WorldWideScience

Sample records for blends feedstocks production

  1. Effect of Blended Feedstock on Pyrolysis Oil Composition

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kristin M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    Current techno-economic analysis results indicate biomass feedstock cost represents 27% of the overall minimum fuel selling price for biofuels produced from fast pyrolysis followed by hydrotreating (hydro-deoxygenation, HDO). As a result, blended feedstocks have been proposed as a way to both reduce cost as well as tailor key chemistry for improved fuel quality. For this study, two feedstocks were provided by Idaho National Laboratory (INL). Both were pyrolyzed and collected under the same conditions in the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU). The resulting oil properties were then analyzed and characterized for statistical differences.

  2. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  3. Alternative coke production from unconventional feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, D.; Eatough, C.N.; Heaton, J.S.; Eatough, S.R.; Miller, A.B. [Combustion Resources, Provo, UT (US)

    2004-07-01

    This presentation reports on US Department of Energy and company sponsored research and development to develop a technology and process for making metallurgical-quality coke from alternate feedstocks, including by-product and waste carbonaceous materials. The basic patent-pending process blends and presses these carbon-containing materials into briquettes of specified size. This product is referred to as CR Clean Coke because pollutant emission levels are carefully controlled to low levels with little or no vagrant emissions during processing. A wide range of feedstock materials has been investigated in over 600 tests for run-of-mine and waste coal fines of various rank with blends of coal tars and pitches, coal and biomass chars, met-coke breeze or petroleum coke. For various coal/pet-coke/tar feedstocks, CR has produced uniform-sized briquettes in commercial-scale briquettes in three nominal sizes: one inch, two inch, and three inch. These products have been successfully qualified according to stringent requirements for conventional met-coke use in a blast furnace. Several formulation have met and frequently exceeded these established met-coke specifications. One specific product containing coal, tar and pet-coke was selected as a base formulation for which preliminary process design and cost estimates have been completed for construction and operation of a demonstration plant capable of producing 120,000 tons per year of CR Clean Coke. Plant design elements and blast furnace test plans are presented. Tailoring of CR Clean Coke products to other prospective end users including foundry, sugar, soda ash, and ferrometals industries presents additional opportunities. The text is accompanied by 30 slides/overheads. 14 refs., 3 figs., 9 tabs.

  4. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratory (INL) supports the U.S. Department of Energy’s bioenergy research program. As part of the research program INL investigates the feedstock logistics economics and sustainability of these fuels. A series of reports were published between 2000 and 2013 to demonstrate the feedstock logistics cost. Those reports were tailored to specific feedstock and conversion process. Although those reports are different in terms of conversion, some of the process in the feedstock logistic are same for each conversion process. As a result, each report has similar information. A single report can be designed that could bring all commonality occurred in the feedstock logistics process while discussing the feedstock logistics cost for different conversion process. Therefore, this report is designed in such a way that it can capture different feedstock logistics cost while eliminating the need of writing a conversion specific design report. Previous work established the current costs based on conventional equipment and processes. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $55/dry ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, low-cost feedstock. The 2017 programmatic target is to supply feedstock to the conversion facility that meets the in-feed conversion process quality specifications at a total logistics cost of $80/dry T. The $80/dry T. target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all conversion in-feed quality targets

  5. Investigation on the effect of blending ratio and airflow rate on syngas profile produced from co-gasification of blended feedstock

    Directory of Open Access Journals (Sweden)

    Inayat Muddasser

    2017-01-01

    Full Text Available Shortages of feedstock supply due to seasonal availability, high transportation costs, and lack of biomass market are creating serious problems in continues operation of bioenergy industry. Aiming at this problem, utilization of blended feedstock is proposed. In this work blends of two different biomasses (wood and coconut shells were co-gasified using externally heated downdraft gasifier. The effects of varying biomass blending ratio and airflow rate on gaseous components of syngas and its heating value were investigated. The results obtained from the experiments revealed that W20:CS80 blend yielded higher values for H2 (20 Vol.% and HHV (18 MJ/Nm3 as compared to the other blends. The higher airflow rate has a negative effect on syngas profile and heating value. The CO and CH4 were observed higher at the start of the process, however, CO was observed decreasing afterward, and the CH4 dropped to 5.0 Vol.%. The maximum H2 and CH4 were obtained at 2.5 LPM airflow rate. The process was noticed more stable at low air flow rates. The HHV was observed higher at the start of process at low airflow rate. It is concluded that low airflow rate and a higher ratio of coconut shells can improve the syngas quality during co-gasification.

  6. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Yusup, Suzana; Khan, Modhar [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-10-15

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils. (author)

  7. Basic properties of crude rubber seed oil and crude palm oil blend as a potential feedstock for biodiesel production with enhanced cold flow characteristics

    International Nuclear Information System (INIS)

    Yusup, Suzana; Khan, Modhar

    2010-01-01

    Research and development in the field of biodiesel showed that fatty acid methyl esters synthesized from agriculture or animal oils and fats, which exhibit qualifying properties, can replace diesel fuel used in internal combustion engine. However, the industry had some downfall recently with the fluctuating prices of edible oils and increasing demand for nutritional needs. Crude rubber seed oil (CRSO) and crude palm oil (CPO) were used in this study since both can be extracted and produced locally in Malaysia from their abundant plantations. The benefits of introducing such blend are that CRSO is considered a non-edible feedstock with no major industrial utilizations that has the potential to reduce the usage of CPO in biodiesel industry and was found to enhance the cold flow characteristics when blended with CPO by reducing the saturated fatty acids in the feedstock. The oils and blends were characterized for density, kinematic viscosity, heating value, acid value, free fatty acid content, refractive index, mono-, di- and triglycerides and sulphur content. Fatty acids composition and iodine value were established for an equivolume blend of the oils.

  8. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Lauerman, V.

    2001-01-01

    The best types of refineries for processing western Canadian bitumen-based feedstock (BBF) were identified and a potential market for these feedstock for year 2007 was calculated. In addition, this power point presentation provided an estimation of potential regional and total demand for BBF. BBF included Athabasca bitumen blend, de-asphalted blend, coked sour crude oil (SCO), coked sweet SCO, hydrocracked SCO and hydrocracked/aromatic saturated SCO (HAS). Refinery prototypes included light and mixed prototypes for primary cracking units, light and heavy prototypes for primary coking units, as well as no coking, coking severe and residuum prototypes for primary hydrocracking units. The presentation included graphs depicting the natural market for Western Canadian crudes as well as U.S. crude oil production forecasts by PADD districts. It was forecasted that the market for bitumen-based feedstock in 2007 will be tight and that the potential demand for bitumen-based blends would be similar to expected production. It was also forecasted that the potential demand for SCO is not as promising relative to the expected production, unless price discounting or HAS will be available. 11 figs

  9. A study of production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends as a potential biodiesel feedstock

    Directory of Open Access Journals (Sweden)

    A.E. Atabani

    2014-12-01

    Full Text Available Globally, more than 350 oil-bearing crops are known as potential biodiesel feedstocks. This study reports on production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends with diesel. The effect of Manketti biodiesel (B5 on engine and emissions performance was also investigated. The cloud, pour and cold filter plugging points of the produced biodiesel were measured at 1, 3 and 5 °C, respectively. However, the kinematic viscosity of the biodiesel generated was found to be 8.34 mm2/s which was higher than the limit described by ASTM D6751 and EN 14214. This can be attributed to the high kinematic viscosity of the parent oil (132.75 mm2/s. Nevertheless, blending with diesel improved this attribute. Moreover, it is observed that at all engine speeds, B5 produced lower brake power (1.18% and higher brake specific fuel consumption (2.26% compared to B0 (neat diesel. B5 increased the CO and HC emissions by 32.27% and 37.5%, respectively, compared to B0. However, B0 produced 5.26% higher NO emissions than B5.

  10. Conversion of cellulose rich municipal solid waste blends using ionic liquids: Feedstock convertibility and process scale-up

    OpenAIRE

    Liang, L; Li, C; Xu, F; He, Q; Yan, J; Luong, T; Simmons, BA; Pray, TR; Singh, S; Thompson, VS; Sun, N

    2017-01-01

    © 2017 The Royal Society of Chemistry. Sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) a...

  11. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  12. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  13. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    The Department of Energy’s (DOE) Bioenergy Technologies Office (BETO) aims at developing and deploying technologies to transform renewable biomass resources into commercially viable, high-performance biofuels, bioproducts and biopower through public and private partnerships (DOE, 2015). BETO also performs a supply chain sustainability analysis (SCSA). This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for the 2017 design case for feedstock logistics (INL, 2014) and for the 2022 target case for HOG production via IDL (Tan et al., 2015). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. The 2017 design case for feedstock logistics demonstrated a delivered feedstock cost of $80 per dry U.S. short ton by the year 2017 (INL, 2014). The 2022 design case for the conversion process, as modeled in Tan et al. (2015), uses the feedstock 2017 design case blend of biomass feedstocks consisting of pulpwood, wood residue, switchgrass, and construction and demolition waste (C&D) with performance properties consistent with a sole woody feedstock type (e.g., pine or poplar). The HOG SCSA case considers the 2017 feedstock design case (the blend) as well as individual feedstock cases separately as alternative scenarios when the feedstock blend ratio varies as a result of a change in feedstock availability. These scenarios could be viewed as bounding SCSA results because of distinctive requirements for energy and chemical inputs for the production and logistics of different components of the blend feedstocks.

  14. Impact of Mixed Feedstocks and Feedstock Densification on Ionic Liquid Pretreatment Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jian Shi; Vicki S. Thompson; Neal A. Yancey; Vitalie Stavila; Blake A. Simmons; Seema Singh

    2013-01-01

    Background: Lignocellulosic biorefineries must be able to efficiently process the regional feedstocks that are available at cost-competitive prices year round. These feedstocks typically have low energy densities and vary significantly in composition. One potential solution to these issues is blending and/or densifying the feedstocks in order to create a uniform feedstock. Results/discussion: We have mixed four feedstocks - switchgrass, lodgepole pine, corn stover, and eucalyptus - in flour and pellet form and processed them using the ionic liquid 1-ethyl-3-methylimidazolium acetate. Sugar yields from both the mixed flour and pelletized feedstocks reach 90% within 24 hours of saccharification. Conclusions: Mixed feedstocks, in either flour or pellet form, are efficiently processed using this pretreatment process, and demonstrate that this approach has significant potential.

  15. Prediction of the FCC feedstocks crackability

    International Nuclear Information System (INIS)

    Martinez Cruz, Francy L; Navas Guzman, Gustavo; Osorio Suarez, Juan Pablo

    2009-01-01

    This paper presents a statistical model for prediction of feed stock's crackability (potential to generate valuable products on catalytic cracking process), based on experimental reactivity data by micro activity test (MAT - Microscale Fixed Bed Reactor) and detailed physicochemical characterization. A minimum amount of experimental tests corresponding to feed properties (typically available at refinery) is used to build a more complete description of feedstocks including chemical composition and hydrocarbon distribution. Both measured and calculated physicochemical properties are used to predict the yields of main products at several MAT reaction severities. Different well known functions correlating yields and conversion (previously tested with experimental data MAT) allows the evaluation of maximum point of gasoline yield. This point is used like a crackability index and qualitative point comparison of feed stock's potential. Extensive feedstocks data base from Instituto Colombiano del Petroleo (ICP) with a wide range of composition were used to build the model, including the following feeds: 1. Light feedstocks - Ga soils of refinery and laboratory cuts from different types of Colombian crude oils and 2. Heavy feedstocks - Residues or feedstocks combined (blending of ga soil [GO], atmospheric tower bottom [ATB], demetallized oil [DMO] and demetallized oil hydrotreated [DMOH] in several proportions) from the four fluid catalytic cracking units (FCCU) at Ecopetrol S.A. refinery in Barrancabermeja - Colombia. The results of model show the prediction of valuable products such as gasoline for different refinery feedstocks within acceptable accuracy, thus obtaining a reliable ranking of crackability.

  16. Supply Chain Sustainability Analysis of Indirect Liquefaction of Blended Biomass to Produce High Octane Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Biddy, Mary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Talmadge, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hartley, Damon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snowden-Swan, Lesley [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    This report describes the SCSA of the production of renewable high octane gasoline (HOG) via indirect liquefaction (IDL) of lignocellulosic biomass. This SCSA was developed for both the 2015 SOT (Hartley et al., 2015; ANL, 2016; DOE, 2016) and the 2017 design case for feedstock logistics (INL, 2014) and for both the 2015 SOT (Tan et al., 2015a) and the 2022 target case for HOG production via IDL (Tan et al., 2015b). The design includes advancements that are likely and targeted to be achieved by 2017 for the feedstock logistics and 2022 for the IDL conversion process. In the SCSA, the 2015 SOT case for the conversion process, as modeled in Tan et al. (2015b), uses the 2015 SOT feedstock blend of pulpwood, wood residue, and construction and demolition waste (C&D). Moreover, the 2022 design case for the conversion process, as described in Tan et al. (2015a), uses the 2017 design case blend of pulpwood, wood residue, switchgrass, and C&D. The performance characteristics of this blend are consistent with those of a single woody feedstock (e.g., pine or poplar). We also examined the influence of using a single feedstock type on SCSA results for the design case. These single feedstock scenarios could be viewed as bounding SCSA results given that the different components of the feedstock blend have varying energy and material demands for production and logistics.

  17. FT-ICR MS analysis of blended pine-microalgae feedstock HTL biocrudes

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Jacqueline M.; Billing, Justin M.; Corilo, Yuri E.; Schmidt, Andrew J.; Hallen, Richard T.; Schaub, Tanner M.

    2018-03-01

    Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is utilized for direct comparison of the chemical composition of biocrudes generated from the hydrothermal liquefaction of 100% pine, 100% algae, 75:25 pine:algae, and 50:50 pine:algae feedstocks. This analysis reveals that the of the 72:25 and 50:50 pine:algal HTL biocrudes is essentially a composite of the two parent feeds (i.e., pine and algae) with a lower relative abundance of Ox species and a higher relative abundance of nitrogen-containing species than the pine HTL biocrude. Alternatively, the biocrude blends have a lower relative abundance of nitrogen-containing species where N>2 than the algal HTL biocrude. The 75:25 pine:algal HTL biocrude has more elemental formulae in common with the pine HTL biocrude than the 50:50 blend; however, both blends have more elemental formulae in common with the algal HTL biocrude. Interestingly, >20% of the elemental formulae assigned to monoisotopic peaks within the 75:25 and 50:50 biocrude blends are species not present in either the pine or algal HTL biocrudes. The highest relative abundance of these new species belong to the N2O4-6 classes, which correspond to heteroatom classes with a moderate number of nitrogen atoms and higher number of oxygen atoms per molecules than the species within the pure algal HTL biocrude. Compositionally, the novel species have the same structural motif but are of higher DBE and carbon numbers than the species within the algal HTL biocrude. These original species are most likely generated from reactions between molecules from both feeds, which results in compounds wotj higher oxygen content than typically seen in the algal HTL biocrude but also higher nitrogen contents than observed in the pine HTL biocrude.

  18. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    Science.gov (United States)

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Evolution and Development of Effective Feedstock Specifications

    Energy Technology Data Exchange (ETDEWEB)

    Garold Gresham; Rachel Emerson; Amber Hoover; Amber Miller; William Bauer; Kevin Kenney

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blend stocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. The 2012 feedstock logistics milestone demonstrated that for high-yield areas that minimize the transportation distances of a low-density, unstable biomass, we could achieve a delivered cost of $35/ton. Based on current conventional equipment and processes, the 2012 logistics design is able to deliver the volume of biomass needed to fulfill the 2012 Renewable Fuel Standard’s targets for ethanol. However, the Renewable Fuel Standard’s volume targets are continuing to increase and are expected to peak in 2022 at 36 billion gallons. Meeting these volume targets and achieving a national-scale biofuels industry will require expansion of production capacity beyond the 2012 Conventional Feedstock Supply Design Case to access diverse available feedstocks, regardless of their inherent ability to meet preliminary biorefinery quality feedstock specifications. Implementation of quality specifications (specs), as outlined in the 2017 Design Case – “Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels” (in progress), requires insertion of deliberate, active quality controls into the feedstock supply chain, whereas the 2012 Conventional Design only utilizes passive quality controls.

  20. Invasive plants as feedstock for biochar and bioenergy production.

    Science.gov (United States)

    Liao, Rui; Gao, Bin; Fang, June

    2013-07-01

    In this work, the potential of invasive plant species as feedstock for value-added products (biochar and bioenergy) through pyrolysis was investigated. The product yield rates of two major invasive species in the US, Brazilian Pepper (BP) and Air Potato (AP), were compared to that of two traditional feedstock materials, water oak and energy cane. Three pyrolysis temperatures (300, 450, and 600°C) and four feedstock masses (10, 15, 20, and 25 g) were tested for a total of 12 experimental conditions. AP had high biochar and low oil yields, while BP had a high oil yield. At lower temperatures, the minimum feedstock residence time for biochar and bioenergy production increased at a faster rate as feedstock weight increased than it did at higher temperatures. A simple mathematical model was successfully developed to describe the relationship between feedstock weight and the minimum residence time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend

    International Nuclear Information System (INIS)

    Wakil, M.A.; Kalam, M.A.; Masjuki, H.H.; Atabani, A.E.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Short identification of selected biodiesel feedstock. • Review of physicochemical properties for blended biodiesel. • Mathematical model for predicting properties of various biodiesel blends. - Abstract: The growing demand for green world serves as one of the most significant challenges of modernization. Requirements like largest usage of energy for modern society as well as demand for friendly milieu create a deep concern in field of research. Biofuels are placed at the peak of the research arena for their underlying benefits as mentioned by multiple researches. Out of a number of vegetable oils, only a few are used commercially for biodiesel production. Due to various limitations of edible oil, non-edible oils are becoming a profitable choice. Till today, very little percentage of biodiesel is used successfully in engine. The research is still continuing for improving the biodiesel usage level. Recently, it is found that the blended biodiesel from more than one feedstock provides better performance in engine. This paper reviews the physicochemical properties of different biodiesel blends obtained from various feedstocks with a view to properly understand the fuel quality. Moreover, a short description of each feedstock is given along with graphical presentation of important properties for various blend percentages from B0 to B100. Finally, mathematical model is formed for predicting various properties of biodiesel blend with the help of different research data by using polynomial curve fitting method. The results obtained from a number of literature based on this work shows that the heating value of biodiesel is about 11% lower than diesel except coconut (14.5% lower) whereas kinematic viscosity is in the range of 4–5.4 mm 2 /s. Flash point of all biodiesels are more than 150 °C, except neem and coconut. Cold flow properties of calophyllum, palm, jatropha, moringa are inferior to others. This would help to determine important properties of

  2. Castor oil biodiesel and its blends as alternative fuel

    International Nuclear Information System (INIS)

    Berman, Paula; Nizri, Shahar; Wiesman, Zeev

    2011-01-01

    Intensive production and commercialization of biodiesel from edible-grade sources have raised some critical environmental concerns. In order to mitigate these environmental consequences, alternative oilseeds are being investigated as biodiesel feedstocks. Castor (Ricinus communis L.) is one of the most promising non-edible oil crops, due to its high annual seed production and yield, and since it can be grown on marginal land and in semi-arid climate. Still, few studies are available regarding its fuel-related properties in its pure form or as a blend with petrodiesel, many of which are due to its extremely high content of ricinoleic acid. In this study, the specifications in ASTM D6751 and D7467 which are related to the fatty acid composition of pure castor methyl esters (B100) and its blend with petrodiesel in a 10% vol ratio (B10) were investigated. Kinematic viscosity and distillation temperature of B100 (15.17 mm 2 s -1 and 398.7 o C respectively) were the only two properties which did not meet the appropriate standard limits. In contrast, B10 met all the specifications. Still, ASTM D7467 requires that the pure biodiesel meets the requirements of ASTM D6751. This can limit the use of a wide range of feedstocks, including castor, as alternative fuel, especially due to the fact that in practice vehicles normally use low level blends of biodiesel and petrodiesel. These issues are discussed in depth in the present study. -- Highlights: → CaME can be used as a biodiesel alternative feedstock when blended in petrodiesel. → Due to the high levels of ricinoleic acid maximum blending level is limited to 10%. → Today, CaME blends are not a viable alternative feedstock. → ASTM D7467 requires that pure biodiesel must meet all the appropriate limits.

  3. Cryogenic homogenization and sampling of heterogeneous multi-phase feedstock

    Science.gov (United States)

    Doyle, Glenn Michael; Ideker, Virgene Linda; Siegwarth, James David

    2002-01-01

    An apparatus and process for producing a homogeneous analytical sample from a heterogenous feedstock by: providing the mixed feedstock, reducing the temperature of the feedstock to a temperature below a critical temperature, reducing the size of the feedstock components, blending the reduced size feedstock to form a homogeneous mixture; and obtaining a representative sample of the homogeneous mixture. The size reduction and blending steps are performed at temperatures below the critical temperature in order to retain organic compounds in the form of solvents, oils, or liquids that may be adsorbed onto or absorbed into the solid components of the mixture, while also improving the efficiency of the size reduction. Preferably, the critical temperature is less than 77 K (-196.degree. C.). Further, with the process of this invention the representative sample may be maintained below the critical temperature until being analyzed.

  4. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  5. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  6. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Karmis, Michael [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Luttrell, Gerald [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Ripepi, Nino [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Bratton, Robert [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dohm, Erich [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-09-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NOx, CO2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  7. Security of feedstocks supply for future bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2010-01-01

    This study assesses the security of feedstock supply to satisfy the increased demand for bio-ethanol production based on the recent 15 years biofuels development plan and target (year 2008-2022) of the Thai government. Future bio-ethanol systems are modeled and the feedstock supply potentials analyzed based on three scenarios including low-, moderate- and high-yields improvement. The three scenarios are modeled and key dimensions including availability; diversity; and environmental acceptability of feedstocks supply in terms of GHG reduction are evaluated through indicators such as net feedstock balances, Shannon index and net life cycle GHG emissions. The results show that only the case of high yields improvement scenario can result in a reliable and sufficient supply of feedstocks to satisfy the long-term demands for bio-ethanol and other related industries. Cassava is identified as the critical feedstock and a reduction in cassava export is necessary. The study concludes that to enhance long-term security of feedstocks supply for sustainable bio-ethanol production in Thailand, increasing use of sugarcane juice as feedstock, improved yields of existing feedstocks and promoting production of bio-ethanol derived from agricultural residues are three key recommendations that need to be urgently implemented by the policy makers. - Research highlights: →Bioethanol in Thailand derived from molasses, cassava, sugarcane juice could yield reductions of 64%, 49% and 87% in GHGs when compared to conventional gasoline. →High yields improvement are required for a reliable and sufficient supply of molasses, cassava and sugarcane to satisfy the long-term demands for bio-ethanol and other related industries. →Other factors to enhance long-term security of feedstocks supply for sustainable bioethanol production in Thailand include increasing use of sugarcane juice as feedstock and promoting production of bioethanol derived from agricultural residues.

  8. Markets for Canadian bitumen-based feedstock

    International Nuclear Information System (INIS)

    Marshall, R.; Lauerman, V.; Yamaguchi, N.

    2001-02-01

    This study was undertaken in an effort to determine the market potential for crude bitumen and derivative products from the Western Canadian Sedimentary Basin in 2007. As part of the study, CERI assessed the economic viability of a wide range of bitumen-based feedstock based on their refining values, investigated the sensitivity of refinery demand to the prices of these feedstocks, and examined the competitiveness of bitumen-based feedstocks and conventional crudes. A US$18.00 per barrel price for West Texas Intermediate at Cushing, Oklahoma, was assumed in all calculations, including other crude prices, as well as for Western Canadian and US crude oil production forecasts. Four different scenarios have been considered, but only the 'most plausible' scenario is discussed in the report. Consequently, Hydrocracked/Aromatics Saturated Synthetic Crude Oil, which is currently only a hypothetical product, is excluded from consideration. The availability of historical price differentials for the various competing crudes was another assumption used in developing the scenario. Proxy prices for the bitumen-based feedstock were based on their respective supply costs. The study concludes that the principal dilemma facing bitumen producers in Western Canada is to determine the amount of upgrading necessary to ensure an economic market for their product in the future. In general, the greater the degree of upgrading, the higher is the demand for bitumen-based feedstock. However, it must be kept in mind that the upgrading decisions of other bitumen producers, along with many other factors, will have a decisive impact on the economics of any individual project. The combination of coking capacity and asphalt demand limits the market for heavy and extra-heavy crudes. As a result, the researchers concluded that major expansion of heavy crude conversion capacity may have to wait until the end of the current decade. The economic market for bitumen-based blends in 2007 is estimated at

  9. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology

    Directory of Open Access Journals (Sweden)

    Rizo Edwin Gumba

    2016-09-01

    Full Text Available The advancement of alternative energy is primarily catalyzed by the negative environmental impacts and energy depletion caused by the excessive usage of fossil fuels. Biodiesel has emerged as a promising substitute to petrodiesel because it is biodegradable, less toxic, and reduces greenhouse gas emission. Apart from that, biodiesel can be used as blending component or direct replacements for diesel fuel in automotive engines. A diverse range of methods have been reported for the conversion of renewable feedstocks (vegetable oil or animal fat into biodiesel with transesterification being the most preferred method. Nevertheless, the cost of producing biodiesel is higher compared to fossil fuel, thus impeding its commercialization potentials. The limited source of reliable feedstock and the underdeveloped biodiesel production route have prevented the full-scale commercialization of biodiesel in many parts of the world. In a recent development, a new technology that incorporates monoliths as support matrices for enzyme immobilization in supercritical carbon dioxide (SC-CO2 for continuous biodiesel production has been proposed to solve the problem. The potential of SC-CO2 system to be applied in enzymatic reactors is not well documented and hence the purpose of this review is to highlight the previous studies conducted as well as the future direction of this technology.

  10. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Effect of feedstock end boiling point on product sulphur during ultra deep diesel hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Ivanov, A.; Jelyaskova, M. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria)

    2004-12-01

    An investigation was carried out to test the feasibility of producing 50 and 10 ppm sulphur diesel in a conventional hydrotreating unit operating at low pressure conditions by varying the feedstock end boiling point. Middle distillate fractions distilled from a mixture of Ural crude oil, reduced crude, vacuum gas oil, naphtha and low sulphur crude oils with 95% vol. points of 274, 359, 343, 333, and 322 C (ASTM D-86 method) and sulphur contents of 0.36, 0.63, 0.99, 0.57, and 0.47%, respectively, were hydrotreated using the Akzo Nobel Stars family Co-Mo KF-757 catalyst in a trickle bed pilot plant at following conditions: reactor inlet temperature range of 320-360 C; liquid hourly space velocity (LHSV) range of 1-2 h{sup -1}; total reactor pressure of 3.5 MPa; treating gas: feedstock ratio of 250 Nm{sup 3}/m{sup 3}. It was found that the determinant factor for the attainment of ultra low sulphur levels during middle distillate hydrodesulphurization was not the total sulphur content in the feed but the content of the material boiling above 340 C (according to TBP). For all LHSVs and reactor inlet temperatures studied the product sulphur dependence on the feed 340 C+ fraction content was approximated by second order power law. The specification of 50 ppm sulphur was achieved with all studied feedstocks. However the 10ppm sulphur limit could be met only by feedstocks with 95% vol. points below 333 C, which is accompanied by about 10% reduction of the diesel potential. The hydrotreatment tests on a blend 80% straight run gas oil (ASTM D-86 95% vol. of 274 C)/20%FCC LCO (ASTM D-86 95% vol. of 284 C) showed product sulphur levels which were not higher than those obtained by hydrotreatment of the straight run gas oil, indicating that undercutting the FCC LCO gives the refiner the opportunity to increase the potential for the production of 10 ppm sulphur diesel at the conditions of the conventional hydrotreating unit operating at low pressure. The product cetane index was

  12. Semi-mechanistic Model Applied to the Search for Economically Optimal Conditions and Blending of Gasoline Feedstock for Steam-cracking Process

    Directory of Open Access Journals (Sweden)

    Karaba Adam

    2016-01-01

    Full Text Available Steam-cracking is energetically intensive large-scaled process which transforms a wide range of hydrocarbons feedstock to petrochemical products. The dependence of products yields on feedstock composition and reaction conditions has been successfully described by mathematical models which are very useful tools for the optimization of cracker operation. Remaining problem is to formulate objective function for such an optimization. Quantitative criterion based on the process economy is proposed in this paper. Previously developed and verified industrial steam-cracking semi-mechanistic model is utilized as supporting tool for economic evaluation of selected gasoline feedstock. Economic criterion is established as the difference between value of products obtained by cracking of studied feedstock under given conditions and the value of products obtained by cracking of reference feedstock under reference conditions. As an example of method utilization, optimal reaction conditions were searched for each of selected feedstock. Potential benefit of individual cracking and cracking of grouped feedstocks in the contrast to cracking under the middle of optimums is evaluated and also compared to cracking under usual conditions.

  13. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappé, Kenneth G.; Jones, Susanne B.; Westover, Tyler L.; Cafferty, Kara G.

    2016-11-17

    This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yield and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a non-trivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of ~15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Green-house-gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest GHG emission reduction relative to petroleum (~70%) because of its lower hydrogen consumption in the upgrading stage that results in a lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (~58%) because of high natural gas demand for hydrogen production.

  14. Growth and fatty acid characterization of microalgae isolated from municipal waste-treatment systems and the potential role of algal-associated bacteria in feedstock production

    Directory of Open Access Journals (Sweden)

    Kevin Stemmler

    2016-03-01

    Full Text Available Much research has focused on growing microalgae for biofuel feedstock, yet there remain concerns about the feasibility of freshwater feedstock systems. To reduce cost and improve environmental sustainability, an ideal microalgal feedstock system would be fed by municipal, agricultural or industrial wastewater as a main source of water and nutrients. Nonetheless, the microalgae must also be tolerant of fluctuating wastewater quality, while still producing adequate biomass and lipid yields. To address this problem, our study focused on isolating and characterizing microalgal strains from three municipal wastewater treatment systems (two activated sludge and one aerated-stabilization basin systems for their potential use in biofuel feedstock production. Most of the 19 isolates from wastewater grew faster than two culture collection strains under mixotrophic conditions, particularly with glucose. The fastest growing wastewater strains included the genera Chlorella and Dictyochloris. The fastest growing microalgal strains were not necessarily the best lipid producers. Under photoautotrophic and mixotrophic growth conditions, single strains of Chlorella and Scenedesmus each produced the highest lipid yields, including those most relevant to biodiesel production. A comparison of axenic and non-axenic versions of wastewater strains showed a notable effect of commensal bacteria on fatty acid composition. Strains grown with bacteria tended to produce relatively equal proportions of saturated and unsaturated fatty acids, which is an ideal lipid blend for biodiesel production. These results not only show the potential for using microalgae isolated from wastewater for growth in wastewater-fed feedstock systems, but also the important role that commensal bacteria may have in impacting the fatty acid profiles of microalgal feedstock.

  15. Microbial Production of l-Serine from Renewable Feedstocks.

    Science.gov (United States)

    Zhang, Xiaomei; Xu, Guoqiang; Shi, Jinsong; Koffas, Mattheos A G; Xu, Zhenghong

    2018-07-01

    l-Serine is a non-essential amino acid that has wide and expanding applications in industry with a fast-growing market demand. Currently, extraction and enzymatic catalysis are the main processes for l-serine production. However, such approaches limit the industrial-scale applications of this important amino acid. Therefore, shifting to the direct fermentative production of l-serine from renewable feedstocks has attracted increasing attention. This review details the current status of microbial production of l-serine from renewable feedstocks. We also summarize the current trends in metabolic engineering strategies and techniques for the typical industrial organisms Corynebacterium glutamicum and Escherichia coli that have been developed to address and overcome major challenges in the l-serine production process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Potential feedstock sources for ethanol production in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Mohammad [Univ. of Florida, Gainesville, FL (United States); Hodges, Alan [Univ. of Florida, Gainesville, FL (United States)

    2015-10-01

    This study presents information on the potential feedstock sources that may be used for ethanol production in Florida. Several potential feedstocks for fuel ethanol production in Florida are discussed, such as, sugarcane, corn, citrus byproducts and sweet sorghum. Other probable impacts need to be analyzed for sugarcane to ethanol production as alternative uses of sugarcane may affect the quantity of sugar production in Florida. While citrus molasses is converted to ethanol as an established process, the cost of ethanol is higher, and the total amount of citrus molasses per year is insignificant. Sorghum cultivars have the potential for ethanol production. However, the agricultural practices for growing sweet sorghum for ethanol have not been established, and the conversion process must be tested and developed at a more expanded level. So far, only corn shipped from other states to Florida has been considered for ethanol production on a commercial scale. The economic feasibility of each of these crops requires further data and technical analysis.

  17. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  18. Best practices guidelines for managing water in bioenergy feedstock production

    Science.gov (United States)

    Daniel G. Neary

    2015-01-01

    In the quest to develop renewable energy sources, woody and agricultural crops are being viewed as an important source of low environmental impact feedstocks for electrical generation and biofuels production (Hall and Scrase 1998, Eriksson et al. 2002, Somerville et al. 2010, Berndes and Smith 2013). In countries like the USA, the bioenergy feedstock potential is...

  19. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, Annika [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Inman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carpenter Petri, Alberta C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Heath, Garvin A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hettinger, Dylan J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-29

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA's MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).

  20. NESDIS Blended Rain Rate (RR) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Rain Rate (RR) product is derived from multiple sensors/satellites. The blended products were merged from polar-orbiting and geostationary satellite...

  1. Enzymatic pre-treatment of high content cellulosic feedstock improves biogas production

    Science.gov (United States)

    Animal wastes with high lignin and cellulosic contents can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. However, these high lignin and cellulosic feedstocks are quite recalcitrant to be readily utilized by methanogens to produce ben...

  2. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  3. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  4. Microbial production host selection for converting second-generation feedstocks into bioproducts

    Directory of Open Access Journals (Sweden)

    van Groenestijn Johan W

    2009-12-01

    Full Text Available Abstract Background Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of six industrially relevant microorganisms, i.e. two bacteria (Escherichia coli and Corynebacterium glutamicum, two yeasts (Saccharomyces cerevisiae and Pichia stipitis and two fungi (Aspergillus niger and Trichoderma reesei were compared for their (i ability to utilize monosaccharides present in lignocellulosic hydrolysates, (ii resistance against inhibitors present in lignocellulosic hydrolysates, (iii their ability to utilize and grow on different feedstock hydrolysates (corn stover, wheat straw, sugar cane bagasse and willow wood. The feedstock hydrolysates were generated in two manners: (i thermal pretreatment under mild acid conditions followed by enzymatic hydrolysis and (ii a non-enzymatic method in which the lignocellulosic biomass is pretreated and hydrolyzed by concentrated sulfuric acid. Moreover, the ability of the selected hosts to utilize waste glycerol from the biodiesel industry was evaluated. Results Large differences in the performance of the six tested microbial production hosts were observed. Carbon source versatility and inhibitor resistance were the major discriminators between the performances of these microorganisms. Surprisingly all 6 organisms performed relatively well on pretreated crude feedstocks. P. stipitis and A. niger were found to give the overall best performance C. glutamicum and S. cerevisiae were shown to be the least adapted to renewable feedstocks. Conclusion Based on the results obtained we conclude that a substrate oriented instead of the more commonly used product oriented approach towards the selection of a microbial production host will avoid the requirement for extensive metabolic

  5. Technology for biomass feedstock production in southern forests and GHG implications

    Science.gov (United States)

    Bob Rummer; John Klepac; Jason Thompson

    2012-01-01

    Woody biomass production in the South can come from four distinct feedstocks - logging residues, thinnings, understory harvesting, or energywood plantations. A range of new technology has been developed to collect, process and transport biomass and a key element of technology development has been to reduce energy consumption. We examined three different woody feedstock...

  6. Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; George, Kevin W.; Sun, Ning; He, Wei; Li, Chenlin; Stavila, Vitalie; Keasling, Jay D.; Simmons, Blake A.; Lee, Taek Soon; Singh, Seema

    2015-02-28

    In order to enable the large-scale production of biofuels or chemicals from lignocellulosic biomass, a consistent and affordable year-round supply of lignocellulosic feedstocks is essential. Feedstock blending and/or densification offers one promising solution to overcome current challenges on biomass supply, i.e., low energy and bulk densities and significant compositional variations. Therefore, it is imperative to develop conversion technologies that can process mixed pelleted biomass feedstocks with minimal negative impact in terms of overall performance of the relevant biorefinery unit operations: pretreatment, fermentable sugar production, and fuel titers. We processed the mixture of four feedstocks—corn stover, switchgrass, lodgepole pine, and eucalyptus (1:1:1:1 on dry weight basis)—in flour and pellet form using ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate, dilute sulfuric acid (DA), and soaking in aqueous ammonia (SAA) pretreatments. Commercial enzyme mixtures, including cellulases and hemicellulases, were then applied to these pretreated feedstocks at low to moderate enzyme loadings to determine hydrolysis efficiency. Results show significant variations on the chemical composition, crystallinity, and enzymatic digestibility of the pretreated feedstocks across the different pretreatment technologies studied. The advanced biofuel isopentenol was produced during simultaneous saccharification and fermentation (SSF) of pretreated feedstocks using an engineered Escherichia coli strain. Results show that IL pretreatment liberates the most sugar during enzymatic saccharification, and in turn led to the highest isopentenol titer as compared to DA and SAA pretreatments. This study provides insights on developing biorefinery technologies that produce advanced biofuels based on mixed feedstock streams.

  7. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  8. The economic impact of Canadian biodiesel production on Canadian grains, oilseeds and livestock producers : final report

    International Nuclear Information System (INIS)

    Stiefelmeyer, K.; Mussell, A.; Moore, T.L.; Liu, D.

    2006-05-01

    This study was conducted to provide the Canadian Canola Growers Association with an understanding of the economic effects of a mandated use of biodiesel blends produced in Canada, focusing on canola and canola oil. A literature review was performed to determine what has been found elsewhere in terms of biodiesel. An overview of the feedstock markets was also conducted along with an empirical analysis to determine likely feedstock purchasing behaviour under biodiesel blend requirements. The analysis also considered the rendered animal fats industry. The objectives were to identify the economic impacts of biodiesel development; determine the nature of markets for candidate feedstocks that could be used in manufacturing biodiesel; estimate the economic effects of a 2 per cent biodiesel blend requirement in petroleum diesel; estimate the economic effects of a 5 per cent biodiesel blend requirement in petroleum diesel; and, determine the ultimate impact on the Canadian canola industry of the mandated biodiesel blend. It was shown that biodiesel can be made from a range of feedstocks and that the 2 key factors influencing the success of biodiesel manufacturing facilities were feedstock prices and feedstock availability. The key competitors facing canola oil in the biodiesel market are rendered oils, rendered animal fats, palm oil, and soybean oil. Canola and soybean oil are likely to be relatively high cost feedstocks for biodiesel production, while yellow grease, tallow, and palm oil would be better priced as feed for industrial uses. Two conceptions of market dynamic were considered. In the first, the feedstock prices remained constant, while in the other the feedstock prices fluctuated with volume consumed. It was concluded that if total fat and oil supplies are fixed at historic levels, biodiesel blend requirements of just over 2 per cent are feasible. It was concluded that a cluster of widely available, low-priced feedstocks for biodiesel production exists. These

  9. Introduced cool-season grasses in diversified systems of forage and feedstock production

    Science.gov (United States)

    Interest in producing biomass feedstock for biorefineries has increased in the southern Great Plains, though research has largely focused on the potential function of biorefineries. This study examined feedstock production from the producers’ viewpoint, and how this activity might function within di...

  10. Design of Sustainable Blended Products using an Integrated Methodology

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti; Gernaey, Krist; Woodley, John

    2013-01-01

    This paper presents a systematic methodology for designing blended products consisting of three stages; product design, process identification and experimental verification. The product design stage is considered in this paper. The objective of this stage is to screen and select suitable chemicals...... to be used as building blocks in the mixture design, and then to propose the blend formulations that fulfill the desired product attributes. The result is a set of blends that match the constraints, the compositions, values of the target properties and information about their miscibility. The methodology has...... been applied to design several blended products. A case study on design of blended lubricants is highlighted. The objective is to identify blended products that satisfy the product attributes with at least similar or better performance compared to conventional products....

  11. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.

    Science.gov (United States)

    Holder, Christopher T; Cleland, Joshua C; LeDuc, Stephen D; Andereck, Zac; Hogan, Chris; Martin, Kristen M

    2016-04-01

    The potential environmental effects of increased U.S. biofuel production often vary depending upon the location and type of land used to produce biofuel feedstocks. However, complete, annual data are generally lacking regarding feedstock production by specific location. Corn is the dominant biofuel feedstock in the U.S., so here we present methods for estimating where bioethanol corn feedstock is grown annually and how much is used by U.S. ethanol biorefineries. We use geospatial software and publicly available data to map locations of biorefineries, estimate their corn feedstock requirements, and estimate the feedstock production locations and quantities. We combined these data and estimates into a Bioethanol Feedstock Geospatial Database (BFGD) for years 2005-2010. We evaluated the performance of the methods by assessing how well the feedstock geospatial model matched our estimates of locally-sourced feedstock demand. On average, the model met approximately 89 percent of the total estimated local feedstock demand across the studied years-within approximately 25-to-40 kilometers of the biorefinery in the majority of cases. We anticipate that these methods could be used for other years and feedstocks, and can be subsequently applied to estimate the environmental footprint of feedstock production. Methods used to develop the Bioethanol Feedstock Geospatial Database (BFGD) provide a means of estimating the amount and location of U.S. corn harvested for use as U.S. bioethanol feedstock. Such estimates of geospatial feedstock production may be used to evaluate environmental impacts of bioethanol production and to identify conservation priorities. The BFGD is available for 2005-2010, and the methods may be applied to additional years, locations, and potentially other biofuels and feedstocks.

  12. Bioethanol - Status report on bioethanol production from wood and other lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Scott-Kerr, Chris; Johnson, Tony; Johnson, Barbara; Kiviaho, Jukka

    2010-09-15

    Lignocellulosic biomass is seen as an attractive feedstock for future supplies of renewable fuels, reducing the dependence on imported petroleum. However, there are technical and economic impediments to the development of commercial processes that utilise biomass feedstocks for the production of liquid fuels such as ethanol. Significant investment into research, pilot and demonstration plants is on-going to develop commercially viable processes utilising the biochemical and thermochemical conversion technologies for ethanol. This paper reviews the current status of commercial lignocellulosic ethanol production and identifies global production facilities.

  13. Development of a lactic acid production process using lignocellulosic biomass as feedstock

    NARCIS (Netherlands)

    Pol, van der E.C.

    2016-01-01

    The availability of crude oil is finite. Therefore, an alternative feedstock has to be found for the production of fuels and plastics. Lignocellulose is such an alternative feedstock. It is present in large quantities in agricultural waste material such as sugarcane bagasse.

    In this PhD

  14. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Directory of Open Access Journals (Sweden)

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  15. Quality of feedstock in production of lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.G.; Kalenik, G.S.; Bayburskaya, E.L.; Ledyashova, G.Ye.; Okhrimenko, N.V.; Potashnikov, G.L.; Shiryayeva, G.P.

    1980-01-01

    Data are obtained under industrial conditions concerning production of lubricating oils from the mixture of crudes distinguished in terms of major properties: viscosity, content of light petroleum products, resin, sulfur. The difference in main properties and hydrocarbon composition of the original feedstock caused a change in conditions of selective purification of output of target and intermediate products. It is demonstrated that selection and grading of Eastern Ukrainian petroleum (separation of gas condensate) can achieve a continued increase of production of oils, approximately 30 percent.

  16. Effect of blending ratio to the liquid product on co-pyrolysis of low rank coal and oil palm empty fruit bunch

    Directory of Open Access Journals (Sweden)

    Zullaikah Siti

    2018-01-01

    Full Text Available The utilization of Indonesia low rank coal should be maximized, since the source of Indonesia law rank coals were abundant. Pyrolysis of this coal can produce liquid product which can be utilized as fuel and chemical feedstocks. The yield of liquid product is still low due to lower of comparison H/C. Since coal is non-renewable source, an effort of coal saving and to mitigate the production of greenhouse gases, biomass such as oil palm empty fruit bunch (EFB would added as co-feeding. EFB could act as hydrogen donor in co-pyrolysis to increase liquid product. Co-pyrolysis of Indonesia low rank coal and EFB were studied in a drop tube reactor under the certain temperature (t= 500 °C and time (t= 1 h used N2 as purge gas. The effect of blending ratios of coal/EFB (100/0, 75/25, 50/50, 25/75 and 0/100%, w/w % on the yield and composition of liquid product were studied systematically. The results showed that the higher blending ratio, the yield of liquid product and gas obtained increased, while the char decreased. The highest yield of liquid product (28,62 % was obtained used blending ratio of coal/EFB = 25/75, w/w%. Tar composition obtained in this ratio is phenol, polycyclic aromatic hydrocarbons, alkanes, acids, esters.

  17. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production

    Directory of Open Access Journals (Sweden)

    Mendu Venugopal

    2011-10-01

    Full Text Available Abstract Background Lignin is a highly abundant biopolymer synthesized by plants as a complex component of plant secondary cell walls. Efforts to utilize lignin-based bioproducts are needed. Results Herein we identify and characterize the composition and pyrolytic deconstruction characteristics of high-lignin feedstocks. Feedstocks displaying the highest levels of lignin were identified as drupe endocarp biomass arising as agricultural waste from horticultural crops. By performing pyrolysis coupled to gas chromatography-mass spectrometry, we characterized lignin-derived deconstruction products from endocarp biomass and compared these with switchgrass. By comparing individual pyrolytic products, we document higher amounts of acetic acid, 1-hydroxy-2-propanone, acetone and furfural in switchgrass compared to endocarp tissue, which is consistent with high holocellulose relative to lignin. By contrast, greater yields of lignin-based pyrolytic products such as phenol, 2-methoxyphenol, 2-methylphenol, 2-methoxy-4-methylphenol and 4-ethyl-2-methoxyphenol arising from drupe endocarp tissue are documented. Conclusions Differences in product yield, thermal decomposition rates and molecular species distribution among the feedstocks illustrate the potential of high-lignin endocarp feedstocks to generate valuable chemicals by thermochemical deconstruction.

  18. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  19. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  20. Pricing model for biodiesel feedstock. A case study of Chhattisgarh in India

    International Nuclear Information System (INIS)

    Pohit, Sanjib; Biswas, Pradip Kumar; Kumar, Rajesh; Goswami, Anandajit

    2010-01-01

    Following the global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. To promote biofuel, Indian government has announced biodiesel purchase price as well as compulsory blending ratio. But, these measures have not worked to create large scale biodiesel production in India. With this backdrop, this paper highlights about the importance of a sound pricing policy focusing on the entire value chain of biodiesel production. The analysis is based on field level data from Chhattisgarh, the leading state in the production of jatropha. Such a sound pricing policy has to deal with the prices of feedstock, by-products and final product like biodiesel. It would also have to reflect on the business model of production of biodiesel. The simulation exercises in our model shows that the business returns from the production of biodiesel and the minimum support price (MSP) of the feedstock for biodiesel (i.e. jatropha seeds in this case) are sensitive to various parameters like seed yields, technological efficiency, by product and petro-diesel prices. An effective price policy framework has to consider all these factors to create a platform for sustainable biodiesel production in India. (author)

  1. A systematic methodology for design of tailor-made blended products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti; Gernaey, Krist; Woodley, John

    2014-01-01

    A systematic methodology for design of tailor-made blended products has been developed. In tailor-made blended products, one identifies the product needs and matches them by blending different chemicals. The systematic methodology has four main tasks. First, the design problem is defined: the pro......, the methodology is highlighted through two case studies involving gasoline blends and lubricant base oils....

  2. Impact of feedstock quality on clean diesel fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Marafi, A.; Stanislaus, A.; Rana, M. [Kuwait Institute for Scientific Research (KISR), Safat (Kuwait)

    2013-06-01

    High sulfur level in diesel fuel has been identified as a major contributor to harmful emissions (sulfur oxides, particulates, etc.) as a result, recent environmental regulations limit the sulfur content of diesel to ultra-low levels in many countries. The diesel fuel specifications are expected to become extremely severe in the coming years. Problem faced by the refiners is the difficulty in meeting the increasing market demand for Ultra-Low Sulfur Diesel (ULSD). Global market for middle distillates is increasing steadily and this trend is expected to continue for the next few years. At the same time, the quality of feed streams is declining. The refiners are, thus, required to produce a ULSD from poor feedstocks such as light cycle oil (LCO) and coker gas oil (CGO). The key to achieving deep desulfurization in gas-oil hydrotreater is in understanding the factors that influence the reactivity of the different types of sulfur compounds present in the feed, namely, feedstock quality, catalyst, process parameters, and chemistry of ULSD production. Among those parameters, feedstock quality is most critical. (orig.)

  3. Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations

    International Nuclear Information System (INIS)

    Pierie, F.; Someren, C.E.J. van; Benders, R.M.J.; Bekkering, J.; Gemert, W.J.Th. van; Moll, H.C.

    2015-01-01

    Highlights: • Using local waste feedstock and optimization improves environmental sustainability. • Optimization favors waste feedstocks. • Transport distances should not exceed 150 km. • The produced energy should be used for powering the green gas process first. • The AD process should be used primarily for local waste treatment. - Abstract: The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks. Sustainability is expressed by three main factors: efficiency in (Process) Energy Returned On Invested (P)EROI, carbon footprint in Global Warming Potential GWP(100), and environmental impact in EcoPoints. The green gas production pathway operates on a mass fraction of 50% feedstock with 50% manure. The sustainability of the analyzed feedstocks differs substantially, favoring biomass waste flows over, the specially cultivated energy crop, maize. The use of optimization, in the shape of internal energy production, green gas powered trucks, and mitigation can significantly improve the sustainability for all feedstocks, but favors waste materials. Results indicate a possible improvement from an average (P)EROI for all feedstocks of 2.3 up to an average of 7.0 GJ/GJ. The carbon footprint can potentially be reduced from an average of 40 down to 18 kgCO_2eq/GJ. The environmental impact can potentially be reduced from an average of 5.6 down to 1.8 Pt/GJ. Internal energy production proved to be the most effective optimization. However, the use of optimization aforementioned will result in les green gas injected into the gas grid as it is partially consumed internally. Overall, the feedstock straw was the most energy efficient, where the feedstock harvest remains proved to be the most environmentally sustainable. Furthermore, transport

  4. Identifying key drivers of greenhouse gas emissions from biomass feedstocks for energy production

    International Nuclear Information System (INIS)

    Johnson, David R.; Curtright, Aimee E.; Willis, Henry H.

    2013-01-01

    Highlights: • Production emissions dominate transportation and processing emissions. • Choice of feedstock, geographic location and prior land use drive emissions profile. • Within scenarios, emissions variability is driven by uncertainty in yields. • Favorable scenarios maximize carbon storage from direct land-use change. • Similarly, biomass production should attempt to minimize indirect land-use change. -- Abstract: Many policies in the United States, at both the federal and state levels, encourage the adoption of renewable energy from biomass. Though largely motivated by a desire to reduce greenhouse gas emissions, these policies do not explicitly identify scenarios in which the use of biomass will produce the greatest benefits. We have modeled “farm-to-hopper” emissions associated with seven biomass feedstocks, under a wide variety of scenarios and production choices, to characterize the uncertainty in emissions. We demonstrate that only a handful of factors have a significant impact on life cycle emissions: choice of feedstock, geographic location, prior land use, and time dynamics. Within a given production scenario, the remaining variability in emissions is driven by uncertainty in feedstock yields and the release rate of N 2 O into the atmosphere from nitrogen fertilizers. With few exceptions, transport and processing choices have relatively little impact on total emissions. These results illustrate the key decisions that will determine the success of biomass programs in reducing the emissions profile of energy production, and our publicly available model provides a useful tool for identifying the most beneficial production scenarios. While model data and results are restricted to biomass production in the contiguous United States, we provide qualitative guidance for identifying favorable production scenarios that should be applicable in other regions

  5. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  6. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  7. Example of feedstock optimization

    International Nuclear Information System (INIS)

    Boustros, E.

    1991-01-01

    An example of feedstock optimization at an olefins plant which has the flexibility to process different kinds of raw materials while maintaining the same product slate, is presented. Product demand and prices, and the number of units in service as well as the required resources to operate these units are considered to be fixed. The plant profitability is a function of feedstock choice, plus constant costs which are the non-volume related costs. The objective is to find a set or combination of feedstocks that could match the client product demands and fall within the unit's design and capacity, while maximizing the financial operating results

  8. Prediction of normalized biodiesel properties by simulation of multiple feedstock blends.

    Science.gov (United States)

    García, Manuel; Gonzalo, Alberto; Sánchez, José Luis; Arauzo, Jesús; Peña, José Angel

    2010-06-01

    A continuous process for biodiesel production has been simulated using Aspen HYSYS V7.0 software. As fresh feed, feedstocks with a mild acid content have been used. The process flowsheet follows a traditional alkaline transesterification scheme constituted by esterification, transesterification and purification stages. Kinetic models taking into account the concentration of the different species have been employed in order to simulate the behavior of the CSTR reactors and the product distribution within the process. The comparison between experimental data found in literature and the predicted normalized properties, has been discussed. Additionally, a comparison between different thermodynamic packages has been performed. NRTL activity model has been selected as the most reliable of them. The combination of these models allows the prediction of 13 out of 25 parameters included in standard EN-14214:2003, and confers simulators a great value as predictive as well as optimization tool. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Environmental and energy system analysis of bio-methane production pathways : A comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, F.; van Someren, C. E. J.; Benders, R. M. J.; Bekkering, J.; van Gemert, W. J. Th; Moll, H. C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.

  10. Environmental and energy system analysis of bio-methane production pathways : a comparison between feedstocks and process optimizations

    NARCIS (Netherlands)

    Pierie, Frank; van Someren, Christian; Benders, René M.J.; Bekkering, Jan; van Gemert, Wim; Moll, Henri C.

    2015-01-01

    The energy efficiency and sustainability of an anaerobic green gas production pathway was evaluated, taking into account five biomass feedstocks, optimization of the green gas production pathway, replacement of current waste management pathways by mitigation, and transport of the feedstocks.

  11. Production of steam cracking feedstocks by mild cracking of plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor

    2010-11-15

    In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)

  12. Biodiesel production and performance evaluation of coconut, palm and their combined blend with diesel in a single-cylinder diesel engine

    International Nuclear Information System (INIS)

    Habibullah, M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.; Ashraful, A.M.; Mobarak, H.M.

    2014-01-01

    Highlights: • Palm, coconut and their combined biodiesel blend (PB15CB15) was studied. • Characterization and effect on engine performance and emission was analyzed. • Combined blend improves BP, BSFC and NOx emission compared to coconut. • Combined blend improves CO, HC emissions and BTE compared to palm. - Abstract: Biodiesel is a renewable and sustainable alternative fossil fuel that is derived from vegetable oils and animal fats. This study investigates the production, characterization, and effect of biodiesel blends from two prominent feedstocks, namely, palm and coconut (PB30 and CB30), on engines. To aggregate the advantages of high ignition quality of palm and high oxygen content of coconut, combined blend of this two biodiesels (PB15CB15) is examined to evaluate its effect on engine performance and emission characteristics. Biodiesels are produced using the alkali catalyzed transesterification process. Various physicochemical properties are measured and compared with the ASTM D6751 standard. A 10 kW, horizontal, single-cylinder, four-stroke, and direct-injection diesel engine is employed under a full load and varying speed conditions. Biodiesel blends produce a low brake torque and high brake-specific fuel consumption (BSFC). However, all emissions, except for NOx, are significantly reduced. PB15CB15 improves brake torque and power output while reducing BSFC and NOx emissions when compared with CB30. Meanwhile, compared with PB30, PB15CB15 reduces CO and HC emissions while improving brake thermal efficiency. The experimental analysis reveals that the combined blend of palm and coconut oil shows superior performance and emission over individual coconut and palm biodiesel blends

  13. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    Science.gov (United States)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  14. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania

  15. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  16. Optimization of refinery product blending by using linear programming

    International Nuclear Information System (INIS)

    Ristikj, Julija; Tripcheva-Trajkovska, Loreta; Rikaloski, Ice; Markovska, Liljana

    1999-01-01

    The product slate of a simple refinery consists mainly of liquefied petroleum gas, leaded and unleaded gasoline, jet fuel, diesel fuel, extra light heating oil and fuel oil. The quality of the oil products (fuels) for sale has to comply with the adopted standards for liquid fuels, and the produced quantities have to be comply with the market needs. The oil products are manufactured by blending two or more different fractions which quantities and physical-chemical properties depend on the crude oil type, the way and conditions of processing, and at the same time the fractions are used to blend one or more products. It is in producer's interest to do the blending in an optimal way, namely, to satisfy the requirements for the oil products quality and quantity with a maximal usage of the available fractions and, of course, with a maximal profit out of the sold products. This could be accomplished by applying linear programming, that is by using a linear model for oil products blending optimization. (Author)

  17. Potential land competition between open-pond microalgae production and terrestrial dedicated feedstock supply systems in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Langholtz, Matthew H.; Coleman, Andre M.; Eaton, Laurence M.; Wigmosta, Mark S.; Hellwinckel, Chad M.; Brandt, Craig C.

    2016-08-01

    Biofuels produced from both terrestrial and algal biomass feedstocks can contribute to energy security while providing economic, environmental, and social benefits. To assess the potential for land competition between these two feedstock types in the United States, we evaluate a scenario in which 41.5 x 109 L yr-1 of second-generation biofuels are produced on pastureland, the most likely land base where both feedstock types may be deployed. This total includes 12.0 x 109 L yr-1 of biofuels from open-pond microalgae production and 29.5 x 109 L yr-1 of biofuels from terrestrial dedicated feedstock supply systems. Under these scenarios, open-pond microalgae production is projected to use 1.2 million ha of private pastureland, while terrestrial dedicated feedstock supply systems would use 14.0 million ha of private pastureland. A spatial meta-analysis indicates that potential competition for land under these scenarios would be concentrated in 110 counties, containing 1.0 and 1.7 million hectares of algal and terrestrial dedicated feedstock production, respectively. A land competition index applied to these 110 counties suggests that 38 to 59 counties could experience competition for upwards of 40% of a county’s pastureland. However, this combined 2.7 million ha represents only 2%-5% of total pastureland in the U.S., with the remaining 12.5 million ha of algal or terrestrial dedicated feedstock production on pastureland in non-competing areas.

  18. Computer-aided approach for design of tailor-made blended products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza; Gernaey, Krist; Woodley, John

    2012-01-01

    A computer-aided methodology has been developed for the design of blended (mixture) products. Through this methodology, it is possible to identify the most suitable chemicals for blending, and “tailor” the blend according to specified product needs (usually product attributes, e.g. performance...... as well as regulatory). The product design methodology has four tasks. First, the design problem is defined: the product needs are identified, translated into target properties and the constraints for each target property are defined. Secondly, target property models are retrieved from a property model...

  19. Aquatic weeds as the next generation feedstock for sustainable bioenergy production.

    Science.gov (United States)

    Kaur, Manpreet; Kumar, Manoj; Sachdeva, Sarita; Puri, S K

    2018-03-01

    Increasing oil prices and depletion of existing fossil fuel reserves, combined with the continuous rise in greenhouse gas emissions, have fostered the need to explore and develop new renewable bioenergy feedstocks that do not require arable land and freshwater resources. In this regard, prolific biomass growth of invasive aquatic weeds in wastewater has gained much attention in recent years in utilizing them as a potential feedstock for bioenergy production. Aquatic weeds have an exceptionally higher reproduction rates and are rich in cellulose and hemicellulose with a very low lignin content that makes them an efficient next generation biofuel crop. Considering their potential as an effective phytoremediators, this review presents a model of integrated aquatic biomass production, phytoremediation and bioenergy generation to reduce the land, fresh water and fertilizer usage for sustainable and economical bioenergy. Copyright © 2017. Published by Elsevier Ltd.

  20. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  1. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  2. Microbial production host selection for converting second-generation feedstocks into bioproducts

    NARCIS (Netherlands)

    Rumbold, K.; Buijsen, H.J.J. van; Overkamp, K.M.; Groenestijn, J.W. van; Punt, P.J.; Werf, M.J.V.D.

    2009-01-01

    Increasingly lignocellulosic biomass hydrolysates are used as the feedstock for industrial fermentations. These biomass hydrolysates are complex mixtures of different fermentable sugars, but also inhibitors and salts that affect the performance of the microbial production host. The performance of

  3. Comparing Effects of Feedstock and Run Conditions on Pyrolysis Products Produced at Pilot-Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gaston, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wilcox, Esther [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-19

    Fast pyrolysis is a promising pathway for mass production of liquid transportable biofuels. The Thermochemical Process Development Unit (TCPDU) pilot plant at NREL is conducting research to support the Bioenergy Technologies Office's 2017 goal of a $3 per gallon biofuel. In preparation for down select of feedstock and run conditions, four different feedstocks were run at three different run conditions. The products produced were characterized extensively. Hot pyrolysis vapors and light gasses were analyzed on a slip stream, and oil and char samples were characterized post run.

  4. Liquid fuels from alternative feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  5. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  6. Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States.

    Science.gov (United States)

    Emery, Isaac; Mueller, Steffen; Qin, Zhangcai; Dunn, Jennifer B

    2017-01-03

    Land availability for growing feedstocks at scale is a crucial concern for the bioenergy industry. Feedstock production on land not well-suited to growing conventional crops, or marginal land, is often promoted as ideal, although there is a poor understanding of the qualities, quantity, and distribution of marginal lands in the United States. We examine the spatial distribution of land complying with several key marginal land definitions at the United States county, agro-ecological zone, and national scales, and compare the ability of both marginal land and land cover data sets to identify regions for feedstock production. We conclude that very few land parcels comply with multiple definitions of marginal land. Furthermore, to examine possible carbon-flow implications of feedstock production on land that could be considered marginal per multiple definitions, we model soil carbon changes upon transitions from marginal cropland, grassland, and cropland-pastureland to switchgrass production for three marginal land-rich counties. Our findings suggest that total soil organic carbon changes per county are small, and generally positive, and can influence life-cycle greenhouse gas emissions of switchgrass ethanol.

  7. An Integrated Methodology for Design of Tailor-Made Blended Products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza; Gernaey, Krist; Woodley, John

    2012-01-01

    is analyzed. Finally, experimental work (or detailed model-based verification) is conducted in stage three to validate the selected blend candidates. In this study, the product design stage is highlighted through a case study of gasoline blends with bio-based chemicals. The objective of this study...... is to identify blended gasoline products that match (or improve) the performance of the conventional gasoline....

  8. Extrudability and Consolidation of Blends between CGM and DDGS

    Directory of Open Access Journals (Sweden)

    C. J. R. Verbeek

    2016-01-01

    Full Text Available During the last decade, the global biofuels industry has experienced exponential growth. By-products such as high protein corn gluten meal (CGM and high fibre distillers dried grains with solubles (DDGS have grown in parallel. CGM has been shown to be suitable as a biopolymer; the high fibre content of DDGS reduces its effectiveness, although it is considerably cheaper. In this study, the processing behaviour of CGM and DDGS blends was evaluated and resulting extrudate properties were determined. Prior to processing, urea was used as a denaturant. DDGS : CGM ratios of 0, 33, 50, 66, and 100% were processed in a single screw extruder, which solely used dissipative heating. Blends containing DDGS were less uniformly consolidated and resulted in more dissipative heating. Blends showed multiple glass transitions, which is characteristic of mechanically compatible blends. Transmission electron microscopy revealed phase separation on a microscale, although distinct CGM or DDGS phases could not be identified. On a macroscale, optical microscopy suggested that CGM-rich blends were better consolidated, supported by visual observations of a more continuous extrudate formed during extrusion. Future work should aim to also characterize the mechanical properties of these blends to assess their suitability as either bioplastic feedstock or pelletized livestock feed.

  9. Characterization of Various Biomass Feedstocks for Energy Production

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2013-01-01

    Biomass represents the renewable energy source and their use reduces the consumption of fossil fuels and limits the emission of CO2. In this work, various biomass feedstocks were assessed for assessing their suitability as energy production sources using thermochemical conversion routes especially...... hydrothermal liquefaction (HTL) process. The methods used to analyze involved performing proximate, ultimate and thermogravimetry analysis. On the basis of proximate, ultimate, and thermogravimetry analysis, the dried distiller grains with solubles (DDGS), corn silage, chlorella vulgaris, spirulina platensis...

  10. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock.

    Science.gov (United States)

    Mello, Paola de A; Duarte, Fábio A; Nunes, Matheus A G; Alencar, Mauricio S; Moreira, Elizabeth M; Korn, Mauro; Dressler, Valderi L; Flores, Erico M M

    2009-08-01

    A procedure using ultrasonic irradiation is proposed for sulfur removal of a petroleum product feedstock. The procedure involves the combination of a peroxyacid and ultrasound-assisted treatment in order to comply with the required sulfur content recommended by the current regulations for fuels. The ultrasound-assisted oxidative desulfurization (UAOD) process was applied to a petroleum product feedstock using dibenzothiophene as a model sulfur compound. The influence of ultrasonic irradiation time, oxidizing reagents amount, kind of solvent for the extraction step and kind of organic acid were investigated. The use of ultrasonic irradiation allowed higher efficiency for sulfur removal in comparison to experiments performed without its application, under the same reactional conditions. Using the optimized conditions for UAOD, the sulfur removal was about 95% after 9min of ultrasonic irradiation (20kHz, 750W, run at 40%), using hydrogen peroxide and acetic acid, followed by extraction with methanol.

  11. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  12. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  13. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  14. Soluble lipase-catalyzed synthesis of methyl esters using a blend of edible and nonedible raw materials.

    Science.gov (United States)

    Wancura, João H C; Rosset, Daniela V; Brondani, Michel; Mazutti, Marcio A; Oliveira, J Vladimir; Tres, Marcus V; Jahn, Sérgio L

    2018-04-26

    This work investigates the use of blends of edible and nonedible raw materials as an alternative feedstock to fatty acid methyl esters (FAME) production through enzymatic catalysis. As biocatalyst, liquid lipase from Thermomyces lanuginosus (Callera™ Trans L), was used. Under reaction conditions of 35 °C, methanol to feedstock molar ratio of 4.5:1 and 1.45% of catalyst load, the best process performance was reached using 9% of water concentration in the medium-yield of 79.9% after 480 min of reaction. In terms of use of tallow mixed with soybean oil, the best yield was obtained when 100% of tallow was used in the process-84.6% after 480 min of reaction-behavior that was associated with the degree of unsaturation of the feedstock, something by that time, not addressed in papers of the area. The results show that tallow can be used as an alternative to FAME production, catalyzed by soluble lipase.

  15. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Bastianoni, Simone; Coppola, Fazio; Tiezzi, Enzo [Department of Chemical and Biosystems Sciences, Siena University, via della Diana, 2A, 53100 Siena (Italy); Colacevich, Andrea; Borghini, Francesca; Focardi, Silvano [Department of Environmental Sciences, Siena University, via Mattioli 4, 53100 Siena (Italy)

    2008-07-15

    The diversification of different types and sources of biofuels has become an important energy issue in recent times. The aim of this work is to evaluate the use of two kinds of renewable feedstocks in order to produce biodiesel. We have analyzed the potential production of oil from two species of macroalgae considered as waste coming out from a lagoon system involved in eutrophication and from sunflower seeds. We have tested oil extraction yields of both feedstock. Furthermore, a comparison has been carried out based on the emergy approach, in order to evaluate the sustainability and environmental performance of both processes. The results show that, under present conditions, considering oil extraction yields, the production of oil from sunflower seeds is feasible, because of the lower value of transformity of the final product with respect to macroalgae. On the other hand, the results demonstrate that with improvements of oil extraction methodology, macroalgae could be considered a good residual biomass usable for biofuel production. (author)

  16. Dispersion-strengthened Aluminium Products Manufactured by Powder Blending

    DEFF Research Database (Denmark)

    Hansen, Niels

    1969-01-01

    Detailed experiments carried out to examine relationship between microstructure and mechanical properties of powder-blended aluminum products are reported; their results as well as structural studies by transmission electron microscopy and tensile-and creep- testing, are given; as dispersed phase......, various oxide powders were selected on criterion that during manufacturing no reaction must taken place between metal and oxide phase; strength of powder-blended aluminum products increases and elongation decreases with decreasing particle size of aluminum powder and with increasing concentration of oxide...

  17. Survey of Alternative Feedstocks for Commodity Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Robinson, Sharon M [ORNL

    2008-02-01

    The current high prices for petroleum and natural gas have spurred the chemical industry to examine alternative feedstocks for the production of commodity chemicals. High feedstock prices have driven methanol and ammonia production offshore. The U.S. Chemical Industry is the largest user of natural gas in the country. Over the last 30 years, alternatives to conventional petroleum and natural gas feedstocks have been developed, but have limited, if any, commercial implementation in the United States. Alternative feedstocks under consideration include coal from unconventional processing technologies, such as gasification and liquefaction, novel resources such as biomass, stranded natural gas from unconventional reserves, and heavy oil from tar sands or oil shale. These feedstock sources have been evaluated with respect to the feasibility and readiness for production of the highest volume commodity chemicals in the United States. Sources of organic compounds, such as ethanol from sugar fermentation and bitumen-derived heavy crude are now being primarily exploited for fuels, rather than for chemical feedstocks. Overall, government-sponsored research into the use of alternatives to petroleum feedstocks focuses on use for power and transportation fuels rather than for chemical feedstocks. Research is needed to reduce cost and technical risk. Use of alternative feedstocks is more common outside the United States R&D efforts are needed to make these processes more efficient and less risky before becoming more common domestically. The status of alternative feedstock technology is summarized.

  18. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  19. Fatty acid profile of alternative feedstocks for biodiesel production and implications for fuel properties

    Science.gov (United States)

    Feedstock accounts for approximately 80% of biodiesel production expenses when commodity lipids such as soybean oil are utilized. Furthermore, commodity lipids have competing food-related applications. Consequently, low-cost alternatives that do not displace existing food production are of interest ...

  20. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation.

    Science.gov (United States)

    Neelamegam, Annamalai; Al-Battashi, Huda; Al-Bahry, Saif; Nallusamy, Sivakumar

    2018-01-10

    Waste paper, a major fraction of municipal solid waste, has a potential to serve as renewable feedstock for the biorefineries of fuels, chemicals and materials due to rich in cellulose and abundant at low cost. This study evaluates the possibility of waste office paper (WOP) to serve as a potential feedstock for the biorefinery production of poly (3-hydroxybutyrate). In this study, the WOP was pretreated, enzymatically saccharified and the hydrolysate was used for PHB production. The hydrolysate mainly consists of glucose (22.70g/L) and xylose (1.78g/L) and the corresponding sugar yield was about 816mg/g. Ammonium sulphate and C/N ratio 20 were identified as most favorable for high yield of PHB. The batch fermentation of Cupriavidus necator using the pretreated WOP hydrolysate resulted in cell biomass, PHB production and PHB content of 7.74g/L, 4.45g/L and 57.52%, respectively. The volumetric productivity and yield achieved were 0.061g/L/h and 0.210g/g sugar, respectively. The results suggested that WOP could be a potential alternative feedstock for the biorefinery production of bioplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gasification : converting low value feedstocks to high value products

    International Nuclear Information System (INIS)

    Koppel, P.; Lorden, D.

    2009-01-01

    This presentation provided a historic overview of the gasification process and described the process chemistry of its two primary reactions, notably partial oxidation and steam reforming. The gasification process involves converting low value carbonaceous solid or liquid feeds to a synthetic gas by reacting the feed with oxygen and steam under high pressure and temperature conditions. Since the gasifier operates under a reducing environment instead of an oxidizing environment, mist sulphur is converted to hydrogen sulphide instead of sulphur dioxide. The gasification process also involves cleaning up synthetic gas and acid gas removal; recovery of conventional sulphur; and combustion or further processing of clean synthetic gas. This presentation also outlined secondary reactions such as methanation, water shift, and carbon formation. The negative effects of gasification were also discussed, with particular reference to syngas; metal carbonyls; soot; and slag. Other topics that were presented included world syngas production capacity by primary feedstock; operating IGCC projects; natural gas demand by oil sands supply and demand considerations; reasons for using the gasification process; gasifier feedstocks; and gasification products. The presentation concluded with a discussion of gasification licensors; gasification technologies; gasification experience; and the regulatory situation for greenhouse gas. Gasification has demonstrated excellent environmental performance with sulphur recovery greater than 99 per cent, depending on the the recovery process chosen. The opportunity also exists for carbon dioxide recovery. tabs., figs.

  2. Systematic Methodology for Design of Tailor-Made Blended Products: Fuels and Other Blended Products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti

    property values are verified by means of rigorous models for the properties and the mixtures. Besides the methodology, as the main contribution, specific supporting tools that were developed to perform each task are also important contributions of this research work. The applicability of the developed...... important in daily life, since they not only keep people moving around, but also guarantee that machines and equipment work smoothly. The objective of this work is to tackle the blending problems using computer-aided tools for the initial stage of the product design. A systematic methodology for design...... methodology and tools was tested through two case studies. In the first case study, two different gasoline blend problems have been solved. In the second case study, four different lubricant design problems have been solved....

  3. Potential for improving the carbon footprint of butter and blend products

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    2011-01-01

    cycle assessment was used to account for all greenhouse gas emissions from cow to consumer. A critical aspect when calculating the CF is how emissions are allocated between different products. Here, allocation of raw milk between products was based on a weighted fat and protein content (1:1.7), based...... on the price paid for raw milk to dairy farmers. The CF (expressed as carbon dioxide equivalents, CO2e) for 1 kg of butter or blend (assuming no product waste at consumer) ranged from 5.2 kg (blend with 60% fat content) to 9.3 kg of CO2e (butter in 250-g tub). When including product waste at the consumer level...... footprint (CF) of butter and dairy blend products, with the focus on fat content and size and type of packaging (including product waste at the consumer level). The products analyzed were butter with 80% fat in 250-g wrap, 250-g tub, and 10-g mini tub, and blends with 80% and 60% fat in 250-g tubs. Life...

  4. Evaluation of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane ...

  5. Effect of biochemical factors from mixed animal wastes feedstock in biogas production

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of methane...

  6. Heavy gas oils as feedstock for petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  7. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  8. Experimental data of thermal cracking of soybean oil and blends with hydrogenated fat

    Directory of Open Access Journals (Sweden)

    R.F. Beims

    2018-04-01

    Full Text Available This article presents the experimental data on the thermal cracking of soybean oil and blends with hydrogenated fat. Thermal cracking experiments were carried out in a plug flow reactor with pure soybean oil and two blends with hydrogenated fat to reduce the degree of unsaturation of the feedstock. The same operational conditions was considered. The data obtained showed a total aromatics content reduction by 14% with the lowest degree of unsaturation feedstock. Other physicochemical data is presented, such as iodine index, acid index, density, kinematic viscosity. A distillation curve was carried out and compared with the curve from a petroleum sample.

  9. Ecological sustainability of alternative biomass feedstock production for environmental benefits and bioenergy

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Jill A. Zalesny; Edmund O. Bauer

    2007-01-01

    The incorporation of intensive forestry with waste management fills a much-needed niche throughout numerous phytotechnology applications. There is a growing opportunity to incorporate sustainable recycling of waste waters as irrigation and fertilization for alternative biomass feedstock production systems. However, the success of short rotation woody crops is largely...

  10. Impact of policy on greenhouse gas emissions and economics of biodiesel production.

    Science.gov (United States)

    Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph

    2014-07-01

    As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.

  11. Forest based biomass for energy in Uganda: Stakeholder dynamics in feedstock production

    International Nuclear Information System (INIS)

    Hazelton, Jennifer A.; Windhorst, Kai; Amezaga, Jaime M.

    2013-01-01

    Insufficient energy supply and low levels of development are closely linked. Both are major issues in Uganda where growing demand cannot be met by overstretched infrastructure and the majority still rely on traditional biomass use. Uganda's renewable energy policy focuses on decentralised sources including modern biomass. In this paper, stakeholder dynamics and potential socio-economic impacts of eight modern bioenergy feedstock production models in Uganda are considered, and key considerations for future planning provided. For these models the main distinctions were land ownership (communal or private) and feedstock type (by-product or plantation). Key social issues varied by value chain (corporate, government or farmer/NGO), and what production arrangement was in place (produced for own use or sale). Small, privately owned production models can be profitable but are unlikely to benefit landless poor and, if repeated without strategic planning, could result in resource depletion. Larger projects can have greater financial benefits, though may have longer term natural resource impacts felt by adjacent communities. Bioenergy initiatives which allow the rural poor to participate through having a collaborative stake, rather than receiving information, and provide opportunities for the landless are most likely to result in socio-economic rural development to meet policy goals. The structured approach to understanding stakeholder dynamics used was found to be robust and sufficiently adaptable to provide meaningful analysis. In conclusion; local, context-specific planning and assessment for bioenergy projects, where all stakeholders have the opportunity to be collaborators in the process throughout its full lifecycle, is required to achieve rural development objectives. -- Highlights: • Stakeholder dynamics and socio-economics in 8 Ugandan bioenergy projects considered. • Key distinctions were ownership, feedstock, value chain and production arrangement. • Small

  12. Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing

    International Nuclear Information System (INIS)

    Eibling, R.E.; Bartlett, M.G.; Carlson, R.E.; Testino, S.A. Jr.; Kunkel, G.J.; Browner, R.F.; Busch, K.L.

    1994-01-01

    The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions

  13. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  14. Extraction and characterization of triglycerides from coffeeweed and switchgrass seeds as potential feedstocks for biodiesel production.

    Science.gov (United States)

    Armah-Agyeman, Grace; Gyamerah, Michael; Biney, Paul O; Woldesenbet, Selamawit

    2016-10-01

    Although switchgrass has been developed as a biofuel feedstock and its potential for bioethanol and bio-oil from fast pyrolysis reported in the literature, the use of the seeds of switchgrass as a source of triglycerides for biodiesel production has not been reported. Similarly, the potential for extracting triglycerides from coffeeweed (an invasive plant of no current economic value) needs to be investigated to ascertain its potential economic use for biodiesel production. The results show that coffeeweed and switchgrass seeds contain known triglycerides which are 983 and 1000 g kg(-1) respectively of the fatty acids found in edible vegetable oils such as sunflower, corn and soybean oils. In addition, the triglyceride yields of 53-67 g kg(-1) of the seed samples are in the range of commercial oil-producing seeds such as corn (42 g kg(-1) ). The results also indicate that the two non-edible oils could be used as substitutes for edible oil for biodiesel production. In addition, the use of seeds of switchgrass for non-edible oil production (as a feedstock for the production of biodiesel) further increases the total biofuel yield when switchgrass is cultivated for use as energy feedstock for pyrolysis oil and biodiesel production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Unconventional biomasses as feedstocks for production of biofuels and succinic acid in a biorefinery concept

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi

    composition of the specific biomass feedstock, as well as which pretreatment, saccharification, fermentation and extraction techniques are used. Furthermore, integrating biological processes into the biorefinery that effectively consume CO2 will become increasingly important. Such process integration could...... significantly improve the sustainability indicators of the overall biorefinery process. In this study, unconventional lignocellulosic- and aquatic biomasses were investigated as biorefinery feedstocks. The studied biomasses were Jerusalem artichoke, industrial hemp and macroalgae species Laminaria digitata....... The chemical composition of biomasses was determined in order to demonstrate their biorefinery potential. Bioethanol and biogas along with succinic acid production were the explored bioconversion routes, while potential production of other compounds was also investigated. Differences and changes in biomass...

  16. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Science.gov (United States)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  17. An integrated bioconversion process for the production of L-lactic acid from starchy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, S.P.; Moon, S.H.

    1997-07-01

    The potential market for lactic acid as the feedstock for biodegradable polymers, oxygenated chemicals, and specialty chemicals is significant. L-lactic acid is often the desired enantiomer for such applications. However, stereospecific lactobacilli do not metabolize starch efficiently. In this work, Argonne researchers have developed a process to convert starchy feedstocks into L-lactic acid. The processing steps include starch recovery, continuous liquefaction, and simultaneous saccharification and fermentation. Over 100 g/L of lactic acid was produced in less than 48 h. The optical purity of the product was greater than 95%. This process has potential economical advantages over the conventional process.

  18. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  19. NESDIS Blended Total Precipitable Water (TPW) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Total Precipitable Water (TPW) product is derived from multiple sensors/satellites. The Percentage of TPW normal (PCT), or TPW anomaly, shows the...

  20. Fostering sustainable feedstock production for advanced biofuels on underutilised land in Europe

    Science.gov (United States)

    Mergner, Rita; Janssen, Rainer; Rutz, Dominik; Knoche, Dirk; Köhler, Raul; Colangeli, Marco; Gyuris, Peter

    2017-04-01

    Background In context of growing competition between land uses, bioenergy development is often seen as one of possible contributors to such competition. However, the potential of underutilized land (contaminated, abandoned, marginal, fallow land etc.) which is not used or cannot be used for productive activities is not exhausted and offers an attractive alternative for sustainable production of different biomass feedstocks in Europe. Depending on biomass feedstocks, different remediation activities can be carried out in addition. Bioenergy crops have the potential to be grown profitably on underutilized land and can therefore offer an attractive source of income on the local level contributing to achieving the targets of the Renewable Energy Directive (EC/2009). The FORBIO project The FORBIO project demonstrates the viability of using underutilised land in EU Member States for sustainable bioenergy feedstock production that does not affect the supply of food, feed and land currently used for recreational or conservation purposes. Project activities will serve to build up and strengthen local bioenergy value chains that are competitive and that meet the highest sustainability standards, thus contributing to the market uptake of sustainable bioenergy in the EU. Presented results The FORBIO project will develop a methodology to assess the sustainable bioenergy production potential on available underutilized lands in Europe at local, site-specific level. Based on this methodology, the project will produce multiple feasibility studies in three selected case study locations: Germany (lignite mining and sewage irrigation fields in the metropolis region of Berlin and Brandenburg), Italy (contaminated land from industrial activities in Sulcis, Portoscuso) and Ukraine (underutilised marginal agricultural land in the North of Kiev). The focus of the presentation will be on the agronomic and techno-economic feasibility studies in Germany, Italy and Ukraine. Agronomic

  1. ASSERT FY16 Analysis of Feedstock Companion Markets

    Energy Technology Data Exchange (ETDEWEB)

    Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nguyen, Thuy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nair, Shyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, J. Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  2. ASSERT FY16 Analysis of Feedstock Companion Markets

    International Nuclear Information System (INIS)

    Lamers, Patrick; Hansen, Jason; Jacobson, Jacob J.; Nguyen, Thuy; Nair, Shyam; Searcy, Erin; Hess, J. Richard

    2016-01-01

    Meeting Co-Optima biofuel production targets will require large quantities of mobilized biomass feedstock. Mobilization is of key importance as there is an abundance of biomass resources, yet little is available for purchase, let alone at desired quantity and quality levels needed for a continuous operation, e.g., a biorefinery. Therefore Co-Optima research includes outlining a path towards feedstock production at scale by understanding routes to mobilizing large quantities of biomass feedstock. Continuing along the vertically-integrated path that pioneer cellulosic biorefineries have taken will constrain the bioenergy industry to high biomass yield areas, limiting its ability to reach biofuel production at scale. To advance the cellulosic biofuels industry, a separation between feedstock supply and conversion is necessary. Thus, in contrast to the vertically integrated supply chain, two industries are required: a feedstock industry and a conversion industry. The split is beneficial for growers and feedstock processers as they are able to sell into multiple markets. That is, depots that produce value-add feedstock intermediates that are fully fungible in both the biofuels refining and other, so-called companion markets. As the biofuel industry is currently too small to leverage significant investment in up-stream infrastructure build-up, it requires an established (companion) market to secure demand, which de-risks potential investments and makes a build-up of processing and other logistics infrastructure more likely. A common concern to this theory however is that more demand by other markets could present a disadvantage for biofuels production as resource competition may increase prices leading to reduced availability of low-cost feedstock for biorefineries. To analyze the dynamics across multiple markets vying for the same resources, particularly the potential effects on resource price and distribution, the Companion Market Model (CMM) has been developed in this

  3. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock

  4. Calophyllum inophyllum L. as a future feedstock for bio-diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Atabania, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan)], email: a_atabani2@msn.com, email: ardinsu@yahoo.co.id; Silitonga, A.S.; Mahlia, T.M.I.; Masjukia, H.H.; Badruddin, I.A. [University of Malaya (Malaysia)

    2011-07-01

    Due to the energy crisis and the concerns about climate change, the possibility of using biodiesel as an alternative energy resource has been examined. It has been found that biodiesel could be a solution for the future but the first generation of biodiesel, prepared from edible vegetable oils, has raised important concerns about food and environmental problems. The aim of this study is to assess if Calophyllum inophyllum, a non-edible oil, could be used for biodiesel production. Density, kinematic viscosity, cetane number, flashpoint and iodine value were determined on Calophyllum inophyllum trees from Cilacap, Indonesia and compared in light of ASTM D6751 biodiesel standards. It was found that Calophyllum inophyllum would be a satisfactory feedstock to produce biodiesel in the future. This study demonstrated that Calophyllum inophyllum has the potential to be a biodiesel feedstock and further research should be carried out on engine performance, combustion and emission performance of biodiesel produced from Calophyllum inophyllum.

  5. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Iye, Edward; Bilsborrow, Paul

    2013-01-01

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km 3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km 3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km 3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  6. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends

    International Nuclear Information System (INIS)

    Silitonga, A.S.; Masjuki, H.H.; Mahlia, T.M.I.; Ong, Hwai Chyuan; Chong, W.T.

    2013-01-01

    Highlights: • Ceiba pentandra biodiesel was prepared by two-step transesterification. • The main FAC of C. pentandra is 18.54% of malvalic acid. • Engine performance and emission are conducted for CPME and its blends. • The CPB10 gives the best engine performance at 1900 rpm. • The CO, HC and smoke opacity were lower for all biodiesel blends. - Abstract: Nowadays, production of biodiesel from non-edible feedstock is gaining more attention than edible oil to replace diesel fuel. Thus, Ceiba pentandra is chosen as a potential biodiesel feedstock for the present investigations based on the availability in Indonesia and Malaysia. C. pentandra methyl ester was prepared by two-step acid esterification (H 2 SO 4 ) and base transesterification (NaOH) process. The purpose of this study is to examine the engine performance and emission characteristic of C. pentandra biodiesel diesel blends in internal combustion. Besides, the detailed properties of C. pentandra biodiesel, biodiesel diesel blends and diesel were measured and evaluated. After that, the biodiesel diesel blends (10%, 20%, 30% and 50%) were used to conduct engine performance and exhaust emission characteristic at different engine speeds. The experimental results showed that CPB10 blend give the best results on engine performance such as engine torque and power at 1900 rpm with full throttle condition. Besides, the brake specific fuel consumption at maximum torque (161 g/kW h) for CPB10 is higher about 22.98% relative to diesel fuel (198 g/kW h). This is shown that the lower biodiesel diesel blends ratio will increase the performance and reduce the fuel consumption. Moreover, the exhaust emissions showed that CO, HC and smoke opacity were reduced for all biodiesel diesel blends. However, NO x and CO 2 were increased compared to petrol diesel. Overall, the results proved that C. pentandra biodiesel is a suitable alternative and substitute fuel to diesel

  7. Dyeing Industry Effluent System as Lipid Production Medium of Neochloris sp. for Biodiesel Feedstock Preparation

    Directory of Open Access Journals (Sweden)

    Vidyadharani Gopalakrishnan

    2014-01-01

    Full Text Available Microalgae lipid feedstock preparation cost was an important factor in increasing biodiesel fuel hikes. This study was conducted with the concept of implementing an effluent wastewater as lipid production medium for microalgae cultivation. In our study textile dyeing industry effluent was taken as a lipid production medium for Neochloris sp. cultivation. The changes in physicochemical analysis of effluent before and after Neochloris sp. treatment were recorded using standard procedures and AAS analysis. There was especially a reduction in heavy metal like lead (Pb concentration from 0.002 ppm to 0.001 ppm after Neochloris sp. treatment. Neochloris sp. cultivated in Bold Basal Medium (BBM (specific algal medium produced 41.93% total lipid and 36.69% lipid was produced in effluent based cultivation. Surprisingly Neochloris sp. cultivated in effluent was found with enhanced neutral lipid content, and it was confirmed by Nile red fluorescence assay. Further the particular enrichment in oleic acid content of the cells was confirmed with thin layer chromatography (TLC with oleic acid pure (98% control. The overall results suggested that textile dyeing industry effluent could serve as the best lipid productive medium for Neochloris sp. biodiesel feedstock preparation. This study was found to have a significant impact on reducing the biodiesel feedstock preparation cost with simultaneous lipid induction by heavy metal stress to microalgae.

  8. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Asam, Zaki-ul-Zaman; Poulsen, Tjalfe Gorm; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.

    2011-01-01

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  9. Properties and use of Moringa oleifera biodiesel and diesel fuel blends in a multi-cylinder diesel engine

    International Nuclear Information System (INIS)

    Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E.; Arbab, M.I.; Cheng, S.F.; Gouk, S.W.

    2014-01-01

    Highlights: • Potential of biodiesel production from crude Moringa oleifera oil. • Characterization of M. oleifera biodiesel and its blend with diesel fuel. • Evaluation of M. oleifera biodiesel blend in a diesel engine. - Abstract: Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. This study aims to evaluate the physico-chemical properties of Moringa oleifera biodiesel and its 10% and 20% by-volume blends (B10 and B20) in comparison with diesel fuel (B0). The performance and emission of M. oleifera biodiesel and its blends in a multi-cylinder diesel engine were determined at various speeds and full load conditions. The properties of M. oleifera biodiesel and its blends complied with ASTM D6751 standards. Over the entire range of speeds, B10 and B20 fuels reduced brake power and increased brake specific fuel consumption compared with B0. In engine emissions, B10 and B20 fuels reduced carbon monoxide emission by 10.60% and 22.93% as well as hydrocarbon emission by 9.21% and 23.68%, but slightly increased nitric oxide emission by 8.46% and 18.56%, respectively, compared with B0. Therefore, M. oleifera is a potential feedstock for biodiesel production, and its blends B10 and B20 can be used as diesel fuel substitutes

  10. Biodiesel from non-food alternative feed-stock

    Science.gov (United States)

    As a potential feedstock for biodiesel (BD) production, Jojoba oil was extracted from Jojoba (Simmondsia chinensis L.) plant seeds that contained around 50-60 wt.%, which were explored as non-food alternative feedstocks. Interestingly, Jojoba oil has long-chain wax esters and is not a typical trigly...

  11. Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation

    Directory of Open Access Journals (Sweden)

    Andreas Meyer-Aurich

    2016-06-01

    Full Text Available This paper analyses the comparative advantage of using silage maize or grass as feedstock for anaerobic digestion to biogas from a greenhouse gas (GHG mitigation point of view, taking into account site-specific yield potentials, management options, and land-use change effects. GHG emissions due to the production of biogas were calculated using a life-cycle assessment approach for three different site conditions with specific yield potentials and adjusted management options. While for the use of silage maize, GHG emissions per energy unit were the same for different yield potentials, and the emissions varied substantially for different grassland systems. Without land-use change effects, silage maize-based biogas had lower GHG emissions per energy unit compared to grass-based biogas. Taking land-use change into account, results in a comparative advantage of biogas production from grass-based feedstock produced on arable land compared to silage maize-based feedstock. However, under current frame conditions, it is quite unrealistic that grass production systems would be established on arable land at larger scale.

  12. Value Chain Structures that Define European Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Jay Sterling Gregg

    2017-01-01

    Full Text Available Production of cellulosic ethanol (CE has not yet reached the scale envisaged by the literature and industry. This study explores CE production in Europe to improve understanding of the motivations and barriers associated with this situation. To do this, we conduct a case study-based analysis of CE production plants across Europe from a global value chain (GVC perspective. We find that most CE production plants in the EU focus largely on intellectual property and are therefore only at the pilot or demonstration scale. Crescentino, the largest CE production facility in Europe, is also more interested in technology licensing than producing ethanol. Demonstration-scale plants tend to have a larger variety of feedstocks, whereas forestry-based plants have more diversity of outputs. As scale increases, the diversity of feedstocks and outputs diminishes, and firms struggle with feedstock provisioning, global petroleum markets and higher financial risks. We argue that, to increase CE production, policies should consider value chains, promote the wider bio-economy of products and focus on economies of scope. Whereas the EU and its member states have ethanol quotas and blending targets, a more effective policy would be to seek to reduce the risks involved in financing capital projects, secure feedstock provisioning and support a diversity of end products.

  13. Analysis of ethanol production potential from cellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J E

    1982-03-01

    This report provides a comprehensive and scientific overview of results emerging from research on ethanol producton from cellulosic materials and indicates those areas which appear to warrant additional support. Many published economic analyses of production costs are examined, but the emphasis of the report is on research and on its potential for reducing the cost of ethanol production. The author concludes that the uncertainty surrounding the cost of producing ethanol from cellulosic feedstocks via enzymatic hydrolysis will not be resolved until a pilot plant has been built of sufficient size to produce realistic engineering data. He gives five reasons why Canada should build such a pilot plant: Canada's apparent leadership in developing a steam pre-treatment process, the desirability of encouraging developments and building a cadre of experts in biotechnology, the absence of a pilot plant in Canada where the various organisms and biochemical processes involved in ethanol production and by-product utilization can be developed on a reasonably large scale, Canadian expertise in lignin chemistry which might be used to capitalize upon the reactive lignin residue, and research in progress at National Research Council and elsewhere on the conversion of C/sub 5/ sugars to ethanol. 37 refs., 2 figs., 4 tabs.

  14. Assessing the potential of fatty acids produced by filamentous fungi as feedstock for biodiesel production.

    Science.gov (United States)

    Rivaldi, Juan Daniel; Carvalho, Ana Karine F; da Conceição, Leyvison Rafael V; de Castro, Heizir F

    2017-11-26

    Increased costs and limited availability of traditional lipid sources for biodiesel production encourage researchers to find more sustainable feedstock at low prices. Microbial lipid stands out as feedstock replacement for vegetable oil to convert fatty acid esters. In this study, the potential of three isolates of filamentous fungi (Mucor circinelloides URM 4140, M. hiemalis URM 4144, and Penicillium citrinum URM 4126) has been assessed as single-cell oil (SCO) producers. M. circinelloides 4140 had the highest biomass concentration with lipid accumulation of up to 28 wt% at 120 hr of cultivation. The profile of fatty acids revealed a high content of saturated (SFA) and monounsaturated fatty acids (MUFA), including palmitic (C16:0, 33.2-44.1 wt%) and oleic (C18:1, 20.7-31.2 wt%) acids, with the absence of polyunsaturated fatty acids (PUFA) having more than four double bonds. Furthermore, the predicted properties of biodiesel generated from synthesized SCOs have been estimated by using empirical models which were in accordance with the limits imposed by the USA (ASTM D6715), European Union (EN 14214), and Brazilian (ANP 45/2014) standards. These results suggest that the assessed filamentous fungus strains can be considered as alternative feedstock sources for high-quality biofuel production.

  15. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products.

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-04-06

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops.

  16. Multi-scale process and supply chain modelling: from lignocellulosic feedstock to process and products

    Science.gov (United States)

    Hosseini, Seyed Ali; Shah, Nilay

    2011-01-01

    There is a large body of literature regarding the choice and optimization of different processes for converting feedstock to bioethanol and bio-commodities; moreover, there has been some reasonable technological development in bioconversion methods over the past decade. However, the eventual cost and other important metrics relating to sustainability of biofuel production will be determined not only by the performance of the conversion process, but also by the performance of the entire supply chain from feedstock production to consumption. Moreover, in order to ensure world-class biorefinery performance, both the network and the individual components must be designed appropriately, and allocation of resources over the resulting infrastructure must effectively be performed. The goal of this work is to describe the key challenges in bioenergy supply chain modelling and then to develop a framework and methodology to show how multi-scale modelling can pave the way to answer holistic supply chain questions, such as the prospects for second generation bioenergy crops. PMID:22482032

  17. Engineering cyanobacteria as photosynthetic feedstock factories.

    Science.gov (United States)

    Hays, Stephanie G; Ducat, Daniel C

    2015-03-01

    Carbohydrate feedstocks are at the root of bioindustrial production and are needed in greater quantities than ever due to increased prioritization of renewable fuels with reduced carbon footprints. Cyanobacteria possess a number of features that make them well suited as an alternative feedstock crop in comparison to traditional terrestrial plant species. Recent advances in genetic engineering, as well as promising preliminary investigations of cyanobacteria in a number of distinct production regimes have illustrated the potential of these aquatic phototrophs as biosynthetic chassis. Further improvements in strain productivities and design, along with enhanced understanding of photosynthetic metabolism in cyanobacteria may pave the way to translate cyanobacterial theoretical potential into realized application.

  18. Oil product blending optimization system; Sistema de otimizacao de misturas de derivados

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F.L.P.; Sousa, L.C.F.; Joly, M.; Takahashi, M.T.; Magalhaes, M.V.O.; Mendonca, P.N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The current scenario of the world refining industry demands significant investment in the improvement of its products and production processes quality, either due to a competitive market or strict environmental restrictions, requiring deep changes in the oil companies. In this environment, blending optimization has been receiving increasing attention in both academic and industrial sectors resulting in the development and improvement of tools for decision support and realtime control. The main objective of these tools is to optimize, according to either an economic or an operational criterion, the fuel blending recipe, guaranteeing the product specification with minimum giveaway in the critical properties and avoiding the reblending process. This work presents a blending optimization system of oil products named OTIMIST and instances of its application in PETROBRAS' Recap refinery. (author)

  19. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  20. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study

    International Nuclear Information System (INIS)

    McBeath, Anna V.; Smernik, Ronald J.; Krull, Evelyn S.; Lehmann, Johannes

    2014-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350 °C to 600 °C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from 1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value. -- Highlights: • Sensitive NMR techniques were used to gauge differences in biochar carbon chemistry. • Varying pyrolysis conditions influences biochars recalcitrant properties. • The MRT of contrasting biochars varies considerably from 1400 years

  1. Computer-aided Framework for Design of Pure, Mixed and Blended Products

    DEFF Research Database (Denmark)

    Cignitti, Stefano; Zhang, Lei; Gani, Rafiqul

    2015-01-01

    This paper presents a framework for computer-aided design of pure, mixed and blended chemical based products. The framework is a systematic approach to convert a Computer-aided Molecular, Mixture and Blend Design (CAMbD) formulation, based on needs and target properties, into a mixed integer non...

  2. Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends: Final Report; Report 1 in a Series of 6

    Energy Technology Data Exchange (ETDEWEB)

    Kinast, J. A.

    2003-03-01

    In a project sponsored by the National Renewable Energy Laboratory, the Institute of Gas Technology is conducting an investigation of biodiesels produced from vegetable and animal based feedstocks. This subcontract report presents their findings.

  3. Biodiesel production technologies: review

    Directory of Open Access Journals (Sweden)

    Shemelis Nigatu Gebremariam

    2017-05-01

    Full Text Available Biodiesel is a fuel with various benefits over the conventional diesel fuel. It is derived from renewable resources, it has less emission to environment, it is biodegradable so has very limited toxicity and above all its production can be decentralized so that it could have a potential in helping rural economies. However, there are also some worth mentioning challenges associated with production of biodiesel. Among them repeatedly mentioned are the cost of feedstock and the choice of convenient technology for efficient production of the fuel from diverse feedstock types. There are four main routes by which raw vegetable oil and/or animal fat can be made suitable for use as substituent fuel in diesel engines without modification. These are direct use or blending of oils, micro-emulsion, thermal cracking or pyrolysis and transesterification reaction. Due to the quality of the fuel produced, the transesterification method is the most preferred way to produce biodiesel from diverse feedstock types. Through this method, oils and fats (triglycerides are converted to their alkyl esters with reduced viscosity to near diesel fuel levels. There are different techniques to carry out transesterification reaction for biodiesel production. Each technique has its own advantages and disadvantages as well as its own specifically convenient feedstock character. There are also some very important reaction conditions to be given due attention in each of this techniques for efficient production of biodiesel, such as molar ratio of alcohol to oil, type and amount of catalyst, reaction temperature, reaction time, reaction medium, type and relative amount of solvents, among others. This review is meant to investigate the main transesterification techniques for biodiesel production in terms of their choice of feedstock character as well as their determinately required reaction conditions for efficient biodiesel production, so that to give an overview on their advantages

  4. Intermediate product selection and blending in the food processing industry

    DEFF Research Database (Denmark)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates...

  5. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    Science.gov (United States)

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.

  6. Intermediate product selection and blending in the food processing industry

    NARCIS (Netherlands)

    Kilic, Onur A.; Akkerman, Renzo; van Donk, Dirk Pieter; Grunow, Martin

    2013-01-01

    This study addresses a capacitated intermediate product selection and blending problem typical for two-stage production systems in the food processing industry. The problem involves the selection of a set of intermediates and end-product recipes characterising how those selected intermediates are

  7. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  8. Fresh water green microalga Scenedesmus abundans: A potential feedstock for high quality biodiesel production.

    Science.gov (United States)

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Ramteke, P W

    2014-03-01

    Present investigation studied the potential of fresh water green microalga Scenedesmus abundans as a feedstock for biodiesel production. To study the biomass and lipid yield, the culture was grown in BBM, Modified CHU-13 and BG-11 medium. Among the tested nitrogen concentration using Modified CHU-13 medium, the highest biomass and lipid yield of 1.113±0.05g/L and 489±23mg/L respectively was found in the culture medium with 0.32g/L of nitrogen (KNO3). Different lipid extraction as well as transesterification methods were also tested. Fatty acid profile of alga grown in large scale indigenous made photobioreactor has shown abundance of fatty acids with carbon chain length of C16 and C18. Various biodiesel properties such as cetane number, iodine value and saponification value were found to be in accordance with Brazilian National Petroleum Agency (ANP255) and European biodiesel standard EN14214 which makes S. abundans as a potential feedstock for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Regional Feedstock Partnership Summary Report: Enabling the Billion-Ton Vision

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance N. [South Dakota State Univ., Brookings, SD (United States). North Central Sun Grant Center; Karlen, Douglas L. [Dept. of Agriculture Agricultural Research Service, Ames, IA (United States). National Lab. for Agriculture and the Environment; Lacey, Jeffrey A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Process Science and Technology Division

    2016-07-12

    The U.S. Department of Energy (DOE) and the Sun Grant Initiative established the Regional Feedstock Partnership (referred to as the Partnership) to address information gaps associated with enabling the vision of a sustainable, reliable, billion-ton U.S. bioenergy industry by the year 2030 (i.e., the Billion-Ton Vision). Over the past 7 years (2008–2014), the Partnership has been successful at advancing the biomass feedstock production industry in the United States, with notable accomplishments. The Billion-Ton Study identifies the technical potential to expand domestic biomass production to offset up to 30% of U.S. petroleum consumption, while continuing to meet demands for food, feed, fiber, and export. This study verifies for the biofuels and chemical industries that a real and substantial resource base could justify the significant investment needed to develop robust conversion technologies and commercial-scale facilities. DOE and the Sun Grant Initiative established the Partnership to demonstrate and validate the underlying assumptions underpinning the Billion-Ton Vision to supply a sustainable and reliable source of lignocellulosic feedstock to a large-scale bioenergy industry. This report discusses the accomplishments of the Partnership, with references to accompanying scientific publications. These accomplishments include advances in sustainable feedstock production, feedstock yield, yield stability and stand persistence, energy crop commercialization readiness, information transfer, assessment of the economic impacts of achieving the Billion-Ton Vision, and the impact of feedstock species and environment conditions on feedstock quality characteristics.

  10. Feedstock characterization and recommended procedures

    International Nuclear Information System (INIS)

    Chum, H.L.; Milne, T.A.; Johnson, D.K.; Agblevor, F.A.

    1993-01-01

    Using biomass for non-conventional applications such as feedstocks for fuels, chemicals, new materials, and electric power production requires knowledge of biomass characteristics important to these processes, and characterization techniques that are more appropriate than those employed today for conventional applications of food, feed, and fiber. This paper reviews feedstock characterization and standardization methodologies, and identifies research and development needs. It reviews the international cooperation involved in determining biomass characteristics and standards that has culminated in preparing four biomass samples currently available from the National Institute of Standards and Technology (NIST)

  11. Performance and Emission Analysis of Rubber Seed, Palm, and Their Combined Blend in a Multi-Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Ibrahim Khalil Adam

    2018-06-01

    Full Text Available In consideration of its vast resources in Malaysia, the potential use of a nonedible biodiesel source from rubber seed oil (RSO is explored. However, a mixture with a high saturation content feedstock is required to increase its oxidation stability, which is caused by its 78.93% unsaturation content. Two blends of 20% and 50% v/v rubber seed biodiesel (RB or palm biodiesel (PB and varying percentage mixtures of these two feedstock oils biodiesel (RPB were evaluated on combustion performance in a 55 kW multi-cylinder diesel engine at full load conditions. The results showed that feedstock blending offered benefits in terms of fuel properties enhancement, improved engine performance, and reduced emissions. In comparison to RB, RPB showed higher brake power (BP of 1.18–2.97% and lower brake specific fuel consumption (BSFC of 0.85–3.69%, smoke opacity (11.89–14.19%, carbon monoxide (CO of 2.48–6.93%, hydrocarbon (HC of 2.36–9.34%, and Nitrogen oxide (NO emissions of 2.34–5.93%. The cylinder pressures and heat release rates (HRR of RPB blends were 8.47–11.43% and 36.02–46.61% higher than diesel, respectively. The start of combustion angles (SOC of RB and RPB blends were from −13 to −15 °C and from −13.2 to −15.6 crank angle degree (°CA before top dead center (BTDC, but the combustion delays were 6–8 °C and 5.4–7.8 °C shorter when compared to diesel fuel which were −10 °C BTDC and 11 °C, respectively. It can be concluded that RPB blends showed better performance and emissions over the individual rubber seed and palm biodiesel blends and can replace diesel fuel in unmodified engines.

  12. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Muñoz, Robinson; Navia, Rodrigo

    2010-06-01

    The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    Full Text Available Fossil fuel resources are being depleted day by day and its use affects the environment adversely. Renewable energy is one of the alternate for sustainable development and biodiesel is one of the suitable alternate which can replace the diesel. The major hurdles in the successful commercialization of biodiesel are high feedstock cost and conversion technology to reduce viscosity. The choice of raw material and biodiesel production method must depend upon techno-economical view. There are some specific regions for different types of oil availability. It is therefore required to produce biodiesel from the mixture of oils to fulfill the requirements of energy demand in a particular country according to its suitability and availability of feedstock. Karanja and Linseed crops  are abundantly available in India. Biodiesel was produced from a mixture of Karanja and Linseed oils by alkaline transesterification. In this experimental study, biodiesel blends of 10%, 20% and 30% were used with diesel in a diesel engine at a constant speed of 1500 rpm with varying brake powers (loads from 0.5 kW to 3.5kW to evaluate brake thermal efficiency, brake specific fuel consumption,  brake specific energy consumption, exhaust gas temperature, mechanical efficiency, volumetric efficiency, air fuel ratio and smoke opacity. They were compared with diesel and found satisfactory. BTE was found to be  28.76% for B10 at 3.5kW load.  Smoke opacity was also found to be reduced with all blends. Smoke opacity was found to be reduced up to 10.23% for B10 biodiesel blend as compared to that of diesel at 3.5kW. Experimental investigation  has revealed that  biodiesel produced from a mixture of Karanja and Linseed oils can be successfully used in diesel engines without any engine modification  and B10 was found to be an optimum biodiesel blend in terms of brake thermal efficiency. Article History: Received April 14th 2016; Received in revised form June 25th 2016; Accepted

  14. Sugar cane/sweet sorghum as an ethanol feedstock in Louisiana and Piedmont

    International Nuclear Information System (INIS)

    Marsh, L.S.; Cundiff, J.S.

    1991-01-01

    Cost to provide readily fermentable feedstock for a year round sweet sorghum-to-ethanol production facility, up to the point at which fermentation begins, was determined. It was assumed that sweet sorghum is produced on marginal crop lands in the Southeastern Piedmont, and is purchased, standing in the field by a central ethanol production facility. Feedstock cost varied from $1.96 to $2.98/gal of ethanol potential depending on harvest system and use of by-products. Major contributors to feedstock cost were field production, harvest/field processing, and cost to evaporate juice to a storable syrup. Cost to transport feedstock to a central production facility, and cost of storage were relatively minor components of total cost, contributing only $0.05 and $0.06/gal ethanol potential, respectively. For a point of comparison, cost of producing ethanol feedstock from sugar cane, based on current processing practices in Louisiana sugar mills, was determined to be $2.50/gal ethanol potential. This cost is higher than determined for most options in the Piedmont for two reasons: (1) sugar cane demands a higher price in Louisiana than was assumed for sweet sorghum in the Piedmont, and (2) little market exists in Louisiana for by-products of sugar milling, consequently, no by-product credit was assigned. Current market value of ethanol must approximately double before a sweet sorghum-to-ethanol industry in the Piedmont could be economically viable, as no opportunity was identified for a significant reduction in feedstock cost

  15. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production: Evaluating Best Management Practices for Biofuel Feedstock Production

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Miae [Argonne National Laboratory, Lemont IL 60439 USA; Wu, May [Argonne National Laboratory, Lemont IL 60439 USA

    2015-09-08

    Sound crop and land management strategies can maintain land productivity and improve the environmental sustainability of agricultural crop and feedstock production. This study evaluates the improvement of water sustainability through an integrated landscaping management strategy, where landscaping design, land management operations, crop systems, and agricultural best management practices (BMPs) play equal roles. The strategy was applied to the watershed of the South Fork Iowa River in Iowa, with a focus on implementing riparian buffers and converting low productivity land to provide cellulosic biomass while benefiting soil and water quality. The Soil and Water Assessment Tool (SWAT) was employed to simulate the impact of integrated landscape design on nutrients, suspended sediments, and flow on the watershed and subbasin scales. First, the study evaluated the representation of buffer strip as a vegetative barrier and as a riparian buffer using trapping efficiency and area ratio methods in SWAT. For the riparian buffer, the area ratio method tends to be more conservative, especially in nitrate loadings, while the trapping efficiency method generates more optimistic results. The differences between the two methods increase with buffer width. The two methods may not be comparable for the field-scale vegetative barrier simulation because of limitations in model spatial resolution. Landscape scenarios were developed to quantify water quality under (1) current land use, (2) partial land conversion to switchgrass, and (3) riparian buffer implementation. Results show that when low productivity land (15.2% of total watershed land area) is converted to grow switchgrass, suspended sediment, total nitrogen, total phosphorus, and nitrate loadings are reduced by 69.3%, 55.5%, 46.1%, and 13.4%, respectively, in the watershed surface streams. The reduction was less extensive when riparian buffer strips (30 m or 50 m) were applied to the stream network at 1.4% of total land area

  16. Challenges in bioethanol production: Utilization of cotton fabrics as a feedstock

    Directory of Open Access Journals (Sweden)

    Nikolić Svetlana

    2016-01-01

    Full Text Available Bioethanol, as a clean and renewable fuel with its major environmental benefits, represents a promising biofuel today which is mostly used in combination with gasoline. It can be produced from different kinds of renewable feedstocks. Whereas the first generation of processes (saccharide-based have been well documented and are largely applied, the second and third generation of bioethanol processes (cellulose- or algae-based need further research and development since bioethanol yields are still too low to be economically viable. In this study, the possibilities of bioethanol production from cotton fabrics as valuable cellulosic raw material were investigated and presented. Potential lignocellulosic biomass for bioethanol production and their characteristics, especially cotton-based materials, were analyzed. Available lignocellulosic biomass, the production of textile and clothing and potential for sustainable bioethanol production in Serbia is presented. The progress possibilities are discussed in the domain of different pretreatment methods, optimization of enzymatic hydrolysis and different ethanol fermentation process modes. [Projekat Ministarstva nauke Republike Srbije, br. 31017

  17. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  18. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. [Laboratory of Fuels and Lubricants Technology, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Street, Zografou Campus, 157 80 Athens (Greece)

    2009-01-15

    In recent years, the acceptance of fatty acid methyl esters (biodiesel) as a substitute to petroleum diesel has rapidly grown in Greece. The raw materials for biodiesel production in this country mainly include traditional seed oils (cotton seed oil, sunflower oil, soybean oil and rapeseed oil) and used frying oils. In the search for new low-cost alternative feedstocks for biodiesel production, this study emphasizes the evaluation of pumpkin seed oil. The experimental results showed that the oil content of pumpkin seeds was remarkably high (45%). The fatty acid profile of the oil showed that is composed primarily of linoleic, oleic, palmitic and stearic acids. The oil was chemically converted via an alkaline transesterification reaction with methanol to methyl esters, with a yield nearly 97.5 wt%. All of the measured properties of the produced biodiesel met the current quality requirements according to EN 14214. Although this study showed that pumpkin oil could be a promising feedstock for biodiesel production within the EU, it is rather difficult for this production to be achieved on a large scale. (author)

  19. High quality transportation fuels from renewable feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Lindfors, Lars Peter

    2010-09-15

    Hydrotreating of vegetable oils is novel process for producing high quality renewable diesel. Hydrotreated vegetable oils (HVO) are paraffinic hydrocarbons. They are free of aromatics, have high cetane numbers and reduce emissions. HVO can be used as component or as such. HVO processes can also be modified to produce jet fuel. GHG savings by HVO use are significant compared to fossil fuels. HVO is already in commercial production. Neste Oil is producing its NExBTL diesel in two plants. Production of renewable fuels will be limited by availability of sustainable feedstock. Therefore R and D efforts are made to expand feedstock base further.

  20. Water quality under increased biofuel production and future climate change and uncertainty

    Science.gov (United States)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  1. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  2. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  3. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  4. Simulation study of the production of biodiesel using feedstock mixtures of fatty acids in complex reactive distillation columns

    International Nuclear Information System (INIS)

    Cossio-Vargas, E.; Hernandez, S.; Segovia-Hernandez, J.G.; Cano-Rodriguez, M.I.

    2011-01-01

    Biodiesel can be produced from a number of natural, renewable sources, but vegetable oils are the main feedstocks. The current manufacturing biodiesel processes, however, have several disadvantages: expensive separation of products from the reaction mixture, and high costs due to relatively complex processes involving one to two reactors and several separation units. Therefore, to solve these problems, in recent years several researchers have developed a sustainable biodiesel production process based on reactive distillation. In this paper the production of biodiesel using feedstock mixtures of fatty acids is explored using reactive distillation sequences with thermal coupling. The results indicate that the complex reactive distillation sequences can produce a mixture of esters as bottoms product that can be used as biodiesel. In particular, the thermally coupled distillation sequence involving a side rectifier can handle the reaction and complete separation in accordance with process intensification principles. -- Highlights: ► Production of biodiesel using thermally coupled distillation sequences without reboilers. ► Esterification of fatty organic acids using reactive distillation. ► Carnot’s factor in reactive distillation.

  5. Assessing the comparative productivity advantage of bioenergy feedstocks at different latitudes

    International Nuclear Information System (INIS)

    Runge, Carlisle Ford; Sheehan, John J; Senauer, Benjamin; Foley, Jonathan; Gerber, James; Johnson, Justin Andrew; Polasky, Stephen; Runge, Carlisle Piehl

    2012-01-01

    We evaluate the comparative productivity of maize and sugarcane biofuel feedstocks as a function of latitude. Solar radiation for photosynthesis varies by latitude and contributes to differential productivity of tropical and temperate zones. We calculate comparative productivity in two ways—the amount of net sugar energy produced per unit area, and the amount produced per unit of net primary productivity (NPP). NPP measures the accumulation of energy in an ecosystem and can be used as a proxy for the capacity of an ecosystem to support biodiversity and a broader array of ecosystem services. On average sugarcane produces three times more energy per unit area than does maize. The comparative productivity advantage of sugarcane decreases with increases in latitude. Latitudes closer to the equator have higher NPP, so there is a greater trade-off between biofuel production and ecosystem productivity in the equatorial zones. The comparative productivity of sugarcane relative to maize is reduced when comparing biofuel energy per unit of NPP. Sugarcane is still twice as productive on average compared to maize in the amount of biofuel energy produced per unit of NPP. Regions near the equator have lower biofuel energy per unit NPP, making them less attractive for biofuels production. (letter)

  6. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    Science.gov (United States)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  7. Farco Mining makes productivity gains using emulsion-Anfo blends

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. [Nelson Brothers, Inc., Parrish, AL (United States)

    1995-02-01

    Describes the use of a 40:60 emulsion: Auto blend for overburden removal at Farco Minings surface coal mine near Laredo, Texas. The use of this explosives mixture maximized the explosive per foot of blasthole, increasing overburden removal to 925,000 buy per month and improving mine productivity. Increases in powder factors produced further increases in cast yardage and mine production. 2 figs.

  8. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Techno-Economic Analysis of Biofuels Production Based on Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, R. M.; Platon, A.; Satrio, J. A.; Brown, R. C.; Hsu, D. D.

    2010-11-01

    This study compares capital and production costs of two biomass-to-liquid production plants based on gasification. The first biorefinery scenario is an oxygen-fed, low-temperature (870?C), non-slagging, fluidized bed gasifier. The second scenario is an oxygen-fed, high-temperature (1,300?C), slagging, entrained flow gasifier. Both are followed by catalytic Fischer-Tropsch synthesis and hydroprocessing to naphtha-range (gasoline blend stock) and distillate-range (diesel blend stock) liquid fractions. Process modeling software (Aspen Plus) is utilized to organize the mass and energy streams and cost estimation software is used to generate equipment costs. Economic analysis is performed to estimate the capital investment and operating costs. Results show that the total capital investment required for nth plant scenarios is $610 million and $500 million for high-temperature and low-temperature scenarios, respectively. Product value (PV) for the high-temperature and low-temperature scenarios is estimated to be $4.30 and $4.80 per gallon of gasoline equivalent (GGE), respectively, based on a feedstock cost of $75 per dry short ton. Sensitivity analysis is also performed on process and economic parameters. This analysis shows that total capital investment and feedstock cost are among the most influential parameters affecting the PV.

  10. Decanter cake as a feedstock for biodiesel production: A first report

    International Nuclear Information System (INIS)

    Maniam, Gaanty Pragas; Hindryawati, Noor; Nurfitri, Irma; Jose, Rajan; Ab. Rahim, Mohd Hasbi; Dahalan, Farrah Aini; Yusoff, Mashitah M.

    2013-01-01

    Highlights: • Decanter cake as a potential waste feedstock for biodiesel production. • Ultrasound-aided transesterification achieving nearly 86% conversion in 1 h. • Boiler ash, a waste product, was successfully used as a catalyst. - Abstract: Decanter cake (DC), with an oil content of 11.5 ± 0.18 wt.%, was subjected to ultrasound-aided transesterification using boiler ash as a base catalyst, petroleum ether and hexane as co-solvents. Optimization work revealed that at MeOH:oil mass ratio of 6:1 and 2.3 wt.% catalyst (based on DC weight) with 1:2 co-solvents:DC mass ratio as the optimal reaction conditions. Both decanter cake and boiler ash, waste materials from oil palm mill, were successfully utilized to produce methyl ester (biodiesel) with highest conversion of 85.9 wt.% in a 1 h reaction period at 55 °C

  11. Processing of low-quality bauxite feedstock by thermochemistry-Bayer method

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-11-01

    Full Text Available The modern production of aluminum which by its global output ranks first among the non-ferrous metals includes three main stages: ore extraction, its processing into alumina and, finally, the production of primary aluminum. Alumina production from bauxites,  being the  primary raw material in the  alumina industry,  is based  on two main methods: the Bayer method and the sintering method developed in Russia under the lead of an academician Nikolay Semenovich Kurnakov. Alumina production by the Bayer’s method is more cost effective,  but  has  higher  requirements to the  quality of the bauxite feedstock.  A great deal  of research has  been carried  out on low quality bauxites focusing firstly on finding ways to enrich the feedstock, secondly on improving the combined sequential Bayer-sintering method and thirdly on developing new hydrometallurgical ways for bauxites processing. Mechanical methods of bauxite enrichment have not yet brought any positive outcome, and a development of new hydrometallurgical high alkaline  autoclave process  faced  significant hardware  difficulties not addressed so far. For efficient processing of such low quality bauxite feedstock it is suggested to use a universal thermochemistry-Bayer method, which was developed in St. Petersburg Mining University under  the lead  of  Nikolay Ivanovich Eremin, allows to process different substandard bauxite feedstock and has a competitive costing as compared to the sintering method and combined methods. The main stages of thermochemistry-Bayer method are thermal activation of feedstock, its further desiliconization with the alkaline solution and leaching of the resultant bauxite product  under Bayer’s method. Despite high energy consumption at  the baking stage,  it  allows to condition the  low quality bauxite feedstock by neutralizing a variety of technologically harmful impurities such as organic matter, sulfide sulfur, carbonates, and at the

  12. Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mohammad, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kenney, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Searcy, E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hansen, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  13. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    Science.gov (United States)

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  14. Process for purifying lignocellulosic feedstocks

    Science.gov (United States)

    Gray, Matthew; Matthes, Megan; Nelson, Thomas; Held, Andrew

    2018-01-09

    The present invention includes methods for removing mineral acids, mineral salts and contaminants, such as metal impurities, ash, terpenoids, stilbenes, flavonoids, proteins, and other inorganic products, from a lignocellulosic feedstock stream containing organic acids, carbohydrates, starches, polysaccharides, disaccharides, monosaccharides, sugars, sugar alcohols, phenols, cresols, and other oxygenated hydrocarbons, in a manner that maintains a portion of the organic acids and other oxygenated hydrocarbons in the product stream.

  15. Using a mass balance to determine the potency loss during the production of a pharmaceutical blend.

    Science.gov (United States)

    Mackaplow, Michael B

    2010-09-01

    The manufacture of a blend containing the active pharmaceutical ingredient (API) and inert excipients is a precursor for the production of most pharmaceutical capsules and tablets. However, if there is a net water gain or preferential loss of API during production, the potency of the final drug product may be less than the target value. We use a mass balance to predict the mean potency loss during the production of a blend via wet granulation and fluidized bed drying. The result is an explicit analytical equation for the change in blend potency a function of net water gain, solids losses (both regular and high-potency), and the fraction of excipients added extragranularly. This model predicts that each 1% gain in moisture content (as determined by a loss on drying test) will decrease the API concentration of the final blend at least 1% LC. The effect of pre-blend solid losses increases with their degree of superpotency. This work supports Quality by Design by providing a rational method to set the process design space to minimize blend potency losses. When an overage is necessary, the model can help justify it by providing a quantitative, first-principles understanding of the sources of potency loss. The analysis is applicable to other manufacturing processes where the primary sources of potency loss are net water gain and/or mass losses.

  16. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.

    Science.gov (United States)

    Chang, Chen-Wei; Webb, Colin

    2017-03-01

    Lignocellulosic materials, mostly from agricultural and forestry residues, provide a potential renewable resource for sustainable biorefineries. Reducing sugars can be produced only after a pre-treatment stage, which normally involves chemicals but can be biological. In this case, two steps are usually necessary: solid-state cultivation of fungi for deconstruction, followed by enzymatic hydrolysis using cellulolytic enzymes. In this research, the utilisation of solid-state bioprocessing using the fungus Trichoderma longibrachiatum was implemented as a simultaneous microbial pretreatment and in-situ enzyme production method for fungal autolysis and further enzyme hydrolysis of fermented solids. Suspending the fermented solids in water at 50°C led to the highest hydrolysis yields of 226mg/g reducing sugar and 7.7mg/g free amino nitrogen (FAN). The resultant feedstock was shown to be suitable for the production of various products including ethanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  18. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  19. Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock

    Directory of Open Access Journals (Sweden)

    L. D. Zhu

    2016-01-01

    Full Text Available In response to the energy crisis, global warming, and climate changes, microalgae have received a great deal of attention as a biofuel feedstock. Due to a high lipid content in microalgal cells, microalgae present as a promising alternative source for the production of biodiesel. Environmental and culturing condition variations can alter lipid production as well as chemical compositions of microalgae. Therefore, application of the strategies to activate lipid accumulation opens the door for lipid overproduction in microalgae. Until now, many original studies regarding the approaches for enhanced microalgal lipid production have been reported in an effort to push forward the production of microalgal biodiesel. However, the current literature demonstrates fragmented information available regarding the strategies for lipid production improvement. From the systematic point of view, the review highlights the main approaches for microalgal lipid accumulation induction to expedite the application of microalgal biodiesel as an alternative to fossil diesel for sustainable environment. Of the several strategies discussed, the one that is most commonly applied is the design of nutrient (e.g., nitrogen, phosphorus, and sulfur starvation or limitation. Other viable approaches such as light intensity, temperature, carbon dioxide, salinity stress, and metal influence can also achieve enhanced microalgal lipid production.

  20. Optimized Co-Processing of Algae Bio-Crude through a Petroleum Refinery

    Energy Technology Data Exchange (ETDEWEB)

    Saydah, Ben [Sapphire Energy, Inc., San Diego, CA (United States); Behnke, Craig [Sapphire Energy, Inc., San Diego, CA (United States)

    2014-03-14

    A middle distillate algal oil blend and red diesel algal oil blend from Sapphire Energy, Inc. were hydrotreated and distilled. The middle distillate feedstock blend was 8.0 wt.% biocrude and 92.0 wt.% middle distillate. The red diesel feedstock blend was 12.6 wt.% biocrude and 87.4 wt.% red diesel. During steady state, 151.4 kilograms of hydrotreated middle distillate/algal oil blend product was collected. During steady state, 312.6 kilograms of red diesel/algal oil blend hydrotreated product was collected. From the liquid product of the hydrotreated middle distillate/algal oil blend, 9.75 wt.% of the jet fuel cut is estimated to be from the algal oil. From the liquid product of the hydrotreated red diesel/algal oil blend, 11.3 wt.% of the diesel cut is estimated to be from the algal oil. The jet fuel cut of the middle distillate algal oil blend hydrotreated liquid product was analyzed using ASTM D1655, Standard Specification for Aviation Turbine Fuels. The diesel cut of the red diesel algal oil blend hydrotreated liquid product was analyzed using ASTM D975, Standard Specification for Diesel Fuel Oils.

  1. A bioenergy feedstock/vegetable double-cropping system

    Science.gov (United States)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  2. Perspectives for the production of bioethanol from lignocellulosic materials

    International Nuclear Information System (INIS)

    Petrova, Petia; Ivanova, Viara

    2010-01-01

    The most common renewable fuel today and suitable alternative to replace fossil fuels is ethanol that can be blended with petrol or used as neat alcohol in engines. Ethanol is currently produced from sugar (Brazil) or grain (starch, USA). However, this raw material base will not be sufficient because the increasing demand for fuel ethanol and the lower than expected reduction of greenhouse gases. An alternative is the production of bioethanol from agroindustrial wastes containing abundant cellulose fibers and carbohydrates such as grape pomace, sugar beet pomace, barley and rice straw, corncobs, sunflower stalks and heads, cotton waste, brewer's spent grain, forest residues etc. Lignocellulosic raw materials and agroindustrial wastes minimize the potential conflict between land use for food (and feed) production and energy feedstock production. This review summarizes recent developments in the bioconversion processes, the new technologies required and the advances achieved in recent years to bring agricultural feedstock and lignocellulosic ethanol towards industrial production.

  3. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.

    Science.gov (United States)

    Imdadul, H K; Zulkifli, N W M; Masjuki, H H; Kalam, M A; Kamruzzaman, M; Rashed, M M; Rashedul, H K; Alwi, Azham

    2017-01-01

    Exploring new renewable energy sources as a substitute of petroleum reserves is necessary due to fulfilling the oncoming energy needs for industry and transportation systems. In this quest, a lot of research is going on to expose different kinds of new biodiesel sources. The non-edible oil from candlenut possesses the potential as a feedstock for biodiesel production. The present study aims to produce biodiesel from crude candlenut oil by using two-step transesterification process, and 10%, 20%, and 30% of biodiesel were mixed with diesel fuel as test blends for engine testing. Fourier transform infrared (FTIR) and gas chromatography (GC) were performed and analyzed to characterize the biodiesel. Also, the fuel properties of biodiesel and its blends were measured and compared with the specified standards. The thermal stability of the fuel blends was measured by thermogravimetric analysis (TGA) and differential scan calorimetry (DSC) analysis. Engine characteristics were measured in a Yanmar TF120M single cylinder direct injection (DI) diesel engine. Biodiesel produced from candlenut oil contained 15% free fatty acid (FFA), and two-step esterification and transesterification were used. FTIR and GC remarked the biodiesels' existing functional groups and fatty acid methyl ester (FAME) composition. The thermal analysis of the biodiesel blends certified about the blends' stability regarding thermal degradation, melting and crystallization temperature, oxidative temperature, and storage stability. The brake power (BP), brake specific fuel consumption (BSFC), and brake thermal efficiency (BTE) of the biodiesel blends decreased slightly with an increasing pattern of nitric oxide (NO) emission. However, the hydrocarbon (HC) and carbon monoxides (CO) of biodiesel blends were found decreased.

  4. Bioenergy Feedstock Development Program Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.

    2001-02-09

    The U.S. Department of Energy's (DOE's) Bioenergy Feedstock Development Program (BFDP) at Oak Ridge National Laboratory (ORNL) is a mission-oriented program of research and analysis whose goal is to develop and demonstrate cropping systems for producing large quantities of low-cost, high-quality biomass feedstocks for use as liquid biofuels, biomass electric power, and/or bioproducts. The program specifically supports the missions and goals of DOE's Office of Fuels Development and DOE's Office of Power Technologies. ORNL has provided technical leadership and field management for the BFDP since DOE began energy crop research in 1978. The major components of the BFDP include energy crop selection and breeding; crop management research; environmental assessment and monitoring; crop production and supply logistics operational research; integrated resource analysis and assessment; and communications and outreach. Research into feedstock supply logistics has recently been added and will become an integral component of the program.

  5. Agave: a biofuel feedstock for arid and semi-arid environments

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  6. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production

    International Nuclear Information System (INIS)

    Moser, Bryan R.; Vaughn, Steven F.

    2012-01-01

    Fuel properties are largely dependent on the fatty acid (FA) composition of the feedstock from which biodiesel is prepared. Consequently, FA profile was employed as a screening tool for selection of feedstocks high in monounsaturated FAs for further evaluation as biodiesel. Those feedstocks included ailanthus (Ailanthus altissima L.), anise (Pimpinella anisum L.), arugula (Eruca vesicaria L.), cress (Lepidium sativum L.), cumin (Cuminum cyminum L.), Indian cress (Tropaeolum majus L.), shepherd’s purse (Capsella bursa-pastoris L.) and upland cress (Barbarea verna (Mill.) Asch.). Other selection criteria included saturated FA content, iodine value (IV), content of FAs containing twenty or more carbons and content of trienoic FAs. Anise oil satisfied all selection criteria and was therefore selected for further investigation. Arugula, cumin and upland cress oils were selected as antagonists to the selection criteria. Preparation of FA methyl esters (FAMEs, ≥ 92 wt % yield) following conventional alkaline-catalyzed methanolysis preceded fuel property determination. Of particular interest were oxidative stability and cold flow properties. Also measured were kinematic viscosity (40 °C), IV, acid value, free and total glycerol content, sulfur and phosphorous content, cetane number, energy content and lubricity. FAMEs prepared from anise oil yielded properties compliant with biodiesel standards ASTM D6751 and EN 14214 whereas the antagonists failed at least one specification contained within the standards. As a result, FA profile was an efficient predictor of compliance with biodiesel standards and is therefore recommended as a screening tool for investigation of alternative feedstocks. -- Highlights: ► Fatty acid methyl esters were prepared from several alternative feedstocks. ► Fatty acid composition was a principal factor influencing fuel properties. ► Oxidative stability and cold flow properties of biodiesel were examined in detail. ► Limits were developed

  7. Performance and emission characteristics of an agricultural diesel engine fueled with blends of Sal methyl esters and diesel

    International Nuclear Information System (INIS)

    Pali, Harveer S.; Kumar, N.; Alhassan, Y.

    2015-01-01

    Highlights: • Sal seed oil is unexplored biodiesel feedstock which is abundantly found in India. • Sal seed oil has good oxidation stability. • Performance and emission characteristics of the blends of Sal methyl esters with diesel evaluated. • At higher loads, CO, HC and smoke emissions of SME blends were lower than diesel. - Abstract: The present work deals with an underutilized vegetable oil; Sal seed oil (Shorea robusta) as a feedstock for biodiesel production. The production potential of Sal seed oil is very promising (1.5 million tons in a year) in India. The pressure filtered Sal seed oil was transesterified into Sal Methyl Ester (SME). The kinematic viscosity (5.89 cSt), density (0.8764 g/cc) and calorific value (39.65 MJ/kg) of the SME were well within the ASTM/EN standard limits. Various test fuels were prepared for the engine trials by blending 10%, 20%, 30% and 40% of SME in diesel on volumetric basis and designated as SME10, SME20, SME30 and SME40 respectively. The BTE, in general, was found to be decreased with increased volume fraction of SME in the blends. At full load, BSEC for SME10, SME20, SME30 and SME40 were 13.6 MJ/kW h, 14.3 MJ/kW h, 14.7 MJ/kW h and 14.8 MJ/kW h respectively as compared to 13.9 MJ/kW h in case of diesel. At higher load conditions, CO, UHC and smoke emissions were found lower for all SME blends in comparison to neat diesel due to oxygenated nature of fuel. SME10, SME20, SME30 and SME40 showed 51 ppm, 44 ppm, 46 ppm and 48 ppm of UHC emissions respectively as compared to 60 ppm of diesel. The NOx emissions were found to be increased for SME based fuel in comparison to neat diesel operation. At peak load condition, SME10, SME20, SME30 and SME40 had NOx emissions of 612 ppm, 644 ppm, 689 ppm and 816 ppm as compared to 499 ppm for diesel. It may be concluded from the experimental investigations that Sal seed biodiesel is a potential alternative to diesel fuel for reducing dependence on crude petroleum derived fuels and

  8. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  9. Pectin-rich biomass as feedstock for fuel ethanol production.

    Science.gov (United States)

    Edwards, Meredith C; Doran-Peterson, Joy

    2012-08-01

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes.

  10. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  11. Contributions to advances in blend pellet products (BPP) research on molecular structure and molecular nutrition interaction by advanced synchrotron and globar molecular (Micro)spectroscopy.

    Science.gov (United States)

    Guevara-Oquendo, Víctor H; Zhang, Huihua; Yu, Peiqiang

    2018-04-13

    To date, advanced synchrotron-based and globar-sourced techniques are almost unknown to food and feed scientists. There has been little application of these advanced techniques to study blend pellet products at a molecular level. This article aims to provide recent research on advanced synchrotron and globar vibrational molecular spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction. How processing induced molecular structure changes in relation to nutrient availability and utilization of the blend pellet products. The study reviews Utilization of co-product components for blend pellet product in North America; Utilization and benefits of inclusion of pulse screenings; Utilization of additives in blend pellet products; Application of pellet processing in blend pellet products; Conventional evaluation techniques and methods for blend pellet products. The study focus on recent applications of cutting-edge vibrational molecular spectroscopy for molecular structure and molecular structure association with nutrient utilization in blend pellet products. The information described in this article gives better insight on how advanced molecular (micro)spectroscopy contributions to advances in blend pellet products research on molecular structure and molecular nutrition interaction.

  12. Tank 21 and Tank 24 Blend and Feed Study: Blending Times, Settling Times, and Transfers

    International Nuclear Information System (INIS)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-01-01

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 (micro)m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion ( 60 days) settling times in Tank 21.

  13. Comparative environmental performance of lignocellulosic ethanol from different feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, Sara; Moreira, M. Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2010-09-15

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic raw materials is considered the most potential next generation automotive fuel. In this paper, a Life Cycle Assessment model was developed to evaluate the environmental implications of the production of ethanol from five lignocellulosic materials: alfalfa stems, poplar, Ethiopian mustard, flax shives and hemp hurds and its use in passenger cars. Two ethanol-based fuel applications, E10 (a mixture of 10% ethanol and 90% gasoline by volume) and E85 (85% ethanol and 15% gasoline by volume) were assessed and the results were compared to those of conventional gasoline (CG) in an equivalent car. The environmental performance was assessed in terms of fossil fuels requirements, global warming, photochemical oxidant formation, acidification and eutrophication by means of the Life Cycle Assessment (LCA) methodology in order to identify the best environmental friendly lignocellulosic source. The results show that, compared to CG, life cycle greenhouse gases emissions are lower for etanol blends, specifically up to 145% lower for E85-fueled car derived from Ethiopian mustard. This crop is also the best option in terms of eutrophying emissions regardless the ratio of ethanol in the blend. In the remaining impact categories, other feedstocks are considered beneficial, that is, poplar in the case of photochemical oxidants formation and flax shives for acidification. Concerning fossil fuels requirements, decreases up to 10% and 63% for E10 and E85 derived from hemp hurds and Ethiopian mustard, respectively, were obtained. According to the results, the study clearly demonstrates the importance of using low intensive energy and high biomass yield crops. LCA procedure helps to identify the key areas in the ethanol production life cycle where the researchers and technicians need to work

  14. Biobutanol as a Potential Sustainable Biofuel - Assessment of Lignocellulosic and Waste-based Feedstocks

    Directory of Open Access Journals (Sweden)

    Johanna Niemisto

    2013-06-01

    Full Text Available This paper introduces the production process of an alternative transportation biofuel, biobutanol. European legislation concerning biofuels and their sustainability criteria are also briefly described. The need to develop methods to ensure more sustainable and efficient biofuel production processes is recommended. In addition, the assessment method to evaluate the sustainability of biofuels is considered and sustainability assessment of selected feedstocks for biobutanol production is performed. The benefits and potential of using lignocellulosic and waste materials as feedstocks in the biobutanol production process are also discussed. Sustainability assessment in this paper includes cultivation, harvest/collection and upstream processing (pretreatment of feedstocks, comparing four main biomass sources: food crops, non-food crops, food industry by-product and wood-based biomass. It can be concluded that the highest sustainable potential in Finland is when biobutanol production is integrated into pulp & paper mills.

  15. Liquid Soap Production with Blends Of Rubber Seed Oil (RSO) And ...

    African Journals Online (AJOL)

    The production of liquid detergent using locally sourced palm fruit bunch (Elaeis Guineesis) waste saponier has been investigated. An optimum blend ratio of rubber seed oil to palm kernel oil RSO:PKO 20:80 being constituent elements used for the production of the soap; was obtained using the Duncan Multiple Range ...

  16. Financial return from traditional wood products, feedstock, and carbon sequestration in loblolly pine plantations in the Southern U.S

    Science.gov (United States)

    Umesh K. Chaudhan; Michael B. Kane

    2015-01-01

    We know that planting trees is a key approach for mitigating climate change; however, we are uncertain of what planting density per unit of land and what cultural regimes are needed to optimize traditional timber products, feedstock, and carbon sequestration.

  17. Articulating feedstock delivery device

    Science.gov (United States)

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  18. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  19. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production.

    Science.gov (United States)

    Miazek, Krystian; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2017-04-01

    This work evaluates the possibility of using beech wood (Fagus sylvatica) dilute-acid (H 2 SO 4 ) hydrolysate as a feedstock for Chlorella sorokiniana growth, fatty acid and pigment production. Neutralized wood acid hydrolysate, containing organic and mineral compounds, was tested on Chlorella growth at different concentrations and compared to growth under phototrophic conditions. Chlorella growth was improved at lower loadings and inhibited at higher loadings. Based on these results, a 12% neutralized wood acid hydrolysate (Hyd12%) loading was selected to investigate its impact on Chlorella growth, fatty acid and pigment production. Hyd12% improved microalgal biomass, fatty acid and pigment productivities both in light and in dark, when compared to photoautotrophic control. Light intensity had substantial influence on fatty acid and pigment composition in Chlorella culture during Hyd12%-based growth. Moreover, heterotrophic Chlorella cultivation with Hyd12% also showed that wood hydrolysate can constitute an attractive feedstock for microalgae cultivation in case of lack of light. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pyrolysis as a way to close a CFRC life cycle: Carbon fibers recovery and their use as feedstock for a new composite production

    Science.gov (United States)

    Giorgini, Loris; Benelli, Tiziana; Mazzocchetti, Laura; Leonardi, Chiara; Zattini, Giorgio; Minak, Giangiacomo; Dolcini, Enrico; Tosi, Cristian; Montanari, Ivan

    2014-05-01

    Pyrolysis is shown to be an efficient method for recycling carbon fiber composites in the form of both uncured prepregs scraps or as cured end-of-life objects. The pyrolytic process leads to different products in three physical states of matter. The gaseous fraction, called syngas, can be used as energy feedstock in the process itself. The oil fraction can be used as fuel or chemical feedstock. The solid residue contains substantially unharmed carbon fibers that can be isolated and recovered for the production of new composite materials, thus closing the life cycle of the composite in a "cradle to cradle" approach. All the pyrolysis outputs were thoroughly analyzed and characterized in terms of composition for oil and gas fraction and surface characteristics of the fibers. In particular, it is of paramount importance to correlate the aspect and properties of the fibers obtained with different composite feedstock and operational conditions, that can be significantly different, with the reinforcing performance in the newly produced Recycled Carbon Fibers Reinforced Polymers. Present results have been obtained on a pyrolysis pilot plant that offers the possibility of treating up to 70kg of materials, thus leading to a significant amount of products to be tested in the further composites production, focused mainly on chopped carbon fiber reinforcement.

  1. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  2. Macroalgae as a Biomass Feedstock: A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roesijadi, Guritno; Jones, Susanne B.; Snowden-Swan, Lesley J.; Zhu, Yunhua

    2010-09-26

    A thorough of macroalgae analysis as a biofuels feedstock is warranted due to the size of this biomass resource and the need to consider all potential sources of feedstock to meet current biomass production goals. Understanding how to harness this untapped biomass resource will require additional research and development. A detailed assessment of environmental resources, cultivation and harvesting technology, conversion to fuels, connectivity with existing energy supply chains, and the associated economic and life cycle analyses will facilitate evaluation of this potentially important biomass resource.

  3. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  4. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    OpenAIRE

    Qiao Hu; Sen-Xiang Zhang; Zhong-Hua Yang; Hao Huang; Rong Zeng

    2014-01-01

    The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accum...

  5. Production of silk sericin/silk fibroin blend nanofibers

    Directory of Open Access Journals (Sweden)

    Zhang Xianhua

    2011-01-01

    Full Text Available Abstract Silk sericin (SS/silk fibroin (SF blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75 blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50 blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100 blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.

  6. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  7. Bridging the gap between feedstock growers and users: the study of a coppice poplar-based biorefinery.

    Science.gov (United States)

    Dou, Chang; Gustafson, Rick; Bura, Renata

    2018-01-01

    In the biofuel industry, land productivity is important to feedstock growers and conversion process product yield is important to the biorefinery. The crop productivity, however, may not positively correlate with bioconversion yield. Therefore, it is important to evaluate sugar yield and biomass productivity. In this study, 2-year-old poplar trees harvested in the first coppice cycle, including one low-productivity hybrid and one high-productivity hybrid, were collected from two poplar tree farms. Through steam pretreatment and enzymatic hydrolysis, the bioconversion yields of low- and high-productivity poplar hybrids were compared for both sites. The low-productivity hybrids had 9-19% higher sugar yields than the high-productivity hybrids, although they have the similar chemical composition. Economic calculations show the impact on the plantation and biorefinery of using the two feedstocks. Growing a high-productivity hybrid means the land owner would use 11-26% less land (which could be used for other crops) or collect $2.53-$3.46 MM/year extra revenue from the surplus feedstock. On the other side, the biorefinery would receive 5-10% additional revenue using the low-productivity hybrid. We propose a business model based on the integration of the plantation and the biorefinery. In this model, different feedstocks are assessed using a metric of product tonnage per unit land per year. Use of this new economic metric bridges the gap between feedstock growers and users to maximize the overall production efficiency.

  8. Preliminary life-cycle assessment of biomass-derived refinery feedstocks for reducing CO2 emissions

    International Nuclear Information System (INIS)

    Marano, J.J.; Rogers, S.; Spath, P.L.; Mann, M.K.

    1995-01-01

    The US by ratification of the United Nations Framework Convention on Climate Change has pledged to emit no higher levels of greenhouse gases in the year 2000 than it did in 1990. Biomass-derived products have been touted as a possible solution to the potential problem of global warming. However, past studies related to the production of liquid fuels, chemicals, gaseous products, or electricity from biomass, have only considered the economics of producing these commodities. The environmental benefits have not been fully quantified and factored into these estimates until recently. Evaluating the environmental impact of various biomass systems has begun using life-cycle assessment. A refinery Linear Programming model previously developed has been modified to examine the effects of CO 2 -capping on the US refining industry and the transportation sector as a whole. By incorporating the results of a CO 2 emissions inventory into the model, the economic impact of emissions reduction strategies can be estimated. Thus, the degree to which global warming can be solved by supplementing fossil fuels with biomass-derived products can be measured, allowing research and development to be concentrated on the most environmentally and economically attractive technology mix. Biomass gasification to produce four different refinery feedstocks was considered in this analysis. These biomass-derived products include power, fuel gas, hydrogen for refinery processing, and Fischer-Tropsch liquids for upgrading and blending into finished transportation fuels

  9. Novel Biocatalytic Platform for Ethanol Production from Lignocellulosic Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chyi-Shin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tachea, Firehiwot [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffman, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gregg, Allison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rolison-Welch, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shirazi, Fatemeh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); He, Qian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sun, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-23

    The goals of the CRADA were achieved by illustrating the scalability of immobilized yeast technology, demonstrating lignocellulosic feedstock consumption by the immobilized cells, and confirming Microvi’s proprietary polymer matrix ethanol toxicity tolerance. We conducted fermentations at 2L and 300L scales. For carbon source, we performed pretreatment and saccharification at 100L scale to produce lignocellulosic sugars with glucose and xylose.

  10. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    d'Espaux, Leo; Ghosh, Amit; Runguphan, Weerawat

    2017-01-01

    to similar to 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7 g/L in shake flasks......Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2......% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four...

  11. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon.

    Science.gov (United States)

    Oldfield, Thomas L; Sikirica, Nataša; Mondini, Claudio; López, Guadalupe; Kuikman, Peter J; Holden, Nicholas M

    2018-07-15

    This work assessed the potential environmental impact of recycling organic materials in agriculture via pyrolysis (biochar) and composting (compost), as well its combination (biochar-compost blend) versus business-as-usual represented by mineral fertiliser. Life cycle assessment methodology was applied using data sourced from experiments (FP7 project Fertiplus) in three countries (Spain, Italy and Belgium), and considering three environmental impact categories, (i) global warming; (ii) acidification and (iii) eutrophication. The novelty of this analysis is the inclusion of the biochar-compost blend with a focus on multiple European countries, and the inclusion of the acidification and eutrophication impact categories. Biochar, compost and biochar-compost blend all resulted in lower environmental impacts than mineral fertiliser from a systems perspective. Regional differences were found between biochar, compost and biochar-compost blend. The biochar-compost blend offered benefits related to available nutrients and sequestered C. It also produced yields of similar magnitude to mineral fertiliser, which makes its acceptance by farmers more likely whilst reducing environmental impacts. However, careful consideration of feedstock is required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Techno-economic study of different alternatives for biodiesel production

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Miguel, V.U.; Errazu, A.F.

    2008-01-01

    Biodiesel has become an attractive diesel fuel substitute due to its environmental benefits since it can be made from renewable resource. However, the high costs surrounding biodiesel production remains the main problem in making it competitive in the fuel market either as a blend or as a neat fuel. More than 80% of the production cost is associated with the feedstock itself and consequently, efforts are focused on developing technologies capable of using lower-cost feedstocks, such as recycled cooking oils and wastes from animal or vegetable oil processing operations. The main issue with spent oils is the high level of free fatty acids found in the recycled materials. The conventional technology employs sodium methoxide as a homogeneous base catalyst for the transesterification reaction and illustrates the drawbacks in working with feedstocks that contain high levels of free fatty acids. On the other hand, homogeneous acidic catalysts are being used for exactly such feedstocks. Both acid and basic homogeneous catalyzed processes require downstream purification equipment to neutralize the catalyst and to purify the biodiesel as well as the glycerol. Recent studies have been conducted to employ heterogeneous catalysts, such acidic or basic solid resins, or immobilized lipases. These catalysts will allow the use of different feedstocks that will permit operation at lower investment costs and will require less downstream process equipment. A conceptual design of these alternative production plants has been done with a techno-economic analysis in order to compare these alternatives. A process simulator was employed to carry out the conceptual design and simulation of each technology. Using these models it was possible to analyze different scenarios and to evaluate productivity, raw material consumption, economic competitiveness, and environmental impacts of each process. (author)

  13. Small Landowner Production of Pellets from Green, Beetle-Killed, and Burned Lodgepole Pine

    Directory of Open Access Journals (Sweden)

    Xuexian Qin

    2018-03-01

    Full Text Available To meet the growing need for raw materials to produce pellets and wood-based biofuels, trees killed by natural disturbances have increasingly been considered as potential feedstock in bioenergy development scenarios in the Western U.S. and Canada. While much research has focused on utilization of beetle-killed and fire-salvaged timber from federal lands in this region, small private landowners make up a large portion of land holdings in the Rocky Mountain Region and may also provide an important potential supply of uniform feedstock pellets in decentralized energy supply systems in the future. In this paper, we evaluated the quality of pellets produced from green, beetle-killed, and burned lodgepole pine with and without bark using a chipper, hammer mill, and pellet mill intended for use by small landowners. Results show that green, beetle-killed, and fire-salvaged lodgepole pine produced by small landowners, including material with bark, are suitable as feedstock for pellet production. Further, pellet quality can be varied through the blending of source lodgepole pine products when needed to meet pellet quality standards.

  14. Production of biodiesel from melia azedarach seed oil: a non- edible feedstock for biodiesel

    International Nuclear Information System (INIS)

    Akhtar, T.; Tariq, M.I.; Ranaa, S.I.

    2011-01-01

    Biodiesel (BD) is a first-generation biofuel that has emerged as a renewable alternative diesel fuel, obtained by the transesterification of vegetable oils and animals fats, using a short-chain alcohol and a catalyst that may be an acid, a base or an enzyme. BD can be used in the existing compression-ignition engines without any further modification. Presently, most of the BD production is being carried out using edible vegetable oil which has put a strain on the food supply and, hence, has led it into a competition with the food industry. It has also resulted in a rise in the prices of such feed stocks. Hence, search for the newer and non-edible feed stocks is becoming increasingly important. The objective of the present work is to explore the utility of Melia azedarach seed oil, a non-edible feedstock, for the preparation of BD. The oil was extracted by using n-hexane as a solvent and a oil content of 32% was obtained. As a result of transesterification using sodium hydroxide and methanol, 80% conversion of the oil into BD was obtained. Fatty acid profile of the oil and the BD were found to be almost the same. Different fuel properties of the BD prepared were studied including viscosity, iodine number, acid number, cold point and cetane number, and the values obtained are 4.7, 112, 0.45 mg KOH/g, < -10 deg. C and 45, respectively. Although the oxidation stability is less than the required standard value by EN 14214, but it can be enhanced by introducing some additives into the final product. Other properties were found to be in agreement with the required specifications for BD by EN 14214, hence Melia azedarach seed oil is a suitable non-edible feedstock for the production of BD. (author)

  15. Oilseed rape as feedstock for biodiesel production in relation to the environment and human health

    Directory of Open Access Journals (Sweden)

    Marek Angelovič

    2013-05-01

    Full Text Available Oilseed rape is one of the most important crops in cultivation process. A current developmental trend in non-food rapeseed production on agricultural land shows that this new course is irreversible and is a great opportunity for agriculture. Non-food rapeseed production is focused on the production of biodiesel. Biodiesel has good environmental properties. Lower emissions are produced by the combustion of biodiesel than for diesel. In content of exhaust gas is observed a significant decrease of polycyclic aromatic hydrocarbons, particulate matter and etc. The analysis of the literary knowledge on impacts of biodiesel on exhaust emissions, on regulated emissions, shows a reduction of 10.1% for particulate matter, of 21.1% for hydrocarbons, and 11.0% for carbon monoxide with the use of B20. Nitrogen oxides (NOx increased by 2.0%. Biodiesel was introduced into the European market in the 1988s as B100. The use of blends with content up to 5% biodiesel has no significant impact on the emissions and their toxicity. An increased mutagenicity was observed with blends containing 20%. Nevertheless, increased mutagenic effects were observed under specific conditions. Accordingly, the problem concerning blends of diesel fuel with biodiesel (B20 should be investigated with high priority. No comprehensive risk assessment for diesel engine emissions from biodiesel and its blends is possible In regard to a comprehensive hazard characterization it is urged to develop a panel of standardized and internationally accepted protocols which allow a reliable assessment of possible health hazards which may arise from the combustion of new fuels compared to conventional diesel fuel. These methods should be robust and should reflect the various health hazards associated with diesel engine emissions to supplement data on regulated emissions. Methods for the generation of the exhaust and sample preparation should be harmonized. There is sufficient evidence supporting a

  16. Thermal conversion of biomass to valuable fuels, chemical feedstocks and chemicals

    Science.gov (United States)

    Peters, William A [Lexington, MA; Howard, Jack B [Winchester, MA; Modestino, Anthony J [Hanson, MA; Vogel, Fredreric [Villigen PSI, CH; Steffin, Carsten R [Herne, DE

    2009-02-24

    A continuous process for the conversion of biomass to form a chemical feedstock is described. The biomass and an exogenous metal oxide, preferably calcium oxide, or metal oxide precursor are continuously fed into a reaction chamber that is operated at a temperature of at least 1400.degree. C. to form reaction products including metal carbide. The metal oxide or metal oxide precursor is capable of forming a hydrolizable metal carbide. The reaction products are quenched to a temperature of 800.degree. C. or less. The resulting metal carbide is separated from the reaction products or, alternatively, when quenched with water, hydolyzed to provide a recoverable hydrocarbon gas feedstock.

  17. Developing a sustainable bioprocessing strategy based on a generic feedstock.

    Science.gov (United States)

    Webb, C; Koutinas, Wang R; Wang, R

    2004-01-01

    Based on current average yields of wheat per hectare and the saccharide content of wheat grain, it is feasible to produce wheat-based alternatives to many petrochemicals. However, the requirements in terms of wheat utilization would be equivalent to 82% of current production if intermediates and primary building blocks such as ethylene, propylene, and butadiene were to be produced in addition to conventional bioproducts. If only intermediates and bioproducts were produced this requirement would fall to just 11%, while bioproducts alone would require only 7%. These requirements would be easily met if the global wheat yield per hectare of cultivated land was increased from the current average of 2.7 to 5.5 tonnes ha(-1) (well below the current maximum). Preliminary economic evaluation taking into account only raw material costs demonstrated that the use of wheat as a generic feedstock could be advantageous in the case of bioproducts and specific intermediate petrochemicals. Gluten plays a significant role considering the revenue occurring when it is sold as a by-product. A process leading to the production of a generic fermentation feedstock from wheat has been devised and evaluated in terms of efficiency and economics. This feedstock aims at providing a replacement for conventional fermentation media and petrochemical feedstocks. The process can be divided into four major stages--wheat milling; fermentation of whole wheat flour by A. awamori leading to the production of enzymes and fungal cells; glucose enhancement via enzymatic hydrolysis of flour suspensions; and nitrogen/micronutrient enhancement via fungal cell autolysis. Preliminary costings show that the operating cost of the process depends on plant capacity, cereal market price, presence and market value of added-value by-products, labour costs, and mode of processing (batch or continuous).

  18. Investigation of potential of agro-industrial residues for ethanol production by using Candida tropicalis and Zymomonas mobilis

    Science.gov (United States)

    Patle, Sonali

    India is becoming more susceptible regarding energy security with increasing world prices of crude oil and increasing dependence on imports. Based on experiments by the Indian Institute of Petroleum, a 10% ethanol blend with gasoline is being considered for use in vehicles in at least one state and it will be mandatory for all oil companies to blend petrol with 10% ethanol from October 2008. In view of the above, the Government has already started supply of 5% ethanol blended petrol from 2003 in nine states and four contiguous Union Territories. Currently, fuel ethanol is produced mainly from molasses, corn, wheat and sugar beets. The production cost of ethanol from these agro-feedstocks is more than twice the price of gasoline. The high feedstock cost poses a major obstacle to large scale implementation of ethanol as a transportation fuel. Molasses could be in short supply due to the implementation of 10% blending norm. A reduction in import duty for industrial alcohol from7.5% to 5% has been suggested. The use of lignocellulosic energy crops, and particularly low cost biomass residues, offers excellent perspectives for application of ethanol in transportation fuels (Ridder, 2000). These materials will increase the ethanol production capacity and reduce the production cost to a competitive level. There is a huge demand (500 million litres) of ethanol to meet the 5% blending in India. With the present infrastructure, only 90 million litres of ethanol was produced till November 2006 and could reach up to 140 million litres (around) till October 2007. Bioethanol from these materials provides a highly cost effective option for CO2 emission reduction in the transportation sector. The aim of the present investigation was to evaluate the potential of biomass as feedstock for ethanol production. The dedicated energy crops would require thorough support as well as planning efforts such as assessing resources, availability and utilization. Furthermore, applied research is

  19. Why did the price of solar PV Si feedstock fluctuate so wildly in 2004–2009?

    International Nuclear Information System (INIS)

    Yu Yang; Song Yuhua; Bao Haibo

    2012-01-01

    Great attention has been paid to the origin of observed wild price fluctuations of solar PV Si feedstock in both contract and spot markets during 2004–2009. This paper sheds light on this issue and tries to resolve it by addressing the following questions: what kind of structural shock is underlying the price fluctuations of PV Si feedstock? How can we quantify the magnitude, timing and relative importance of these shocks? What are their dynamic effects on the real price of PV Si feedstock? By carefully studying development conditions, the structural decomposition of the real price of PV Si feedstock is proposed: exchange rate shocks, production cost shocks, aggregate demand shocks and demand shocks specific to feedstock markets. With a Structural Vector Autoregression model, the paper quantifies and verifies the impact of structural shocks on PV Si feedstock real price changes. Based on national data, an analysis is further taken to confirm the essential role of demand shocks specific to feedstock markets in determining sharper price fluctuations during 2004–2009. The results of this study have important implications for national solar PV development, which can be better promoted and administrated if structural shocks in feedstock markets can be carefully evaluated and understood. - Highlights: ► The determination of solar PV Si feedstock price fluctuation is identified and quantified. ► Systematic structural shocks well explain 2004–2009 price fluctuations of PV Si feedstock. ► Production cost and aggregated demand shocks take longer effects on feedstock price. ► Exchange rate and feedstock specific demand shocks explain sharper price fluctuations. ► Development of national PV power should consider effects of structure shocks.

  20. Grain sorghum is a viable feedstock for ethanol production.

    Science.gov (United States)

    Wang, D; Bean, S; McLaren, J; Seib, P; Madl, R; Tuinstra, M; Shi, Y; Lenz, M; Wu, X; Zhao, R

    2008-05-01

    Sorghum is a major cereal crop in the USA. However, sorghum has been underutilized as a renewable feedstock for bioenergy. The goal of this research was to improve the bioconversion efficiency for biofuels and biobased products from processed sorghum. The main focus was to understand the relationship among "genetics-structure-function-conversion" and the key factors impacting ethanol production, as well as to develop an energy life cycle analysis model (ELCAM) to quantify and prioritize the saving potential from factors identified in this research. Genetic lines with extremely high and low ethanol fermentation efficiency and some specific attributes that may be manipulated to improve the bioconversion rate of sorghum were identified. In general, ethanol yield increased as starch content increased. However, no linear relationship between starch content and fermentation efficiency was found. Key factors affecting the ethanol fermentation efficiency of sorghum include protein digestibility, level of extractable proteins, protein and starch interaction, mash viscosity, amount of phenolic compounds, ratio of amylose to amylopectin, and formation of amylose-lipid complexes in the mash. A platform ELCAM with a base case showed a positive net energy value (NEV) = 25,500 Btu/gal EtOH. ELCAM cases were used to identify factors that most impact sorghum use. For example, a yield increase of 40 bu/ac resulted in NEV increasing from 7 million to 12 million Btu/ac. An 8% increase in starch provided an incremental 1.2 million Btu/ac.

  1. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  2. Oxidation and low temperature properties of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Brajendra K. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States); Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Suarez, Paulo A.Z. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States); LMC-IQ, Universidade de Brasilia, CP 4478, CEP 70919-970, Brasilia-DF (Brazil); Perez, Joseph M. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Erhan, Sevim Z. [Food and Industrial Oil Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, 1815N. University St., Peoria, IL 61604 (United States)

    2009-10-15

    Diesel-like fuels were synthesized by a pyrolysis method using soybean oil (pyrodiesel, PD) and soybean soapstock (SPD), respectively, as starting material. These pyrodiesel samples were compared with soy biodiesel (BD) samples. All these three biofuels (PD, SPD and BD) and their blends with high sulfur (HSD) and low sulfur (LSD) diesel fuels were evaluated by measuring a number of fuel properties, such as oxidative stability, low-temperature performance, acid value and corrosion properties. Compared to BD blends, PD and SPD and their blends were found to have better oxidative stability, though inferior acid values. SPD and its blends have better flow performance at low-temperature compared to BD and PD blends. All the biofuels and their blends met the copper corrosion requirement prescribed by US and European standard. Based on the results reported here, pyrodiesels from these two-different feedstocks have potential and will require some upgrading or change in pyrolysis conditions, if they are to be used as fuel blending component. (author)

  3. Biomass Feedstocks | Bioenergy | NREL

    Science.gov (United States)

    Feedstocks Biomass Feedstocks Our mission is to enable the coordinated development of biomass generic biomass thermochemical conversion process (over a screened-back map of the United States) showing U.S. Biomass Resources, represented by photos of timber, corn stover, switchgrass, and poplar. All

  4. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  5. The H-Oil Process : Preferred configurations for application to western Canadian feedstocks

    International Nuclear Information System (INIS)

    Colyar, J.J.; Peer, E.D.

    1997-01-01

    The technical and economic evaluation of a method used to convert and upgrade petroleum residua and heavy oils into lighter products was described. The feasibility of applying the process to typical western Canadian oil sand feedstocks was evaluated. The H-Oil process, developed by HRI Inc., is an ebullated-bed catalytic hydrocracking process that accounts for more than 50 per cent of the worldwide vacuum residue hydroprocessing market. It has a unique flexibility to handle many different types of heavy crudes while producing clean transportation fuels. The unconverted vacuum residue from the process can be used for fuel oil production, blended into asphalt, or routed to a resid catalytic cracker or coker. The residue can also be directly combusted or gasified to produce hydrogen. Four different technologies that have been used commercially in Canada to upgrade western Canadian heavy oil residue have been reviewed and evaluated from a technical and economic viewpoint. The following improvements in the H-oil process have resulted in greater economy and product quality: (1) development of a new generation of high activity catalysts, (2) development of an improved recycle cup, and (3) new outlets for unconverted residue. It was suggested that the H-Oil process produces more revenue than the delayed coker process. As coke becomes harder to dispose of, the H-Oil process will become more attractive for producing synthetic crude from heavy oil. 6 refs., 9 tabs., 9 figs

  6. Application of response surface methodology for studying the product characteristics of extruded rice-cowpea-groundnut blends.

    Science.gov (United States)

    Asare, Emmanuel Kwasi; Sefa-Dedeh, Samuel; Sakyi-Dawson, Esther; Afoakwa, Emmanuel Ohene

    2004-08-01

    Response surface methodology (with central composite rotatable design for k=3) was used to investigate the product properties of extruded rice-cowpea-groundnut blends in a single screw extruder. The combined effect of cowpea (0-20%), groundnut (0-10%), and feed moisture (14-48%) levels were used for formulation of the products. The product moisture, expansion ratio, bulk density and total colour change were studied using standard analytical methods. Well-expanded rice-legume blend extrudates of less bulk density and lower moisture content were produced at low feed moisture. Increasing legume addition affected the various shades of colour in the product. Models developed for the indices gave R(2) values ranging from 52.8% (for the b-value) to 86.5% (for bulk density). The models developed suggested that the optimal process variables for the production of a puffed snack with an enhanced nutrition and spongy structure from a rice-cowpea-groundnut blend are low feed moisture of 14-20% and maximum additions of 20% cowpea and 10% groundnut. A lack-of-fit test showed no significance, indicating that the models adequately fitted the data.

  7. Kurdistan crude oils as feedstock for production of aromatics

    Directory of Open Access Journals (Sweden)

    Abdulsalam R. Karim

    2017-05-01

    Full Text Available Crude oils from various locations in Iraqi Kurdistan were fully evaluated, so that enables refiners to improve their operation by selecting the best crude oil that yields high naphtha content to be used as a catalytic reforming feedstock after determination of total sulfur content and then de sulfurizing them, then cyclizing or reforming these sweet naphtha cuts to produce aromatic fractions which can be split into benzene, toluene, and xylenes.

  8. Jet A and low sulphur diesel production and blending experience in a synthetic crude-rich environment

    International Nuclear Information System (INIS)

    1997-01-01

    The Sunoco Sarnia Refinery has produced large volumes of high quality Jet A and Low Sulphur Diesel without major capital investment. They have done this by blending the synergy between hydrocracked and synthetic-based distillate stocks. The Sunoco Sarnia Refinery has two crude units, a Catalytic Cracker, a Hydrocracker and a Hydrogen unit, two reformers, Alkylation and BTX units. It also has the usual facilities such as gas plants, gasoline treater, and a naphtha pre-treater for former feed and an amine sulphur unit. Refinery distillate products, crudes used, components used for blending the distillate products, cost of the facilities and average production of each product were reviewed. A schematic of the Sarnia Refinery Distillate Production Facility was provided. 1 tab., 1 fig

  9. 27 CFR 24.213 - Heavy bodied blending wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Heavy bodied blending wine..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.213 Heavy bodied blending wine. Heavy bodied blending wine is wine made for blending purposes from grapes or other fruit without...

  10. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  11. Physicochemical characterization and thermal behavior of biodiesel and biodiesel–diesel blends derived from crude Moringa peregrina seed oil

    International Nuclear Information System (INIS)

    Salaheldeen, Mohammed; Aroua, M.K.; Mariod, A.A.; Cheng, Sit Foon; Abdelrahman, Malik A.; Atabani, A.E.

    2015-01-01

    Highlights: • Properties of M. peregrina biodiesel are determined for the first time. • Biodiesel was produced easily by alkaline transesterification in one step. • The effect of diesel on the properties of biodiesel was examined. • M. peregrina is a potential crop for sustainable production of biodiesel. - Abstract: Moringaceae is a monogeneric family with a single genus i.e. Moringa. This family includes 13 species. All these species are known as medicinal, nutritional and water purification agents. This study reports, for the first time, on characterization of the biodiesel derived from crude Moringaperegrina seed oil and its blends with diesel. The crude oil was converted to biodiesel by the transesterification reaction, catalyzed by potassium hydroxide. High ester content (97.79%) was obtained. M. peregrina biodiesel exhibited high oxidative stability (24.48 h). Moreover, the major fuel properties of M. peregrina biodiesel conformed to the ASTM D6751 standards. However, kinematic viscosity (4.6758 mm 2 /s), density (876.2 kg/m 3 ) and flash point (156.5 °C) were found higher than that of diesel fuel. In addition, the calorific value of M. peregrina biodiesel (40.119 MJ/kg) was lower than the diesel fuel. The fuel properties of M. peregrina biodiesel were enhanced significantly by blending with diesel fuel. In conclusion, M. peregrina is a suitable feedstock for sustainable production of biodiesel only blended up to 20% with diesel fuel, considering the edibility of all other parts of this tree

  12. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research, Durham, NC (United States); Meng, Jiajia [Southern Research, Durham, NC (United States); McCabe, Kevin [Southern Research, Durham, NC (United States); Larson, Eric [Princeton Univ., NJ (United States). Princeton Environmental Inst.; Mastro, Kelly [Southern Research, Durham, NC (United States)

    2016-04-25

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fast pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.

  13. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  14. Syngas. The flexible solution in a volatile feed-stock market

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Air Liquide Global E und C Solutions c/o Lurgi GmbH, Frankfurt a.M. (Germany)

    2013-11-01

    The paper presents the versatility of syngas allowing the extended application of new feedstock sources such as shale gas or coal to deliver fuels and chemicals traditionally derived from crude oil. In order to provide a holistic view on this topic of current interest, the syngas market, the pre-dominant production technologies and main economic consideration for selected applications are presented and analyzed. It can be concluded that a broad portfolio of well-mastered and referenced syngas production technologies which are continuously improved to meet actual market requirements (e.g. ability to valorize biomass) will remain key to enable economic solutions in a world characterized by growing dynamics with regards to the supply of (carbonaceous) feedstock. (orig.)

  15. Synthesis of fuels and feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri; Moore, Cameron; Staples, Orion

    2017-10-10

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  16. Evaluation of attached periphytical algal communities for biofuel feedstock generation

    Energy Technology Data Exchange (ETDEWEB)

    Sandefur, H.N.; Matlock, M.D.; Costello, T.A. [Arkansas Univ., Division of Agriculture, Fayetteville, AR (United States). Dept. of Biological and Agricultural Engineering, Center for Agricultural and Rural Sustainability

    2010-07-01

    This paper reported on a study that investigated the feasibility of using algal biomass as a feedstock for biofuel production. Algae has a high lipid content, and with its high rate of production, it can produce more oil on less land than traditional bioenergy crops. In addition, algal communities can remove nutrients from wastewater. Enclosed photobioreactors and open pond systems are among the many different algal growth systems that can be highly productive. However, they can also be difficult to maintain. The objective of this study was to demonstrate the ability of a pilot scale algal turf scrubber (ATS) to facilitate the growth of attached periphytic algal communities for the production of biomass feedstock and the removal of nutrients from a local stream in Springdale, Arizona. The ATS operated for a 9 month sampling period, during which time the system productivity averaged 26 g per m{sup 2} per day. The removal of total phosphorus and total nitrogen averaged 48 and 13 per cent, respectively.

  17. Biomass Feedstock National User Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Bioenergy research at the Biomass Feedstock National User Facility (BFNUF) is focused on creating commodity-scale feed-stocks from native biomass that meet the needs...

  18. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  19. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  20. Feeding a sustainable chemical industry: do we have the bioproducts cart before the feedstocks horse?

    Science.gov (United States)

    Dale, Bruce E

    2017-09-21

    A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.

  1. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    International Nuclear Information System (INIS)

    Deverell, R.; McDonnell, K.; Devlin, G.

    2009-01-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  2. TANK 21 AND TANK 24 BLEND AND FEED STUDY: BLENDING TIMES, SETTLING TIMES, AND TRANSFERS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.; Leishear, R.; Poirier, M.

    2012-05-31

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where salt solutions of up to 1.2 million gallons will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. In particular, Tanks 21 and 24 are planned to be used for blending and transferring to the SDI feed tank. These tanks were evaluated here to determine blending times, to determine a range of settling times for disturbed sludge, and to determine that the SWPF Waste Acceptance Criteria that less than 1200 mg/liter of solids will be entrained in salt solutions during transfers from the Tank 21 and Tank 24 will be met. Overall conclusions for Tank 21 and Tank 24 operations include: (1) Experimental correction factors were applied to CFD (computational fluid dynamics) models to establish blending times between approximately two and five hours. As shown in Phase 2 research, blending times may be as much as ten times greater, or more, if lighter fluids are added to heavier fluids (i.e., water added to salt solution). As the densities of two salt solutions converge this effect may be minimized, but additional confirmatory research was not performed. (2) At the current sludge levels and the presently planned operating heights of the transfer pumps, solids entrainment will be less than 1200 mg/liter, assuming a conservative, slow settling sludge simulant. (3) Based on theoretical calculations, particles in the density range of 2.5 to 5.0 g/mL must be greater than 2-4 {micro}m in diameter to ensure they settle adequately in 30-60 days to meet the SWPF feed criterion (<1200 mg/l). (4) Experimental tests with sludge batch 6 simulant and field turbidity data from a recent Tank 21 mixing evolution suggest the solid

  3. Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: Impact on carbonyl compound emissions

    International Nuclear Information System (INIS)

    Fontaras, Georgios; Karavalakis, Georgios; Kousoulidou, Marina; Ntziachristos, Leonidas; Bakeas, Evangelos; Stournas, Stamoulis; Samaras, Zissis

    2010-01-01

    Today in most European member states diesel contains up to 5% vol biodiesel. Since blending is expected to increase to 10% vol, the question arises, how this higher mixing ratio will affect tailpipe emissions particularly those linked to adverse health effects. This paper focuses on the impact of biodiesel on carbonyl compound emissions, attempting also to identify possible relationship between biodiesel feedstock and emissions. The blends were produced from five different feedstocks, commonly used in Europe. Measurements were conducted on a Euro 3 common-rail passenger car over various driving cycles. Results indicate that generally the use of biodiesel at low concentrations has a minor effect on carbonyl compound emissions. However, certain biodiesels resulted in significant increases while others led to decreases. Biodiesels associated with increases were those derived from rapeseed oil (approx. 200%) and palm oil (approx. 180%), with the highest average increases observed at formaldehyde and acroleine/acetone. - Biodiesel application, may increase the levels of certain pollutants such as carbonyl compounds which are associated with both environmental and health risks.

  4. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  5. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    Science.gov (United States)

    Lam, Wan Chi; Han, Wei; Lau, Kin Yan; Lei, Ho Man; Lo, Kin Yu; Ng, Wai Yee; Melikoglu, Mehmet

    2014-01-01

    In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB) production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w) were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1) use of crude enzyme extracts from Aspergillus awamori, (2) Aspergillus awamori solid mashes, and (3) commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN) concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate. PMID:25136626

  6. Fermentative Polyhydroxybutyrate Production from a Novel Feedstock Derived from Bakery Waste

    Directory of Open Access Journals (Sweden)

    Daniel Pleissner

    2014-01-01

    Full Text Available In this study, Halomonas boliviensis was cultivated on bakery waste hydrolysate and seawater in batch and fed-batch cultures for polyhydroxybutyrate (PHB production. Results demonstrated that bakery waste hydrolysate and seawater could be efficiently utilized by Halomonas boliviensis while PHB contents between 10 and 30% (w/w were obtained. Furthermore, three methods for bakery waste hydrolysis were investigated for feedstock preparation. These include: (1 use of crude enzyme extracts from Aspergillus awamori, (2 Aspergillus awamori solid mashes, and (3 commercial glucoamylase. In the first method, the resultant free amino nitrogen (FAN concentration in hydrolysates was 150 and 250 mg L−1 after 20 hours at enzyme-to-solid ratios of 6.9 and 13.1 U g−1, respectively. In both cases, the final glucose concentration was around 130–150 g L−1. In the second method, the resultant FAN and glucose concentrations were 250 mg L−1 and 150 g L−1, respectively. In the third method, highest glucose and lowest FAN concentrations of 170–200 g L−1 and 100 mg L−1, respectively, were obtained in hydrolysates after only 5 hours. The present work has generated promising information contributing to the sustainable production of bioplastic using bakery waste hydrolysate.

  7. Feedstock to Tailpipe Initiative: Kansas Biofuels Production, Testing and Certification Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stagg-Williams, Susan M. [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Depcik, Chris [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering; Sturm, Belinda [Univ. of Kansas, Lawrence, KS (United States). Dept. of Chemical and Petroleum Engineering

    2013-12-31

    The primary task of this grant was to establish an ASTM testing facility for biodiesel and ethanol and to use this facility to develop methods to predict fuel characteristics based on feedstock composition and feedstock cultivation. In addition to characterizing fuel properties, this grant allowed for the purchase and installation of a Fourier Transform Infrared Spectroscopy (FTIR) emissions analyzer that will provide an analysis of the emissions leaving the engine in order to meet EPA regulations. This FTIR system is combined with an Alternating Current (AC) dynamometer that allows the engine to follow Environmental Protection Agency (EPA) Federal Test Procedure (FTP) cycles. A secondary task was to investigate cultivating algae utilizing wastewater and top-down ecological control and subsequent harvesting using coagulation and dissolved air flotation. Lipid extraction utilizing environmentally-friendly and cost-effective solvents, with and without cell-disruption pretreatment was also explored. Significant work on the hydrothermal liquefaction of wastewater cultivated algae was conducted.

  8. Microplate-Based Evaluation of the Sugar Yield from Giant Reed, Giant Miscanthus and Switchgrass after Mild Chemical Pre-Treatments and Hydrolysis with Tailored Trichoderma Enzymatic Blends.

    Science.gov (United States)

    Cianchetta, Stefano; Bregoli, Luca; Galletti, Stefania

    2017-11-01

    Giant reed, miscanthus, and switchgrass are considered prominent lignocellulosic feedstocks to obtain fermentable sugars for biofuel production. The bioconversion into sugars requires a delignifying pre-treatment step followed by hydrolysis with cellulase and other accessory enzymes like xylanase, especially in the case of alkali pre-treatments, which retain the hemicellulose fraction. Blends richer in accessory enzymes than commercial mix can be obtained growing fungi on feedstock-based substrates, thus ten selected Trichoderma isolates, including the hypercellulolytic strain Trichoderma reesei Rut-C30, were grown on giant reed, miscanthus, or switchgrass-based substrates. The produced enzymes were used to saccharify the corresponding feedstocks, compared to a commercial enzymatic mix (6 FPU/g). Feedstocks were acid (H 2 SO 4 0.2-2%, w/v) or alkali (NaOH 0.02-0.2%, w/v) pre-treated. A microplate-based approach was chosen for most of the experimental steps due to the large number of samples. The highest bioconversion was generally obtained with Trichoderma harzianum Or4/99 enzymes (78, 89, and 94% final sugar yields at 48 h for giant reed, miscanthus, and switchgrass, respectively), with significant increases compared to the commercial mix, especially with alkaline pre-treatments. The differences in bioconversion yields were only partially caused by xylanases (maximum R 2  = 0.5), indicating a role for other accessory enzymes.

  9. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors.

    Science.gov (United States)

    Khan, Muhammad Imran; Lee, Moon Geon; Seo, Hyo Jin; Shin, Jin Hyuk; Shin, Tai Sun; Yoon, Yang Ho; Kim, Min Yong; Choi, Jong Il; Kim, Jong Deog

    2016-01-01

    Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media) and additional ingredients such as aminolevulinic acid (2 mM), lysine (2.28 mM), alanine (1 mM), and Naphthalene acetic acid (1 mM) as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm(-2)s(-1) intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL) as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL). The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL) was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production.

  10. Proceedings. Feedstock preparation and quality 1997 workshop

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Jan Erik [ed.

    1998-06-01

    The IEA Bioenergy Feedstock Preparation and Quality 1997 Workshop dealt with fuel feedstock quality improvement and methods to determine feedstock properties. It was arranged by the Swedish Univ. of Agricultural Sciences on behalf of the IEA Bioenergy Task XII Activity 4.1 Feedstock Preparation and Quality. This Activity is a 3-year cooperation 1995-1997 between Denmark, Sweden and the USA, mainly based on information exchange. The workshop had two sections: presentations by invited experts, and country reports on recent development in feedstock preparation and quality in the three participating countries. Separate abstracts have been prepared for four of the six papers presented

  11. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  12. Potential of feedstock and catalysts from waste in biodiesel preparation: A review

    International Nuclear Information System (INIS)

    Nurfitri, Irma; Maniam, Gaanty Pragas; Hindryawati, Noor; Yusoff, Mashitah M.; Ganesan, Shangeetha

    2013-01-01

    Highlights: • Oils/lipids from waste sources are the suitable candidates for transesterification. • Catalyst derived from waste materials proven its role in transesterification. • The use of materials from waste should be intensify for sustainability. - Abstract: For many years, the cost of production has been the main barrier in commercializing biodiesel, globally. It has been well researched and established in the literature that the cost of feedstock is the major contributor. Biodiesel producers are forced to choose between edible and non-edible feedstock. The use of edible feedstock sparks concern in terms of food security while the inedible feedstock needs additional pretreatment steps. On the other hand, the wide availability of edible feedstock guarantees the supply while the choice of non-edible results in a non-continuous or non-ready supply. With these complications in mind, this review attempts to identify possible solutions by exploring the potential of waste edible oils and waste catalysts in biodiesel preparation. Since edible oils are available and used abundantly, waste or used edible oils have the potential to provide plentiful feedstock for biodiesel. In addition, since traditional homogeneous catalysts are less competent in transesterifying waste/used oils, this review includes the possibility of heterogeneous catalysts from waste sources that are able to aid the transesterification reaction with success

  13. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  14. Impact of Technology and Feedstock Choice on the Environmental Footprint of Biofuels

    Science.gov (United States)

    Schultz, P. B.; Dodder, R. S.

    2012-12-01

    The implementation of the U.S. Renewable Fuel Standard program (RFS2) has led to a dramatic shift in the use of biofuel in the U.S. transportation system over the last decade. To satisfy this demand, the production of U.S. corn-based ethanol has grown rapidly, with an average increase of over 25% annually from 2002 to 2010. RFS2 requires a similarly steep increase in the production of advanced biofuels, such as cellulosic ethanol. Unlike corn-based ethanol, which is derived from the biochemical fermentation of sugars in wet and dry mills, it is likely that a more diverse suite of technologies will need to be developed to be able to meet the advanced biofuel RFS2 targets, including biochemical as well as thermochemical (e.g., gasification and pyrolysis) approaches. Rather than relying on energy crops, a potential advantage of thermochemical approaches is the ability to use a wider variety of feedstocks, including municipal solid waste and wood waste. In this work, we conduct a system-level analysis to understand how technology and feedstock choice can impact the environmental footprint of biofuels in the U.S. We use a least-cost optimization model of the U.S. energy system to account for interactions between various components of the energy system: industrial, transportation, electric, and residential/commercial sectors. The model was used to understand the scale of feedstock demand required from dedicated energy crops, as well as other biomass feedstocks, in order to meet the RFS2 mandate. On a regional basis, we compare the overall water-consumption and land requirements for biofuels production given a suite of liquid-fuel production technologies. By considering a range of scenarios, we examine how the use of various feedstocks (e.g., agricultural residues, wood wastes, mill residues and municipal wastes) can be used to off-set environmental impacts as compared to relying solely on energy crops.

  15. Methods for treating a metathesis feedstock with metal alkoxides

    Science.gov (United States)

    Cohen, Steven A.; Anderson, Donde R.; Wang, Zhe; Champagne, Timothy M.; Ung, Thay A.

    2018-04-17

    Various methods are provided for treating and reacting a metathesis feedstock. In one embodiment, the method includes providing a feedstock comprising a natural oil, chemically treating the feedstock with a metal alkoxide under conditions sufficient to diminish catalyst poisons in the feedstock, and, following the treating, combining a metathesis catalyst with the feedstock under conditions sufficient to metathesize the feedstock.

  16. Potential bioethanol feedstock availability around nine locations in the Republic of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Deverell, R.; McDonnell, K.; Devlin, G. [Department of Biosystems Engineering, Agriculture and Food Science Building, University College Dublin, Belfield (Ireland)

    2009-07-01

    The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland's distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks. (author)

  17. Potential Bioethanol Feedstock Availability Around Nine Locations in the Republic of Ireland

    Directory of Open Access Journals (Sweden)

    Rory Deverell

    2009-03-01

    Full Text Available The Republic of Ireland, like many other countries is trying to diversify energy sources to counteract environmental, political and social concerns. Bioethanol from domestically grown agricultural crops is an indigenously produced alternative fuel that can potentially go towards meeting the goal of diversified energy supply. The Republic of Ireland’s distribution of existing soils and agricultural land-uses limit arable crop land to around 10% of total agricultural area. Demand for land to produce arable crops is expected to decrease, which could open the opportunity for bioethanol production. Bioethanol production plants are required to be of a sufficient scale in order to compete economically with other fuel sources, it is important therefore to determine if enough land exists around potential ethanol plant locations to meet the potential demands for feedstock. This study determines, through the use of a developed GIS based model, the potential quantities of feedstock that is available in the hinterlands of nine locations in the Republic of Ireland. The results indicate that three locations can meet all its feedstock demands using indigenously grown sugarbeet, while only one location can meet its demands using a combination of indigenous wheat and straw as the two locally sourced feedstocks.

  18. Experimental evaluation of C.I. engine performance using diesel blended with Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sunil [Mechanical Department, R. G. P. V. Bhopal (M.P.) (India); Chaube, Alok [Mechanical Department, Jabalpur Engineering College Jabalpur (M.P.) (India); Jain, Shashi Kumar [School of Energy and Environment Management, R.G.P.V. Bhopal (India)

    2012-07-01

    Costlier and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as promising alternative to petro-diesel. The higher viscosity of vegetable oils leads to problem in pumping, atomization and spray characteristics. The improper mixing of vegetable oils with air leads to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main feedstock for biodiesel production can be non-edible oil obtained from Jatropha curcas plant. Jatropha curcas plant can be cultivated on different terrains in India under extreme climatic conditions. Biodiesel can be used in its pure form or as a blend with petro-diesel in different proportions. It is being used in CI engines because it has properties similar to petro-diesel. The aim of this paper is to analyze suitability of petro-diesel blended with biodiesel in varying proportions in CI engines. For this purpose, a stationary single-cylinder four-stroke CI engine was tested with diesel blended with Jatropha biodiesel in 0%, 5%, 20%, 50%, 80% and 100%. Comparative measures of specific fuel consumption (SFC), brake thermal efficiency, smoke opacity, HC, CO2, CO, O2, NOX have been presented and discussed. Engine performance in terms of comparable brake thermal efficiency and SFC with lower emissions (HC, CO2, CO) was observed with B20 fuel compared to petro-diesel. Volumetric efficiency showed almost no variation for all the blends. Important observations related to noise and vibrations during testing have also been discussed.

  19. A Life Cycle Analysis on a Bio-DME production system considering the species of biomass feedstock in Japan and Papua New Guinea

    International Nuclear Information System (INIS)

    Higo, Masashi; Dowaki, Kiyoshi

    2010-01-01

    This paper describes the performance and/or CO 2 intensities of a Bio-DME (Biomass Di-methyl Ether) production system, considering the differences of biomass feedstock. In the past LCA studies on an energy chain model, there is little knowledge on the differences of biomass feedstock and/or available condition. Thus, in this paper, we selected Papua New Guinea (PNG) which has good potential for supply of an energy crop (a short rotation forestry), and Japan where wood remnants are available, as model areas. Also, we referred to 9 species of biomass feedstock of PNG, and to 8 species in Japan. The system boundary on our LCA consists of (1) the pre-treatment process, (2) the energy conversion process, and (3) the fuel transportation process. Especially, since the pre-treatment process has uncertainties related to the moisture content of biomass feedstock, as well as the distance from the cultivation site to the energy plant, we considered them by the Monte Carlo simulation. Next, we executed the process design of the Bio-DME production system based on the basic experimental results of pyrolysis and char gasification reactions. Due to these experiments, the gas components of pyrolysis and the gasification rate under H 2 O (steam) and CO 2 were obtained. Also, we designed the pressurized fluid-bed gasification process. In a liquefaction process, that is, a synthesis process of DME, the result based on an equilibrium constant was used. In the proposed system, a steam turbine for an auxiliary power was assumed to be equipped, too. The energy efficiencies are 39.0-56.8 LHV-%, depending upon the biomass species. Consequently, CO 2 intensities in the whole system were 16.3-47.2 g-CO 2 /MJ-DME in the Japan case, and 12.2-36.7 g-CO 2 /MJ-DME in the PNG one, respectively. Finally, using the results of CO 2 intensities and energy efficiencies, we obtained the regression equations as parameters of hydrogen content and heating value of a feedstock. These equations will be

  20. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  1. A Complementary Biodiesel Blend from Soapnut Oil and Free Fatty Acids

    Directory of Open Access Journals (Sweden)

    Lu-Yen Chen

    2012-08-01

    Full Text Available Blends of biodiesels produced from soapnut oil and high-oleic free fatty acids (FFAs, which are potential non-edible oil feedstocks, were investigated with respect to their fuel properties. The soapnut oil methyl esters (SNME had satisfactory fuel properties with the exception of its high cold filter plugging point. In contrast, the biodiesel from the FFAs had favorable fuel properties such as a low cold filter plugging point of −6 °C; however, it exhibits poor oxidation stability with an induction period (IP of 0.2 h. The complementary blend of the SNME and the FFA-based biodiesel at various weight ratios was studied to improve the fuel properties. As a result, the biodiesel blend at a weight ratio of 70:30 can successfully meet all the biodiesel specifications, except the marginal oxidation stability. Furthermore, the effectiveness of N,N’-di-sec-butyl-p-phenylenediamine at the concentration between 100 and 500 ppm on the improvement in the oxidation stability of the biodiesel blend was examined. The relationship between the IP values associated with the consumption of antioxidants in the biodiesel blends was described by first-order reaction rate kinetics. In addition, the natural logarithm of IP (ln IP at various concentrations of antioxidant presented a linear relation with the test temperature. The IP at ambient temperature can be predicted based on the extrapolation of the temperature dependence relation.

  2. Design of tailor-made chemical blend using a decomposition-based computer-aided approach

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza; Gernaey, Krist; Manan, Z.A.

    2011-01-01

    Computer aided techniques form an efficient approach to solve chemical product design problems such as the design of blended liquid products (chemical blending). In chemical blending, one tries to find the best candidate, which satisfies the product targets defined in terms of desired product...... methodology for blended liquid products that identifies a set of feasible chemical blends. The blend design problem is formulated as a Mixed Integer Nonlinear Programming (MINLP) model where the objective is to find the optimal blended gasoline or diesel product subject to types of chemicals...... and their compositions and a set of desired target properties of the blended product as design constraints. This blend design problem is solved using a decomposition approach, which eliminates infeasible and/or redundant candidates gradually through a hierarchy of (property) model based constraints. This decomposition...

  3. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Nakpong, Piyanuch; Wootthikanokkhan, Sasiwimol [Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Krungthep, 2 Nanglinchee Road, Sathorn, Bangkok 10120 (Thailand)

    2010-08-15

    Coconut oil having 12.8% free fatty acid (FFA) was used as a feedstock to produce biodiesel by a two-step process. In the first step, FFA level of the coconut oil was reduced to 0.6% by acid-catalyzed esterification. In the second step, triglycerides in product from the first step were transesterified with methanol by using an alkaline catalyst to produce methyl esters and glycerol. Effect of parameters related to these processes was studied and optimized, including methanol-to-oil ratio, catalyst concentration, reaction temperature, and reaction time. Methyl ester content of the coconut biodiesel was determined by GC to be 98.4% under the optimum condition. The viscosity of coconut biodiesel product was very close to that of Thai petroleum diesel and other measured properties met the Thai biodiesel (B100) specification. (author)

  4. Development of synthetic chromosomes and improved microbial strains to utilize cellulosic feedstocks and express valuable coproducts for sustainable production of biofuels from corn

    Science.gov (United States)

    A sustainable biorefinery must convert a broad range of renewable feedstocks into a variety of product streams, including fuels, power, and value-added bioproducts. To accomplish this, microbial-based technologies that enable new commercially viable coproducts from corn-to-ethanol biofuel fermentati...

  5. Enhancing the Feasibility of Microcystis aeruginosa as a Feedstock for Bioethanol Production under the Influence of Various Factors

    Directory of Open Access Journals (Sweden)

    Muhammad Imran Khan

    2016-01-01

    Full Text Available Microcystis aeruginosa, a freshwater microalga, is capable of producing and accumulating different types of sugars in its biomass which make it a good feedstock for bioethanol production. Present study aims to investigate the effect of different factors increasing growth rate and carbohydrates productivity of M. aeruginosa. MF media (modified BG11 media and additional ingredients such as aminolevulinic acid (2 mM, lysine (2.28 mM, alanine (1 mM, and Naphthalene acetic acid (1 mM as cytokine promoted M. aeruginosa growth and sugar contents. Salmonella showed growth-assisting effect on M. aeruginosa. Enhanced growth rate and carbohydrates contents were observed in M. aeruginosa culture grown at 25°C under red LED light of 90 μmolm−2s−1 intensity. More greenish and carbohydrates rich M. aeruginosa biomass was prepared (final OD660 nm = 2.21 and sugar contents 10.39 mM/mL as compared to control (maximum OD660 nm = 1.4 and sugar contents 3 mM/mL. The final algae biomass was converted to algae juice through a specific pretreatment method. The resulted algae Juice was used as a substrate in fermentation process. Highest yield of bioethanol (50 mM/mL was detected when Brettanomyces custersainus, Saccharomyces cerevisiae, and Pichia stipitis were used in combinations for fermentation process as compared to their individual fermentation. The results indicated the influence of different factors on the growth rate and carbohydrates productivity of M. aeruginosa and its feasibility as a feedstock for fermentative ethanol production.

  6. Fluid catalytic cracking : Feedstocks and reaction mechanism

    NARCIS (Netherlands)

    Dupain, X.

    2006-01-01

    The Fluid Catalytic Cracking (FCC) process is one of the key units in a modern refinery. Traditionally, its design is primarily aimed for the production of gasoline from heavy oil fractions, but as co-products also diesel blends and valuable gasses (e.g. propene and butenes) are formed in

  7. Characterization and Behavior of Cold Lake Blend and Western Canadian Select Diluted Bitumen Products

    Science.gov (United States)

    Unconventional diluted bitumen (dilbit) oil products present an increasing environmental concern because of extensive transport in North America, recent spills into aquatic habitats, and limited understanding of environmental fate and toxicity. Dilbits are blends of highly weathe...

  8. Effects of blending composition of tung oil and ultrasonic irradiation intensity on the biodiesel production

    International Nuclear Information System (INIS)

    Manh, Do-Van; Chen, Yi-Hung; Chang, Chia-Chi; Chang, Ching-Yuan; Hanh, Hoang-Duc; Chau, Nguyen-Hoai; Tuyen, Trinh-Van; Long, Pham-Quoc; Minh, Chau-Van

    2012-01-01

    The beneficial use of tung oil in pre-blended oil for the production of biodiesel was studied at various blending compositions of tung, canola and palm oils (C BT , C BC and C BP ). The effects of C BT , ultrasonic power (P WUS ) and sample loading (V L ) on the yield (Y F ) and the properties of acid value, iodine values (IV), kinematic viscosity (KV), density and cold filter plugging point (CFPP) were investigated. The pre-blending of tung oil with palm oil greatly decreases the CFPP of palm oil biodiesel, whereas the presence of canola and palm oils with tung oil reduces the IV and KV of tung oil biodiesel. For P WUS /V L = 0.92–2.08 W/mL, C BT can be as high as 60 wt.% with 30 wt.% C BC and 10 wt.% C BP to produce biodiesel with high Y F and satisfactory qualities of the said properties. -- Highlights: ► Yield and properties of tung oil biodiesel are improved as tung oil is pre-blended with canola and palm oils. ► Pre-blending of palm oil with tung and canola oils reduces the CFPP of palm oil biodiesel from 13 to −5 °C. ► A beneficial use of tung oil as high as 60 wt.% blended with canola and palm oils is achievable. ► A sufficient P WUS per sample volume is required to ensure satisfactory properties.

  9. Enzymatic interesterification of vegetable oil/ fish oil blend for margarine production

    DEFF Research Database (Denmark)

    Ibrahim, Nuzul Amri Bin; Xu, Xuebing

    the desired properties. In this study, palm stearin (PS), palm kernel oil (PKO) and fish oil (FO) are blended and modified by enzymatic interesterification. PS functioned as the hard stock, PKO as the soft oil and FO as a source for eicosapentaenoic acid (EPA)/ docosahexaenoic acid (DHA). The purpose...... cause the product to be susceptible to oxidation due to the presence of high content of polyunsaturated fatty acids. Furthermore, FO could also influence the melting properties of the product. Therefore, in addition to determining the fatty acid position on the glycerol backbone, it is also pertinent...

  10. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Haiying Tang; Steven O. Salley; K.Y. Simon Ng [Wayne State University, Detroit, MI (United States). Department of Chemical Engineering and Materials Science

    2008-10-15

    The formation of precipitates in biodiesel blends may have serious implications for diesel engine fuel delivery systems. Precipitates were observed in Soybean oil (SBO-), cottonseed oil (CSO-), and poultry fat (PF-) based biodiesel blends after storage at 4{sup o}C. CSO- and PF-based biodiesel had a lower mass of precipitates observed than the SBO-based. Moreover, different rates of precipitate formation were observed for the B20 versus the B100. These suggested that the formation of precipitate during cold temperature storage was dependent on the feedstock and blend concentration. The solvency effects of biodiesel blends were more pronounced at low temperature than at room temperature leading to a higher amount of precipitates formed. Fourier transform infrared (FTIR) spectra, and gas chromatography-flame ionization detector (GC-FID) chromatograms indicated that steryl glucosides are the major cause of precipitate formation in SBO-based biodiesel; while for PF-based biodiesel, the precipitates are due to mono-glycerides. However, the precipitates from CSO-based biodiesel are due to both steryl glucosides and mono-glycerides. 45 refs., 11 figs., 2 tabs.

  11. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y.

    2014-01-01

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  12. Production of PVC/Abs/Nbr blend and the study of its physical and mechanical properties, thermal behaviour and its morphology

    International Nuclear Information System (INIS)

    Mehrabzadeh, M.; Honarkar, H.

    2001-01-01

    In this research a product of triplet blend of polyvinyl chloride, acrylonitrile-butadiene-styrene, acrylonitrile butadiene rubber (PVC/Abs/Nbr) is obtained. The physical, mechanical and thermal behaviour as well as morphology of the blend were studied. Results show that optimum properties in ratio PVC/Abs: 60/40 is obtained. For substituting the Nbr by a portion of Dop to modify the migration to surface, a triplet blend of PVC/Abs/Nbr was made. Experiments with constant amount of Nbr and variable Dop and vice versa were carried out. For preparation of triplet blend from PVC/Abs, a ratio of 60/40 was used. The best results were obtained for a blend with Nbr (10%) and PVC powder, 20% Nbr and PVC granules containing 34% Dop and the thermo formability of PVC/Abs/Nbr blend was examined as well

  13. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, June 1-August 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-08-01

    Studies concerning the cellobiose properties of Clostridium thermocellum were started to determine if the cellulose degradation end products can be enhanced for glucose (with a subsequent decrease in cellobiose). Implications of preliminary studies indicate that the cells or the enzyme(s) responsible for converting cellobiose to glucose can be manipulated environmentally and genetically to increase the final yield of glucose. The second area of effort is to the production of chemical feedstocks. Three fermentations have been identified for exploration. Preliminary reports on acrylic acid acetone/butanol, and acetic acid production by C. propionicum, C. acetobutylicum, and C. thermoaceticum, respectively, are included. (DMC)

  14. Study of the Rancimat test method in measuring the oxidation stability of biodiesel ester and blends

    Energy Technology Data Exchange (ETDEWEB)

    Berthiaume, D.; Tremblay, A. [Oleotek Inc., Thetford Mines, PQ (Canada)

    2006-11-15

    This paper provided details of a study conducted to examine the oxidation stability of biodiesel blends. The study tested samples of canola oil, soybean oil, fish oil, yellow grease, and tallow. The EN 14112 (Rancimat) method was used to compare oxidation stability results obtained in previous tests conducted in the United States and Europe. The aim of the study was also to evaluate the influence of peroxide value (PV), acid value (AV) and feedstock source on the the oxidative stability of different samples. The study also evaluated the possibility of developing a validated test method developed from the EN 14112 methods to specifically consider biodiesel blends. Results of the study indicated that the Rancimat method was not suitable for measuring the oxidation stability of biodiesels blended with petrodiesels. No direct correlation between oxidative stability and PV or AV was observed. It was concluded that fatty acid distribution was not a principal factor in causing changes in oxidation stability. 22 refs., 3 tabs., 1 fig.

  15. Rheological properties of alumina injection feedstocks

    Directory of Open Access Journals (Sweden)

    Vivian Alexandra Krauss

    2005-06-01

    Full Text Available The rheological behavior of alumina molding feedstocks containing polyethylene glycol (PEG, polyvinylbutyral (PVB and stearic acid (SA and having different powder loads were analyzed using a capillary rheometer. Some of the feedstocks showed a pseudoplastic behavior of n < 0, which can lead to the appearance of weld lines on molded parts. Their viscosity also displayed a strong dependence on the shear rate. The slip phenomenon, which can cause an unsteady front flow, was also observed. The results indicate that the feedstock containing a lower powder load displayed the best rheological behavior. The 55 vol. % powder loaded feedstock presented the best rheological behavior, thus appearing to be more suitable than the formulation containing a vol. 59% powder load, which attained viscosities exceeding 10³ Pa.s at low shear rates, indicating its unsuitability for injection molding.

  16. Correspondence Theory and Phonological Blending in French

    Directory of Open Access Journals (Sweden)

    Lee Scott

    2014-07-01

    Full Text Available Though less productive than rival word-formation processes like compounding and affixation, blending is still a rich source of neologisms in French. Despite this productivity, however, blends are often seen by scholars as unpredictable, uninteresting, or both. This analysis picks up where recent studies of blending have left off, using Correspondence Theory and a bundle of segmental constraints to deal with this phenomenon as it pertains to French. More specifically, it shows that blending is the result of a single output standing in correspondence with two or more other outputs, and that we do not need to refer to prosodic information, which is crucial in accounts of blending in languages with lexical stress like English, to account for the process in French. The analysis also differs from previous studies in that it locates blending exclusively within the phonology, leaving its morphological and semantic characteristics to be handled by other processes in the grammar.

  17. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    Science.gov (United States)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  18. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Chulalaksananukul, Warawut; Yongvanich, Tikamporn

    2008-01-01

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity (η) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and η were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst

  19. How non-conventional feedstocks will affect aromatics technologies

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, E. [Clariant Produkte (Deutschland) GmbH, Muenchen (Germany)

    2013-11-01

    The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today's technologies for the production and upgrading of BTX aromatics and their derivatives make use of the unique properties of zeolites. (orig.)

  20. Syngas obtained by microwave pyrolysis of household wastes as feedstock for polyhydroxyalkanoate production in Rhodospirillum rubrum.

    Science.gov (United States)

    Revelles, Olga; Beneroso, Daniel; Menéndez, J Angel; Arenillas, Ana; García, J Luis; Prieto, M Auxiliadora

    2017-11-01

    The massive production of urban and agricultural wastes has promoted a clear need for alternative processes of disposal and waste management. The potential use of municipal solid wastes (MSW) as feedstock for the production of polyhydroxyalkanoates (PHA) by a process known as syngas fermentation is considered herein as an attractive bio-economic strategy to reduce these wastes. In this work, we have evaluated the potential of Rhodospirillum rubrum as microbial cell factory for the synthesis of PHA from syngas produced by microwave pyrolysis of the MSW organic fraction from a European city (Seville). Growth rate, uptake rate, biomass yield and PHA production from syngas in R. rubrum have been analysed. The results revealed the strong robustness of this syngas fermentation where the purity of the syngas is not a critical constraint for PHA production. Microwave-induced pyrolysis is a tangible alternative to standard pyrolysis, because it can reduce cost in terms of energy and time as well as increase syngas production, providing a satisfactory PHA yield. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  2. Towards fermentation of galacturonic acid-containing feedstocks with Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huisjes, E.H.

    2013-01-01

    The ambition to reduce our current dependence on fossil transportation fuels has driven renewed interest in bioethanol. Pectin-rich feedstocks like sugar beet pulp and citrus peel, which are currently sold as cattle feed, are promising raw materials for the production of bioethanol. This thesis

  3. Bibliography on Biomass Feedstock Research: 1978-2002

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2003-05-01

    This report provides bibliographic citations for more than 1400 reports on biomass feedstock development published by Oak Ridge National Laboratory and its collaborators from 1978 through 2002. Oak Ridge National Laboratory is engaged in analysis of biomass resource supplies, research on the sustainability of feedstock resources, and research on feedstock engineering and infrastructure. From 1978 until 2002, Oak Ridge National Laboratory also provided technical leadership for the U.S. Department of Energy's Bioenergy Feedstock Development Program (BFDP), which supported research to identify and develop promising energy crops. This bibliography lists reports published by Oak Ridge National Laboratory and by its collaborators in the BFDP, including graduate student theses and dissertations.

  4. Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests

    International Nuclear Information System (INIS)

    Lamers, Patrick; Thiffault, Evelyne; Paré, David; Junginger, Martin

    2013-01-01

    Past research on identifying potentially negative impacts of forest management activities has primarily focused on traditional forest operations. The increased use of forest biomass for energy in recent years, spurred predominantly by policy incentives for the reduction of fossil fuel use and greenhouse gas emissions, and by efforts from the forestry sector to diversify products and increase value from the forests, has again brought much attention to this issue. The implications of such practices continue to be controversially debated; predominantly the adverse impacts on soil productivity and biodiversity, and the climate change mitigation potential of forest bioenergy. Current decision making processes require comprehensive, differentiated assessments of the known and unknown factors and risk levels of potentially adverse environmental effects. This paper provides such an analysis and differentiates between the feedstock of harvesting residues, roundwood, and salvage wood. It concludes that the risks related to biomass for energy outtake are feedstock specific and vary in terms of scientific certainty. Short-term soil productivity risks are higher for residue removal. There is however little field evidence of negative long-term impacts of biomass removal on productivity in the scale predicted by modeling. Risks regarding an alteration of biodiversity are relatively equally distributed across the feedstocks. The risk of limited or absent short-term carbon benefits is highest for roundwood, but negligible for residues and salvage wood. Salvage operation impacts on soil productivity and biodiversity are a key knowledge gap. Future research should also focus on deriving regionally specific, quantitative thresholds for sustainable biomass removal. -- Highlights: ► Synthesis of the scientific uncertainties regarding biomass for energy outtake. ► With specific focus on soil productivity, biodiversity, and carbon balance. ► Balanced determination of the risk levels

  5. Demand and supply of hydrogen as chemical feedstock in USA

    Science.gov (United States)

    Huang, C. J.; Tang, K.; Kelley, J. H.; Berger, B. J.

    1979-01-01

    Projections are made for the demand and supply of hydrogen as chemical feedstock in USA. Industrial sectors considered are petroleum refining, ammonia synthesis, methanol production, isocyanate manufacture, edible oil processing, coal liquefaction, fuel cell electricity generation, and direct iron reduction. Presently, almost all the hydrogen required is produced by reforming of natural gas or petroleum fractions. Specific needs and emphases are recommended for future research and development to produce hydrogen from other sources to meet the requirements of these industrial sectors. The data and the recommendations summarized in this paper are based on the Workshop 'Supply and Demand of Hydrogen as Chemical Feedstock' held at the University of Houston on December 12-14, 1977.

  6. The commercial performance of cellulosic ethanol supply-chains in Europe

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2009-02-01

    Full Text Available Abstract Background The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted. Results The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive. Conclusion Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with

  7. More valuable as petrochemical feedstock

    International Nuclear Information System (INIS)

    Ramachandran, R.

    2005-01-01

    The problems facing the North American petrochemical industry were discussed with particular reference to the fact that high North American prices present a challenge to competitiveness in a globally traded market. A background of Dow Canada was provided, including details of its upgrading of natural gas liquids that would otherwise be combusted for electrical power generation. The value of the petrochemical industry was outlined, with details of employment, manufacturing output and exports. Alberta's relationship to the natural gas industry was reviewed. The role of petrochemicals as a nexus for bridging the resource sector with manufacturing, retail and transportation was discussed. The historic correlation between world Gross Domestic Product (GDP) and ethylene demand was presented. It was noted that the petrochemical industry currently competes with power generators for smaller volumes of natural gas liquids. As a highly energy intensive industry, inequities in gas pipeline haul charges and even small increases in gas prices has compromised the success of the petrochemical industry. It was noted that while crude oil is a globally traded commodity, natural gas liquids are generally traded at a more localized level, and factors that helped build the petrochemical industry and are now inhibiting growth. Ethane is the primary feedstock in the petrochemical industry. High natural gas prices affected the industry on two levels: volatility in a weakening industry and higher prices on primary feedstocks. It was estimated that changes in current trends were likely to take place in 5 to 10 years, following Northern gas developments. It was estimated that more than 50 per cent of new capacity investment in ethylene plants would take place in the Middle East in the next 5 years. No new plants are planned in Canada. It was concluded that low-cost feedstock advantages, as well as alternative feedstocks and the sustainment of a healthy industry are necessary for the

  8. Monetary value of the environmental and health externalities associated with production of ethanol from biomass feedstocks

    International Nuclear Information System (INIS)

    Kusiima, Jamil M.; Powers, Susan E.

    2010-01-01

    This research is aimed at monetizing the life cycle environmental and health externalities associated with production of ethanol from corn, corn stover, switchgrass, and forest residue. The results of this study reveal current average external costs for the production of 1 l of ethanol ranged from $0.07 for forest residue to $0.57 for ethanol production from corn. Among the various feedstocks, the external costs of PM 10 , NO X , and PM 2.5 are among the greatest contributors to these costs. The combustion of fossil fuels in upstream fertilizer and energy production processes is the primary source of these emissions and their costs, especially for corn ethanol. The combined costs of emissions associated with the production and use of nitrogen fertilizer also contribute substantially to the net external costs. For cellulosic ethanol production, the combustion of waste lignin to generate heat and power helps to keep the external costs lower than corn ethanol. Credits both for the biogenic carbon combustion and displacement of grid electricity by exporting excess electricity substantially negate many of the emissions and external costs. External costs associated with greenhouse gas emissions were not significant. However, adding estimates of indirect GHG emissions from land use changes would nearly double corn ethanol cost estimates.

  9. Development of a new genetic algorithm to solve the feedstock scheduling problem in an anaerobic digester

    Science.gov (United States)

    Cram, Ana Catalina

    As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.

  10. Citrus waste as feedstock for bio-based products recovery: Review on limonene case study and energy valorization.

    Science.gov (United States)

    Negro, Viviana; Mancini, Giuseppe; Ruggeri, Bernardo; Fino, Debora

    2016-08-01

    The citrus peels and residue of fruit juices production are rich in d-limonene, a cyclic terpene characterized by antimicrobial activity, which could hamper energy valorization bioprocess. Considering that limonene is used in nutritional, pharmaceutical and cosmetic fields, citrus by-products processing appear to be a suitable feedstock either for high value product recovery or energy bio-processes. This waste stream, more than 10MTon at 2013 in European Union (AIJN, 2014), can be considered appealing, from the view point of conducting a key study on limonene recovery, as its content of about 1%w/w of high value-added molecule. Different processes are currently being studied to recover or remove limonene from citrus peel to both prevent pollution and energy resources recovery. The present review is aimed to highlight pros and contras of different approaches suggesting an energy sustainability criterion to select the most effective one for materials and energy valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Characterisation of Arabica Coffee Pulp - Hay from Kintamani - Bali as Prospective Biogas Feedstocks

    Directory of Open Access Journals (Sweden)

    Hendroko Setyobudi Roy

    2018-01-01

    Full Text Available The huge amount of coffee pulp waste is an environmental problem. Anaerobic fermentation is one of the alternative solutions. However, availability of coffee pulp does not appear for year-round, whereas biogas needs continuous feedstocks for digester stability. This research uses coffee pulp from Arabica Coffee Factory at Mengani, Kintamani, Bali–Indonesia. The coffee pulp was transformed into coffee pulp-hay product by sun drying for preservations to extend the raw materials through the year. Characterization of coffee pulp-hay was conducted after to keep for 15 mo for review the prospect as biogas feedstocks. Several parameters were analyzed such as C/N ratio, volatile solids, carbohydrate, protein, fat, lignocellulose content, macro-micro nutrients, and density. The review results indicated that coffee pulp-hay is prospective raw material for biogas feedstock. This well-proven preservation technology was able to fulfill the continuous supply. Furthermore, some problems were found in the recent preliminary experiment related to the density and fungi growth in the conventional laboratory digester. Further investigation was needed to implement the coffee pulp – hay as biogas feedstocks.

  12. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  13. Performance and emission analysis of single cylinder SI engine using bioethanol-gasoline blend produced from Salvinia Molesta

    Science.gov (United States)

    Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.

    2018-01-01

    Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.

  14. Production and evaluation of noodles from flour blends of cocoyam ...

    African Journals Online (AJOL)

    Flour blends were prepared from two cultivars of cocoyam ( and . ), African breadfruit ( ) and wheat ( ) at different proportions and extruded into noodles with a locally fabricated and manually operated singlescrew extruder. Proximate composition and the functional properties of the different flour blends were evaluated. The

  15. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Winayanuwattikun, Pakorn; Kaewpiboon, Chutima; Piriyakananon, Kingkaew; Tantong, Supalak; Thakernkarnkit, Weerasak; Yongvanich, Tikamporn [Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Chulalaksananukul, Warawut [Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Biofuel Production by Biocatalyst Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-12-15

    Twenty-seven types of plants found to contain more than 25% of oil (w/w) were selectively examined from 44 species. Saponification number (SN), iodine value (IV), cetane number (CN) and viscosity ({eta}) of fatty acid methyl esters (FAMEs) of oils were empirically determined, and they varied from 182 to 262, 3.60 to 142.70, 39.32 to 65.80 and 2.29 to 3.95, respectively. Fatty acid compositions, IV, CN and {eta} were used to predict the quality of FAMEs for use as biodiesel. FAMEs of plant oils of 15 species were found to be most suitable for use as biodiesel by meeting the major specification of biodiesel standards of Thailand, USA and European Standard Organization. The oils from these 15 species were further investigated for the conversion efficiency of biodiesel in lipase-catalyzed transesterification reaction with Novozyme 435 and Lipozyme RM IM. Oils of four species, palm (Elaeis guineensis), physic nut (Jatropha curcas), papaya (Carica papaya) and rambutan (Nephelium lappaceum), can be highly converted to biodiesel by transesterification using Novozyme 435- or Lipozyme RM IM-immobilized lipase as catalyst. Therefore, these selected plants would be economically considered as the feedstock for biodiesel production by biocatalyst. (author)

  16. Dynamic impacts of high oil prices on the bioethanol and feedstock markets

    International Nuclear Information System (INIS)

    Cha, Kyung Soo; Bae, Jeong Hwan

    2011-01-01

    This study investigates the impacts of high international oil prices on the bioethanol and corn markets in the US. Between 2007 and 2008, the prices of major grain crops had increased sharply, reflecting the rise in international oil prices. These dual price shocks had caused substantial harm to the global economy. Employing a structural vector auto-regression model (SVAR), we analyze how increases in international oil prices could impact the prices of and demand for corn, which is used as a major bioethanol feedstock in the US. The results indicate that an increase in the oil price would increase bioethanol demand for corn and corn prices in the short run and that corn prices would stabilize in the long run as corn exports and feedstock demand for corn decline. Consequently, policies supporting biofuels should encourage the use of bioethanol co-products for feed and the development of marginal land to mitigate increases in the feedstock price. - Research highlights: → World economy experienced 'dual shocks', which were caused by skyrocketed oil prices and grain prices between 2007 and 2008. → Sharp increases in ethanol production in response to high oil prices were considered as a major driving force to 'ag-flation' in the United States. → Applying a time series econometric tool, called the 'structural vector auto-regression model', we evaluated relationship between ethanol production and corn prices. → The result shows that ethanol production affects corn prices in the short run, while corn prices are lowered as other corn demands (feed for livestock or export demand) decline in the long run.

  17. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  18. Effect of blended materials on U(VI) retention characteristics for portland cement solidification product

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2006-01-01

    Using the simulated groundwater as leaching liquid, the retention capability of U(VI) in solidification products with Portland cement, the Portland cement containing silica fume, the Portland cement containing metakaolin and the Portland cement containing fly ash was researched by leaching experiments at 25 degree C for 42 d. The results indicate silica fume and metakaolin as blended materials can improve the U(VI) retention capability of Portland cement solidification product, but fly ash can not. (authors)

  19. Effects of production and market factors on ethanol profitability for an integrated first and second generation ethanol plant using the whole sugarcane as feedstock.

    Science.gov (United States)

    Macrelli, Stefano; Galbe, Mats; Wallberg, Ola

    2014-02-21

    Sugarcane is an attractive feedstock for ethanol production, especially if the lignocellulosic fraction can also be treated in second generation (2G) ethanol plants. However, the profitability of 2G ethanol is affected by the processing conditions, operating costs and market prices. This study focuses on the minimum ethanol selling price (MESP) and maximum profitability of ethanol production in an integrated first and second generation (1G + 2G) sugarcane-to-ethanol plant. The feedstock used was sugarcane juice, bagasse and leaves. The lignocellulosic fraction was hydrolysed with enzymes. Yields were assumed to be 95% of the theoretical for each of the critical steps in the process (steam pretreatment, enzymatic hydrolysis (EH), fermentation, solid/liquid separation, anaerobic digestion) in order to obtain the best conditions possible for ethanol production, to assess the lowest production costs. Techno-economic analysis was performed for various combinations of process options (for example use of pentoses, addition of leaves), EH conditions (water-insoluble solids (WIS) and residence time), operating cost (enzymes) and market factors (wholesale prices of electricity and ethanol, cost of the feedstock). The greatest reduction in 2G MESP was achieved when using the pentoses for the production of ethanol rather than biogas. This was followed, in decreasing order, by higher enzymatic hydrolysis efficiency (EHE), by increasing the WIS to 30% and by a short residence time (48 hours) in the EH. The addition of leaves was found to have a slightly negative impact on 1G + 2G MESP, but the effect on 2G MESP was negligible. Sugarcane price significantly affected 1G + 2G MESP, while the price of leaves had a much lower impact. Net present value (NPV) analysis of the most interesting case showed that integrated 1G + 2G ethanol production including leaves could be more profitable than 1G ethanol, despite the fact that the MESP was higher than in 1G ethanol

  20. Economically viable production of biodiesel from a rural feedstock from eastern India, P. pinnata oil using a recyclable laboratory synthesized heterogeneous catalyst

    International Nuclear Information System (INIS)

    Singh, Veena; Hameed, Bassim H.; Sharma, Yogesh Chandra

    2016-01-01

    Graphical abstract: Barium zirconate was synthesized by co-precipitation method using nitrates of barium and zirconia and was applied for biodiesel production using karanja oil as feedstock through transesterification reaction. - Highlights: • Barium zirconate have been used as a heterogeneous catalyst for biodiesel production. • Effect of calcination time on stability of catalyst was studied. • 98.79 ± 0.5% of FAME conversion from karanja oil was attained. • Catalyst is stable and can be reused up to nine cycles with conversion up to >65%. • Glycerol obtained as a byproduct was easily purified for better use. - Abstract: Barium zirconate was synthesized by co-precipitation method and its feasibility as a heterogeneous catalyst for production of biodiesel (fatty acid methyl ester) was assessed. Fatty acid methyl ester (FAME) was synthesized through transesterification of karanja oil with methanol. Synthesized barium zirconate was characterized by Thermogravimetric analysis (TGA), Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffractometry (XRD), Energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscope (SEM). Specific surface area and basicity of the catalyst were also deliberated. Catalyst characterization indicated formation of single phase of barium zirconate which was capable of catalyzing the transesterification of esterified karanja oil with methanol. Feedstock was characterized by Gas Chromatography Mass Spectrometry (GC–MS). Reaction conditions such as molar ratio (oil:methanol), catalyst concentration, temperature, time, stirring speed and catalyst reusability were optimized. Calcination temperature and time significantly affected the catalytic activity of the catalyst because of variation in availability of basic sites. FAME conversion of 98.79 ± 0.5% was obtained at catalyst concentration of 1.0 wt%, 1:27 M ratio (oil:methanol), 65 °C for a 3 h contact time. The catalyst could be

  1. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel.

    Science.gov (United States)

    Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d(-1)) > 1). All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  2. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  3. 27 CFR 24.214 - Spanish type blending sherry.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Spanish type blending... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.214 Spanish..., produced under this section, is designated “Spanish Type Blending Sherry.” Upon removal, the shipping...

  4. Current biodiesel production technologies: A comparative review

    International Nuclear Information System (INIS)

    Abbaszaadeh, Ahmad; Ghobadian, Barat; Omidkhah, Mohammad Reza; Najafi, Gholamhassan

    2012-01-01

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  5. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037.

    Science.gov (United States)

    Hernández-Pérez, Andrés Felipe; de Arruda, Priscila Vaz; Felipe, Maria das Graças de Almeida

    2016-01-01

    Sugarcane straw has become an available lignocellulosic biomass since the progressive introduction of the non-burning harvest in Brazil. Besides keeping this biomass in the field, it can be used as a feedstock in thermochemical or biochemical conversion processes. This makes feasible its incorporation in a biorefinery, whose economic profitability could be supported by integrated production of low-value biofuels and high-value chemicals, e.g., xylitol, which has important industrial and clinical applications. Herein, biotechnological production of xylitol is presented as a possible route for the valorization of sugarcane straw and its incorporation in a biorefinery. Nutritional supplementation of the sugarcane straw hemicellulosic hydrolyzate as a function of initial oxygen availability was studied in batch fermentation of Candida guilliermondii FTI 20037. The nutritional supplementation conditions evaluated were: no supplementation; supplementation with (NH4)2SO4, and full supplementation with (NH4)2SO4, rice bran extract and CaCl2·2H2O. Experiments were performed at pH 5.5, 30°C, 200rpm, for 48h in 125mL Erlenmeyer flasks containing either 25 or 50mL of medium in order to vary initial oxygen availability. Without supplementation, complete consumption of glucose and partial consumption of xylose were observed. In this condition the maximum xylitol yield (0.67gg(-1)) was obtained under reduced initial oxygen availability. Nutritional supplementation increased xylose consumption and xylitol production by up to 200% and 240%, respectively. The maximum xylitol volumetric productivity (0.34gL(-1)h(-1)) was reached at full supplementation and increased initial oxygen availability. The results demonstrated a combined effect of nutritional supplementation and initial oxygen availability on xylitol production from sugarcane straw hemicellulosic hydrolyzate. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  7. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation.

  8. HEU to LEU conversion and blending facility: Metal blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. The nuclear material is converted to a form more proliferation- resistant than the original form. Blending HEU (highly enriched uranium) with less-enriched uranium to form LEU has been proposed as a disposition option. Five technologies are being assessed for blending HEU. This document provides data to be used in environmental impact analysis for the HEU-LEU disposition option that uses metal blending with an oxide waste product. It is divided into: mission and assumptions, conversion and blending facility descriptions, process descriptions and requirements, resource needs, employment needs, waste and emissions from plant, hazards discussion, and intersite transportation

  9. Production of Microalgal Lipids as Biodiesel Feedstock with Fixation of CO2 by Chlorella vulgaris

    Directory of Open Access Journals (Sweden)

    Qiao Hu

    2014-01-01

    Full Text Available The global warming and shortage of energy are two critical problems for human social development. CO2 mitigation and replacing conventional diesel with biodiesel are effective routes to reduce these problems. Production of microalgal lipids as biodiesel feedstock by a freshwater microalga, Chlorella vulgaris, with the ability to fixate CO2 is studied in this work. The results show that nitrogen deficiency, CO2 volume fraction and photoperiod are the key factors responsible for the lipid accumulation in C. vulgaris. With 5 % CO2, 0.75 g/L of NaNO3 and 18:6 h of light/dark cycle, the lipid content and overall lipid productivity reached 14.5 % and 33.2 mg/(L·day, respectively. Furthermore, we proposed a technique to enhance the microalgal lipid productivity by activating acetyl-CoA carboxylase (ACCase with an enzyme activator. Citric acid and Mg2+ were found to be efficient enzyme activators of ACCase. With the addition of 150 mg/L of citric acid or 1.5 mmol/L of MgCl2, the lipid productivity reached 39.1 and 38.0 mg/(L·day, respectively, which was almost twofold of the control. This work shows that it is practicable to produce lipids by freshwater microalgae that can fixate CO2, and provides a potential route to solving the global warming and energy shortage problems.

  10. An overview of palm, jatropha and algae as a potential biodiesel feedstock in Malaysia

    International Nuclear Information System (INIS)

    Yunus, S; Abdullah, N R; Rashid, A A; Mamat, R

    2013-01-01

    The high demand to replace petroleum fuel makes renewable and sustainable sources such as Palm oil, Jatropha oil and Algae a main focus feedstock for biodiesel production in Malaysia. There are many studies conducted on Palm oil and Jatropha oil, however, the use of Algae as an alternative fuel is still in its infancy. Malaysia already implemented B5 based Palm oil as a feedstock and this biodiesel has been proven safe and can be used without any engine modification. The use of biodiesel produced from these feedstock will also developed domestic economic and provide job opportunities especially in the rural area. In addition, biodiesel has many advantages especially when dealing with the emissions produce as compared to petroleum fuel such as; it can reduce unwanted gases and particulate matter harmful to the atmosphere and mankind. Thus, this paper gathered and examines the most prominent engine emission produced from Palm oil and Jatropha feedstock and also to observe the potential of Algae to be one of the sources of alternative fuel in Malaysia

  11. Two novel approaches used to produce biodiesel from low-cost feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Chen, F. [Clemson Univ., SC (United States). Dept. of Food Science and Human Nutrition; Wang, X. [Clemson Univ., SC (United States). Dept. of Genetics and Biochemistry

    2010-07-01

    The cost of feedstock has a significant effect of the economic viability of biodiesel production. The paper discussed a preliminary study looking at 2 approaches used to economically produce biodiesel, one from waste cooking oil (WCO) and the other from flaked cottonseed. Ultrasound-assisted synthesis was used to produce biodiesel from WCO, and in situ transesterification was used to produce biodiesel from the flaked cottonseed. The use of WCO solves the problem of waste disposal and also generates an environmentally benign fuel while at the same time lowering the costs involved in producing biodiesel. Ultrasonification has proven to be an efficient, low-cost, energy saving means of producing biodiesel. In situ transesterification makes solvent extraction and oil cleanup prior to biodiesel synthesis unnecessary, thereby simplifying the reaction steps. Based on the results of gas chromatography and high-performance liquid chromatography tests, both approaches are feasible for the production of biodiesel from low-cost feedstock. 15 refs., 4 figs.

  12. The effect of aqueous ammonia soaking pretreatment on methane generation uing different lignocellulosic feedstocks

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Jonuzaj, Suela; Gavala, Hariklia N.

    2014-01-01

    Lignocellulosic biomass including agricultural and forestry residues, perennial crops, softwoods and hardwoods, can be used as feedstock for methane production. Although being abundant and almost zero cost feedstocks, the main obstacles of their use are the low efficiencies and yields attained, d...... methane potential of switchgrass. Transactions of the ASABE. 53, 1921-1927 (2010) [3] Jurado, E., Gavala., H.N., Skiadas, I.V., :Enhancement of methane yield from wheat straw, miscanthus and willow using aqueous ammonia soaking. Environmental Tecnology. 34(13-14), 2069-2075 (2013)...

  13. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    International Nuclear Information System (INIS)

    Chang, Siu Hua

    2014-01-01

    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  14. Higher alcohol–biodiesel–diesel blends: An approach for improving the performance, emission, and combustion of a light-duty diesel engine

    International Nuclear Information System (INIS)

    Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, Abdullah; Rashed, M.M.; Teoh, Y.H.; How, H.G.

    2016-01-01

    Highlights: • The fuel properties of higher alcohol blended biodiesel were improved. • Higher alcohol shows remarkable increase in the BP, BTE and decrease the BSFC. • Alcohols mixed with biodiesel diminishes HC, CO and smoke significantly. • CO 2 emissions of pentanol blended fuel decreases at maximum speed. • Higher alcohol blended biodiesel showed improved combustion. - Abstract: Pentanol is a long-chain alcohol with five carbons in its molecular structure and is produced from renewable feedstock, which may help to improve the challenging problems of energy security and environmental issues. In this investigation, the performance, emission, and combustion characteristics of a single-cylinder, four-stroke, water-cooled, direct-injection diesel engine were evaluated by using 10%, 15%, and 20% pentanol and Calophyllum inophyllum (CI) biodiesel blends in diesel under different speed conditions. The fuel properties of the blended fuels were measured and compared. Combustion attributes, such as cylinder pressure and heat-release rate, were also analyzed. Results indicated that increasing the proportion of pentanol in biodiesel blends improved the fuel properties compared with 20% blend of CI biodiesel (CI 20). The modified blends of pentanol showed reduced brake-specific fuel consumption with higher brake thermal efficiency and brake power than CI 20. Although the modified test blends showed a slightly higher nitric oxide emission, the carbon monoxide emission and unburned hydrocarbon emission for 15% and 20% blends of pentanol showed even better reduction than CI 20. Smoke emission was also reduced significantly. The carbon dioxide emission of the test blends were reduced at the maximum speed condition compared to CI 20. In terms of combustion, the modified test fuels exhibited a significant improvement, thus indicating better performance and emission. This study concluded that the 15% and 20% blends of biodiesel, diesel, and pentanol can optimize engine

  15. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2018-04-17

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  16. Processes for converting biomass-derived feedstocks to chemicals and liquid fuels

    Science.gov (United States)

    Held, Andrew; Woods, Elizabeth; Cortright, Randy; Gray, Matthew

    2017-05-23

    The present invention provides processes, methods, and systems for converting biomass-derived feedstocks to liquid fuels and chemicals. The method generally includes the reaction of a hydrolysate from a biomass deconstruction process with hydrogen and a catalyst to produce a reaction product comprising one of more oxygenated compounds. The process also includes reacting the reaction product with a condensation catalyst to produce C.sub.4+ compounds useful as fuels and chemicals.

  17. Processing Cost Analysis for Biomass Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Badger, P.C.

    2002-11-20

    The receiving, handling, storing, and processing of woody biomass feedstocks is an overlooked component of biopower systems. The purpose of this study was twofold: (1) to identify and characterize all the receiving, handling, storing, and processing steps required to make woody biomass feedstocks suitable for use in direct combustion and gasification applications, including small modular biopower (SMB) systems, and (2) to estimate the capital and operating costs at each step. Since biopower applications can be varied, a number of conversion systems and feedstocks required evaluation. In addition to limiting this study to woody biomass feedstocks, the boundaries of this study were from the power plant gate to the feedstock entry point into the conversion device. Although some power plants are sited at a source of wood waste fuel, it was assumed for this study that all wood waste would be brought to the power plant site. This study was also confined to the following three feedstocks (1) forest residues, (2) industrial mill residues, and (3) urban wood residues. Additionally, the study was confined to grate, suspension, and fluidized bed direct combustion systems; gasification systems; and SMB conversion systems. Since scale can play an important role in types of equipment, operational requirements, and capital and operational costs, this study examined these factors for the following direct combustion and gasification system size ranges: 50, 20, 5, and 1 MWe. The scope of the study also included: Specific operational issues associated with specific feedstocks (e.g., bark and problems with bridging); Opportunities for reducing handling, storage, and processing costs; How environmental restrictions can affect handling and processing costs (e.g., noise, commingling of treated wood or non-wood materials, emissions, and runoff); and Feedstock quality issues and/or requirements (e.g., moisture, particle size, presence of non-wood materials). The study found that over the

  18. Linear polarizers based on oriented polymer blends

    NARCIS (Netherlands)

    Jagt, H.J.B.; Dirix, Y.J.L.; Hikmet, R.A.M.; Bastiaansen, C.W.M.

    1998-01-01

    Linear sheet polarizers based on the anisotropic scattering of light by drawn polymer blends are introduced here. The proper selection of materials and processing conditions for the production of large-area, flexible films of phase-segregated polymer blends suitable for polarization applications are

  19. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel

    Directory of Open Access Journals (Sweden)

    Rebecca Massimi

    2016-09-01

    Full Text Available Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d−1 > 1. All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  20. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  1. Investigation of Imperata sp. as a Primary Feedstock for Compost Production in Ucayali region, Peru

    Directory of Open Access Journals (Sweden)

    Jan Banout

    2008-10-01

    Full Text Available Five compost piles with different initial C : N ratios have been investigated in this study. As a primary feedstock Imperata sp. was used. The primary feedstock was mixed with poultry litter and vegetable refuse in order to obtain different C : N ratio. The results show that during 64 days of well managed composting under tropical conditions the initial C : N ratio between 30:1 and 50:1 decreased to ratio 11:1 to 15:1, respectively. Results of bioassay tests expressed as the germination index (GI indicate particular compost phytotoxicity. The value of GI was 51.4%, 48.6%, 47.8%, 46.7% and 40.0% for samples from the compost with initial C : N ratios of 30:1, 37:1, 40:1, 44:1 and 50:1, respectively.

  2. Open-pit coal mine production sequencing incorporating grade blending and stockpiling options: An application from an Indian mine

    Science.gov (United States)

    Kumar, Ashish; Chatterjee, Snehamoy

    2017-05-01

    Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.

  3. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    OpenAIRE

    Bandana Biswas; Stephen H. Kazakoff; Qunyi Jiang; Sharon Samuel; Peter M. Gresshoff; Paul T. Scott

    2013-01-01

    The tree legume Pongamia { (L.) Pierre [syn. (L.) Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v), of which approximately 50% is oleic acid (C). The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part...

  4. Assessment of Moisture Content and Its Influence on Laser Beam Melting Feedstock

    NARCIS (Netherlands)

    Cordova, Laura; Campos, Mónica; Tinga, Tiedo

    2017-01-01

    Additive Manufacturing (AM) techniques are known for building functional parts by adding layers of material. This layer-wise fabrication of metal parts yields freedom of design, weight reduction and product customization. Most of the metal AM processes use powder as feedstock, as small particles

  5. High-Octane Mid-Level Ethanol Blend Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Caley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brooker, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); McCormick, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, Steve [Lexidyne, LLC, Colorado Springs, CO (United States); Leiby, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Martinez, Rocio Uria [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oladosu, Gbadebo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Maxwell L. [Colorado School of Mines, Golden, CO (United States)

    2015-12-01

    The United States government has been promoting increased use of biofuels, including ethanol from non-food feedstocks, through policies contained in the Energy Independence and Security Act of 2007. The objective is to enhance energy security, reduce greenhouse gas (GHG) emissions, and provide economic benefits. However, the United States has reached the ethanol blend wall, where more ethanol is produced domestically than can be blended into standard gasoline. Nearly all ethanol is blended at 10 volume percent (vol%) in gasoline. At the same time, the introduction of more stringent standards for fuel economy and GHG tailpipe emissions is driving research to increase the efficiency of spark ignition (SI) engines. Advanced strategies for increasing SI engine efficiency are enabled by higher octane number (more highly knock-resistant) fuels. Ethanol has a research octane number (RON) of 109, compared to typical U.S. regular gasoline at 91-93. Accordingly, high RON ethanol blends containing 20 vol% to 40 vol% ethanol are being extensively studied as fuels that enable design of more efficient engines. These blends are referred to as high-octane fuel (HOF) in this report. HOF could enable dramatic growth in the U.S. ethanol industry, with consequent energy security and GHG emission benefits, while also supporting introduction of more efficient vehicles. HOF could provide the additional ethanol demand necessary for more widespread deployment of cellulosic ethanol. However, the potential of HOF can be realized only if it is adopted by the motor fuel marketplace. This study assesses the feasibility, economics, and logistics of this adoption by the four required participants--drivers, vehicle manufacturers, fuel retailers, and fuel producers. It first assesses the benefits that could motivate these participants to adopt HOF. Then it focuses on the drawbacks and barriers that these participants could face when adopting HOF and proposes strategies--including incentives and

  6. Tailor-made Design of Chemical Blends using Decomposition-based Computer-aided Approach

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza; Manan, Zainuddin Abd.; Gernaey, Krist

    (properties). In this way, first the systematic computer-aided technique establishes the search space, and then narrows it down in subsequent steps until a small number of feasible and promising candidates remain and then experimental work may be conducted to verify if any or all the candidates satisfy......Computer aided technique is an efficient approach to solve chemical product design problems such as design of blended liquid products (chemical blending). In chemical blending, one tries to find the best candidate, which satisfies the product targets defined in terms of desired product attributes...... is decomposed into two stages. The first stage investigates the mixture stability where all unstable mixtures are eliminated and the stable blend candidates are retained for further testing. In the second stage, the blend candidates have to satisfy a set of target properties that are ranked according...

  7. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  8. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad

    2017-03-28

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  9. Evaluation of Anti-Knock Quality of Dicyclopentadiene-Gasoline Blends

    KAUST Repository

    Al-Khodaier, Mohannad; Bhavani Shankar, Vijai Shankar; Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    Increasing the anti-knock quality of gasoline fuels can enable higher efficiency in spark ignition engines. In this study, the blending anti-knock quality of dicyclopentadiene (DCPD), a by-product of ethylene production from naphtha cracking, with various gasoline fuels is explored. The blends were tested in an ignition quality tester (IQT) and a modified cooperative fuel research (CFR) engine operating under homogenous charge compression ignition (HCCI) and knock limited spark advance (KLSA) conditions. Due to current fuel regulations, ethanol is widely used as a gasoline blending component in many markets. In addition, ethanol is widely used as a fuel and literature verifying its performance. Moreover, because ethanol exhibits synergistic effects, the test results of DCPD-gasoline blends were compared to those of ethanol-gasoline blends. The experiments conducted in this work enabled the screening of DCPD auto-ignition characteristics across a range of combustion modes. The synergistic blending nature of DCPD was apparent and appeared to be greater than that of ethanol. The data presented suggests that DCPD has the potential to be a high octane blending component in gasoline; one which can substitute alkylates, isomerates, reformates, and oxygenates.

  10. Opuntia ficus-indica cladodes as feedstock for ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Kuloyo, Olukayode O; du Preez, James C; García-Aparicio, Maria del Prado; Kilian, Stephanus G; Steyn, Laurinda; Görgens, Johann

    2014-12-01

    The feasibility of ethanol production using an enzymatic hydrolysate of pretreated cladodes of Opuntia ficus-indica (prickly pear cactus) as carbohydrate feedstock was investigated, including a comprehensive chemical analysis of the cladode biomass and the effects of limited aeration on the fermentation profiles and sugar utilization. The low xylose and negligible mannose content of the cladode biomass used in this study suggested that the hemicellulose structure of the O. ficus-indica cladode was atypical of hardwood or softwood hemicelluloses. Separate hydrolysis and fermentation and simultaneous saccharification and fermentation procedures using Kluyveromyces marxianus and Saccharomyces cerevisiae at 40 and 35 °C, respectively, gave similar ethanol yields under non-aerated conditions. In oxygen-limited cultures K. marxianus exhibited almost double the ethanol productivity compared to non-aerated cultures, although after sugar depletion utilization of the produced ethanol was evident. Ethanol concentrations of up to 19.5 and 20.6 g l(-1) were obtained with K. marxianus and S. cerevisiae, respectively, representing 66 and 70 % of the theoretical yield on total sugars in the hydrolysate. Because of the low xylan content of the cladode biomass, a yeast capable of xylose fermentation might not be a prerequisite for ethanol production. K. marxianus, therefore, has potential as an alternative to S. cerevisiae for bioethanol production. However, the relatively low concentration of fermentable sugars in the O. ficus-indica cladode hydrolysate presents a technical constraint for commercial exploitation.

  11. Studies of PVC/ENR blends: blend compositions

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2002-01-01

    Blends of poly(vinyl chloride/epoxidized natural rubber (PVC/ENR) were prepared by using Bra bender Plasticorder at compositions ranging from 0-100% PVC. They were blended at 150 degree C mixing temperature, 50 rpm rotor speed and 10 minutes mixing time. The blends were characterized for tensile strength , elongation at break, glass transition temperatures and Fourier transform infra red spectroscopy (FTIR). Results revealed that as the PVC content increases the blend behaviour changes from elastomeric to glassy. However the blends found to be compatible at all compositions. (Author)

  12. Overview of the carbon products consortium (CPC)

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, C.L. [West Virginia Univ., Morgantown, WV (United States)

    1996-08-01

    The Carbon Products Consortium (CPC) is an industry, university, government cooperative research team which has evolved over the past seven years to produce and evaluate coal-derived feedstocks for carbon products. The members of the Carbon Products Consortium are UCAR Carbon Company, Koppers Industries, CONOCO, Aluminum Company of America, AMOCO Polymers, and West Virginia University. The Carbon and Insulation Materials Technology Group at Oak Ridge National Laboratory, Fiber Materials Inc., and BASF Corporation are affiliates of the CPC. The initial work on coal-derived nuclear graphites was supported by a grant to WVU, UCAR Carbon, and ORNL from the U.S. DOE New Production Reactor program. More recently, the CPC program has been supported through the Fossil Energy Materials program and through PETC`s Liquefaction program. The coal processing technologies involve hydrogenation, extraction by solvents such as N-methyl pyrolidone and toluene, material blending, and calcination. The breadth of carbon science expertise and manufacturing capability available in the CPC enables it to address virtually all research and development issues of importance to the carbon products industry.

  13. Conversion and Blending Facility highly enriched uranium to low enriched uranium as oxide. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials into pure HEU oxide and (2) blend the pure HEU oxide with depleted and natural uranium oxide to produce an LWR grade LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU will be produced as a waste suitable for storage or disposal.

  14. Evaporation characteristics of ETBE-blended gasoline.

    Science.gov (United States)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    Science.gov (United States)

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2PLAGA in phosphate buffered saline at 37 degrees C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. (c) 2010 Elsevier Ltd. All rights reserved.

  16. The Effects of Biofuel Feedstock Production on Farmers’ Livelihoods in Ghana: The Case of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Emmanuel Acheampong

    2014-07-01

    Full Text Available The widespread acquisition of land for large-scale/commercial production of biofuel crops in Ghana has raised concerns from civil society organizations, local communities and other parties, regarding the impact of these investments on local livelihoods. This paper assessed the effect of large-scale acquisition of land for production of Jatropha curcas on farmers’ livelihoods in Ghana. The study was conducted in 11 communities spanning the major agro-ecological zones and political divisions across Ghana. Methods of data collection included questionnaire survey, interviews and focus group discussions. Results show that several households have lost their land to Jatropha plantations leading, in some cases, to violent conflicts between biofuel investors, traditional authorities and the local communities. Most people reported that, contrary to the belief that Jatropha does well on marginal lands, the lands acquired by the Jatropha Companies were productive lands. Loss of rights over land has affected households’ food production and security, as many households have resorted to reducing the area they have under cultivation, leading to shortening fallow periods and declining crop yields. In addition, although the cultivation of Jatropha led to the creation of jobs in the communities where they were started, such jobs were merely transient. The paper contends that, even though the impact of Jatropha feedstock production on local livelihoods in Ghana is largely negative, the burgeoning industry could be developed in ways that could support local livelihoods.

  17. Optimization of pineapple pulp residue hydrolysis for lipid production by Rhodotorula glutinis TISTR5159 using as biodiesel feedstock.

    Science.gov (United States)

    Tinoi, Jidapha; Rakariyatham, Nuansri

    2016-08-01

    The higher lipid productivity of Rhodotorula glutinis TISTR5159 was achieved by optimizing the pineapple pulp hydrolysis for releasing the high sugars content. The sequential simplex method operated by varied; solid-to-liquid ratio, sulfuric acid concentration, temperature, and hydrolysis time were successfully applied and the highest sugar content (83.2 g/L) evaluated at a solid-to-liquid ratio of 1:10.8, 3.2% sulfuric acid, 105 °C for 13.9 min. Moreover, the (NH4)2SO4 supplement enhanced the lipid productivity and gave the maximum yields of biomass and lipid of 15.2 g/L and 9.15 g/L (60.2%), respectively. The C16 and C18 fatty acids were found as main components included oleic acid (55.8%), palmitic acid (16.6%), linoleic acid (11.9%), and stearic acid (7.8%). These results present the possibility to convert the sugars in pineapple pulp hydrolysate to lipids. The fatty acid profile was also similar to vegetable oils. Thus, it could be used as potential feedstock for biodiesel production.

  18. Blending Study For SRR Salt Disposition Integration: Tank 50H Scale-Modeling And Computer-Modeling For Blending Pump Design, Phase 2

    International Nuclear Information System (INIS)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-01-01

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where

  19. BLENDING STUDY FOR SRR SALT DISPOSITION INTEGRATION: TANK 50H SCALE-MODELING AND COMPUTER-MODELING FOR BLENDING PUMP DESIGN, PHASE 2

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Fowley, M.

    2011-05-26

    The Salt Disposition Integration (SDI) portfolio of projects provides the infrastructure within existing Liquid Waste facilities to support the startup and long term operation of the Salt Waste Processing Facility (SWPF). Within SDI, the Blend and Feed Project will equip existing waste tanks in the Tank Farms to serve as Blend Tanks where 300,000-800,000 gallons of salt solution will be blended in 1.3 million gallon tanks and qualified for use as feedstock for SWPF. Blending requires the miscible salt solutions from potentially multiple source tanks per batch to be well mixed without disturbing settled sludge solids that may be present in a Blend Tank. Disturbing solids may be problematic both from a feed quality perspective as well as from a process safety perspective where hydrogen release from the sludge is a potential flammability concern. To develop the necessary technical basis for the design and operation of blending equipment, Savannah River National Laboratory (SRNL) completed scaled blending and transfer pump tests and computational fluid dynamics (CFD) modeling. A 94 inch diameter pilot-scale blending tank, including tank internals such as the blending pump, transfer pump, removable cooling coils, and center column, were used in this research. The test tank represents a 1/10.85 scaled version of an 85 foot diameter, Type IIIA, nuclear waste tank that may be typical of Blend Tanks used in SDI. Specifically, Tank 50 was selected as the tank to be modeled per the SRR, Project Engineering Manager. SRNL blending tests investigated various fixed position, non-rotating, dual nozzle pump designs, including a blending pump model provided by the blend pump vendor, Curtiss Wright (CW). Primary research goals were to assess blending times and to evaluate incipient sludge disturbance for waste tanks. Incipient sludge disturbance was defined by SRR and SRNL as minor blending of settled sludge from the tank bottom into suspension due to blending pump operation, where

  20. Effect of water-containing acetone–butanol–ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Li, Yuqiang; Nithyanandan, Karthik; Lee, Timothy H.; Donahue, Robert Michael; Lin, Yilu; Lee, Chia-Fon; Liao, Shengming

    2016-01-01

    Highlights: • Water-containing ABE (acetone–butanol–ethanol) was used an alternative fuel. • Water-containing ABE and gasoline blends were investigated in an SI engine. • Water-containing ABE and gasoline blends can enhance engine torque. • Water-containing ABE and gasoline blends can reduce CO, UHC and NO_x emissions. - Abstract: Bio-butanol has proved to be a promising alternative fuel in recent years; it is typically produced from ABE (acetone–butanol–ethanol) fermentation from non-edible biomass feedstock. The high costs for dehydration and recovery from dilute fermentation broth have so far prohibited bio-butanol’s use in internal combustion engines. There is an interesting in studying the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. However, most previous studies covered the use of water-containing ABE–diesel blends. In addition, previous studies on SI engines fueled with ABE did not consider the effect of water. Therefore, the evaluation of water-containing ABE gasoline blends in a port fuel-injected spark-ignition (SI) engine was carried out in this study. Effect of adding ABE and water into gasoline on combustion, performance and emissions characteristics was investigated by testing gasoline, ABE30, ABE85, ABE29.5W0.5 and ABE29W1 (29 vol.% ABE, 1 vol.% water and 70 vol.% gasoline). In addition, ABE29W1 was compared with gasoline under various equivalence ratios (Φ = 0.83–1.25) and engine loads (3 and 5 bar BMEP). It was found that ABE29W1 generally had higher engine toque (3.1–8.2%) and lower CO (9.8–35.1%), UHC (27.4–78.2%) and NO_x (4.1–39.4%) than those of gasoline. The study indicated that water-containing ABE could be used in SI engines as an alternative fuel with good engine performance and low emissions.

  1. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.

    Science.gov (United States)

    Beagle, E; Wang, Y; Bell, D; Belmont, E

    2018-03-01

    Pine and oak biochars derived as byproducts of demonstration-scale pyrolysis, and blends of these two feedstocks with Powder River Basin coal, were gasified in a carbon dioxide environment using a modified drop tube reactor (MDTR) and a thermogravimetric analyzer (TGA). The impact of gasification temperature on conversion kinetics was evaluated from the temporal evolution of major product gases in the MDTR as measured using a mass spectrometer. Random pore modeling was conducted to simulate gasification in the MDTR with favorable results. The MDTR and TGA were used to conduct gasification for assessment of non-linear additive effects in the blends. Additive analysis of the blends showed deviation from the experimental blend results, indicating inhibiting effects of co-gasifying the biochar and coal. Inhibitory effects are more significant for oak than pine and more pronounced in the TGA at lower gasification temperatures. Results are discussed in the context of feedstock and reactor type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Landscape management for sustainable supplies of bio energy feedstock and enhanced soil quality

    International Nuclear Information System (INIS)

    Douglas, K.; Muth, D.

    2013-01-01

    Agriculture can simultaneously address global food, feed, fiber, and energy challenges provided our soil, water, and air resources are not compromised in doing so. Our objective is to present a landscape management concept as an approach for integrating multiple bio energy feedstock sources into current crop production systems. This is done to show how multiple, increasing global challenges can be met in a sustainable manner. We discuss how collaborative research among Usda-Agricultural Research Service (ARS), US Department of Energy (DOE) Idaho National Laboratory (INL), several university extension and research partners, and industry representatives [known as the Renewable Energy Assessment Project (Reap) team] has led to the development of computer-based decision aids for guiding sustainable bio energy feedstock production. The decision aids, known initially as the Corn Stover Tool and more recently as the Landscape Environmental Assessment Framework (Leaf) are tools designed to recognize the importance of nature s diversity and can therefore be used to guide sustainable feedstock production without having negative impacts on critical ecosystem services. Using a 57 ha farm site in central Iowa, USA, we show how producer decisions regarding corn (Zea mays L.) stover harvest within the US Corn Belt can be made in a more sustainable manner. This example also supports Reap team conclusions that stover should not be harvested if average grain yields are less than 11 Mg ha-1 unless more balanced landscape management practices are implemented. The tools also illustrate the importance of sub-field management and site-specific stover harvest strategies

  3. Influence of feedstock type on heavy coker gas oil quality; A influencia do tipo de carga na qualidade do gasoleo pesado de coque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Claudine T.A.S.; Barros, Francisco C.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Over the past few years, the great challenge to the Oil Industry has been the processing of increasingly heavier feedstock seeking to meet the growing demand for medium distillates and, at the same time, the reduction of the production of fuel oils. In this scenario, the Delayed Coking Unit (DCU) appears to be an attractive technology for the processing of heavy and ultra heavy crudes. The addition of Asphaltene Residue produced by the Solvent Deasphalting Unit (SDA) to the Vacuum Residue, traditional feedstock of these units, has been a new tendency in the composition of the feedstock, with the intention of converting the residual fractions into value added liquid oil products. Results obtained in pilot plants show that asphaltene residue alters the yield and the quality of the products of the DCU, especially those of Heavy Coker Gas Oil (HKGO) that is incorporated in the feedstock of the Fluid Catalytic Cracking Unit (FCCU). The alteration in the quality of the HKGO negatively impacts on the conservation of the FCCU. The insertion of DCU in refineries that possess SDA in their refining systems has shown itself to be fundamental for the reduction of the production of fuel oils. However, to define the quantity and quality of asphaltene residue to be incorporated in the feedstock of the UCR, the best operating conditions and the necessary project adaptations to this unit are fundamental and they should be analyzed with the objective of maximizing the profitability of the refineries. (author)

  4. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature.

    Science.gov (United States)

    Domene, X; Enders, A; Hanley, K; Lehmann, J

    2015-04-15

    Seven contrasting feedstocks were subjected to slow pyrolysis at low (300 or 350°C) and high temperature (550 or 600°C), and both biochars and the corresponding feedstocks tested for short-term ecotoxicity using basal soil respiration and collembolan reproduction tests. After a 28-d incubation, soil basal respiration was not inhibited but stimulated by additions of feedstocks and biochars. However, variation in soil respiration was dependent on both feedstock and pyrolysis temperature. In the last case, respiration decreased with pyrolysis temperature (r=-0.78; pmanagement recommendations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Blend or not to blend: a study investigating faculty members perceptions of blended teaching

    Directory of Open Access Journals (Sweden)

    Mehmet A Ocak

    2010-12-01

    Full Text Available This study examined faculty members’ perceptions of blended teaching from several perspectives. A total of 73 faculty members in Turkish Higher Education context participated in the study by completing an online survey that combined quantitative and qualitative approaches. Based on a data analysis, the faculty members’ perceptions were sorted into six categories: (a satisfaction with blended teaching, (b perceived impact on the role of the faculty, (c perceived impact on student learning, (d perceived impact on student motivation, (e advantages of blended teaching, and (f disadvantages of blended teaching. Findings indicated that faculty members were likely to agree that blended teaching provides a high degree of satisfaction and that it requires more time and commitment from the faculty. The faculty members perceived that blended teaching improves student learning and, to some extent, improves motivation. The faculty members also emphasized the importance of institutional support and the use of technology to mitigate student problems. This study presents these faculty members’ perceptions, which are helpful for those planning to implement a blended teaching approach, and makes suggestions for trouble-shooting and taking advantage of the opportunities in a blended environment successfully.

  6. Multi-agent simulation of adoption of alternative fuels

    NARCIS (Netherlands)

    van Vliet, Oscar; de Vries, Bert; Faaij, Andre; Turkenburg, Wim; Jager, Wander

    We have formalized and parameterized a model for the production of six transport fuels and six fuels blends from six feedstocks through 13 different production chains, and their adoption of by 11 distinct subpopulations of motorists. The motorists are represented by agents that use heuristics to

  7. Interfacing feedstock logistics with bioenergy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Oak Ridge National Lab

    2010-07-01

    The interface between biomass production and biomass conversion platforms was investigated. Functional relationships were assembled in a modeling platform to simulate the flow of biomass feedstock from farm and forest to a densification plant. The model considers key properties of biomass for downstream pre-processing and conversion. These properties include moisture content, cellulose, hemicelluloses, lignin, ash, particle size, specific density and bulk density. The model simulates logistical operations such as grinding to convert biomass to pellets that are supplied to a biorefinery for conversion to heat, power, or biofuels. Equations were developed to describe the physical aspects of each unit operation. The effect that each of the process variables has on the efficiency of the conversion processes was described.

  8. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, September 1-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-11-01

    Studies on the accumulation of glucose during the fermentation of cellulose by Clostridium thermocellum are discussed. Production of ethanol and its relationship to growth rate in C. thermocellum is reported. Different biomasses were tested for ethanol yields. These included exploded poplar, sugar cane, bagasse, corn cobs, sweet gum, rice straw, and wheat straw. Thermophilic bacteria were tested to determine relationship of temperature to yield of ethanol. A preliminary report on isolating plaque forming emits derived from C. thermocellum is presented as well as the utilization of carbohydrates in nutrition. A cellulose enzyme is being purified from C. thermocellum. The production of chemical feedstocks by fermentation is reported. Acrylic acid, acetone/butanol, and acetic acid, produced by C. propionicum, C. acetobutylicum, and C. thermoaceticum, are discussed. (DC)

  9. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    International Nuclear Information System (INIS)

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  10. HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  11. Assessment of Bermudagrass and Bunch Grasses as Feedstock for Conversion to Ethanol

    Science.gov (United States)

    Anderson, William F.; Dien, Bruce S.; Brandon, Sarah K.; Peterson, Joy Doran

    Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g-1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g-1) and two giant reed clones (109 and 85 mg g-1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g-1) being superior to Coastal (247 mg g-1) and Tifton 44 (245 mg g-1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.

  12. Organic waste as a sustainable feedstock for platform chemicals.

    Science.gov (United States)

    Coma, M; Martinez-Hernandez, E; Abeln, F; Raikova, S; Donnelly, J; Arnot, T C; Allen, M J; Hong, D D; Chuck, C J

    2017-09-21

    Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.

  13. Process for desulfurizing petroleum feedstocks

    Science.gov (United States)

    Gordon, John Howard; Alvare, Javier

    2014-06-10

    A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.

  14. Evaporation characteristics of ETBE-blended gasoline

    International Nuclear Information System (INIS)

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-01-01

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  15. Evaporation characteristics of ETBE-blended gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Katsuhiro, E-mail: okamoto@nrips.go.jp [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan); Hiramatsu, Muneyuki [Yamanashi Prefectural Police H.Q., 312-4 Kubonakajima, Isawa-cho, Usui, Yamanashi 406-0036 (Japan); Hino, Tomonori; Otake, Takuma [Metropolitan Police Department, 2-1-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-8929 (Japan); Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi [National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882 (Japan)

    2015-04-28

    Highlights: • We chose 8-component hydrocarbon mixture as a model gasoline, and defined the molar mass of gasoline. • We proposed an evaporation model assuming a 2-component mixture of gasoline and ETBE. • We predicted the change in the vapor pressure of ETBE-blended gasoline by evaporation. • The vapor pressures were measured and compared as a means of verifying the model. • We presented the method for predicting flash points of the ETBE-blended gasoline. - Abstract: To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were

  16. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

  17. Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal

  18. Study of PP/Polybutene Blends Modified by Gamma Irradiation and HMS-PP/Polybutene Blends

    International Nuclear Information System (INIS)

    Lugao, A. B.

    2006-01-01

    The polypropylene (PP) has been applied to a wide range of production due to its various excellent properties such as cheapness, high stiffness, chemical resistance, no environmental pollution when incinerated, low specific density and good mechanical properties. However, PP is a linear polymer which exhibits low melt strength. One of the effective approaches to achieve high melt strength (HMS) is to add chain branches onto backbone polymers. High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international polypropylene producers. As a consequence different methods have been applied to modify polypropylenes by chain branches. The technology obtained by IPEN together with EMBRARAD and BRASKEM comprises chain branches added onto backbone species using gamma radiation, which is generated from a Co 6 0 source. Such radiation is very convenient in order to improve polymer materials by grafting, crosslinking and degradation. Another important approach to the development of polymer materials is based on the combination of different polymers into a new product having some of the desired properties of each component. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene (HMS-PP) that was after blended with polybutene and in polypropylene/polybutene blends. The samples were irradiated with a 60 C o source at doses of 12,5 and 20kGy in the presence of acetylene. It was investigated how the two different routes of blends processing can modify their properties. Indeed the results from melt flow, gel fraction and rheology reveal the influence of the process route in the blends properties. Effects on the elongation at break and break strength were observed by the results of mechanical tests. The results from rheology demonstrated an increase in melt strength and drawability of the blends

  19. Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion

    International Nuclear Information System (INIS)

    Wall, David M.; Wu-Haan, Wei; Safferman, Steven I.

    2012-01-01

    Solid residuals generated from dewatering food processing wastewater contain organic carbon that can potentially be reclaimed for energy through anaerobic digestion. This results in the diversion of waste from a landfill and uses it for a beneficial purpose. Dewatering the waste concentrates the carbon, reducing transportation costs to a farm digester where it can be blended with manure to increase biogas yield. Polymers are often used in the dewatering of the food waste but little is known regarding their impact on biogas production. Four 2 dm 3 working volume, semi-continuous reactors, were used at a mesophilic temperature and a solids retention time (SRT) of 15 days. Reactors were fed daily with a blended feedstock containing a food processing sludge waste (FPSW)/manure ratio of 2.2:1 (by weight) as this produced the optimized carbon to nitrogen ratio. Results demonstrated that reconstitution of dewatered FPSW with dairy manure produced approximately 2 times more methane than animal manure alone for the same volume. However, only approximately 30% of volatile solids (VS) were consumed indicating energy potential still remained. Further, the efficiency of the conversion of VS to methane for the blended FPSW/manure was substantially less than for manure only. However, the overall result is an increase in energy production for a given tank volume, which can decrease life cycle costs. Because all FPSW is unique and the determination of dewatering additives is customized based on laboratory testing and field adjustment, generalizations are difficult and specific testing is required. -- Highlights: ► Energy production in anaerobic digestion can increase by co-blending food waste. ► Energy for transporting food waste to blend with manure is less when dewatered. ► Dewatered food waste in manure produced twice as much methane than manure. ► Efficiency of carbon to methane was low because of ammonium bicarbonate production. ► Carbon destruction was 30%, more

  20. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  1. An investigation on radiation crosslinked foam of LDPE/EVA blends

    International Nuclear Information System (INIS)

    Siqin Dalai; Chen Wenxiu

    1995-01-01

    LDPE/EVA blend, irradiated by γ-ray then expansed by heat as a foam material, the EVA content in LDPE/EVA blend was benefited to form gelation. The gel fraction on irradiated LDPE/EVA blend increased with the increasing of its EVA content in a given dose. The gel fraction values of LDPE/EVA blend with 30% EVA content were higher than those of other blends in a same given dose, its gel fraction value was 1.7 times as those values of LDPE without EVA. The gel fractions on LDPE/EVA blend were increased with dose in oxygen, in air and in nitrogen, the formation of gel was limited by oxygen. The oxidation products on foam of LDPE/EVA blend were observed in nitrogen, in air and in oxygen by FTIR spectra. The LDPE/EVA blend system has no protection effect from oxidation comparison with the LDPE system without EVA which has less oxidation product than those without EVA in a same given gel fraction. The gel fraction on foam of LDPE/EVA blend around 25-35%, dose 25 ± 5kGy, irradiated by γ-ray in air or in nitrogen, with higher expansion ratio (19), smaller cell diameter (0.175mm), lower apparent density (0.042g/cm 3 ), higher tensile strength (0.40MPa) and longer elongation at break (290-360%) on foam of LDPE/EVA blend were selected. It was opitimum condition for application in this systems. The relations among gel fraction on LDPE/EVA blend, expansion ratio, apparent density, average cell diameter and mechanical properties of foamed sheet were discussed. (author)

  2. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    Leduc, Sylvain; Natarajan, Karthikeyan; McCallum, Ian; Obersteiner, Michael; Dotzauer, Erik

    2009-01-01

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements. (author)

  3. Evaluation of Indian milkweed (Calotropis gigantea) seed oil as alternative feedstock for biodiesel

    Science.gov (United States)

    Calotropis gigantea (Indian milkweed) is a common plant in Asia that grows as a weed on open waste ground. Flowering and fruiting take place throughout the year. In this study, Indian milkweed oil was evaluated as a potential feedstock for biodiesel production. The oil was extracted from Indian milk...

  4. Fatty acid from the renewable sources: a promising feedstock for the production of biofuels and biobased chemicals.

    Science.gov (United States)

    Liu, Hui; Cheng, Tao; Xian, Mo; Cao, Yujin; Fang, Fang; Zou, Huibin

    2014-01-01

    With the depletion of the nonrenewable petrochemical resources and the increasing concerns of environmental pollution globally, biofuels and biobased chemicals produced from the renewable resources appear to be of great strategic significance. The present review described the progress in the biosynthesis of fatty acid and its derivatives from renewable biomass and emphasized the importance of fatty acid serving as the platform chemical and feedstock for a variety of chemicals. Due to the low efficient conversions of lignocellulosic biomass or carbon dioxide to fatty acid, we also put forward that rational strategies for the production of fatty acid and its derivatives should further derive from the consideration of whole bioprocess (pretreatment, saccharification, fermentation, separation), multiscale analysis and interdisciplinary combinations (omics, kinetics, metabolic engineering, synthetic biology, fermentation and so on). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  6. Integrated report on the toxicological mitigation of coal liquids by hydrotreatment and other processes. [Petroleum and coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, M.R.; Griest, W.H.; Ho, C.H.; Smith, L.H.; Witschi, H.P.

    1986-06-01

    Research here on the toxicological properties of coal-derived liquids focuses on characterizing the refining process and refined products. Principle attention is given to the potential tumorigenicity of coal-derived fuels and to the identification of means to further reduce tumorigenicity should this be found necessary. Hydrotreatment is studied most extensively because it will be almost certainly required to produce commercial products and because it is likely to also greatly reduce tumorigenic activity relative to that of crude coal-liquid feedstocks. This report presents the results of a lifetime C3H mouse skin tumorigenicity assay of an H-Coal series of oils and considers the relationships between tumorigenicity, chemistry, and processing. Lifetime assay results are reported for an H-Coal syncrude mode light oil/heavy oil blend, a low severity hydrotreatment product, a high severity hydrotreatment product, a naphtha reformate, a heating oil, a petroleum-derived reformate, and a petroleum derived heating oil. Data are compared with those for an earlier study of an SRC-II blend and products of its hydrotreatment. Adequate data are presented to allow an independent qualitative assessment of the conclusions while statistical evaluation of the data is being completed. The report also documents the physical and chemical properties of the oils tested. 33 refs., 14 figs., 53 tabs.

  7. Sustainable Use of Biotechnology for Bioenergy Feedstocks

    Science.gov (United States)

    Moon, Hong S.; Abercrombie, Jason M.; Kausch, Albert P.; Stewart, C. Neal

    2010-10-01

    Done correctly, cellulosic bioenergy should be both environmentally and economically beneficial. Carbon sequestration and decreased fossil fuel use are both worthy goals in developing next-generation biofuels. We believe that biotechnology will be needed to significantly improve yield and digestibility of dedicated perennial herbaceous biomass feedstocks, such as switchgrass and Miscanthus, which are native to the US and China, respectively. This Forum discusses the sustainability of herbaceous feedstocks relative to the regulation of biotechnology with regards to likely genetically engineered traits. The Forum focuses on two prominent countries wishing to develop their bioeconomies: the US and China. These two countries also share a political desire and regulatory frameworks to enable the commercialization and wide release of transgenic feedstocks with appropriate and safe new genetics. In recent years, regulators in both countries perform regular inspections of transgenic field releases and seriously consider compliance issues, even though the US framework is considered to be more mature and stringent. Transgene flow continues to be a pertinent environmental and regulatory issue with regards to transgenic plants. This concern is largely driven by consumer issues and ecological uncertainties. Regulators are concerned about large-scale releases of transgenic crops that have sexually compatible crops or wild relatives that can stably harbor transgenes via hybridization and introgression. Therefore, prior to the commercialization or extensive field testing of transgenic bioenergy feedstocks, we recommend that mechanisms that ensure biocontainment of transgenes be instituted, especially for perennial grasses. A cautionary case study will be presented in which a plant’s biology and ecology conspired against regulatory constraints in a non-biomass crop perennial grass (creeping bentgrass, Agrostis stolonifera), in which biocontainment was not attained. Appropriate

  8. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  9. Rhazya stricta Decne seed oil as an alternative, non-conventional feedstock for biodiesel production

    International Nuclear Information System (INIS)

    Nehdi, Imededdine Arbi; Sbihi, Hassen Mohamed; Al-Resayes, Saud Ibrahim

    2014-01-01

    Highlights: • First report of Rhazia stricta seed oil as feedstock for biodiesel production. • Biodiesel is prepared by alkaline transesterification. • Biodiesel from R. stricta oil meets specifications in biodiesel standards. - Abstract: Rhazya stricta Decne (R. stricta) is a hardy, drought-resistant, and arid land plant that is widely distributed from the Middle East to South Asia. The aim of this study was to evaluate the use of R. stricta seed oil as an alternative source of triacylglycerols that may be suitable for the synthesis of biodiesel. The oil content of the seeds was approximately 14% and was mainly composed of the fatty acids linoleic (60.95%) and oleic (25.48%) acid. R. stricta methyl esters (RSME) were prepared by a base-catalyzed transesterification reaction. The conversion rate of the triacylglycerols to the corresponding methyl esters was determined by 1 H-NMR to be approximately 97%. This study showed that the fuel properties of the RSMEs are comparable to other vegetable oil methyl esters that are commonly used as biodiesels. R. stricta plantations will therefore be suitable for promoting sustainable agriculture and for producing biodiesel with viable prices in arid and semi-arid regions throughout the world

  10. Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends

    International Nuclear Information System (INIS)

    Li, Yuqiang; Meng, Lei; Nithyanandan, Karthik; Lee, Timothy H.; Lin, Yilu; Lee, Chia-fon F.; Liao, Shengming

    2017-01-01

    Bio-butanol is typically produced by acetone-butanol-ethanol (ABE) fermentation, however, the recovery of bio-butanol from the ABE mixture involves high costs and energy consumption. Hence it is of interest to study the intermediate fermentation product, i.e. ABE, as a potentially alternative fuel. In this study, an experimental investigation of the performance, combustion and emission characteristics of a port fuel-injection SI engine fueled with ABE-gasoline blends was carried out. By testing different ABE-gasoline blends with varying ABE content (0 vol%, 10 vol%, 30 vol% and 60 vol% referred to as G100, ABE10, ABE30 and ABE60), ABE formulation (A:B:E of 1:8:1, 3:6:1 and 5:4:1 referred to as ABE(181), ABE(361) and ABE(541)), and water content (0.5 vol% and 1 vol% water referred to as W0.5 and W1), it was found that ABE(361)30 performed well in terms of engine performance and emissions, including brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), carbon monoxide (CO), unburned hydrocarbons (UHC) and nitrogen oxides (NO_x) emissions. Then, ABE(361)30 was compared with conventional fuels, including E30, B30 (30 vol% ethanol or butanol blended with gasoline) and pure gasoline (G100) under various equivalence ratios and engine loads. Overall, a higher BTE (0.2–1.4%) and lower CO (1.4–4.4%), UHC (0.3–9.9%) and NO_x (4.2–14.6%) emissions were observed for ABE(361)30 compared to those of G100 in some cases. Therefore, ABE could be a good alternative fuel to gasoline due to the environmentally benign manufacturing process (from non-edible biomass feedstock and without a recovery process), and the potential to improve energy efficiency and reduce pollutant emissions. - Highlights: • ABE (acetone-butanol-ethanol) was used as a green alternative fuel. • ABE-gasoline blends with various ratios of ABE, ABE component and water were test. • Combustion, performance and emissions characteristics were investigated. • Adding ABE into

  11. Potential of sustainable biomass production systems in Texas

    International Nuclear Information System (INIS)

    Sanderson, M.A.; Hussey, M.A.; Wiselogel, A.E.

    1992-01-01

    Biomass production for liquid fuels feedstock from systems based on warm-season perennial grasses (WSPG) offers a sustainable alternative for forage-livestock producers in Texas. Such systems also would enhance diversity and flexibility in current production systems. Research is needed to incorporate biomass production for liquid fuels, chemicals, and electrical power into current forage-livestock management systems. Our research objectives were to (i) document the potential of several WSPG in diverse Texas environments for biomass feedstock production, (ii) conduct fundamental research on morphological development of WSPG to enhance management for biomass feedstock production, (iii) examine current on-farm production systems for opportunities to incorporate biomass production, and (iv) determine feedstock quality and stability during storage

  12. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    International Nuclear Information System (INIS)

    1995-01-01

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF 6 and a (2) blend the pure HEU UF 6 with diluent UF 6 to produce LWR grade LEU-UF 6 . The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry

  13. Conversion and Blending Facility Highly enriched uranium to low enriched uranium as uranium hexafluoride. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This report describes the Conversion and Blending Facility (CBF) which will have two missions: (1) convert surplus HEU materials to pure HEU UF{sub 6} and a (2) blend the pure HEU UF{sub 6} with diluent UF{sub 6} to produce LWR grade LEU-UF{sub 6}. The primary emphasis of this blending be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The chemical and isotopic concentrations of the blended LEU product will be held within the specifications required for LWR fuel. The blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry.

  14. Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms

    Science.gov (United States)

    2016-01-01

    Concerns in the last few decades regarding the environmental and socioeconomic impacts of the dependence on fossil fuels have resulted in calls for more renewable and alternative energy sources. This has led to recent interest in copyrolysis of biomass and coal. Numerous reviews have been found related to individual pyrolysis of coal and biomass. This review deals mainly with the copyrolysis of coal and biomass and then compares their results with those obtained using coal and biomass pyrolysis in detail. It is controversial whether there are synergistic or additive behaviours when coal and biomass are blended during copyrolysis. In this review, the effects of reaction parameters such as feedstock types, blending ratio, heating rate, temperature, and reactor types on the occurrence of synergy are discussed. Also, the main properties of the copyrolytic products are pointed out. Some possible synergistic mechanisms are also suggested. Additionally, several outlooks based on studies in the literature are also presented in this paper. PMID:27722171

  15. System for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2016-04-26

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  16. Method for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2014-02-18

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  17. Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection

    International Nuclear Information System (INIS)

    Mangus, Michael; Kiani, Farshid; Mattson, Jonathan; Tabakh, Daniel; Petka, James; Depcik, Christopher; Peltier, Edward; Stagg-Williams, Susan

    2015-01-01

    Researchers across the globe are searching for energy sources to replace the petroleum-based fuels used by the transportation sector. A fuel of particular interest is biodiesel, produced from a diverse variety of feedstock oils with differing fuel properties that alter the operation and emissions of the engines using them. As biodiesel may be mixed with petroleum-based diesel, the fuel being used by a diesel engine may vary by both biodiesel blend percentage and source. Therefore, the influence of biodiesel properties as a function of blend is important to understand. In this study, four biodiesels, produced from palm, jatropha, soybean, and beef tallow, are tested with blends of petroleum diesel at ratios of 5%, 10%, 20%, and 50% biodiesel content. The results are compared with tests of neat diesel and each biodiesel. Using electronic injection, timing is modulated to normalize combustion phasing for all fuels tested to directly investigate the effects of biodiesel on combustion. Results indicate that fuel viscosity, energy content, and molecular structure have distinct influences on combustion that must be considered for engine calibration. When adjusted for combustion timing, biodiesel blends also showed a general decrease in NO x emissions compared to ultra-low sulfur diesel. - Highlights: • Biodiesel injection timing is adjusted to remove cetane number effect on combustion. • When combustion is normalized, biodiesel NO x emissions are lower than those of ULSD. • Four distinct biodiesels used in blends from 0% to 100% biodiesel/ULSD fraction. • Correlating fuel properties to combustion/emissions is useful for engine calibration

  18. Conversion and Blending Facility highly enriched uranium to low enriched uranium as uranyl nitrate hexahydrate. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-05

    This Conversion and Blending Facility (CBF) will have two missions: (1) convert HEU materials to pure HEU uranyl nitrate (UNH) and (2) blend pure HEU UNH with depleted and natural UNH to produce HEU UNH crystals. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. To the extent practical, the chemical and isotopic concentrations of blended LEU product will be held within the specifications required for LWR fuel. Such blended LEU product will be offered to the United States Enrichment Corporation (USEC) to be sold as feed material to the commercial nuclear industry. Otherwise, blended LEU Will be produced as a waste suitable for storage or disposal.

  19. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks

    Directory of Open Access Journals (Sweden)

    Bertilsson Magnus

    2008-05-01

    Full Text Available Abstract Simultaneous saccharification and fermentation (SSF is one process option for production of ethanol from lignocellulose. The principal benefits of performing the enzymatic hydrolysis together with the fermentation, instead of in a separate step after the hydrolysis, are the reduced end-product inhibition of the enzymatic hydrolysis, and the reduced investment costs. The principal drawbacks, on the other hand, are the need to find favorable conditions (e.g. temperature and pH for both the enzymatic hydrolysis and the fermentation and the difficulty to recycle the fermenting organism and the enzymes. To satisfy the first requirement, the temperature is normally kept below 37°C, whereas the difficulty to recycle the yeast makes it beneficial to operate with a low yeast concentration and at a high solid loading. In this review, we make a brief overview of recent experimental work and development of SSF using lignocellulosic feedstocks. Significant progress has been made with respect to increasing the substrate loading, decreasing the yeast concentration and co-fermentation of both hexoses and pentoses during SSF. Presently, an SSF process for e.g. wheat straw hydrolyzate can be expected to give final ethanol concentrations close to 40 g L-1 with a yield based on total hexoses and pentoses higher than 70%.

  20. Technology for down-blending weapons grade uranium into commercial reactor-usable uranium

    International Nuclear Information System (INIS)

    Arbital, J.G.; Snider, J.D.

    1996-01-01

    The US Department of Energy (DOE) is evaluating options for rendering surplus inventories of highly enriched uranium (HEU) incapable of being used in nuclear weapons. Weapons-capable HEU was earlier produced by enriching the uranium isotope 235 U from its natural occurring 0.71 percent isotopic concentration to at least 20 percent isotopic concentration. Now, by permanently diluting the concentration of the 235 U isotope, the weapons capability of HEU can be eliminated in a manner that is reversible only through isotope re-enrichment, and therefore, highly resistant to proliferation. To the extent that can be economically and technically justified, the down-blended, low-enriched uranium product will be made suitable for use as commercial reactor fuel. Such down-blended uranium product can also be disposed of as waste if chemical or isotopic impurities preclude its use as reactor fuel. The DOE has evaluated three candidate processes for down blending surplus HEU. These candidate processes are: (1) uranium hexafluoride blending; (2) molten uranium metal blending; and (3) uranyl nitrate solution blending. This paper describes each of these candidate processes. It also compares the relative advantages and disadvantages of each process with respect to: (1) the various forms and compounds of HEU comprising the surplus inventory, (2) the use of down-blended product as commercial reactor fuel, or (3) its disposal as waste

  1. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis

    International Nuclear Information System (INIS)

    Du, Yuying; Jiang, Xuguang; Lv, Guojun; Ma, Xiaojun; Jin, Yuqi; Wang, Fei; Chi, Yong; Yan, Jianhua

    2014-01-01

    Highlights: • The Activation energy for the blends is lower than that of BR and coal when BR < 50%. • The BR/coal blends start to decompose at approximately 45 °C releasing ammonia. • The yield of gaseous products increases with increasing BR blending ratio. • NH 3 , alkanes and CO 2 increase with increasing BR blending ratio. • Interactions most likely occur between the BR and the coal during co-pyrolysis. - Abstract: In this work, the thermal behavior and kinetics of bio-ferment residue (BR) and coal blends during co-pyrolysis were investigated using TG-FTIR and kinetic analysis. The co-pyrolysis of BR and coal occurred in three major stages. The BR/coal blends lost most of their weight during the devolatilization stage. The kinetics of the BR/coal blends in this stage implied that the activation energy was lower than that of BR and coal below a certain BR blending ratio. The BR/coal blends started to decompose at approximately 45 °C, releasing ammonia followed by alkanes, carbon dioxide, methane and carbon monoxide. The total yield of gaseous products (primarily ammonia, alkanes and carbon dioxide) increased with increasing BR blending ratio. Moreover, interactions most likely occurred between the BR and the coal during co-pyrolysis

  2. Optimal set of selected uranium enrichments that minimizes blending consequences

    International Nuclear Information System (INIS)

    Nachlas, J.A.; Kurstedt, H.A. Jr.; Lobber, J.S. Jr.

    1977-01-01

    Identities, quantities, and costs associated with producing a set of selected enrichments and blending them to provide fuel for existing reactors are investigated using an optimization model constructed with appropriate constraints. Selected enrichments are required for either nuclear reactor fuel standardization or potential uranium enrichment alternatives such as the gas centrifuge. Using a mixed-integer linear program, the model minimizes present worth costs for a 39-product-enrichment reference case. For four ingredients, the marginal blending cost is only 0.18% of the total direct production cost. Natural uranium is not an optimal blending ingredient. Optimal values reappear in most sets of ingredient enrichments

  3. Optimization of transesterification reaction conditions for the production of biodiesel from oil blend of castor bean and soybean; Otimizacao das condicoes reacionais de transesterizacao para producao de biodiesel a partir de mistura de oleos de mamona e soja

    Energy Technology Data Exchange (ETDEWEB)

    Lobato, Ana Katerine de Carvalho Lima; Lima, Milena Gouveia Oliveira de; Pontes, Luiz Antonio M.; Teixeira, Leonardo S.G. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Almeida, Daniel Freire; Costa, Tales Santana Martins; Menezes; Mateus Della Cella; Santos, Iran Talis Viana; Almeida, Selmo Q. [Universidade Salvador (UNIFACS), BA (Brazil)

    2012-07-01

    Biodiesel is an alternative fuel to diesel oil, and industrially obtained by the transesterification of triglycerides of fatty acids from vegetable oils and/or animal fats. Currently, the main raw material used to produce biodiesel in Brazil is soybean oil. The inclusion of other raw materials from different cultures in this sector is important and aims to reduce dependence on a single oilseed, assign specific characteristics to the product and encourage the development of family farming. The use of blends of soybean oil and castor for biodiesel may prove an important strategy to minimize the negative effects and maximize the positives of each oilseed. In this work, we carried out an experimental study using full factorial design 2{sup 4}, to increase the conversion of esters, by conventional transesterification, using as feedstock a blend of oils containing 20% castor and 80% soybean. The aim of this study was to evaluate the influence of mixing ratio of oil: methanol, KOH concentration, temperature and reaction time in biodiesel production. It was found that the variation of these parameters affected the conversion of esters and quality of biodiesel produced. Conversions above 95% were obtained, and the best conversion was 99.05% at 25 deg C in a reaction time of 20 minutes using 2% KOH as a catalyst and a molar ratio methanol/oil 12:1. In order to reduce the costs of the process with respect to amount of methanol used without affecting the conversion of esters, we identified a second set of process conditions, which used the same conditions of temperature, reaction time and catalyst concentration and a different molar ratio methanol/oil (6:1) which gave a conversion of esters of 98.59%. (author)

  4. Assessment of the influence of energy density and feedstock transport distance on the environmental performance of methane from maize silages.

    Science.gov (United States)

    Bacenetti, Jacopo; Lovarelli, Daniela; Ingrao, Carlo; Tricase, Caterina; Negri, Marco; Fiala, Marco

    2015-10-01

    In Europe, thanks to public subsidy, the production of electricity from anaerobic digestion (AD) of agricultural feedstock has considerably grown and several AD plants were built. When AD plants are concentrated in specific areas (e.g., Northern Italy), increases of feedstock' prices and transport distances can be observed. In this context, as regards low-energy density feedstock, the present research was designed to estimate the influence of the related long-distance transport on the environmental performances of the biogas-to-electricity process. For this purpose the following transport systems were considered: farm trailers and trucks. For small distances (<5 km), the whole plant silage shows the lowest impact; however, when distances increase, silages with higher energy density (even though characterised by lower methane production per hectare) become more environmentally sustainable. The transport by trucks achieves better environmental performances especially for distances greater than 25 km. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  6. Performance and Emission Analysis of a Diesel Engine Using Linseed Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    M. M. Tunio

    2018-06-01

    Full Text Available The core object of this study is to examine the suitability of linseeds for biodiesel production. The performance of an engine at different proportions of linseed blends with petro-diesel and the amount of emissions rate were investigated. Initially, linseed biodiesel was produced through transesterification process, and then it was mixed with petro-diesel fuel (D100 blends at volumetric ratios of 10% (LB10, 20% (LB20, and 30% (LB30. The properties of linseed biodiesel and its blends were investigated and compared with petro-diesel properties with reference to ASTM standards. It has been observed that the fuel properties of produced biodiesel are within ASTM permissible limits. The specific fuel consumption (SFC of LB10 blend has been found lesser compared to LB20 and LB30. SFC of D100 is slightly less than that of all the blends. The brake thermal efficiency (BTE of LB30 is greater than that of pure diesel D100 at maximum load and greater than that of LB10 and LB20. The heat dissipation rate in all linseed blends is found to have been less than that of D100. Carbon monoxide, carbon dioxide and NOx emissions of linseed blends are mostly lower in comparison with D100’s. Among all blends, LB10 was found more suitable alternative fuel for diesel engines and can be blended with petro diesel without engine modifications. It can be concluded that cultivation and production of linseed in Pakistan is very promising, therefore, it is recommended that proper exploitation and use of linseed for energy production may be encouraged through pertinent agencies of Pakistan.

  7. Potential Application of ENR/EPDM Blends

    Directory of Open Access Journals (Sweden)

    B.L. Chan

    2017-06-01

    Full Text Available Since the process and conversion of natural rubber into epoxidized natural rubber (ENR was discovered and patented by I. R. Gelling of the Malaysian Rubber Product Research Association  (or now known as the Tun Razak laboratory, Brickendonbury, Hertford, in the United Kingdom, there are more than 10 000 technical and technological papers cited in the internet. Information on ENR is available, not only in the the English language but also other languages like Chinese, Malay, French, Thai and even German languages are used. NR is the most versatile and reactive rubber/elastomer. It is an advanced natural rubber which could be potentially used as a starting material for the development of other rubbers, modifie elastomers, for grafting, plastic-based materials and also thermoplastic rubbers. Its reactivity is dependent on its epoxy groups, the opening of its ring structure, and also the subsequent structures of carboxylic groups and the in-situ side-chains “carbon – carbon” double bonds (> C = C <. In some instances, up to 65% epoxidation of NR is possible and achieved for more oil resistance. For these reasons, there are many new and advanced materials which have been formed and developed in the last two decades. Among them, some of the recent research work is listed here. Apart from studies of compounding the ENR itself and its potential uses, there are many rubber-rubber blends and ENR rubber-plastics blends, some of the studies cited are “uses of new and advanced chemicals”  and synthetic rubbers:  ENR/NBR, ENR/PVC, ENR/polylactic acid blends, ENR/copolyester blends, ENR/Copolyamide Blends, ENR/poly (vinylidene fluorideblends, ENR/Carbon Nanotubes with co-agent Trimethylol Propane Triacrylate, ENR /recycled silicon materials, and ENR/copolymer of n-butyl acrylate/butyl methacrylate “grafted”. Each of these blends has its own characteristics in terms of processing, enhancement of processing like safety, scorch, oil and water

  8. Conversion of non-nuclear grade feedstock to UF4

    International Nuclear Information System (INIS)

    Ponelis, A.A.; Slabber, M.N.; Zimmer, C.H.E.

    1987-01-01

    The South African Conversion route is based on the direct feed of ammonium di-uranate produced by any one of a number of different mines. The physical and chemical characteristics of the feedstock can thus vary considerably and influence the conversion rate as well as the final UF 6 product purity. The UF 4 conversion reactor is a Moving Bed Reactor (MBR) with countercurrent flow of the reacting gas phases. Initial problems to continuously operate the MBR were mostly concerned with the physical nature of the UO 3 feed particles. Different approaches to eventually obtain a successful MBR are discussed. Besides obtaining UO 3 feed particles with certain physical attributes, the chemical impurities also have an effect on the operability of the MBR. The influence of the feedstock variables on the reduction and hydrofluorination rates after calcining has largely been determined from laboratory and pilot studies. The effect of chemical impurities such as sodium and potassium on the sinterability of the reacting particles and therefore the optimum temperature range in the MBR is also discussed. Confirmation of the effect of sodium and potassium impurities on the conversion rate has been obtained from large scale reactor operation. (author)

  9. Co-production of bioethanol and probiotic yeast biomass from agricultural feedstock: application of the rural biorefinery concept.

    Science.gov (United States)

    Hull, Claire M; Loveridge, E Joel; Donnison, Iain S; Kelly, Diane E; Kelly, Steven L

    2014-01-01

    Microbial biotechnology and biotransformations promise to diversify the scope of the biorefinery approach for the production of high-value products and biofuels from industrial, rural and municipal waste feedstocks. In addition to bio-based chemicals and metabolites, microbial biomass itself constitutes an obvious but overlooked by-product of existing biofermentation systems which warrants fuller attention. The probiotic yeast Saccharomyces boulardii is used to treat gastrointestinal disorders and marketed as a human health supplement. Despite its relatedness to S. cerevisiae that is employed widely in biotechnology, food and biofuel industries, the alternative applications of S. boulardii are not well studied. Using a biorefinery approach, we compared the bioethanol and biomass yields attainable from agriculturally-sourced grass juice using probiotic S. boulardii (strain MYA-769) and a commercial S. cerevisiae brewing strain (Turbo yeast). Maximum product yields for MYA-769 (39.18 [±2.42] mg ethanol mL(-1) and 4.96 [±0.15] g dry weight L(-1)) compared closely to those of Turbo (37.43 [±1.99] mg mL(-1) and 4.78 [±0.10] g L(-1), respectively). Co-production, marketing and/or on-site utilisation of probiotic yeast biomass as a direct-fed microbial to improve livestock health represents a novel and viable prospect for rural biorefineries. Given emergent evidence to suggest that dietary yeast supplementations might also mitigate ruminant enteric methane emissions, the administration of probiotic yeast biomass could also offer an economically feasible way of reducing atmospheric CH4.

  10. Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors

    International Nuclear Information System (INIS)

    Matuszewska, Anna; Owczuk, Marlena; Zamojska-Jaroszewicz, Anna; Jakubiak-Lasocka, Joanna; Lasocki, Jakub; Orliński, Piotr

    2016-01-01

    Highlights: • Biochemical methane potential for mixtures of whey, manures and silages was tested. • High impact of feedstock type on composition and yield of biogas was observed. • Simple mathematical model of methanogenic fermentation was proposed. • Exhaust emissions from dual fuel (biogas and diesel oil) engine were investigated. • Using biogas in engine reduces particulate matter and nitrogen oxides emissions. - Abstract: This work is divided into three parts. The first one presents results of biological methane potential of agriculture raw materials available in Poland. In the second part the simple mathematical model of methanogenic fermentation is proposed. The data for this model were obtained from experimental digestion process of chosen mixtures. Last part includes the results of research of exhaust emissions generated by dual dual-fuel engine of agricultural tractor powered by mixture of model biogas (60% and 70% of methane) and diesel oil. The obtained results revealed that there was a significant difference in chemical composition and yield of biogas between considered feedstock types. The highest biogas and methane production was obtained for mixtures in ratio of 6:4 for swine manure/maize silage and whey/grass silage. Due to agriculture conditions in Poland and obtain results, the maize silage and swine manure were chosen to development of mathematical model of fermentation process. It showed a satisfactory match to the experimental results. Results of emission tests on dual-fuel tractor engine supplied with biogas and diesel oil showed the higher concentrations of hydrocarbons and carbon oxide and lower concentrations of particulate matter in exhaust gases. Level of emission of particular components depends on the biogas composition.

  11. Evaluation of three cultivars of sweet sorghum as feedstocks for ethanol production in the Southeast United States

    Directory of Open Access Journals (Sweden)

    Daniel E. Ekefre

    2017-12-01

    Full Text Available Sweet sorghum has become a promising alternative feedstock for biofuel production because it can be grown under reduced inputs, responds to stress more efficiently than traditional crops, and has large biomass production potential. A three-year field study was conducted to evaluate three cultivars of sweet sorghum as bioenergy crops in the Southeast United States (Fort Valley, Georgia: Dale, M81 E and Theis. Parameters evaluated were: plant density, stalk height, and diameter, number of nodes, biomass yield, juice yield, °Bx, sugar production, and theoretical ethanol yields. Yields were measured at 85, 99, and 113 days after planting. Plant fresh weight was the highest for Theis (1096 g and the lowest for Dale (896 g. M81 E reported the highest stalk dry weight (27 Mg ha−1 and Theis reported the lowest (21 Mg ha−1. Theis ranked the highest °Bx (14.9, whereas M81 E was the lowest (13.2. Juice yield was the greatest for M81 E (10915 L ha−1 and the lowest for Dale (6724 L ha−1. Theoretical conservative sugar yield was the greatest for Theis (13 Mg ha−1 and the lowest for Dale (9 Mg ha−1. Theoretical ethanol yield was the greatest for Theis (7619 L ha−1 and the lowest for Dale (5077 L ha−1.

  12. Geoffroea decorticans for Biofuels: A Promising Feedstock

    Directory of Open Access Journals (Sweden)

    Claudia Santibáñez

    2017-01-01

    Full Text Available In this work, chañar (Geoffroea decorticans fruit is evaluated as a potential feedstock for biodiesel and biomass pellets production with reference to some relevant properties. The fatty acid profile of this oil (83% unsaturated acids is found to be comparable to similar seed oils which have been attempted for biodiesel production. As a result, the methyl esters (biodiesel obtained from this oil exhibits high quality properties. Chañar biodiesel quality meets all other biodiesel international standards (ASTM D6751 and EN 14214. Moreover, the husk that surrounds the kernel showed a high potential for usage as densified solid fuels. The results demonstrate that chañar husks pellets have a higher calorific value when compared with other biomass pellets, typically, approximately 21 MJ kg−1 with 1.8% of ashes (which is equivalent to that obtained from the combustion of pellets produced from forest wastes. This study indicates that chañar can be used as a multipurpose energy crop in semiarid regions for biodiesel and densified solid fuels (pellets production.

  13. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  14. Determination of gel content and SEM morphology for sago-PVA blends film

    International Nuclear Information System (INIS)

    Sarada Idris; Zulkafli Ghazali; Kamarudin Hashim

    2006-01-01

    Blends of polyvinyl alcohol and sago starch have been prepared to evaluate the potential of producing biodegradable products. Glycerol was introduced in the blends to improve the flexibility of the films as plasticizer in order more flexible film. These blends have been subjected to electron beam irradiation to evaluate and characterized radiation effect on the blends. Subsequently films were produced from this blend. The gel content of un-irradiated and irradiated films as evidence of cross linking was measured and discussed. This paper also discuss the films morphology from Scanning Electron Microscopy(SEM) observation. (Author)

  15. Biogas Production from Local Biomass Feedstock in the Mekong Delta and Its Utilization for a Direct Internal Reforming Solid Oxide Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yusuke Shiratori

    2017-05-01

    Full Text Available Fuel-flexible solid oxide fuel cell (SOFC technologies are presently under study in a Vietnam-Japan international joint research project. The purpose of this project is to develop and demonstrate an SOFC-incorporated energy circulation system for the sustainable development of the Mekong Delta region. Lab-scale methane fermentation experiments in this study with a mixture of biomass feedstock collected in the Mekong Delta (shrimp pond sludge, bagasse, and molasses from sugar production recorded biogas production yield over 400 L kgVS−1 with H2S concentration below 50 ppm level. This real biogas was directly supplied to an SOFC without any fuel processing such as desulfurization, methane enrichment and pre-reforming, and stable power generation was achieved by applying paper-structured catalyst (PSC technology.

  16. Potential environmental impact of bioethanol production chain from fiber sorghum to be used in passenger cars.

    Science.gov (United States)

    Forte, Annachiara; Zucaro, Amalia; Fagnano, Massimo; Fierro, Angelo

    2017-11-15

    A life cycle assessment (LCA) was applied to assess the environmental load of a prospective local bioethanol (EtOH) production system in Southern Italy by using lignocellulosic Fiber sorghum (FS) feedstock. A two steps analysis was carried out considering: (i) a "cradle-to-farm gate" LCA to investigate thoroughly the FS cultivation on hilly marginal land and (ii) a "cradle-to-wheels" system boundary encompassing the environmental pressure of the whole EtOH supply-use chain. Primary data related to lignocellulosic biomass production were combined with experimental feedstock conversion processes through advanced second generation technology. The purpose was the evaluation of the environmental performance of different EtOH-gasoline mixtures in midsize passenger cars: E10 (10% of EtOH and 90% of gasoline) and E85 (85% of EtOH and 15% of gasoline). N fertilization appeared as the prevailing contributor of the crop phase. The "cradle-to-wheels" results concerning E10 passenger car disclosed that the main hotspots were represented by the input of low sulphur petrol (66%) and the linked tailpipe emissions (15%), for almost all the impact categories. Otherwise, for E85 flex-fuel vehicle, the major drivers were represented by the feedstock production (46%) and the imported electricity used in the conversion facility (18%). The FS EtOH blends entailed potential environmental benefits compared with the fossil counterpart (gasoline) for climate change, ozone and fossil depletions. Otherwise, they evidenced a worse profile in terms of acidification, eutrophication and particulate matter formation. Within the context of a the prospective territorial bio-refinery network, the comparison of the annual FS bioethanol based systems with similar EtOH scenarios from giant reed perennial crops highlighted: (i) the importance to optimize the N-management for FS feedstock cultivation and (ii) the need to increase the use of the renewable energy carriers along the industrial conversion

  17. Blended learning

    DEFF Research Database (Denmark)

    Dau, Susanne

    2016-01-01

    Blended Learning has been implemented, evaluated and researched for the last decades within different educational areas and levels. Blended learning has been coupled with different epistemological understandings and learning theories, but the fundamental character and dimensions of learning...... in blended learning are still insufficient. Moreover, blended learning is a misleading concept described as learning, despite the fact that it fundamentally is an instructional and didactic approach (Oliver & Trigwell, 2005) addressing the learning environment (Inglis, Palipoana, Trenhom & Ward, 2011......) instead of the learning processes behind. Much of the existing research within the field seems to miss this perspective. The consequence is a lack of acknowledgement of the driven forces behind the context and the instructional design limiting the knowledge foundation of learning in blended learning. Thus...

  18. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  19. Evaluation of Diverse Microalgal Species as Potential Biofuel Feedstocks Grown Using Municipal Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Hiibel, Sage R. [Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV (United States); Department of Civil and Environmental Engineering, University of Nevada Reno, Reno, NV (United States); Lemos, Mark S.; Kelly, Brian P.; Cushman, John C., E-mail: jcushman@unr.edu [Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV (United States)

    2015-05-11

    Microalgae offer great potential as a third-generation biofuel feedstock, especially when grown on wastewater, as they have the dual application for wastewater treatment and as a biomass feedstock for biofuel production. The potential for growth on wastewater centrate was evaluated for forty microalgae strains from fresh (11), brackish (11), or saltwater (18) genera. Generally, freshwater strains were able to grow at high concentrations of centrate, with two strains, Neochloris pseudostigmata and Neochloris conjuncta, demonstrating growth at up to 40% v/v centrate. Fourteen of 18 salt water Dunaliella strains also demonstrated growth in centrate concentrations at or above 40% v/v. Lipid profiles of freshwater strains with high-centrate tolerance were determined using gas chromatography–mass spectrometry and compared against those obtained on cells grown on defined maintenance media. The major lipid compounds were found to be palmitic (16:0), oleic (18:1), and linoleic (18:2) acids for all freshwater strains grown on either centrate or their respective maintenance medium. These results demonstrate the highly concentrated wastewater can be used to grow microalgae, which limits the need to dilute wastewater prior to algal production. In addition, the algae produced generate lipids suitable for biodiesel or green diesel production.

  20. Evaluation of diverse microalgal species as potential biofuel feedstocks grown using municipal wastewater

    Directory of Open Access Journals (Sweden)

    Sage R Hiibel

    2015-05-01

    Full Text Available Microalgae offer great potential as a third-generation biofuel feedstock, especially when grown on wastewater, as they have the dual application for wastewater treatment and as a biomass feedstock for biofuel production. The potential for growth on wastewater centrate was evaluated for forty microalgae strains from fresh (11, brackish (11, or saltwater (18 genera. Generally, freshwater strains were able to grow at high concentrations of centrate, with two strains, Neochloris pseudostigmata and N. conjuncta, demonstrating growth at up to 40% v/v centrate. Fourteen of eighteen salt water Dunaliella strains also demonstrated growth in centrate concentrations at or above 40% v/v. Lipid profiles of freshwater strains with high-centrate tolerance were determined using gas chromatography-mass spectrometry (GC-MS and compared against those obtained on cells grown on defined maintenance media. The major lipid compounds were found to be palmitic (16:0, oleic (18:1, and linoleic (18:2 acids for all freshwater strains grown on either centrate or their respective maintenance medium. These results demonstrate the highly concentrated wastewater can be used to grow microalgae, which limits the need to dilute wastewater prior to algal production. In addition, the algae produced generate lipids suitable for biodiesel or green diesel production.

  1. SEU blending project, concept to commercial operation, Part 3: production of powder for demonstration irradiation fuel bundles

    International Nuclear Information System (INIS)

    Ioffe, M.S.; Bhattacharjee, S.; Oliver, A.J.; Ozberk, E.

    2005-01-01

    The processes for production of Slightly Enriched Uranium (SEU) dioxide powder and Blended Dysprosium and Uranium (BDU) oxide powder that were developed at laboratory scale at Cameco Technology Development (CTD), were implemented and further optimized to supply to Zircatec Precision Industries (ZPI) the quantities required for manufacturing twenty six Low Void Reactivity (LVRF) CANFLEX fuel bundles. The production of this new fuel was a challenge for CTD and involved significant amount of work to prepare and review documentation, develop and approve new analytical procedures, and go through numerous internal reviews and audits by Bruce Power, CNSC and third parties independent consultants that verified the process and product quality. The audits were conducted by Quality Assurance specialists as well as by Human Factor Engineering experts with the objective to systematically address the role of human errors in the manufacturing of New Fuel and confirm whether or not a credible basis had been established for preventing human errors. The project team successfully passed through these audits. The project management structure that was established during the SEU and BDU blending process development, which included a cross-functional project team from several departments within Cameco, maintained its functionality when Cameco Technology Development was producing the powder for manufacturing Demonstration Irradiation fuel bundles. Special emphasis was placed on the consistency of operating steps and product quality certification, independent quality surveillance, materials segregation protocol, enhanced safety requirements, and accurate uranium accountability. (author)

  2. HEU to LEU Conversion and Blending Facility: UF6 blending alternative to produce LEU UF6 for commercial use

    International Nuclear Information System (INIS)

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF 6 to produce a UF 6 product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF 6 blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed

  3. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Science.gov (United States)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  4. Enacting Conceptual Metaphor through Blending: Learning Activities Embodying the Substance Metaphor for Energy

    Science.gov (United States)

    Close, Hunter G.; Scherr, Rachel E.

    2015-01-01

    We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of…

  5. Supporting School Leaders in Blended Learning with Blended Learning

    Science.gov (United States)

    Acree, Lauren; Gibson, Theresa; Mangum, Nancy; Wolf, Mary Ann; Kellogg, Shaun; Branon, Suzanne

    2017-01-01

    This study provides a mixed-methods case-study design evaluation of the Leadership in Blended Learning (LBL) program. The LBL program uses blended approaches, including face-to-face and online, to prepare school leaders to implement blended learning initiatives in their schools. This evaluation found that the program designers effectively…

  6. Quality assessment of biodiesels obtained from pure cooking oils of some feedstocks and their waste oils

    International Nuclear Information System (INIS)

    Khan, I.; Ansari, T.M.; Manzoor, S.

    2017-01-01

    Biodiesel being a renewable energy resource possesses compositional variability based on the type of feedstock. Biodiesel is considered a cleaner burning fuel and can be used as pure B100 or blended with petro-diesel. In this study, biodiesel was prepared from pure cooking oils (soybean oil, canola oil, sunflower oil, corn oil) and their waste frying oils by base-catalyzed transesterification with methanol in presence of sodium hydroxide. The optimized experimental parameters were applied to achieve the maximum yield of biodiesel. Various fuel properties like kinematic viscosity, flash point, pour point, cloud point, total acid number, specific gravity, water and sediments, conradson carbon residue, sulfur contents, phosphorous contents, sulphated ash, cetane and copper corrosion were determined and found comparable to ASTM standards. Pure cooking oils, their waste frying oils and prepared biodiesels were characterized by FT-IR. The study showed that the biodiesel derived from waste frying oils can be a promising alternative of the biodiesel from pure cooking oils. (author)

  7. A drop penetration method to measure powder blend wettability.

    Science.gov (United States)

    Wang, Yifan; Liu, Zhanjie; Muzzio, Fernando; Drazer, German; Callegari, Gerardo

    2018-03-01

    Water wettability of pharmaceutical blends affects important quality attributes of final products. We investigate the wetting properties of a pharmaceutical blend lubricated with Magnesium Stearate (MgSt) as a function of the mechanical shear strain applied to the blend. We measure the penetration dynamics of sessile drops deposited on slightly compressed powder beds. We consider a blend composed of 9% Acetaminophen 90% Lactose and 1% MgSt by weight. Comparing the penetration time of water and a reference liquid Polydimethylsiloxane (silicon oil) we obtain an effective cosine of the contact angle with water, based on a recently developed drop penetration method. We repeat the experiments for blends exposed to increasing levels of shear strain and demonstrate a significant decrease in water wettability (decrease in the cosine of the contact angle). The results are consistent with the development of a hydrophobic film coating the powder particles as a result of the increased shear strain. Finally, we show that, as expected dissolution times increase with the level of shear strain. Therefore, the proposed drop penetration method could be used to directly assess the state of lubrication of a pharmaceutical blend and act as a quality control on powder blend attributes before the blend is tableted. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends

    Directory of Open Access Journals (Sweden)

    Joanna Brzeska

    2015-01-01

    Full Text Available Polyether-esterurethanes containing synthetic poly[(R,S-3-hydroxybutyrate] (R,S-PHB and polyoxytetramethylenediol in soft segments and polyesterurethanes with poly(ε-caprolactone and poly[(R,S-3-hydroxybutyrate] were blended with poly([D,L]-lactide (PLA. The products were tested in terms of their oil and water absorption. Oil sorption tests of polyether-esterurethane revealed their higher response in comparison to polyesterurethanes. Blending of polyether-esterurethanes with PLA caused the increase of oil sorption. The highest water sorption was observed for blends of polyether-esterurethane, obtained with 10% of R,S-PHB in soft segments. The samples mass of polyurethanes and their blends were almost not changed after incubation in phosphate buffer and trypsin and lipase solutions. Nevertheless the molecular weight of polymers was significantly reduced after degradation. It was especially visible in case of incubation of samples in phosphate buffer what suggested the chemical hydrolysis of polymer chains. The changes of surface of polyurethanes and their blends, after incubation in both enzymatic solutions, indicated on enzymatic degradation, which had been started despite the lack of mass lost. Polyurethanes and their blends, contained more R,S-PHB in soft segments, were degraded faster.

  9. Blended Learning

    OpenAIRE

    Bauerová, Andrea

    2013-01-01

    This thesis is focused on a new approach of education called blended learning. The history and developement of Blended Learning is described in the first part. Then the methods and tools of Blended Learning are evaluated and compared to the traditional methods of education. At the final part an efficient developement of the educational programs is emphasized.

  10. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  11. 2009 Feedstocks Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Feedstock platform review meeting, held on April 8–10, 2009, at the Grand Hyatt Washington, Washington, D.C.

  12. Alternative Feedstocks Program Technical and Economic Assessment: Thermal/Chemical and Bioprocessing Components

    Energy Technology Data Exchange (ETDEWEB)

    Bozell, J. J.; Landucci, R.

    1993-07-01

    This resource document on biomass to chemicals opportunities describes the development of a technical and market rationale for incorporating renewable feedstocks into the chemical industry in both a qualitative and quantitative sense. The term "renewable feedstock?s" can be defined to include a huge number of materials such as agricultural crops rich in starch, lignocellulosic materials (biomass), or biomass material recovered from a variety of processing wastes.

  13. Hydrotreating of triglyceride containing gasoils

    Energy Technology Data Exchange (ETDEWEB)

    Krar, M.; Kasza, T.; Toth, C.; Baladincz, P.; Hancsok, J. (Univ. of Pannonia, Veszprem (Hungary)), Email: krarm@almos.uni-pannon.hu

    2009-07-01

    Because of the disadvantages of biodiesel, it is necessary to develop transformation methods, where excellent quality gas oil blending components are produced from triglycerides. An especially favourable opportunity could be the combination of the conversion of the triglycerides with a simultaneous upgrading of the gas oil stream. The main goal of our experiments was to investigate the feasibility of these two processes simultaneously in one catalytic system. In our experiments, sunflower oil (max. 25 %) gas oil blends were converted into products with gas oil boiling range. On the investigated catalyst under optimal process parameter combinations, product mixtures in the gas oil boiling point range with yield and excellent quality was produced successfully. The cetane number of the product mixtures were increased by 4-16 units, the CFPP values were increased by 5-7 deg C, when feedstock with 25 % sunflower oil content was used instead of feedstocks containing no sunflower oil. The reason is that the triglycerides were converted into normal paraffins, which are having high cetane number and poor cold-flow properties. It was concluded, that the blending of the sunflower oil into the gas oil did not reduce the HDS and HDA activity of the catalyst, however, its HDN activity significantly decreased. (orig.)

  14. The Social and Environmental Impacts of Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier

    Directory of Open Access Journals (Sweden)

    Laura German

    2011-09-01

    Full Text Available Preoccupation with global energy supplies and climate change in the global North, and a desire to improve the balance of trade and capture value in the emerging carbon market by developing countries, together place biofuels firmly on the map of global land use change. Much of this recent land use change is occurring in developing countries where large agro-ecologically suitable tracts of land may be accessed at lower economic and opportunity cost. This is leading to the gradual penetration of commercial crops that provide suitable biofuel feedstocks (e.g., sugarcane, soybean, oil palm, jatropha into rural communities and forested landscapes throughout many areas of the global South. Expansion of biofuel feedstock cultivation in developing countries is widely embraced by producer country governments as a means to achieve energy security and stimulate rural economic development through employment and smallholder market integration. It is also expected that foreign and domestic investments in biofuel feedstock cultivation will lead to positive economic spillovers from knowledge transfer and investor contributions to social and physical infrastructure. While biofuel feedstocks are expanding through large industrial-scale plantations and smallholder production alike, the expansion of industrial-scale production systems has been countered by a critical response by civil society actors concerned about the implications for rural livelihoods, customary land rights, and the environmental effects of biofuel feedstock cultivation. To date, however, limited data exist to demonstrate the conditions under which widely anticipated economic and climate change mitigation benefits accrue in practice, and the implications of these developments for forests, local livelihoods, and the climate change mitigation potential of biofuels. In such a situation, debates are easily polarized into those for and against biofuels. This special issue seeks to nuance this debate by

  15. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  16. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  17. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  18. Torrefaction reduction of coke formation on catalysts used in esterification and cracking of biofuels from pyrolysed lignocellulosic feedstocks

    Science.gov (United States)

    Kastner, James R; Mani, Sudhagar; Hilten, Roger; Das, Keshav C

    2015-11-04

    A bio-oil production process involving torrefaction pretreatment, catalytic esterification, pyrolysis, and secondary catalytic processing significantly reduces yields of reactor char, catalyst coke, and catalyst tar relative to the best-case conditions using non-torrefied feedstock. The reduction in coke as a result of torrefaction was 28.5% relative to the respective control for slow pyrolysis bio-oil upgrading. In fast pyrolysis bio-oil processing, the greatest reduction in coke was 34.9%. Torrefaction at 275.degree. C. reduced levels of acid products including acetic acid and formic acid in the bio-oil, which reduced catalyst coking and increased catalyst effectiveness and aromatic hydrocarbon yields in the upgraded oils. The process of bio-oil generation further comprises a catalytic esterification of acids and aldehydes to generate such as ethyl levulinate from lignified biomass feedstock.

  19. High-solids loading enzymatic hydrolysis of waste papers for biofuel production

    International Nuclear Information System (INIS)

    Wang, Lei; Templer, Richard; Murphy, Richard J.

    2012-01-01

    Highlights: ► Waste papers have great potential as a feedstock for bioethanol production. ► A wet blending step would significantly enhance enzymatic hydrolysis efficiency. ► High-solids loading saccharification was performed successfully on waste papers. ► Saccharification data were from four types of paper and two enzyme alternatives. ► Enzymatic hydrolysis kinetic models were validated by experimental data. -- Abstract: Waste papers (newspaper, office paper, magazines and cardboard in this study) with 50–73% (w/w oven dry weight) carbohydrate contents have considerable potential as raw materials for bioethanol production. A particle size reduction step of wet blending prior to enzymatic hydrolysis of newspaper was found to increase the glucan conversion efficiency by up to 10%. High-solids loading hydrolysis at 15% (w/w) of four types of paper using two enzyme alternatives, Celluclast 1.5L supplemented with Novozyme 188 and Cellic Ctec 1 (Novozymes A/S, Demark), at various enzyme concentrations were successfully performed in a lab-scale overhead-stirred reactor. This work has identified the relative saccharification performance for the four types of paper and shows office paper and cardboard to be more suitable for producing bioethanol than newspaper or magazine paper. The experimental data were also very well described by a modified, simple three parameter glucan and xylan hydrolysis model. These findings provide the possibility for incorporating this validated kinetic model into process designs required for commercial scale bioethanol production from waste paper resources.

  20. The Physical and Chemical Properties of Fine Carbon Particles-Pinewood Resin Blends and Their Possible Utilization

    Directory of Open Access Journals (Sweden)

    Aviwe Melapi

    2015-01-01

    Full Text Available The application of biomass gasification technology is very important in the sense that it helps to relieve the dwindling supply of natural gas from fossil fuels, and the desired product of its gasification process is syngas. This syngas is a mixture of CO and H2; however, by-products such as char, tar, soot, ash, and condensates are also produced. This study, therefore, investigated selected by-products recovered from the gasification process of pinewood chips with specific reference to their potential application in other areas when used as blends. Three samples of the gasification by-products were obtained from a downdraft biomass gasifier system and were characterized in terms of chemical and physical properties. FTIR analysis confirmed similar spectra in all char-resin blends. For fine carbon particles- (soot- resin blends, almost the same functional groups as observed in char-resin blends appeared. In bomb calorimeter measurements, 70% resin/30% char blends gave highest calorific value, followed by 50% resin/50% soot blends with values of 35.23 MJ/kg and 34.75 MJ/kg consecutively. Provided these by-products meet certain criteria, they could be used in other areas such as varnishes, water purification, and wind turbine blades.

  1. The Oleaginous Yeast Meyerozyma guilliermondii BI281A as a New Potential Biodiesel Feedstock: Selection and Lipid Production Optimization.

    Science.gov (United States)

    Ramírez-Castrillón, Mauricio; Jaramillo-Garcia, Victoria P; Rosa, Priscila D; Landell, Melissa F; Vu, Duong; Fabricio, Mariana F; Ayub, Marco A Z; Robert, Vincent; Henriques, João A P; Valente, Patricia

    2017-01-01

    A high throughput screening (HTS) methodology for evaluation of cellular lipid content based on Nile red fluorescence reads using black background 96-wells test plates and a plate reader equipment allowed the rapid intracellular lipid estimation of strains from a Brazilian phylloplane yeast collection. A new oleaginous yeast, Meyerozyma guilliermondii BI281A, was selected, for which the gravimetric determination of total lipids relative to dry weight was 52.38% for glucose or 34.97% for pure glycerol. The lipid production was optimized obtaining 108 mg/L of neutral lipids using pure glycerol as carbon source, and the strain proved capable of accumulating oil using raw glycerol from a biodiesel refinery. The lipid profile showed monounsaturated fatty acids (MUFA) varying between 56 or 74% in pure or raw glycerol, respectively. M. guilliermondii BI281A bears potential as a new biodiesel feedstock.

  2. Relations between blended learning possibilities and teachers' approaches to blended learning

    DEFF Research Database (Denmark)

    Stenalt, Maria Hvid; Nielsen, Tobias Alsted; Bager-Elsborg, Anna

    Higher Education has embraced blended learning as a way of enhancing quality in teaching and helping students to learn. This presentation addresses relations between blended learning possiblities presented to teachers in a teacher training project and teachers’ approaches to blended learning. We...... suggest that in order to identify the level of impact of integrating technologies in teaching and learning, we need to understand the factors influencing approaches to design of courses for blended contexts. Participants in the teacher training project come from the Department of Law at Aarhus University......: • Optain locally-embedded knowledge about blended learning • Develop opportunities for law students to receive (more) feedback • Comply with strategic aims The results so far suggest that teachers provide a disciplinary perspective on the key dimensions of blended learning, which influences...

  3. Transesterification catalyzed by Lipozyme TLIM for biodiesel production from low cost feedstock

    Science.gov (United States)

    Halim, Siti Fatimah Abdul; Hassan, Hamizura; Amri, Nurulhuda; Bashah, Nur Alwani Ali

    2015-05-01

    The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines. Biodiesel as alkyl ester derived from vegetable oil has considerable advantages in terms of environmental protection. The diminishing petroleum reserves are the major driving force for researchers to look for better strategies in producing biodiesel. The main hurdle to commercialization of biodiesel is the cost of the raw material. Biodiesel is usually produced from food-grade vegetable oil that is more expensive than diesel fuel. Therefore, biodiesel produced from food-grade vegetable oil is currently not economically feasible. Use of an inexpensive raw material such as waste cooking palm oil and non edible oil sea mango are an attractive option to lower the cost of biodiesel. This study addresses an alternative method for biodiesel production which is to use an enzymatic approach in producing biodiesel fuel from low cost feedstock waste cooking palm oil and unrefined sea mango oil using immobilized lipase Lipozyme TL IM. tert-butanol was used as the reaction medium, which eliminated both negative effects caused by excessive methanol and glycerol as the byproduct. Two variables which is methanol to oil molar ratio and enzyme loading were examine in a batch system. Transesterification of waste cooking palm oil reach 65% FAME yield (methanol to oil molar ratio 6:1 and 10% Novozyme 435 based on oil weight), while transesterification of sea mango oil can reach 90% FAME yield (methanol to oil molar ratio 6:1 and 10% Lipozyme TLIM based on oil weight).

  4. Exergy analysis of biomass-to-synthetic natural gas (SNG) process via indirect gasification of various biomass feedstock

    NARCIS (Netherlands)

    Vitasari, C.R.; Jurascik, M.; Ptasinski, K.J.

    2011-01-01

    This paper presents an exergy analysis of SNG production via indirect gasification of various biomass feedstock, including virgin (woody) biomass as well as waste biomass (municipal solid waste and sludge). In indirect gasification heat needed for endothermic gasification reactions is produced by

  5. Availability of lignocellulosic feedstocks for lactic acid production - Feedstock availability, lactic acid production potential and selection criteria

    NARCIS (Netherlands)

    Bakker, R.R.C.

    2013-01-01

    The overall objective of this study is to assess the worldwide availability and suitability of agricultural residues for lactic acid production, based on fermentation of carbohydrates. The study focuses on lignocellulosic biomass that is produced as a by-product of agricultural production. The

  6. Physicochemical, microbiological and sensory evaluation of a bioactive food blend

    Directory of Open Access Journals (Sweden)

    Rosângela dos Santos Ferreira

    2014-09-01

    Full Text Available The potential of functional foods to decrease the risks of chronic non-communicable diseases has motivated the development of products with beneficial effects on fat and carbohydrate metabolism. The present study aimed at analyzing the physicochemical, microbiological, and sensory properties of a bioactive food blend developed to help the nutritional therapy provided to hypolipidemic and hyperglycemic patients with HIV/AIDS treated with antiretroviral therapy. The food blend was evaluated for moisture, protein, carbohydrate, fats, fixed mineral residue, total fiber content, and fatty acid composition, according to the standards established by the Instituto Adolfo Lutz. Food safety was assessed by microbiological analyses for Bacillus cereus, Salmonella spp, and coliforms. Sensory acceptance and intention to purchase were also evaluated. The food blend showed good nutritional potential, with low atherogenicity and thrombogenicity indexes, good macronutrient balance, and high energy value. The adoption of Good Manufacturing Practices (GMP resulted in a product suitable for consumption. With respect to sensory aspects, the food blend showed satisfactory indexes of acceptability and promising marketing potential.

  7. Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose.

    Science.gov (United States)

    Yakes, Betsy Jean; Bergana, Marti M; Scholl, Peter F; Mossoba, Magdi M; Karunathilaka, Sanjeewa R; Ackerman, Luke K; Holton, Jason D; Gao, Boyan; Moore, Jeffrey C

    2017-07-19

    During the development of rapid screening methods to detect economic adulteration, spray-dried milk powders prepared by dissolving melamine in liquid milk exhibited an unexpected loss of characteristic melamine features in the near-infrared (NIR) and Raman spectra. To further characterize this "wet-blending" phenomenon, spray-dried melamine and lactose samples were produced as a simplified model and investigated by NIR spectroscopy, Raman spectroscopy, proton nuclear magnetic resonance ( 1 H NMR), and direct analysis in real time Fourier transform mass spectrometry (DART-FTMS). In contrast to dry-blended samples, characteristic melamine bands in NIR and Raman spectra disappeared or shifted in wet-blended lactose-melamine samples. Subtle shifts in melamine 1 H NMR spectra between wet- and dry-blended samples indicated differences in melamine hydrogen-bonding status. Qualitative DART-FTMS analysis of powders detected a greater relative abundance of lactose-melamine condensation product ions in the wet-blended samples, which supported a hypothesis that wet-blending facilitates early Maillard reactions in spray-dried samples. Collectively, these data indicated that the formation of weak, H bonded complexes and labile, early Maillard reaction products between lactose and melamine contribute to spectral differences observed between wet- and dry-blended milk powder samples. These results have implications for future evaluations of adulterated powders and emphasize the important role of sample preparation methods on adulterant detection.

  8. Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission

    KAUST Repository

    Zhang, Bo; Sarathy, Mani; Abdul-Manan, Amir F.N.

    2017-01-01

    Lifecycle CO2 emission of ethanol blended gasoline was simulated to investigate how fuel properties and composition affect overall emission. Fuel research octane number (RON), octane sensitivity and ethanol content (derived from sugarcane and corn) were varied in the simulations to formulate blended fuels that economically achieve target specifications. The well-to-pump (WTP) simulation results were then analyzed to understand the effects of fuel composition on emission. Elevated ethanol content displaces aromatics and olefins required in gasoline blendstock to reach a target fuel specification. The addition of greater sugarcane-based ethanol percentage in constant aromatics and olefins fuel reduces its WTP CO2 emission. Corn-based ethanol blending does not offer CO2 emission offset due to its high production emissions. The mixing of sugarcane-based with corn-based ethanol is shown to be a potentially effective method for achieving a blended fuel with a lower lifecycle CO2 emission. Besides CO2 emission, the total greenhouse gas (GHG) emission from land-use conversions (LUC), CH4, and N2O are also significant in determining the optimal fuel blend. Herein, we present preliminary results showing that total GHG emissions significantly increase when either corn or sugarcane ethanol is blended at even small percentages; detailed results will be addressed in future communications.

  9. Optimizing Blendstock Composition and Ethanol Feedstock to Reduce Gasoline Well-to-Pump CO 2 Emission

    KAUST Repository

    Zhang, Bo

    2017-06-02

    Lifecycle CO2 emission of ethanol blended gasoline was simulated to investigate how fuel properties and composition affect overall emission. Fuel research octane number (RON), octane sensitivity and ethanol content (derived from sugarcane and corn) were varied in the simulations to formulate blended fuels that economically achieve target specifications. The well-to-pump (WTP) simulation results were then analyzed to understand the effects of fuel composition on emission. Elevated ethanol content displaces aromatics and olefins required in gasoline blendstock to reach a target fuel specification. The addition of greater sugarcane-based ethanol percentage in constant aromatics and olefins fuel reduces its WTP CO2 emission. Corn-based ethanol blending does not offer CO2 emission offset due to its high production emissions. The mixing of sugarcane-based with corn-based ethanol is shown to be a potentially effective method for achieving a blended fuel with a lower lifecycle CO2 emission. Besides CO2 emission, the total greenhouse gas (GHG) emission from land-use conversions (LUC), CH4, and N2O are also significant in determining the optimal fuel blend. Herein, we present preliminary results showing that total GHG emissions significantly increase when either corn or sugarcane ethanol is blended at even small percentages; detailed results will be addressed in future communications.

  10. HEU to LEU Conversion and Blending Facility: UF{sub 6} blending alternative to produce LEU UF{sub 6} for commercial use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    US DOE is examining options for disposing of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials; the nuclear material will be converted to a form more proliferation- resistant than the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. Five technologies for blending HEU will be assessed; blending as UF{sub 6} to produce a UF{sub 6} product for commercial use is one of them. This document provides data to be used in the environmental impact analysis for the UF{sub 6} blending HEU disposition option. Resource needs, employment needs, waste and emissions from plant, hazards, accident scenarios, and intersite transportation are discussed.

  11. Method to study the effect of blend flowability on the homogeneity of acetaminophen.

    Science.gov (United States)

    Llusá, Marcos; Pingali, Kalyana; Muzzio, Fernando J

    2013-02-01

    Excipient selection is key to product development because it affects their processability and physical properties, which ultimately affect the quality attributes of the pharmaceutical product. To study how the flowability of lubricated formulations affects acetaminophen (APAP) homogeneity. The formulations studied here contain one of two types of cellulose (Avicel 102 or Ceollus KG-802), one of three grades of Mallinckrodt APAP (fine, semi-fine, or micronized), lactose (Fast-Flo) and magnesium stearate. These components are mixed in a 300-liter bin blender. Blend flowability is assessed with the Gravitational Displacement Rheometer. APAP homogeneity is assessed with off-line NIR. Excluding blends dominated by segregation, there is a trend between APAP homogeneity and blend flow index. Blend flowability is affected by the type of microcrystalline cellulose and by the APAP grade. The preliminary results suggest that the methodology used in this paper is adequate to study of the effect of blend flow index on APAP homogeneity.

  12. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  13. Sugar, acid and furfural quantification in a sulphite pulp mill: Feedstock, product and hydrolysate analysis by HPLC/RID.

    Science.gov (United States)

    Llano, Tamara; Quijorna, Natalia; Andrés, Ana; Coz, Alberto

    2017-09-01

    Waste from pulp and paper mills consist of sugar-rich fractions comprising hemicellulose derivatives and cellulose by-products. A complete characterisation of the waste streams is necessary to study the possibilities of an existing mill. In this work, four chromatographic methods have been developed to obtain the most suitable chromatographic method conditions for measuring woody feedstocks, lignocellulosic hydrolysates and cellulose pulp in sulphite pulping processes. The analysis of major and minor monosaccharides, aliphatic carboxylic acids and furfurals has been optimised. An important drawback of the spent liquors generated after sulphite pulping is their acidic nature, high viscosity and adhesive properties that interfere in the column lifetime. This work recommends both a CHO-782Pb column for the sugar analysis and an SH-1011 resin-based cross-linked gel column to separate low-molecular-weight chain acids, alcohols and furfurals. Such columns resulted in a good separation with long lifetime, wide pH operating range and low fouling issues.

  14. Bacterial production of short-chain organic acids and trehalose from levulinic acid: a potential cellulose-derived building block as a feedstock for microbial production.

    Science.gov (United States)

    Habe, Hiroshi; Sato, Shun; Morita, Tomotake; Fukuoka, Tokuma; Kirimura, Kohtaro; Kitamoto, Dai

    2015-02-01

    Levulinic acid (LA) is a platform chemical derived from cellulosic biomass, and the expansion of LA utilization as a feedstock is important for production of a wide variety of chemicals. To investigate the potential of LA as a substrate for microbial conversion to chemicals, we isolated and identified LA-utilizing bacteria. Among the six isolated strains, Pseudomonas sp. LA18T and Rhodococcus hoagie LA6W degraded up to 70 g/L LA in a high-cell-density system. The maximal accumulation of acetic acid by strain LA18T and propionic acid by strain LA6W was 13.6 g/L and 9.1 g/L, respectively, after a 4-day incubation. Another isolate, Burkholderia stabilis LA20W, produced trehalose extracellularly in the presence of 40 g/L LA to approximately 2 g/L. These abilities to produce useful compounds supported the potential of microbial LA conversion for future development and cellulosic biomass utilization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Blended Learning

    NARCIS (Netherlands)

    Van der Baaren, John

    2009-01-01

    Van der Baaren, J. (2009). Blended Learning. Presentation given at the Mini symposium 'Blended Learning the way to go?'. November, 5, 2009, The Hague, The Netherlands: Netherlands Defence Academy (NDLA).

  16. Bioenergy in Australia: An improved approach for estimating spatial availability of biomass resources in the agricultural production zones

    International Nuclear Information System (INIS)

    Herr, Alexander; Dunlop, Michael

    2011-01-01

    Bioenergy production from crops and agricultural residues has a greenhouse gas mitigation potential. However, there is considerable debate about the size of this potential. This is partly due to difficulties in estimating the feedstock resource base accurately and with good spatial resolution. Here we provide two techniques for spatially estimating crop-based bioenergy feedstocks in Australia using regional agricultural statistics and national land use maps. The approach accommodates temporal variability by estimating ranges of feedstock availability and the shifting nature of zones of the highest spatial concentration of feedstocks. The techniques are applicable to biomass production from forestry, agricultural residues or oilseeds, all of which have been proposed as biofuel feedstocks. -- Highlights: → Dasymetric mapping appoach for producing spatial and temporal variation maps in feedstock production.→ Combines land use and crop statistics to produce regionally precise feedstock maps. → Feedstock concentrations and feedstock density maps enable identification of feedstock concentration spatially and comparison of yearly variation in production.

  17. The Y-12 National Security Complex Foreign Research Reactor Uranium Supply Production

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T. [Nuclear Technology and Nonproliferation Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States); Keller, A.P. [Disposition and Supply Programs, B and W Y-12, L.L.C., Y-12 National Security Complex, Oak Ridge, Tennessee (United States)

    2011-07-01

    The Foreign Research Reactor (FRR) Uranium Supply Program at the Y-12 National Security Complex supports the nonproliferation objectives of the National Nuclear Security Administration (NNSA) HEU Disposition, the Reduced Enrichment Research and Test Reactors (RERTR), and the United States (U.S.) FRR Spent Nuclear Fuel (SNF) Acceptance Programs. The FRR Supply Program supports the important U.S. government nuclear nonproliferation commitment to serve as a reliable and cost-effective uranium supplier for those foreign research reactors that are converting or have converted to Low-Enriched Uranium (LEU) fuel under the RERTR Program. The NNSA Y-12 Site Office maintains the prime contracts with foreign government agencies for the supply of LEU for their research reactors. The LEU is produced by down blending Highly Enriched Uranium (HEU) that has been declared surplus to the U.S. national defense needs. The down blending and sale of the LEU supports the Surplus HEU Disposition Program Record of Decision to make the HEU non-weapons usable and to recover the economic value of the uranium to the extent feasible. In addition to uranium metal feedstock for fuel fabrication, Y-12 can produce LEU in different forms to support new fuel development or target fabrication for medical isotope production. With production improvements and efficient delivery preparations, Y-12 continues to successfully support the global research reactor community. (author)

  18. Effect of maleic anhydride on the physico-mechanical properties of NR/PE blends

    International Nuclear Information System (INIS)

    Yehia, A.A.; El Elnashar, D.

    2005-01-01

    Blending of two or more polymers is considered as a new technique to produce new materials with new properties at low production cost and investment. Rubber / Rubber blends are well known in tire industry. In the last decade rubber and plastic blending attract the interest of many researchers and technologists. In the present work NR and LLDPE was blended in presence of maleic anhydride (MA) on a Brabender premixed at different conditions and namely temperature and time. The obtained blends were cured with sulphur and peroxide curing systems. Peroxide can crosslink both NR and PE, but the sulphur system crosslinks only the rubber phase in the blend. The data showed also that the addition of MA greatly improved the physico-mechanical properties of NR/PE blends. The surface morphology of the blends under investigation was studied by SEM. The results will be presented and discussed in detail

  19. Produção de blends a partir de frutos tropicais e nativos da Amazônia Production of blends based on tropical and native fruits from brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Leandro Camargo Neves

    2011-03-01

    Full Text Available Neste trabalho, objetivou-se o enriquecimento nutricional de néctares de frutos, pelo processamento de blends, usando-se fruteiras tropicais e Amazônicas produzidas em Roraima. Foram utilizados néctares de abacaxi, buriti, caju, camu-camu, carambola, maracujá, murici, lima-ácida Tahiti e taperebá. Foi realizado um ensaio preliminar onde se constatou que os néctares de abacaxi e maracujá seriam utilizados como matrizes e, dos quais, saíram os tratamentos: 2 controles - 100% de abacaxi e 100% de maracujá; 1 blend entre as matrizes - 50% de abacaxi + 50% de maracujá; 7 blends de cada matriz com cada fruto escolhido, na proporção de 1:1. Foram adicionados benzoato de sódio e dióxido de enxofre, nas concentrações de 500 e 200 ppm, respectivamente, em todos os néctares e blends trabalhados. Os resultados referentes à composição nutricional dos blends refletiram aumento significativo nos valores nutricionais quando em comparação com as matrizes, bem como com os néctares individuais de cada fruto. O mesmo comportamento foi observado mesmo após 10 dias de armazenamento não refrigerado. Com relação à estabilidade microbiológica, apenas os blends que utilizaram o buriti como componente apresentaram comprometimento. As análises químicas dos blends demonstraram padrões distintos das matrizes; entretanto, quando submetidos à análise sensorial, mostraram-se satisfatórias por parte dos julgadores. As composições que mais agradaram os julgadores foram os blends de ambas as matrizes associadas ao camu-camu e murici.The aim of this work was to obtain the nutritional enrichment of nectars of fruits, by means of blends processament, using tropical and Amazonian fruit produced in Roraima. Nectars of pineapple, buriti, cashew, camu-camu, star fruit, passion fruit, murici, Tahiti lime and taperebá were used. A preliminary assay was carried out where it was observed that the nectars of pineapple and passion fruit would be used as

  20. Prospects for using multi-walled carbon nanotubes formed from renewable feedstock in hydrogen energy

    International Nuclear Information System (INIS)

    Onishchenko, D. V.

    2013-01-01

    Mechanoactivation of amorphous carbon synthesized from renewable feedstock promotes formation of multi-walled carbon nanotubes, and the best results were obtained using the feedstock of sphagnum moss. It is shown that the carbon nanotubes formed from different plant feedstock have a high sorption capacity with respect to hydrogen. (author)

  1. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  2. Co-gasification of black liquor and pyrolysis oil: Evaluation of blend ratios and methanol production capacities

    International Nuclear Information System (INIS)

    Andersson, Jim; Furusjö, Erik; Wetterlund, Elisabeth; Lundgren, Joakim; Landälv, Ingvar

    2016-01-01

    Highlights: • Biomethanol from co-gasified black liquor and pyrolysis oil at different capacities. • Enables higher biofuel production for given available amount of black liquor. • Opportunity for cost efficient black liquor gasification also in small pulp mills. • The methanol can be cost competitive to 2nd generation ethanol and fossil fuels. • Fewer pulp mills would need to be converted to meet given biofuel demand. - Abstract: The main aim of this study is to investigate integrated methanol production via co-gasification of black liquor (BL) and pyrolysis oil (PO), at Swedish pulp mills. The objectives are to evaluate techno-economically different blends ratios for different pulp mill capacities. Furthermore, the future methanol production potential in Sweden and overall system consequences of large-scale implementation of PO/BL co-gasification are also assessed. It is concluded that gasification of pure BL and PO/BL blends up to 50% results in significantly lower production costs than what can be achieved by gasification of unblended PO. Co-gasification with 20–50% oil addition would be the most advantageous solution based on IRR for integrated biofuel plants in small pulp mills (200 kADt/y), whilst pure black liquor gasification (BLG) will be the most advantageous alternative for larger pulp mills. For pulp mill sizes between 300 and 600 kADt/y, it is also concluded that a feasible methanol production can be achieved at a methanol market price below 100 €/MW h, for production capacities ranging between 0.9 and 1.6 TW h/y for pure BLG, and between 1.2 and 6.5 TW h/y for PO/BL co-gasification. This study also shows that by introducing PO/BL co-gasification, fewer pulp mills would need to be converted to biofuel plants than with pure BLG, to meet a certain biofuel demand for a region. Due to the technical as well as organizational complexity of the integration this may prove beneficial, and could also potentially lower the total investment

  3. Potentialities of energy generation from waste and feedstock produced by the agricultural sector in Brazil: The case of the State of Paraná

    International Nuclear Information System (INIS)

    Ribeiro, Maria de Fátima dos Santos; Raiher, Augusta Pelinski

    2013-01-01

    The State of Paraná contributes significantly for the Brazilian production of sugar cane, ethanol, soybeans and pigs. In addition to the current production of ethanol, the State has a huge potential for electricity, biodiesel and biogas production. This paper presents an overview of the current situation regarding energy generation from the agricultural sector in the State, an assessment of the potentialities of energy generation from sugar cane residues and pig agricultural chains, as well as an analysis of the socioeconomic factors underlying the availability of feedstock for biodiesel production. This study has shown that it is possible to expand the energy supply in the State using residual biomass from the sugar cane and pig production. On the other side, the biodiesel production increase in the State will depend on the expansion in the consumption of products that use the cake as raw material; the increase in the feedstock availability other than canola, castor beans and sunflower; the increase of the number of family farmers as feedstock providers, so as to ensure access for biodiesel producers to the Social Fuel Stamp. - Highlights: • Potentialities of energy generation from agriculture at Paraná State were assessed. • Energy offer from the sugar cane sector will triple if residual biomass is used. • The use of pig production wastes can increase energy offer up to 103 GW h. • Paraná produces 25% of oil seeds and only 3% of the biodiesel in Brazil. • Economic factors explaining the low share of biodiesel production are pointed out

  4. Polymer blends

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Scott D.; Naik, Sanjeev

    2017-08-22

    The present invention provides, among other things, extruded blends of aliphatic polycarbonates and polyolefins. In one aspect, provided blends comprise aliphatic polycarbonates such as poly(propylene carbonate) and a lesser amount of a crystalline or semicrystalline polymer. In certain embodiments, provided blends are characterized in that they exhibit unexpected improvements in their elongation properties. In another aspect, the invention provides methods of making such materials and applications of the materials in applications such as the manufacture of consumer packaging materials.

  5. The Oleaginous Yeast Meyerozyma guilliermondii BI281A as a New Potential Biodiesel Feedstock: Selection and Lipid Production Optimization

    Directory of Open Access Journals (Sweden)

    Mauricio Ramírez-Castrillón

    2017-09-01

    Full Text Available A high throughput screening (HTS methodology for evaluation of cellular lipid content based on Nile red fluorescence reads using black background 96-wells test plates and a plate reader equipment allowed the rapid intracellular lipid estimation of strains from a Brazilian phylloplane yeast collection. A new oleaginous yeast, Meyerozyma guilliermondii BI281A, was selected, for which the gravimetric determination of total lipids relative to dry weight was 52.38% for glucose or 34.97% for pure glycerol. The lipid production was optimized obtaining 108 mg/L of neutral lipids using pure glycerol as carbon source, and the strain proved capable of accumulating oil using raw glycerol from a biodiesel refinery. The lipid profile showed monounsaturated fatty acids (MUFA varying between 56 or 74% in pure or raw glycerol, respectively. M. guilliermondii BI281A bears potential as a new biodiesel feedstock.

  6. Reactive modification of polyesters and their blends

    Science.gov (United States)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  7. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.

    Science.gov (United States)

    Zhang, Luxin; He, Yunfei; Zhu, Yujie; Liu, Yuting; Wang, Xiaochang

    2018-02-01

    This paper focuses on the high-value transformation of camellia oleifera shell, which is an agricultural waste enriched in hemicellulose. An efficient catalytic route employing sulfonated swelling mesoporous polydivinylbenzene (PDVB-SO 3 H) as catalyst in monophasic or biphasic solvents was developed for the conversion of raw camellia oleifera shell into furfural. The reaction parameters were evaluated and optimized for improving the furfural yield. It was found that the solvent greatly influenced the hydrolysis of camellia oleifera shells, and the highest furfural yield of 61.3% was obtained in "γ-butyrolactone + water" system when the feedstock-to-catalyst ratio was 2 for 30 min at 443 K. Camellia oleifera shell exhibited a high potential as feedstock to produce furfural in high yields. The outcome of this study provides an attractive utilization option to camellia oleifera shell, which is currently burned or discarded for producing a bio-based chemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  9. Wood pellets, what else? Greenhouse gas parity times of European electricity from wood pellets produced in the south-eastern United States using different softwood feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Hanssen, Steef V. [Radboud Univ., Nijmegen (Netherlands). Dept. of Environmental Science, Faculty of Science; Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Duden, Anna S. [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Junginger, Martin [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences; Dale, Virginia H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Environmental Sciences Division, Center for BioEnergy Sustainability; van der Hilst, Floor [Utrecht Univ., Utrecht (The Netherlands). Copernicus Inst. of Sustainable Development, Faculty of Geosciences

    2016-12-29

    Several EU countries import wood pellets from the south-eastern United States. The imported wood pellets are (co-)fired in power plants with the aim of reducing overall greenhouse gas (GHG) emissions from electricity and meeting EU renewable energy targets. To assess whether GHG emissions are reduced and on what timescale, we construct the GHG balance of wood-pellet electricity. This GHG balance consists of supply chain and combustion GHG emissions, carbon sequestration during biomass growth, and avoided GHG emissions through replacing fossil electricity. We investigate wood pellets from four softwood feedstock types: small roundwood, commercial thinnings, harvest residues, and mill residues. Per feedstock, the GHG balance of wood-pellet electricity is compared against those of alternative scenarios. Alternative scenarios are combinations of alternative fates of the feedstock material, such as in-forest decomposition, or the production of paper or wood panels like oriented strand board (OSB). Alternative scenario composition depends on feedstock type and local demand for this feedstock. Results indicate that the GHG balance of wood-pellet electricity equals that of alternative scenarios within 0 to 21 years (the GHG parity time), after which wood-pellet electricity has sustained climate benefits. Parity times increase by a maximum of twelve years when varying key variables (emissions associated with paper and panels, soil carbon increase via feedstock decomposition, wood-pellet electricity supply chain emissions) within maximum plausible ranges. Using commercial thinnings, harvest residues or mill residues as feedstock leads to the shortest GHG parity times (0-6 years) and fastest GHG benefits from wood-pellet electricity. Here, we find shorter GHG parity times than previous studies, for we use a novel approach that differentiates feedstocks and considers alternative scenarios based on (combinations of) alternative feedstock fates, rather than on alternative land

  10. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    Directory of Open Access Journals (Sweden)

    Annachiara Forte

    2016-07-01

    Full Text Available The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA approach, the environmental performance of bio-based 1,4-butanediol (BDO produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy. The aim was: (i to identify the hotspots along the production chain; and (ii to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO. Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation.

  11. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    Science.gov (United States)

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • Biodiesel produced from palm and Calophyllum oil using trans-esterification process. • Produced biodiesels properties were compared with ASTM D6751 standards. • Engine performance and exhaust emissions were evaluated at high idling conditions. • Idling CO and HC emission was reduced using biodiesel–diesel blends. • For low percentages of biodiesel–diesel blends NO X emission increased negligibly. - Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NO

  13. Life cycle inventory analysis of hydrogen production by the steam-reforming process: comparison between vegetable oils and fossil fuels as feedstock

    International Nuclear Information System (INIS)

    Marquevich, M.; Sonnemann, G.W.; Castells, F.; Montane, D.

    2002-01-01

    A life cycle inventory analysis has been conducted to assess the environmental load, specifically CO 2 (fossil) emissions and global warming potential (GWP), associated to the production of hydrogen by the steam reforming of hydrocarbon feedstocks (methane and naphtha) and vegetable oils (rapeseed oil, soybean oil and palm oil). Results show that the GWPs associated with the production of hydrogen by steam reforming in a 100 years time frame are 9.71 and 9.46 kg CO 2 -equivalent/kg H 2 for natural gas and naphtha, respectively. For vegetable oils, the GWP decreases to 6.42 kg CO 2 -equivalent/kg H 2 for rapeseed oil, 4.32 for palm oil and 3.30 for soybean oil. A dominance analysis determined that the part of the process that has the largest effect on the GWP is the steam reforming reaction itself for the fossil fuel-based systems, which accounts for 56.7% and 74% of the total GWP for natural gas and naphtha, respectively. This contribution is zero for vegetable oil-based systems, for which harvesting and oil production are the main sources of CO 2 -eq emissions.(author)

  14. Blended learning

    DEFF Research Database (Denmark)

    Staugaard, Hans Jørgen

    2012-01-01

    Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid.......Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid....

  15. Future production of gasoline in Brazil; Producao futura de gasolina no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Perisse, Juarez B.; Oddone, Maria Regina R.; Lemos, Solange S.F.; Lucena, Sergio Cunha de; Gomes, Hedemir F. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Faced with the challenge of making 2014 gasoline, PETROBRAS established the planning of a new refining park that made possible this production. The proposal comprised new process units with hydrotreating and conversion. These units have the function to work synergistically, according to the needs and characteristics of each refinery. The large reduction in the sulfur content generated the need to use cracked naphtha hydrodesulfurization units (HDS) in the refining scheme. However, these units, in addition to removing sulfur, reduce octane number due to saturation of some olefins, which would imply a drop in gasoline production. The reduction of the content of olefins in the specification led the need to dilute the produced olefins in the blend, as PETROBRAS gasoline is composed on average of 70% cracked naphtha. Catalytic Reforming Units (CCR) will become part of the refining scheme with two main functions, dilute olefins and restore the octane number loss in the hydrodesulfurization process. This is possible because reformed naphtha has no olefins and a high octane index. The feedstock must be hydrotreated to remove contaminants, and such units become even more severe if the feedstock is combined with naphtha from Delayed coking units (DCU). As a result, new hydrotreatment of naphtha (distillation and DCU) were also included in the new refinery schemes. All this new refining structure, focusing on the new gasoline specification, is being implemented. Each refinery has a new scheme of its own, according to its characteristics. (author)

  16. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  17. 2011 Biomass Program Platform Peer Review: Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Laura [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Feedstock Platform Review meeting.

  18. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.

    Science.gov (United States)

    Harfouche, Antoine; Grant, Kannan; Selig, Marcus; Tsai, Daniel; Meilan, Richard

    2010-06-01

    One of the many controversies surrounding large-scale biofuel production is the diversion of land and other resources that might otherwise be used for food crops. Recent innovations will lead to a second generation of biofuel crops that can co-exist with food crops with little or no competition. Feedstocks from these bio-energy crops will be used to produce liquid fuel from cellulose, the most abundant polymer on the planet. Cell walls of higher plants are mainly composed of cellulose, hemicellulose, and lignin polymers. Cellulose and hemicellulose are polysaccharides with obvious value for biofuel production. However, lignin, while vital for plant growth and development, is widely known to negatively impact conversion efficiencies. Biomass pre-treatment, which is aimed at lignin removal, is not straightforward, and presents one of the major scientific and technical challenges and expenses associated with secondgeneration biofuel production. Scientific breakthroughs associated with altering the expression of key genes in the lignin biosynthetic pathway of biomass crops is a promising path toward solving this problem, and will likely impact the feedstock patent landscape in the near future. This review summarizes some of the recent and most important issued patents and patent applications associated with lignin-modification genes and methods of developing transgenic plants with altered lignin content and composition.

  19. [Rapid determination of componential contents and calorific value of selected agricultural biomass feedstocks using spectroscopic technology].

    Science.gov (United States)

    Sheng, Kui-Chuan; Shen, Ying-Ying; Yang, Hai-Qing; Wang, Wen-Jin; Luo, Wei-Qiang

    2012-10-01

    Rapid determination of biomass feedstock properties is of value for the production of biomass densification briquetting fuel with high quality. In the present study, visible and near-infrared (Vis-NIR) spectroscopy was employed to build prediction models of componential contents, i. e. moisture, ash, volatile matter and fixed-carbon, and calorific value of three selected species of agricultural biomass feedstock, i. e. pine wood, cedar wood, and cotton stalk. The partial least squares (PLS) cross validation results showed that compared with original reflection spectra, PLS regression models developed for first derivative spectra produced higher prediction accuracy with coefficients of determination (R2) of 0.97, 0.94 and 0.90, and residual prediction deviation (RPD) of 6.57, 4.00 and 3.01 for ash, volatile matter and moisture, respectively. Good prediction accuracy was achieved with R2 of 0.85 and RPD of 2.55 for fixed carbon, and R2 of 0.87 and RPD of 2.73 for calorific value. It is concluded that the Vis-NIR spectroscopy is promising as an alternative of traditional proximate analysis for rapid determination of componential contents and calorific value of agricultural biomass feedstock

  20. Utilization of sweet sorghum juice for the production of astaxanthin as a biorefinery co-product by phaffia rhodozyma

    Science.gov (United States)

    Co-product generation in a biorefinery process is crucial to allow ethanol production from agricultural feedstocks to be economically viable. One feedstock that has underutilized potential in the U.S. is sweet sorghum. The stalks of sweet sorghum can be crushed to produce a juice rich in soluble sug...

  1. Evaluation of carbon fluxes and trends (2000-2008) in the Greater Platte River Basin: a sustainability study on the potential biofuel feedstock development

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.; Zhang, Li; Gilmanov, Tagir G.

    2012-01-01

    This study evaluates the carbon fluxes and trends and examines the environmental sustainability (e.g., carbon budget, source or sink) of the potential biofuel feedstock sites identified in the Greater Platte River Basin (GPRB). A 9-year (2000–2008) time series of net ecosystem production (NEP), a measure of net carbon absorption or emission by ecosystems, was used to assess the historical trends and budgets of carbon flux for grasslands in the GPRB. The spatially averaged annual NEP (ANEP) for grassland areas that are possibly suitable for biofuel expansion (productive grasslands) was 71–169 g C m−2 year−1 during 2000–2008, indicating a carbon sink (more carbon is absorbed than released) in these areas. The spatially averaged ANEP for areas not suitable for biofuel feedstock development (less productive or degraded grasslands) was −47 to 69 g C m−2 year−1 during 2000–2008, showing a weak carbon source or a weak carbon sink (carbon emitted is nearly equal to carbon absorbed). The 9-year pre-harvest cumulative ANEP was 1166 g C m−2 for the suitable areas (a strong carbon sink) and 200 g C m−2 for the non-suitable areas (a weak carbon sink). Results demonstrate and confirm that our method of dynamic modeling of ecosystem performance can successfully identify areas desirable and sustainable for future biofuel feedstock development. This study provides useful information for land managers and decision makers to make optimal land use decisions regarding biofuel feedstock development and sustainability.

  2. Genetic and Genomic Analysis of the Tree Legume Pongamia pinnata as a Feedstock for Biofuels

    Directory of Open Access Journals (Sweden)

    Bandana Biswas

    2013-11-01

    Full Text Available The tree legume Pongamia { (L. Pierre [syn. (L. Panigrahi]} is emerging as an important biofuels feedstock. It produces about 30 kg per tree per year of seeds, containing up to 55% oil (w/v, of which approximately 50% is oleic acid (C. The capacity for biological N fixation places Pongamia in a more sustainable position than current nonlegume biofuel feedstocks. Also due to its drought and salinity tolerance, Pongamia can grow on marginal land not destined for production of food. As part of the effort to domesticate Pongamia our research group at The University of Queensland has started to develop specific genetic and genomic tools. Much of the preliminary work to date has focused on characterizing the genetic diversity of wild populations. This diversity is reflective of the outcrossing reproductive biology of Pongamia and necessitates the requirement to develop clonal propagation protocols. Both the chloroplast and mitochondrial genomes of Pongamia have been sequenced and annotated (152,968 and 425,718 bp, respectively, with similarities to previously characterized legume organelle genomes. Many nuclear genes associated with oil biosynthesis and nodulation in Pongamia have been characterized. The continued application of genetic and genomic tools will support the deployment of Pongamia as a sustainable biofuel feedstock.

  3. Nitrous oxide emission and soil carbon sequestration from herbaceous perennial biofuel feedstocks

    Science.gov (United States)

    Greenhouse gas (GHG) mitigation and renewable, domestic fuels are needed in the United States. Switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerdardii Vitman) are potential bioenergy feedstocks that may meet this need. However, managing perennial grasses for feedstock requires nitro...

  4. EARLY ENTRANCE CO-PRODUCTION PLANT--DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    John W. Rich

    2001-03-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power and Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co--product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases: Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's third quarterly technical progress report. It covers the period performance from October 1, 2001 through December 31, 2001.

  5. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  6. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.; Aakko, P. [TEC Trans Energy Consulting Ltd (Finland); Niemi, S.; Paanu, T. [Turku Polytechnic (Finland); Berg, R. [Befri Konsult (Sweden)

    2005-03-15

    Oxygenates blended into diesel fuel can serve at least two purposes. Components based on renewable feedstocks make it possible to introduce a renewable component into diesel fuel. Secondly, oxygenates blended into diesel fuel might help to reduce emissions. A number of different oxygenates have been considered as components for diesel fuel. These oxygenates include various alcohols, ethers, esters and carbonates. Of the oxygenates, ethanol is the most common and almost all practical experiences have been generated from the use of diesel/ethanol blends (E-diesel). Biodiesel was not included in this study. Adding ethanol to diesel will reduce cetane, and therefore, both cetane improver and lubricity additives might be needed. Diesel/ethanol emulsions obtained with emulsifiers or without additives are 'milky' mixtures. Micro-emulsions of ethanol and diesel can be obtained using additives containing surfactants or co-solvents. The microemulsions are chemically and thermodynamically stable, they are clear and bright blends, unlike the emulsions. Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Higher alcohols are more suitable for diesel blending than ethanol. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications. The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions

  7. Alcohols/Ethers as Oxygenates in Diesel Fuel: Properties of Blended Fuels and Evaluation of Practiacl Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N; Aakko, P [TEC Trans Energy Consulting Ltd (Finland); Niemi, S; Paanu, T [Turku Polytechnic (Finland); Berg, R [Befri Konsult (Sweden)

    2005-03-15

    Oxygenates blended into diesel fuel can serve at least two purposes. Components based on renewable feedstocks make it possible to introduce a renewable component into diesel fuel. Secondly, oxygenates blended into diesel fuel might help to reduce emissions. A number of different oxygenates have been considered as components for diesel fuel. These oxygenates include various alcohols, ethers, esters and carbonates. Of the oxygenates, ethanol is the most common and almost all practical experiences have been generated from the use of diesel/ethanol blends (E-diesel). Biodiesel was not included in this study. Adding ethanol to diesel will reduce cetane, and therefore, both cetane improver and lubricity additives might be needed. Diesel/ethanol emulsions obtained with emulsifiers or without additives are 'milky' mixtures. Micro-emulsions of ethanol and diesel can be obtained using additives containing surfactants or co-solvents. The microemulsions are chemically and thermodynamically stable, they are clear and bright blends, unlike the emulsions. Storage and handling regulations for fuels are based on the flash point. The problem with, e.g., ethanol into diesel is that ethanol lowers the flash point of the blend significantly even at low concentrations. Regarding safety, diesel-ethanol blends fall into the same category as gasoline. Higher alcohols are more suitable for diesel blending than ethanol. Currently, various standards and specifications set rather tight limits for diesel fuel composition and properties. It should be noted that, e.g., E-diesel does not fulfil any current diesel specification and it cannot, thus, be sold as general diesel fuel. Some blends have already received approvals for special applications. The critical factors of the potential commercial use of these blends include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also

  8. Lifecycle optimized ethanol-gasoline blends for turbocharged engines

    KAUST Repository

    Zhang, Bo

    2016-08-16

    This study presents a lifecycle (well-to-wheel) analysis to determine the CO2 emissions associated with ethanol blended gasoline in optimized turbocharged engines. This study provides a more accurate assessment on the best-achievable CO2 emission of ethanol blended gasoline mixtures in future engines. The optimal fuel blend (lowest CO2 emitting fuel) is identified. A range of gasoline fuels is studied, containing different ethanol volume percentages (E0–E40), research octane numbers (RON, 92–105), and octane sensitivities (8.5–15.5). Sugarcane-based and cellulosic ethanol-blended gasolines are shown to be effective in reducing lifecycle CO2 emission, while corn-based ethanol is not as effective. A refinery simulation of production emission was utilized, and combined with vehicle fuel consumption modeling to determine the lifecycle CO2 emissions associated with ethanol-blended gasoline in turbocharged engines. The critical parameters studied, and related to blended fuel lifecycle CO2 emissions, are ethanol content, research octane number, and octane sensitivity. The lowest-emitting blended fuel had an ethanol content of 32 vol%, RON of 105, and octane sensitivity of 15.5; resulting in a CO2 reduction of 7.1%, compared to the reference gasoline fuel and engine technology. The advantage of ethanol addition is greatest on a per unit basis at low concentrations. Finally, this study shows that engine-downsizing technology can yield an additional CO2 reduction of up to 25.5% in a two-stage downsized turbocharged engine burning the optimum sugarcane-based fuel blend. The social cost savings in the USA, from the CO2 reduction, is estimated to be as much as $187 billion/year. © 2016 Elsevier Ltd

  9. Production of Biogas from wastes Blended with CowDung for Electricity generation-A Case study

    Science.gov (United States)

    Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.; Sasidhar, Jaladanki

    2017-07-01

    The country’s production of solid waste generation is piling up year after year and the generation of Bio-Gas finds a fruitful solution to overcome this problem. This technology can contribute to energy conservation if the economic viability and social acceptance of this technology are favorable. Our campus has a number of hostel buildings which generates large quantum of kitchen waste and sewage per day. This research will have process ofcarrying out survey, characterization of kitchen waste from several kitchens & Canteens and knowing the potential for biogas production. The waste generated from kitchen and sewage from the hostels is given as feedstock to produce 600 m3 of biogas per day with cow dung as byproduct. The methane gas generated from Biogas is purified and this is used for power generation. Two biogas engine generators of 30 kVA and 50 kVA were installed. This power is used for backup power for girl’s hostel lighting load. From this study it is concluded that the generation of Biogas production and its usage for power production is the best option to handle these large quantum of sewage, kitchen waste generated from various buildings and also treated effluent from biogas plant and the biomass generated is a wealth for doing agriculture for any community ultimately it protects the environment.

  10. Bilingual processing of ASL-English code-blends: The consequences of accessing two lexical representations simultaneously

    OpenAIRE

    Emmorey, Karen; Petrich, Jennifer; Gollan, Tamar H.

    2012-01-01

    Bilinguals who are fluent in American Sign Language (ASL) and English often produce code-blends - simultaneously articulating a sign and a word while conversing with other ASL-English bilinguals. To investigate the cognitive mechanisms underlying code-blend processing, we compared picture-naming times (Experiment 1) and semantic categorization times (Experiment 2) for code-blends versus ASL signs and English words produced alone. In production, code-blending did not slow lexical retrieval for...

  11. The Changing Landscape of Hydrocarbon Feedstocks for Chemical Production: Implications for Catalysis: Proceedings of a Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Alexis T. [Univ. of California, Berkeley, CA (United States); Alger, Monty M. [Pennsylvania State Univ., University Park, PA (United States); Flytzani-Stephanopoulos, Maria [Tufts Univ., Medford, MA (United States); Gunnoe, T. Brent [Univ. of Virginia, Charlottesville, VA (United States); Lercher, Johannes A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevens, James [Dow Chemical Company, Torrance, CA (United States); Alper, Joe; Tran, Camly [National Academies of Sciences, Engineering, and Medicine, Washington, DC (United States)

    2016-11-14

    A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity to discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.

  12. Pilot scale testing of biomass feedstocks for use in gasification/gas turbine based power generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Najewicz, D.J.; Furman, A.H. [General Electric Corporate Research and Development Center, Schenectady, NY (United States)

    1993-12-31

    A biomass gasification pilot program was performed at the GE Corporate Research and Development Center using two types of biomass feedstock. The object of the testing was to determine the properties of biomass product gas and its` suitability as a fuel for gas turbine based power generation cycles. The test program was sponsored by the State of Vermont, the US Environmental Protection Agency, the US Department of Energy and Winrock International/US Agency for International Development. Gasification of bagasse and wood chip feedstock was performed at a feed rate of approximately one ton per hour, using the Ge pressurized fixed bed gasifier and a single stage of cyclone particulate removal, operating at a temperature of 1,000 F. Both biomass feedstocks were found to gasify easily, and gasification capacity was limited by volumetric capacity of the fuel feed equipment. The biomass product gas was analyzed for chemical composition, particulate loading, fuel bound nitrogen levels, sulfur and alkali metal content. The results of the testing indicated the combustion characteristics of the biomass product gas are compatible with gas turbine combustor requirements. However, the particulate removal performance of the pilot facility single stage cyclone was found to be inadequate to meet turbine particulate contamination specifications. In addition, alkali metals found in biomass based fuels, which are known to cause corrosion of high temperature gas turbine components, were found to exceed allowable levels in the fuel gas. These alkali metal compounds are found in the particulate matter (at 1000 F) carried over from the gasifier, thus improved particulate removal technology, designed specifically for biomass particulate characteristics could meet the turbine requirements for both particulate and alkali loading. The paper will present the results of the biomass gasification testing and discuss the development needs in the area of gas clean-up and turbine combustion.

  13. Statistical methods for assessment of blend homogeneity

    DEFF Research Database (Denmark)

    Madsen, Camilla

    2002-01-01

    In this thesis the use of various statistical methods to address some of the problems related to assessment of the homogeneity of powder blends in tablet production is discussed. It is not straight forward to assess the homogeneity of a powder blend. The reason is partly that in bulk materials......, it is shown how to set up parametric acceptance criteria for the batch that gives a high confidence that future samples with a probability larger than a specified value will pass the USP threeclass criteria. Properties and robustness of proposed changes to the USP test for content uniformity are investigated...

  14. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    International Nuclear Information System (INIS)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A; MacLean, Heather L

    2015-01-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr −1 to 240 000 t yr −1 ). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached. (letter)

  15. Environmental and financial implications of ethanol as a bioethylene feedstock versus as a transportation fuel

    Science.gov (United States)

    McKechnie, Jon; Pourbafrani, Mohammad; Saville, Bradley A.; MacLean, Heather L.

    2015-12-01

    Bulk chemicals production from biomass may compete with biofuels for low-cost and sustainable biomass sources. Understanding how alternative uses of biomass compare in terms of financial and environmental parameters is therefore necessary to help ensure that efficient uses of resources are encouraged by policy and undertaken by industry. In this paper, we compare the environmental and financial performance of using ethanol as a feedstock for bioethylene production or as a transport fuel in the US life cycle-based models are developed to isolate the relative impacts of these two ethanol uses and generate results that are applicable irrespective of ethanol production pathway. Ethanol use as a feedstock for bioethylene production or as a transport fuel leads to comparable greenhouse gas (GHG) emissions and fossil energy consumption reductions relative to their counterparts produced from fossil sources. By displacing gasoline use in vehicles, use of ethanol as a transport fuel is six times more effective in reducing petroleum energy use on a life cycle basis. In contrast, bioethylene predominately avoids consumption of natural gas. Considering 2013 US ethanol and ethylene market prices, our analysis shows that bioethylene is financially viable only if significant price premiums are realized over conventional ethylene, from 35% to 65% depending on the scale of bioethylene production considered (80 000 t yr-1 to 240 000 t yr-1). Ethanol use as a transportation fuel is therefore the preferred pathway considering financial, GHG emissions, and petroleum energy use metrics, although bioethylene production could have strategic value if demand-side limitations of ethanol transport fuel markets are reached.

  16. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    National Research Council Canada - National Science Library

    Mulkern, Thomas

    1999-01-01

    .... In this work, the incorporation of HBPs in thermoplastic blends was investigated. Several volume fractions of hydroxyl functionalized hyperbranched polyesters were melt blended with nonreactive polystyrene (PS...

  17. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    Science.gov (United States)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  18. A Blended Learning Scenario to Enhance Learners' Oral Production Skills

    Science.gov (United States)

    Kim, Hee-Kyung

    2015-01-01

    This paper examines the effectiveness of a mobile assisted blended learning scenario for pronunciation in Korean language. In particular, we analyze how asynchronous oral communication between learners of Korean and native speakers via "kakaotalk" (an open source mobile phone application) may be beneficial to the learner in terms of…

  19. Enacting Conceptual Metaphor through Blending: Learning activities embodying the substance metaphor for energy

    Science.gov (United States)

    Close, Hunter G.; Scherr, Rachel E.

    2015-04-01

    We demonstrate that a particular blended learning space is especially productive in developing understanding of energy transfers and transformations. In this blended space, naturally occurring learner interactions like body movement, gesture, and metaphorical speech are blended with a conceptual metaphor of energy as a substance in a class of activities called Energy Theater. We illustrate several mechanisms by which the blended aspect of the learning environment promotes productive intellectual engagement with key conceptual issues in the learning of energy, including distinguishing among energy processes, disambiguating matter and energy, identifying energy transfer, and representing energy as a conserved quantity. Conceptual advancement appears to be promoted especially by the symbolic material and social structure of the Energy Theater environment, in which energy is represented by participants and objects are represented by areas demarcated by loops of rope, and by Energy Theater's embodied action, including body locomotion, gesture, and coordination of speech with symbolic spaces in the Energy Theater arena. Our conclusions are (1) that specific conceptual metaphors can be leveraged to benefit science instruction via the blending of an abstract space of ideas with multiple modes of concrete human action, and (2) that participants' structured improvisation plays an important role in leveraging the blend for their intellectual development.

  20. Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties

    International Nuclear Information System (INIS)

    Osmani, Atif; Zhang, Jun

    2013-01-01

    An integrated multi-feedstock (i.e. switchgrass and crop residue) lignocellulosic-based bioethanol supply chain is studied under jointly occurring uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand and sales price. A two-stage stochastic mathematical model is proposed to maximize expected profit by optimizing the strategic and tactical decisions. A case study based on ND (North Dakota) state in the U.S. demonstrates that in a stochastic environment it is cost effective to meet 100% of ND's annual gasoline demand from bioethanol by using switchgrass as a primary and crop residue as a secondary biomass feedstock. Although results show that the financial performance is degraded as variability of the uncertain parameters increases, the proposed stochastic model increasingly outperforms the deterministic model under uncertainties. The locations of biorefineries (i.e. first-stage integer variables) are insensitive to the uncertainties. Sensitivity analysis shows that “mean” value of stochastic parameters has a significant impact on the expected profit and optimal values of first-stage continuous variables. Increase in level of mean ethanol demand and mean sale price results in higher bioethanol production. When mean switchgrass yield is at low level and mean crop residue price is at high level, all the available marginal land is used for switchgrass cultivation. - Highlights: • Two-stage stochastic MILP model for maximizing profit of a multi-feedstock lignocellulosic-based bioethanol supply chain. • Multiple uncertainties in switchgrass yield, crop residue purchase price, bioethanol demand, and bioethanol sale price. • Proposed stochastic model outperforms the traditional deterministic model under uncertainties. • Stochastic parameters significantly affect marginal land allocation for switchgrass cultivation and bioethanol production. • Location of biorefineries is found to be insensitive to the stochastic environment

  1. Acid esterification of a high free fatty acid crude palm oil and crude rubber seed oil blend: Optimization and parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Modhar A.; Yusup, Suzana; Ahmad, Murni M. [Universiti Teknologi PETRONAS, Chemical Engineering, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2010-12-15

    Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H{sub 2}SO{sub 4} after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect. (author)

  2. Putting blended learning to work: A case study from a multinatonal oil company.

    NARCIS (Netherlands)

    Collis, Betty; Bianco, M.; Margaryan, A.; Waring, Burney

    2005-01-01

    Blended learning can be operationalised in many different ways. At Shell International Exploration and Production, a form of blended learning focusing on learning while in the workplace through work-based activities within technology-supported courses has been evolving since 2000, with approximately

  3. The POL Model: Using a Social Constructivist Framework to Develop Blended and Online Learning

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Godsk, Mikkel

    2007-01-01

    The paper presents a model for developing blended and online learning based on a given curriculum and typical learning objectives for university courses. The model consists of a three-step-process in which the instructor formulates product-oriented tasks, develops and structures the learning...... materials and tools, outlines a schedule, and supports the students' learning activity in developing a product. The model is based on our experiences with transforming traditional lecture-based lessons into problem-based blended and online learning using a social constructivist approach and a standard...... virtual learning environment (VLE). Our initial experiments indicate that our model is useful to develop blended and online modules and, furthermore, it seems fruitful to use a social constructivist framework and orienting learning activities towards the development of products....

  4. Design, scale-up, Six Sigma in processing different feedstocks in a fixed bed downdraft biomass gasifier

    Science.gov (United States)

    Boravelli, Sai Chandra Teja

    This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.

  5. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  6. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  7. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  8. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K.; McGill, R. [Sentech, Inc. (United States); Van Walwijk, M. [Independent Consultant (France)

    2011-05-15

    used in an algal biofuel cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  9. Algae as a Feedstock for Biofuels: An Assessment of the State of Technology and Opportunities. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, K; McGill, R [Sentech, Inc. (United States); Van Walwijk, M [Independent Consultant (France)

    2011-05-15

    cycle before it is released into the atmosphere 6) Ability to be cultivated on land that that is unsuitable for agriculture, so it does not directly compete with farmland Given microalgae's high lipid content and rapid growth rates, maximum oil yields of 20,000--115,000 L/ha/yr (2,140-13,360 gal/ac/yr) have been estimated. xiv 7) Ability to thrive in seawater, wastewater, or other non-potable sources, so it does not directly compete with fresh water resources. In fact, wastewater can provide algae with some essential nutrients, such as nitrogen, so algae may contribute to cleaning up wastewater streams. 8) Non-toxic and biodegradable 9) Co-products that may present high value in other markets, including nutriceuticals and cosmetics Given microalgae's high lipid content and rapid growth rate, maximum oil yields of 20,000 -- 115,000 liters per hectare per year (L/ha/yr) (2,140 -- 13,360 gallons per acre per year) (Baldos, 2009; Wijffels, 2008) have been estimated, which is considerably higher than any other competing feedstock. Although algae species collectively present many strong advantages (although one specific species is unlikely to possess all of the advantages listed), a sustainable algal biofuel industry is at least one or two decades away from maturity, and no commercial scale operations currently exist. Several barriers must first be overcome before algal biofuels can compete with traditional petroleum-based fuels. Production chains with net energy output need to be identified, and continued R&D is needed to reduce the cost in all segments of the production spectrum (e.g., harvesting, dewatering, extracting of oil). Further research to identify strains with high production rates and/or oil yields may also improve competitiveness within the market. Initiatives to seamlessly integrate algal biofuels into the existing transportation infrastructure may increase their convenience level.

  10. Renewable Enhanced Feedstocks for Advanced Biofuels and Bioproducts (REFABB)

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, Oliver [Metabolix Inc., Cambridge, MA (United States); Snell, Kristi [Metabolix Inc., Cambridge, MA (United States)

    2016-06-09

    % yield, demonstrated the need to consider up-front the limitations of trying to adopt existing equipment to a task for which subsequent basic research studies indicated it was not suitable. New information was developed in the most complex of the chemical conversions studied, advanced catalysis to make acrylic acid, a chemical used widely to make paints, and this was published in a scientific journal. In regard to the technical effectiveness, the crop science aspects were for the most part remarkably effective in addressing the underlying objectives indicating the soundness of the technical approach. With time, it should be possible to fully develop the advanced biomass biorefinery feedstock. Challenges within the thermolysis step to recover crotonic acid meant that by the end of the project we were not able to demonstrate an economic case based on data from scaled up equipment. Solving this will take further research and development work. As a general statement, the broadest public good is in demonstrating the value of funding a very unique approach to the complex problem of enabling large-scale biomass biorefineries which resulted in significant progress towards the ultimate goal and a clearer understanding of the technical hurdles remaining. Perhaps not surprisingly, some of the broader benefits to the public come from the use of the REFABB project innovations in areas unrelated to the initial objective. It is worth highlighting the breakthrough developments in identifying three single global regulator genes which can be engineered into plants to dramatically increase photosynthesis and carbon capturing ability. These genes have tremendous potential for use in major food crops, in particular corn to enhance grain yield and based on recent findings, increase the root density, a critical key to increasing carbon sequestration in agriculture and improving the sustainability of global food and biofuel production.

  11. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    Science.gov (United States)

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  12. Optimum Drafting Conditions Of Polyester And Viscose Blend Yarns

    Directory of Open Access Journals (Sweden)

    Hatamvand Mohammad

    2017-09-01

    Full Text Available In this study, we used an experimental design to investigate the influence of the total draft, break draft, distance between the aprons (Clips and production roller pressure on yarn quality in order to obtain optimum drafting conditions for polyester and viscose (PES/CV blend yarns in ring spinning frame. We used PES fibers (1.4 dtex × 38 mm long and CV fibers (1.6 dtex × 38 mm long to spin a 20 Tex blend yarn of PES (70%/CV (30% blend ratio. When the break draft, adjustment of distance between of aprons and roller pressure is not reasonable, controlling and leading of the fibers is not sufficient for proper orientation of the fibers in the yarn structure to produce a high quality yarn. Experimental results and statistical analysis show that the best yarn quality will be obtained under drafting conditions total draft of 38, 1.2 break draft, 2.8 mm distance between of aprons and maximum pressure of the production top roller (18daN.

  13. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Nagendran, A.

    2016-01-01

    Highlights: • Four higher-alcohols namely, iso-butanol, n-pentanol, n-hexanol and n-octanol, were used. • Iso-butanol/diesel blend presented longest ignition delay, highest peak pressures and peak heat release rates. • NOx emissions were high for n-pentanol/diesel and n-hexanol/diesel blends at high load conditions. • Smoke opacity is highest for n-octanol/diesel blend and lowest for iso-butanol/diesel blend. • HC emissions are high for iso-butanol/diesel and n-pentanol/diesel blends. - Abstract: Higher alcohols are attractive next generation biofuels that can be extracted from sugary, starchy and ligno-cellulosic biomass feedstocks using sustainable pathways. Their viability for use in diesel engines has greatly improved ever since extended bio-synthetic pathways have achieved substantial yields of these alcohols using engineered micro-organisms. This study sets out to compare and analyze the effects of some higher alcohol/diesel blends on combustion and emission characteristics of a direct-injection diesel engine. Four test fuels containing 30% by vol. of iso-butanol, n-pentanol, n-hexanol and n-octanol (designated as ISB30, PEN30, HEX30 and OCT30 respectively) in ultra-low sulfur diesel (ULSD) were used. Results indicated that ISB30 experienced longest ignition delay and produced highest peaks of pressure and heat release rates (HRR) compared to other higher-alcohol blends. The ignition delay, peak pressure and peak HRR are found to be in the order of (from highest to lowest): ISB30 > PEN30 > HEX30 > OCT30 > ULSD. The combustion duration (CD) for all test fuels is in the sequence (from shortest to longest): ISB30 OCT30 > HEX30 > PEN30 > ISB30. HC emissions are high for ISB30 and PEN30 while it decreased favorably for HEX30 and OCT30. It was of the order (from highest to lowest): ISB30 > PEN30 > ULSD > HEX30 > OCT30. CO emissions of the blends followed the trend of smoke emissions and remained lower than ULSD with the following order (from highest to

  14. Debinding properties' study of a 316-L stainless steel feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Rei, M.; Schaeffer, L. [Metal Forming Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil); Souza, J.P. [Extraction Lab., Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil)

    2001-07-01

    This paper describes the behavior of a 316-L stainless steel feedstock's front low pressure injection molding process steps (MIM). The qualitative composition is 316-L stainless steel powder, ethylene and vinyl acetate copolymer (EVA), 140-macrocrystalline paraffin, carnauba wax and stearic acid. Thermogravimetric analyses were used to determine the quantitative composition of the binder system, while the quantitative composition of feedstock was determined by the knowledge of the mixture's critical loading. The feedstock was molded by low pressure injection molding in a MIGL-33 machine and submitted to a wicking debinding process, or immersed in carbon tetrachloride or in carbon dioxide under supercritical conditions. After the above mentioned procedure, the parts were submitted to thermal extraction. (orig.)

  15. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  16. Profiling Student Behaviour in a Blended Course: Closing the Gap Between Blended Teaching and Blended Learning

    NARCIS (Netherlands)

    Bos, Nynke; Brand-Gruwel, Saskia

    2018-01-01

    Blended learning is often associated with student-oriented learning in which students have varying degrees of control over their learning process. However, the current notion of blended learning is often a teacher- oriented approach in which the teacher identifies the used learning technologies and

  17. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  18. Evaluation of Brown Midrib Sorghum Mutants as a Potential Biomass Feedstock for 2,3-Butanediol Biosynthesis.

    Science.gov (United States)

    Guragain, Yadhu N; Srinivasa Rao, P; Vara Prasad, P V; Vadlani, Praveen V

    2017-11-01

    Three sorghum backgrounds [Atlas, Early Hegari (EH), and Kansas Collier (KC)] and two bmr mutants (bmr6 and bmr12) of each line were evaluated and compared for grain and biomass yield, biomass composition, and 2,3-butanediol production from biomass. The data showed that the bmr6 mutation in EH background led to a significant decrease in stover yield and increase in grain yield, whereas the stover yield was increased by 64% without affecting grain yield in KC background. The bmr mutants had 10 to 25% and 2 to 9% less lignin and structural carbohydrate contents, respectively, and 24 to 93% more non-structural sugars than their parents in all sorghum lines, except EH bmr12. The total fermentable sugars released were 22 to 36% more in bmr mutants than in parents for Atlas and KC, but not for EH. The bmr6 mutation in KC background produced the most promising feedstock, among the evaluated bmr mutants, for 2,3-butanediol production without affecting grain yield, followed by KC bmr12 and Atlas bmr6, but the bmr mutation had an adverse effect in EH background. This indicated that the genetic background of the parent line and type of bmr mutation significantly affect the biomass quality as a feedstock for biochemical production.

  19. Fiber-Content Measurement of Wool-Cashmere Blends Using Near-Infrared Spectroscopy.

    Science.gov (United States)

    Zhou, Jinfeng; Wang, Rongwu; Wu, Xiongying; Xu, Bugao

    2017-10-01

    Cashmere and wool are two protein fibers with analogous geometrical attributes, but distinct physical properties. Due to its scarcity and unique features, cashmere is a much more expensive fiber than wool. In the textile production, cashmere is often intentionally blended with fine wool in order to reduce the material cost. To identify the fiber contents of a wool-cashmere blend is important to quality control and product classification. The goal of this study is to develop a reliable method for estimating fiber contents in wool-cashmere blends based on near-infrared (NIR) spectroscopy. In this study, we prepared two sets of cashmere-wool blends by using either whole fibers or fiber snippets in 11 different blend ratios of the two fibers and collected the NIR spectra of all the 22 samples. Of the 11 samples in each set, six were used as a subset for calibration and five as a subset for validation. By referencing the NIR band assignment to chemical bonds in protein, we identified six characteristic wavelength bands where the NIR absorbance powers of the two fibers were significantly different. We then performed the chemometric analysis with two multilinear regression (MLR) equations to predict the cashmere content (CC) in a blended sample. The experiment with these samples demonstrated that the predicted CCs from the MLR models were consistent with the CCs given in the preparations of the two sample sets (whole fiber or snippet), and the errors of the predicted CCs could be limited to 0.5% if the testing was performed over at least 25 locations. The MLR models seem to be reliable and accurate enough for estimating the cashmere content in a wool-cashmere blend and have potential to be used for tackling the cashmere adulteration problem.

  20. Effect of blending temperature on the mechanical properties of PVC/ENR blend upon irradiation

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan; Nasir, M.; Baharin, A.

    2000-01-01

    Poly (vinyl chloride) / epoxidized natural rubber blends were prepared with a Brabender plasticorder at 140, 150, 160, 170 and 180 degree C mixing temperatures. They were mixed at 50 rpm rotor speed for 10 min. The blends were irradiated with doses ranging from 0-200 kGy. Changes in tensile strength, modulus at 100% elongation, gel fraction and damping properties (tan δ) of the blends with increasing mixing temperatures and irradiation doses were investigated. In general, it was observed that the mixing temperature is important in maximizing the positive effect of irradiation. Results revealed that a readily miscible blend enjoy maximum benefit from irradiation meanwhile irradiation impart miscibility to a partially miscible PVC/ENR blend. The enhancement in blend properties is believed to be attributed by the irradiation-induced crosslinking along with irradiation-induced interaction between the polymers. The radiation-induced degradation found to be prominent at higher doses for blend that has undergone excessive thermal degradation. However evidence did not reveal the specific nature of radiation-induced reaction responsible for the improved interactions of the blends. (author)