the damage model with the experimental data for a reference laminate. The predictions from the model for [0/+/-theta4/01/2]s and [0/90/∓45]s laminates show remarkable agreement with the experimental results. The methodology and the results covered in this dissertation will be of interest to mechanics of materials researchers as well as to engineers in industry where composite materials for structural applications are of interest.
Compendium of Material Composition Data for Radiation Transport Modeling
Energy Technology Data Exchange (ETDEWEB)
McConn, Ronald J.; Gesh, Christopher J.; Pagh, Richard T.; Rucker, Robert A.; Williams III, Robert
2011-03-04
Introduction Meaningful simulations of radiation transport applications require realistic definitions of material composition and densities. When seeking that information for applications in fields such as homeland security, radiation shielding and protection, and criticality safety, researchers usually encounter a variety of materials for which elemental compositions are not readily available or densities are not defined. Publication of the Compendium of Material Composition Data for Radiation Transport Modeling, Revision 0, in 2006 was the first step toward mitigating this problem. Revision 0 of this document listed 121 materials, selected mostly from the combined personal libraries of staff at the Pacific Northwest National Laboratory (PNNL), and thus had a scope that was recognized at the time to be limited. Nevertheless, its creation did provide a well-referenced source of some unique or hard-to-define material data in a format that could be used directly in radiation transport calculations being performed at PNNL. Moreover, having a single common set of material definitions also helped to standardize at least one aspect of the various modeling efforts across the laboratory by providing separate researchers the ability to compare different model results using a common basis of materials. The authors of the 2006 compendium understood that, depending on its use and feedback, the compendium would need to be revised to correct errors or inconsistencies in the data for the original 121 materials, as well as to increase (per users suggestions) the number of materials listed. This 2010 revision of the compendium has accomplished both of those objectives. The most obvious change is the increased number of materials from 121 to 372. The not-so-obvious change is the mechanism used to produce the data listed here. The data listed in the 2006 document were compiled, evaluated, entered, and error-checked by a group of individuals essentially by hand, providing no library
Modeling of aerosol dynamics - Aerosol size and composition
International Nuclear Information System (INIS)
Beyak, R.A.; Peterson, T.W.
1980-01-01
A mechanism for the evolution of the size and composition of an aerosol particle is investigated by developing a model that includes the transfer of gaseous pollutants to the surface of existing aerosol particles, the transfer of the pollutants across the gas-particle interface, and the reaction of dissolved species within the aerosol particle. The reaction mechanisms considered include homogeneous gas-phase and heterogeneous solution chemistry. Aerosol particles evolving within an urban plume and within power-plant and smelter plumes are studied, along with the evolution of particle size and chemical composition for regions of various relative humidities, with particular emphasis on aqueous chemistry in the low-humidity environments of the southwestern U.S. A simulation of a copper smelting complex in central Arizona indicates that all particles shrink from their original size as plume humidity approaches background relative humidity, that most secondary sulfate formation occurs in the near-plume region, and that the final particle pH is in the range 2.0-2.2 for a wide range of physical conditions
Electromechanical modelling of tapered ionic polymer metal composites transducers
Directory of Open Access Journals (Sweden)
Rakesha Chandra Dash
2016-09-01
Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.
Designing a Composite Service Organization (Through Mathematical Modeling
Directory of Open Access Journals (Sweden)
Prof. Dr. A. Z. Memon
2006-01-01
Full Text Available Suppose we have a class of similar service organizations each of which is characterized by the same numerically measurable input/output characteristics. Even if the amount of any input does not differ in them, one or more organizations can be expected to outperform the others in one or more production aspects. Our interest lies in comparing the output efficiency levels of all service organizations. For it we use mathematical modeling, mainly linear programming to design a composite organization with new input measures which relative to a specific organization should have a higher level of efficiency with regard to all output measures. The other purpose of this paper is to evaluate the output characteristics of this proposed service organization. The paper also touches some other highly important planning features of this organization.
Material Model Evaluation of a Composite Honeycomb Energy Absorber
Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.
Spectrophotometry and organic matter on Iapetus. 1: Composition models
Wilson, Peter D.; Sagan, Carl
1995-01-01
Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.
LHC phenomenology of composite 2-Higgs doublet models
Energy Technology Data Exchange (ETDEWEB)
De Curtis, Stefania [University of Florence, Department of Physics and Astronomy, Sesto Fiorentino (Italy); INFN, Sezione di Firenze (Italy); Moretti, Stefano; Yagyu, Kei; Yildirim, Emine [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom)
2017-08-15
We investigate the phenomenology of Composite 2-Higgs doublet models (C2HDMs) of various Yukawa types based on the global symmetry breaking SO(6) → SO(4) x SO(2). The kinetic part and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under SO(6). The scalar potential is assumed to be the same as that of the Elementary 2-Higgs doublet model (E2HDM) with a softly broken discrete Z{sub 2} symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from standard model (SM) couplings of the discovered Higgs state (h) as well as on the production cross sections and branching ratios (BRs) at the large Hadron collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the hVV (V = W,Z) coupling is assumed in the two scenarios, there appear significant differences between the E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay features of extra Higgs bosons can be used to distinguish between the two scenarios. (orig.)
Yield Stress Model for Molten Composition B-3
Davis, Stephen; Zerkle, David
2017-06-01
Composition B-3 (Comp B-3) is a melt-castable explosive composed of 60/40 wt% RDX/TNT (hexahydro-1,3,5-trinitro-1,3,5-triazine/2,4,6-trinitrotoluene). During casting operations thermal conditions are controlled which along with the low melting point of TNT and the insensitivity of the mixture to external stimuli leading to safe use. Outside these standard operating conditions a more rigorous model of Comp B-3 rheological properties is necessary to model thermal transport as Comp B-3 evolves from quiescent solid through vaporization/decomposition upon heating. One particular rheological phenomena of interest is Bingham plasticity, where a material behaves as a quiescent solid unless a sufficient load is applied, resulting in fluid flow. In this study falling ball viscometer data is used to model the change in Bingham plastic yield stresses as a function of RDX particle volume fraction; a function of temperature. Results show the yield stress of Comp B-3 (τy) follows the expression τy = B ϕ -ϕc N , where Φ and Φc are the volume fraction of RDX and a critical volume fraction, respectively and B and N are experimentally evaluated constants.
Architecture in motion: A model for music composition
Variego, Jorge Elias
2011-12-01
Speculations regarding the relationship between music and architecture go back to the very origins of these disciplines. Throughout history, these links have always reaffirmed that music and architecture are analogous art forms that only diverge in their object of study. In the 1 st c. BCE Vitruvius conceived Architecture as "one of the most inclusive and universal human activities" where the architect should be educated in all the arts, having a vast knowledge in history, music and philosophy. In the 18th c., the German thinker Johann Wolfgang von Goethe, described Architecture as "frozen music". More recently, in the 20th c., Iannis Xenakis studied the similar structuring principles between Music and Architecture creating his own "models" of musical composition based on mathematical principles and geometric constructions. The goal of this document is to propose a compositional method that will function as a translator between the acoustical properties of a room and music, to facilitate the creation of musical works that will not only happen within an enclosed space but will also intentionally interact with the space. Acoustical measurements of rooms such as reverberation time, frequency response and volume will be measured and systematically organized in correspondence with orchestrational parameters. The musical compositions created after the proposed model are evocative of the spaces on which they are based. They are meant to be performed in any space, not exclusively in the one where the acoustical measurements were obtained. The visual component of architectural design is disregarded; the room is considered a musical instrument, with its particular sound qualities and resonances. Compositions using the proposed model will not result as sonified shapes, they will be musical works literally "tuned" to a specific space. This Architecture in motion is an attempt to adopt scientific research to the service of a creative activity and to let the aural properties of
Cutting power prediction model for turning of GFRP composites ...
African Journals Online (AJOL)
Glass fiber reinforced plastic (GFRP) composite materials are replacing traditional engineering materials owing to their superior properties. Accordingly, the need for accurate machining of composites has increased enormously. This paper deals with the study of power consumption in machining of GFRP composite tubes of ...
Measurement and model on thermal properties of sintered diamond composites
International Nuclear Information System (INIS)
Moussa, Tala; Garnier, Bertrand; Peerhossaini, Hassan
2013-01-01
Highlights: ► Thermal properties of sintered diamond used for grinding is studied. ► Flash method with infrared temperature measurement is used to investigate. ► Thermal conductivity increases with the amount of diamond. ► It is very sensitive to binder conductivity. ► Results agree with models assuming imperfect contact between matrix and particles. - Abstract: A prelude to the thermal management of grinding processes is measurement of the thermal properties of working materials. Indeed, tool materials must be chosen not only for their mechanical properties (abrasion performance, lifetime…) but also for thermal concerns (thermal conductivity) for efficient cooling that avoids excessive temperatures in the tool and workpiece. Sintered diamond is currently used for grinding tools since it yields higher performances and longer lifetimes than conventional materials (mineral or silicon carbide abrasives), but its thermal properties are not yet well known. Here the thermal conductivity, heat capacity and density of sintered diamond are measured as functions of the diamond content in composites and for two types of metallic binders: hard tungsten-based and soft cobalt-based binders. The measurement technique for thermal conductivity is derived from the flash method. After pulse heating, the temperature of the rear of the sample is measured with a noncontact method (infrared camera). A parameter estimation method associated with a three-layer nonstationary thermal model is used to obtain sample thermal conductivity, heat transfer coefficient and absorbed energy. With the hard metallic binder, the thermal conductivity of sintered diamond increased by up to 64% for a diamond content increasing from 0 to 25%. The increase is much less for the soft binder: 35% for diamond volumes up to 25%. In addition, experimental data were found that were far below the value predicted by conventional analytical models for effective thermal conductivity. A possible explanation
DEFF Research Database (Denmark)
Bergstrøm-Nielsen, Carl
2014-01-01
Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...
Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses
Energy Technology Data Exchange (ETDEWEB)
Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2017-09-01
This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.
A Compositional Relevance Model for Adaptive Information Retrieval
Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)
1994-01-01
There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.
Modeling of interface roughness in thermoelectric composite materials
International Nuclear Information System (INIS)
Gather, F; Heiliger, C; Klar, P J
2011-01-01
We use a network model to calculate the influence of the mesoscopic interface structure on the thermoelectric properties of superlattice structures consisting of alternating layers of materials A and B. The thermoelectric figure of merit of such a composite material depends on the layer thickness, if interface resistances are accounted for, and can be increased by proper interface design. In general, interface roughness reduces the figure of merit, again compared to the case of ideal interfaces. However, the strength of this reduction depends strongly on the type of interface roughness. Smooth atomic surface diffusion leading to alloying of materials A and B causes the largest reduction of the figure of merit. Consequently, in real structures, it is important not only to minimize interface roughness, but also to control the type of roughness. Although the microscopic effects of interfaces are only empirically accounted for, using a network model can yield useful information about the dependence of the macroscopic transport coefficients on the mesoscopic disorder in structured thermoelectric materials.
Statistical osteoporosis models using composite finite elements: a parameter study.
Wolfram, Uwe; Schwen, Lars Ole; Simon, Ulrich; Rumpf, Martin; Wilke, Hans-Joachim
2009-09-18
Osteoporosis is a widely spread disease with severe consequences for patients and high costs for health care systems. The disease is characterised by a loss of bone mass which induces a loss of mechanical performance and structural integrity. It was found that transverse trabeculae are thinned and perforated while vertical trabeculae stay intact. For understanding these phenomena and the mechanisms leading to fractures of trabecular bone due to osteoporosis, numerous researchers employ micro-finite element models. To avoid disadvantages in setting up classical finite element models, composite finite elements (CFE) can be used. The aim of the study is to test the potential of CFE. For that, a parameter study on numerical lattice samples with statistically simulated, simplified osteoporosis is performed. These samples are subjected to compression and shear loading. Results show that the biggest drop of compressive stiffness is reached for transverse isotropic structures losing 32% of the trabeculae (minus 89.8% stiffness). The biggest drop in shear stiffness is found for an isotropic structure also losing 32% of the trabeculae (minus 67.3% stiffness). The study indicates that losing trabeculae leads to a worse drop of macroscopic stiffness than thinning of trabeculae. The results further demonstrate the advantages of CFEs for simulating micro-structured samples.
Modal characterization of composite flat plate models using piezoelectric transducers
Oliveira, É. L.; Maia, N. M. M.; Marto, A. G.; da Silva, R. G. A.; Afonso, F. J.; Suleman, A.
2016-10-01
This paper aims to estimate the modal parameters of composite flat plate models through Experimental Modal Analysis (EMA) using piezoelectric transducers. The flat plates are composed of three ply carbon-epoxy fibers oriented in the same direction. Five specimens with different unidirectional fiber nominal orientations θk (0o, 30o, 45o, 60o and 90o) were tested. These models were instrumented with one PZT (Lead Zirconate Titanate) actuator and one PVDF (Polyvinylidene Fluoride) sensor and an EMA was performed. The natural frequencies and damping factors estimated using only a single PVDF response were compared with the estimated results using twelve measurement points acquired by laser doppler vibrometry. For comparison purposes, the percentage error of each natural frequency estimation and the percentage error of the damping factor estimations were computed, as well as their averages. Even though the comparison was made between a SISO (Single-Input, Single-Output) and a SIMO (Single-Input, Multiple-Output) techniques, both results are very close. The vibration modes were estimated by means of laser measurements and were used in the modal validation. In order to verify the accuracy of the modal parameters, the Modal Assurance Criterion (MAC) was employed and a high correlation among mode shapes was observed.
Directory of Open Access Journals (Sweden)
Max Mäuhlhäuser
2011-01-01
Full Text Available Developing applications comprising service composition is a complex task. Therefore, to lower the skill barrier for developers, it is important to describe the problem at hand on an abstract level and not to focus on implementation details. This can be done using declarative programming which allows to describe only the result of the problem (which is what the developer wants rather than the description of the implementation. We therefore use purely declarative model-to-model transformations written in a universal model transformation language which is capable of handling even non functional properties using optimization and mathematical programming. This makes it easier to understand and describe service composition and non-functional properties for the developer.
Havinga, W.K.; Bergmans, Lodewijk; Aksit, Mehmet
A considerable amount of research, especially within the OO and AOSD communities, has focused on understanding the potential and limitations of various composition techniques. This has led to a large amount of proposals for alternative composition techniques, including many variations of message
National Research Council Canada - National Science Library
Castafieda, P
2000-01-01
Constitutive models were developed and implemented numerically to account for the evolution of microstructure and anisotropy in finite-deformation processes involving porous and composite materials...
ACES Model Composition and Development Toolkit to Support NGATS Concepts, Phase II
National Aeronautics and Space Administration — Building on recent advances in formal agent specification, protocol composition, model composers, and visualization capabilities provided by development environments...
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
Advanced Manufacturing Technologies (AMT): Composites Integrated Modeling Element
National Aeronautics and Space Administration — CIM encompassed computational methods, tools and processes that go into the materials, design, manufacturing and qualification of composite aerospace structures....
Micromechanical Models for Composite NDE and Diagnostics Project
National Aeronautics and Space Administration — Modern aircraft increasingly rely on composite components, due to their excellent material properties. However, fastening/joining and design methodologies in current...
Micromechanical Models for Composite NDE and Diagnostics, Phase II
National Aeronautics and Space Administration — Modern aircraft (and next generation spacecraft) increasingly rely on composite components due to their excellent specific strength and stiffness, as well as...
Micromechanical Models for Composite NDE and Diagnostics Project
National Aeronautics and Space Administration — Modern aircraft (and next generation spacecraft) increasingly rely on composite components due to their excellent specific strength and stiffness, as well as...
Predictive Modeling of Complex Contoured Composite Structures Project
National Aeronautics and Space Administration — The existing HDWLT (pictured) contoured composite structure design, its analyses and manufacturing tools, will be used to validate key analyses inputs through...
A Novel Model of Dielectric Constant of Two-Phase Composites with Interfacial Shells
Xue, Qingzhong
Considering the interface effect between two phases in composite, we present a novel model of dielectric constant of two-phase composites with interfacial shells. Starting from Maxwell theory and average polarization theory, the formula of calculating the effective dielectric constant of two-phase random composites with interfacial shells is presented. The theoretical results on effective dielectric constant of alkyd resin paint/Barium titanate random composites with interfacial shells are in good agreement with the experimental data.
Stable isotope composition of atmospheric carbon monoxide. A modelling study
International Nuclear Information System (INIS)
Gromov, Sergey S.
2014-01-01
This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ 13 C, δ 18 O and Δ 17 O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated 13 CO/ 12 CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13 C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH 4 ) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH 4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13 C, were found significant when explicitly simulated. The
A Review on the Mechanical Modeling of Composite Manufacturing Processes
Baran, Ismet; Cinar, Kenan; Ersoy, Nuri; Akkerman, Remko; Hattel, Jesper H.
2016-01-01
The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the
A Review on the Mechanical Modeling of Composite Manufacturing Processes
DEFF Research Database (Denmark)
Baran, Ismet; Cinar, Kenan; Ersoy, Nuri
2016-01-01
The increased usage of fiber reinforced polymer composites in load bearing applications requires a detailed understanding of the process induced residual stresses and their effect on the shape distortions. This is utmost necessary in order to have more reliable composite manufacturing since the r...
Energy Technology Data Exchange (ETDEWEB)
Coppola, Anthony [General Motors Company, Flint, MI (United States); Faruque, Omar [Ford Motor Company, Dearborn, MI (United States); Truskin, James F [FCA US LLC, Auburn Hills, MI (United States); Board, Derek [Ford Motor Company, Dearborn, MI (United States); Jones, Martin [Ford Motor Company, Dearborn, MI (United States); Tao, Jian [FCA US LLC, Auburn Hills, MI (United States); Chen, Yijung [Ford Motor Company, Dearborn, MI (United States); Mehta, Manish [M-Tech International LLC, Dubai (United Arab Emirates)
2017-09-27
As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared research project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing
Interface structure and strength in model dental resin composites
DEFF Research Database (Denmark)
Nielsen, Mette Skovgaard
Most composites for dental restoration are based on a methacrylate polymer matrix and a ceramic filler, often silanized silica or silicate glasses. A problem with these composites is the polymerization shrinkage, which causes the filling to loosen from the tooth under formation of a crack....... This will facilitate discoloration by colorants from e.g. coffee and red wine entering the crack, or even worse lead to secondary caries and infection of dental pulp due to bacteria. The aim of this study was to develop a low shrinkage dental composite based on an expandable metastable zirconia filler A metastable...... the polymer shrinkage and reduces the overall shrinkage of the composite. In this thesis the zirconia filler is characterized and tested for the potential as a filler for use in dental composites. The zirconia powder is composed of highly agglomerated particles of nanosized crystals. The average particle size...
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Modeling the curing process of thick-section autoclave cured composites
Loos, A. C.; Dara, P. H.
1985-01-01
Temperature gradients are significant during cure of large area, thick-section composites. Such temperature gradients result in nonuniformly cured parts with high void contents, poor ply compaction, and variations in the fiber/resin distribution. A model was developed to determine the temperature distribution in thick-section autoclave cured composites. Using the model, long with temperature measurements obtained from the thick-section composites, the effects of various processing parameters on the thermal response of the composites were examined. A one-dimensional heat transfer model was constructed for the composite-tool assembly. The governing differential equations and associated boundary conditions describing one-dimensional unsteady heat-conduction in the composite, tool plate, and pressure plate are given. Solution of the thermal model was obtained using an implicit finite difference technique.
Communication: Journalism Education Today, 2002
2002-01-01
Considers how photography is more than just pointing a camera in the right direction. Explains that good pictures use elements of composition such as the Rule of Thirds, leading lines, framing and repetition of shapes. Presents 16 photographs from college and secondary school publications, and describes the techniques that makes them effective.…
Geochemical Modeling Of F Area Seepage Basin Composition And Variability
International Nuclear Information System (INIS)
Millings, M.; Denham, M.; Looney, B.
2012-01-01
chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.
A compositional process control model and its application to biochemical processes.
Jonker, C.M.; Treur, J.
1999-01-01
A compositional generic process control model is presented which has been applied to control enzymatic biochemical processes. The model has been designed at a conceptual and formal level using the compositional development method DESIRE, and includes processes for analysis, planning and simulation.
A Compositional Process Control Model and its Application to Biochemical Processes
Jonker, C.M.; Treur, J.
2002-01-01
A compositional generic process control model is presented which has been applied to control enzymatic biochemical processes. The model has been designed at a conceptual and formal level using the compositional development method DESIRE, and includes processes for analysis, planning and simulation.
Gouin O'Shaughnessey, P.; Dube, M; Fernandez Villegas, I.
2016-01-01
A three-dimensional finite element model of the induction welding of carbon fiber/polyphenylene sulfide thermoplastic composites is developed. The model takes into account a stainless steel mesh heating element located at the interface of the two composite adherends to be welded. This heating
Wave propagation modeling in composites reinforced by randomly oriented fibers
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
Modeling compositional dynamics based on GC and purine contents of protein-coding sequences
Zhang, Zhang
2010-11-08
Background: Understanding the compositional dynamics of genomes and their coding sequences is of great significance in gaining clues into molecular evolution and a large number of publically-available genome sequences have allowed us to quantitatively predict deviations of empirical data from their theoretical counterparts. However, the quantification of theoretical compositional variations for a wide diversity of genomes remains a major challenge.Results: To model the compositional dynamics of protein-coding sequences, we propose two simple models that take into account both mutation and selection effects, which act differently at the three codon positions, and use both GC and purine contents as compositional parameters. The two models concern the theoretical composition of nucleotides, codons, and amino acids, with no prerequisite of homologous sequences or their alignments. We evaluated the two models by quantifying theoretical compositions of a large collection of protein-coding sequences (including 46 of Archaea, 686 of Bacteria, and 826 of Eukarya), yielding consistent theoretical compositions across all the collected sequences.Conclusions: We show that the compositions of nucleotides, codons, and amino acids are largely determined by both GC and purine contents and suggest that deviations of the observed from the expected compositions may reflect compositional signatures that arise from a complex interplay between mutation and selection via DNA replication and repair mechanisms.Reviewers: This article was reviewed by Zhaolei Zhang (nominated by Mark Gerstein), Guruprasad Ananda (nominated by Kateryna Makova), and Daniel Haft. 2010 Zhang and Yu; licensee BioMed Central Ltd.
Proposed framework for thermomechanical life modeling of metal matrix composites
Halford, Gary R.; Lerch, Bradley A.; Saltsman, James F.
1993-01-01
The framework of a mechanics of materials model is proposed for thermomechanical fatigue (TMF) life prediction of unidirectional, continuous-fiber metal matrix composites (MMC's). Axially loaded MMC test samples are analyzed as structural components whose fatigue lives are governed by local stress-strain conditions resulting from combined interactions of the matrix, interfacial layer, and fiber constituents. The metallic matrix is identified as the vehicle for tracking fatigue crack initiation and propagation. The proposed framework has three major elements. First, TMF flow and failure characteristics of in situ matrix material are approximated from tests of unreinforced matrix material, and matrix TMF life prediction equations are numerically calibrated. The macrocrack initiation fatigue life of the matrix material is divided into microcrack initiation and microcrack propagation phases. Second, the influencing factors created by the presence of fibers and interfaces are analyzed, characterized, and documented in equation form. Some of the influences act on the microcrack initiation portion of the matrix fatigue life, others on the microcrack propagation life, while some affect both. Influencing factors include coefficient of thermal expansion mismatch strains, residual (mean) stresses, multiaxial stress states, off-axis fibers, internal stress concentrations, multiple initiation sites, nonuniform fiber spacing, fiber debonding, interfacial layers and cracking, fractured fibers, fiber deflections of crack fronts, fiber bridging of matrix cracks, and internal oxidation along internal interfaces. Equations exist for some, but not all, of the currently identified influencing factors. The third element is the inclusion of overriding influences such as maximum tensile strain limits of brittle fibers that could cause local fractures and ensuing catastrophic failure of surrounding matrix material. Some experimental data exist for assessing the plausibility of the proposed
Ceramic Matrix Composite Environmental Barrier Coating Durability Model, Phase I
National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...
Image Reconstruction Based Modeling of 3D Textile Composite (Postprint)
National Research Council Canada - National Science Library
Zhou, Eric; Mollenhauer, David; Iarve, Endel
2007-01-01
... joints, near-net shape processing, etc. To fully understand the mechanical behavior of 3-D textile composites, it is essential to perform analyses to predict effective material properties and damage initiation and growth...
Evaluation of the slumping property of dental composites during modeling
Directory of Open Access Journals (Sweden)
Tong-Mei Wang
2012-12-01
Conclusion: With this method, the handling characteristic of different composite materials can be identified. Results of this study can quantify slumping differences and help select materials for their intended use.
Holistic High-Fidelity Modeling Strategy for Advanced Composites
National Aeronautics and Space Administration — Engineering demands of current and next generation aerospace vehicles dictate the use of state-of-the-art materials. Advanced Fiber-Reinforced Polymer Composites...
Ceramic Matrix Composite Environmental Barrier Coating Durability Model, Phase II
National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...
Development and Validation of a Constitutive Model for Dental Composites during the Curing Process
Wickham Kolstad, Lauren
Debonding is a critical failure of a dental composites used for dental restorations. Debonding of dental composites can be determined by comparing the shrinkage stress of to the debonding strength of the adhesive that bonds it to the tooth surface. It is difficult to measure shrinkage stress experimentally. In this study, finite element analysis is used to predict the stress in the composite during cure. A new constitutive law is presented that will allow composite developers to evaluate composite shrinkage stress at early stages in the material development. Shrinkage stress and shrinkage strain experimental data were gathered for three dental resins, Z250, Z350, and P90. Experimental data were used to develop a constitutive model for the Young's modulus as a function of time of the dental composite during cure. A Maxwell model, spring and dashpot in series, was used to simulate the composite. The compliance of the shrinkage stress device was also taken into account by including a spring in series with the Maxwell model. A coefficient of thermal expansion was also determined for internal loading of the composite by dividing shrinkage strain by time. Three FEA models are presented. A spring-disk model validates that the constitutive law is self-consistent. A quarter cuspal deflection model uses separate experimental data to verify that the constitutive law is valid. Finally, an axisymmetric tooth model is used to predict interfacial stresses in the composite. These stresses are compared to the debonding strength to check if the composite debonds. The new constitutive model accurately predicted cuspal deflection data. Predictions for interfacial bond stress in the tooth model compare favorably with debonding characteristics observed in practice for dental resins.
Sun, C. T.; Yoon, K. J.
1990-01-01
A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
An Ice Model That is Consistent with Composite Rheology in GIA Modelling
Huang, P.; Patrick, W.
2017-12-01
There are several popular approaches in constructing ice history models. One of them is mainly based on thermo-mechanical ice models with forcing or boundary conditions inferred from paleoclimate data. The second one is mainly based on the observed response of the Earth to glacial loading and unloading, a process called Glacial Isostatic Adjustment or GIA. The third approach is a hybrid version of the first and second approaches. In this presentation, we will follow the second approach which also uses geological data such as ice flow, terminal moraine data and simple ice dynamic for the ice sheet re-construction (Peltier & Andrew 1976). The global ice model ICE-6G (Peltier et al. 2015) and all its predecessors (Tushingham & Peltier 1991, Peltier 1994, 1996, 2004, Lambeck et al. 2014) are constructed this way with the assumption that mantle rheology is linear. However, high temperature creep experiments on mantle rocks show that non-linear creep laws can also operate in the mantle. Since both linear (e.g. diffusion creep) and non-linear (e.g. dislocation) creep laws can operate simultaneously in the mantle, mantle rheology is likely composite, where the total creep is the sum of both linear and onlinear creep. Preliminary GIA studies found that composite rheology can fit regional RSL observations better than that from linear rheology(e.g. van der Wal et al. 2010). The aim of this paper is to construct ice models in Laurentia and Fennoscandia using this second approach, but with composite rheology, so that its predictions can fit GIA observations such as global RSL data, land uplift rate and g-dot simultaneously in addition to geological data and simple ice dynamics. The g-dot or gravity-rate-of-change data is from the GRACE gravity mission but with the effects of hydrology removed. Our GIA model is based on the Coupled Laplace-Finite Element method as described in Wu(2004) and van der Wal et al.(2010). It is found that composite rheology generally supports a thicker
Modeling the Mechanical Behavior of Ceramic Matrix Composite Materials
Jordan, William
1998-01-01
Ceramic matrix composites are ceramic materials, such as SiC, that have been reinforced by high strength fibers, such as carbon. Designers are interested in using ceramic matrix composites because they have the capability of withstanding significant loads while at relatively high temperatures (in excess of 1,000 C). Ceramic matrix composites retain the ceramic materials ability to withstand high temperatures, but also possess a much greater ductility and toughness. Their high strength and medium toughness is what makes them of so much interest to the aerospace community. This work concentrated on two different tasks. The first task was to do an extensive literature search into the mechanical behavior of ceramic matrix composite materials. This report contains the results of this task. The second task was to use this understanding to help interpret the ceramic matrix composite mechanical test results that had already been obtained by NASA. Since the specific details of these test results are subject to the International Traffic in Arms Regulations (ITAR), they are reported in a separate document (Jordan, 1997).
Boundary conditions for a composite model of leptons and quarks
International Nuclear Information System (INIS)
Mainland, G B
2015-01-01
Because the existence of families of elements and hadrons was ultimately understood by the realization that atoms and hadrons are composite, an obvious approach to explaining the existence of lepton and quark families is to assume that the particles in these families are also composite. The mass and spin spectra of leptons and quarks suggest that if these particles are composite, they are most likely bound states of a scalar and spin-1/2 fermion interacting via electrodynamics. However, if they are composite, the bound states must be highly relativistic since in each family the least massive member has a small mass compared with the others. Also, composite leptons and quarks must be extremely tightly bound since no internal structure has ever been conclusively detected. Highly relativistic, bound-state, Bethe- Salpeter solutions of a scalar and a spin-1/2 fermion bound by minimal electrodynamics are discussed. These specific solutions cannot describe leptons or quarks as bound states because the magnitude of the charges of the constituents are an order of magnitude larger than e. The boundary conditions, however, allow solutions when the constituents have charges with magnitudes on the order of e. (paper)
Computational modeling of biodegradable starch based polymer composites
Joshi, Sachin Sudhakar
2007-12-01
Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '
Dong, ZhongZhe; Faria, Cassio; Hromčík, Martin; Pluymers, Bert; Šebek, Michael; Desmet, Wim
2017-09-01
Smart structures with integrated macro fiber composite (MFC) piezoelectric transducers have been increasingly investigated in engineering. A simple but elaborate system model of such smart structure not only can predict system dynamics, but also can reduce challenges in application. Therefore, the equivalent force (EF) modeling approach is presented to model the plate-type structures with integrated piezoelectric actuators in a semi-analytical fashion: analytical EF is applied to finite element (FE) structural models. The EF is derived from the bending effort balance between the equivalent loads, and the equivalent loads are developed by introducing the spatial distribution into a generalized Hamilton’s principle. The proposed approach is validated by cantilever aluminum beams with integrated MFC actuators and it is consistent with existing alternative approaches from literature. Then, it is validated on a non-homogeneous composite plate for dynamic applications: a laminated composite plate with integrated MFC actuators was manufactured and both an impact test and MFC drive test were elaborately carried out. The modal validation shows the high fidelity of the EF model and the predicted velocity frequency responds functions (FRFs) agree well with experimental measurement. Being applicable to both numerical and analytical modeling approaches, the EF is actually assigned to the out-plane displacement on the structure and distributed along the edges of the actuators. Therefore, it is convenient to use in EF models. The rotational degrees of freedom could also be eliminated in the EF models without losing structure complexity, since they neither link to the electromechanical coupling nor have a significant kinetic contribution to the system.
Thermomechanical properties of polypropylene-based lightweight composites modeled on the mesoscale
Czech Academy of Sciences Publication Activity Database
Dostálová, Darina; Kafka, Vratislav; Vokoun, David; Heller, Luděk; Matějka, L.; Kadeřávek, Lukáš; Pěnčík, J.
2017-01-01
Roč. 26, Oct (2017), s. 5166-5172 ISSN 1059-9495 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:68378271 ; RVO:68378297 Keywords : building material * composite * creep tests * mesomechanical model * thermal insulation Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.331, year: 2016
Cutting power prediction model for turning of GFRP composites ...
African Journals Online (AJOL)
user
Glass fiber reinforced plastic (GFRP) composite materials are replacing traditional engineering materials owing to their superior properties ... highly corrosive industrial applications. They are ... (2000) turning operation is one of the most important operation used for machine elements construction in manufacturing industries ...
Modelling web service composition for deductive web mining
Svátek, Vojtěch; Vacura, Miroslav; Labský, Martin; Ten Teije, Annette
2007-01-01
Composition of simpler web services into custom applications is understood as promising technique for information requests in a heterogeneous and changing environment. This is also relevant for applications characterised as deductive web mining (DWM). We suggest to use problem-solving methods (PSMs)
Human body composition models and methodology : theory and experiment
Wang, Z.M.
1997-01-01
The study of human body composition is a branch of human biology which focuses on the in vivo quantification of body components, the quantitative relationships between components, and the quantitative changes in these components related to various influencing factors.
Modelling the role of compositional fluctuations in nucleation kinetics
Czech Academy of Sciences Publication Activity Database
Ženíšek, J.; Kozeschnik, E.; Svoboda, Jiří; Fischer, F. D.
2015-01-01
Roč. 91, JUN (2015), s. 365-376 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Kinetics * Nucleation and growth * Precipitates * Interface energy * Fluctuations of chemical composition Subject RIV: BJ - Thermodynamics Impact factor: 5.058, year: 2015
Modelling and analysis of abrasive wear performance of composites ...
African Journals Online (AJOL)
It has been observed that fibre length plays a major role in wear phenomenon. The length of the fibre has been optimized using a popular evolutionary technique known as particle swarm optimization (PSO) and neural network. The study recommends that fibre length should be 7-8 mm for minimum wear of the composites.
A finite element model for sound transmission through laminated composite plates
Ramakrishnan, J. V.; Koval, L. R.
1987-01-01
The finite element method is used to model the noise transmission through unstiffened and stiffened laminated composite panels of finite size into a closed cavity. Plate and acoustic finite elements are coupled and the frequencies of the coupled modes are determined. The model is then used to calculate the noise reduction of the panel. Results are compared to experimental values obtained at the NASA Langley Research Center. The purpose of this paper is to demonstrate the use of finite elements to model, for noise transmission calculations, complex structures, such as a stiffened composite panel or a composite panel with windows.
Development of a Damage Quantification Model for Composite Skin-Stiffener Structures
Loendersloot, Richard; Ooijevaar, T.H.; de Boer, Andries; Akkerman, Remko; Boller, C; Janocha, H
2011-01-01
The development of a model-based approach for a damage severity assessment applied on a complex composite skin structure with stiffeners is presented in this paper. Earlier investigations on composite structures with stiffeners revealed that a vibration based structural health monitoring approach,
Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites
Lin, Shang-Chang; Hu, Chia-Jui; Shih, Wen-Pin; Lin, Pei-Chun
2015-01-01
We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic ...
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2008-01-01
Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of...
A model study of the size and composition distribution of aerosols in an aircraft exhaust
Energy Technology Data Exchange (ETDEWEB)
Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)
1997-12-31
A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.
Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.
2018-01-01
Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…
Models for composing software : an analysis of software composition and objects
Bergmans, Lodewijk
1999-01-01
In this report, we investigate component-based software construction with a focus on composition. In particular we try to analyze the requirements and issues for components and software composition. As a means to understand this research area, we introduce a canonical model for representing
New composite distributions for modeling industrial income and wealth per employee
Wiegand, Martin; Nadarajah, Saralees
2018-02-01
Forbes Magazine offers an annual list of the 2000 largest publicly traded companies, shedding light on four different measurements: Sales, profits, market value and assets held. Soriano-Hernández et al. (2017) modeled these wealth metrics using composite distributions made up of two parts. In this note, we introduce different composite distributions to more accurately describe the spread of these wealth metrics.
Modeling the Nd isotopic composition in the North Atlantic basin using an eddy-permitting model
Directory of Open Access Journals (Sweden)
T. Arsouze
2010-09-01
Full Text Available Boundary Exchange (BE – exchange of elements between continental margins and the open ocean has been emphasized as a key process in the oceanic cycle of neodymium (Nd (Lacan and Jeandel, 2005a. Here, we use a regional eddy-permitting resolution Ocean General Circulation Model (1/4° of the North Atlantic basin to simulate the distribution of the Nd isotopic composition, considering BE as the only source. Results show good agreement with the data, confirming previous results obtained using the same parameterization of the source in a coarse resolution global model (Arsouze et al., 2007, and therefore the major control played by the BE processes in the Nd cycle on the regional scale. We quantified the exchange rate of the BE, and found that the time needed for the continental margins to significantly imprint the chemical composition of the surrounding seawater (further referred as characteristic exchange time is of the order of 0.2 years. However, the timescale of the BE may be subject to large variations as a very short exchange time (a few days is needed to reproduce the highly negative values of surface waters in the Labrador Sea, whereas a longer one (up to 0.5 years is required to simulate the radiogenic influence of basaltic margins and distinguish the negative isotopic signatures of North Atlantic Deep Water from the more radiogenic southern origin water masses. This likely represents geographical variations in erosion fluxes and the subsequent particle load onto the continental margins. Although the parameterization of the BE is the same in both configurations of the model, the characteristic exchange time in the eddy-permitting configuration is significantly lower than the previous evaluations using a low resolution configuration (6 months to 10 years, but however in agreement with the available seawater Nd isotope data. This results highlights the importance of the model dynamics in simulating the BE process.
Su-Yuen, Hsu
2011-01-01
Textile composite materials have good potential for constructing composite structures where the effects of three-dimensional stresses are critical or geometric complexity is a manufacturing concern. There is a recent interest in advancing competence within Langley Research Center for modeling the degradation of mechanical properties of textile composites. In an initial effort, two critical areas are identified to pursue: (1) Construction of internal geometry of textile composites, and (2) Rate-independent continuum damage mechanics. This report documents reviews on the two subjects. Various reviewed approaches are categorized, their assumptions, methods, and progress are briefed, and then critiques are presented. Each review ends with recommended research.
Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites
Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.
2010-01-01
In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix
A manpower planning model for the composition of officers of the Indonesian Army personnel system
Suryadi
1990-01-01
Approved for public release; distribution is unlimited. (U) This thesis documents the methodology and parameters used in designing a manpower planning model using the GradeTime-in-Grade model for controlling the composition of Indonesian Army officers. This model of a manpower system consists of a two-dimensional state space Markov Model with special structure. The model provides manpower planners with the capability of testing alternative policies and adjusting model parameters to improve...
A Basis for Modelling Ceramic Composite Armour Defeat
1989-06-01
MRL-RR-3-89 ABSTRACT This work takes some of the major features of ceramic composite armour failure, viz. fracture conoid formation, dishing failure...fractured in the form of a conoid followed by tensile failure in the ceramic initiating at the ceramic/backing plate interface, opposite the impact location...damage simulated by Wilkins 131 is similar to observed fracture conoids and at similar angles to cone cracks seen in quasi-static indentation of glass
Modeling NYSE Composite US 100 Index with a Hybrid SOM and MLP-BP Neural Model
Directory of Open Access Journals (Sweden)
Adriano Beluco
2017-02-01
Full Text Available Neural networks are well suited to predict future results of time series for various data types. This paper proposes a hybrid neural network model to describe the results of the database of the New York Stock Exchange (NYSE. This hybrid model brings together a self organizing map (SOM with a multilayer perceptron with back propagation algorithm (MLP-BP. The SOM aims to segment the database into different clusters, where the differences between them are highlighted. The MLP-BP is used to construct a descriptive mathematical model that describes the relationship between the indicators and the closing value of each cluster. The model was developed from a database consisting of the NYSE Composite US 100 Index over the period of 2 April 2004 to 31 December 2015. As input variables for neural networks, ten technical financial indicators were used. The model results were fairly accurate, with a mean absolute percentage error varying between 0.16% and 0.38%.
Modeling and Analysis of Composites Using Smart Materials and Optimization Techniques
National Research Council Canada - National Science Library
Chattopadhyay, A
2001-01-01
The vibratory load reduction at rotor hub using self-sensing piezoelectric material and closed loop control is investigated, A composite box beam theory is developed to model the primary load carrying...
Finite element modelling of crash response of composite aerospace sub-floor structures
McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.
Homogenization Modeling for Mechanical Properties of Composite Conductor With Cooling Channel
National Research Council Canada - National Science Library
Sun, We
2002-01-01
.... A composite cylinder assembly model was developed in the level 1 homogenization for metallic core with a cooling channel, in which the cooling channel was analogized as a fiber void with null material properties...
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
SO14 unified model with elementary electron and muon families and composite tau family
International Nuclear Information System (INIS)
Shaw, G.L.; Daghighian, F.
1982-01-01
Previously we constructed a unified model based on the exceptional group E 6 in which the SO 10 electron family f/sub e/ (e,ν/sub e/,u,d) is elementary and the μ and tau families are composite 16's. Motivated by the very strong constraints on any composite model of e or μ from the phenomenal agreement between theory and experiment for their anomalous magnetic moments, we present an SO 14 model (a straightforward extension of the E 6 model) in which f/sub e/ and f/sub μ/ are elementary and f/sub tau/ is composite. Another composite SO 10 16 and two 144's are predicted
ACES Model Composition and Development Toolkit to Support NGATS Concepts, Phase I
National Aeronautics and Space Administration — The key innovation proposed in this effort is the development of a model composition toolkit that will enable NASA Airspace Concept Evaluation System (ACES) users to...
XFEM modelling of open-hole woven fabric kenaf composite plates
Ahmad, H.; Supar, K.; Romanye, A. H.
2017-09-01
Woven fabric kenaf composites offer superior specific stiffness (and strength), renewable, better handling and relatively cheaper than commercial fiber composites counterparts. Current work is carried out to predict the notched strength of woven fabric kenaf fiber reinforced polymer (KFRP) composite plates containing a circular hole. Extended finite element framework is implemented within two-dimensional ABAQUS CAE to implement traction-separation as a constitutive model. The parameter used in constitutive modeling are unnotched strength, σ0 (which is measured independently) and a single fracture energy value, Gc* was used throughout all modeling framework series. The modeling series covers a range of lay-up types woven fabric kenaf composites lay-ups with notch size of 2.5 mm, 5 mm and 10 mm at the plate centerline. The prediction in current study showed reasonable agreement with experimental datasets.
Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites
Directory of Open Access Journals (Sweden)
Shang-Chang Lin
2015-01-01
Full Text Available We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors.
Failure Modeling of SiC/SiC Mini-Composites in Air Oxidizing Environments
Yu, Guoqiang; Gao, Xiguang; Chen, Yue; Song, Yingdong
2018-03-01
An iterative method was presented for simulation of the failure process of SiC/SiC mini-composites with pyrolytic carbon interphase exposed to air oxidizing environments under a constant load at 900 °C. This method was based on the possibility fracture strength of SiC fibers caused by random defects and the fiber stress distribution in mini-composites. The fiber strength probability model and Monte Carlo simulation were combined to generate the fracture strength along SiC fibers at 900 °C. The influence of fiber arrangement on fiber stress distribution was assessed to simplify the geometry model which was used to calculate the fiber stress distribution in the mini-composites. The failure process of the mini-composites was simulated, and the calculated oxidation life of the mini-composites matches the experimental data well with an error of -9.40%.
van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.
2011-01-01
Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).
Villeneuve, Jérôme; Cadoz, Claude; Castagné, Nicolas
2015-01-01
The motivation of this paper is to highlight the importance of visual representations for artists when modeling and simulating mass-interaction physical networks in the context of sound synthesis and musical composition. GENESIS is a musician-oriented software environment for sound synthesis and musical composition. However, despite this orientation, a substantial amount of effort has been put into building a rich variety of tools based on static or dynamic visual representations of models an...
Multi-physics modeling of multifunctional composite materials for damage detection
Sujidkul, Thanyawalai
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to
Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model
Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther
2014-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
Trout, Dawn H.; Burford, Janessa
2013-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Brøndsted, Povl
2009-01-01
A statistical computational model of strength and damage of unidirectional carbon fiber reinforced composites under compressive and cyclic compressive loading is presented in this paper. The model is developed on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics...... concept and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers has a negative effect of the damage resistance of a composite. Further, the static...
Micro-Scale Experiments and Models for Composite Materials with Materials Research
DEFF Research Database (Denmark)
Zike, Sanita
resin used in polymer/fibre composites for wind turbine blades combining experimental, numerical, and analytical approaches. Experimentally, in order to mimic the stress state created by a void in a bulk material, test samples with finite root radii were made and subjected to a double cantilever beam......Numerical models are frequently implemented to study micro-mechanical processes in polymer/fibre composites. To ensure that these models are accurate, the length scale dependent properties of the fibre and polymer matrix have to be taken into account. Most often this is not the case, and material...... on polymer and polymer/composite materials....
On two-particle N=1 supersymmetric composite grand unified models
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1984-01-01
A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields
Hanford Site Composite Analysis Technical Approach Description: Atmospheric Transport Modeling.
Energy Technology Data Exchange (ETDEWEB)
Sun, B. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Lehman, L. L. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)
2017-10-02
The U.S. Department of Energy (DOE) in DOE O 435.1 Chg. 1, Radioactive Waste Management, requires the preparation and maintenance of a composite analysis (CA). The primary purpose of the CA is to provide a reasonable expectation that the primary public dose limit is not likely to be exceeded by multiple source terms that may significantly interact with plumes originating at a low-level waste disposal facility. The CA is used to facilitate planning and land use decisions that help assure disposal facility authorization will not result in long-term compliance problems; or, to determine management alternatives, corrective actions or assessment needs, if potential problems are identified.
Composite Pressure Vessel Variability in Geometry and Filament Winding Model
Green, Steven J.; Greene, Nathanael J.
2012-01-01
Composite pressure vessels (CPVs) are used in a variety of applications ranging from carbon dioxide canisters for paintball guns to life support and pressurant storage on the International Space Station. With widespread use, it is important to be able to evaluate the effect of variability on structural performance. Data analysis was completed on CPVs to determine the amount of variation that occurs among the same type of CPV, and a filament winding routine was developed to facilitate study of the effect of manufacturing variation on structural response.
Compositions and methods for modeling Saccharomyces cerevisiae metabolism
DEFF Research Database (Denmark)
2012-01-01
The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S. cerevisiae reactants to a plurality of S. cerevisiae reactions, a constraint set for the plurality of S. cerevisiae reactions......, and commands for determining a distribution of flux through the reactions that is predictive of a S. cerevisiae physiological function. A model of the invention can further include a gene database containing information characterizing the associated gene or genes. The invention further provides methods...... for making an in silica S. cerevisiae model and methods for determining a S. cerevisiae physiological function using a model of the invention. The invention provides an in silica model for determining a S. cerevisiae physiological function. The model includes a data structure relating a plurality of S...
Numerical modeling of isothermal compositional grading by convex splitting methods
Li, Yiteng
2017-04-09
In this paper, an isothermal compositional grading process is simulated based on convex splitting methods with the Peng-Robinson equation of state. We first present a new form of gravity/chemical equilibrium condition by minimizing the total energy which consists of Helmholtz free energy and gravitational potential energy, and incorporating Lagrange multipliers for mass conservation. The time-independent equilibrium equations are transformed into a system of transient equations as our solution strategy. It is proved our time-marching scheme is unconditionally energy stable by the semi-implicit convex splitting method in which the convex part of Helmholtz free energy and its derivative are treated implicitly and the concave parts are treated explicitly. With relaxation factor controlling Newton iteration, our method is able to converge to a solution with satisfactory accuracy if a good initial estimate of mole compositions is provided. More importantly, it helps us automatically split the unstable single phase into two phases, determine the existence of gas-oil contact (GOC) and locate its position if GOC does exist. A number of numerical examples are presented to show the performance of our method.
DEFF Research Database (Denmark)
Krych, Lukasz
The human gastrointestinal tract (GIT) is inhabited by a vast number of microorganisms collectively called gut microbiota (GM). Among many functions assigned to the GM, its ability to stimulate and develop the host’s immune system has become a subject of intensive studies of many research groups...... experimental model. An additional task of this thesis was to develop a fast screening method and to investigate the distribution of two bacterial species namely: Akkermansia muciniphila and Candidatus Savagella in detail. These two members of the gut microbial community were previously reported, including our...... to establish an optimal window of time capturing the crosstalk between the GM and inflammatory parameters. We demonstrated that both C-section and cross-fostering with a genetically distinct mouse strain influence the GM composition and immune markers in mice, and that this period during early life...
Calibration of a finite element composite delamination model by experiments
DEFF Research Database (Denmark)
Gaiotti, M.; Rizzo, C.M.; Branner, Kim
2013-01-01
by a previously established modeling strategy (Branner et al., 2011; Gaiotti & Rizzo, 2011), using a pure shell model where the delamination is accounted for by properly offsetting its surfaces and connecting them to the intact plate via rigid link constraining algorithms. The numerical model developed...... modes related to the production methods is presented in this paper. A microscopic analysis of the fracture surfaces was carried out in order to better understand the failure mechanisms. © 2013 Taylor & Francis Group....
Micro-mechanical Analysis of Fiber Reinforced Cementitious Composites using Cohesive Crack Modeling
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2006-01-01
This paper discusses the mechanism appearing during fiber debonding in fiber reinforced cementitious composite. The investigation is performed on the micro scale by use of a Finite Element Model. The model is 3 dimensional and the fictitious crack model and a mixed mode stress formulation...... are implemented. It is shown that the cohesive law for a unidirectional fiber reinforced cementitious composite can be found through superposition of the cohesive law for mortar and the fiber bridging curve. A comparison between the numerical and an analytical model for fiber pull-out is performed....
Development of an interfacial model for forming of a metal-composite material system
Kalyanasundaram, Shankar; Compston, Paul; Mosse, Luke
2013-12-01
This work presents a finite element model for the stamp forming simulation of Fiber-Metal laminate system consisting of glass fiber reinforced composite material layer sandwiched between two aluminium layers. A novel interfacial model was developed to analyze the role of the interface between the metal and composite layers. A one way coupled thermo mechanical model was used to study the effect of pre heating the material system to improve the formability. Comparison between the simulation and experiments were carried out for forming of rectangular cups. The results indicate that the interfacial model is effective in predicting the forming behavior of this advanced light weight material system.
The diversity of planetary system from formation/composition population synthesis models
Alibert, Yann; thiabaud, amaury; marboeuf, ulysses; swoboda, david; benz, willy; mezger, klaus; leya, ingo
2015-12-01
Extrasolar planetary systems show an extreme diversity in mass and orbital architecture. Explaining this diversity is one of the key challenges for theoretical models and requires understanding the formation, composition and evolution of planetary systems from the stage of the protoplanetary disk up to the full mature planetary system. Such an effort needs the development of end-to-end, necessarily simplified, formation models used in a population synthesis approach. We present in this contribution such planetary system formation and composition models. Our planetary system formation models include the following effects: planetary growth by capture of solids and gas, protoplanetary disk structure and evolution, planet-planet and planet-disk interactions. In addition, we compute the composition of the solids and gas in the protoplanetary disk and their evolution with time. The formation and composition models allow therefore the determination of the composition of planets in terms of refractory elements (Mg, Si, Fe, etc…) as well as volatile compounds (water, CO2, CO, NH3, etc…), in a way that is self-consistent with the formation process of the different members of the planetary system. We will show the results of these formation/composition models, and will compare the diversity of observed and synthetic planetary systems. Considering the solar system, we will show how different formation scenarios translate into different planetary compositions. Finally, we will demonstrate how the simultaneous determination of mass and radius of a statistical number of warm to cold earth to neptune mass bodies at different ages can be used to constrain the composition (in particular the volatile content) of planets, and how the same observations (mass, radius, period) can be used in order to select planets that are best suited for follow-up habitability studies.
Composite symmetry-protected topological order and effective models
Nietner, A.; Krumnow, C.; Bergholtz, E. J.; Eisert, J.
2017-12-01
Strongly correlated quantum many-body systems at low dimension exhibit a wealth of phenomena, ranging from features of geometric frustration to signatures of symmetry-protected topological order. In suitable descriptions of such systems, it can be helpful to resort to effective models, which focus on the essential degrees of freedom of the given model. In this work, we analyze how to determine the validity of an effective model by demanding it to be in the same phase as the original model. We focus our study on one-dimensional spin-1 /2 systems and explain how nontrivial symmetry-protected topologically ordered (SPT) phases of an effective spin-1 model can arise depending on the couplings in the original Hamiltonian. In this analysis, tensor network methods feature in two ways: on the one hand, we make use of recent techniques for the classification of SPT phases using matrix product states in order to identify the phases in the effective model with those in the underlying physical system, employing Künneth's theorem for cohomology. As an intuitive paradigmatic model we exemplify the developed methodology by investigating the bilayered Δ chain. For strong ferromagnetic interlayer couplings, we find the system to transit into exactly the same phase as an effective spin-1 model. However, for weak but finite coupling strength, we identify a symmetry broken phase differing from this effective spin-1 description. On the other hand, we underpin our argument with a numerical analysis making use of matrix product states.
Detailed modelling of biomass pyrolysis: biomass structure and composition
International Nuclear Information System (INIS)
Hugony, F.; Migliavacca, G.; Faravelli, T.; Ranzi, E.
2007-01-01
The research routes followed in the field of numerical modelling development for biomass devolatilization are here summarised. In this first paper a wide introduction concerning the description of the chemical nature of the main classes of compounds which constitute biomasses is reported, it is the starting point for the subsequent description of the developed models, described in the companion paper [it
Stochiometry, Microbial community composition and decomposition, a modelling analysis
Berninger, Frank; Zhou, Xuan; Aaltonen, Heidi; Köster, Kajar; Heinonsalo, Jussi; Pumpanen, Jukka
2017-04-01
Enzyme activity based litter decomposition models describe the decomposition of soil organic matter as a function of microbial biomass and its activity. In these models, decomposition depends largely on microbial and litter stoïchiometry. We, used the model of Schimel and Weintraub (Soil Biology & Biochemistry 35 (2003) 549-563 largely relying on the modification of Waring B et al. Ecology Letters, (2013) 16: 887-894) and we modified the model to include bacteria, fungi and mycorrizal fungi as decomposer groups assuming different stochiometries. The model was tested against previously published data from a fire chronosequence from northern Finland. The model reconstructed well the development of soil organic matter, microbial biomasses, enzyme actitivies with time after fire. In a theoretical model analysis we tried to understand how the exchange of carbon and nitrogen between mycorrhiza and the plant as different litter stoïchiometries interact. The results indicate that if a high percentage of fungal N uptake is transferred to the plant mycorrhizal biomass will decrease drastically and does decrease, due to low mycorrhizal biomasses, the N uptake of plants. If a lower proportion of the fungal N uptake is transferred to the plant the N uptake of the plants is reasonable stable while the proportion of mycorrhiza of the total fungal biomass varies. The model is also able to simulate priming of soil organic matter decomposition.
Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites
Min, J. B.; Xue, D.; Shi, Y.
2013-01-01
A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.
Search for composite models with family gauge symmetries
International Nuclear Information System (INIS)
Zhou, B.R.; Huerta, R.
1985-01-01
We have analyzed a class of three-preon models based on a strategy expected to lead to family gauge symmetry SUsup(F)(n) and found that, in order to obey the assumption of asymptotic freedom and infrared confinement for the hypercolor group SUsub(H)(N), 't Hooft anomaly consistency conditions, especially the requirement of dynamical generation of quark-lepton masses by means of color condensates of exotic fermions, the only possible model is the three-fermion model with the hypercolor group SUsub(H)(4) and the family gauge group SUsup(F)(2). All the models considered which contain scalar-preons are excluded from being realistic models unless some new mechanism of quark-lepton mass generation is worked out. (orig.)
The Composition of GRB Jets and the ICMART Model
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bing [University of Nevada, Las Vegas; Guo, Fan [Los Alamos National Laboratory
2015-07-16
Models of gamma ray bursts (GRBs) are drawn from observations of light curves, spectra, and spectral evolution. The ICMART (Internal Collision-induced MAgnetic Reconnection & Turbulence) model and some of its features are presented. Increasing evidence points towards Poynting-flux-dominated jets in at least some (even a good fraction of) GRBs. The main emission component (Band) is of a synchrotron emission origin, produced by electrons accelerated in the emission region. The data seem to require that magnetic reconnection in the moderately-high sigma regime is the mechanism to accelerate particles. Extensive numerical simulations are needed to verify physical details of such a model, and some encouraging results have been obtained.
Polymer Matrix Composites using Fused Deposition Modeling Technology Project
National Aeronautics and Space Administration — Fused deposition modeling (FDM) is an additive manufacturing technology that allows fabrication of complex three-dimensional geometries layer-by-layer. The goal of...
Durability and life prediction modeling in polyimide composites
Binienda, Wieslaw K.
1995-01-01
Sudden appearance of cracks on a macroscopically smooth surface of brittle materials due to cooling or drying shrinkage is a phenomenon related to many engineering problems. Although conventional strength theories can be used to predict the necessary condition for crack appearance, they are unable to predict crack spacing and depth. On the other hand, fracture mechanics theory can only study the behavior of existing cracks. The theory of crack initiation can be summarized into three conditions, which is a combination of a strength criterion and laws of energy conservation, the average crack spacing and depth can thus be determined. The problem of crack initiation from the surface of an elastic half plane is solved and compares quite well with available experimental evidence. The theory of crack initiation is also applied to concrete pavements. The influence of cracking is modeled by the additional compliance according to Okamura's method. The theoretical prediction by this structural mechanics type of model correlates very well with the field observation. The model may serve as a theoretical foundation for future pavement joint design. The initiation of interactive cracks of quasi-brittle material is studied based on a theory of cohesive crack model. These cracks may grow simultaneously, or some of them may close during certain stages. The concept of crack unloading of cohesive crack model is proposed. The critical behavior (crack bifurcation, maximum loads) of the cohesive crack model are characterized by rate equations. The post-critical behavior of crack initiation is also studied.
Composite avenue beyond the standard model. Legacy of Sakata in LHC era
International Nuclear Information System (INIS)
Yamawaki, Koichi
2012-01-01
Higgs boson may be a composite particle as Sakata vigorously looked for never-ending substructures of Nature. He proposed the Sakata model for hadrons, which was the prototype of the quark model and thus launched the last Revolution in particle physics continued all the way up to Kabayashi-Maskawa work which completed the Standard Model today. Inspired by Sakata's spirit we shall discuss composite Higgs boson in various models of our own for the dynamical symmetry breaking with large anomalous dimension: The techni-dilaton in the walking technicolor (WTC) with γ m ≅ 1, the t-bar t composite ('top-Higgs') in the top-quark condensate model with γ m ≅ 2, and their variants in the models with 1 m m =1. In contrast to the folklore that Technicolor is a 'Higgsless theory', there exists a composite Higgs, techni-dilaton, in the WTC as a composite pseudo Nambu-Goldstone boson associated with the spontaneously broken (approximate) scale symmetry, with its mass only arising from the (nonperturbative) scale anomaly and hence being much smaller than those of other techni-hadrons. The techni-dilaton has a mass typically of order 500 - 600 GeV and can be discovered at LHC. We shall also touch upon the endeavor to discover WTC on the lattice. (author)
The Behaviour of Naturally Debonded Composites Due to Bending Using a Meso-Level Model
Lord, C. E.; Rongong, J. A.; Hodzic, A.
2012-06-01
Numerical simulations and analytical models are increasingly being sought for the design and behaviour prediction of composite materials. The use of high-performance composite materials is growing in both civilian and defence related applications. With this growth comes the necessity to understand and predict how these new materials will behave under their exposed environments. In this study, the displacement behaviour of naturally debonded composites under out-of-plane bending conditions has been investigated. An analytical approach has been developed to predict the displacement response behaviour. The analytical model supports multi-layered composites with full and partial delaminations. The model can be used to extract bulk effective material properties in which can be represented, later, as an ESL (Equivalent Single Layer). The friction between each of the layers is included in the analytical model and is shown to have distinct behaviour for these types of composites. Acceptable agreement was observed between the model predictions, the ANSYS finite element model, and the experiments.
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level.
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-12-13
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites' thermal conductivity is matrix cracking's density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.
Modelling of composition and stress profiles in low temperature surface engineered stainless steel
DEFF Research Database (Denmark)
Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.
2015-01-01
stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....
Thermomechanical Properties of Polypropylene-Based Lightweight Composites Modeled on the Mesoscale
Dostálová, Darina; Kafka, Vratislav; Vokoun, David; Heller, Luděk; Matějka, Libor; Kadeřávek, Lukáš; Pěnčík, Jan
2017-11-01
A waste-based particle polymer composite (WPPCs) made of foam glass and polypropylene was developed as a low-cost construction material. Thermomechanical properties of the composite, including creep properties of WPPC and polypropylene binder, were examined. By adding a relatively small amount of polypropylene to foam glass (about 2:8 in volume parts), the maximum bearing capacity at room temperature of the composite increased from 1.9 (pure foam glass) to 15 MPa. A significant creep strain accumulated during compressive loading of WPPC (5 MPa) in the first 2000 s at elevated temperatures (40, 60 °C). In the study, Kafka's mesomechanical model was used to simulate creep strain changes in time for various temperatures. The applicability of Kafka's mesomechanical model for simulating creep properties of the studied composite material was demonstrated.
Finite element code development for modeling detonation of HMX composites
Duran, Adam V.; Sundararaghavan, Veera
2017-01-01
In this work, we present a hydrodynamics code for modeling shock and detonation waves in HMX. A stable efficient solution strategy based on a Taylor-Galerkin finite element (FE) discretization was developed to solve the reactive Euler equations. In our code, well calibrated equations of state for the solid unreacted material and gaseous reaction products have been implemented, along with a chemical reaction scheme and a mixing rule to define the properties of partially reacted states. A linear Gruneisen equation of state was employed for the unreacted HMX calibrated from experiments. The JWL form was used to model the EOS of gaseous reaction products. It is assumed that the unreacted explosive and reaction products are in both pressure and temperature equilibrium. The overall specific volume and internal energy was computed using the rule of mixtures. Arrhenius kinetics scheme was integrated to model the chemical reactions. A locally controlled dissipation was introduced that induces a non-oscillatory stabilized scheme for the shock front. The FE model was validated using analytical solutions for SOD shock and ZND strong detonation models. Benchmark problems are presented for geometries in which a single HMX crystal is subjected to a shock condition.
The performance of composite forecast models of value-at-risk in the energy market
International Nuclear Information System (INIS)
Chiu, Yen-Chen; Chuang, I-Yuan; Lai, Jing-Yi
2010-01-01
This paper examines a comparative evaluation of the predictive performance of various Value-at-Risk (VaR) models in the energy market. This study extends the conventional research in literature, by proposing composite forecast models for applying to Brent and WTI crude oil prices. Forecasting techniques considered here include the EWMA, stable density, Kernel density, Hull and White, GARCH-GPD, plus composite forecasts from linearly combining two or more of the competing models above. Findings show Hull and White to be the most powerful approach for capturing downside risk in the energy market. Reasonable results are also available from carefully combining VaR forecasts. (author)
DEFF Research Database (Denmark)
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, Leon
2017-01-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped......A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog......, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated...
Vector and axial-vector resonances in composite models of the Higgs boson
International Nuclear Information System (INIS)
Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo; Frandsen, Mads
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.
Khmurovska, Y.; Štemberk, P.; Křístek, V.
2017-09-01
This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.
Vector and axial-vector resonances in composite models of the Higgs boson
Energy Technology Data Exchange (ETDEWEB)
Franzosi, Diogo Buarque [II. Physikalisches Institut, Universität Göttingen,Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Cacciapaglia, Giacomo; Cai, Haiying; Deandrea, Aldo [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPNL,F-69622, Villeurbanne (France); Frandsen, Mads [CP-Origins & Danish Institute for Advanced Study DIAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark)
2016-11-11
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT constraints by accounting the effects from reduced Higgs couplings and integrating out heavy spin-1 resonances. This theory emerges from an underlying theory of gauge interactions with fermions, thus first principle lattice results predict the massive spectrum in composite Higgs models. This model can be used as a template for the phenomenology of composite Higgs models at the LHC and at future 100 TeV colliders, as well as for other application. In this work, we focus on the formalism for spin-1 resonances and their bounds from di-lepton and di-boson searches at the LHC.
A new percolation model for composite solid electrolytes and dispersed ionic conductors
Risyad Hasyim, Muhammad; Lanagan, Michael T.
2018-02-01
Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.
A new simple model for composite fading channels: Second order statistics and channel capacity
Yilmaz, Ferkan
2010-09-01
In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which we term extended generalized-K (EGK) composite fading distribution. We obtain the second-order statistics of the received signal envelope characterized by the EGK composite fading distribution. Expressions for probability density function, cumulative distribution function, level crossing rate and average fade duration, moments, amount of fading and average capacity are derived. Numerical and computer simulation examples validate the accuracy of the presented mathematical analysis. © 2010 IEEE.
Finite-Element Modeling of a Damaged Pipeline Repaired Using the Wrap of a Composite Material
Lyapin, A. A.; Chebakov, M. I.; Dumitrescu, A.; Zecheru, G.
2015-07-01
The nonlinear static problem of FEM modeling of a damaged pipeline repaired by a composite material and subjected to internal pressure is considered. The calculation is carried out using plasticity theory for the pipeline material and considering the polymeric filler and the composite wrap. The level of stresses in various zones of the structure is analyzed. The most widespread alloy used for oil pipelines is selected as pipe material. The contribution of each component of the pipeline-filler-wrap system to the level of stresses is investigated. The effect of the number of composite wrap layers is estimated. The results obtained allow one to decrease the costs needed for producing test specimens.
A model for optimal fleet composition of vessels for offshore wind farm maintenance
Alcoba, A.G.; Ortega, G.; Hendrix, E.M.T.; Halvorsen-Waere, E.E.; Haugland, Dag
2017-01-01
We present a discrete optimisation model that chooses an optimal fleet of vessels to support maintenance operations at Offshore Wind Farms (OFWs). The model is presented as a bi-level problem. On the first (tactical) level, decisions are made on the fleet composition for a certain time horizon. On
Compositional Temporal Analysis Model for Incremental Hard Real-Time System Design
Hausmans, J.P.H.M.; Geuns, S.J.; Wiggers, M.H.; Bekooij, Marco Jan Gerrit
2012-01-01
The incremental design and analysis of parallel hard real-time stream processing applications is hampered by the lack of an intuitive compositional temporal analysis model that supports arbitrary cyclic dependencies between tasks. This paper introduces a temporal analysis model for hard real-time
Multi-scale modeling of composites subjected to high speed impact
Lee, Minhyung; Cha, Myung S.; Kim, Nam H.
2017-01-01
In this paper, multi-scale modeling methodology has been applied to simulate the relatively thick composite panels subjected to high speed local impact loading. Instead of massive parallel processing, we propose to use surrogate modeling to bridge micro-scale and macro-scale. Multi-scale modeling of fracture phenomena of composite materials will consist of (1) micro-scale modeling of fiber-matrix structure using the unit-volume-element technique, which can incorporate the boundary effect, and the level set method for crack modeling, which can model the crack propagation independent of finite element mesh; (2) macro-scale simulation of composite panels under high strain-rate impact using material response calculated from micro-scale modeling; and (3) surrogate modeling to integrate the two scales. In order to validate the predictions, first we did the material level lab experiment such as tensile test. We also did the field test of bullet impact into composite panels made of 4 plies fiber. The impact velocity ranges from 300 ˜ 600 m/s.
Reliability Analysis of a Composite Blade Structure Using the Model Correction Factor Method
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimiroy; Friis-Hansen, Peter; Berggreen, Christian
2010-01-01
This paper presents a reliability analysis of a composite blade profile. The so-called Model Correction Factor technique is applied as an effective alternate approach to the response surface technique. The structural reliability is determined by use of a simplified idealised analytical model which...
Bloemen, H.H.J.; Chou, C.T.; van den Boom, T.J.J.; Verdult, V.; Verhaegen, M.H.G.; Backx, T.C.
2001-01-01
The benefits of using the Wiener model based identification and control methodology presented in this paper, compared to linear techniques, are demonstrated for dual composition control of a moderate–high purity distillation column simulation model. An identification experiment design is presented
Simulated small-angle scattering patterns for a plastically deformed model composite material
Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.
2000-01-01
The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to
A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini
2012-01-01
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
Composite models of hadrons and relativistic bound states
International Nuclear Information System (INIS)
Filippov, A.T.
1977-01-01
The following problems are considered: what the constituents of the hadrons are; what their quantum numbers and their broken and unbroken symmetries are; what the dynamics of the constituents (equations, binding forces and the origin of symmetry violations) is. The most puzzling question is: why the constituents ''escape from freedom'' and are confined inside the hadrons; what experimentalists can report about the hadron constituents and their dynamics if not finding them. There are no final answers to all these questions. The achievements of quark model are described, some problems concerning the comparison of the quark model with experiment are considered. The attempt is also made to present alternative views on the same problems
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
A systematic comparison of recurrent event models for application to composite endpoints.
Ozga, Ann-Kathrin; Kieser, Meinhard; Rauch, Geraldine
2018-01-04
Many clinical trials focus on the comparison of the treatment effect between two or more groups concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the time to the first occurring event. This approach neglects that an individual may experience more than one event which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld. Although some of the methods were already compared within the literature there exists no systematic investigation for the special requirements regarding composite endpoints. Within this work a simulation-based comparison of recurrent event models applied to composite endpoints is provided for different realistic clinical trial scenarios. We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can considerably deviate under commonly met data scenarios. Based on the conducted simulation study, this paper helps to understand the pros and cons of the investigated methods in the context of composite endpoints and provides therefore recommendations for an adequate statistical analysis strategy and a meaningful interpretation of results.
Limit Stress Spline Models for GRP Composites | Ihueze | Nigerian ...
African Journals Online (AJOL)
Spline functions were established on the assumption of three intervals and fitting of quadratic and cubic splines to critical stress-strain responses data. Quadratic ... of data points. Spline model is therefore recommended as it evaluates the function at subintervals, eliminating the error associated with wide range interpolation.
A Composite Model for Employees' Performance Appraisal and Improvement
Manoharan, T. R.; Muralidharan, C.; Deshmukh, S. G.
2012-01-01
Purpose: The purpose of this paper is to develop an innovative method of performance appraisal that will be useful for designing a structured training programme. Design/methodology/approach: Employees' performance appraisals are conducted using new approaches, namely data envelopment analysis and an integrated fuzzy model. Interpretive structural…
Compositional models and conditional independence in evidence theory
Czech Academy of Sciences Publication Activity Database
Jiroušek, Radim; Vejnarová, Jiřina
2011-01-01
Roč. 52, č. 3 (2011), s. 316-334 ISSN 0888-613X Institutional research plan: CEZ:AV0Z10750506 Keywords : Evidence theory * Conditional independence * multidimensional models Subject RIV: BA - General Mathematics Impact factor: 1.948, year: 2011 http://library.utia.cas.cz/separaty/2012/MTR/jirousek-0370515.pdf
Verifying OCL specifications of UML models : tool support and compositionality
Kyas, Marcel
2006-01-01
The Unified Modelling Language (UML) and the Object Constraint Language (OCL) serve as specification languages for embedded and real-time systems used in a safety-critical environment. In this dissertation class diagrams, object diagrams, and OCL constraints are formalised. The formalisation
Student Success in College Composition through the Puente Project Model.
Jaffe, Barbara
Much can be learned from California's Puente Project Model that would help students' success in classrooms as well as in college in general, and in their daily lives. Puente, which means "bridge" in Spanish, began in 1982 at Chabot College in northern California and is now in 38 colleges and 19 high schools statewide. Originally designed…
A Comparison of Evidential Networks and Compositional Models
Czech Academy of Sciences Publication Activity Database
Vejnarová, Jiřina
2014-01-01
Roč. 50, č. 2 (2014), s. 246-267 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : evidence theory * graphical models * conditional independence Subject RIV: BA - General Mathematics Impact factor: 0.541, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/vejnarova-0439574.pdf
Baird, Jared A; Taylor, Lynne S
2011-06-01
The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.
Fatigue behavior and modeling of short fiber reinforced polymer composites
Mortazavian, Seyyedvahid
This study investigates uniaxial fatigue behavior of two short glass fiber polymer composites including 30 wt% short glass fiber polybutylene terephthalate (PBT) and 35 wt% short glass fiber polyamide-6 (PA6) under a number of load and environmental conditions. The main objectives are to evaluate the behavior of these materials under monotonic and cyclic loadings and present fatigue life prediction methodologies to reduce their development expenses and time. The considered environmental effects include those of low and elevated temperatures as well as moisture (or water absorption) effect. Fatigue behavior is also explored under the action of nonzero mean stress (or R ratio) as well as various cyclic loading frequencies. Material anisotropy and geometrical discontinuity effects (i.e. stress concentration) are also considered in this study. Microscopic failure analysis is also performed, when necessary, to identify failure mechanisms. Tensile tests were performed in various mold flow directions and with two thicknesses at a range of temperatures and strain rates. A shell-core morphology resulting from orientation distribution of fibers influenced the degree of anisotropy. Tensile strength and elastic modulus nonlinearly decreased with specimen angle and Tsai-Hill criterion was found to correlate variation of these properties with the fiber orientation. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Mathematical relationships were developed to represent the stress-strain response, as well as tensile properties in terms of strain rate and temperature. Time-temperature superposition principle was also employed to superimpose the effect of temperature and strain rate on tensile strength
Towards Remotely Sensed Composite Global Drought Risk Modelling
Dercas, Nicholas; Dalezios, Nicolas
2015-04-01
, wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.
International Nuclear Information System (INIS)
Lu, W.R.; Gao, C.Y.; Ke, Y.L.
2014-01-01
The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models
Paulraj, D.; Swamynathan, S.; Madhaiyan, M.
2012-11-01
Web Service composition has become indispensable as a single web service cannot satisfy complex functional requirements. Composition of services has received much interest to support business-to-business (B2B) or enterprise application integration. An important component of the service composition is the discovery of relevant services. In Semantic Web Services (SWS), service discovery is generally achieved by using service profile of Ontology Web Languages for Services (OWL-S). The profile of the service is a derived and concise description but not a functional part of the service. The information contained in the service profile is sufficient for atomic service discovery, but it is not sufficient for the discovery of composite semantic web services (CSWS). The purpose of this article is two-fold: first to prove that the process model is a better choice than the service profile for service discovery. Second, to facilitate the composition of inter-organisational CSWS by proposing a new composition method which uses process ontology. The proposed service composition approach uses an algorithm which performs a fine grained match at the level of atomic process rather than at the level of the entire service in a composite semantic web service. Many works carried out in this area have proposed solutions only for the composition of atomic services and this article proposes a solution for the composition of composite semantic web services.
International Nuclear Information System (INIS)
Jarali, Chetan S; Raja, S; Upadhya, A R
2010-01-01
Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented. Subsequently, a one-dimensional SMP model able to reproduce the SME is addressed. Both SMA and SMP models are based on a single internal state variable, namely the martensite fraction and the frozen fraction, which can be expressed as a function of temperature. A consistent form of the analytical solution for the SMP model is obtained using the fourth-order Runge–Kutta method. Finally, the SASMC constitutive model is proposed, following two analytical homogenization approaches. One approach is based on an equivalent inclusion method and the other approach is the rule of mixtures. The SMA and SMP constitutive models are validated independently with experimental results. However, the validation of the composite model is performed using the two homogenization approaches and a close agreement in results is observed. Results regarding the isothermal and thermomechanical stress–strain responses are analyzed as a function of SMA volume fraction. Further, it is concluded that the proposed composite model is able to reproduce consistently the overall composite response by taking into consideration not only the phase transformations, variable modulus and transformation stresses in SMA but also the variable modulus, the evolution of stored strain and thermal strain in the SMP
Munteanu, Cristian Robert; González-Díaz, Humberto; Magalhães, Alexandre L
2008-09-21
The huge amount of new proteins that need a fast enzymatic activity characterization creates demands of protein QSAR theoretical models. The protein parameters that can be used for an enzyme/non-enzyme classification includes the simpler indices such as composition, sequence and connectivity, also called topological indices (TIs) and the computationally expensive 3D descriptors. A comparison of the 3D versus lower dimension indices has not been reported with respect to the power of discrimination of proteins according to enzyme action. A set of 966 proteins (enzymes and non-enzymes) whose structural characteristics are provided by PDB/DSSP files was analyzed with Python/Biopython scripts, STATISTICA and Weka. The list of indices includes, but it is not restricted to pure composition indices (residue fractions), DSSP secondary structure protein composition and 3D indices (surface and access). We also used mixed indices such as composition-sequence indices (Chou's pseudo-amino acid compositions or coupling numbers), 3D-composition (surface fractions) and DSSP secondary structure amino acid composition/propensities (obtained with our Prot-2S Web tool). In addition, we extend and test for the first time several classic TIs for the Randic's protein sequence Star graphs using our Sequence to Star Graph (S2SG) Python application. All the indices were processed with general discriminant analysis models (GDA), neural networks (NN) and machine learning (ML) methods and the results are presented versus complexity, average of Shannon's information entropy (Sh) and data/method type. This study compares for the first time all these classes of indices to assess the ratios between model accuracy and indices/model complexity in enzyme/non-enzyme discrimination. The use of different methods and complexity of data shows that one cannot establish a direct relation between the complexity and the accuracy of the model.
Composite modified Luneburg model of human eye lens.
Gómez-Correa, J E; Balderas-Mata, S E; Pierscionek, B K; Chávez-Cerda, S
2015-09-01
A new lens model based on the gradient-index Luneburg lens and composed of two oblate half spheroids of different curvatures is presented. The spherically symmetric Luneburg lens is modified to create continuous isoindicial contours and to incorporate curvatures that are similar to those found in a human lens. The imaging capabilities of the model and the changes in the gradient index profile are tested for five object distances, for a fixed geometry and for a fixed image distance. The central refractive index decreases with decreasing object distance. This indicates that in order to focus at the same image distance as is required in the eye, a decrease in refractive power is needed for rays from closer objects that meet the lens surface at steeper angles compared to rays from more distant objects. This ensures a highly focused image with no spherical aberration.
Integrated Modeling of Polymer Composites Under High Energy Laser Irradiation
2015-10-30
propagation constant. The top and bottom boundaries in Figure 3 are perfect electric conductors (PEC) which causes perfect reflection and simulates a semi...the FEA models were heated by passing a current through the fiber embedded in the dogbone. This is accomplished by placing a small amount of silver ...paint directly into the silicone mold. The paint is dabbed onto the ends of the fiber before the resin is added. After curing, the spot of silver paint
Modeling Mechanical Properties of Aluminum Composite Produced Using Stir Casting Method
Directory of Open Access Journals (Sweden)
Muhammad Hayat Jokhio
2011-01-01
Full Text Available ANN (Artificial Neural Networks modeling methodology was adopted for predicting mechanical properties of aluminum cast composite materials. For this purpose aluminum alloy were developed using conventional foundry method. The composite materials have complex nature which posses the nonlinear relationship among heat treatment, processing parameters, and composition and affects their mechanical properties. These nonlinear relation ships with properties can more efficiently be modeled by ANNs. Neural networks modeling needs sufficient data base consisting of mechanical properties, chemical composition and processing parameters. Such data base is not available for modeling. Therefore, a large range of experimental work was carried out for the development of aluminum composite materials. Alloys containing Cu, Mg and Zn as matrix were reinforced with 1- 15% Al2O3 particles using stir casting method. Alloys composites were cast in a metal mold. More than eighty standard samples were prepared for tensile tests. Sixty samples were given solution treatments at 580oC for half an hour and tempered at 120oC for 24 hours. The samples were characterized to investigate mechanical properties using Scanning Electron Microscope, X-Ray Spectrometer, Optical Metallurgical Microscope, Vickers Hardness, Universal Testing Machine and Abrasive Wear Testing Machine. A MLP (Multilayer Perceptron feedforward was developed and used for modeling purpose. Training, testing and validation of the model were carried out using back propagation learning algorithm. The modeling results show that an architecture of 14 inputs with 9 hidden neurons and 4 outputs which includes the tensile strength, elongation, hardness and abrasive wear resistance gives reasonably accurate results with an error within the range of 2-7 % in training, testing and validation.
The family problem of quarks and leptons in two kinds of composite models
International Nuclear Information System (INIS)
Yang Xine
1985-01-01
Teo kinds of SU(3)sub(sc) x SU(N) composite models (the model A and model B) of quarks and leptons are suggested to solve the family problem. The constituents (preons) of the models are two types of massless spin-1/2 fermions which belong to (3, N) and (3, N * ) representations of the gauged symmetry group SU(3)sub(sc) x SU(N). Applying the Fermi principle to three-preons supercolor-singlet composite fermions and according to the models' requirements (the fermions in one family originates from the same reproesentation of SU(N) and belong to the same representation of the horizontal gauge group), one obtains the family-number of SU(3)sub(sc) x SU(N), where SU(3)sub(sc) x SU(6) and SU(3)sub(sc) x SU(5) of the model A predict three and five generations respectively
A Three End-Member Mixing Model Based on Isotopic Composition and Elemental Ratio
Directory of Open Access Journals (Sweden)
Kon-Kee Liu Shuh-Ji Kao
2007-01-01
Full Text Available A three end-member mixing model based on nitrogen isotopic composition and organic carbon to nitrogen ratio of suspended particulate matter in an aquatic environment has been developed. Mathematical expressions have been derived for the calculation of the fractions of nitrogen or organic carbon originating from three different sources of distinct isotopic and elemental compositions. The model was successfully applied to determine the contributions from anthropogenic wastes, soils and bedrock-derived sediments to particulate nitrogen and particulate organic carbon in the Danshuei River during the flood caused by Typhoon Bilis in August 2000. The model solutions have been expressed in a general form that allows applications to mixtures with other types of isotopic compositions and elemental ratios or in forms other than suspended particulate matter.
Biomechanical model produced from light-activated dental composite resins: a holographic analysis
Pantelić, Dejan; Vasiljević, Darko; Blažić, Larisa; Savić-Šević, Svetlana; Murić, Branka; Nikolić, Marko
2013-11-01
Light-activated dental composites, commonly applied in dentistry, can be used as excellent material for producing biomechanical models. They can be cast in almost any shape in an appropriate silicone mold and quickly solidified by irradiation with light in the blue part of the spectrum. In that way, it is possible to obtain any number of nearly identical casts. The models can be used to study the behavior of arbitrary structure under mechanical loads. To test the technique, a simple mechanical model of the tooth with a mesio-occluso-distal cavity was manufactured. Composite resin restoration was placed inside the cavity and light cured. Real-time holographic interferometry was used to analyze the contraction of the composite resin and its effect on the surrounding material. The results obtained in the holographic experiment were in good agreement with those obtained using the finite element method.
Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair
Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail
2017-10-01
The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.
Porfiri, Maurizio; Sharghi, Hesam; Zhang, Peng
2018-01-01
Ionic polymer metal composites (IPMCs) are a new class of active materials that are gaining traction as soft actuators in medical and industrial applications. IPMCs can undergo large deformations under modest voltage inputs, in dry and wet environments. Past studies have demonstrated that physical and geometric properties of all the IPMC constituents (ionomer, electrodes, and counterions) may all influence the time scales of the transient response and severity of the back-relaxation. In this study, we present a detailed mathematical model to investigate how the finite size of the counterions and the presence of metal particles in the vicinity of the electrodes modulate IPMC actuation. We build on previous work by our group on thermodynamically consistent modeling of IPMC mechanics and electrochemistry, which attributes IPMC actuation to the interplay between Maxwell stress and osmotic forces. To gain insight into the role of physical and geometric parameters, the resulting nonlinear partial differential equations are solved semianalytically using the method of matched asymptotic expansions, for the initial transient and the steady-state. A numerical solution in COMSOL Multiphysics® is developed to verify semianalytical findings and further explore IPMC actuation. Our model can successfully predict the entire response of IPMCs, from the initial bending toward the anode to the steady-state toward the cathode. We find that the steric effect can abolish the back-relaxation of IPMCs by restraining the counterions' concentration near the electrodes. We also find that increasing the thickness of the ionomer-metal composite layers may enhance IPMC actuation through increased osmotic forces and Maxwell stress.
Dynamic fracture and hot-spot modeling in energetic composites
Grilli, Nicolò; Duarte, Camilo A.; Koslowski, Marisol
2018-02-01
Defects such as cracks, pores, and particle-matrix interface debonding affect the sensitivity of energetic materials by reducing the time-to-ignition and the threshold pressure to initiate an explosion. Frictional sliding of preexisting cracks is considered to be one of the most important causes of localized heating. Therefore, understanding the dynamic fracture of crystalline energetic materials is of extreme importance to assess the reliability and safety of polymer-bonded explosives. Phase field damage model simulations, based on the regularization of the crack surface as a diffuse delta function, are used to describe crack propagation in cyclotetramethylene-tetranitramine crystals embedded in a Sylgard matrix. A thermal transport model that includes heat generation by friction at crack interfaces is coupled to the solution of crack propagation. 2D and 3D dynamic compression simulations are performed with different boundary velocities and initial distributions of cracks and interface defects to understand their effect on crack propagation and heat generation. It is found that, at an impact velocity of 400 m/s, localized damage at the particle-binder interface is of key importance and that the sample reaches temperatures high enough to create a hot-spot that will lead to ignition. At an impact velocity of 10 m/s, preexisting cracks advanced inside the particle, but the increase of temperature will not cause ignition.
Simplified micromechanical models for analysis of interface debonding in a fibrous composite
Guo, Jia-Yuarn
1995-01-01
The objective of this study is to develop simplified micromechanical models to analyze the interface debonding between fiber and the matrix materials. Both analytical and simplified finite element models are used to predict the effective transverse elastic modules of fibrous composites with a partial interface crack based on the material properties of their constituents. The simplified finite element model uses springs in the connecting nodes between the fiber and matrix. A detailed finite el...
Mahieux, Celine Agnes
Polymer matrix composites (PMC's) are now being used more and more extensively and over wider ranges of service conditions. Large changes in pressure, chemical environment or temperature influence the mechanical response of such composites. In the present effort, we focus on temperature, a parameter of primary interest in almost all engineering applications. In order to design composite structures without having to perform extensive experiments (virtual design), the necessity of establishing theoretical models that relate the macroscopic response of the structure to the microscopic properties of the constituents arises. In the first part of the present work, a new stiffness versus temperature model is established. The model is validated using data from the literature. The influence of the different polymer's properties (Molecular weight, crystallinity, and filler content) on the model are studied by performing experiments on different grades of four polymers PMMA, PEEK, PPS, and PB. This statistical model is proven to be applicable to very different polymers (elastomers, thermoplastics, crystalline, amorphous, cross-linked, linear, filled, unfilled...) over wide temperature ranges (from the glassy state to the flow region). The most attractive feature of the proposed model is the capability to enable a description of the polymer's mechanical behavior within and across the property transition regions. In order to validate the feasibility of using the model to predict the mechanical response of polymer matrix composites, the stiffness-temperature model is used in various micromechanical models (rule of mixtures, compression models for the life prediction of unidirectional PMC's in end-loaded bending...). The model is also inserted in the MRLife prediction code to predict the remaining strength and life of unidirectional PMC's in fatigue bending. End-loaded fatigue experiments were performed. A good correlation between theoretical and experimental results is observed
Yang, D; Wu, K; Wan, L; Sheng, Y
2017-01-01
This paper presents a new numerical approach for modelling the 3D printing process of fibre reinforced polymer composites by fused deposition modelling (FDM). The approach is based on the coupling between two particle methods, namely smoothed particle hydrodynamics (SPH) and discrete element method (DEM). The coupled SPH-DEM model has distinctive advantages in dealing with the free surface flow, large deformation of fibres, and/or fibre-fibre interaction that are involved in the FDM process. ...
Thermal modeling of the ceramic composite fuel for light water reactors
International Nuclear Information System (INIS)
Revankar, S.T.; Latta, R.; Solomon, A.A.
2005-01-01
Full text of publication follows: Composite fuel designs capable of providing improved thermal performance are of great interest in advanced reactor designs where high efficiency and long fuel cycles are desired. Thermal modeling of the composite fuel consisting of continuous second phase in a ceramic (uranium oxide) matrix has been carried out with detailed examination of the microstructure of the composite and the interface. Assuming that constituent phases are arranged as slabs, upper and lower bounds for the thermal conductivity of the composite are derived analytically. Bounding calculations on the thermal conductivity of the composite were performed for SiC dispersed in the UO 2 matrix. It is found that with 10% SiC, the thermal conductivity increases from 5.8 to 9.8 W/m.deg. K at 500 K, or an increase of 69% was observed in UO 2 matrix. The finite element analysis computer program ANSYS was used to create composite fuel geometries with set boundary conditions to produce accurate thermal conductivity predictions. A model developed also accounts for SiC-matrix interface resistance and the addition of coatings or interaction barriers. The first set of calculations using the code was to model simple series and parallel fuel slab geometries, and then advance to inter-connected parallel pathways. The analytical calculations were compared with the ANSYS results. The geometry of the model was set up as a 1 cm long by 400 micron wide rectangle. This rectangle was then divided into one hundred sections with the first ninety percent of a single section being UO 2 and the remaining ten percent consisting of SiC. The model was then meshed using triangular type elements. The boundary conditions were set with the sides of the rectangle being adiabatic and having an assigned temperature at the end of the rectangle. A heat flux was then applied to one end of the model producing a temperature gradient. The effective thermal conductivity was then calculated using the geometry
The material parameters for computational modeling of long-fibre composites with textile
Directory of Open Access Journals (Sweden)
Krmela Jan
2018-01-01
Full Text Available In this contribution, the composites with textile fibre (cord and an elastomer matrix are studied based on computational modeling of car tires in combination with experiments. These composite are applied in tire casings for cars, conveyor belts etc. The aim of this research work of authors is creation of computational models namely for stress-strain analyses of selected parts of radial tire casing. The typically passenger car radial tire casing consists of one or two polyester plies in tire carcass and two steel-cord belts and one polyamide 66 cap ply below tread. The finite element method using the program system ANSYS is applied to the computational modeling. For the determination of the material parameters of elastomer and textile cords as input data to the computational models, it was necessary to perform tests as statically tensile tests. Also the experiments of composites as tests of low cyclic loading of composites are needed for verification analyses between computational results and experimental data. For computational modeling, the modulus of elasticity and Poisson ratio are used as material input parameters of textile reinforcements. The results from the computational modeling and selected results from the tests are presented in this contribution.
Li, Longbiao
2016-06-01
An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.
International Nuclear Information System (INIS)
Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.
2012-01-01
Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.
Model nebulae and determination of the chemical composition of the Magellanic Clouds.
Aller, L H; Keyes, C D; Czyzak, S J
1979-04-01
An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.
Energy Technology Data Exchange (ETDEWEB)
Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; McAuliffe, Colin [Altair Engineering, Inc.; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors
2016-06-06
multiscale framework to construct stochastic macroscopic constitutive material models is proposed. A spectral projection approach, specifically polynomial chaos expansion, has been used to construct explicit functional relationships between the homogenized properties and input parameters from finer scales. A homogenization engine embedded in Multiscale Designer, software for composite materials, has been used for the upscaling process. The framework is demonstrated using non-crimp fabric composite materials by constructing probabilistic models of the homogenized properties of a non-crimp fabric laminate in terms of the input parameters together with the homogenized properties from finer scales.
Scale model test on a novel 400 kV double-circuit composite pylon
DEFF Research Database (Denmark)
Wang, Qian; Bak, Claus Leth; Silva, Filipe Miguel Faria da
This paper investigates lightning shielding performance of a novel 400 kV double-circuit composite pylon, with the method of scale model test. Lightning strikes to overhead lines were simulated by long-gap discharges between a high voltage electrode with an impulse voltage and equivalent conductors...... around the pylon is discussed. Combined test results and striking distance equation in electro-geometric model, the approximate maximum lightning current that can lead to shielding failure is calculated. Test results verify that the unusual negative shielding angle of - 60° in the composite pylon meets...... requirement and the shielding wires provide acceptable protection from lightning strikes....
LHC physics of extra gauge bosons in the 4D Composite Higgs Model
Directory of Open Access Journals (Sweden)
Barducci D.
2013-11-01
Full Text Available We study the phenomenology of both the Neutral Current (NC and Charged Current (CC Drell-Yan (DY processes at the Large Hadron Collider (LHC within a 4 Dimensional realization of a Composite Higgs model with partial compositness by estimating the integrated and differential event rates and taking into account the possible impact of the extra fermions present in the spectrum. We show that, in certain regions of the parameters space, the multiple neutral resonances present in the model can be distinguishable and experimentally accessible in the invariant or transverse mass distributions.
Mass Conservation in Modeling Moisture Diffusion in Multi-Layer Carbon Composite Structures
Nurge, Mark A.; Youngquist, Robert C.; Starr, Stanley O.
2009-01-01
Moisture diffusion in multi-layer carbon composite structures is difficult to model using finite difference methods due to the discontinuity in concentrations between adjacent layers of differing materials. Applying a mass conserving approach at these boundaries proved to be effective at accurately predicting moisture uptake for a sample exposed to a fixed temperature and relative humidity. Details of the model developed are presented and compared with actual moisture uptake data gathered over 130 days from a graphite epoxy composite sandwich coupon with a Rohacell foam core.
Preparation and properties of dough-modeling compound/fly ash/reclaim powder composites
Energy Technology Data Exchange (ETDEWEB)
Wu, W.L. [Qiqihar University, Qiqihar (China)
2007-12-15
A novel composite was prepared with reclaim powder (RP) matrix, dough-modeling compound (DMC) reinforcement and fly ash (FA) filler in this article. The compatibility and crosslinking construction of the FA/RP composites were respectively, studied by the polarizing microscope and IR, the optimal formulation and experimental process were determined by measuring the mechanical properties such as shore A hardness, tensile strength, elongation at break, wear resistance and the thermal stability. The results showed that DMC/FA/RP composites exhibited extremely high mechanical and thermal properties when the mass ratio of the DMC/FA/RP composites was 45/25/100, and the cure condition is at 145 {sup o}C for 30 min under 9 MPa.
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
A reconstruction of Maxwell model for effective thermal conductivity of composite materials
International Nuclear Information System (INIS)
Xu, J.Z.; Gao, B.Z.; Kang, F.Y.
2016-01-01
Highlights: • Deficiencies were found in classical Maxwell model for effective thermal conductivity. • Maxwell model was reconstructed based on potential mean-field theory. • Reconstructed Maxwell model was extended with particle–particle contact resistance. • Predictions by reconstructed Maxwell model agree excellently with experimental data. - Abstract: Composite materials consisting of high thermal conductive fillers and polymer matrix are often used as thermal interface materials to dissipate heat generated from mechanical and electronic devices. The prediction of effective thermal conductivity of composites remains as a critical issue due to its dependence on considerably factors. Most models for prediction are based on the analog between electric potential and temperature that satisfy the Laplace equation under steady condition. Maxwell was the first to derive the effective electric resistivity of composites by examining the far-field spherical harmonic solution of Laplace equation perturbed by a sphere of different resistivity, and his model was considered as classical. However, a close review of Maxwell’s derivation reveals that there exist several controversial issues (deficiencies) inherent in his model. In this study, we reconstruct the Maxwell model based on a potential mean-field theory to resolve these issues. For composites made of continuum matrix and particle fillers, the contact resistance among particles was introduced in the reconstruction of Maxwell model. The newly reconstructed Maxwell model with contact resistivity as a fitting parameter is shown to fit excellently to experimental data over wide ranges of particle concentration and mean particle diameter. The scope of applicability of the reconstructed Maxwell model is also discussed using the contact resistivity as a parameter.
Composite holographic associative recall model (CHARM) and blended memories in eyewitness testimony.
Metcalfe, J
1990-06-01
The idea that compositing or blending occurs in human episodic memory stems from two sources: (a) distributed memory models and (b) studies on the errors that occur in eyewitness testimony. These two traditions of research--theoretical and empirical--have been independent and distinct. Here, data from the eyewitness testimony paradigm are simulated by the distributed model CHARM (Composite Holographic Associative Recall Model). Of focal concern are Loftus's studies, which have been interpreted in favor of the blending hypothesis, and McCloskey and Zaragoza's studies, which have been interpreted as refuting Loftus's position. Both of these seemingly contradictory results, as well as recent findings with yes/no recognition, fall out of the model. Finally, the model predicts empirically found color shifts and provides specifications for when blends and memory impairments will and will not be expected.
Variations of thermospheric composition according to AE-C data and CTIP modelling
Directory of Open Access Journals (Sweden)
H. Rishbeth
2004-01-01
Full Text Available Data from the Atmospheric Explorer C satellite, taken at middle and low latitudes in 1975-1978, are used to study latitudinal and month-by-month variations of thermospheric composition. The parameter used is the "compositional Ρ-parameter", related to the neutral atomic oxygen/molecular nitrogen concentration ratio. The midlatitude data show strong winter maxima of the atomic/molecular ratio, which account for the "seasonal anomaly" of the ionospheric F2-layer. When the AE-C data are compared with the empirical MSIS model and the computational CTIP ionosphere-thermosphere model, broadly similar features are found, but the AE-C data give a more molecular thermosphere than do the models, especially CTIP. In particular, CTIP badly overestimates the winter/summer change of composition, more so in the south than in the north. The semiannual variations at the equator and in southern latitudes, shown by CTIP and MSIS, appear more weakly in the AE-C data. Magnetic activity produces a more molecular thermosphere at high latitudes, and at mid-latitudes in summer.
Key words. Atmospheric composition and structure (thermosphere – composition and chemistry
Lee, Junggil
2015-01-10
This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.
An Analytical Model of Thermal Conductivity for Carbon/Carbon Composites with Pitch-Based Matrix
Directory of Open Access Journals (Sweden)
Zhi-Hai Feng
2015-01-01
Full Text Available The carbon/carbon (C/C composites are composed of carbon fibers, carbon matrix, and pores and cracks, which have been successfully used in various aerospace applications. In this paper, nanoscale submodel is proposed to describe the thermal conductivity of the matrix based on its microscopic structure, and then the submodel is incorporated into a microscale model to analytically predict the equivalent thermal conductivities of the composites by equivalent circuit approach. The results predicted by the present model agree well with those from the experimental measurements. Based on the model, the effects of the composite porosity as well as the thickness and porosity of the interface phase on the thermal performance of five composites are studied. It is found that the thermal conductivities show decreasing trends in responding to an increase in each of the three parameters. The composite porosity has a significant effect on the thermal conductivities both parallel and transverse to the fiber axis, while the thickness and the porosity of the interface phase remarkably affect the thermal conductivity only transverse to the fiber axis.
PRAGMATICS DRIVEN LAND COVER SERVICE COMPOSITION UTILIZING BEHAVIOR-INTENTION MODEL
Directory of Open Access Journals (Sweden)
H. Wu
2016-06-01
Full Text Available Web service composition is one of the key issues to develop a global land cover (GLC information service portal. Aiming at the defect that traditional syntax and semantic service compositionare difficult to take pragmatic information into account, the paper firstly analyses three tiers of web service language and their succession relations, discusses the conceptual model of pragmatic web service, and proposes the idea of pragmatics-oriented adaptive composition method based on the analysis of some examples. On this basis it puts forward the pragmatic web service model based on Behavior-Intention through presetting and expression of service usability, users' intention, and other pragmatic information, develops the on-demand assembly method based on the agent theory and matching and reconstruction method on heterogeneous message, solves the key technological issue of algorithm applicability and heterogeneous message transformation in the process of covering web service composition on the ground, applies these methods into service combination, puts forward the pragmatic driven service composition method based on behavior-intention model, and effectively settles the issue of coordination and interaction of composite service invocation.
Šomvársky, Ján; Dušek, Karel; Dušková-Smrčková, Miroslava
2014-03-01
The class of particulate composites with cross-linked hyperelastic polymer matrix and non-deformable filler particles represents many important biopolymer and engineering materials. At application conditions, the matrix is either in the swollen state, or the swollen state is utilized for matrix characterization. In this contribution, a numerical model for simulation of equilibrium stress-strain and swelling behavior of this composite material was developed based on finite element method using COMSOL Multiphysics® software. In the constitutive equations (Gibbs energy), the elastic contribution is based on statistical-mechanical model of a network composed of freely jointed chains of finite extensibility and polymer-solvent mixing term is derived from the Flory-Huggins lattice model. A perfect adhesion of matrix-to-particle is assumed. The adhesion of matrix to stiff surface generates stress and degree-of-swelling fields in the composite. The existence of these fields determines the mechanical and swelling properties of the composite. Spatial distribution of filler particles in the composite plays an important role.
Modelling of polypropylene fibre-matrix composites using finite element analysis
Directory of Open Access Journals (Sweden)
2009-01-01
Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.
Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J
2018-01-01
Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.
A Continuum Damage Mechanics Model for the Static and Cyclic Fatigue of Cellular Composites
Huber, Otto
2017-01-01
The fatigue behavior of a cellular composite with an epoxy matrix and glass foam granules is analyzed and modeled by means of continuum damage mechanics. The investigated cellular composite is a particular type of composite foam, and is very similar to syntactic foams. In contrast to conventional syntactic foams constituted by hollow spherical particles (balloons), cellular glass, mineral, or metal place holders are combined with the matrix material (metal or polymer) in the case of cellular composites. A microstructural investigation of the damage behavior is performed using scanning electron microscopy. For the modeling of the fatigue behavior, the damage is separated into pure static and pure cyclic damage and described in terms of the stiffness loss of the material using damage models for cyclic and creep damage. Both models incorporate nonlinear accumulation and interaction of damage. A cycle jumping procedure is developed, which allows for a fast and accurate calculation of the damage evolution for constant load frequencies. The damage model is applied to examine the mean stress effect for cyclic fatigue and to investigate the frequency effect and the influence of the signal form in the case of static and cyclic damage interaction. The calculated lifetimes are in very good agreement with experimental results. PMID:28809806
Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents
Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.
2010-01-01
The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.
A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints
Directory of Open Access Journals (Sweden)
Libin ZHAO
2014-12-01
Full Text Available Effective and convenient stress analysis techniques play important roles in the analysis and design of adhesively bonded composite joints. A new material model is presented at the level of composite ply according to the orthotropic elastic mechanics theory and plane strain assumption. The model proposed has the potential to reserve nature properties of laminates with ply-to-ply modeling. The equivalent engineering constants in the model are obtained only by the material properties of unidirectional composites. Based on commercial FE software ABAQUS, a 2D FE model of a single-lap adhesively bonded joint was established conveniently by using the new model without complex modeling process and much professional knowledge. Stress distributions in adhesive were compared with the numerical results by Tsai and Morton and interlaminar stresses between adhesive and adherents were compared with the results from a detailed 3D FE analysis. Good agreements in both cases verify the validity of the proposed model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.5960
Review of strongly-coupled composite dark matter models and lattice simulations
Kribs, Graham D.; Neil, Ethan T.
2016-08-01
We review models of new physics in which dark matter arises as a composite bound state from a confining strongly-coupled non-Abelian gauge theory. We discuss several qualitatively distinct classes of composite candidates, including dark mesons, dark baryons, and dark glueballs. We highlight some of the promising strategies for direct detection, especially through dark moments, using the symmetries and properties of the composite description to identify the operators that dominate the interactions of dark matter with matter, as well as dark matter self-interactions. We briefly discuss the implications of these theories at colliders, especially the (potentially novel) phenomenology of dark mesons in various regimes of the models. Throughout the review, we highlight the use of lattice calculations in the study of these strongly-coupled theories, to obtain precise quantitative predictions and new insights into the dynamics.
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Directory of Open Access Journals (Sweden)
Kang Guan
2016-12-01
Full Text Available The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites.
Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus
DEFF Research Database (Denmark)
Madsen, Bo; Joffe, Roberts; Peltola, Heidi
2011-01-01
This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....
Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level
Guan, Kang; Wu, Jianqing; Cheng, Laifei
2016-01-01
The evolution of the thermal conductivities of the unidirectional, 2D woven and 3D braided composites during the CVI (chemical vapor infiltration) process have been numerically studied by the finite element method. The results show that the dual-scale pores play an important role in the thermal conduction of the CVI-densified composites. According to our results, two thermal conductivity models applicable for CVI process have been developed. The sensitivity analysis demonstrates the parameter with the most influence on the CVI-densified composites’ thermal conductivity is matrix cracking’s density, followed by volume fraction of the bundle and thermal conductance of the matrix cracks, finally by micro-porosity inside the bundles and macro-porosity between the bundles. The obtained results are well consistent with the reported data, thus our models could be useful for designing the processing and performance of the CVI-densified composites. PMID:28774130
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
A micro-macro relationship for modeling the damage of discontinuous reinforced composites
Energy Technology Data Exchange (ETDEWEB)
Bourgeois, N. (Lab. MSS-MAT, Ecole Centrale de Paris, 92 Chatenay-Malabry (France)); Keyvani, M. (Lab. MSS-MAT, Ecole Centrale de Paris, 92 Chatenay-Malabry (France)); Baptiste, D. (Lab. MSS-MAT, Ecole Centrale de Paris, 92 Chatenay-Malabry (France) Lab. LM3, ENSAM, 75 Paris (France))
1993-11-01
In discontinuous reinforced composites, different damage processes are observed : reinforcement fracture, interface debonding and matrix failure depending on the type of material and loading. So, local criteria of damage initiation were introduced in a micromechanical model to reproduce these phenomena and predict the material behavior. The model is based on the stiffness prediction by the Mori and Tanaka approach. Tensile stress-strain curves until total failure are simulated in the case of SMC type composite. The evolution with damage of all the elastic constants is also compared with ultrasonic measurements. In an Al/SiCp composite, damage was identified to be particle fracture. Tensile behaviors with or without damage are compared. Three solutions to replace the broken particles are studied. (orig.).
Munteanu, Cristian Robert
2014-01-01
Comparison of Enzymes / Non-Enzymes Proteins Classification Models Based on 3D, Composition, Sequences and Topological Indices, German Conference on Bioinformatics (GCB), Potsdam, Germany (September, 2007)
An Object-Oriented Language-Database Integration Model: The Composition-Filters Approach
Aksit, Mehmet; Bergmans, Lodewijk; Vural, S.; Vural, Sinan; Lehrmann Madsen, O.
1992-01-01
This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,
Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2009-01-01
A new method and a software code for the automatic generation of 3D micromechanical FE models of unidirectional long-fiber-reinforced composite (LFRC) with high fiber volume fraction with random fiber arrangement are presented. The fiber arrangement in the cross-section is generated through random...
Mathematical modeling of cross-linking monomer elution from resin-based dental composites.
Manojlovic, Dragica; Radisic, Marina; Lausevic, Mila; Zivkovic, Slavoljub; Miletic, Vesna
2013-01-01
Elution of potentially toxic substances, including monomers, from resin-based dental composites may affect the biocompatibility of these materials in clinical conditions. In addition to the amounts of eluted monomers, mathematical modeling of elution kinetics reveals composite restorations as potential chronic sources of leachable monomers. The aim of this work was to experimentally quantify elution of main cross-linking monomers from four commercial composites and offer a mathematical model of elution kinetics. Composite samples (n = 7 per group) of Filtek Supreme XT (3M ESPE), Tetric EvoCeram (Ivoclar Vivadent), Admira (Voco), and Filtek Z250 (3M ESPE) were prepared in 2-mm thick Teflon moulds and cured with halogen or light-emitting diode light. Monomer elution in ethanol and water was analyzed using high-performance liquid chromatography up to 28 days postimmersion. The mathematical model was expressed as a sum of two exponential regression functions representing the first-order kinetics law. Elution kinetics in all cases followed the same mathematical model though differences in rate constants as well as the extent of monomer elution were material-, LCU-, medium-dependent. The proposed mechanisms of elution indicate fast elution from surface and subsurface layers and up to 100 times slower monomer extraction from the bulk polymer. Copyright © 2012 Wiley Periodicals, Inc.
Gholamhoseini, Alireza
2016-03-01
Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.
Numerical modeling of a compositional flow for chemical EOR and its stability analysis
Druetta, P.; Yue, J.; Tesi, P.; De Persis, C.; Picchioni, F.
A new two-dimensional surfactant flooding simulator for a three-component (water, petroleum, chemical), two-phase (aqueous, oleous) system in porous media is developed and analyzed. The compositional physical model is governed by a system of non-linear partial differential equations composed of
Vector and Axial-vector resonances in composite models of the Higgs boson
DEFF Research Database (Denmark)
Franzosi, Diogo Buarque; Cacciapaglia, Giacomo; Cai, Haiying
2016-01-01
We provide a non-linear realisation of composite Higgs models in the context of the SU(4)/Sp(4) symmetry breaking pattern, where the effective Lagrangian of the spin-0 and spin-1 resonances is constructed via the CCWZ prescription using the Hidden Symmetry formalism. We investigate the EWPT const...
Competition for Resources: A Reexamination of Sibship Composition Models of Parental Investment
Lee, Kristen Schultz
2009-01-01
The predictions of resource dilution and sibship gender composition models of educational investment are tested using the Japanese Nationwide Survey on Families (N = 6,985). Japan is an important case because of its postindustrial economy, coupled with high levels of dependence on parental investment to attend a university and persisting gender…
Multiscale computational modeling of size effects in carbon nanotube-polymer composites
Malagu, M.
2017-01-01
The development of carbon nanotube(CNT)-polymer composites advocates for a better understanding of their physical and mechanical properties that depend on the diameter of the embedded CNTs. Given that the experimental assessment of size effects is extremely difficult, the use of numerical models can
An object-oriented language-database integration model: The composition filters approach
Aksit, Mehmet; Bergmans, Lodewijk; Vural, Sinan; Vural, S.
1991-01-01
This paper introduces a new model, based on so-called object-composition filters, that uniformly integrates database-like features into an object-oriented language. The focus is on providing persistent dynamic data structures, data sharing, transactions, multiple views and associative access,
Deng, Bo; Shi, Yaoyao
2017-11-01
The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.
Gransden, D.I.; Alderliesten, R.C.
2017-01-01
Part of the work of AircraftFire, a project investigating the effects of fire and crash on aircraft survivability, is presented. This work compares the effect of changing the material model from metallic to composite on the impact damage and floor acceleration characteristics. First, the metallic
Xiong, H.; Hamila, N.; Boisse, P.
2017-10-01
Pre-impregnated thermoplastic composites have recently attached increasing interest in the automotive industry for their excellent mechanical properties and their rapid cycle manufacturing process, modelling and numerical simulations of forming processes for composites parts with complex geometry is necessary to predict and optimize manufacturing practices, especially for the consolidation effects. A viscoelastic relaxation model is proposed to characterize the consolidation behavior of thermoplastic prepregs based on compaction tests with a range of temperatures. The intimate contact model is employed to predict the evolution of the consolidation which permits the microstructure prediction of void presented through the prepreg. Within a hyperelastic framework, several simulation tests are launched by combining a new developed solid shell finite element and the consolidation models.
Directory of Open Access Journals (Sweden)
Paula Andrea Rodríguez Marín
2014-04-01
Full Text Available Learning objects (LOs repositories are important in building educational content and should allow search, retrieval and composition processes to be successfully developed to reach educational goals. However, such processes require so much time-consuming and not always provide the desired results. Thus, the aim of this paper is to propose a model for the semiautomatic composition of LOs, which are automatically recovered from open repositories. For the development of model, various text similarity measures are discussed, while for calibration and validation some comparison experiments were performed using the results obtained by teachers. Experimental results show that when using a value of k (number of LOs selected of at least 3, the percentage of similarities between the model and such made by experts exceeds 75%. To conclude, it can be established that the model proposed allows teachers to save time and effort for LOs selection by performing a pre-filter process.
DEFF Research Database (Denmark)
Skar, Asmus; Poulsen, Peter Noe
2015-01-01
The problem of stiffness degradation in composite pavement systems from localised fracture damage in the quasibrittle cement bound granular mixture are today taken into account only by empirical formulas. These formulas deals with a limited number of materials in a restricted range of design...... options and would yield unrealistic results in ultimate loading conditions. Cohesive modelling is one of the primary methods to handle localised damage in quasi-brittle materials, e.g., concrete, describing the potential crack in a discrete manner. To increase the versatility of existing methods...... this paper presents a numerical analysis of the fracture behaviour of cement bound granular mixtures in composite concrete block pavement systems applying a cohesive model. The functionality of the proposed model is compared to experimental investigations of beam bending tests. The pavement is modelled...
Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation
Chen, Guo; Schnyder, Hans; Auerswald, Karl
2017-04-01
Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (panalysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.
Directory of Open Access Journals (Sweden)
Luciano Ribeiro CORREA NETTO
2015-10-01
Full Text Available Marginal integrity is one of the most crucial aspects involved in the clinical longevity of resin composite restorations.Objective To analyze the marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS.Material and Methods A base composite (B was produced with an organic matrix with UDMA/TEGDMA and 70 wt.% of barium borosilicate glass particles. To produce the model composite, 25 wt.% of UDMA were replaced by POSS (P25. The composites P90 and TPH3 (TP3 were used as positive and negative controls, respectively. Marginal integrity (%MI was analyzed in bonded class I cavities. The volumetric polymerization shrinkage (%VS and the polymerization shrinkage stress (Pss - MPa were also evaluated.Results The values for %MI were as follows: P90 (100% = TP3 (98.3% = B (96.9% > P25 (93.2%, (p<0.05. The %VS ranged from 1.4% (P90 to 4.9% (P25, while Pss ranged from 2.3 MPa (P90 to 3.9 MPa (B. For both properties, the composite P25 presented the worst results (4.9% and 3.6 MPa. Linear regression analysis showed a strong positive correlation between %VS and Pss (r=0.97, whereas the correlation between Pss and %MI was found to be moderate (r=0.76.Conclusions The addition of 25 wt.% of POSS in methacrylate organic matrix did not improve the marginal integrity of class I restorations. Filtek P90 showed lower polymerization shrinkage and shrinkage stress when compared to the experimental and commercial methacrylate composite.
Haider, Mohammad Faisal; Haider, Md. Mushfique; Yasmeen, Farzana
2016-07-01
Heterogeneous materials, such as composites consist of clearly distinguishable constituents (or phases) that show different electrical properties. Multifunctional composites have anisotropic electrical properties that can be tailored for a particular application. The effective anisotropic electrical conductivity of composites is strongly affected by many parameters including volume fractions, distributions, and orientations of constituents. Given the electrical properties of the constituents, one important goal of micromechanics of materials consists of predicting electrical response of the heterogeneous material on the basis of the geometries and properties of the individual phases, a task known as homogenization. The benefit of homogenization is that the behavior of a heterogeneous material can be determined without resorting or testing it. Furthermore, continuum micromechanics can predict the full multi-axial properties and responses of inhomogeneous materials, which are anisotropic in nature. Effective electrical conductivity estimation is performed by using classical micromechanics techniques (composite cylinder assemblage method) that investigates the effect of the fiber/matrix electrical properties and their volume fractions on the micro scale composite response. The composite cylinder assemblage method (CCM) is an analytical theory that is based on the assumption that composites are in a state of periodic structure. The CCM was developed to extend capabilities variable fiber shape/array availability with same volume fraction, interphase analysis, etc. The CCM is a continuum-based micromechanics model that provides closed form expressions for upper level length scales such as macro-scale composite responses in terms of the properties, shapes, orientations and constituent distributions at lower length levels such as the micro-scale.
Energy Technology Data Exchange (ETDEWEB)
Lorrette, Ch
2007-04-15
This work is an original contribution to the study of the thermo-structural composite materials thermal behaviour. It aims to develop a methodology with a new experimental device for thermal characterization adapted to this type of material and to model the heat transfer by conduction within these heterogeneous media. The first part deals with prediction of the thermal effective conductivity of stratified composite materials in the three space directions. For that, a multi scale model using a rigorous morphology analysis of the structure and the elementary properties is proposed and implemented. The second part deals with the thermal characterization at high temperature. It shows how to estimate simultaneously the thermal effusiveness and the thermal conductivity. The present method is based on the observation of the heating from a plane sample submitted to a continuous excitation generated by Joule Effect. Heat transfer is modelled with the quadrupole formalism, temperature is here measured on two sides of the sample. The development of both resistive probes for excitation and linear probes for temperature measurements enables the thermal properties measured up to 1000 C. Finally, some experimental and numerical application examples lead to review the obtained results. (author)
Model of lifetime prediction - Study of the behaviour of polymers and organic matrix composites
International Nuclear Information System (INIS)
Colin, X.
2009-01-01
The team 'Aging of Organic Materials' of the Process and Engineering Laboratory in Mechanics and Materials (Arts et Metiers, ParisTech) has developed the model of lifetime prediction for the prediction of the behaviour of polymers and organic composites. This model has already given evidence of a real predictive mean for various industrial applications, as for instance the prediction of a rupture under the coupled effect of a mechanical load and a chemical degradation. (O.M.)
A Reference Implementation of WECC Composite Load Model in Matlab and GridPACK
Huang, Qiuhua; Huang, Renke; Palmer, Bruce J.; Liu, Yuan; Jin, Shuangshuang; Diao, Ruisheng; Chen, Yousu; Zhang, Yu
2017-01-01
The composite load model (CLM) proposed by the Western Electricity Coordinating Council (WECC) is gaining increasing traction in industry, particularly in North America. At the same time, it has been recognized that further improvements in structure, initialization and aggregation methods are needed to enhance model accuracy. However, the lack of an open-source implementation of the WECC CLM has become a roadblock for many researchers for further improvement. To bridge this gap, this paper pr...
Poyer, François; Cadoz, Claude
2007-01-01
Paper 3 - Audio Synthesis (Oral Presentations); International audience; In this paper, we present the first results of a study that is carried out with the sound synthesis and musical creation environment GENESIS on self-sustained oscillating structures models. Based on the mass-interaction CORDIS-ANIMA physical modelling formalism, GENESIS has got the noteworthy property that it allows to work both on sound itself and on musical composition in a single coherent environment. By taking as a st...
Predicting the carcass composition of lambs by a simultaneous equations model
Cadavez, Vasco
2010-01-01
The objective of this study was to develop models to predict lamb carcass composition by simultaneous equations model (SEM), and to compare t he efficiency of the ordinary least squares (OLS), weight least squares (WLS), and seemingly unrelated regressions (SUR) estimators. Forty male lambs, 22 of Churro Galego Bragançano Portuguese local breed and 18 of Suffolk breed were used. Lambs were slaughtered and carcasses were weighed approximately 30 min after slaughter in orde...
Higgs compositeness in Sp(2N) gauge theories — The pure gauge model
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step in the study of Sp(2N) composite Higgs models, we obtained a set of novel numerical results for the pure gauge Sp(4) lattice theory in 3+1 space-time dimensions. Results for the continuum extrapolations of the string tension and the glueball mass spectrum are presented and their values are compared with the same quantities in neighbouring SU(N) models.
Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.
2013-03-01
NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.
Separation-Mixing as a Model of Composition Evolution of any Nature
Directory of Open Access Journals (Sweden)
Tomas G. Petrov
2014-02-01
Full Text Available Model of separation-mixing is applicable when studying the compositional evolution of systems of different nature, from physicochemical to the social ones. To display the processes, RHAT information language-method is proposed; it takes into account at the same point on the chart an indefinitely wide variation of components and their quantity. The possibilities of the model application are showed.
2017-04-04
an orthotropic composite. A finite element model was constructed to corroborate the experimental data . Abaqus /CAE was used to construct the model...the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...relationship. Also included are data from other studies on Ti2AlC. 1.1.1.2. High Temperature Mechanical Properties of Ti2AlC The mechanical
Iacobellis, Vincent
Composite and nanocomposite materials exhibit behaviour which is inherently multiscale, extending from the atomistic to continuum levels. In composites, damage growth tends to occur at the nano and microstructural scale by means of crack growth and fibre-matrix debonding. Concurrent multiscale modeling provides a means of efficiently solving such localized phenomena, however its use in this application has been limited due to a number of existing issues in the multiscale field. These include the seamless transfer of information between continuum and atomistic domains, the small timesteps required for dynamic simulation, and limited research into concurrent multiscale modeling of amorphous polymeric materials. The objective of this thesis is thus twofold: to formulate a generalized approach to solving a coupled atomistic-to-continuum system that addresses these issues and to extend the application space of concurrent multiscale modeling to damage modeling in composite microstructures. To achieve these objectives, a finite element based multiscale technique termed the Bridging Cell Method (BCM), has been formulated with a focus on crystalline material systems. Case studies are then presented that show the effectiveness of the developed technique with respect to full atomistic simulations. The BCM is also demonstrated for applications of stress around a nanovoid, nanoindentation, and crack growth due to monotonic and cyclic loading. Next, the BCM is extended to modeling amorphous polymeric material systems where an adaptive solver and a two-step iterative solution algorithm are introduced. Finally, the amorphous and crystalline BCM is applied to modeling a polymer-graphite interface. This interface model is used to obtain cohesive zone parameters which are used in a cohesive zone model of fibre-matrix interfacial cracking in a composite microstructure. This allows for an investigation of the temperature dependent damage mechanics from the nano to microscale within
International Nuclear Information System (INIS)
Mavromatidis, Lazaros Elias; Bykalyuk, Anna; Lequay, Hervé
2013-01-01
Highlights: ► Original software for composite dynamic envelope’s thermal performance forecasting. ► Construction of two hypothetical composite dynamic wall’s prototypes. ► Different simulation scenarios based on fractional factorial simulation design. ► Development of polynomial regression models. ► Validation and evaluation of polynomial regression models. - Abstract: The building envelope’s insulating efficiency is always a key element regarding the energy consumption control of the whole building. This article aims to propose a simple method based on classic and fractional factorial simulation plans to obtain regression models in the form of polynomial functions that link the angle, the thermal conductivity and the thickness of each envelope’s component to the overall wall’s thermal resistance. Original software that combines classic and novel modeling techniques has been used in order to have a precise and validated numerical investigation that focuses in a variety of possible composite dynamic wall’s configurations. For the purposes of this study, the combined radiation/conduction heat transfer finite volume numerical model was updated complex enough to predict the temperature distribution and heat transfer in composite envelopes for a variety of inclination angles. The model takes into account the coupling between the solid conduction of both solid and fibrous systems and the gaseous conduction and radiation. The radiation heat transfer through each insulating layer has been modeled via the two flux approximation in order to take into account both optically thick and optically thin materials, as well as potential reflective surfaces currently used on composite wall’s applications. Different simulation scenarios have been conceived according to basic fractional factorial simulation plans in order to obtain valid empirical polynomial functions. To validate this statistical forecast system, many simulation scenarios were carried out and
Probabilistic Modelling of Fatigue Life of Composite Laminates Using Bayesian Inference
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Kiureghian, Armen Der
2014-01-01
A probabilistic model for estimating the fatigue life of laminated composite plates subjected to constant-amplitude or variable-amplitude loading is developed. The model is based on lamina-level input data, making it possible to predict fatigue properties for a wide range of laminate configurations....... Model parameters are estimated by Bayesian inference. The reference data used consists of constant-amplitude fatigue test results for a multi-directional laminate subjected to seven different load ratios. The paper describes the modelling techniques and the parameter estimation procedure, supported...
Modeling and Simulation of Fiber Orientation in Injection Molding of Polymer Composites
Directory of Open Access Journals (Sweden)
Jang Min Park
2011-01-01
Full Text Available We review the fundamental modeling and numerical simulation for a prediction of fiber orientation during injection molding process of polymer composite. In general, the simulation of fiber orientation involves coupled analysis of flow, temperature, moving free surface, and fiber kinematics. For the governing equation of the flow, Hele-Shaw flow model along with the generalized Newtonian constitutive model has been widely used. The kinematics of a group of fibers is described in terms of the second-order fiber orientation tensor. Folgar-Tucker model and recent fiber kinematics models such as a slow orientation model are discussed. Also various closure approximations are reviewed. Therefore, the coupled numerical methods are needed due to the above complex problems. We review several well-established methods such as a finite-element/finite-different hybrid scheme for Hele-Shaw flow model and a finite element method for a general three-dimensional flow model.
Directory of Open Access Journals (Sweden)
Canio Hoffarth
2017-03-01
Full Text Available A three-dimensional constitutive model has been developed for modeling orthotropic composites subject to impact loads. It has three distinct components—a deformation model involving elastic and plastic deformations; a damage model; and a failure model. The model is driven by tabular data that is generated either using laboratory tests or via virtual testing. A unidirectional composite—T800/F3900, commonly used in the aerospace industry, is used in the verification and validation tests. While the failure model is under development, these tests indicate that the implementation of the deformation and damage models in a commercial finite element program, LS-DYNA, is efficient, robust and accurate.
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.
2017-05-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.
Agarwal, Pavan
Micromechanics of Composites analyze stresses inside any heterogeneous material. These stresses can not only be used for calculation of effective stiffness or compliance, but also for predicting strength and failure modes for these materials. This thesis is devoted to the stress analysis of unidirectional composites by finite element method. The key distinction from other finite element method modeling of the unidirectional composite was that the load on the cell was not prescribed, but was to be calculated taking into account the influence of the closest neighbors of the cell. Transversal unidirectional tension/compression and transversally symmetrical biaxial tension/compression were analyzed. In this project, two kinds of fiber materials were mainly focused upon namely; Carbon and E-glass. Here single cell and multi-cell models for cylindrical, square and hexagonal geometries were considered. The entire work was primarily focused on the cylindrical model since it constitutes the basic model in any mechanical industry. The models were experimented by taking different fiber volumes and applying relative pressure/loading to each. Stresses on the boundary were analyzed between the interface of fiber and matrix. Same was done with the multi-cell models, and analytical results were determined. Produced practical data was compared with analytical solutions for single cell and infinitely big regular array of inclusions in the matrix.
International Nuclear Information System (INIS)
Feng, X.; Saad, E.E.; Freeborn, W.P.; Macedo, P.B.; Pegg, I.L.; Sassoon, R.E.; Barkatt, A.; Finger, S.M.
1988-01-01
There are two important criteria that must be satisfied by a nuclear waste glass durability and processability. The chemical composition of the glass must be such that it does not dissolve or erode appreciably faster than the decay of the radioactive materials embedded in it. The second criterion, processability, means that the glass must melt with ease, must be easily pourable, and must not crystallize appreciably. This paper summarizes the development of simple models for predicting the durability and viscosity of nuclear waste glasses from their composition
Optimization of the piezoelectric response of 0–3 composites: a modeling approach
International Nuclear Information System (INIS)
Chambion, B; Goujon, L; Badie, L; Mugnier, Y; Barthod, C; Galez, C; Wiebel, S; Venet, C
2011-01-01
Finite element modeling is used in this study to optimize the electromechanical behavior of 0–3 composites according to the material properties of their constituents. Our modeling approach considers an 'extended' 2D representative volume element (RVE) with randomly dispersed piezoelectric particles. A variable distribution of their polarization axes is also implemented because a full periodic arrangement of fillers and a unique poling orientation are unrealistic in practice. Comparisons with a simpler RVE and with an analytical model based on the Mori–Tanaka approach are performed as a function of the particle concentration for the elastic, dielectric and piezoelectric homogenized properties. An optimization of the piezoelectric response of 0–3 composites according to material considerations is then computed, allowing it to be shown that the piezoelectric strain coefficient is not the only relevant parameter and that lead-free piezoelectric fillers such as LiNbO 3 and ZnO are competitive alternatives. Finally, the piezoelectric responses of 0–3 composites with different filler arrangements are quantitatively compared to 1–3 composites and to the corresponding bulk material
Seamless Meteorology-Composition Models: Challenges, Gaps, Needs and Future Directions
Vogel, Bernhard; Baklanov, Alexander; Bouchet, Véronique; Marécal, Virginie; Benedetti, Angela; Heinke Schlünzen, K.
2016-04-01
Seamless meteorology - composition - chemistry models (SMCM) have several advantages: They allow the consideration of two - way interactions (i.e. feedbacks), ensure synergies in research, development, maintenance and application. "Seamless" is introduced here in relation to two aspects. Firstly, at the process - scale where it refers to the coupling within a model of meteorology and composition processes to represent for example the two - way interactions between composition and radiative processes or microphysics, or the consistent treatment of water vapor. Secondly, in terms time and space where it refers to the absence of discontinuities in model behavior when used at multiple temporal or spatial resolutions to have for example consistent treatment of black carbon for air quality and climate applications. SMCMs describe the relevant processes to investigate long - standing scientific questions on the interactions between atmospheric constituents and atmospheric processes and support the creation of new environmental prediction services. This paper presents a review of the current research status of SMCMs and recommendations to address limitations in weather, climate and atmospheric composition fields whose interests, applications and challenges are now overlapping. The contribution highlights the challenges towards seamlessness and presents priority areas for research to further this path. It will present examples where SMCMs are already in or close to operational use.
International Nuclear Information System (INIS)
Jang, Sung-Hwan; Yin, Huiming
2015-01-01
A simplified model is presented to predict the effective electrical conductivity of carbon nanotube(CNT)-polymer composite with different material proportions, which is validated by the experiments of multi-walled CNT/polydimethylsiloxane (PDMS) composites. CNTs are well dispersed in a PDMS matrix, and the mixture is then cured and cast into thin films for electrical characterization. The CNTs are assumed to be statistically uniformly distributed in the PDMS matrix with the three-dimensional (3D) waviness. As the proportion of CNTs increases to a certain level, namely the percolation threshold, the discrete CNTs start to connect with each other, forming a 3D network which exhibits a significant increase of effective electrical conductivity. The eight-chain model has been used to predict the effective electrical conductivity of the composite, in which the contact resistance between CNTs has been considered through the Simmons’ equation. The eight-chain network features can be significantly changed with the modification to mixing process, CNT length and diameter, and CNT clustering and curling. A Gaussian statistics-based formulation is used to calculate the effective length of a single CNT well dispersed in the matrix. The modeling results of effective electrical conductivity agree with the experiments very well, which are highly dependent on a contact resistance between CNTs and the waviness of the CNTs. The effect of inner-nanotube distance and diameter of CNTs on the effective electrical conductivity of the CNT/PDMS composite is also discussed. (paper)
Modelling and interpreting the isotopic composition of water vapour in convective updrafts
Directory of Open Access Journals (Sweden)
M. Bolot
2013-08-01
Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.
Mathematical Modeling of Dielectric Characteristics of the Metallic Band Inclusion Composite
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2015-01-01
Full Text Available Among the desirable properties of functional materials used in various electrical and radio physical equipment and devices, dielectric characteristics, including relative permittivity (hereinafter, permittivity are of importance. The permittivity requirements can be met when a composite with a particular combination of its matrix characteristics and inclusions [1, 2, 3] is used as a functional material. The use of metallic inclusions extends a variation range of dielectric characteristics of the composite, and thereby enhances its application. The composite structure, form of inclusions, and their volume concentration has a significant impact on the permittivity.One of the composite structure embodiments is a dispersion system when in the dispersion medium (in this case | in the composite matrix a dispersed phase (inclusions with highly extended interface between them [4] is distributed. There can be various forms of dispersed inclusions. Band is one of the possible forms of inclusion when its dimensions in three orthogonal directions are significantly different among themselves. For such inclusion, a tri-axial ellipsoid can be taken as an acceptable geometric model to describe its form. This model can be used, in particular, to describe the form of nanostructured elements, which recently are considered as inclusions for advanced composites for various purposes [5].With raising volume concentration of metal inclusions in the dielectric matrix composite there is an increasing probability of direct contact between the inclusions resulting in continuous conductive cluster [3, 6]. In this paper, it is assumed that metal band inclusions are covered with a sufficiently thin layer of the electrically insulating material, eliminating the possibility of direct contact and precluding consideration of the so-called percolation effect [2, 7] in the entire interval of the expectedly changing volume concentration of electrically ellipsoidal inclusions. The
An eddy-current model for three-dimensional nondestructive evaluation of advanced composites
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.
2015-03-01
We have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we apply rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. We will give examples of the solution of forward problems using this model.
Computerized mathematical model for prediction of resin/fiber composite properties
International Nuclear Information System (INIS)
Lowe, K.A.
1985-01-01
A mathematical model has been developed for the design and optimization of resin formulations. The behavior of a fiber-reinforced cured resin matrix can be predicted from constituent properties of the formulation and fiber when component interaction is taken into account. A computer implementation of the mathematical model has been coded to simulate resin/fiber response and generate expected values for any definable properties of the composite. The algorithm is based on multistage regression techniques and the manipulation of n-order matrices. Excellent correlation between actual test values and predicted values has been observed for physical, mechanical, and qualitative properties of resin/fiber composites. Both experimental and commercial resin systems with various fiber reinforcements have been successfully characterized by the model. 6 references, 3 figures, 2 tables
Han, Xiao; Gao, Xiguang; Song, Yingdong
2017-10-01
An approach to identify parameters of interface friction model for Ceramic Matrix composites based on stress-strain response was developed. The stress distribution of fibers in the interface slip region and intact region of the damaged composite was determined by adopting the interface friction model. The relation between maximum strain, secant moduli of hysteresis loop and interface shear stress, interface de-bonding stress was established respectively with the method of symbolic-graphic combination. By comparing the experimental strain, secant moduli of hysteresis loop with computation values, the interface shear stress and interface de-bonding stress corresponding to first cycle were identified. Substituting the identification of parameters into interface friction model, the stress-strain curves were predicted and the predicted results fit experiments well. Besides, the influence of number of data points on identifying the value of interface parameters was discussed. And the approach was compared with the method based on the area of hysteresis loop.
Finite element model updating of natural fibre reinforced composite structure in structural dynamics
Directory of Open Access Journals (Sweden)
Sani M.S.M.
2016-01-01
Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.
Zhang, Hong Mei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F
2017-03-01
Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques - ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material's fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r . Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η - E A relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties.
Modeling of laser welding of steel and titanium plates with a composite insert
Isaev, V. I.; Cherepanov, A. N.; Shapeev, V. P.
2017-10-01
A 3D model of laser welding proposed before by the authors was extended to the case of welding of metallic plates made of dissimilar materials with a composite multilayer intermediate insert. The model simulates heat transfer in the welded plates and takes into account phase transitions. It was proposed to select the composition of several metals and dimensions of the insert to avoid the formation of brittle intermetallic phases in the weld joint negatively affecting its strength properties. The model accounts for key physical phenomena occurring during the complex process of laser welding. It is capable to calculate temperature regimes at each point of the plates. The model can be used to select the welding parameters reducing the risk of formation of intermetallic plates. It can forecast the dimensions and crystalline structure of the solidified melt. Based on the proposed model a numerical algorithm was constructed. Simulations were carried out for the welding of titanium and steel plates with a composite insert comprising four different metals: copper and niobium (intermediate plates) with steel and titanium (outer plates). The insert is produced by explosion welding. Temperature fields and the processes of melting, evaporation, and solidification were studied.
A unit-cell model of textile composite beams for predicting stiffness properties
Sankar, Bhavani V.; Marrey, Ramesh V.
1993-01-01
Flexural stiffness properties of a textile composite beam are obtained from a finite-element model of the unit cell. Three linearly independent deformations, namely, pure extension, pure bending and pure shear, are applied to the unit cell. The top and bottom surfaces of the beam are assumed to be traction free. Periodic boundary conditions on the lateral boundaries of the unit cell are enforced by multi-point constraint elements. From the forces acting on the unit cell, the flexural stiffness coefficients of the composite beam are obtained. The difficulties in determining the transverse shear stiffness are discussed, and a modified approach is presented. The methods are first verified by applying them to isotropic and bimaterial beams for which the results are known, and then illustrated for a simple plain-weave textile composite.
Baley, Christophe; Goudenhooft, Camille; Gibaud, Marianne; Bourmaud, Alain
2018-01-10
The present paper proposes to carefully study and describe the reinforcement mechanisms within a flax stem, which is an exceptional natural model of composite structure. Thanks to accurate microscopic investigations, with both optical and SEM method, we finely depicted the flax stem architecture, which can be view as a composite structure with an outer protection, a unidirectional ply on the periphery and a porous core; each component has a specific function, such as mechanical reinforcement for the unidirectional ply and the porous core. The significant mechanical role of fibres was underlined, as well as their local organisation in cohesive bundles, obtained because of an intrusive growth and evidenced in this work through nanomechanical AFM measurement and 3D reconstruction. Following a biomimetic approach, these data provide a source of inspiration for the composite materials of tomorrow. © 2018 IOP Publishing Ltd.
Neutron diffraction measurements and modeling of residual strains in metal matrix composites
Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.
1996-01-01
Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.
Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings
Yamada, Yoshiki; Zhu, Dongming
2011-01-01
Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.
International Nuclear Information System (INIS)
Arrieta, J S; Diani, J; Gilormini, P
2014-01-01
Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)
Micromechanical modeling of tungsten-based bulk metallic glass matrix composites
Energy Technology Data Exchange (ETDEWEB)
Li Hao [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Li Ke [Department of Mechanical Engineering, Texas A and M University, TAMU 3123, College Station, TX 77843 (United States)]. E-mail: keli@tamu.edu; Subhash, Ghatu [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States); Kecskes, Laszlo J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Dowding, Robert J. [Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States)
2006-08-15
Micromechanics models are developed for tungsten (W)-based bulk metallic glass (BMG) matrix composites employing the Voronoi tessellation technique and the finite element (FE) method. The simulation results indicate that the computed elastic moduli are close to those measured in the experiments. The predicted stress-strain curves agree well with their experimentally obtained counterparts in the early stage of the plastic deformation. An increase in the W volume fraction leads to a decrease in the yield stress and an increase in the Young's modulus of the composite. In addition, contours of equivalent plastic strain for increasing applied strains provide an explanation why shear bands were observed in the glassy phase, along the W/BMG interface, and in the W phase of failed W/BMG composite specimens.
Modeling of the physico-chemical ablation of carbon-based composites
International Nuclear Information System (INIS)
Lachaud, J.
2006-12-01
Carbon-based composites are used in extreme conditions: Tokamaks, re-entry bodies, nozzle throats, plane brakes. Their walls undergo a surface recession, called ablation, mainly due to some gasification phenomena (oxidation or even sublimation). This work is a contribution to the improvement of the understanding of the near-wall material/environment interaction and to its modeling. Some original gasification experiments have been carried out, modeled, and quantitatively analyzed; a complex multi-scale behavior of the materials is observed through their average recession velocity and a surface roughness onset mainly caused by their heterogeneous anisotropic structure. In order to explain these observations, a multi-scale modeling strategy has been set up; it follows the characteristic scales of the composites: nano-scopic (carbon texture), microscopic (fiber, inter-fiber matrix), mesoscopic (yarn, inter-yarn matrix), and macroscopic (homogenized composite) scales. The proposed models notably integrate the local recession of the wall, the heterogeneous gasification reactions, and mass transfer. A numerical simulation tool, based on Monte-Carlo Random Walks with Simplified Marching Cubes for the front tracking, has been implemented, validated, and used to solve these models. Using some numerically validated hypotheses, an analytical solution has been obtained; it provides a comprehensive understanding of ablation phenomena. It provides the effective behavior of the composites from that of their microscopic components through two changes of scale. The results of these phenomenological models have been validated by comparison to the laboratory experiments and applied for the analysis of actual applications. Physics-based criterions are made available for the choice or the fabrication of ideal materials. (author)
Chin, Jo-Yu; Batterman, Stuart A
2012-03-01
The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sima, A.; Paul, A.; Schulz, M.; Oerlemans, J.
2006-01-01
We used a 2.5-dimensional thermomechanical icesheet model including the oxygen-isotope ratio 18O/16O as a passive tracer to simulate the isotopic composition (d18O) of the North American Ice Sheet (NAIS) during the last glacial cycle. This model allowed us to estimate the NAIS contribution to the
Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves
Wang, Qiang; Ma, Shuxian; Yue, Dong
2018-04-01
Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
A composite state method for ensemble data assimilation with multiple limited-area models
Directory of Open Access Journals (Sweden)
Matthew Kretschmer
2015-04-01
Full Text Available Limited-area models (LAMs allow high-resolution forecasts to be made for geographic regions of interest when resources are limited. Typically, boundary conditions for these models are provided through one-way boundary coupling from a coarser resolution global model. Here, data assimilation is considered in a situation in which a global model supplies boundary conditions to multiple LAMs. The data assimilation method presented combines information from all of the models to construct a single ‘composite state’, on which data assimilation is subsequently performed. The analysis composite state is then used to form the initial conditions of the global model and all of the LAMs for the next forecast cycle. The method is tested by using numerical experiments with simple, chaotic models. The results of the experiments show that there is a clear forecast benefit to allowing LAM states to influence one another during the analysis. In addition, adding LAM information at analysis time has a strong positive impact on global model forecast performance, even at points not covered by the LAMs.
Atomistic models of Cu diffusion in CuInSe2 under variations in composition
Sommer, David E.; Dunham, Scott T.
2018-03-01
We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.
Delaminations in composite plates under transverse static or impact loads - A model
Finn, Scott R.; Springer, George S.
1993-01-01
A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to transverse static or dynamic (impact) loads. The plate may be simply supported, clamped, or free along its edges. A model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were implemented by a computer code which can be used to estimate the load at which damage is initiated as well as the locations, shapes, and sizes of the delaminations.
Finite element modelling and model updating of small scale composite propellers
Maljaars, P.J.; Kaminski, M.L.; den Besten, J.H.
2017-01-01
The application of composite materials in marine propellers is a relatively recent innovation. Methods have been presented to analyse the hydro-elastic behaviour of these type of propellers and in some studies these methods have been validated as well. Differences between measured and predicted
Puckett, Elbridge Gerry; Turcotte, Donald L.; He, Ying; Lokavarapu, Harsha; Robey, Jonathan M.; Kellogg, Louise H.
2018-03-01
Geochemical observations of mantle-derived rocks favor a nearly homogeneous upper mantle, the source of mid-ocean ridge basalts (MORB), and heterogeneous lower mantle regions. Plumes that generate ocean island basalts are thought to sample the lower mantle regions and exhibit more heterogeneity than MORB. These regions have been associated with lower mantle structures known as large low shear velocity provinces (LLSVPS) below Africa and the South Pacific. The isolation of these regions is attributed to compositional differences and density stratification that, consequently, have been the subject of computational and laboratory modeling designed to determine the parameter regime in which layering is stable and understanding how layering evolves. Mathematical models of persistent compositional interfaces in the Earth's mantle may be inherently unstable, at least in some regions of the parameter space relevant to the mantle. Computing approximations to solutions of such problems presents severe challenges, even to state-of-the-art numerical methods. Some numerical algorithms for modeling the interface between distinct compositions smear the interface at the boundary between compositions, such as methods that add numerical diffusion or 'artificial viscosity' in order to stabilize the algorithm. We present two new algorithms for maintaining high-resolution and sharp computational boundaries in computations of these types of problems: a discontinuous Galerkin method with a bound preserving limiter and a Volume-of-Fluid interface tracking algorithm. We compare these new methods with two approaches widely used for modeling the advection of two distinct thermally driven compositional fields in mantle convection computations: a high-order accurate finite element advection algorithm with entropy viscosity and a particle method that carries a scalar quantity representing the location of each compositional field. All four algorithms are implemented in the open source finite
Salgado, Vinícius Esteves; Cavalcante, Larissa Maria; Silikas, Nick; Schneider, Luis Felipe J
2013-11-01
To investigate the influence of nanoscale inorganic content over optical and surface properties of model composites before and after ageing. Three model composites were formulated with silica fillers in nanoscale of 7 nm (G1), 12 nm (G2) and 16 nm (G3), at 45.5% by weight in a matrix of BisGMA/TEGDMA 1:1. Color coordinates (CIE L*a*b* parameters), color difference (ΔE*), translucency parameter (TP), surface gloss (SG) and surface roughness (SR) were measured before and after ageing procedures of immersion in water and toothbrush abrasion. Surface hardness (SH) were evaluated before and after immersion in absolute ethanol. Results were submitted to two-way ANOVA followed by Tukey's post hoc test performed at a pre-set alpha of 0.05. Regarding CIE L*a*b* parameters, a darkening, a redness and a blueness effect, were respectively detected after water storage for all groups. Smaller filler sizes (G1) had the highest CIE b* values, whereas medium (G2) (p0.05), although a tendency towards lower values in smaller filler materials was observed. Ageing after immersion in absolute ethanol decreased SH for all model composites. Filler sizes and ageing procedures influenced the optical and surface properties of the nanostructured composites evaluated in this study. Filler size influenced optical and surface properties of resin composites. Materials containing smaller filler size offered improved optical stability and surface properties that can lead to longer maintenance of the restoration's appearance in the oral environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sliding mechanics of coated composite wires and the development of an engineering model for binding.
Zufall, S W; Kusy, R P
2000-02-01
A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.
[An alternative model of composite tissue transplantation in rat: the femur osteomyocutaneous flap].
Chen, Jianwu; Zhang, Dongliang; Chen, Chen; Su, Yingjun; Wang, Shiping; Guo, Shuzhong
2014-01-01
To reconstruct a simpler and reliable composite tissue transplantation model-the femur osteomyocutaneous flap for the replacement of hindlimb transplantation. Ten femur osteomyocutaneous flaps from 5 Lewis rats were transplanted into 10 syngeneic recipients' inguinal region. Their nutrient vessels were anastomosed with recipients vessels. The graft of this model was consisted of the groin flap and partial femur. To verify the feasibility of this model, gross and histological appearance were studied after transplantation to evaluate the viability of grafts. The operative time was (159.0 +/- 8.3) min with the harvesting time of (68.0 +/- 4.8) min and the ischemia time of (55. 8 +/- 6.8) min. The methylene blue injection showed rich blood supply of transplanted femur osteomyocutaneous flap. All the 10 flaps survived completely with pink skin color and hair regrowth. The histologic examination of the flaps also revealed the normal appearance of the viable skin and bone marrow. The femur osteomyocutaneous flap is a simple and reliable model for composite tissue transplantation, and its establishment will provide a new tool for the study of composite tissue allografts.
Surface complexation modeling of Cd(II) sorption to montmorillonite, bacteria, and their composite
Wang, Ning; Du, Huihui; Huang, Qiaoyun; Cai, Peng; Rong, Xingmin; Feng, Xionghan; Chen, Wenli
2016-10-01
Surface complexation modeling (SCM) has emerged as a powerful tool for simulating heavy metal adsorption processes on the surface of soil solid components under different geochemical conditions. The component additivity (CA) approach is one of the strategies that have been widely used in multicomponent systems. In this study, potentiometric titration, isothermal adsorption, zeta potential measurement, and extended X-ray absorption fine-structure (EXAFS) spectra analysis were conducted to investigate Cd adsorption on 2 : 1 clay mineral montmorillonite, on Gram-positive bacteria Bacillus subtilis, and their mineral-organic composite. We developed constant capacitance models of Cd adsorption on montmorillonite, bacterial cells, and mineral-organic composite. The adsorption behavior of Cd on the surface of the composite was well explained by CA-SCM. Some deviations were observed from the model simulations at pH SCM closely coincided with the estimated value of EXAFS at pH 6. The model could be useful for the prediction of heavy metal distribution at the interface of multicomponents and their risk evaluation in soils and associated environments.
Patient-specific three-dimensional composite bone models for teaching and operation planning.
Matthews, Felix; Messmer, Peter; Raikov, Vladislav; Wanner, Guido A; Jacob, Augustinus L; Regazzoni, Pietro; Egli, Adrian
2009-10-01
Orthopedic trauma care relies on two-dimensional radiograms both before and during the operation. Understanding the three-dimensional nature of complex fractures on plain radiograms is challenging. Modern fluoroscopes can acquire three-dimensional volume datasets even during an operation, but the device limitations constrain the acquired volume to a cube of only 12-cm edge. However, viewing the surrounding intact structures is important to comprehend the fracture in its context. We suggest merging a fluoroscope's volume scan into a generic bone model to form a composite full-length 3D bone model. Materials consisted of one cadaver bone and 20 three-dimensional surface models of human femora. Radiograms and computed tomography scans were taken before and after applying a controlled fracture to the bone. A 3D scan of the fracture was acquired using a mobile fluoroscope (Siemens Siremobil). The fracture was fitted into the generic bone models by rigid registration using a modified least-squares algorithm. Registration precision was determined and a clinical appraisal of the composite models obtained. Twenty composite bone models were generated. Average registration precision was 2.0 mm (range 1.6 to 2.6). Average processing time on a laptop computer was 35 s (range 20 to 55). Comparing synthesized radiograms with the actual radiograms of the fractured bone yielded clinically satisfactory results. A three-dimensional full-length representation of a fractured bone can reliably be synthesized from a short scan of the patient's fracture and a generic bone model. This patient-specific model can subsequently be used for teaching, surgical operation planning, and intraoperative visualization purposes.
Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation
Directory of Open Access Journals (Sweden)
Tao Liu
Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.
International Nuclear Information System (INIS)
Wong, K.-L.; Hsien, T.-L.; Hsiao, M.-C.; Chen, W.-L.; Lin, K.-C.
2008-01-01
This investigation is to show that two-dimensional steady state heat transfer problems of composite walls should not be solved by the conventionally one-dimensional parallel thermal resistance circuits (PTRC) model because the interface temperatures are not unique. Thus PTRC model cannot be used like its conventional recognized analogy, parallel electrical resistance circuits (PERC) model which has the unique node electric voltage. Two typical composite wall examples, solved by CFD software, are used to demonstrate the incorrectness. The numerical results are compared with those obtained by PTRC model, and very large differences are observed between their results. This proves that the application of conventional heat transfer PTRC model to two-dimensional composite walls, introduced in most heat transfer text book, is totally incorrect. An alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to the two-dimensional composite walls with isothermal boundaries. Results with acceptable accuracy can be obtained by the new model
International Nuclear Information System (INIS)
Wong, K.-L.; Hsien, T.-L.; Chen, W.-L.; Yu, S.-J.
2008-01-01
This study is to prove that two-dimensional steady state heat transfer problems of composite circular pipes cannot be appropriately solved by the conventional one-dimensional parallel thermal resistance circuits (PTRC) model because its interface temperatures are not unique. Thus, the PTRC model is definitely different from its conventional recognized analogy, parallel electrical resistance circuits (PERC) model, which has unique node electric voltages. Two typical composite circular pipe examples are solved by CFD software, and the numerical results are compared with those obtained by the PTRC model. This shows that the PTRC model generates large error. Thus, this conventional model, introduced in most heat transfer text books, cannot be applied to two-dimensional composite circular pipes. On the contrary, an alternative one-dimensional separately series thermal resistance circuit (SSTRC) model is proposed and applied to a two-dimensional composite circular pipe with isothermal boundaries, and acceptable results are returned
Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails
Mlilo, Nhlanganiso; Kaewunruen, Sakdirat
2017-12-01
Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.
2016-02-01
In past work we have developed a rigorous electromagnetic model and an inversion algorithm for the three-dimensional NDE of advanced composite materials. This approach extends Victor Technologies' work in eddy-current NDE of conventional metals, and allows one to determine in localized regions the fiber-resin ratio in graphite-epoxy, and to determine those anomalies, e.g., delaminations, broken fibers, moisture content, etc., that can be reconstructed by our inversion method. In developing the model, we applied rigorous electromagnetic theory to determine a Green's function for a slab of anisotropic composite material, and then determine the integral relations for the forward and inverse problems using the Green's function. In addition, we have given examples of the solution of forward and inverse problems using these algorithms.
Directory of Open Access Journals (Sweden)
Wimol San-Um
2015-12-01
Full Text Available This paper presents a robust cellular associative memory for pattern recognitions using composite trigonometric chaotic neuron models. Robust chaotic neurons are designed through a scan of positive Lyapunov Exponent (LE bifurcation structures, which indicate the quantitative measure of chaoticity for one-dimensional discrete-time dynamical systems. The proposed chaotic neuron model is a composite of sine and cosine chaotic maps, which are independent from the output activation function. Dynamics behaviors are demonstrated through bifurcation diagrams and LE-based bifurcation structures. An application to associative memories of binary patterns in Cellular Neural Networks (CNN topology is demonstrated using a signum output activation function. Examples of English alphabets are stored using symmetric auto-associative matrix of n-binary patterns. Simulation results have demonstrated that the cellular neural network can quickly and effectively restore the distorted pattern to expected information.
Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.
2016-05-01
Carbon fiber composite materials have many useful structural material properties. The electromagnetic perfor- mance of these materials is of great interest for future applications. The work presented in this paper deals with the construction of Salisbury screen microwave absorbers made from unidirectional carbon fiber composite sand- wich structures. Specifically, absorbers centered at 7.25 GHz and 12.56 GHz are investigated. Circuit models are created to match the measured performance of the carbon fiber Salisbury screens using a genetic algorithm to extract lumped element circuit values. The screens presented in this paper utilize unidirectional carbon fiber sheets in place of the resistive sheet utilized in the classic Salisbury screen. The theory, models, prototypes, and measurements of these absorbers are discussed.
Mechanical characterization and modeling of SiCF/SiC composite tubes
International Nuclear Information System (INIS)
Rohmer, E.
2013-01-01
This work is part of the development of the 4. generation of nuclear reactors. It relates more precisely to the composite portion of the sandwich type tubular cladding considered by the CEA for RNR-NA/Gaz type reactors. The texture is formed by a braiding technique and the study focuses on interlocks braided composite. These relatively new structures require extensive mechanical characterization. Two experimental protocols were developed to conduct tensile and internal pressure tests on tubes. Three different textures have been characterized. In addition, a multi-scale model was developed to connect the microstructure of the tube to its mechanical properties. This model is validated for the elastic behavior of a characterized texture. A first approach to the damage in the structure is proposed and a possible improved protocol is discussed. (author) [fr
A planar model study of creep in metal matrix composites with misaligned short fibres
DEFF Research Database (Denmark)
Sørensen, N.J.
1993-01-01
The effect of fibre misalignment on the creep behaviour of metal matrix composites is modelled, including hardening behaviour (stage 1), dynamic recovery and steady state creep (stage 2) of the matrix material, using an internal variable constitutive model for the creep behaviour of the metal...... matrix. Numerical plane strain results in terms of average properties and detailed local deformation behaviour up to large strains are needed to show effects of fibre misalignment on the development of inelastic strains and the resulting over-all creep resistance of the material. The creep resistance...... for the composite is markedly reduced by the fibre misalignment and the time needed to reach an approximate steady state is elongated due to the strain induced rotation of the short fibres in the matrix....
Han, Fei
2014-01-01
We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics; the second one is based on hybrid local/non-local continuum mechanics. The key computational issues, including the peculiar homogenization technique and treatment of periodical boundary conditions in the non-local continuum model, are clarified. Both models are implemented through a three-dimensional geometric representation of the carbon nanotubes network, which has been detailed in Part I. Numerical results are shown and compared for both models in order to test convergence and sensitivity toward input parameters. It is found that both approaches provide similar results in terms of homogenized quantities but locally can lead to very different microscopic fields. © 2013 Elsevier B.V. All rights reserved.
Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria
2015-12-01
Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Energy Technology Data Exchange (ETDEWEB)
Curtin, W.A.; Fabeny, B.; Ibnabdeljalil, M.; Iyengar, N.; Reifsnider, K.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics
1996-07-31
The models developed, contain explicit dependences on constituent material properties and their changes with time, so that composite performance can be predicted. Three critical processes in ceramic composites at elevated temperatures have been modeled: (1) creep deformation of composite vs stress and time-dependent creep of fibers and matrix, and failure of these components; (2) creep deformation of ``interface`` around broken fibers; and (3) lifetime of the composite under conditions of fiber strength loss over time at temperature. In (1), general evolution formulas are derived for relaxation time of matrix stresses and steady-state creep rate of composite; the model is tested against recent data on Ti-MMCs. Calculations on a composite of Hi-Nicalon fibers in a melt-infiltrated SiC matrix are presented. In (2), numerical simulations of composite failure were made to map out time-to-failure vs applied load for several sets of material parameters. In (3), simple approximate relations are obtained between fiber life and composite life that should be useful for fiber developers and testers. Strength degradation data on Hi-Nicalon fibers is used to assess composite lifetime vs fiber lifetime for Hi-Nicalon fiber composites.
Baudin, Gerard; Roudot, Marie; Genetier, Marc
2013-06-01
Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.
Czech Academy of Sciences Publication Activity Database
Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel
2016-01-01
Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport model ing Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016
Czech Academy of Sciences Publication Activity Database
Šimčík, Miroslav; Růžička, Marek; Kárászová, Magda; Sedláková, Zuzana; Vejražka, Jiří; Veselý, M.; Čapek, P.; Friess, K.; Izák, Pavel
2016-01-01
Roč. 167, JUL 14 (2016), s. 163-173 ISSN 1383-5866 R&D Projects: GA ČR GA14-12695S; GA TA ČR TE01020080; GA MŠk(CZ) LD13018; GA MŠk LH14006 Institutional support: RVO:67985858 Keywords : thin film composite membrane * biogas membrane separation * transport modeling Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.359, year: 2016
Denis , Cédat; Libert , Maximilien; Le Flem , Marion; Fandeur , Olivier; Rey , Colette; Clavel , Michel; Schmitt , Jean-Hubert
2009-01-01
International audience; Simulations of the elastic-viscoplastic behaviour of ceramic-metal composite, over the temperature range 298-993K, are performed on realistic aggregates built up from Electron Back Scatter Diffraction methods. Physical based constitutive models are developed in order to characterize the deformation behaviour of body centered cubic (bcc) metal and face centered cubic (fcc) ceramic under various temperatures. While the ceramic keeps elastic, the viscoplastic behaviour of...
2016-06-01
MODELING OF IMPACT RESPONSE OF HETEROGENEOUS ENERGETIC COMPOSITES submitted to Dr. Douglas Allen Dalton Defense Threat Reduction Agency J9-BAS...materials from density functional theory with van der Waals, thermal, and zero-point energy corrections," Applied Physics Letters, vol. 97, Dec 20 2010...REDUCTION AGENCY 8725 JOHN J. KINGMAN ROAD STOP 6201 FORT BELVOIR, VA 22060 ATTN: A. DALTON DEFENSE TECHNICAL INFORMATION CENTER
Hadiwinarto, Hadiwinarto; Novianti, Novianti
2015-01-01
This research was aimed at describing the effects of Cooperative Integrated Reading and Composition (CIRC) learning model on the reading and writing skills of junior high school students in learning English. This research applied one group pretest-posttest design. Data were collected by using tests and analized by using descriptive analysis and t-test. The result showed that: the average score for reading skill before the experiment was 50.00 and the average score for reading skill after the ...
Czech Academy of Sciences Publication Activity Database
Truhlík, Vladimír; Bilitza, D.; Třísková, Ludmila
2015-01-01
Roč. 55, č. 8 (2015), s. 2099-2105 ISSN 0273-1177 R&D Projects: GA MŠk(CZ) LH11123 Institutional support: RVO:68378289 Keywords : ion composition * topside ionosphere * solar activity * empirical model * International Reference Ionosphere Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.409, year: 2015 http://www.sciencedirect.com/science/article/pii/S027311771400489X
Xu, Bingbing; Ma, Jiashuai; Fang, Cong; Yao, Meng; Di, Wenning; Li, Xiaobing; Luo, Haosu
2018-02-01
In this work, we establish a dielectric loss model for multi-push-pull mode ME laminate composites. It deduces that the total dielectric loss of the ME composites equals the linear average of the dielectric loss of piezoelectric plate and epoxy resin. But further analysis of this model has indicated that we can ignore the dielectric loss of epoxy resin. To verify this model, we use three kinds of epoxy resin with different dielectric loss to fabricate multi-push-pull mode PMNT/Metglas ME laminate composites respectively. It turns out that the different kinds of epoxy resin have little influence on the total dielectric loss, capacitance and piezoelectricity of the composites, which demonstrates that our model conforms to the practical case. Therefore, we can pay more attention to the mechanical properties of epoxy resin rather than its dielectric loss on fabricating the ME laminate composites.
Directory of Open Access Journals (Sweden)
U.N. Band
Full Text Available Abstract A transition element is developed for the local global analysis of laminated composite beams. It bridges one part of the domain modelled with a higher order theory and other with a 2D mixed layerwise theory (LWT used at critical zone of the domain. The use of developed transition element makes the analysis for interlaminar stresses possible with significant accuracy. The mixed 2D model incorporates the transverse normal and shear stresses as nodal degrees of freedom (DOF which inherently ensures continuity of these stresses. Non critical zones are modelled with higher order equivalent single layer (ESL theory leading to the global mesh with multiple models applied simultaneously. Use of higher order ESL in non critical zones reduces the total number of elements required to map the domain. A substantial reduction in DOF as compared to a complete 2D mixed model is obvious. This computationally economical multiple modelling scheme using the transition element is applied to static and free vibration analyses of laminated composite beams. Results obtained are in good agreement with benchmarks available in literature.
Robust Real-Time Music Transcription with a Compositional Hierarchical Model.
Pesek, Matevž; Leonardis, Aleš; Marolt, Matija
2017-01-01
The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.
Meso-Scale Modeling to Characterize Moisture Absorption of 3D Woven Composite
Yuan, Yuan; Zhou, Chu-wei
2016-08-01
For polymer-matrix composites, moisture is expected to degrade their mechanical properties due to matrix plasticization and moisture introduced micro-scale defects. In this study, the moisture absorptions of bulk epoxy, unidirectional composite (UD) and 3D woven composite (3D WC) were tested. Two-stage features have been observed for all these three materials. Moisture properties for UD and 3D WC were found not in simple direct proportion to their matrix volume fractions. The moisture approach of UD was modeled including the effect of fiber/matrix interphase which promotes the moisture uptake. Then, meso-scale FE model for 3D WC was established to characterize the inhomogeneous moisture diffusion. The moisture properties of resin-rich region and fiber bundle in 3D WC were determined from water uptake experiments of bulk epoxy and UD, respectively. Through homogenizing moisture properties of surface and interior weave structures, a simplified theoretical sandwich moisture diffusion approach was established. The moisture weight gains of 3D WC predicted by both meso-scale FE model and simplified sandwich approach were well agreed with the experimental data.
Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis
Xu, Jinyang; El Mansori, Mohamed
2016-01-01
In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824
Pallozzi, V.; Di Carlo, A.; Zaza, F.; Villarini, M.; Carlini, M.; Bocci, E.
2016-06-01
Biomass gasification represents a suitable choice for global environmental impact reduction, but more efforts on the process efficiency need to be conducted in order to enhance the use of this technology. Studies on inputs and outputs of the process, as well as measurements and controls of syngas composition and correlated organic and inorganic impurities, are crucial points for the optimization of the entire process: models of the system and sensing devices are, thus, very attractive for this purpose. In particular, perovskite based chemoresistive sensors could represent a promising technology, since their simplicity in function, relatively low cost and direct high temperature operation. The aim of this work is to develop a steam fluidized bed biomass gasifier model, for the prediction of the process gas composition, and new perovskite compounds, LaFeO3 based, as sensing material of chemoresistive sensors for syngas composition and impurities measurements. Chemometric analysis on the combustion synthesis via citrate-nitrate technique of LaFeO3 was also performed, in order to evaluate the relationship between synthesis conditions and perovskite materials and, thus, sensor properties. Performance of different sensors will be tested, in next works, with the support of the developed gasifier model.
Developing a theory of the strategic core of teams: a role composition model of team performance.
Humphrey, Stephen E; Morgeson, Frederick P; Mannor, Michael J
2009-01-01
Although numerous models of team performance have been articulated over the past 20 years, these models have primarily focused on the individual attribute approach to team composition. The authors utilized a role composition approach, which investigates how the characteristics of a set of role holders impact team effectiveness, to develop a theory of the strategic core of teams. Their theory suggests that certain team roles are most important for team performance and that the characteristics of the role holders in the "core" of the team are more important for overall team performance. This theory was tested in 778 teams drawn from 29 years of major league baseball (1974'-2002). Results demonstrate that although high levels of experience and job-related skill are important predictors of team performance, the relationships between these constructs and team performance are significantly stronger when the characteristics are possessed by core role holders (as opposed to non-core role holders). Further, teams that invest more of their financial resources in these core roles are able to leverage such investments into significantly improved performance. These results have implications for team composition models, as they suggest a new method for considering individual contributions to a team's success that shifts the focus onto core roles. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Composite Transport Model and Water and Solute Transport across Plant Roots: An Update
Directory of Open Access Journals (Sweden)
Yangmin X. Kim
2018-02-01
Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.
Narayanan, Neethu; Gupta, Suman; Gajbhiye, V T; Manjaiah, K M
2017-04-01
A carboxy methyl cellulose-nano organoclay (nano montmorillonite modified with 35-45 wt % dimethyl dialkyl (C 14 -C 18 ) amine (DMDA)) composite was prepared by solution intercalation method. The prepared composite was characterized by infrared spectroscopy (FTIR), X-Ray diffraction spectroscopy (XRD) and scanning electron microscopy (SEM). The composite was utilized for its pesticide sorption efficiency for atrazine, imidacloprid and thiamethoxam. The sorption data was fitted into Langmuir and Freundlich isotherms using linear and non linear methods. The linear regression method suggested best fitting of sorption data into Type II Langmuir and Freundlich isotherms. In order to avoid the bias resulting from linearization, seven different error parameters were also analyzed by non linear regression method. The non linear error analysis suggested that the sorption data fitted well into Langmuir model rather than in Freundlich model. The maximum sorption capacity, Q 0 (μg/g) was given by imidacloprid (2000) followed by thiamethoxam (1667) and atrazine (1429). The study suggests that the degree of determination of linear regression alone cannot be used for comparing the best fitting of Langmuir and Freundlich models and non-linear error analysis needs to be done to avoid inaccurate results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
MacLeod, Alisdair R; Rose, Hannah; Gill, Harinderjit S
2016-12-01
Synthetic biomechanical test specimens are frequently used for preclinical evaluation of implant performance, often in combination with numerical modeling, such as finite-element (FE) analysis. Commercial and freely available FE packages are widely used with three FE packages in particular gaining popularity: abaqus (Dassault Systèmes, Johnston, RI), ansys (ANSYS, Inc., Canonsburg, PA), and febio (University of Utah, Salt Lake City, UT). To the best of our knowledge, no study has yet made a comparison of these three commonly used solvers. Additionally, despite the femur being the most extensively studied bone in the body, no freely available validated model exists. The primary aim of the study was primarily to conduct a comparison of mesh convergence and strain prediction between the three solvers (abaqus, ansys, and febio) and to provide validated open-source models of a fourth-generation composite femur for use with all the three FE packages. Second, we evaluated the geometric variability around the femoral neck region of the composite femurs. Experimental testing was conducted using fourth-generation Sawbones® composite femurs instrumented with strain gauges at four locations. A generic FE model and four specimen-specific FE models were created from CT scans. The study found that the three solvers produced excellent agreement, with strain predictions being within an average of 3.0% for all the solvers (r2 > 0.99) and 1.4% for the two commercial codes. The average of the root mean squared error against the experimental results was 134.5% (r2 = 0.29) for the generic model and 13.8% (r2 = 0.96) for the specimen-specific models. It was found that composite femurs had variations in cortical thickness around the neck of the femur of up to 48.4%. For the first time, an experimentally validated, finite-element model of the femur is presented for use in three solvers. This model is freely available online along with all the supporting validation data.
Compositional Model Checking of Interlocking Systems for Lines with Multiple Stations
DEFF Research Database (Denmark)
Macedo, Hugo Daniel dos Santos; Fantechi, Alessandro; Haxthausen, Anne Elisabeth
2017-01-01
In the railway domain safety is guaranteed by an interlocking system which translates operational decisions into commands leading to field operations. Such a system is safety critical and demands thorough formal verification during its development process. Within this context, our work has focused...... on the extension of a compositional model checking approach to formally verify interlocking system models for lines with multiple stations. The idea of the approach is to decompose a model of the interlocking system by applying cuts at the network modelling level. The paper introduces an alternative cut (the...... linear cut) to a previously proposed cut (border cut). Powered with the linear cut, the model checking approach is then applied to the verification of an interlocking system controlling a real-world multiple station line....
A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates
Krueger, Ronald; OBrien, T. Kevin
2000-01-01
A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with shell finite elements. Double Cantilever Beam, End Notched Flexure, and Single Leg Bending specimens were analyzed first using full 3D finite element models to obtain reference solutions. Mixed mode strain energy release rate distributions were computed using the virtual crack closure technique. The analyses were repeated using the shell/3D technique to study the feasibility for pure mode I, mode II and mixed mode I/II cases. Specimens with a unidirectional layup and with a multidirectional layup were simulated. For a local 3D model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.
Patrick, Christopher J; Yuan, Lester L
2017-07-01
Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.
Developing a predictive model for the chemical composition of soot nanoparticles
Energy Technology Data Exchange (ETDEWEB)
Violi, Angela [Univ. of Michigan, Ann Arbor, MI (United States); Michelsen, Hope [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hansen, Nils [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wilson, Kevin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-04-07
In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed a series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.
On the Mechanical Response of Chopped Glass/Urethane Resin Composite: Data and Model
Energy Technology Data Exchange (ETDEWEB)
Elahi, M.; Weitsman, Y.J.
1999-11-01
This report presents data on the creep response of a polymeric composite that is a candidate material for automotive applications. The above data were used to establish the basis for the mechanical characterization of the material's response over a wide range of stresses and temperatures, as well as under cyclic loading and due to exposure to distilled water. A constitutive model based upon fundamental principles of irreversible thermodynamics and continuum mechanics was employed to encompass the above mentioned database and to predict the response under more complex inputs. These latter tests verified the validity of the model.
Directory of Open Access Journals (Sweden)
Kamal Sharma
2014-01-01
Full Text Available The present paper discusses the key issues of carbon nanotube (CNT dispersion and effect of functionalisation on the mechanical properties of multiscale carbon epoxy composites. In this study, CNTs were added in epoxy matrix and further reinforced with carbon fibres. Predetermined amounts of optimally amine functionalised CNTs were dispersed in epoxy matrix, and unidirectional carbon fiber laminates were produced. The effect of the presence of CNTs (1.0 wt% in the resin was reflected by pronounced increase in Young’s modulus, inter-laminar shear strength, and flexural modulus by 51.46%, 39.62%, and 38.04%, respectively. However, 1.5 wt% CNT loading in epoxy resin decreased the overall properties of the three-phase composites. A combination of Halpin-Tsai equations and micromechanics modeling approach was also used to evaluate the mechanical properties of multiscale composites and the differences between the predicted and experimental values are reported. These multiscale composites are likely to be used for potential missile and aerospace structural applications.
Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites
Hsu, Su-Yuen; Cheng, Ron-Bin
2010-01-01
A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.
Directory of Open Access Journals (Sweden)
Wenzhi Wang
2016-07-01
Full Text Available Modeling the random fiber distribution of a fiber-reinforced composite is of great importance for studying the progressive failure behavior of the material on the micro scale. In this paper, we develop a new algorithm for generating random representative volume elements (RVEs with statistical equivalent fiber distribution against the actual material microstructure. The realistic statistical data is utilized as inputs of the new method, which is archived through implementation of the probability equations. Extensive statistical analysis is conducted to examine the capability of the proposed method and to compare it with existing methods. It is found that the proposed method presents a good match with experimental results in all aspects including the nearest neighbor distance, nearest neighbor orientation, Ripley’s K function, and the radial distribution function. Finite element analysis is presented to predict the effective elastic properties of a carbon/epoxy composite, to validate the generated random representative volume elements, and to provide insights of the effect of fiber distribution on the elastic properties. The present algorithm is shown to be highly accurate and can be used to generate statistically equivalent RVEs for not only fiber-reinforced composites but also other materials such as foam materials and particle-reinforced composites.
2015-06-04
of hysteretic macro - fiber composite (MFC) and shape memory alloy (SMA) models. The goal was to develop a theoretical and numerical framework and...A major component of the program focused on the development of this framework in the context of hysteretic macro - fiber composite (MFC) and shape...employing macro - fiber composites (MFC) and shape memory alloys (SMA). As illustrated in Figure 1, MFC are comprised of lead zirconate titanate (PZT) fibers
Mathematical Modeling of an Active-Fiber Composite Energy Harvester with Interdigitated Electrodes
Directory of Open Access Journals (Sweden)
A. Jemai
2014-01-01
Full Text Available The use of active-fiber composites (AFC instead of traditional ceramic piezoelectric materials is motivated by flexibility and relatively high actuation capacity. Nevertheless, their energy harvesting capabilities remain low. As a first step toward the enhancement of AFC’s performances, a mathematical model that accurately simulates the dynamic behavior of the AFC is proposed. In fact, most of the modeling approaches found in the literature for AFC are based on finite element methods. In this work, we use homogenization techniques to mathematically describe piezoelectric properties taking into consideration the composite structure of the AFC. We model the interdigitated electrodes as a series of capacitances and current sources linked in parallel; then we integrate these properties into the structural model of the AFC. The proposed model is incorporated into a vibration based energy harvesting system consisting of a cantilever beam on top of which an AFC patch is attached. Finally, analytical solutions of the dynamic behavior and the harvested voltage are proposed and validated with finite element simulations.
Application of the PEE Model to essay composition in an IELTS preparation class
Directory of Open Access Journals (Sweden)
Ender Orlando Velasco Tovar
2015-01-01
Full Text Available Based on two case studies, this study investigates the application of the Point, Explanation, Example (PEE model to essay composition in a multi-lingual IELTS preparation class. This model was incorporated into an eight-week programme of instruction to ESL adults in London, England. Students preparing for the IELTS exam were asked to write pre and post instruction essays on a given topic within 40 minutes. Employing the IELTS band descriptors (IELTS, 2013b and analyses of coherence and cohesion in line with Systemic Functional Linguistic concepts (Halliday and Matthiessen, 2004; McCarthy, 1991, samples of students’ writing were analysed. Data from students’ pre and post instruction interviews was also gathered and analysed. The findings of this study suggest that the PEE model is to some extent effective in improving the essay composition performance of IELTS students, in particular in the area of cohesion and coherence. Students find the PEE model useful in regard to the clarity and structure that the model seems to add to their essays.
International Nuclear Information System (INIS)
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Phelps, Jay; Tucker, Charles L. III; Kunc, Vlastimil; Bapanapalli, Satish K.; Smith, Mark T.
2010-01-01
This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of a new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Nghiep; Jin, Xiaoshi; Wang, Jin; Phelps, Jay; Tucker III, Charles L.; Kunc, Vlastimil; Bapanapalli, Satish K.; Smith, Mark T.
2010-02-23
This report describes the work conducted under the Cooperative Research and Development Agreement (CRADA) (Nr. 260) between the Pacific Northwest National Laboratory (PNNL) and Autodesk, Inc. to develop and implement process models for injection-molded long-fiber thermoplastics (LFTs) in processing software packages. The structure of this report is organized as follows. After the Introduction Section (Section 1), Section 2 summarizes the current fiber orientation models developed for injection-molded short-fiber thermoplastics (SFTs). Section 3 provides an assessment of these models to determine their capabilities and limitations, and the developments needed for injection-molded LFTs. Section 4 then focuses on the development of a new fiber orientation model for LFTs. This model is termed the anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model as it explores the concept of anisotropic rotary diffusion to capture the fiber-fiber interaction in long-fiber suspensions and uses the reduced strain closure method of Wang et al. to slow down the orientation kinetics in concentrated suspensions. In contrast to fiber orientation modeling, before this project, no standard model was developed to predict the fiber length distribution in molded fiber composites. Section 5 is therefore devoted to the development of a fiber length attrition model in the mold. Sections 6 and 7 address the implementations of the models in AMI, and the conclusions drawn from this work is presented in Section 8.
A verification strategy for web services composition using enhanced stacked automata model.
Nagamouttou, Danapaquiame; Egambaram, Ilavarasan; Krishnan, Muthumanickam; Narasingam, Poonkuzhali
2015-01-01
Currently, Service-Oriented Architecture (SOA) is becoming the most popular software architecture of contemporary enterprise applications, and one crucial technique of its implementation is web services. Individual service offered by some service providers may symbolize limited business functionality; however, by composing individual services from different service providers, a composite service describing the intact business process of an enterprise can be made. Many new standards have been defined to decipher web service composition problem namely Business Process Execution Language (BPEL). BPEL provides an initial work for forming an Extended Markup Language (XML) specification language for defining and implementing business practice workflows for web services. The problems with most realistic approaches to service composition are the verification of composed web services. It has to depend on formal verification method to ensure the correctness of composed services. A few research works has been carried out in the literature survey for verification of web services for deterministic system. Moreover the existing models did not address the verification properties like dead transition, deadlock, reachability and safetyness. In this paper, a new model to verify the composed web services using Enhanced Stacked Automata Model (ESAM) has been proposed. The correctness properties of the non-deterministic system have been evaluated based on the properties like dead transition, deadlock, safetyness, liveness and reachability. Initially web services are composed using Business Process Execution Language for Web Service (BPEL4WS) and it is converted into ESAM (combination of Muller Automata (MA) and Push Down Automata (PDA)) and it is transformed into Promela language, an input language for Simple ProMeLa Interpreter (SPIN) tool. The model is verified using SPIN tool and the results revealed better recital in terms of finding dead transition and deadlock in contrast to the
Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.
2017-03-01
Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.
Directory of Open Access Journals (Sweden)
Khaled MAMMAR
2013-11-01
Full Text Available In this paper, a new approach based on Experimental of design methodology (DoE is used to estimate the optimal of unknown model parameters proton exchange membrane fuel cell (PEMFC. This proposed approach combines the central composite face-centered (CCF and numerical PEMFC electrochemical. Simulation results obtained using electrochemical model help to predict the cell voltage in terms of inlet partial pressures of hydrogen and oxygen, stack temperature, and operating current. The value of the previous model and (CCF design methodology is used for parametric analysis of electrochemical model. Thus it is possible to evaluate the relative importance of each parameter to the simulation accuracy. However this methodology is able to define the exact values of the parameters from the manufacture data. It was tested for the BCS 500-W stack PEM Generator, a stack rated at 500 W, manufactured by American Company BCS Technologies FC.
Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite
Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.
2010-01-01
A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.
A metal-semiconductor composite model for the linear magnetoresistance in high magnetic field
International Nuclear Information System (INIS)
Xu Jie; Zhang Duanming; Yang Fengxia; Li Zhihua; Deng Zongwei; Pan Yuan
2008-01-01
A model for the linear magnetoresistance (MR) in high magnetic field is proposed by considering silver-rich Ag 2+δ Se and Ag 2+δ Te materials as two-phase (silver metal phase and semiconductor phase) composites. The model takes the MR as a function of magnetic field, temperature and the conductivity of the two phases without magnetic field. The model predictions are in good agreement with the available experimental data. It is inferred from the model that there is a critical volume fraction of silver metal phase, at which the MR reaches a maximum value. The values of the critical volume fraction of the silver metal phase are about 0.2 and 0.05 for the Ag 2+δ Te thin film and Ag 2+δ Se bulk, respectively. We interpret the occurrence of the critical volume fraction as a result of the percolation between silver particles in the material
Simulation of High Velocity Impact on Composite Structures - Model Implementation and Validation
Schueler, Dominik; Toso-Pentecôte, Nathalie; Voggenreiter, Heinz
2016-08-01
High velocity impact on composite aircraft structures leads to the formation of flexural waves that can cause severe damage to the structure. Damage and failure can occur within the plies and/or in the resin rich interface layers between adjacent plies. In the present paper a modelling methodology is documented that captures intra- and inter-laminar damage and their interrelations by use of shell element layers representing sub-laminates that are connected with cohesive interface layers to simulate delamination. This approach allows the simulation of large structures while still capturing the governing damage mechanisms and their interactions. The paper describes numerical algorithms for the implementation of a Ladevèze continuum damage model for the ply and methods to derive input parameters for the cohesive zone model. By comparison with experimental results from gas gun impact tests the potential and limitations of the modelling approach are discussed.