WorldWideScience

Sample records for blended cement concrete

  1. Plastic and free shrinkages cracking of blended white cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, A.M.; White, T.; Ariaratnam, S.; Knutson, K. [Housing and Building National Research Center, Cairo (Egypt)

    2007-07-01

    This paper presented the results of a study that investigated the plastic and free shrinkages of white portland cement concrete, concrete incorporating silica fume (SF) and concrete incorporating metakaolin (MK) compared to regular plain gray portland cement concrete. An experimental program was designed to investigate the plastic and free shrinkage of concrete containing gray and white blended cement. The paper discussed the experimental details including materials and cement types such as SF, MK, aggregate, and superplasticizer as well as concrete mixtures and specimen preparation including mixture proportions, preparation and curing of concrete specimens, and test specimens. It also presented the determination of concrete properties such as slump of fresh concrete, plastic shrinkage, and dry shrinkage. Test results and discussion of results were also provided. It was concluded that plain white portland cement concrete showed less number of plastic cracks but slightly higher average crack width compared to other concrete mixtures with MK or SF. In addition, free shrinkage behavior of plain white cement and plain gray cement matrix was comparable. 23 refs.

  2. Ternary blend cements concrete. Part II: Transport mechanism

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-03-01

    Full Text Available With today’s extensive use of cements containing two or more additions (blended cements, predicting concrete durability on the grounds of its strength alone leads to errors that may affect the service life of the resulting structures. Indeed, concrete of a given strength class can be made from different materials and proportions of widely varying durability. The present study evaluated water absorption, sorptivity and initial surface absorption in concrete made with unadditioned Portland, binary (limestone and ternary (limestone and granulated slag blend cement.En la actualidad con la utilización de cementos con dos o más adiciones (cementos compuestos predecir la durabilidad del hormigón a partir sólo de su resistencia conduce a cometer errores que pueden afectar la vida útil de las construcciones de hormigón. Pues es bien conocido que se pueden elaborar hormigones de una misma clase resistente con distintos materiales y proporciones, que podrán presentar un comportamiento durable totalmente diferente. En este trabajo se evalúa la absorción de agua, la capacidad de absorción, la absorción inicial superficial de hormigones elaborados con cemento Portland sin adición, cementos compuestos binario (caliza y ternario (escoria granulada y caliza.

  3. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  4. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-09-15

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  5. Corrosion behavior of steel in concrete made with slag-blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Dehghanian, C. [Univ. of Technology, Isfahan (Iran, Islamic Republic of). Dept. of Chemical Engineering

    1999-03-01

    Concretes formulated with slag as a partial replacement for cement were used to evaluate the corrosion behavior of steel embedded in concrete, resistivity, and the compressive strength of the concrete. Corrosion rates and pitting corrosion of steel in concrete with up to 30% slag and exposed to sodium chloride (NaCl) solutions decreased. Slag-blended cement concrete increased concrete resistivity. A water-to-cement ratio <0.55 and submersion in water for a period of 18 days gave the best chloride (Cl{sup {minus}}) diffusion resistance from the external salt solutions. Compressive strength of the concrete decreased with addition of slag in the early ages of the concrete. After 5 months of age, compressive strength of the concrete increased with addition of slag. This trend continued with up to 30% slag addition.

  6. Alkali-silica reaction resistant concrete using pumice blended cement

    Science.gov (United States)

    Ramasamy, Uma

    Durability of structures is a major challenge for the building industry. One of the many types of concrete deterioration that can affect durability is alkali-silica reaction (ASR). ASR has been found in most types of concrete structures, including dams, bridges, pavements, and other structures that are 20 to 50 years old. The degradation mechanism of ASR produces a gel that significantly expands in the presence of water as supplied from the surrounding environment. This expansion gel product can create high stresses and cracking of the concrete, which can lead to other forms of degradation and expensive structural replacement costs. The four essential factors that produce an expansive ASR gel in concrete are the presence of alkalis, siliceous aggregate, moisture, and free calcium hydroxide (CH). If concrete is starved of any one of these essential components, the expansion can be prevented. Reducing CH through the use of a supplementary cementitious material (SCM) such as natural pozzolan pumice is the focus of this research. By using a pozzolan, the amount of CH is reduced with time based on the effectiveness of the pozzolan. Many pozzolans exist, but one such naturally occurring pozzolanic material is pumice. This research focuses on determining the effect of a finely ground pumice as a SCM in terms of its resistance to ASR expansion, as well as improving resistance to other potential concrete durability mechanisms. In spite of having high alkali contents in the pumice, mixtures containing the SCM pumice more effectively mitigated the ASR expansion reaction than other degradation mechanisms. Depending on the reactivity of the aggregates and fineness of the pumice, 10-15% replacement of cement with the pumice was found to reduce the ASR expansion to the acceptable limits. The amount of CH remaining in the concrete was compared to the ASR expansion in order to improve understanding of the role of CH in the ASR reaction. Thermo-gravimetric analysis (TGA) and X

  7. Effect of Lime on Mechanical and Durability Properties of Blended Cement Based Concrete

    Science.gov (United States)

    Acharya, Prasanna Kumar; Patro, Sanjaya Kumar; Moharana, Narayana C.

    2016-06-01

    This work presents the results of experimental investigations performed to evaluate the effect of lime on mechanical and durability properties of concrete mixtures made with blended cement like Portland Slag Cement (PSC) and Portland Pozzolana Cement (PPC) with lime content of 0, 5, 7 and 10 %. Test result indicated that inclusion of hydraulic lime on replacement of cement up to 7 % increases compressive strength of concrete made with both PSC and PPC. Flexural strength increased with lime content. Highest flexural strength is reported at 7 % lime content for both PSC and PPC. Workability is observed to decrease with lime addition which could be compensated with introduction of super plasticizer. Acid and sulphate resistance increase slightly up to 7 % of lime addition and is found to decrease with further addition of lime. Lime addition up to 10 % does not affect the soundness of blended cements like PSC and PPC.

  8. Prompt gamma ray evaluation for chlorine analysis in blended cement concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Kalakada, Zameer; Al-Amoudi, O S B

    2014-12-01

    Single prompt gamma ray energy has been evaluated to measure chlorine concentration in fly ash (FA), Super-Pozz (SPZ) and blast furnace slag (BFS) cement concrete specimens using a portable neutron generator-based Prompt Gamma Neutron Activation (PGNAA) setup. The gamma ray yield data from chloride concentration measurement in FA, SPZ and BFS cement concretes for 2.86-3.10, 5.72 and 6.11MeV chlorine gamma rays were analyzed to identify a gamma ray with common slope (gamma ray yield/Cl conc. wt%) for the FA, BFS and SPZ cement concretes. The gamma ray yield data for FA and SPZ cement concretes with varying chloride concentration were measured previously using a portable neutron generator-based PGNAA setup. In the current study, new data have been measured for chlorine detection in the BFS cement concrete using a portable neutron generator-based PGNAA setup for 2.86-3.10, 5.72, and 6.11MeV chlorine gamma rays. The minimum detection limit of chlorine in BFS cement concrete (MDC) was found to be 0.034±0.010, 0.032±0.010, 0.033±0.010 for 2.86-3.10, 5.72 and 6.11MeV gamma ray, respectively. The new BFS cement concrete data, along with the previous measurements for FA and SPZ cement concretes, have been utilized to identify a gamma ray with a common slope to analyze the Cl concentration in all of these blended cement concretes. It has been observed that the 6.11MeV chlorine gamma ray has a common slope of 5295±265 gamma rays/wt % Cl concentration for the portable neutron generator-based PGNAA setup. The minimum detectable concentration (MDC) of chlorine in blended cement concrete was measured to be 0.033±0.010wt % for the portable neutron generator-based PGNAA. Thus, the 6.11MeV chlorine gamma ray can be used for chlorine analysis of blended cement concretes.

  9. Compressive Strength and Static Modulus of Elasticity of Periwinkle Shell Ash Blended Cement Concrete

    Directory of Open Access Journals (Sweden)

    Akaninyene Afangide Umoh

    2012-12-01

    Full Text Available The study examined the effect of periwinkle shell ash as supplementary cementitious material on the compressive strength and static modulus of elasticity of concrete with a view to comparing it’s established relation with an existing model. The shells were calcined at a temperature of 800oC. Specimens were prepared from a mix of designed strength 25N/mm2. The replacement of cement with periwinkle shell ash (PSA was at five levels of 0, 10, 20, 30 and 40% by volume. A total of 90 cubical and cylindrical specimens each were cast and tested at 7, 14, 28, 90, 120 and 180 days. The results revealed that the PSA met the minimum chemical and physical requirements for class C Pozzolans. The compressive strength of the PSA blended cement concrete increased with increase in curing age up to 180 days but decreased as the PSA content increased. The design strength was attained with 10%PSA content at the standard age of 28 days. The static modulus of elasticity of PSA blended cement concrete was observed to increase with increased in curing age and decreases with PSA content. In all the curing ages 0%PSA content recorded higher value than the blended cement concrete. The statistical analysis indicated that the percentage PSA replacement and the curing age have significant effect on the properties of the concrete at 95% confidence level. The relation between compressive strength and static modulus of elasticity fitted into existing model for normal-weight concrete.

  10. Properties and durability of metakaolin blended cements: mortar and concrete

    Directory of Open Access Journals (Sweden)

    Abbas, Rafik

    2010-12-01

    Full Text Available This article explores the effect of metakaolin, a pozzolan, on concrete performance. Compressive and splitting tensile strength were found for specimens cured for up to 360 and 90 days, respectively. Changes were recorded in the compressive strength of specimens exposed to salt (chloride and sulfatechloride solutions, and chloride penetration and binding capacity were measured. The findings were compared to the results for concrete prepared with ordinary Portland (OPC and moderate heat of hydration (Type II cement. MK was found to have a very positive effect on 28-day concrete strength, due to microstructure improvement of the hydrated cement. Replacing cement with metakaolin effectively raised concrete resistance to chloride attack. Concrete containing metakaolin proved to be substantially more durable in sulfate-chloride environment.

    En este trabajo se estudia el efecto del metacaolín sobre las prestaciones del hormigón. Las probetas curadas a 360 y 90 días se sometieron a ensayos de resistencia a compresión y de tracción indirecta respectivamente. Se hizo un seguimiento de la resistencia a la compresión de los materiales ante el ataque de sales (soluciones de cloruro y de sulfato-cloruro y, se midió la penetración de cloruros y la capacidad de los hormigones de inmovilizar estos iones. Los resultados se compararon con los obtenidos con hormigones elaborados con cemento pórtland ordinario (OPC y, con cemento de calor de hidratación moderado (tipo II. El MK resultó influir muy positivamente en la resistencia del hormigón a 28 días debido a la mejora de la microestructura del cemento hidratado. La sustitución de cemento por metacaolín aumentó la resistencia del hormigón al ataque de cloruros. El hormigón con metacaolín demostró ser más duradero en entornos de sulfato-cloruro que los hormigones elaborados con OPC o con cemento de tipo II. Los perfiles de concentración de cloruros a distintas profundidades y la

  11. Performance of Periwinkle Shell Ash Blended Cement Concrete Exposed to Magnesium Sulphate

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2013-01-01

    Full Text Available The study examined the compressive strength of periwinkle shell ash (PSA blended cement concrete in magnesium sulphate medium. Specimens were prepared from designed characteristics strength of 25 MPa. The cement replacement with PSA ranged between 0 and 40% by volume. A total of 180 cube specimens were cast and cured in water. At 28 days curing, 45 specimens each were transferred into magnesium sulphate of 1%, 3%, and 5% solution, while others were continuously cured in water and tested at 62, 92, and 152 days. The results revealed a higher loss in compressive strength with the control mix, and that it increases with increased in MgSO4 concentration and exposure period, whereas, the attack on the PSA blended cement concrete was less and the least value recorded by 10% PSA content. Therefore, the study concluded that the optimum percentage replacement of cement with 10% PSA could mitigate magnesium sulphate attack.

  12. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    Science.gov (United States)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  13. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  14. Cast in place temperature 5 influence on fresh concrete made with limestone filler and blended cement

    Directory of Open Access Journals (Sweden)

    Soria, E. A.

    2003-12-01

    Full Text Available Properties of fresh concrete play a relevant role on placing and consolidation; and its design strength and durability depends on them. It is well known too that the concrete temperature during placing affects all its properties in different ways and extent. This paper presents the influence of placing temperature of concretes made with portland cement, limestone filer cement and blended cement, commercially available, on slump, slump loss, setting time and bleeding. The results show that generally when concrete temperature rises, the bleeding and slump fall down and the slump loss and setting time are accelerated. However, regardless of the strength class the type of cement affects the value of these variations

    Las propiedades de los hormigones en estado fresco desempeñan un papel fundamental durante las operaciones de colocación y compactación de los mismos y de ellas depende, en gran medida, que se alcance en el estado endurecido la resistencia y la durabilidad de diseño. Es sabido, además, que la temperatura que alcanza un hormigón durante dichas operaciones, afecta en mayor o menor grado a todas sus propiedades, de manera diferente. En el presente trabajo se analizó la influencia de la temperatura de colocación sobre el asentamiento, la pérdida del asentamiento en el tiempo, los tiempos de fraguado y la exudación, en hormigones elaborados con cemento portland normal, fillerizado y compuesto, de procedencia comercial. Los resultados han mostrado, en general, que con el aumento de la temperatura de colocación disminuyen la exudación y el asentamiento; mientras que la pérdida de asentamiento y los tiempos de fraguado se aceleran. Sin embargo, las magnitudes de dichas variaciones resultan a su vez muy influenciadas por el tipo de cemento utilizado, aun siendo de la misma clase resistente.

  15. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  16. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    Science.gov (United States)

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  17. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  18. Ternary blended cement concrete. Part I: early age properties and mechanical strength

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-12-01

    Full Text Available While there is ample information in the literature on the mechanical performance and durability of concrete made with either limestone or granulated blast furnace slag,very little is known about the effect of the combined action of these two additions on concrete properties. The present paper evaluates the early stage properties and mechanical strength of binary and ternary cement concrete containing up to 18% limestone and 20% granulated blast furnace slag. The results show that the use of ternary cements has no substantial effect on concrete setting time, although it does reduce bleeding and enhance mechanical strength with respect to unadditioned Portland and/or binary cement concrete.En la bibliografía existe abundante información acerca del comportamiento mecánico y durable de hormigones elaborados con la incorporación individual de caliza y de escoria granulada de alto horno. Sin embargo, la modificación de las propiedades por la acción conjunta de las mismas es prácticamente desconocida. En este trabajo se evalúan las propiedades en estado fresco y el comportamiento mecánico de hormigones elaborados con cementos compuestos binarios y ternarios conteniendo hasta 18% de caliza y 20% de escoria granulada de alto horno. Los resultados indican que la utilización de cementos ternarios en hormigones no modifican sustancialmente el tiempo de fraguado, disminuyen la exudación y presentan un mejor comportamiento mecánico que los hormigones elaborados con cemento Portland sin adición y/o binarios.

  19. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  20. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  1. Effect of supplementary cementing materials on the concrete corrosion control

    Energy Technology Data Exchange (ETDEWEB)

    Mejia de Gutierrez, R.

    2003-07-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs.

  2. Cement and concrete

    Science.gov (United States)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  3. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  4. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  5. Activated blended cement containing high volume coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Shi, C.J.; Qian, J.S. [CJS Technology Inc., Burlington, ON (Canada)

    2001-10-01

    This study investigated the strength and equilibrium water extraction of blended cement containing high volume coal fly ash and activator CaCl{sub 2}. The addition of CaCl{sub 2} increased the strength of cement very significantly. Equilibrium water extraction indicated that the addition of CaCl{sub 2} decreased the pH of the pore solution, but accelerated the pozzolanic reactions between coal fly ash and lime, which became more obvious when the volume of fly ash in the cement was increased from 50-70%. Results from both strength and water extraction testing could conclude that CaCl{sub 2} is a good activator for the activation of pozzolanic reactivity of fly ash and for the improvement of early properties of fly ash cement and concrete.

  6. Polypropylene Fibers in Portland Cement Concrete Pavements.

    Science.gov (United States)

    1992-08-01

    Bibliography on Fiber- Reinforced Cement and Concrete," Miscellaneous Paper C-76-6, with supplements 1, 2, 3, and 4 ( 1977 , 1979, 1980, and 1982), US Army... Mindess , S., Bentur, A., Yan, C., and Vondran, G., "Impact Resistance of Concrete Containing Both Conventional Steel Reinforcement and Fibrillated...Roads, Streets, Walks, and Open Storage Areas," TM 5-822-6/AFM 88-7, Chap. 7, Washington, DC, 1977 . 18. __ , "Concrete Floor Slabs on Grade Subjected

  7. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  8. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  9. Effect of supplementary cementing materials on the concrete corrosion control

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2003-12-01

    Full Text Available Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnace slag (GGBS, silica fume (SF, metakaolin (MK, fly ash (FA and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete.

    La falla del concreto en un tiempo inferior a la vida útil para la cual se diseñó puede ser consecuencia del medio ambiente al cual ha estado expuesto o de algunas otras causas de tipo interno. La incorporación de materiales suplementarios al cemento Portland tiene el propósito de mejorar la microestructura del concreto y también de contribuir a la resistencia del concreto a los ataques del medio ambiente. Diferentes minerales y subproductos tales como escorias granuladas de alto horno, humo de sílice, metacaolín, ceniza volante y otros productos han sido usados como materiales suplementarios cementantes. Este documento presenta el comportamiento del hormigón en presencia de diferentes adiciones. Los cementos adicionados, comparados con los cementos Portland muestran bajos calores de hidratación, baja permeabilidad, mayor resistencia a sulfatos y a agua de mar. Estos cementos adicionados encuentran un campo de aplicación importante cuando los requerimientos de durabilidad son

  10. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  11. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  12. Packing issue in cement blending for sustainability developments - Approach by discrete element method

    NARCIS (Netherlands)

    Le, L.B.N.; Stroeven, P.

    2014-01-01

    Common cement blending materials for concrete like fly ashes, blast furnace slag, silica fume, metakaolin and rice husk ash have been investigated experimentally as to their impact on concrete’s mechanical, physical and sustainability capabilities. Such efforts offer but case-related information on

  13. Factor ten emission reductions : the key to sustainable development and economic prosperity for the cement and concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Horton, R. [Alchemix Corp., Pittsburgh, PA (United States)

    2001-07-01

    This paper proposes that the negative environmental effects of current cement/concrete production can be reduced by a factor of 10 by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic advantages of improving the quality of the concrete are great. Even if improving the concrete doubles the price of the highest quality cement, this would only add 2 per cent to the cost of the overall construction project, but the service life of the structure would give a many-fold return on this added investment. Also, regulations on carbon dioxide emissions in the near future will assume economic importance in the manufacturing of cement and concrete. While portland cements have dominated the construction industry for more than 150 years, new blended cements priced on a performance basis will become the standard in the twenty first century. Currently, the typical cement formulation in the United States, if it contains fly ash, contains 15 to 20 per cent fly ash by weight of the total cementitious material. This paper states that soon the number will be 50 to 60 per cent ash. Fly ash will be widely acknowledged for improving critical performance characteristics of concrete such as workability, impermeability and durability. Carbon dioxide credits will also be a major economic factor that will drive the cement industry toward a factor ten environmental improvement. The Kyoto Protocol calls for the trading of greenhouse gas credits which includes carbon dioxide credits. Under the new system, cement producers will be taxed on excess emissions, while those using pozzolans in their cements will earn credits to offset these penalties. 10 refs.

  14. Hydration of blended cement pastes containing waste ceramic powder as a function of age

    Science.gov (United States)

    Scheinherrová, Lenka; Trník, Anton; Kulovaná, Tereza; Pavlík, Zbyšek; Rahhal, Viviana; Irassar, Edgardo F.; Černý, Robert

    2016-07-01

    The production of a cement binder generates a high amount of CO2 and has high energy consumption, resulting in a very adverse impact on the environment. Therefore, use of pozzolana active materials in the concrete production leads to a decrease of the consumption of cement binder and costs, especially when some type of industrial waste is used. In this paper, the hydration of blended cement pastes containing waste ceramic powder from the Czech Republic and Portland cement produced in Argentina is studied. A cement binder is partially replaced by 8 and 40 mass% of a ceramic powder. These materials are compared with an ordinary cement paste. All mixtures are prepared with a water/cement ratio of 0.5. Thermal characterization of the hydrated blended pastes is carried out in the time period from 2 to 360 days. Simultaneous DSC/TG analysis is performed in the temperature range from 25 °C to 1000 °C in an argon atmosphere. Using this thermal analysis, we identify the temperature, enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates gels dehydration, portlandite, vaterite and calcite decomposition and their changes during the curing time. Based on thermogravimetry results, we found out that the portlandite content slightly decreases with time for all blended cement pastes.

  15. INVESTIGATING EFFECTS OF INTRODUCTION OF CORNCOB ASH INTO PORTLAND CEMENTS CONCRETE: MECHANICAL AND THERMAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Antonio Price

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the benefits of replacing Ordinary Portland Cement (OPC with Corncob Ash (CCA blended cements. The cement industry contributes considerable amount of Carbon Dioxide (CO2 emissions into the atmosphere. The main contribution of CO2 emissions from cement production results from the process of creating Calcium Oxide (CaO from limestone (CaCO3 commonly known as the calcination process. Blending OPC with a pozzolanic material will assist in the reduction of CO2 emissions due to calcination as well as enhance the quality of OPC. There are various pozzolanic materials such as fly ash, rice husk, silica fume and CCA that could be promising partial replacement for OPC. In this study, CCA will serve as the primary blending agent with OPC. An experiment was performed to designate an appropriate percentage replacement of CCA that would comply with specific standards of cement production. The experimental plan was designed to analyze compressive strength, workability and thermal performance of various CCA blended cements. The data from the experiment indicates that up to 10% CCA replacement could be used in cement production without compromising the structural integrity of OPC. In addition, it was found that the compressive strength and workability of the resulting concrete could be improved when CCA is added to the mixtures. Furthermore, it was shown that the introduction of 10% CCA can lead to significant reduction in thermal conductivity of the mixture.

  16. STUDY ON HIGH CONTENT OF BLENDS IN CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The technology of activation by a]dding few activators(<1%) to increase the amount of blends in cement was investigated.The results show that outer activation has a remarkable effect on improving the physical properties of slag cement,flyash cement and volcanic cement.For example,the compressive strength was increased by 5-10 MPa.Morever,the application of activation is beneficial to grind-aiding,early strength and water-reducing etc.

  17. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  18. Performance of RHA Cement Concrete under Marine Environment via Wetting and Drying Cyclic by Rapid Migration Test

    Directory of Open Access Journals (Sweden)

    Ramadhansyah Putra Jaya

    2013-12-01

    Full Text Available In this research, the performance of concrete containing rice husk ash (RHA under marine environment through wetting and drying cycles was investigated. Five levels of cement replacement (0%, 10%, 20%, 30% and 40% by weight were used. The total cementitious content used was 420 kg/m3. A water/binder ratio of 0.49 was used to produce concrete having a target compressive strength of 40MPa at the age of 28 days. The performance of blended cement concrete under marine environment was evaluated using rapid migration test (RMT.  The results clearly showed that RHA can be satisfactorily used as a cement replacement material in order to reduce the chloride penetration depth and hence increases the durability of concrete. Generally, the chloride penetration depth of concrete containing higher RHA replacement is decreased as the RHA replacement increases, resulting in concrete with higher resistance to seawater attack.

  19. Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Curing Method

    Directory of Open Access Journals (Sweden)

    K. Shyamala

    2016-10-01

    Full Text Available Ground granulated blast-furnace slag ( GGBS is the granular material formed iron ore is molted. blast furnace slag is by-product of steel manufacture which is sometimes used as a substitute for Portland cement. In steel industry when iron ore is molted, then in the molted state all the impurities come at its surface which are removed called slag. It consists mainly of the silicates and alumino silicates of calcium, which are formed in the blast furnace in molten form simultaneously with the metallic iron. Blast furnace slag is blended with Portland cement clinker to form portland blast furnace slag cement. GGBS is used to make durable concrete structures in combination with ordinary Portland cement and/or other pozzolanic materials. GGBFS has been widely used in Europe, and increasingly in the United States and in Asia (particularly in Japan and Singapore for its superiority in concrete durability, extending the lifespan of buildings from fifty years to a hundred years. This project presents the feasibility of the usage of GGBS as hundred percent substitutes for Ordinary portland cement in concrete. Design mix for M20 and M30 has been calculated using IS 10262-2009 for both accelrated curing in warm water and accelrated curing in boiling water method. Tests were conducted on cubes to study the strength of concrete by using GGBS and Ordinary portland cement

  20. DSC and TG Analysis of a Blended Binder Based on Waste Ceramic Powder and Portland Cement

    Science.gov (United States)

    Pavlík, Zbyšek; Trník, Anton; Kulovaná, Tereza; Scheinherrová, Lenka; Rahhal, Viviana; Irassar, Edgardo; Černý, Robert

    2016-03-01

    Cement industry belongs to the business sectors characteristic by high energy consumption and high {CO}2 generation. Therefore, any replacement of cement in concrete by waste materials can lead to immediate environmental benefits. In this paper, a possible use of waste ceramic powder in blended binders is studied. At first, the chemical composition of Portland cement and ceramic powder is analyzed using the X-ray fluorescence method. Then, thermal and mechanical characterization of hydrated blended binders containing up to 24 % ceramic is carried out within the time period of 2 days to 28 days. The differential scanning calorimetry and thermogravimetry measurements are performed in the temperature range of 25°C to 1000°C in an argon atmosphere. The measurement of compressive strength is done according to the European standards for cement mortars. The thermal analysis results in the identification of temperature and quantification of enthalpy and mass changes related to the liberation of physically bound water, calcium-silicate-hydrates dehydration and portlandite, vaterite and calcite decomposition. The portlandite content is found to decrease with time for all blends which provides the evidence of the pozzolanic activity of ceramic powder even within the limited monitoring time of 28 days. Taking into account the favorable results obtained in the measurement of compressive strength, it can be concluded that the applied waste ceramic powder can be successfully used as a supplementary cementing material to Portland cement in an amount of up to 24 mass%.

  1. Pavement management and rehabilitation of portland cement concrete pavements

    Science.gov (United States)

    Zegeer, C. V.; Agent, K. R.; Rizenbergs, R. L.; Curtayne, P. C.; Scullion, T.; Pedigo, R. D.; Hudson, W. R.; Roberts, F. L.; Karan, M. A.; Haas, R.

    Pavement management and rehabilitation projects and techniques are discussed. The following topics are discussed: economic analyses and dynamic programming in resurfacing project selection; implementation of an urban pavement management system; pavement performance modeling for pavement management; illustration of pavement management: from data inventory to priority analysis; rehabilitation of concrete pavements by using portland cement concrete overlays; pavement management study: Illinois tollway pavement overlays; resurfacing of plain jointed-concrete pavements; design procedure for premium composite pavement; model study of anchored pavement; prestressed concrete overlay at O'Hare International Airport: in-service evaluation; and, bonded portland cement concrete resurfacing.

  2. Ageing of portland cement concrete cured under moist conditions

    NARCIS (Netherlands)

    Yu, Z.; Ye, G.; Van Breugel, K.; Chen, W.

    2014-01-01

    Deterioration of microstructure in cement concrete will cause changes in the transport properties of the concrete. Transport properties at different ages of the concrete provide information about the microstructural changes of the material. A way to measure the transport properties, i.e. the chlorid

  3. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  4. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  5. Properties and durability of metakaolin blended cements

    Directory of Open Access Journals (Sweden)

    Ezzat, El-Sayed

    2010-09-01

    Full Text Available This paper evaluates the optimal calcination temperature and replacement ratio to ensure high metakaolin (MK pozzolanicity in blended cement. The MK used was prepared by firing two types of local at temperatures ranging from 700 to 850 ºC. Dry blends of ordinary Portland cement (OPC and varying proportions of MK were mixed with the amount of water required to ensure optimal consistency of the resulting pastes. The specimens were cured at 100% RH for 24 h and then immersed in water for 3, 7, 28, 90 or 180 days. At each test time, the degree of hydration and compressive strength of the hardened cement pastes were measured The findings showed that the most suitable calcination temperature to obtain metakaolin is 700 ºC, while the optimal replacement ratio ranges from 25 to 30%. DTA was used to determine the phases comprising the hydration products forming at the ages studied. Pure OPC and OPC-MK specimens were immersed in 3% NaCl and 5% MgSO4 solutions for 30, 90 and 180 days to measure their durability. The OPC-MK pastes immersed in the 3% NaCl solution were observed to be highly resistant to chloride attack.

    El presente trabajo evalúa el comportamiento puzolánico de metacaolín (MK, producto de la calcinación a distintas temperaturas de dos tipos de caolín local de composiciones químicas diferentes, al incorporarse al cemento en diferentes proporciones. Se preparó un cemento adicionado mediante la mezcla en seco de cemento Portland ordinario (OPC y metacaolín (MK, a los que se añadió la cantidad óptima de agua para obtener una pasta de la consistencia deseada. Las probetas se curaron a una HR del 100% durante 24 horas, sumergiéndose posteriormente en agua durante 3, 7, 28, 90 o 180 días. A cada tiempo de ensayo se controló el grado de hidratación de las pastas endurecidas y se comprobó la resistencia a la compresión de las probetas cúbicas a las edades de curado establecidas. Los resultados obtenidos indican que la

  6. Copper Slag Blended Cement: An Environmental Sustainable Approach for Cement Industry in India

    Directory of Open Access Journals (Sweden)

    Jagmeet Singh

    2016-04-01

    Full Text Available Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2, a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD. The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement

  7. EFFECT OF PORTLAND-POZZOLAN CEMENTS ON CONCRETE MATURITY

    Directory of Open Access Journals (Sweden)

    Arın YILMAZ

    2004-03-01

    Full Text Available The maturity concept expressed by the combined effect of time and temperature on the concrete is a useful technique for prediction of the strength gain of concrete. According to maturity concept, samples of the same concrete at same maturity whatever combination of temperature and time, have approximately the same strength. Many maturity functions have been proposed for the last 50 years. The validity of these functions are only for ordinary portland cements. In this study, the suitable of traditional maturity functions for different types of Portland-pozzolan cements were investigated and a new maturity-strength relationship was tried to be established. For this purpose, four different pozzolans and one Portland cement was selected. Portland-pozzolan cements were prepared by using three different replacement amounts of % 5, % 20 and 40 % by weight of cement.

  8. ENVIRONMENTAL IMPACT ASSESSMENT OF CEMENT-CONCRETE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,a life-cycle assessment methodology is used to evaluate the environmental effects of cement-concrete system.The production factors notably affecting environment are obtained and the way improving environmental effects is indicated.

  9. Evaluation of the Chemical and Mechanical Properties of Hardening High-Calcium Fly Ash Blended Concrete

    Directory of Open Access Journals (Sweden)

    Wei-Jie Fan

    2015-09-01

    Full Text Available High-calcium fly ash (FH is the combustion residue from electric power plants burning lignite or sub-bituminous coal. As a mineral admixture, FH can be used to produce high-strength concrete and high-performance concrete. The development of chemical and mechanical properties is a crucial factor for appropriately using FH in the concrete industry. To achieve sustainable development in the concrete industry, this paper presents a theoretical model to systematically evaluate the property developments of FH blended concrete. The proposed model analyzes the cement hydration, the reaction of free CaO in FH, and the reaction of phases in FH other than free CaO. The mutual interactions among cement hydration, the reaction of free CaO in FH, and the reaction of other phases in FH are also considered through the calcium hydroxide contents and the capillary water contents. Using the hydration degree of cement, the reaction degree of free CaO in FH, and the reaction degree of other phases in FH, the proposed model evaluates the calcium hydroxide contents, the reaction degree of FH, chemically bound water, porosity, and the compressive strength of hardening concrete with different water to binder ratios and FH replacement ratios. The evaluated results are compared to experimental results, and good consistencies are found.

  10. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2015-10-01

    Full Text Available Purpose. The paper is aimed to the development of scientific bases of the technology of modified concrete of new generation for special facilities by managing the processes of structure formation of modified cement system in conditions of hardening. Methodology. For the achievement the goal: 1 the research of rheological characteristics of modified concrete mixes for special facilities purpose and processes of structure formation of modified cement system of natural curing concrete was conducted; 2 there were defined methods of reliable evaluation of concrete strength at the removal time of formwork and transmission of loads to the constructions where the concrete has not reached the designed strength. Findings. The author found that the structure formation process develops in the hydrating modified cement system as a result of interaction of various macroions. In this process its active parts prevail, which considerably exceed its dissipative part compared to normal conditions of hardening. Originality. There were established the regularities of structure formation of modified cement system, reinforced with synthesized, well crystallized helical filamentary crystals, mechanical grip of which is considered as a principal source of strength in combination with an additional coupling achieved due to cross-germination of crystals. Practical value. In the study the increased binding capacity of cement in high strength concretes and the use of modified cement systems in the special conditions of concreting were considered. The organo-mineral modifying complex that provides the dispersed reinforcement of concrete cement matrix which allows modifying the process of cement matrix structure formation by changing the nature of the surface of binder and modifier was developed. The temperature factor has no negative influence on the hardening concrete and complex modifier provides the improved physico-mechanical characteristics of cement matrix and concrete

  11. Strength of Concrete Containing Rubber Particle as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Abdullah Siti Radziah

    2016-01-01

    Full Text Available Uncontrolled issues of disposal waste tire rubber create huge environmental impact and health hazards. An alternative viable solution to minimize these problems is by utilizing the waste rubber tires in construction materials, which in turn can reduce the use of natural resources and eventually lessen the cost of construction. This paper mainly focuses on the use of waste rubber tires particles in concrete with different set of composition ranging from 3 to 12% of cement replacement. Concrete cubes size of 150mm x 150mm x 150mm were prepared for compressive strength test, and concrete cylinders size of 150m x 300mm were prepared for splitting tensile test. The result shows that the compressive and split tensile strength of concrete with rubber as cement replacements is 6-21% lower than the normal concrete.

  12. Mechanical Response of Typical Cement Concrete Pavements under Impact Loading

    Directory of Open Access Journals (Sweden)

    Ding Fei

    2017-01-01

    Full Text Available In order to study the mechanical response of cement concrete pavements under impact loading, four types of typical cement concrete pavement structures are investigated experimentally and numerically under an impact load. Full-scale three-dimensional pavement slots are tested under an impact load and are monitored for the mechanical characteristics including the deflection of the pavement surface layer, the strain distribution at the bottom of the slab, and the plastic damage and cracking under the dynamic impact load. Numerical analysis is performed by developing a three-dimensional finite element model and by utilizing a cement concrete damage model. The results show that the calculation results based on the cement concrete damage model are in reasonable agreement with the experimental results based on the three-dimensional test slot experiment. The peak values of stress and strain as monitored by the sensors are analyzed and compared with the numerical results, indicating that the errors of numerical results from the proposed model are mostly within 10%. The rationality of the finite element model is verified, and the model is expected to be a suitable reference for the analysis and design of cement concrete pavements.

  13. NUMERICAL METHOD AND RANDOM ANALYSIS OF CEMENT CONCRETE EXPANSION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The numerical method and random analysis of cement concrete expansion are given. A mathematical procedure is presented which includes the nonlinear characteristics of the concrete. An expression is presented to predict the linear restrained expansion of expansive concrete bar restrained by a steel rod. The results indicate a rapid change in strains and stresses within initial days, after which the change gradually decreases. A reliable and accurate method of predicting the behavior of the concrete bulkheads in drifts is presented here. Extensive sensitivity and parametric studies have been performed. The random density distributions of expansive concrete are given based on the restricted or unrestricted condition. These studies show that the bulkhead stress fields are largely influenced by the early modulus of the concrete and the randomness of the ultimate unrestrained expansion of the concrete.

  14. Laboratory Investigation on the Strength Gaining of Brick Aggregate Concrete Using Ordinary Portland Cement and Portland Composite Cement

    Directory of Open Access Journals (Sweden)

    Hoque M H, Numen E H, Islam N., Mohammed

    2014-05-01

    Full Text Available This study focused on the laboratory investigation of strength variation of brick aggregate concrete made with ordinary Portland cement (OPC and Portland composite cement (PCC.The investigation was conducted by testing concrete cylinder specimens at different ages of concrete with concrete mix ratios: 1:1.5:3 and 1:2:4 by volume and with water cement ratios=0.45 and 0.60. The test result reveals that at the early age, concrete composed with OPC attained larger compressive strength than the concrete made of PCC. However, in the later age concrete made with PCC achieved higher strength than OPC.

  15. The Albedo of Pervious Cement Concrete Linearly Decreases with Porosity

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2015-01-01

    Full Text Available Pervious pavements have been advocated as a potential countermeasure to the urban heat island effect. To understand if pervious pavements stay cooler than conventional pavements, the albedo of the pervious concrete must be understood. This study measured the albedo of pervious concrete with different porosity. Four Portland cement concrete mixes were casted, using designed amounts of sand to vary the porosity of the pervious concrete samples. The samples were sliced and the spectral reflectance and albedo of the sliced samples were measured and analyzed. It is found that the albedo of pervious concrete decreases linearly with the increase of the porosity. The albedo of a pervious Portland concrete varies from 0.25 to 0.35, which is 0.05~0.15 lower than the albedo of conventional cement concrete. Due to this lower albedo, it should be cautious to develop pervious concrete to battle with urban heat island unless the evaporation of pervious concrete is promoted to compensate the additional solar absorption caused by the low albedo.

  16. Proceedings of the Third CANMET/ACI International Symposium on Sustainable Development of Cement and Concrete : volume 1 and supplementary papers

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, V.M. (ed.) [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2001-07-01

    This conference brought together representatives from industry, universities, and government agencies from around the world to discuss the recent trend of sustainable development in the cement and concrete industry. The presentations focused on all aspects of concrete technology and sustainability with most of them dealing with the issue of supplementing cementing materials with admixtures such as fly ash in an effort to reduce carbon dioxide emissions. In addition to the referenced proceedings, a book of supplementary papers was also published. The papers focused mainly on the use of fly ash from coal-based power generation, slags from blast-furnaces and silica fumes. It was emphasized that the negative environmental effects of current cement/concrete production can be reduced substantially by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic and environmental advantages of improving the quality of the concrete are great. A total of 63 papers were presented at this conference, of which 31 have been processed separately for inclusion in the database. refs., tabs., figs.

  17. Sustainable development of the cement industry and blended cements to meet ecological challenges.

    Science.gov (United States)

    Sobolev, Konstantin

    2003-05-05

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and--at the same time--uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  18. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  19. Modification of High Performances of Polymer Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The workability,mechanical and physical properties are investigated,based on the requirements of the high properties of polymer cement concrete (PCC).The research results reveal that PCC is greatly improved and strengthened by adding appropriate polymer.At polymer/cement=0-0.15,its porosity decreases greatly due to the improved pore structure.The weak area at interface is strengthened.The workability,mechanical and physical properties are obviously enhanced with the proportion of polymer and cement.At the same time the properties are much improved under the adequate curing conditions and admixture (0-10%).

  20. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  1. Pore Structure of Cement Pastes Blended with Volcanic Rock

    Institute of Scientific and Technical Information of China (English)

    YU Lehua; ZHOU Shuangxi; LI Liling

    2016-01-01

    The pore parameters of cement pastes blended with volcanic rock at the curing age of 1, 28 and 90 d were de-termined by a mercury intrusion porosimetry. The pore structure of the pastes was characterized through the analysis of porosity, average pore diameter, the most probable pore aperture, pore size distribution, as well as total pore volume. For the improvement of mechanical property and durability of cement-based material, the correlation of the formed pore structure with hydration time and replacement level of volcanic rock for cement was revealed. The results indicate that volcanic rock can diminish porosity and reduce pore size in cement paste when curing time prolongs, which is particu-larly prominent with replacement level of less than 20% in late period. The more harmful pores (i.e., capillary pore) are gradually transformed into harmless pore (i.e., gel pores or micropore), even fully filled and disappeared when hydration products increase. The pore structure of the cement paste is thus refined. The beneficial effect of volcanic rock on the pore structure of cement paste could enhance the mechanical property and durability of cement-based material.

  2. Random ionic mobility on blended cements exposed to aggressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rosario, E-mail: rosario.garcia@uam.es [Departamento de Geologia y Geoquimica, Facultad de Ciencias, Universidad Autonoma, 28049 Madrid (Spain); Rubio, Virginia [Departamento de Geografia, Facultad de Filosofia y Letras, Universidad Autonoma, 28049 Madrid (Spain); Vegas, Inigo [Labein-Tecnalia, 48160 Derio, Vizcaya (Spain); Frias, Moises [Instituto Eduardo Torroja, CSIC, c/ Serrano Galvache, 4, 28033 Madrid (Spain)

    2009-09-15

    It is known that the partial replacement of cement by pozzolanic admixtures generally leads to modifications in the diffusion rates of harmful ions. Recent research has centred on obtaining new pozzolanic materials from industrial waste and industrial by-products and on the way that such products can influence the performance of blended cements. This paper reports the behaviour of cements blended with calcined paper sludge (CPS) admixtures under exposure to two different field conditions: sea water and cyclic changes in temperature and humidity. Cement mortars were prepared with 0% and 10% paper sludge calcined at 700 deg. C. The penetration of ions within the microstructure of cement matrices was studied using X-ray diffraction (XRD) and scanning electron microscopy equipped with an energy dispersive X-ray analyser (SEM/EDX) analytical techniques. The results show that ionic mobility varies substantially according to the type of exposure and the presence of the calcined paper sludge. The incorporation of 10% CPS is shown to assist the retention and diffusion of the ions.

  3. Cement treated recycled crushed concrete and masonry aggregates for pavements

    NARCIS (Netherlands)

    Xuan, D.X.

    2012-01-01

    This research is focusing on the characterization of the mechanical and deformation properties of cement treated mixtures made of recycled concrete and masonry aggregates (CTMiGr) in relation to their mixture variables. An extensive laboratory investigation was carried out, in which the mechanical p

  4. Modeling and Optimization of Cement Raw Materials Blending Process

    Directory of Open Access Journals (Sweden)

    Xianhong Li

    2012-01-01

    Full Text Available This paper focuses on modelling and solving the ingredient ratio optimization problem in cement raw material blending process. A general nonlinear time-varying (G-NLTV model is established for cement raw material blending process via considering chemical composition, feed flow fluctuation, and various craft and production constraints. Different objective functions are presented to acquire optimal ingredient ratios under various production requirements. The ingredient ratio optimization problem is transformed into discrete-time single objective or multiple objectives rolling nonlinear constraint optimization problem. A framework of grid interior point method is presented to solve the rolling nonlinear constraint optimization problem. Based on MATLAB-GUI platform, the corresponding ingredient ratio software is devised to obtain optimal ingredient ratio. Finally, several numerical examples are presented to study and solve ingredient ratio optimization problems.

  5. PROPERTIES AND MICROSTRUCTURE OF CEMENT PASTE INCLUDING RECYCLED CONCRETE POWDER

    Directory of Open Access Journals (Sweden)

    Jaroslav Topič

    2017-02-01

    Full Text Available The disposal and further recycling of concrete is being investigated worldwide, because the issue of complete recycling has not yet been fully resolved. A fundamental difficulty faced by researchers is the reuse of the recycled concrete fines which are very small (< 1 mm. Currently, full recycling of such waste fine fractions is highly energy intensive and resulting in production of CO2. Because of this, the only recycling methods that can be considered as sustainable and environmentally friendly are those which involve recycled concrete powder (RCP in its raw form. This article investigates the performance of RCP with the grain size < 0.25 mm as a potential binder replacement, and also as a microfiller in cement-based composites. Here, the RCP properties are assessed, including how mechanical properties and the microstructure are influenced by increasing the amount of the RCP in a cement paste (≤ 25 wt%.

  6. Effects of blended-cement paste chemical composition changes on some strength gains of blended-mortars.

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  7. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  8. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  9. The Chloride Permeability of Persulphated Phosphogypsum-Slag Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    HUANG Youqiang; LU Jianxin; CHEN Feixiang; SHUI Zhonghe

    2016-01-01

    The chloride permeability and microstructure of persulphated phosphogypsum-slag cement concrete (PPSCC), the Portland slag cement concrete (PSCC) and ordinary Portland cement concrete (OPCC) were investigated comparatively. Some test methods were used to evaluate the chloride permeability and explain the relationship between the permeability and microstructure of concrete. The results show that the resistance to chloride penetration in PPSCC is signiifcantly better than that in OPCC, the reasons are as follows: 1) the slag in PPSCC is activated by clinker (alkali activation) and phosphogypsum (sulfate activation), forming more low Ca/Si C-S-H gel and gel pores below 10 nm than OPCC, improving the resistance to chloride penetration; 2) the hydration products of PPSCC have a much stronger binding capacity for chloride ions; and 3) in the same mix proportion, PPSCC has a better workability without large crystals calcium hydroxide in the hydration products, the interfacial transition zone (ITZ) is smoother and denser, which can cut off the communicating pores between the pastes and aggregates.

  10. Effect of Ground Waste Concrete Powder on Cement Properties

    Directory of Open Access Journals (Sweden)

    Xianwei Ma

    2013-01-01

    Full Text Available The paste/mortar attached to the recycled aggregate decreases the quality of the aggregate and needs to be stripped. The stripped paste/mortar is roughly 20% to 50% in waste concrete, but relevant research is very limited. In this paper, the effects of ground waste concrete (GWC powder, coming from the attached paste/mortar, on water demand for normal consistency, setting time, fluidity, and compressive strength of cement were analyzed. The results show that the 20% of GWC powder (by the mass of binder has little effect on the above properties and can prepare C20 concrete; when the sand made by waste red clay brick (WRB replaces 20% of river sand, the strength of the concrete is increased by 17% compared with that without WRB sand.

  11. Strengthening of Concrete Structures with cement based bonded composites

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas

    2008-01-01

    Polymers). The method is very efficient and has achieved world wide attention. However, there are some drawbacks with the use of epoxy, e.g. working environment, compatibility and permeability. Substituting the epoxy adherent with a cement based bonding agent will render a strengthening system...... with improved working environment and better compatibility to the base concrete structure. This study gives an overview of different cement based systems, all with very promising results for structural upgrading. Studied parameters are structural retrofit for bending, shear and confinement. It is concluded...

  12. Response of a PGNAA setup for pozzolan-based cement concrete specimens

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-04-15

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the {gamma}-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring {gamma}-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  13. Response of a PGNAA setup for pozzolan-based cement concrete specimens.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Raashid, M

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  14. HYDRATION AND PROPERTIES OF BLENDED CEMENT SYSTEMS INCORPORATING INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    Heikal M.

    2013-06-01

    Full Text Available This paper aims to study the characteristics of ternary blended system, namely granulated blast-furnace slag (WCS, from iron steel company and Homra (GCB from Misr Brick (Helwan, Egypt and silica fume (SF at 30 mass % pozzolanas and 70 mass % OPC. The required water of standard consistency and setting times were measured as well as physico-chemical and mechanical characteristics of the hardened cement pastes were investigated. Some selected cement pastes were tested by TGA, DTA and FT-IR techniques to investigate the variation of hydrated products of blended cements. The pozzolanic activity of SF is higher than GCB and WCS. The higher activity of SF is mainly due to its higher surface area than the other two pozzolanic materials. On the other side, GCB is more pozzolanic than WCS due to GCB containing crystalline silica quartz in addition to an amorphous phase. The silica quartz acts as nucleating agents which accelerate the rate of hydration in addition to its amorphous phase, which can react with liberating Ca(OH2 forming additional hydration products.

  15. Performance and Durability Evaluation of Bamboo Reinforced Cement Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ankit Singh Mehra

    2016-04-01

    Full Text Available A big part of population in India is still homeless due to raising unaffordability of housing structures. People sleeping on roadsides and living in slums is a common sight in Indian cities. To overcome this problem India today needs millions of houses for their growing population, making concrete as the most widely to be used material in the country. Concrete has found to have excellent compressive strength but poor in tensile strength, to take care of the tensile stresses steel is commonly used as reinforcing material in concrete. Production of steel is a very costly business and its use in concrete as reinforcing material increases the cost of construction by many folds. Also production of steel emits a large amount of green house gases causing considerable deterioration of the environment. The above mentioned socio-economic and environmental factors creates a necessity for finding an appropriate environment friendly and cheap material that can successfully substitute steel as reinforcement in concrete elements of a low cost dwelling for the poor and homeless people of the country. It is here that engineered bamboo can be of great value to Civil Engineers owning to its several net worthy features. Production of every tone of bamboo consumes about a tone of atmospheric CO2 in addition to releasing fresh O2. From structural point of view bamboo has been used as a structural material from the earlier times as it possesses excellent flexure and tensile strength as well as high strength to weight ratio. All this necessitates examining bamboo-reinforced cement concrete in detail for its appropriateness as a structural material for construction of a low cost dwelling unit. The study focuses on evaluating the mechanical and durability properties of cement-concrete beams both singly and doubly reinforced with bamboo splints.

  16. The most suitable techiniques and methods to identify high alumina cement and based portland cement in concretes

    OpenAIRE

    Blanco, M. T.; Puertas, F; Vázquez, T.; de la Fuente, A

    1992-01-01

    Instrumental techniques are indicated and the most adequated methodologies for determining the nature of the binder in concretes are explained. These methods are: a) Determination of the Silicic Moduli through chemical analysis of the sample. This test reveáis very different valúes between cement portland based concrete and high alumina cement based concretes. b) X-ray diffraction. It is considered as the best method. In the present paper the main diffraction Unes corresponding to...

  17. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    OpenAIRE

    F. Mat Yahaya; Muthusamy, K.; Sulaiman, N.

    2014-01-01

    This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0) with 100% ordinary Portland cement (control specimen) and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20) has been identified as the best performing mix after cubes (150×150×150 mm) containing various content of POFA as partial c...

  18. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  19. Hydrothermal Characteristics of Blended Cement Pastes Containing Silica Sand Using Cement Kiln Dust as an Activator

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hydrothermal reactivity of silica sand was studied using cement kiln dust (CKD) as an activator in addition to the Portlandcement fraction of El-Karnak cement (a blend of ordinary Portland cement and ground sand). Autoclaved El-Karnak cementpastes were studied at pressures of 0.507, 1.013 and 1.520 MPa of saturated steam with respect to their compressive strength,kinetics of hydrothermal reaction and the phase composition of the formed hydrates. The role of CKD in affecting thephysicochemical and mechanical properties of El-Karnak cement pastes was studied by autoclaving of several pastes containing5, 7.5, 10 and 20% CKD at a pressure of 1.013 MPa of saturated steam. CKD was added either as a raw CKD (unwashed) orafter washing with water (washed CKD). The results of these physicochemical studies obtained could be related as much aspossible to the role of CKD (raw or washed) in affecting the hydrothermal reactivity of silica sand in El-Karnak cement pastes.

  20. Corrosion of steel bars in cracked concrete made with ordinary portland, slag and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. The performance of these cements was then examined for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. The specimens were 100 x 100 x 600 mm prisms of different types of cement. Water-to-cement ratios were 0.45 and 0.55. Both tap water and seawater were used as mixing water. The samples were exposed in tidal pools for 15 years to evaluate the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 19 tabs., 13 figs.

  1. The Hydration of Blended Cement at Low W/B Ratio

    Institute of Scientific and Technical Information of China (English)

    HU Shu-guang; LU Lin-nu; HE Yong-jia; LI Yue; DING Qing-jun

    2003-01-01

    The hydration process, hydration product and hydration heat of blended cement paste mixed with mineral admixture and expansive agent at low W/B ratio are studied by XRD , thermo analysis , and calorimetry instrument, and they were compared with those of pure cement paste. The results show that pure cement and blended cement at low W/B ratio have the same types of hydration products, but their respective amounts of hydration products of various blended cements at same ages and the vatiation law of the amount of same hydration products with ages are different; Tim joint effect of tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore and riff caused by the crystalloid ettringite is the impetus of the volume expansion of cement paste , and the former effect is much greater than the latter one .

  2. Influence of particle packing density on the rheology of low cement content concrete

    NARCIS (Netherlands)

    Fennis-Huijben, S.A.A.M.; Grunewald, S.; Walraven, J.C.; Den Uijl, J.A.

    2012-01-01

    Optimizing concrete mixtures with regard to cement content is one of the most important solutions in sustainable concrete design. Workability o f these low cement content or ecological mixtures is very important. Eleven mortar mixtures are presented, which show how a higher packing density can be us

  3. Mechanical Properties and Microstructure of Portland Cement Concrete Prepared with Coral Reef Sand

    Institute of Scientific and Technical Information of China (English)

    WANG Qiankun; LI Peng; TIAN Yapo; CHEN Wei; SU Chunyi

    2016-01-01

    The feasibility of using coral reef sand (CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densiifed compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of ifne pores in the range of 100 nm.

  4. Effect of Cement on Properties of Over-Burnt Brick Bituminous Concrete Mixes

    Science.gov (United States)

    Sarkar, Dipankar; Pal, Manish

    2016-06-01

    The present investigation is carried out to propose the use of cement coated over burnt brick aggregate in the preparation of bituminous concrete mix. The effect of cement on various mechanical properties such as Marshall stability, flow, Marshall quotient (stability to flow ratio), indirect tensile strength, stripping, rutting and fatigue life of bituminous concrete overlay has been evaluated. In this study, different cement percentages such as 2, 3, 4 and 5 % by weight of aggregate have been mixed with Over Burnt Brick Aggregate (OBBA). The laboratory results indicate that bituminous concrete prepared by 4 % cement coated OBBA gives the highest Marshall stability. The bituminous concrete mix with 4 % cement shows considerable improvement in various mechanical properties of the mix compared to the plain OBBA concrete mix.

  5. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  6. Strength of Ternary Blended Cement Sandcrete Containing Afikpo Rice Husk Ash and Saw Dust Ash

    Directory of Open Access Journals (Sweden)

    L. O. Ettu

    2013-01-01

    Full Text Available This work investigated the compressive strength of ternary blended cement sandcrete containing Afikpo rice husk ash (RHA and sawdust ash (SDA. 105 sandcrete cubes of 150mm x 150mm x 150mm were produced with OPC-RHA binary blended cement, 105 with OPC-SDA binary blended cement, and 105 with OPC-RHA-SDA ternary blended cement, each at percentage OPC replacement with pozzolan of 5%, 10%, 15%, 20%, and 25%. Three cubes for each percentage replacement of OPC with pozzolan and the control were tested for saturated surface dry bulk density and crushed to obtain their compressive strengths at 3, 7, 14, 21, 28, 50, and 90 days of curing. The 90-day strengths obtained from ternary blending of OPC with equal proportions of RHA and SDA were 11.80N/mm2for 5% replacement, 11.20N/mm2for 10% replacement, 10.60N/mm2for 15% replacement, 10.00N/mm2for 20% replacement, and 9.10N/mm2for 25% replacement, while that of the control was 10.90N/mm2. This suggests that very high sandcrete strength values could be obtained with OPCRHA-SDA ternary blended cement with richer mixes, high quality control, and longer days of hydration. Thus, OPC-RHA-SDA ternary blended cement sandcrete could be used for various civil engineering and building works, especially where early strength is not a major requirement.

  7. Sustainable production of blended cement in Pakistan through addition of natural pozzolana

    Directory of Open Access Journals (Sweden)

    Ahmad Muhammad Imran

    2016-01-01

    Full Text Available In this work pozzolana deposits of district Swabi, Pakistan were investigated for partial substitution of Portland cement along with limestone filler. The cement samples were mixed in different proportions and tested for compressive strength at 7 and 28 days. The strength activity index (SAI for 10 % pozzolana, and 5% limestone blend at 7 and 28 days was 75.5% and 85.0% satisfying the minimum SAI limit of ASTM C618. Twenty two percents natural pozzolana and five percents limestone were interground with clinker and gypsum in a laboratory ball mill to compare the power consumption with ordinary Portland cement (OPC (95% clinker and 5% gypsum. The ternary blended cement took less time to reach to the same fineness level as OPC due to soft pozzolana and high grade lime stone indicating that intergrinding may reduce overall power consumption. Blended cement production using natural pozzolana and limestone may reduce the energy consumption and green house gas emissions.

  8. Strength of Blended Cement Sandcrete & Soilcrete Blocks Containing Cassava Waste Ash and Plantain Leaf Ash

    Directory of Open Access Journals (Sweden)

    L. O. Ettu

    2013-01-01

    Full Text Available This work investigated the compressive strength of binary and ternary blended cement sandcrete and soilcrete blocks containing cassava waste ash (CWA and plantain leaf ash (PLA. 135 solid sandcrete blocks and 135 solid soilcrete blocks of 450mm x 225mm x 125mm were produced with OPC-CWA binary blended cement, 135 with OPC-PLA binary blended cement, and 135 with OPC-CWA-PLA ternary blended cement, each at percentage OPC replacement with pozzolan of 5%, 10%, 15%, 20%, and 25%.Three sandcrete blocks and three soilcrete blocks for each OPC-pozzolan mix and the control were crushed to obtain their compressive strengths at 3, 7, 14, 21, 28, 50, 90, 120, and 150 days of curing. Sandcrete and soilcrete block strengths from binary and ternary blended cements were found to be higher than the control values beyond 90 days of hydration. The 150-day strength values for OPC-CWA-PLA ternary blended cement sandcrete and soilcrete blocks were respectively 5.90N/mm2and 5.10N/mm2for 5% replacement, 5.80N/mm2and 4.95N/mm2for 10% replacement, 5.65N/mm2and 4.85N/mm2for 15% replacement, 5.60N/mm2and 4.75N/mm2for 20% replacement, and 5.25N/mm2and 4.65N/mm2for 25% replacement; while the control values were 5.20N/mm2and 4.65N/mm2. Thus, OPC-CWA and OPC-PLA binary blended cements as well as OPC-CWA-PLA ternary blended cement could be used in producing sandcrete and soilcrete blocks with sufficient strength for use in building and minor civil engineering works where the need for high early strength is not a critical factor.

  9. Effects of composition and exposure on the solar reflectance of Portland cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem

    2001-12-21

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Simulations of the influence of pavement albedo on air temperature in Los Angeles predict that increasing the albedo of 1,250 km2 of pavement by 0.25 would save cooling energy worth $15M yr-1, and reduce smog-related medical and lost-work expenses by $76M yr-1. Most sidewalks and a small fraction of roads and parking areas are paved with portland cement concrete, which can be made quite reflective through suitable choice of cement and aggregate. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Twenty-four mixes yielded substandard, ''rough'' concretes due to high, unmet aggregate water demand. The albedos of the remaining eight ''smooth'' concrete mixes ranged from 0.41 to 0.77 (mean 0.59). Simulated weathering, soiling, and abrasion each reduced average concrete albedo (mean decreases 0.06, 0.05, and 0.19, respectively), though some samples became slightly more reflective through weathering or soiling. Simulated rain (wetting) strongly depressed the albedos of concretes (mean decrease 0.23) until their surfaces were dried. Concrete albedo grew as the cement hydration reaction progressed (mean increase 0.08), but stabilized within six weeks of casting. White-cement concretes were on average significantly more reflective than gray-cement concretes. The albedo of the most-reflective white-cement concrete was 0.18 to 0.39 higher than that of the most-reflective gray-cement concrete, depending on state of exposure. Concrete albedo generally correlated with cement albedo and sand albedo, and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance

  10. Pore structure and carbonation in blended lime-cement pastes

    Directory of Open Access Journals (Sweden)

    Álvarez, J. I.

    2006-06-01

    Full Text Available The present study aims to gain a fuller understandingof the curing process in lime pastes (100, 90, 80, 70,60, 50 and 40% lime blended with cement by analyzingcarbonation in these materials. A hydrated, airslaked lime powder and CEM II A/L 32.5 Portlandcement were used for the blends. These materialswere singled out for research primarily because theymay be used in the restoration of heritage monuments.Variation in weight was used as an indicator for carbonation.A new parameter, A, was found to vary inverselywith the percentage of the cement because of theprevalence of Knudsen diffusion in the paste, in turndue to the characteristics of the pore structure, whichwas studied by mercury intrusion porosimetry (MIP.The hygroscopic study conducted on the different pastesprovided information on water content at a givenhumidity and its location, i.e., adsorbed on the surfaceof the pores or condensed inside them, obstructing thediffusion of CO2. The conclusion drawn from this studyof the curing process was that neither drying nor C3Shydration retarded lime carbonation.En este trabajo se estudia el proceso de carbonatacionen pastas mixtas de cal y cemento (100, 90, 80, 70, 60,50 y 40% de cal con el objeto de obtener un mejorconocimiento del proceso de curado en estos materiales.Para ello se ha empleado una cal aerea hidratada en polvoy un cemento Portland del tipo CEM II A/L 32,5. Enparticular, este estudio investiga estos materiales ya quepueden ser utilizados en la restauracion del PatrimonioCultural. Se ha utilizado la variacion de peso como indicadordel proceso de carbonatacion. Se ha establecidoun nuevo parametro, A, que varia inversamente con elporcentaje de cemento en la pasta, debido al predominiode la difusion de Knudsen como consecuencia de laestructura porosa, que ha sido estudiada por medio deporosimetria de intrusion de mercurio (PIM. El estudiohigroscopico realizado sobre las diversas pastas permiteconocer el contenido en agua a una

  11. DETERMINATION OF DIPOLE MOMENTS IN PLASTICIZER ADDITIONS FOR CEMENT CONCRETES

    Directory of Open Access Journals (Sweden)

    P. I. Ioukhnevsky

    2010-01-01

    Full Text Available The paper contains a method for determination of dipole moments in chemical plasticizer addition molecules for cement concretes as in powder-state so in the form of aqueous solutions as well.The methodology is based on measuring dielectric substance  permittivity depending on temperature, construction of a diagram (ε – 1/(ε + 2 = f(1/T with subsequent calculation of the molecule dipole moment. The Ossipov’s formula has been used for aqueous solutions of super-plasticizer additions with the purpose to calculate a dipole moment of polar substance in the polar solvent.The obtained values of dipole moments in C-3 super-plasticizer addition molecule are in good agreement with the values obtained as a result of quantum-chemical calculations. 

  12. Properties of Portland cement concretes containing pozzolanic admixtures

    Science.gov (United States)

    Simmons, D. D.; Pasko, T. J., Jr.; Jones, W. R.

    1981-04-01

    A laboratory comparison was made of the properties of a concrete containing no pozzolan with several mixtures containing pozzolans. Used were a natural pozzolan (Lassenite), two fly ashes of different fineness and low carbon and an amorphous silica fume dust from a metal-producing plant. One cement, one coarse crushed limestone aggregate, and one fine river aggregate were used. Replacing a faster reacting binder with a slower one, produced lower early strengths and adversely affected the properties which are highly dependent on strength. The measures of durability were greatly affected by the air contents and aging or treatment prior to exposure. The amorphous silica fume dust increased the early strengths of a fly ash mixture.

  13. Detecting flaws in Portland cement concrete using TEM horn antennae

    Science.gov (United States)

    Al-Qadi, Imad L.; Riad, Sedki M.; Su, Wansheng; Haddad, Rami H.

    1996-11-01

    To understand the dielectric properties of PCC and better correlate them with type and severity of PCC internal defects, a study was conducted to evaluate PCC complex permittivity and magnetic permeability over a wideband of frequencies using both time domain and frequency domain techniques. Three measuring devices were designed and fabricated: a parallel plate capacitor, a coaxial transmission line, and transverse electromagnetic (TEM) horn antennae. The TEM horn antenna covers the microwave frequencies. The measurement technique involves a time domain setup that was verified by a frequency domain measurement. Portland cement concrete slabs, 60 by 75 by 14 cm, were cast; defects include delamination, delamination filled with water, segregation, and chloride contamination. In this paper, measurements using the TEM horn antennae and the feasibility of detecting flaws at microwave frequency are presented.

  14. Mechanism of Calcined Phosphogypsum for the Volume Change of Blended Cement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The paper describes an investigation into the volume change of cement mortar specimen at the three kinds of different curing schedules including 20℃ and 5% Na2SO4 solution curing, tap water standard curing, 50% RH curing for 90 days. The testing results of hydration heat, chemical shrinking and XRD prove that calcined phosphogypsum has evident excitation effect on the activity of high calcium ash and steel slag. Simultaneously, calcined phosphogypsum has the function of decreasing volume shrinkage to blended cement possessing steel slag and high calcium ash. In sulfate curing, calcined phosphogypsum can avoid the phenomenon of protrude apex of the blended cement.

  15. Concretes with ternary composite cements. Part III: multicriteria optimization

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2007-06-01

    Full Text Available Optimization methods are tools of vital importance in composite material design, where large numbers of components and design criteria must be taken into account. The formulation of today’s separately milled custommade cements is a clear example of just such a case, for the components must be proportioned to yield mortars and concretes with the proper balance of durability, strength, financial and environmental features. Multicriteria optimization has been used to develop many materials, although its application in cement formulation has yet to be explored. The present paper discusses the use of an objective function to jointly optimize sorptivity and compressive strength in limestone- (up to 20% and/or granulated blast furnace slag- (up to 20% additioned Portland cement concrete.Los métodos de optimización constituyen una herramienta de vital importancia en el diseño de materiales compuestos, donde la cantidad de componentes de la mezcla y los criterios de diseño que deben tenerse en cuenta en el proceso de fabricación son numerosos. En la actualidad, la formulación de un cemento a medida (tailor made a partir del proceso de molienda separada es un claro ejemplo de ello, pues las proporciones relativas de las componentes de la mezcla deben permitir luego obtener morteros y hormigones con el equilibrio justo entre los requerimientos durables, mecánicos, económicos y ecológicos que se soliciten. La optimización por multicriterios ha sido empleada en el desarrollo de diversos materiales, sin embargo, su aplicación en la formulación del cemento no ha sido aún explorada. En este trabajo se presenta la optimización conjunta de la capacidad de absorción y la resistencia a compresión de hormigones elaborados con cemento Portland con caliza (hasta un 20% y/o escoria granulada de alto horno (hasta un 20% utilizando la función objetivo.

  16. The use of the chrysotile cement waste as the secondary aggregate for the concrete

    Science.gov (United States)

    Semenov, V.; Pligina, A.; Rozovskaya, T.

    2015-01-01

    The article presents the results of research on the effective concrete with secondary chrysotile cement aggregate. One of the important problems of modern science of construction materials is the use of secondary resources for the production of construction materials, and a considerable part of them are the chrysotile cement waste and scrapped chrysotile cement products. The aim of presented research is the development of effective concrete for the production of foundation wall blocks with the use of crushed chrysotile cement products as a secondary aggregate. The main characteristics of the secondary chrysotile cement aggregate have been determined. The concrete with different compositions and with different content of secondary chrysotile cement rubble has been studied. The dependences of the strength and the specific strength of concrete with a constant W/C ratio and constant binder consumption on the consumption of the secondary aggregate have been obtained. It is stated that the introduction of secondary chrysotile cement aggregate does not significantly effect the water resistance and frost resistance of the concrete. It is shown that the variation of the fractions of secondary aggregates and the binder makes it possible to obtain the effective concrete with a wide range of strength values.

  17. Performance Analysis of Styrene Butadiene Rubber-Latex on Cement Concrete Mixes.

    Directory of Open Access Journals (Sweden)

    Er. Kapil Soni

    2014-03-01

    Full Text Available To improve the performance of concrete, polymers are mixed with concrete. It has been observed that polymer-modified concrete (PMC is more durable than conventional concrete due to superior strength and high durability. In this research, effect of Styrene-Butadiene Rubber (SBR latex on compressive strength and flexural strength of concrete has been studied and also the optimum polymer (SBR-Latex content for concrete is calculated. This research was carried out to establish the effects of polymer addition on compressive and flexural strength using concrete with mix design of constant water-cement ratio at local ambient temperature. The mixes were prepared with Styrene-Butadiene Rubber (SBR latex -cement ratio of 0 %, 5%, 10%, 15% and 20%. Slump test was conducted on fresh concrete while compressive strength and flexural strength were determined at different age. A locally available Perma-Latex is used as SBR Latex. It has been observed that SBR latex has negative effect at early age while at 28 days, the addition of SBR latex in concrete results in enhancement of compressive strength and Flexural Strength. Based on the results of this study, latex modified concrete made using Perma-Latex may be recommended to be used with various types of concrete structures. However, for the mixes rich in cement, the dosage of SBR latex needs to be adjusted to maintain required workability of concrete.

  18. A modified ASTM C1012 procedure for qualifying blended cements containing limestone and SCMs for use in sulfate-rich environments

    Energy Technology Data Exchange (ETDEWEB)

    Barcelo, Laurent, E-mail: laurent.barcelo@lafarge.com [Lafarge Canada Inc., 334 Avro, Pointe Claire, QC H9R 5W5 (Canada); Lafarge Centre de Recherche, 95 rue du Montmurier, 38291 St Quentin Fallavier (France); Gartner, Ellis; Barbarulo, Rémi [Lafarge Centre de Recherche, 95 rue du Montmurier, 38291 St Quentin Fallavier (France); Hossack, Ashlee [University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada); Ahani, Reza [University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4 (Canada); Thomas, Michael [University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada); Hooton, Doug [University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4 (Canada); Brouard, Eric [Lafarge Centre de Recherche, 95 rue du Montmurier, 38291 St Quentin Fallavier (France); Delagrave, Anik [Lafarge Canada Inc., 334 Avro, Pointe Claire, QC H9R 5W5 (Canada); Lafarge North-America, 12018 Sunrise Valley Drive, Suite 500, Reston, VA 20191 (United States); Blair, Bruce [Lafarge North-America, 12018 Sunrise Valley Drive, Suite 500, Reston, VA 20191 (United States)

    2014-09-15

    Blended Portland cements containing up to 15% limestone have recently been introduced into Canada and the USA. These cements were initially not allowed for use in sulfate environments but this restriction has been lifted in the Canadian cement specification, provided that the “limestone cement” includes sufficient SCM and that it passes a modified version of the CSA A3004-C8 (equivalent to ASTM C1012) test procedure run at a low temperature (5 °C). This new procedure is proposed as a means of predicting the risk of the thaumasite form of sulfate attack in concretes containing limestone cements. The goal of the present study was to better understand how this approach works both in practice and in theory. Results from three different laboratories utilizing the CSA A3004-C8 test procedure are compared and analyzed, while also taking into account the results of thermodynamic modeling and of thaumasite formation experiments conducted in dilute suspensions.

  19. Modified-sulfur cements for use in concretes, flexible pavings, coatings, and grouts

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1981-05-01

    A family of modified-sulfur cements was developed for the preparation of construction materials with improved properties. Various types of sulfur cements were prepared by reacting sulfur with mixtures of dicyclopentadiene and oligomers of cyclopentadiene. Durable cements were prepared with structural characteristics ranging from rigid to flexible. These cements were used to prepare corrosion-resistant materials for use in a wide variety of industrial applications where resistance to acidic and salt conditions is needed. These materials were prepared as rigid concretes, flexible pavings, spray coatings, and grouts. Production of modified-sulfur cements in a commercial-size plant was demonstrated.

  20. Anti-Crack Performance of Low-Heat Portland Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2℃-3℃,and the limits tension of LHC concrete was increased by 10×10-6-15×10-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.

  1. Characteristics solidified cement waste using heavy concrete and light concrete paste generated from KRR-2 and UCP

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Choi, W. K.; Kim, G. N.; Lee, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    As the number of obsolete research reactors and nuclear facilities increases, dismantling nuclear facilities has become an influential issue. During the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete wastes are generated. In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at KAERI has been under way. By dismantling KRR-2, more than 260 tons of radioactive concrete wastes were generated among the total 2,000 tons of concrete wastes and more than 60 tons of concrete wastes contaminated with uranium compounds have been generated. Typically, the contaminated layer is only 1{approx}10mm thick because cement materials are porous media, the penetration of radionuclides may occur up to several centimeters from the surface of a material. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The binder is typically a portland cement which comprises the four principal clinker phases tricalcium silicate (Ca{sub 3}SiO{sub 5}) and constitutes 50-70%, decalcium silicate (Ca{sub 2}SiO{sub 4}), tricalcium aluminate (Ca{sub 3}Al{sub 2}O{sub 6}), and calcium aluminoferrite (Ca{sub 4}Al{sub 2}Fe{sub 2}O{sub 10}). Cement powder (anhydrous cement) created from the co-grinding of clinkers and gypsum is mixed with waster and hydrate phase are formed. The interaction between highly charged C-S-H particles in the presence of divalent calcium counter ions is strongly attractive because of ion-ion correlations and a negligible entropic repulsion. In the temperature range 100-300 .deg. C, these evolutions are mainly attributed to the loss of the bound water from the C-S-H gel. Similar consequences have been reported for mortars and concretes enhanced sometimes by the appearance of micro-cracks related to the strain incompatibilities between the aggregates and the cement paste. Concrete aggregates are combined

  2. Prompt gamma-ray analysis of chlorine in superpozz cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.sa [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Kalakada, Zameer [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Matouq, Faris A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ur-Rehman, Khateeb [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2012-11-21

    The chlorine concentration in Superpozz (SPZ) cement concrete was analyzed using a newly designed prompt gamma-ray neutron activation (PGNAA) setup utilizing a portable neutron generator. The setup, which mainly consists of a neutron source along with its moderator placed side by side with a shielded gamma-ray detector, allows determining chloride concentration in a concrete structure from one side. The setup has been tested through chlorine detection in chloride-contaminated Superpozz (SPZ) cement concrete specimens using 6.11 and 2.86{+-}3.10 MeV chlorine prompt gamma-rays. The optimum 0.032{+-}0.012 wt% value of Minimum Detectable Concentration (MDC) of chlorine in SPZ cement concrete measured in this study shows a successful application of a portable neutron generator in chloride analysis of concrete structure for corrosion studies.

  3. Influence of Aggregate Coated with Modified Sulfur on the Properties of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Swoo-Heon Lee

    2014-06-01

    Full Text Available This paper proposes the mixing design of concrete having modified sulfur-coated aggregate (MSCA to enhance the durability of Portland cement concrete. The mechanical properties and durability of the proposed MSCA concrete were evaluated experimentally. Melting-modified sulfur was mixed with aggregate in order to coat the aggregate surface at a speed of 20 rpm for 120 s. The MSCA with modified sulfur corresponding to 5% of the cement weight did not significantly affect the flexural strength in a prism concrete beam specimen, regardless of the water-cement ratio (W/C. However, a dosage of more than 7.5% decreased the flexural strength. On the other hand, the MSCA considerably improved the resistance to the sulfuric acid and the freezing-thawing, regardless of the sulfur dosage in the MSCA. The coating modified sulfur of 5% dosage consequently led to good results for the mechanical properties and durability of MSCA concrete.

  4. Durability Index Performance of High Strength Concretes Made Based on Different Standard Portland Cements

    Directory of Open Access Journals (Sweden)

    Stephen O. Ekolu

    2012-01-01

    Full Text Available A consortium of three durability index test methods consisting of oxygen permeability, sorptivity and chloride conductivity were used to evaluate the potential influence of four (4 common SANS 10197 cements on strength and durability of concrete. Twenty four (24 concrete mixtures of water-cement ratios (w/c's = 0.4, 0.5, 0.65 were cast using the cement types CEM I 42.5N, CEM II/A-M (V-L 42.5N, CEM IV/B 32.5R and CEM II/A-V 52.5N. The concretes investigated fall in the range of normal strength, medium strength and high strength concretes. It was found that the marked differences in oxygen permeability and sorptivity results observed at normal and medium strengths tended to vanish at high concrete strengths. Also, the durability effects attributed to use of different cement types appear to diminish at high strengths. Cements of low strength and/or that contained no extenders (CEM 32.5R, CEM I 42.5N showed greater sensitivity to sorptivity, relative to other cement types. Results also show that while concrete resistance to chlorides generally improves with increase in strength, adequately high chloride resistance may not be achieved based on high strength alone, and appropriate incorporation of extenders may be necessary.

  5. An experimental study on the recovery of the hardened cement from crushed end of life concrete

    NARCIS (Netherlands)

    Lotfi, S.; Rem, P.C.

    2015-01-01

    In the C2CA concrete recycling process, autogenous milling of the crushed End of Life (EOL) concrete is a mechanical method to remove cement paste from the surface of aggregates. During autogenous milling, the combination of shearing and compression forces, promotes selective attrition and delivers

  6. Effect of chemical treatments on the mechanical properties of peanut shell and cement blends

    Directory of Open Access Journals (Sweden)

    Gatani, M.

    2010-06-01

    Full Text Available An abundance of agri-food waste in the area around Cordoba, Argentina, has driven the development of new construction materials. This study explored the applicability of peanut shells as additions in cement blends and the suitability of the properties of the resulting mixes for use in construction materials. The mechanical properties of the specimens were observed to improve when the shells were previously treated with quicklime (CaO or when sodium silicate and aluminium sulphate were added to the blend. While the resulting materials did not exhibit the same mechanical properties as traditional mortars and concretes, they do appear to be apt for use in lightweight and non-bearing structures.

    La abundante disponibilidad de residuos de la agroindustria local (Córdoba, Argentina, ha promovido el desarrollo de nuevos materiales para la construcción. Este trabajo de investigación se desarrolla a partir de la utilización de cáscara de maní como agregado en mezclas de cemento a fin de conocer las propiedades obtenidas en relación al tratamiento de dicho agregado, para la producción de materiales de construcción. Los ensayos demostraron mejoras en las propiedades mecánicas de las probetas realizadas con cemento y cáscaras previamente tratadas con cal viva (CaO, también en aquéllas aditivadas con silicato de sodio y sulfato de aluminio. Si bien los materiales resultantes no tienen las propiedades mecánicas de los morteros y hormigones tradicionales, parecen interesantes para ser aplicadas en componentes de construcción livianos y de uso no portante.

  7. Non-destructive analysis of chlorine in fly ash cement concrete

    Science.gov (United States)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  8. Effects of Particle Size and Cement Replacement of LCD Glass Powder in Concrete

    Directory of Open Access Journals (Sweden)

    Seong Kyum Kim

    2017-01-01

    Full Text Available The high quality liquid crystal display (LCD processing waste glass (LPWG generated from the manufacturing process of Korea’s LCD industries, having the world’s highest technological level and production, was finely ground into particles smaller than cement particles (higher fineness than OPC to verify their applicability and performance as a replacement for cement. For a concrete mix having a W/B ratio of 0.44, cement was replaced with LPWG glass powder (LGP at ratios of 5, 10, 15, and 20% (LGP12 and 5 and 10% (LGP5 according to the particle size to prepare test cylinder specimens, which were tested with respect to air contents, slump in fresh concrete, and compressive strength and splitting tensile strength of hardened concrete. The microstructure of the concrete specimens was analyzed through Scanning Electron Microscopy (SEM, Energy Dispersive X-ray (EDX, and a Mercury Intrusion Porosimetry (MIP. Replacement of cement with LGP for cement could effectively decrease the quantity of cement used due to the excellent performance of LGP. It may positively contribute to the sustainable development of the cement industry as well as waste recycling and environment conservation on a national scale.

  9. Corrosion Resistance of High Strength Concrete Containing Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    F. Mat Yahaya

    2014-06-01

    Full Text Available This experimental work investigates the influence of POFA as partial cement replacement towards corrosion resistance of high strength concrete. Plain high strength concrete (P0 with 100% ordinary Portland cement (control specimen and POFA high strength concrete containing POFA as partial cement replacement material were used. At the first stage, mix with 20% POFA (P20 has been identified as the best performing mix after cubes (150×150×150 mm containing various content of POFA as partial cement replacement were prepared, continuously water cured and subjected to compressive strength test at 28 days. At the second stage of study, control specimen (P0 and high strength concrete mix containing 20% POFA (P20 were prepared in form of cylinders with reinforcement bar buried in the middle for corrosion resistance test. Specimens were subjected to half cell potential technique following the procedures outlined in ASTM C876 (1994. Incorporation of POFA as partial cement replacement has contributed to densification of microstructure making the concrete denser thus exhibit higher resistance towards corrosion as compared to plain concrete.

  10. ABSORPTION AND PERMEABILITY PERFORMANCE OF SELANGOR RICE HUSK ASH BLENDED GRADE 30 CONCRETE

    Directory of Open Access Journals (Sweden)

    KARTINI, K.

    2010-03-01

    Full Text Available Substituting waste materials in construction is well known for conservation of dwindling resources and preventing environmental and ecological damages caused by quarrying and depletion of raw materials. Many researches had shown that some of these wastes have good pozzolanic properties that would improve the quality of concrete produced. One such waste material is agricultural waste rice husk, which constitute about one-fifth of 600 million tonnes of rice produced annually in the world. The RHA obtained by burning the rice husk in the ferrocement furnace and used as a cement replacement material. The use of this supplementary cementing material is expected to meet the increase in demand of cement, as the current world cement production of approximately 1.2 million tonnes is expected to grow exponentially to about 3.5 billions tonnes per year by 2015. This paper reports the results of durability performance conducted on the normal strength concrete specimens of 30 N/mm2 containing 20% or 30% RHA by cement weight, with or without addition of superplasticizer. The results show that replacement of cement with RHA lowers initial surface absorption, lowers the permeability, lowers the absorption characteristics, longer time taken for the capillary suction resulted in lower sorptivity value, lower water permeability and increase the resistance of concrete to chloride ion penetration in comparison with the OPC control concrete. The present investigations revealed that incorporation RHA significantly improve the absorption and permeability characteristics of concrete.

  11. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-02-01

    Full Text Available This research aims to produce non-structural concrete with mixed recycled aggregates (MRA in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%, using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  12. A micromechanical four-phase model to predict the compressive failure surface of cement concrete

    Directory of Open Access Journals (Sweden)

    A. Caporale,

    2014-07-01

    Full Text Available In this work, a micromechanical model is used in order to predict the failure surface of cement concrete subject to multi-axial compression. In the adopted model, the concrete material is schematised as a composite with the following constituents: coarse aggregate (gravel, fine aggregate (sand and cement paste. The cement paste contains some voids which grow during the loading process. In fact, the non-linear behavior of the concrete is attributed to the creation of cracks in the cement paste; the effect of the cracks is taken into account by introducing equivalent voids (inclusions with zero stiffness in the cement paste. The three types of inclusions (namely gravel, sand and voids have different scales, so that the overall behavior of the concrete is obtained by the composition of three different homogenizations; in the sense that the concrete is regarded as the homogenized material of the two-phase composite constituted of the gravel and the mortar; in turn, the mortar is the homogenized material of the two-phase composite constituted of the sand inclusions and a (porous cement paste matrix; finally, the (porous cement paste is the homogenized material of the two-phase composite constituted of voids and the pure paste. The pure paste represents the cement paste before the loading process, so that it does not contain voids or other defects due to the loading process. The abovementioned three homogenizations are realized with the predictive scheme of Mori-Tanaka in conjunction with the Eshelby method. The adopted model can be considered an attempt to find micromechanical tools able to capture peculiar aspects of the cement concrete in load cases of uni-axial and multi-axial compression. Attributing the non-linear behavior of concrete to the creation of equivalent voids in the cement paste provides correspondence with many phenomenological aspects of concrete behavior. Trying to improve this correspondence, the influence of the parameters of the

  13. Influence of Environmental Factors on the Volume Change of Blended Cement Containing Steel Slag

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the condition of 20 ℃, 5% sulfate liquor curing, standard tap water curing and 50% RH curing-three different curing environments, the volume change of steel slag blended cement influenced by environmental factors was studied. With steel slag addition 10%, 30%, 50%, from 90 days to 356 days, the relationship of shrinkage and three different curing environments is: dry curing environment>tap water curing environment>sulfate curing environment. But, the sample shrinkage in 28 days has much difference with the curing environment, which has no obvious orderliness. The different effects on blended cement containing steel slag in different environmental factors were analyzed using SEM.

  14. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D;

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  15. INVESTIGATION OF CEMENT CONCRETE CONGLOMERATE SOLIDIFICATION PROCESS BY IMPEDANCE SPECTROSCOPY METHOD

    Directory of Open Access Journals (Sweden)

    S. N. Bandarenka

    2015-01-01

    Full Text Available One of the most prospective directions in preservation  and increase of service live of  road pavements is a construction of  automobile roads with cement concrete surface. Modern tendencies for provision of road construction quality presuppose a necessity to control processes of solidification and subsequent destruction of the material while forming and using cement concrete conglomerate being considered as a basic element of the road surface.  Multiyear practical experience of  automobile road operation using cement concrete pavements reveals an importance for monitoring  such processes as formation and destruction of cement concrete materials. An impedance spectroscopy method has been tried out and proposed as a tool for solution of the given problem.Experimental samples of cement concrete have been prepared for execution of tests, graded silica sand and granite chippings with particle size from 0.63 to 2.5 mm have been used as a fine aggregate in the samples. Dependencies of resistance (impedance on AC-current frequency  have been studied for samples of various nature and granulometric composition. The Gamry  G300 potentiostat has been used for measurement of complex impedance value. A spectrum analysis and calculation of equivalent circuit parameters calculation have been carried out while using EIS Spectrum Analyzer program.Comparison of impedance spectra for the prepared cement concrete samples have made it possible to reveal tendencies in changing spectrum parameters during solidification and subsequent contact with moisture in respect of every type of the sample. An equivalent electrical circuit has been developed that  characterizes physical and chemical processes which are accompanied by charge transfer in cement concrete conglomerate. The paper demonstrates a possibility to use an impedance spectroscopy for solution of a number of actual problems in the field of cement concrete technology problems. Particularly, the problems

  16. Superplasticizer effect on cement paste structure and concrete freeze-thaw resistance

    Science.gov (United States)

    Shuldyakov, Kirill; Kramar, Lyudmila; Trofimov, Boris; Ivanov, Ilya

    2016-01-01

    Article presents the results of studies of various types of superplasticizer additives and their influence on concrete structure and resistance under cyclic freezing-thawing. Glenium ACE 430 was taken as a polycarboxylate superplasticizer, and SP-1 - as a naphthalene-formaldehyde superplasticizer. It is revealed that at identical structure, W/C and fluidity of concrete mix, application of the polycarboxylate superplasticizer, Glenium AC 430, in comparison to the naphthalene-formaldehyde one SP-1, facilitates the increase of the concrete grade in freeze and thaw resistance from F2300 to F2400, concrete freeze and thaw resistance can be possible even higher if the gravel with higher freeze and thaw resistance is applied. To assess the superplasticizers influence on cement paste structure tests of the phase composition of the cement paste of the studied concrete were conducted. It is established that the use of polycarboxylate superplasticizer together with silica fume facilitates formation of cement plaster structure from tobermorite gel. This gel has increased basicity and is resistant to crystallization due to cyclic freezing. It is shown that in the presence of SP-1+SF in the cement paste of concrete during hydration the structure of hydrosilicate phases preferably comprises of C-S-H(I) and C-S-H(II) phases which actively crystallize while cyclic freezing and thawing and reduce freeze-thaw resistance of concrete.

  17. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  18. Influence of adjuvants on the properties of underwater cast concrete on base of cement (HRS 32.5 N

    Directory of Open Access Journals (Sweden)

    Rouis Mohamed Jamel

    2014-04-01

    *The characterization tests of concrete in the hardened state including destructive and non destructive tests performed on specimens made in concrete (based on portland cement, with varying dosages and adjuvants at different times (28d and 90d.

  19. The microstructure of Portland cement paste and its relationship to drying shrinkage: A study of blended cement paste

    Science.gov (United States)

    Olson, Rudolph Andrew, III

    1998-12-01

    The objective was to understand how the microstructure of cement paste influences its susceptibility to drying shrinkage. The strategy was to vary the microstructure via processing and relate the changes to the deformation behavior. There were many processing parameters to choose from that were capable of varying the microstructure, but one very effective way was through addition of mineral admixtures. Since the use of mineral admixtures also has the potential to address current economic, social, and environmental problems, achieving a better understanding of blended cement paste was an added benefit. Ground granulated blast furnace slag, fly ash, and silica fume were the mineral admixtures chosen for this study because they represent a wide range of reactivity. Blended cement pastes of various compositions and degrees of hydration were characterized. Calcium hydroxide, calcium silicate hydrate, pH, free water, and nitrogen surface area were the microstructural parameters chosen for analysis. Because calcium silicate hydrate is usually measured by indirect techniques which are not applicable to blended cements, a technique based on water adsorption was developed; results compared favorably with calculations from the Jennings-Tennis hydration model. The connectivity of the pore network was characterized using impedance spectroscopy. Drying shrinkage was analyzed on the macrolevel using bulk shrinkage measurements and the microstructural level using a deformation mapping technique. Several processing-microstructure-property relationships were developed. Mineral admixtures were found to significantly reduce the connectivity of the pore network and increase the nitrogen surface area of cement paste per gram of calcium silicate hydrate. The bulk drying shrinkage of blended cement pastes dried to 50% relative humidity was found to depend primarily on calcium hydroxide and calcium silicate hydrate content; shrinkage decreased with increasing amounts of calcium hydroxide

  20. Statistical analysis of electrical resistivity as a tool for estimating cement type of 12-year-old concrete specimens

    NARCIS (Netherlands)

    Polder, R.B.; Morales-Napoles, O.; Pacheco, J.

    2012-01-01

    Statistical tests on values of concrete resistivity can be used as a fast tool for estimating the cement type of old concrete. Electrical resistivity of concrete is a material property that describes the electrical resistance of concrete in a unit cell. Influences of binder type, water-to-binder rat

  1. Influence of the Aggregate Volume on the Eleetrieal Resistivity and Properties of Portland Cement Concretes

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; XIAO Lianzhen

    2011-01-01

    The electrical resistivity of concretes with various aggregate volume fractions (Va) of 0%-70%at water/cement (W/C) ratios of 0.4 and 0.5 during l day was monitored.It is found that the addition of normal aggregate to cement paste leads to a regular increase in concrete resistivity at each hydration stage and the electrical resistivity has a deeper increase for the lower W/C at a fixed aggregate volume fraction.The number of normalized resistivity (NR) of concrete to its paste matrix was introduced,which is only a function of aggregate volume fraction (Va).The quantitative relationships give an alternative method for the prediction of aggregate volume in the concrete.A logarithmic relation is established between the elastic modulus of concrete at 7 days or 28 days and the electrical resistivity of concrete at 1 day.The equations are obtained,the compressive strength of concrete at 7 days or 28 days can be determined by the electrical resistivity of concrete at 1 day and the used aggregate content in the concrete.The quantitative relationships give a non-destructive test (NDT) method for prediction of concrete elastic modulus and compressive strength.

  2. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-01-01

    Full Text Available In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%. To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  3. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.s [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-01-01

    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  4. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2015-01-01

    Full Text Available The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive strength generally increased with curing age, and that the mix containing 15% Bamboo Leaf Ash (BLA by mass competes favorably with that of the reference mix at 28days and above. The water absorption and apparent porosity were observed to increase with increase in BLA content, while the bulk density decreases as the percentage of BLA increases from 5% to 25% by mass. The study concluded that 15% BLA replacing cement is adequate for the production of masonry mortar.

  5. Utilization of “Marble Slurry” In Cement Concrete Replacing Fine Agreegate

    Directory of Open Access Journals (Sweden)

    Er: Raj.p.singh kushwah

    2015-01-01

    Full Text Available The wastage of marble industry are responsible for many environmental problems because 70% wastes and only 30% recovery of main product contribute to the maximum wastes which are indestructible. Dumping sites give dirty look. Contaminate top fertile soil cover, along with rivers/water bodies affecting irrigation and drinking water resources and air as well as loss to flora and fauna. The most efficient Solution of marble slurry pollution is utilization in Bulk. The only industry which can consume marble slurry at so large level is only the construction industry. Different properties of marble slurry determined in the laboratory. Sp. gravity 2.61, Fineness modulus was found to be 0.91 and Utilization of marble slurry in Cement Concrete replacing Sand is 30% which shows equal strength as of Control i,e. 1:2:4 Cement Concrete 0% Marble slurry. Marble slurry can be easily utilized in construction industry in preparing Cement Concrete.

  6. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, Mette; Poulsen, S.L.; Herfort, D.;

    2012-01-01

    This work investigates the hydration of blended Portland cement containing 30 wt.% Na2O-CaO-Al2O3-SiO2 (NCAS) glass particles either as the only supplementary cementitious material (SCM) or in combination with limestone, using 29Si MAS NMR, powder XRD, and thermal analyses. The NCAS glass...... of hydration. The hydrated glass contributes to the formation of the calcium-silicate-hydrate (C-S-H) phase, consuming a part of the Portlandite (Ca(OH)2) formed during hydration of the Portland cement. Furthermore, the presence of the glass and limestone particles, alone or in combination, results...... in an accelerated hydration for alite (Ca3SiO5), the main constituent of Portland cement. A higher degree of limestone reaction has been observed in the blend containing both limestone and NCAS glass as compared to the limestone – Portland mixture. This reflects that limestone reacts with a part of the alumina...

  7. Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC Concrete

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2017-01-01

    Full Text Available Limestone is widely used in the construction industry to produce Portland limestone cement (PLC concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.

  8. Durability of Concrete Using Rice Husk Ash as Cement Substitution Exposed To Acid Rain

    Directory of Open Access Journals (Sweden)

    I. A. Ahmad

    2014-05-01

    Full Text Available The acidity of rainfall in major areas of Indonesia is under neutral pH. Average pH of rainfall is between 3 and 5. Free lime within concrete will react with acid and cause a decrease in the strength of concrete. A means to anticipate the damage is to reduce the content of free lime within concrete. Silicon oxide contained in rice husk ash can react with free lime to form a new compound that is harder and denser. It became the basis for the use of rice husk ash in concrete mixtures. The mixtures were prepared by replacing 5% and 10% of cement with rice husk ash and the results were compared with a reference mix with 100% cement. This paper presents the results of an experimental investigation on the mechanical characteristics of concrete specimens as durability parameters. Then to evaluate the mechanical characteristics, microstructure test was conducted. The lower the mechanical properties of the concrete, the higher the level of gypsum contained within concrete. The percentage of 5% rice husk ash of the cement weight has a lower compressive strength decrease than the 10% rice husk ash. In addition, the proposed durability model is a model of polynomial equation with two variables.

  9. Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress

    Energy Technology Data Exchange (ETDEWEB)

    Papadakis, V.G.

    2000-02-01

    In this work the durability of Portland cement systems incorporating supplementary cementing materials (SCM; silica fume, low- and high-calcium fly ash) is investigated. Experimental tests simulating the main deterioration mechanisms is reinforced concrete (carbonation and chloride penetration) were carried out. It was found that for all SCM tested, the carbonation depth decreases as aggregate replacement by SCM increases, and increases as cement replacement by SCM increases. The specimens incorporating an SCM, whether it substitutes aggregate or cement, when exposed to chlorides exhibit significantly lower total chloride content for all depths from the surface, apart from a thin layer near the external surface. New parameter values were estimated and existing mathematical models were modified to describe the carbonation propagation and the chloride penetration in concrete incorporating SCM.

  10. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    Science.gov (United States)

    Arnold, J.; Kosson, D. S.; Brown, K. G.; Garrabrants, A. C.; Meeussen, J. C. L.; van der Sloot, H. A.

    2013-07-01

    Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC) have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313) indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems.

  11. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    Directory of Open Access Journals (Sweden)

    Meeussen J.C.L.

    2013-07-01

    Full Text Available Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313 indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems.

  12. The effects of utilizing silica fume in Portland Cement Pervious Concrete

    Science.gov (United States)

    Mann, Daniel Allen

    Silica fume has long been used as a supplementary cementing material to provide a high density, high strength, and durable building material. Silica fume has a particle size a fraction of any conventional cement, which allows it to increase concrete strength by decreasing the porosity especially near the aggregates surface. Because Portland Cement Pervious Concrete (PCPC) has a smaller bond area between aggregate and paste, silica fume has significant impacts on the properties of the PCPC. The research in this paper studies the workability of a cement paste containing silica fume in addition to analyzing the results of testing on Portland Cement Pervious Concrete mixtures that also contained silica fume. Testing conducted included a study of the effects of silica fume on cement's rheological properties at various dosage rates ranging from zero to ten percent by mass. It was determined that silica fume has negligible effects on the viscosity of cement paste until a dosage rate of five percent, at which point the viscosity increases rapidly. In addition to the rheological testing of the cement paste, trials were also conducted on the pervious concrete samples. Sample groups included mixes with river gravel and chipped limestone as aggregate, washed and unwashed, and two different void contents. Workability tests showed that mixtures containing a silica fume dosage rate of 5 percent or less had comparable or slightly improved workability when compared to control groups. Workability was found to decrease at a 7 percent dosage rate. Samples were tested for compressive strength at 7 and 28 days and splitting tensile strength at 28 days. It was found in most sample groups, strength increased with dosage rates of 3 to 5 percent but often decreased when the dosage reached 7 percent. Abrasion testing showed that both samples containing washed aggregate and samples containing silica fume exhibited a reduced mass loss.

  13. The assessment of clinker and cement regenerated from completely recyclable concrete

    OpenAIRE

    De Schepper, Mieke; Vernimmen, Lies; De Belie, Nele; De Buysser, Klaartje; Van Driessche, Isabel

    2011-01-01

    As the construction sector uses 50% of the earth’s raw material and produces 50% of its waste, the development of more durable and sustainable building products is crucial. Nowadays, Construction and Demolition Waste (CDW) is already used as recycled aggregates in low-value concrete applications, since it is mostly inert material. On the other hand, the general trend today for the cement industries is the use of alternative raw materials for the production of cement clinker. From this and the...

  14. Increasing the compressive strength of portland cement concrete using flat glass powder

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, Edson Jansen Pedrosa de; Bezerra, Helton de Jesus Costa Leite; Politi, Flavio Salgado; Paiva, Antonio Ernandes Macedo, E-mail: edson.jansen@ifma.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranha (IFMA), Sao Luis, MA (Brazil). Dept. de Mecanica e Materiais

    2014-08-15

    This paper analyzes the compressive strength of Portland cement concrete in response to the incorporation of 5%, 10% and 20% of flat glass powder in place of sand, at w/c (water/cement) ratios of 0.50, 0.55 and 0.58. A statistical analysis of variance (ANOVA) was performed after 7, 14 and 28 days of curing. The compressive strength test results indicate that the concrete containing a w/c ratio of 0.50 can be used for structural applications, regardless of the waste glass content, as can that with a w/c ratio of 0.55 containing 20% of waste glass. We suggest that the use of flat glass powder in place of sand in the above mentioned percentages is feasible for the production of an environmentally appropriate and structurally applicable concrete. However, the concrete's fluidity and void content must be taken into account. (author)

  15. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.

    Science.gov (United States)

    Wang, Jun; Hayes, Josh; Wu, Chang-Yu; Townsend, Timothy; Schert, John; Vinson, Tim; Deliz, Katherine; Bonzongo, Jean-Claude

    2014-02-18

    The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant.

  16. Suitability of Natural Rubber Latex and Waste Foundry Sand in Cement Concrete

    Directory of Open Access Journals (Sweden)

    Samuel Idiculla Thomas

    2016-06-01

    Full Text Available Suitability of Natural Rubber Latex (NRL as an additive and Waste Foundry Sand (WFS as partial replacement to river sand, in cement concrete was investigated. Experimental study was performed with concrete mixtures containing 1% latex to water ratio, along with 5% and 10% replacement of river sand by WFS. Properties of concrete were studied in both fresh and hardened state. The results of laboratory tests indicate that WFS and NRL reduces the workability of concrete. Slight reduction in splitting tensile strength was observed for mixtures containing NRL and WFS, in comparison to conventional mix. No specific trend was observed for flexural strength at 7 days, but at 28 days the difference was within ±3%, when compared to conventional mix. Strength development for mixtures containing NRL and WFS was slightly lower than conventional mix. The limited results of this study show that concrete containing NRL and WFS do have potential for use as non- structural concrete.

  17. Marine durability of 15 year old concrete specimens made with ordinary portland, slag, and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. In addition, the performance of these cements was also examined in another study for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. Water-to-cement ratios were 0.45 and 0.55 and the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete were evaluated. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 18 tabs., 8 figs.

  18. A Method for Semi-quantitative Analysis of C-S-H Gel in a Blended Cement Paste

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An amended method for accurate measuring the quantity of calcium silicate hydrate(C-S-H) in pure cement paste and blended cement paste by water adsorption was made, which based on R.A.Olson's method. Two improvements to this method, such as using C-S-H gel by hydro-thermal synthesis as standard sample and the stoichiometry of C-S-H gel is partitioned based on hydration time and the amount of mineral admixture. The result of C-S-H gel content in pure cement paste and blended cement paste is higher than by R.A.Olson's method.

  19. Study on the Utilization of Paper Mill Sludge as Partial Cement Replacement in Concrete

    Directory of Open Access Journals (Sweden)

    Nazar A.M. Md

    2014-03-01

    Full Text Available A major problem arising from the widespread use of forestry biomass and processed timber waste as fuel is related to the production of significant quantities of ash as a by-product from the incineration of such biomasses. A major portion (approximately 70% of the wood waste ash produced is land-filled as a common method of disposal. If the current trend continues with waste products, such as paper mill sludge landfills, a large amount of space would be required by 2020. A revenue study was conducted as a result of investigations into the use of paper mill sludge as recycled materials and additives in concrete mixes for use in construction projects. The study had to provide the assurance that the concrete produced had the correct mechanical strength. Concrete mixes containing paper mill sludge were prepared, and their basic strength characteristics such as the compressive strength, flexural strength, ultra pulse velocity and dynamic modulus elasticity were tested. Four concrete mixes, i.e. a control mix, and a 10%, 20%, and 30% mix of paper mill sludge as cement replacement for concrete were prepared with a DoE mix design by calculating the weight of cement, sand and aggregate. The performance of each concrete specimen was compared with the strength of the control mix. As a result, when the percentage of paper mill sludge in the concrete increased, the strength decreased. Overall, a high correlation was observed between density and strength of the concrete containing paper mill sludge.

  20. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  1. Investigation of Phosphate Cement-based Binder with Super High Early Strength for Repair of Concrete

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Magnesium phosphate cement-based binder (MPB) for repair of concrete was prepared by proportionally mixing over burned MgO powder (M) with NHH2PO4 powder (P) and set modifying admixtures. It is characteristic by excellent properties such as rapid setting,high strength and high bond strength to old concrete.. The study is focused on the key factors influencing the setting time and strength of MPB, the bond property of MPB to old concrete and the kinetic feature of the hydration of MPB.

  2. Blended Cements Produced With Synthetic Zeolite Made from Industrial By-Product

    Directory of Open Access Journals (Sweden)

    Vitoldas Vaitkevičius

    2015-03-01

    Full Text Available Zeolites are appropriate supplementary cementitious materials in cement and concrete industry. In the present work synthetic zeolites was used like supplementary material in hardened cement paste and some properties as well as its influence on Portland cement hydration was determinate. X-ray powder diffraction, scanning electronic microscopy and energy-dispersive X-ray spectroscopy, FTIR spectroscopy were used as investigation methods. The compressive strength of hardened cement paste was measured at day 3, 28 and 60. The instrumental analysis showed that zeolite A(Na dominates and unreacted Al(OH3 remains in investigated synthetics zeolites, made from thermal and mechanical treated AlF3 production waste. The Chapelle test showed that both zeolites have good pozzolanic properties. The samples compressive strength remained close to the control samples compressive strength, reducing the amount of Portland cement, i.e., changing it by zeolite. After 60 days, the compressive strength was the best in the samples where 5% of Portland cement was replaced by the 2-zeolite. The compressive strength of the samples increased by 9 % compared with control samples. This research provides a real opportunity to save cement thus disposing the waste.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5635

  3. Experimental and Numerical Analysis of the Shear Behaviour of Cemented Concrete-Rock Joints

    Science.gov (United States)

    Tian, H. M.; Chen, W. Z.; Yang, D. S.; Yang, J. P.

    2015-01-01

    The shear behaviour of cemented concrete-rock joints is a key factor affecting the shear resistance of dam foundations, arch bridge foundations, rock socketed piles and rock bolts in rock engineering. This paper presents an experimental and numerical investigation of the shear behaviour of cemented concrete-rock joints by direct shear tests. In this study we focused on the bond strength of cemented concrete-rock joints, so limestone with smooth surfaces was used for samples preparation to reduce the roughness effect. The experimental results show that the shear strength of joints with good adhesion is strongly dependent on the bond strength of the cohesive interfaces when the applied normal stress is less than 6 MPa. In addition, the sudden and gradual bond failure processes of the cohesive interfaces were observed with an increase of the normal stress. A simple, yet realistic, model of cemented concrete-rock joint is proposed to simulate the observed behaviour, including elastic behaviour of the bond before peak shear stress and post-peak behaviour due to bond failure and friction increase. Finally, the parameters analysis and calibration of the proposed model are presented.

  4. Some Guides to Discovery About Elm Trees, Owls, Cockroaches, Earthworms, Cement and Concrete.

    Science.gov (United States)

    Busch, Phyllis S.

    The introduction emphasizes the need for environmental and conservation education, and advocates an inquiry approach. Outdoor resources available to every school are listed. Detailed suggestions are made for investigating cement and concrete, cockroaches, earthworms, elm trees, and owls. In each case general background information and a list of…

  5. Innovation based on tradition: Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  6. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    OpenAIRE

    Ramírez-Arellanes, S.; Cano-Barrita, P. F. de J.; Julián-Caballero, F.; Gómez-Yañez, C.

    2012-01-01

    The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases ...

  7. Effect of Coal Gangue with Different Kaolin Contents on Compressive Strength and Pore Size of Blended Cement Paste

    Institute of Scientific and Technical Information of China (English)

    CHEN Yimin; ZHOU Shuangxi; ZHANG Wensheng

    2008-01-01

    The effects of activated coal gangue on compressive strength,porosity and pore size distribution of hardened cement pastes were investigated.Activated coal gangue with two different kaolin contents,one higher and one lower,were used to partially replace Portland cement at 0%,10%,and 30% by weight.The water to binder ratio(w/b)of 0.5 was used for all the blended cement paste mixes.Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content.The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.

  8. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    Science.gov (United States)

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  9. About the influence of carbon nanomaterials on the properties of cement and concrete

    Directory of Open Access Journals (Sweden)

    URKHANOVA Larisa A.

    2016-10-01

    Full Text Available The article presents the results of studies on the modification of the cement stone and concrete with carbon nanomaterials, which were obtained as a by-product in the plasma gasification of coal. Under the action of plasma arc from the electrode material and coal supplied for the gasification, carbon nanomaterials – fullerene-containing soot are formed simultaneously in one apparatus. This method of production of carbon nanomaterials is a perspective due to a smaller effect on the increase in the cost of the final composite. These carbon nanomaterials have both compact and ultradisperse fibrous structure, which indicates the presence of such basic forms of nanoparticles as «onion carbon structures» (multiwall, hyperfullerens and «filamentous carbon structures» (nanotubes, nanofibers. Considering the problem of introduction and uniform distribution of carbon nanoparticles in the cement matrix, that are prone to aggregation, ultrasonic treatment of carbon nanomaterials and mixing water was carried out. The optimal dosage of carbon nanomaterials is 0.01 wt. %, which led to improved physical and mechanical properties of cement stone. It is found that when using various superplasticizers carbon nanomaterials effectively distributed in the mixing water amount, but the complex effect of improving cement varies depending on the type of uperplasticizer. Changing of hydration temperature of the cement with carbon nanomaterials and various superplasticizers is determined. It has been shown that the introduction of carbon nanomaterials increase the maximum temperature during hydration. The introduction of carbon nanomaterials improves the physical, mechanical and performance properties of cement and concrete by accelerating the hydration process of Portland cement, improving the microstructure and reduction of porosity of cement stone. Lower total porosity of cement stone with the introduction of carbon nanomaterials was found by the method of mercury

  10. SODIUM POLYPHOSPHATE-MODIFIED CLASS C/CLASS F FLY ASH BLEND CEMENTS FOR GEOTHERMAL WELLS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.; BROTHERS, L.E.; KASPEREIT, D.

    2006-02-01

    The authors investigated the usefulness of the coal combustion by-products, Class C fly ash (C) and Class F fly ash (F), in developing cost-effective acid-resistant phosphate-based cements for geothermal wells. In the temperature range of 20-100 C, sodium polyphosphate (NaP) as the acidic cement-forming solution preferentially reacted with calcium sulfate and lime in the C as the base solid reactant through the exothermic acid-base reaction route, rather than with the tricalcium aluminate in C. This reaction led to the formation of hydroxyapatite (HOAp). In contrast, there was no acid-base reaction between the F as the acidic solid reactant and NaP. After autoclaving the cements at 250 C, a well-crystallized HOAp phase was formed in the NaP-modified C cement that was responsible for densifying the cement's structure, thereby conferring low water permeability and good compressive strength on the cement. however, the HOAp was susceptible to hot CO{sub 2}-laden H{sub 2}SO{sub 4} solution (pH 1.1), allowing some acid erosion of the cement. On the other hand, the mullite in F hydrothermally reacted with the Na from NaP to form the analcime phase. Although this phase played a pivotal role in abating acid erosion, its generation created an undesirable porous structure in the cement. They demonstrated that blending fly ash with a C/F ratio of 70/30 resulted in the most suitable properties for acid-resistant phosphate-based cement systems.

  11. Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)

    Energy Technology Data Exchange (ETDEWEB)

    Schroefl, Ch.; Gruber, M.; Plank, J., E-mail: sekretariat@bauchemie.ch.tum.de

    2012-11-15

    UHPC is fluidized particularly well when a blend of MPEG- and APEG-type PCEs is applied. Here, the mechanism for this behavior was investigated. Testing individual cement and micro silica pastes revealed that the MPEG-PCE disperses cement better than silica whereas the APEG-PCE fluidizes silica particularly well. This behavior is explained by preferential adsorption of APEG-PCE on silica while MPEG-PCEs exhibit a more balanced affinity to both cement and silica. Adsorption data obtained from individual cement and micro silica pastes were compared with those found for the fully formulated UHPC containing a cement/silica blend. In the UHPC formulation, both PCEs still exhibit preferential and selective adsorption similar as was observed for individual cement and silica pastes. Preferential adsorption of PCEs is explained by their different stereochemistry whereby the carboxylate groups have to match with the steric position of calcium ions/atoms situated at the surfaces of cement hydrates or silica.

  12. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  13. High stenghth concrete with high cement substitution by adding fly ash, CaCO3, silica sand, and superplasticizer

    Science.gov (United States)

    Wicaksono, Muchammad Ridho Sigit; Qoly, Amelia; Hidayah, Annisaul; Pangestuti, Endah Kanti

    2017-03-01

    Concrete is a mixture of cement, fine aggregate, coarse aggregate and water with or without additives. Concrete can be made with substitution of cement with materials like Fly Ash, CaCO3 and silica sand that can increase the binding on pasta and also increase the compressive strength of concrete. The Superplasticizer on a mixture is used to reduce the high water content, improve concrete durability, low permeability concrete by making it more resilient, and improve the quality of concrete. The combination between Fly Ash (30% of cement required), CaCO3 (10% of cement required) and silica sand (5% of cement required) with added MasterGlenium ACE 8595 as much as 1,2% from total cement will produces compressive strength of up to 1080 kN/cm2 or 73,34 Mpa when the concrete is aged at 28 day. By using this technique and innovation, it proves that the cost reduction is calculated at 27%, which is much more efficient. While the strength of the concrete is increased at 5% compared with normal mixture.

  14. Release of U(VI) from spent biosorbent immobilized in cement concrete blocks

    Energy Technology Data Exchange (ETDEWEB)

    Venkobachar, C.; Iyengar, L.; Mishra, U.K.; Chauhan, M.S. [Indian Inst. of Tech., Kanpur (India)

    1995-12-01

    This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl. The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal.

  15. Wood Ash from Bread Bakery as Partial Replacement for Cement in Concrete

    Directory of Open Access Journals (Sweden)

    Akeem Ayinde Raheem

    2013-04-01

    Full Text Available This paper reports the results of experiments evaluating the use of wood ash from bread bakery as partial replacement for ordinary Portland cement in concrete. The chemical composition of the wood ash as well as the workability and compressive strength of the concrete were determined. Wood ash was used to replace 5% - 25% by weight of the cement in concrete. Concrete with no wood ash serves as the control. The mix ratio used was 1:2:4 with water to binder ratio maintained at 0.5. The Compressive strength was determined at curing ages 3, 7, 28, 56, 90 and 120 days. The results showed that wood ash from bread bakery is a Class F fly ash since the sum of (SiO2 +Al2O3 +Fe2O3 is greater than 70%. The compressive strength of wood ash concrete increases with curing period and decreases with increasing wood ash content. There was a sharp decrease in compressive strength beyond 10% wood ash substitution. It was concluded that a maximum of 10% wood ash substitution is adequate for use in structural concrete

  16. Evaluating portland cement concrete degradation by sulphate exposure through artificial neural networks modeling

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Douglas Nunes de; Bourguignon, Lucas Gabriel Garcia; Tolentino, Evandro, E-mail: tolentino@timoteo.cefetmg.br [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Timoteo, MG (Brazil); Costa, Rodrigo Moyses, E-mail: rodrigo@moyses.com.br [Universidade de Itauna, Itauna, MG (Brazil); Tello, Cledola Cassia Oliveira de, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    A concrete is durable if it has accomplished the desired service life in the environment in which it is exposed. The durability of concrete materials can be limited as a result of adverse performance of its cement-paste matrix or aggregate constituents under either chemical or physical attack. Among other aggressive chemical exposures, the sulphate attack is an important concern. Water, soils and gases, which contain sulphate, represent a potential threat to the durability of concrete structures. Sulphate attack in concrete leads to the conversion of the hydration products of cement to ettringite, gypsum, and other phases, and also it leads to the destabilization of the primary strength generating calcium silicate hydrate (C-S-H) gel. The formation of ettringite and gypsum is common in cementitious systems exposed to most types of sulphate solutions. The present work presents the application of the neural networks for estimating deterioration of various concrete mixtures due to exposure to sulphate solutions. A neural networks model was constructed, trained and tested using the available database. In general, artificial neural networks could be successfully used in function approximation problems in order to approach the data generation function. Once data generation function is known, artificial neural network structure is tested using data not presented to the network during training. This paper is intent to provide the technical requirements related to the production of a durable concrete to be used in the structures of the Brazilian near-surface repository of radioactive wastes. (author)

  17. Synergistic effects of chemical admixtures in concretes containing supplementary cementing materials

    Energy Technology Data Exchange (ETDEWEB)

    Mailvaganam, N. P. [National Research Council of Canada, Instiute for Research in Construction, Ottawa, ON (Canada)

    2001-07-01

    As a result of the need to produce more durable structures, chemical additives to concrete such as superplasticizers and supplementary cementing materials such as silica fume and fly ash, attract considerable interest. The combined use of these materials produces a synergistic effect which results in a range of modifications such as improved mobility, cohesiveness, ultimate strength and durability, making it possible to place highly durable concrete under a variety of conditions. This paper examines the role of additives in augmenting desirable features in fly ash or silica fume/portland cement mixes, using specific examples to illustrate the manner in which these admixtures compensate for limitations and increase the effectiveness of both of these supplementary cementing materials. Rheological, structural and durability characteristics are the focus of interest. Results show that admixtures influence both the hydration and packing efficiency in the fly ash or silica fume concrete, producing significant improvements in the concrete that could not be readily attained if the materials were used individually. 30 refs., 3 tabs., 9 figs.

  18. Experimental Analysis of Concrete Strength at High Temperatures and after Cooling

    Directory of Open Access Journals (Sweden)

    E. Klingsch

    2009-01-01

    Full Text Available In recent years, the cement industry has been criticized for emitting large amounts of carbon dioxide; hence it is developing environment-friendly cement, e.g., blended, supersulfated slag cement (SSC. This paper presents an experimental analysis of the compressive strength development of concrete made from blended cement in comparison to ordinary cement at high temperature. Three different types of cement were used during these tests, an ordinary portland cement (CEM I, a portland limestone cement (CEM II-A-LL and a new, supersulfated slag cement (SSC. The compressive strength development for a full thermal cycle, including cooling down phase, was investigated on concrete cylinders. It is shown that the SSC concrete specimens perform similar to ordinary cement specimens. 

  19. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  20. Waste brick's potential for use as a pozzolan in blended Portland cement.

    Science.gov (United States)

    Lin, Kae-Long; Chen, Bor-Yann; Chiou, Chyow-San; An Cheng

    2010-07-01

    This study investigated the pozzolanic reactions and engineering properties of waste brick-blended cements in relation to various replacement ratios (0-50%). The waste brick consisted of SiO(2) (63.21%), Al(2)O(3) (16.41%), Fe(2)O(3) (6.05%), Na(2)O (1.19%), K(2)O (2.83%) and MgO (1.11%), and had a pozzolanic activity index of 107%. The toxic characteristic leaching procedure (TCLP) results demonstrate that the heavy-metal content in waste bricks met the Environmental Protection Agency regulatory limits. Experimental results indicate that 10, 20, 30, 40 and 50% of cement can be replaced by waste brick, which causes the initial and final setting times to increase. Compressive strength development was slower in waste brick-blended cement (WBBC) pastes in the early ages; however, strength at the later ages increased significantly. Species analyses demonstrate that the hydrates in WBBC pastes primarily consisted of Ca(OH)(2) and calcium silicate hydrate (C-S-H) gel, like those found in ordinary Portland cement (OPC) paste. Pozzolanic reaction products formed in the WBBC pastes, in particular, various reaction products, including hydrates of calcium silicates (CSH), aluminates (CAH) and aluminosilicates (CASH), formed as expected, resulting in consumption of Ca(OH)(2) during the late ages of curing. The changes in the properties of WBBC pastes were significant as blend ratio increased, due to the pores of C-S-H gels and CAH filling via pozzolanic reactions. This filling of gel pores resulted in densification and subsequently enhanced the gel/space ratio and degree of hydration. Experimental results demonstrate waste brick can be supplementary cementitious material.

  1. An Experimental Investigation of Partial Replacement of Cement by Various Percentage of Phosphogypsum And Flyash In Cement Concrete

    Directory of Open Access Journals (Sweden)

    Suchita R Saikhede

    2014-07-01

    Full Text Available Over 15 million tons of fly ash (FA and 3 million tons of phospho-gypsum (PG are produced every year. The utilization of these industrial by-product materials is important in terms of environmental and economical issues are concerned. The main purpose of this study is to evaluate the technical possibilities of incorporating FA and PG in production of concrete .In this study Combination of FA and PG is use as a mineral admixture with, phosphogypsum 0%., 5%,10%, 15% and fly ash is constant as 20% , Last proportion was taken PG- 5% and FA- 25%. . The compressive, tensile and flexural strength are studied by casting and testing specimens for 7, 14 and 28 days. It is shown that a part of ordinary Portland cement can be replaced with PG and FA to develop a good and hardened concrete to achieve economy; above 10% replacement of phosphogypsum and 20% replacement of F in concrete lead to drastic reduction not only in the compressive strength but also in Flexural and split tensile strength of concrete.

  2. Preparation of High Performance Foamed Concrete from Cement, Sand and Mineral Admixtures

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; Fujiwara Hiromi; Wee Tionghuan

    2007-01-01

    The titled high performance foamed concrete was developed from Portland cement, ultra fine granulated blast-furnace slag, pulverized fly ash and condensed silica fume by means of pre-foaming process. The resultant foamed concrete presents its thermal conductivity of about 0.16-0.75 W/(m·℃) and 28 d compressive strength of about 1.1-23.7 MPa when its mix proportion varies in the range of cement content 280 kg-650 kg/m3, fly ash 42-97 kg/m3, slag 64-146 kg/m3, silica fume 34-78 kg/m3, and sand 0-920 kg/m3. The compressive strength of the foamed concrete with oven dried bulk density of 1500 kg/m3 in appropriate mix proportion and with small amount of superplasticizer reached as high as 44.1 MPa. Meanwhile, the fresh foamed concrete behaves like an excellent flow-ability, therefore, is especially suitable for the application in case of massive foamed concrete casting in situ and in the case of filling casting into large volume underground irregular voids, except for pre-casting of building components like blocks, bricks, and wall panels.

  3. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.

    Science.gov (United States)

    Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue

    2016-06-24

    This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.

  4. Effect of Aggregate Gradation with Fuller Distribution on Properties of Sulphoaluminate Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    GONG Chenchen; ZHANG Jie; WANG Shoude; LU Lingchao

    2015-01-01

    Experimental investigations on mechanical property and durability of sulphoaluminate cement concrete with aggregate gradations according to Fuller distribution are presented in this paper. Compressive strength, water impermeability and resistance capability to sulfate attack of SACC have the same trend of concrete with fine aggregates of Fuller distribution gradation<concrete with coarse aggregates of Fuller distribution gradation<concrete with total aggregates of Fuller distribution gradation. The relationship between bulk density of aggregate and water penetration depth obeyed the second-order polynomialy=0.002x2-6.863 8x+5 862.3, and had a notable correlationR2=0.979 9. The sulphoaluminate cement concrete with total aggregate gradation with Fuller distribution forh=0.50 had the best resistance capability to sulfate attack. It was a second-order polynomial relationship between bulk density of aggregates and water penetration depth of y=0.002x2-6.863 8x+5 862.3 withR2=0.979 9, which indicated notable correlation. The iftting formula between bulk density of aggregates and sulfate resistance coefifcient of SACC wasy=0.000 5x+0.370 4 withR2=0.958 5.

  5. Selected Bibliography on Fiber-Reinforced Cement and Concrete. Supplement Number 4.

    Science.gov (United States)

    1982-08-01

    Building Industry," L’Industria Italiana del Cemento , Vol 50, No. 12, Dec 1980, pp 1135-1144. 19. Bartos, P., "Pullout Failure of Fibres Embedded in Cement...Vol 43, No. 11, Nov 1977, pp 561-564. 21. Bassan, M., "Model of Behavior of Fiber-Reinforced Concretes Under Impact Stresses," il Cemento , Vol 74, No...Pastes," il Cemento , Vol 75, No. 3, Jul-Sep 1978, pp 277-284. 210. Mills, R. H., "Age-Embrittlement of Glass-Reinforced Concrete Containing Blastfurance

  6. Behavior of High Water-cement Ratio Concrete under Biaxial Compression after Freeze-thaw Cycles

    Institute of Scientific and Technical Information of China (English)

    SHANG Huaishuai; SONG Yupu; OU Jinping

    2008-01-01

    The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied.Strength and deformations of plain concrete specimens after 0,25,50 cycles of freeze-thaw.Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed aecording to the experimental results.Based on the test data,the failure criterion expressed in terms of principal stress after difierent cycles of freeze-thaw,and the failure criterion with consideration of the influence of freeze-thaw cycle and sffess ratio were proposed respectively.

  7. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.

    Science.gov (United States)

    Lewis, Gladius; Janna, Si; Bhattaram, Anuradha

    2005-07-01

    Two variants of antibiotic powder-loaded acrylic bone cements (APLBCs) are widely used in primary total joint replacements. In the United States, the antibiotic is manually blended with the powder of the cement at the start of the procedure, while, in Europe, pre-packaged commercially-available APLBCs (in which the blending is carried out using an industrial mixer) are used. Our objective was to investigate the influence of the method of blending gentamicin sulphate with the powder of the Cemex XL formulation on a wide collection of properties of the cured cement. The blending methods used were manual mixing (the MANUAL Set), use of a small-scale, easy-to-use, commercially-available mechanical powder mixer, OmoMix 1 (the MECHANICAL Set), and use of a large-scale industrial mixer (Cemex Genta) [the INDUSTRIAL Set]. In the MECHANICAL and MANUAL Sets, the blending time was 3 min. In preparing the test specimens for each set, the blended powder used contained 4.22 wt% of the gentamicin powder. The properties determined were the strength, modulus, and work-to-fracture (all obtained under four-point bending), plane-strain fracture toughness, Weibull mean fatigue life (fatigue conditions: +/-15 MPa; 2 Hz), activation energy and frequency factor for the cement polymerization process (both determined using differential scanning calorimetry, at heating rates of 5, 10, 15, and 20 Kmin(-1)), the diffusion coefficient for the absorption of phosphate buffered saline, PBS, at 37 degrees C, and the rate of elution of the gentamicin into PBS, at 37 degrees C (E). Also determined were the particle size, particle size distribution, and morphology of the blended powders and of the gentamicin. For each of the cured cement properties (except for E), there is no statistically significant difference between the means for the 3 cements, a finding that parallels the observation that there are no significant differences in either the mean particle size or the morphology of the blended cement

  8. Concrete containing ternary blended binders: Resistance to chloride ingress and carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, M.R.; Dhir, R.K.; Magee, B.J. [Univ. of Dundee (United Kingdom). Dept. of Civil Engineering

    1997-06-01

    This study examined the chloride and carbonation durability performance of concrete containing ternary blended binders in comparison to PC and binary PC/PFA concrete of equivalent standard 28 day cube strengths of 20, 40 and 60 N/mm{sup 2}. In addition, the nature of the near surface pore structure of the concrete has been inferred from its initial surface absorption. It has been shown that the chloride resistance of all the ternary binder concrete (TBC) is significantly higher than corresponding PC and PC/PFA mixes. On the other hand, however, under worst case conditions it was found that after 30 weeks accelerated exposure, carbonation depths were generally greater in the TBC mixes. The degree to which this occurred was found to relate to the amount of PC replaced.

  9. TECHNOLOGY AND EFFICIENCY IN USAGE OF BROWN COAL ASH FOR CEMENT AND CONCRETE MIXTURES AT THE LELCHITSKY DEPOSIT

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2017-01-01

    Full Text Available Modern visions on the role of high-dispersity additives in concrete mixtures reflect a positive effect of optimal amount of ash left after combustion of solid fuel on structure and physico-mechanical characteristics of cement compositions: hardening of contact zone between cement stone and aggregates with formation of “binder – aggregate” clusters due to high surface energy of aggregate particles; reduction of total cement stone porosity in concrete while increasing volumetric concentration and aggregate dispersion; binding of calcium hydroxide by amorphized silicon of pozzolanic aggregates; increase in pozzolanic aggregate activity with its fine grinding, etc. Experimental investigations have ascertained that usage of portland cement clinker ash samples left after brown coal burning at the Lelchitsky deposit contributed to an increase of cement working life and activity. Concrete samples have been obtained that have improved physico-mechanical properties owing to introduction the following components in their composition: 2–14 % (of cement mass of ash left after brown coal burning and 1.6–2.1 % of sodium salt that is a condensation product of sulfur oxidate in aromatic hydrocarbons with formaldehyde. Efficiency of the executed work has been proved by solution of the problems pertaining to an increase of neat cement working life, cement activity, concrete strength. The paper also considers no less important problem concerning protection of the environment from contamination with ash left after burning of high-ash brown coal. 

  10. Effect of High Doses of Chemical Admixtures on the Freeze-Thaw Durability of Portland Cement Concrete

    Science.gov (United States)

    2002-02-01

    volume (Neville 1988). The hydrated cement is often referred to as cement gel, which has a characteristic porosity of about 28% ( Mindess and Young...Structure, Properties, and Materials. New York: Prentice-Hall. Mindess , S., and J.F. Young (1981) Concrete. New York: Prentice-Hall. Neville, A.M

  11. About the influence of carbon nanomaterials on the properties of cement and concrete

    OpenAIRE

    URKHANOVA Larisa A.; LKHASARANOV Solbon A.; BUYANTUEV Sergey L; KUZNETSOVA Anastasia Yu.

    2016-01-01

    The article presents the results of studies on the modification of the cement stone and concrete with carbon nanomaterials, which were obtained as a by-product in the plasma gasification of coal. Under the action of plasma arc from the electrode material and coal supplied for the gasification, carbon nanomaterials – fullerene-containing soot are formed simultaneously in one apparatus. This method of production of carbon nanomaterials is a perspective due to a smaller effect on the increase...

  12. High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete

    KAUST Repository

    Celik, Kemal

    2014-01-01

    A laboratory study demonstrates that high volume, 45% by mass replacement of portland cement (OPC) with 30% finely-ground basaltic ash from Saudi Arabia (NP) and 15% limestone powder (LS) produces concrete with good workability, high 28-day compressive strength (39 MPa), excellent one year strength (57 MPa), and very high resistance to chloride penetration. Conventional OPC is produced by intergrinding 95% portland clinker and 5% gypsum, and its clinker factor (CF) thus equals 0.95. With 30% NP and 15% LS portland clinker replacement, the CF of the blended ternary PC equals 0.52 so that 48% CO2 emissions could be avoided, while enhancing strength development and durability in the resulting self-compacting concrete (SCC). Petrographic and scanning electron microscopy (SEM) investigations of the crushed NP and finely-ground NP in the concretes provide new insights into the heterogeneous fine-scale cementitious hydration products associated with basaltic ash-portland cement reactions. © 2013 Published by Elsevier Ltd.

  13. Environmental CRIteria for CEMent based products, ECRICEM. Phase I. Ordinary Portland Cements. Phase II. Blended Cements. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H.A.; Van Zomeren, A. [ECN Biomass, Coal and Environmetal Research, Petten (Netherlands); Stenger, R. [Holcim Group Support Ltd, Holderbank (Switzerland); Schneider, M.; Spanka, G. [VDZ, Duesseldorf (Germany); Stoltenberg-Hansson, A. [NORCEM, HeidelbergCement Group, Brevik (Norway); Dath, P. [Holcim Belgium, Obourg (Belgium)

    2008-01-15

    The protection of the immediate environment of structural works is one of the essential requirements of the European Construction Products Directive (CPD). According to the CPD, construction products can only be put on the market, if the structural works built with them fulfil the relevant requirements for hygiene, and the protection of health and the environment. These essential requirements in the respective standards are specified at the national level by the individual member states. Cement and cementitious materials are considered to fulfil the fundamental requirements of the European Construction Products Directive and the corresponding national regulations. Therefore a technical regulation like the cement standard EN 197 in general does not cover separate requirements for determining compliance of cementitious materials with criteria on hygiene, health and environmental protection. Further regulations are laid down in cases where it appears necessary for constructive applications requiring a particular protection of water, soil and air.

  14. CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.

    Science.gov (United States)

    Taylor, Mary Lou

    This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…

  15. Waste Cellulose from Tetra Pak Packages as Reinforcement of Cement Concrete

    Directory of Open Access Journals (Sweden)

    Gonzalo Martínez-Barrera

    2015-01-01

    Full Text Available The development of the packaging industry has promoted indiscriminately the use of disposable packing as Tetra Pak, which after a very short useful life turns into garbage, helping to spoil the environment. One of the known processes that can be used for achievement of the compatibility between waste materials and the environment is the gamma radiation, which had proved to be a good tool for modification of physicochemical properties of materials. The aim of this work is to study the effects of waste cellulose from Tetra Pak packing and gamma radiation on the mechanical properties of cement concrete. Concrete specimens were elaborated with waste cellulose at concentrations of 3, 5, and 7 wt% and irradiated at 200, 250, and 300 kGy of gamma dose. The results show highest improvement on the mechanical properties for concrete with 3 wt% of waste cellulose and irradiated at 300 kGy; such improvements were related with the surface morphology of fracture zones of cement concrete observed by SEM microscopy.

  16. Sustainable development of cement and concrete: Two practical examples of typical implication for the future

    Energy Technology Data Exchange (ETDEWEB)

    Jahren, P. [P. J. Consult A/S, Hvalstad (Norway)

    1998-12-31

    Two practical examples of challenges to the environment by the cement and concrete industry and their implications for sustainable development are discussed. The first example involves alternative uses for 70,000 to 100,000 tons per annum of residual filter-cake, a by-product of calcium-carbide production, which up till now mostly have been discarded and deposited in sanitary landfills. With the dwindling of landfill sites in many countries of the world, the cement and concrete industry is currently exploring ways of making use of this material. The second example is drawn from the the increasing interest in producing artificial fish reefs to improve the seafood supply. Some 61 countries around the world are involved in various projects related to this endeavour. Recently, concrete has become the materials of choice to construct these reefs. Use of materials like fly ash and quarry dust in concrete mixtures has given rise to concerns of possible pollution of the food chain, leading to requests for standards and specifications and testing for cementitious materials. Details of both these problems and efforts to respond to the challenges are described against the background of increasing recognition, at the same time, of the need for sustainable development. 8 refs., 1 tab., 2 figs.

  17. Effects of High Temperature on the Residual Performance of Portland Cement Concretes

    Directory of Open Access Journals (Sweden)

    Evandro Tolentino

    2002-09-01

    Full Text Available In this work we analyzed the "residual" performance of Portland cement concretes heat-treated at 600 °C after cooling down to room temperature. Concretes with characteristic compressive strength at 28 days of 45 MPa and of 60 MPa were studied. The heat-treatment was carried out without any imposed load. We measured the residual compressive strength and modulus of elasticity. The geometry of the structure was described by mercury intrusion porosimetry and nitrogen sorption tests. We observed a decrease of residual compressive strength and modulus of elasticity, with the raise of heat-treatment temperature, as a result of heat-induced material degradation. The results also indicated that the microstructural damage increased steadily with increasing temperature. Based on the results of this experimental work we concluded that residual mechanical properties of concrete are dependent of their original non heat-treated values.

  18. Performance of High-Strength Concrete Using Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Dr. M. Swaroopa Rani

    2015-04-01

    Full Text Available The advancement in material technology has led to development of concrete with higher strengths. Presence of high cementitious materials contents in high strength concrete mixes increases heat of hydration that causes higher shrinkage and leading it to potential of cracking. However, use of supplementary cementitious materials leads to control in heat of hydration which further avoids higher shrinkage. Materials such as fly ash, silica fume, metakaolin and ground granulated blast furnace slag are largely been used as supplementary cementitious materials in High strength concrete mixes. In the present study use of palm oil fuel ash (POFA as partial cement replacement in high strength concrete mixes is evaluated with an experimental study. High strength concrete mix of M60 grade is taken as a reference and the compressive strength, split tensile strength and flexural strength where performed for 7, 28 and 56 days and analyzed it with results for partial replacement mixes of POFA 5%, 10%, 15%, 20% & 25%. It has been observed that concrete with 15% replacement of POFA gave the highest strength.

  19. Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete

    OpenAIRE

    Muthusamy, K.; Z. Nur Azzimah

    2014-01-01

    In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA) which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS) lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing ...

  20. Manufacturing of concrete with residues from iron ore exploitation using the technology of radioactive waste cementation

    Energy Technology Data Exchange (ETDEWEB)

    Versieux, Juniara L.; Lameiras, Fernando S.; Tello, Cledola Cassia Oliveira de, E-mail: juniarani@gmail.com, E-mail: fsl@cdtn.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nucelar (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Radioactive wastes from various segments of economy are immobilized by cementation, because of availability and widespread use in civil construction of cement. New cementitious materials are developed in CDTN using mining residues based on cementing techniques of radioactive wastes. Special procedures were developed to obtain concrete with the use of super plasticizers in which natural sand was totally replaced by mining residues. The motivation for this research is the exploration of banded iron formations (BIF) as iron ore in 'Quadrilatero Ferrifero' of Minas Gerais, where huge amounts of residues are generated with great concern about the environmental sustainability and safety of dams for residue storage. The exploitation of river sand causes many negative impacts, which leads to interest in its replacement by another raw material in mortar and concrete manufacturing. The use of BIF mining residues were studied for manufacturing of concrete pavers to contribute to reducing the impact caused by extraction of natural sand and use of mining residues. Previously developed procedures with total replacement of natural sand for mining residues were modified, including use of gravel to obtain pavers with improved properties. Four different mixtures were tested, in which the proportion of gravel and super plasticizer was varied. Monitored properties of pavers, among others, were compression resistance, water absorption, and void volume. With addition of gravel, the pavers had higher void index than those made only with mortar, and higher resistance to compression after 28 days of curing (an average of 18MPa of those made with mortar to 24MPa of those made with concrete). (author)

  1. Determination of transmission factors of concretes with different water/cement ratio, curing condition, and dosage of cement and air entraining agent

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Remzi, E-mail: rsahin@atauni.edu.tr [Dept. of Civil Eng., Faculty of Eng., Atatuerk University, Erzurum (Turkey); Polat, Recep [Dept. of Physics, Faculty of Education, Erzincan University, Erzincan (Turkey); Icelli, Orhan [Dept. of Physics, Faculty of Arts and Science, Yildiz Technical University, Istanbul (Turkey); Celik, Cafer [Dept. of Industrial Eng., Faculty of Eng., Atatuerk University, Erzurum (Turkey)

    2011-07-15

    Highlights: > We determined transmission factors of parameters affecting properties of concrete. > The most important parameter is W/C ratio for attenuation of radiation of concrete. > Taguchi Method provides an appropriate methodology for parameter reduction. - Abstract: This study focuses on determination of transmission factors of main parameters affecting the properties of both normal- and heavy-weight concrete in order to increase knowledge and understanding of radiation attenuation in concrete at a later age. Water/cement (W/C) ratio, curing condition, cement quantity and air entraining agent (AEA) were selected as the main parameters. Eight energy values have been selected within the energy interval of 30.85-383.85 keV to be used in the radiation source. The Taguchi Method was used as the method of optimization. It was determined in the study that the most important parameter affecting the attenuation of the radiation of the concrete is the W/C ratio and the concretes produced with the lowest level of W/C ratio absorb more radiation. However, it was also determined that there was a combined effect between the W/C ratio and the cement dosage.

  2. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Olusola K. O.

    2010-01-01

    Full Text Available This study investigates the effect of partial replacement of cement with volcanic ash (VA on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses.

  3. Pore structure modification of cement concretes by impregnation with sulfur-containing compounds

    Directory of Open Access Journals (Sweden)

    YANAKHMETOV Marat Rafisovich

    2015-02-01

    Full Text Available The authors study how the impregnation with sulfur-containing compounds changes the concrete pore structure and how it influences on the water absorption and watertightness. The results of this research indicate that impregnation of cement concrete with water-based solution of polysulphide modifies pore structure of cement concrete in such a way that it decreases total and effective porosity, reduces water absorption and increases watertightness. The proposed impregnation based on mineral helps to protect for a long time the most vulnerable parts of buildings – basements, foundations, as well as places on the facades of buildings exposed to rain, snow and groundwater. Application of the new product in the construction industry can increase the durability of materials, preventing the destruction processes caused by weathering, remove excess moisture in damp basements. The surfaces treated by protective compounds acquire antisoiling properties for a long time, and due to reduced thermal conductivity the cost of heating buildings is decreased. The effectiveness of the actions and the relatively low cost of proposed hydrophobizator makes it possible to spread widely the proposed protection method for building structures.

  4. Study on concrete with partial replacement of cement by rice husk ash

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2016-09-01

    Increase in the demand of conventional construction materials and the need for providing a sustainable growth in the construction field has prompted the designers and developers to opt for ‘alternative materials’ feasible for use in construction. For this objective, the use of industrial waste products and agricultural byproducts are very constructive. These industrial wastes and agricultural by products such as Fly Ash, Rice Husk Ash, Silica Fume, and Slag can be replaced instead of cement because of their pozzolanic behavior, which otherwise requires large tract of lands for dumping. In the present investigation, Rice Husk Ash has been used as an admixture to cement in concrete and its properties has been studied. An attempt was also done to examine the strength and workability parameters of concrete. For normal concrete, mix design is done based on Indian Standard (IS) method and taking this as reference, mix design has been made for replacement of Rice Husk Ash. Four different replacement levels namely 5%, 10%, 15% and 20% are selected and studied with respect to the replacement method.

  5. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  6. Effect of Elevated Temperatures on Properties of Blended Cements with Clinoptilolite

    Directory of Open Access Journals (Sweden)

    Ahmet BEYCİOGLU

    2016-11-01

    Full Text Available We have investigated the effect of elevated temperature on properties of clinoptilolite blended cements. Clinoptilolite was used at 5 %, 10 %, 15 % and 20 % replacement by weight for Portland cement while sand and water quantities were kept constant in all mix designs. Dry weights, flexural strengths, and compressive strengths of specimens were determined as a function of time. The same properties were again evaluated after specimens, having reached the age of 90 days, were exposed to 300 °C, 400 °C and 500 °C temperatures for 3 h. Initial setting times for all cements prepared were ≥ 60 minutes, the limiting time according to TS EN 197-1. The mortars with 5 % or 10 % cliniptilolite substitution have compressive strength exceeding 42.5 MPa after being subjected to 400 °C and 500 °C.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13354

  7. Utilization of cement treated recycled concrete aggregates as base or subbase layer in Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-12-01

    Full Text Available Recently, environmental protection has a great concern in Egypt where recycling of increased demolition debris has become a viable option to be incorporated into roads applications. An extensive laboratory program is conducted to study the feasibility of using recycled concrete aggregate (RCA mixed with traditional limestone aggregate (LSA which is currently being used in base or subbase applications in Egypt. Moreover, the influence of mixture variables on the mechanical properties of cement treated recycled aggregate (CTRA is investigated. Models to predict the compressive and tensile strengths based on mixture parameters are established. The results show that the adding of RCA improves the mechanical properties of the mixture where the unconfined compressive strength (UCS is taken as an important quality indicator. Variables influencing the UCS such as cement content, curing time, dry density play important roles to determine the performance of CTRA.

  8. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  9. The Use of Natural Pozzolan in Concrete as an Additive or Substitute for Cement

    Science.gov (United States)

    2011-12-01

    industrial processes such manufacturing steel can also take the form of a pozzolan, and this type is currently used as a concrete admixture. Another...Residue (%) 0.32 0.75 Blaine Fineness (m2/kg) 320 260 a Typical value (Mindess 1981). b When Tricalcium aluminate is more than 8%. (Tricalcium... aluminate = 2.650*% Al2O3 - 1.692 *% Fe2O3 = 2.650*5.68 - 1.692*3.98 = 8.32). Table 15. Particle size distribution of Portland cement. Cilas sieves (µm

  10. Microstructure and its relationship to fracture in portland cement mortar and concrete

    Science.gov (United States)

    Abell, Anne Bernadine

    This research explores the relationship between the geometry of crack propagation and mechanical properties of mortar and concrete. The crack deflection and branching are measured using several microscopy techniques along with image analysis of crack profiles intruded by a low melting-point alloy. The toughness measured by mechanical testing, the fracture surface geometry, phases and elastic properties identified by image analysis and microscopy, along with the crack branching relationships are used to predict the increase in the toughness of these materials with respect to the flat-crack toughness using a micromechanical model. The effect of the model parameters, microscopy techniques, material elastic properties, void modeling and branching ratio were investigated. The parametric analysis and modeling conditions determine a nearly uniform flat-crack toughness for the cement matrix of the mortar samples and a higher flat-wrack toughness for the cement matrix of the concrete samples. The trend toward a single toughness value may be an indication that there is a single material parameter to describe the fracture energy of these materials.

  11. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    OpenAIRE

    2010-01-01

    The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper...

  12. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC Structural Elements

    Directory of Open Access Journals (Sweden)

    Pedro Garcés

    2013-03-01

    Full Text Available In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC beam. Carbon nanofiber (CNFCC and fiber (CFCC cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached, service location (under tension or compression and electrical contacts (embedded or superficial were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8, while CFCC only reached gage factors values of 178.9 (tension or 49.5 (compression. Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

  13. Experimental Analysis of Fly Ash & Coir Fiber Mix Cement Concrete for Rigid Pavement

    Directory of Open Access Journals (Sweden)

    Er. Amit Kumar Ahirwar

    2015-04-01

    Full Text Available In India Thermal power plants which use pounded coal as a fuel, generates million tones of fly ash every year as a waste. Conservative clearance of this material which gets easily air-borne and constitutes a serious health hazards to the community, is an expensive operation. A part from this compacted fly ash can be used in embankments, road sub-bases and also for structural fills. The major drawbacks of such materials are their limited load carrying capacity and poor settlement characteristics. The concert of such materials can substantially be improved by introducing reinforcing element in the direction of improving its compressive and flexural strength for superior durability. Use of natural materials such as Jute, coir and bamboo, as reinforcing materials to fly ash are very cheap and they are locally available in huge quantity, of all the natural fibers, coir has the greatest tearing strength and it retains this property even in wet conditions. In this framework a composite with fly ash, conventional concrete and treated coconut fibers, available in plenty in rural areas of India have been investigated. These composites can be a good proposition and with this, experimental investigation to study the effects of replacement of cement (by volume with different percentages of fly ash and the effects of addition of processed natural coconut fiber on flexural strength, compressive strength, splitting tensile strength and modulus of elasticity was taken up. AS per IRC, A Design mix proportion was designed for the normally popular M30 concrete for pavement construction in India. In this, Cement was replaced with percentages (10, 20, 30 and 40% of Class C fly ash and of coconut fibers (0.50 and 1.0 % having 40 mm length were used. Test results show that the replacement of 43 grades ordinary Portland cement with fly ash showed an increase in compressive strength and flexural strength for the chosen mix proportion.

  14. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  15. Influence of chemical bonding of chlorides with aluminates in cement hidratation process on corrosion steel bars in concrete

    Directory of Open Access Journals (Sweden)

    Bikić Farzet H.

    2010-01-01

    Full Text Available The presence of chlorides in concrete is a permanent subject of research because they cause corrosion of steel bars. Chlorides added to the concrete during preparation, as accelerators of the bonding of cement minerals process, enter into reaction with aluminates, creating a phase known as chloroaluminate hydrates. In everyday conditions the product of chemical bonding between chlorides and aluminates is usually monochloridealuminate C3A·CaCl2·Hx, better known as Friedel's salt. In this paper, the influence of chemical bonding of chlorides with aluminates during the process of cement hydration on corrosion of steel bars in concrete was investigated. The process of chlorides bonding with aluminates yielding monochloride aluminate is monitored by XRD analyses. It was found that the amount of chlorides bonding with aluminates increases with an increase of temperature, and as a result, reduces the amount of 'free' chlorides in concrete. Potentiodynamic measurements have shown that increase in temperature of the heat treatment of working electrodes by chlorides leads to a reduction of steel bars corrosion as a result of either the increase of the monochloride-aluminate content or the decrease of free chlorides amount. Chlorides bound in chloroaluminate hydrates do not cause activation of steel bars corrosion in concrete. It was also proven that the increase of free chlorides concentration in the concrete leads to intensification of steel bars corrosion. This additionally approves that free chlorides are only the activators of process of steel bars corrosion in the concrete.

  16. Use of Rice Husk Ash as Partial Replacement with Cement In Concrete- A Review

    Directory of Open Access Journals (Sweden)

    Sourav Ghosal,

    2015-09-01

    Full Text Available Rapid increase in construction activities has resulted in shortage of conventional construction materials.In the present scenario, the high cost of conventional building materials is a major factor affecting housing delivery in the world.This has necessitated research into alternative materials of construction.The effective housing techniques deal with reduction in cost of construction as well as providing strength to buildings.Mainly gravel,sand and cement are used in the preparation of conventional concrete.While the use of agricultural by-product i.e. rice husk as a partial replacement with the conventional fine aggregates is expected to serve the purpose of encouraging housing developers in building construction.Rice husk is produced in about 100 million tons per annum in India. Twenty kg of rice husk are obtained from 100 kg of rice.It contains organic substances and 20% inorganic material.Ash from rice is obtained as a result of combustion of rice husk at suitable temperature. Proper utilization of it aims to save the environment,encourages the Government to find solutions regarding disposal to land fills of waste materials,and provides new knowledge to the contractors and developers on how to improve the construction industry by using rice husk, to sustain good product performance and to meet recycling goals.The rice husk ash concrete aims to prepare light weight structural concrete which may reduce considerably the self load of structures and permits large precast units to be handled.The main objective is therefore to encourage the use of these ‘seemingly’ waste products as construction materials in low cost housing.The various basic properties of rice husk concrete are reviewed in this paper.

  17. Exploratory Study of Palm Oil Fuel Ash as Partial Cement Replacement in Oil Palm Shell Lightweight Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    K. Muthusamy

    2014-07-01

    Full Text Available In Malaysia, issue of environmental pollution resulting from disposal of Palm Oil Fuel Ash (POFA which is a by-product from palm oil mill has initiated research to incorporate this waste in Oil Palm Shell (OPS lightweight aggregate concrete production. The current study investigates the effect of palm oil fuel ash content as partial cement replacement towards compressive strength OPS lightweight aggregate concrete. Several OPS lightweight aggregate concrete mixes were produced by replacing various percentage of POFA ranging from 10, 20, 30, 40 and 50%, respectively by weight of cement. All the mixes were cast in form of cubes and then subjected to water curing until the testing date. The compressive strength test is conducted in accordance to BSEN 12390 (2009 at 7 and 28 days. From the results, it was observed that the combination of appropriate POFA content would enhance the compressive strength of OPS lightweight aggregate concrete. Specimen produced using 20% POFA as partial cement replacement exhibit higher value of compressive strength than that of control OPS lightweight aggregate concrete. However, mixes consisting POFA up to 50% is also suitable for structural application.

  18. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  19. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  20. Combined effect of sodium sulphate and superplasticizer on the hydration of fly ash blended Portland® cement

    OpenAIRE

    Mukesh Kumar; Narendra Pratap Singh; Sanjay Kumar Singh; Nakshatra Bahadur Singh

    2010-01-01

    Combined effect of polycarboxylate type superplasticizer and sodium sulphate on the hydration of fly ash blended Portland® cement has been studied by using different techniques. Water consistency, setting times, non-evaporable water contents, water percolation, air contents, compressive strengths and expansion in corrosive atmosphere were determined. Hydration products were examined with the help of DTA and X-ray diffraction techniques. It is found that the superplasticizer reduces the pore s...

  1. Biomass fly ash in concrete: Mixture proportioning and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shuangzhen Wang; Amber Miller; Emilio Llamazos; Fernando Fonseca; Larry Baxter [Brigham Young University, Provo, UT (USA). Department of Chemical Engineering

    2008-03-15

    ASTM C 618 prohibits use of biomass fly ashes in concrete. This document compares the properties of biomass fly ashes from cofired (herbaceous with coal), pure wood combustion and blended (pure wood fly ash blended with coal fly ash) to those of coal fly ash in concrete. The results illustrate that with 25% replacement (wt%) of cement by fly ash, the compressive strength (one day to one year) and the flexure strength (at 56th day curing) of cofired and blended biomass fly ash concrete is statistically equal to that of two coal fly ash concrete in this investigation (at 95% confidence interval). This implies that biomass fly ash with co-firing concentration within the concentration interest to commercial coal-biomass co-firing operations at power plants and blended biomass fly ash within a certain blending ratio should be considered in concrete. 37 refs., 10 figs., 2 tabs.

  2. Cement-base bearing pads mortar for connections in the precast concrete: study of surface roughness

    Directory of Open Access Journals (Sweden)

    M. K. El Debs

    Full Text Available Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB, lightweight aggregate (expanded vermiculite-term and short fibers (polypropylene, glass and PVA, in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

  3. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  4. Isothermal Calorimetry Study of Blended Cements and its Application in Numerical Simulations

    NARCIS (Netherlands)

    Xiong, X.; Van Breugel, K.

    2001-01-01

    Apparent activation energy (E) is generally used to consider the effect of temperature on the kinetics of cement hydration in the numerical simulation of cement hydration processes. This paper deals with an experimental study on the kinetics of Portland cement and blast furnace slag cement using iso

  5. Assessment of Concrete Strength Using Partial Replacement of Coarse Aggregate for Wast Tiles and Cement for Rice Husk Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Umapathy U

    2014-05-01

    Full Text Available Conservation of natural resources and preservation of environment is the essence of any development. The problem arising from continuous technological and industrial development is the disposal of waste material. If some of the waste materials are found suitable in concrete making, not only cost of construction can be cut down, but also safe disposal of waste materials can be achieved. So in our project, an attempt has been made to assess the suitability of stone with waste tills in concrete making. In the laboratory tiles has been tried as coarse aggregate has been used as partial substitute to conventional coarse aggregate concrete making and today many researches are ongoing into the use of Portland cement replacements, using many waste materials like pulverized fly ash (PFA and ground granulated blast furnace slag (GGBS. Like PFA and GGBS a waste glass powder (GLP is also used as a binder with partial replacement of cement which takes some part of reaction at the time of hydration. In this study, rice husk ash have been used as partially replacements to the cement Cubes were cast and tested for compressive strength, and modulus of rupture after a curing period of 7,17,28 days.

  6. Effectiveness of shrinkage-reducing admixtures on Portland pozzolan cement concrete

    Directory of Open Access Journals (Sweden)

    Videla, C.

    2005-06-01

    Full Text Available Drying shrinkage causes tensile stress in restrained concrete members. Since all structural elements are subject to some degree of restraint, drying shrinkage is regarded to be one of the main causes of concrete cracking. The purpose of the present study was to evaluate the effectiveness of SRA in reducing drying shrinkage strain in Portland pozzolan cement concrete. The major variables examined included slump, admixture type and dose, and specimen size. The measured results indicate that any of the admixtures used in the study significantly reduced shrinkage. Concrete manufactured with shrinkage reducing admixtures shrank an average of 43% less than concrete without admixtures. As a rule, the higher the dose of admixture, the higher was its shrinkage reduction performance. The experimental results were compared to the shrinkage strain estimated with the ACI 209, CEB MC 90, B3, GL 2000, Sakata 1993 and Sakata 2001 models. Although none of these models was observed to accurately describe the behaviour of Portland pozzolan cement concrete with shrinkage reducing admixtures, the Sakata 2001 model, with a weighted coefficient of variation of under 30%, may be regarded to be roughly adequate.

    La retracción por secado es un fenómeno intrínseco del hormigón que produce tensiones de tracción en elementos restringidos de hormigón. Puesto que todos los elementos presentan algún grado de retracción, se considera a la retracción por secado como una de las principales causas de agrietamiento en proyectos de construcción en hormigón. Por lo tanto, el objetivo de esta investigación fue evaluar la efectividad de los aditivos reductores de retracción (SRA en hormigones fabricados con cemento Portland puzolánico. Las variables principales estudiadas incluyen el asentamiento de cono de Abrams, marca y dosis de aditivo reductor de retracción, y tamaño de espécimen de hormigón. Los resultados obtenidos permiten concluir que el uso de

  7. EFFECTS OF VARYING CURING AGE AND WATER/CEMENT RATIO ON THE ELASTIC PROPERTIES OF LATERIZED CONCRETE

    Directory of Open Access Journals (Sweden)

    Ata Olugbenga

    2007-01-01

    Full Text Available This paper reports the results of investigations carried out on the effect of varying curing age and water/cement ratio on the modulus of elasticity and modulus of deformability of laterized concrete. The test specimens were made with sieved samples of selected grain size ranges of laterite used as fine aggregates to replace sand in normal concrete. Batching was by weight. Three mix ratios of (1:1½:3, (1:2:4 and (1:3:6 were used. Water/cement ratio of 0.5, 0.6, 0.7 and 0.75 were used for each of the mix ratios. The specimens were tested at curing ages of seven to 28 days. The results showed that there was a corresponding increase in both modulus of elasticity and modulus of deformability of laterized concrete due to increase in curing ages. The mix proportion, compressive strength and water/cement ratio were found to have significant effects on both modulus of elasticity and modulus of deformability of laterized concrete.

  8. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  9. In situ stress monitoring of the concrete beam under static loading with cement-based piezoelectric sensors

    Science.gov (United States)

    Dong, Biqin; Liu, Yuqing; Qin, Lei; Wang, Yaocheng; Fang, Yuan; Xing, Feng; Chen, Xianchuan

    2015-10-01

    In this paper, the application of a novel cement-based piezoelectric ceramic sensor is stated for the in situ stress monitoring of the reinforced concrete beam under static loading. Smart beam composite structures were designed and characterised by a range of experimental methods. Finite element analysis is used to analyse the mechanical response of the concrete beam under static loading. The results show that the mechanical-electrical response of sensors embedded in reinforced concrete beams follows a linear relationship under various loading conditions. The sensors are able to record the stress history of the beam under static loads. Moreover, the measured stress data agree well with the simulated results and the smart structures are found to be capable of reliably monitoring the response of a beam during stress testing for static loading modes to real concrete structures. The study indicates that such cement-based piezoelectric composites have a high feasibility and applicability to the in situ stress monitoring of reinforced concrete structures.

  10. Microscopic air void analysis of hardened Portland cement concrete by the isolated shadow technique

    Science.gov (United States)

    Harris, Basil Mark

    The Isolated Shadow Technique is an image processing and analysis procedure for identifying and characterizing surface voids dispersed on an otherwise flat plane of heterogeneous solids. The objective of the Isolated Shadow Technique is to capture, process, and analyze images of a flat surface in which all of the features, save the boundary outlines of any surface voids, are eliminated. In short, the technique utilizes a series of digital images of the subject planar surface; where each image of the series is subjected to a unique lighting condition. By positioning the lights such that the shadows cast into the craters vary between images, these variations can be sequestered and the edges of the voids can subsequently be reconstructed from the isolated shadows. The primary purpose of this work was the development of the Isolated Shadow Technique for the particular application of quantitatively describing the microscopic voids in hardened Portland cement concrete. The Isolated Shadow System was developed for this application of the technique. The hardware and software of the system are described and the function is demonstrated. The system was found to have an average accuracy of 2.7% with a maximum deviation of 5.0% when compared to physical measurements. The results of polished sections of concrete specimens characterized by the Isolated Shadow System are compared to the results obtained with the commonly used standard methods (ASTM C 457; A and B). The coefficients of variation of parameters calculated to describe the air-void system (according to the ASTM C 457 formulations) are shown to be in the neighborhood of one percent when the observed test area includes at least 7,830 mmsp2 of polished concrete (with paste contents ranging from approximately 28% to 32%). The sensitivity of the air-void system parameters (as computed by the system) to changes in magnification and mosaic size are evaluated. A critical analysis of the underlying assumptions of the ASTM C

  11. Fundamental properties of industrial hybrid cement: utilization in ready-mixed concretes and shrinkage-reducing applications

    Directory of Open Access Journals (Sweden)

    Martauz, P.

    2016-06-01

    Full Text Available Utility properties of novel hybrid cement (H-Cement are influenced by pozzolanic reaction of fly ash, latent hydraulic reaction of metallurgical slag together with the alkali activation of inorganic geopolymer based on precipitated waste water coming from bauxite residues. Content of Portland cement clinker is at maximum of 20 mass %, the remaining portion consists of inorganic geopolymer. Up to 80% of CO2 emissions are saved by H-Cement manufacture compared to ordinary Portland cement (OPC. No heat treatment or autoclaving is needed at H-Cement production. The field application of H-Cement is performed by the same way than that of common cements listed in EN 197-1, and is also connected with highly efficient recovery and safe disposal of red mud waste. H-Cement is suitable for ready-mixed concretes up to C30/37 strength class and is specified by beneficial shrinkage-reducing property of the concrete kept in long dry-air cure opposite to common cements.Las propiedades de un nuevo cemento híbrido (cemento-H vienen determinadas por la reaccion puzolánica de cenizas volantes, la hidráulica latente de las escorias metalúrgicas y la activación alcalina mediante las aguas residuales generadas por el tratamiento de la bauxita para dar un geopolímero inorgánico. La proporción máxima de clínker de cemento en este nuevo material es del 20%, y por ello, en su fabricación se emite hasta un 80% menos de CO2 que en la producción del cemento portland (OPC. El cemento-H se prepara sin necesidad de tratamiento térmico ni de estancia en autoclave y su aplicación es la misma que los cementos convencionales definidos en la norma EN 197-1. Por otra parte, su fabricación supone la recuperación y la valorización segura de los lodos rojos de bauxita. El cemento-H es apto para la preparación de hormigones premezclados hasta la categoría C30/37, presentando el nuevo material, además, una menor retracción que los cementos convencionales, por lo que su

  12. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    Science.gov (United States)

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  13. Potential use of sewage sludge ash (SSA as a cement replacement in precast concrete blocks

    Directory of Open Access Journals (Sweden)

    Pérez-Carrión, M.

    2014-03-01

    Full Text Available The present study explored the technological feasibility of re-using sewage sludge ash (SSA as a Portland cement replacement in commercially manufactured pre cast concrete blocks. The blocks analysed were made to the guidelines laid down in Spain’s National Plan for Waste Water Treatment Plant Sludge, 2001–2006, and European Union specifications (CE marking for such products. Performance was compared in three families of blocks, with 0, 10 and 20% SSA. The findings proved that SSA is apt for pre cast concrete block manufacture and that, in addition to the economic and environmental benefits afforded, its use would improve certain of the properties of conventional block.El objetivo de esta investigación es estudiar el uso potencial de las cenizas de lodos de depuradora (CLD, como sustitución del cemento Portland en bloques de hormigón prefabricados, de forma que se pueda lograr una revalorización de este material de desecho mediante este procedimiento. La metodología utilizada en este trabajo se rige por las directrices del Plan Nacional Español de Lodos de Aguas Residuales de 2001–2006, y por las exigencias del Consejo Europeo (marcado CE, que es obligatorio para este tipo de productos. Se han utilizado dos niveles de sustitución de cemento (10% y 20%, y todos los resultados han sido referidos a las muestras control. Los resultados obtenidos muestran que es posible utilizar una sustitución parcial del cemento por CLD, en la fabricación de bloques de hormigón prefabricados, y por lo tanto, se pueden conseguir beneficios económicos y ambientales, así como la mejora de una serie de propiedades.

  14. Self-degradable Slag/Class F Fly Ash-Blend Cements

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Warren, J.; Butcher, T. (BNL); Lance Brothers (Halliburton); Bour, D. (AltaRock Energy, Inc.)

    2011-03-01

    Self-degradable slag/Class F fly ash blend pozzolana cements were formulated, assuming that they might serve well as alternative temporary fracture sealers in Enhanced Geothermal System (EGS) wells operating at temperatures of {ge} 200 C. Two candidate formulas were screened based upon material criteria including an initial setting time {ge} 60 min at 85 C, compressive strength {ge} 2000 psi for a 200 C autoclaved specimen, and the extent of self-degradation of cement heated at {ge} 200 C for it was contacted with water. The first screened dry mix formula consisted of 76.5 wt% slag-19.0 wt% Class F fly ash-3.8 wt% sodium silicate as alkali activator, and 0.7 wt% carboxymethyl cellulose (CMC) as the self-degradation promoting additive, and second formula comprised of 57.3 wt% slag, 38.2 wt% Class F fly ash, 3.8 wt% sodium silicate, and 0.7 wt% CMC. After mixing with water and autoclaving it at 200 C, the aluminum-substituted 1.1 nm tobermorite crystal phase was identified as hydrothermal reaction product responsible for the development of a compressive strength of 5983 psi. The 200 C-autoclaved cement made with the latter formula had the combined phases of tobermorite as its major reaction product and amorphous geopolymer as its minor one providing a compressive strength of 5271 psi. Sodium hydroxide derived from the hydrolysis of sodium silicate activator not only initiated the pozzolanic reaction of slag and fly ash, but also played an important role in generating in-situ exothermic heat that significantly contributed to promoting self-degradation of cementitious sealers. The source of this exothermic heat was the interactions between sodium hydroxide, and gaseous CO{sub 2} and CH{sub 3}COOH by-products generated from thermal decomposition of CMC at {ge} 200 C in an aqueous medium. Thus, the magnitude of this self-degradation depended on the exothermic temperature evolved in the sealer; a higher temperature led to a sever disintegration of sealer. The exothermic

  15. Thermal Properties of High-Performance Concrete Containing Fine-Ground Ceramics as a Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Lenka Scheinherrová

    2015-09-01

    Full Text Available Some types of industrial waste can be used in concrete as a partial replacement of a cement binder. One such material is fine-ground ceramics, which is a waste produced during brick cutting. The ground ceramic can be used as a pozzolana active material which can improve final properties of concrete. This fine powder was used in this study as a partial replacement of the cement binder up to 60 mass% and its thermal and mechanical properties were studied using the differential scanning calorimetry, thermogravimetry, and thermodilatometry. It was shown that the differential scanning calorimetry is a suitable method for observing thermal changes in concrete samples containing such additives at the microstructural level. In particular, it allows one to investigate the hydration and pozzolanic reaction in the studied concrete. The investigation was performed in the temperature range from 25 °C to 1000 °C.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7160

  16. Requirements of Road Concrete on Cement Quality%道路混凝土对水泥的质量要求

    Institute of Scientific and Technical Information of China (English)

    施惠生; 邓恺

    2009-01-01

    简要地介绍了道路水泥混凝土的特点和技术要求,以及道路水泥混凝土对水泥的质量要求,并给出了工程实例,旨在帮助水泥生产企业技术人员更好地了解和组织生产用于水泥混凝土道路的水泥.%Performance and technical requirements on road concrete is introduced by the author.Requirement of road concrete on cement quality is mentioned here. Engineering case is given in the paper to help the people of cement plant to better understanding the cement performance in order to manage cement production used for concrete road construction.

  17. Concrete Durability Properties and Microstructural Analysis of Cement Pastes with Nopal Cactus Mucilage as a Natural Additive

    Directory of Open Access Journals (Sweden)

    Ramírez-Arellanes, S.

    2012-09-01

    Full Text Available The present study evaluated the addition of a 3% nopal cactus mucilage solution to cement pastes, in its effects on setting times, flow, hydration, and microstructure, as well as on capillary water absorption and chloride diffusion in concrete. Hydration was characterized through XRD and microstructure was characterized with SEM. The mucilage solution/cement and water/cement ratios tested were 0.30, 0.45, and 0.60. The results in cement pastes indicate that the addition of mucilage increases setting times, reduces flow, slows cement hydration, and inhibits the formation of calcium hydroxide crystals in comparison with the control. Capillary absorption was significantly reduced in concrete containing mucilage, and chloride diffusion coefficients dropped up to 20% in the mixture with a mucilage/cement ratio = 0.30. The mixture with a mucilage/cement ratio = 0.45 displayed marginal reduction, and the mixture with mucilage/cement ratio = 0.60 exhibited a diffusion coefficient that was greater than the control for the specimens without moist curing.En esta investigación se evaluó el efecto de una solución de mucílago de nopal al 3% en los tiempos de fraguado, fluidez, hidratación y microestructura de pastas de cemento, y absorción capilar de agua y difusión de cloruros en concreto. La hidratación fue caracterizada por XRD y la microestructura por medio de SEM. Las relaciones solución de mucílago/cemento y agua/cemento fueron 0,30; 0,45 y 0,60. Los resultados en las pastas de cemento indican que el mucílago retarda los tiempos de fraguado, reduce la fluidez, retarda la hidratación del cemento, e inhibe la formación de cristales de hidróxido de calcio, comparados con los controles. La absorción capilar en concreto conteniendo mucílago se redujo significativamente y los coeficientes de difusión de cloruros disminuyeron hasta 20% en la mezcla mucílago/cemento = 0.30. En la relación mucílago/cemento = 0.45 la reducción fue marginal y

  18. Features of the influence of carbonaceous nanoparticles on the rheological properties of cement paste and technological properties of the fine-grained concrete

    Directory of Open Access Journals (Sweden)

    TOLMACHEV Sergei Nikolaevich

    2014-10-01

    Full Text Available The article describes the technological features of the manufacture of cement concrete road with carbonaceous nanoparticles. The research was carried out to determine the influence of the carbonaceous nanoparticles (CNP on the properties of cement paste and monominerals cement clinker. The method of determination of mobility and the viscosity of the cement paste due to vibration has been developed. It is shown that the optimal content of the CNP in the cement paste leads to increase of its mobility and reduced viscosity. Introduction of CNP into the cement paste helps to prolong the life setting. The investigations of zeta potential of the suspensions of the cement and cement clinker monominerals with CNP have been done. They showed that the introduction of the CNP into suspension monominerals cement clinker tricalcium aluminate (S3A and tetracalcium alyumoferrita (S4AF leads to dramatic increase of electronegativity and the change of the sign of the potential of these monominerals to the opposite. The effect of carbonaceous nanoparticles on the mechanical and structural characteristics of the cement stone and concrete with CNP was determined. It is shown that the effectiveness of the impact of the CNP on the processes of structure decreases when shifting from submikrostructure to micro-structure and further to meso- and macrostructure. Efficacy of CNP depends on the concrete mixtures compaction method: hard mixture compression or vibropressing leads to two times larger increase in strength when introducing CNP than vibration compaction of moving mixtures. The electron-microscopic studies of the structure of vibrocompacted and pressed cement stone and concrete have been done. One can observe that in the structure of concrete with CNP there are spatial frames inside and around which tumor crystallization takes place. That intensifies the processes of structure formation. Concrete with CNP can be characterized by prevailing dense structure, the

  19. A Generic Procedure for the Assessment of the Effect of Concrete Admixtures on the Sorption of Radionuclides on Cement: Concept and Selected Results

    Energy Technology Data Exchange (ETDEWEB)

    Glaus, M.A.; Laube, A.; Van Loon, L.R

    2004-03-01

    A screening procedure is proposed for the assessment of the effect of concrete admixtures on the sorption of radionuclides by cement. The procedure is both broad and generic, and can thus be used as input for the assessment of concrete admixtures which might be used in the future. The experimental feasibility and significance of the screening procedure are tested using selected concrete admixtures: i.e. sulfonated naphthalene-formaldehyde condensates, lignosulfonates, and a plasticiser used at PSI for waste conditioning. The effect of these on the sorption properties of Ni(II), Eu(III) and Th(IV) in cement is investigated using crushed Hardened Cement Paste (HCP), as well as cement pastes prepared in the presence of these admixtures. Strongly adverse effects on the sorption of the radionuclides tested are observed only in single cases, and under extreme conditions: i.e. at high ratios of concrete admixtures to HCP, and at low ratios of HCP to cement pore water. Under realistic conditions, both radionuclide sorption and the sorption of isosaccharinic acid (a strong complexant produced in cement-conditioned wastes containing cellulose) remain unaffected by the presence of concrete admixtures, which can be explained by the sorption of them onto the HCP. The pore-water concentrations of the concrete admixtures tested are thereby reduced to levels at which the formation of radionuclide complexes is no longer of importance. Further, the Langmuir sorption model, proposed for the sorption of concrete admixtures on HCP, suggests that the HCP surface does not become saturated, at least for those concrete admixtures tested. (author)

  20. Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests

    Energy Technology Data Exchange (ETDEWEB)

    Shuangzhen Wang; Emilio Llamazos; Larry Baxter; Fernando Fonseca [Brigham Young University, Provo, UT (USA). Department of Chemical Engineering

    2008-03-15

    Strict interpretation of ASTM C 618 excludes non-coal fly ashes, such as biomass fly ashes from addition in concrete. Biomass fly ash in this investigation includes (1) cofired fly ash from burning biomass with coal; (2) wood fly ash and (3) blended fly ash (wood fly ash mixing with coal fly ash). A set of experiments conducted on concrete from pure cement and cement with fly ash provide basic data to assess the effects of several biomass fly ashes on the performances of freezing and thawing (F-T) and rapid chloride permeability test (RCPT). The F-T tests indicate that all fly ash concrete has statistically equal or less weight loss than the pure cement concrete (control). The RCPT illustrate that all kinds of fly ash concrete have lower chloride permeability than the pure cement control concrete. 37 refs., 5 figs.

  1. Self-compacting concrete: the role of the particle size distribution

    NARCIS (Netherlands)

    Brouwers, J.J.H.; Radix, H.J.

    2005-01-01

    This paper addresses experiments and theories on Self-Compacting Concrete. The “Chinese Method”, as developed by Su et al. [1] and Su and Miao [2] and adapted to European circumstances, serves as a basis for the development of new concrete mixes. Mixes, consisting of slag blended cement, gravel (4-1

  2. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    Science.gov (United States)

    Jung, Sang; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  3. The influence of loading on the corrosion of steel in cracked ordinary Portland cement and high performance concretes

    Science.gov (United States)

    Jaffer, Shahzma Jafferali

    Most studies that have examined chloride-induced corrosion of steel in concrete have focused on sound concrete. However, reinforced concrete is seldom uncracked and very few studies have investigated the influence of cracked concrete on rebar corrosion. Furthermore, the studies that have examined the relationship between cracks and corrosion have focused on unloaded or statically loaded cracks. However, in practice, reinforced concrete structures (e.g. bridges) are often dynamically loaded. Hence, the cracks in such structures open and close which could influence the corrosion of the reinforcing steel. Consequently, the objectives of this project were (i) to examine the effect of different types of loading on the corrosion of reinforcing steel, (ii) the influence of concrete mixture design on the corrosion behaviour and (iii) to provide data that can be used in service-life modelling of cracked reinforced concretes. In this project, cracked reinforced concrete beams made with ordinary Portland cement concrete (OPCC) and high performance concrete (HPC) were subjected to no load, static loading and dynamic loading. They were immersed in salt solution to just above the crack level at their mid-point for two weeks out of every four (wet cycle) and, for the remaining two weeks, were left in ambient laboratory conditions to dry (dry cycle). The wet cycle led to three conditions of exposure for each beam: (i) the non-submerged region, (ii) the sound, submerged region and (iii) the cracked mid-section, which was also immersed in the solution. Linear polarization resistance and galvanostatic pulse techniques were used to monitor the corrosion in the three regions. Potentiodynamic polarization, electrochemical current noise and concrete electrical resistance measurements were also performed. These measurements illustrated that (i) rebar corroded faster at cracks than in sound concrete, (ii) HPC was more protective towards the rebar than OPCC even at cracks and (iii) there

  4. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    Energy Technology Data Exchange (ETDEWEB)

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-04-30

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.

  5. Strength Development and Microstructure of Hardened Cement Paste Blended with Red Mud

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; ZHANG Yanna; XU Zhongzi

    2009-01-01

    Red mud was activated to be a mineral admixture for Portland cement by means of heating at different elevated temperatures from 400 ℃ to 700 ℃. Results show that heating was ef-fective, among which thermal activation of red mud at 600 ℃ was most effective. Chemical analysis suggested that cement added with 600 ℃ thermally activated red mud yielded more calcium ion dur-ing the early stage of hydration and less at later stage in liquid phase of cement water suspension sys-tem, more combined water and less calcium hydroxide in its hardened cement paste. MIP measure-ment and SEM observation proved that the hardened cement paste had a similar total porosity and a less portion of large size pores hence a denser microstructure compared with that added with original red mud.

  6. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jea Myoung; Cho, Myung Sug [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  7. High volume Pozzolan concrete:three years of industrial experience in Texas with CemPozz

    OpenAIRE

    Pike, Clinton W; Ronin, Vladimir; ELFGREN, Lennart

    2009-01-01

    High Volume Pozzolan Concrete (HVPC) can be manufactured with low carbon dioxide footprint and energy consumption with the help of a new technology based on Energetically Modified Cement (EMC). The technology consists of mechanical processing a blend of ordinary portland cement (PC) and a pozzolan (Class F fly ash) through multiple high intensity grinding mills. The process imparts an increased surface activation of the PC and the pozzolan particles. Fly ash may be processed with all cements ...

  8. Simulation of connectivity of capillary porosity in hardening cement-based systems made of blended materials

    NARCIS (Netherlands)

    Ye, G.; Van Breugel, K.

    2009-01-01

    In recent years, the durability of reinforced or prestressed concrete structures has become a main concern. A key parameter in durability predictions is the microstructure of the surface zone of concrete structures, i.e. the “covercrete”, more in particular the connectivity of the pores in the cemen

  9. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  10. Effect of temperature on the hydration process and strength development in blends of Portland cement and activated coal gangue or fly ash

    Institute of Scientific and Technical Information of China (English)

    Pei-ming WANG; Xian-ping LIU

    2011-01-01

    This paper describes the results of an investigation into the effect of the variation of curing temperatures between 0 and 60 ℃ on the hydration process,pore structure variation,and compressive strength development of activated coal gangue-cement blend (ACGC).Hardened ACGC pastes cured for hydration periods from 1 to 360 d were examined using the non-evaporable water method,thermal analysis,mercury intrusion porosimetry,and mechanical testing.To evaluate the specific effect of activated coal gangue (ACG) as a supplementary cementing material (SCM),a fly ash-cement blend (FAC) was used as a control.Results show that raising the curing temperature accelerates pozzolanic reactions involving the SCMs,increasing the degree of hydration of the cement blends,and hence increasing the rate of improvement in strength.The effect of curing temperature on FAC is greater than that on ACGC.The pore structure of the hardened cement paste is improved by increasing the curing temperature up to 40 ℃,but when the curing temperature reaches 60 ℃,the changing nature of the pore structure leads to a decrease in strength.The correlation between compressive strength and the degree of hydration and porosity is linear in nature.

  11. Natural radioactivity levels and danger ratio in cements, concretes and mortars used in construction; Determinacion de niveles radiactivos naturales e indices de peligrosidad en cementos, hormigones y morteros utilizados en construccion

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, J.; Pacheco, C.; Avila, J. M.; Miro, C.

    2010-07-01

    We have determined the natural radiation level in three types of adhesive cements, five types of concrete and two types of mortars of different strength normally used in the construction field. Of these materials, both concrete and mortars were prepared in our laboratories, cements the contrary were of a commercial nature.

  12. Grout Impregnation of Pre-Placed Recycled Concrete Pavement (RCP) for Rapid Repair of Deteriorated Portland Cement Concrete Airfield Pavement

    Science.gov (United States)

    2007-04-01

    Hammitt (1985) also reports a high failure rate when using cold mix asphalt for crater repairs and recommended that it be abandoned as a technique...cement-treated base, embankment base material, and aggregate for asphalt paving mixtures . RCP has been used successfully for all of these types of...that recycled asphalt pavement ( RAP ) and RCP have a substantial history of usage in pavement construction. He reports that cost savings of 20 to

  13. A rapid cyclic voltammetric method for studying cement factors affecting the corrosion of reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Foulkes, F.R.; McGrath, P. (Univ. of Toronto, Ontario (Canada))

    1999-06-01

    A rapid cyclic voltammetric method for studying the influence of cement factors on the corrosion of embedded iron and steel in hardened cement paste is described. The technique employs a cement electrode'' consisting of an iron or steel wire embedded in a miniature cylinder of hardened cement paste. The rapid cyclic voltammetric method is fast, reproducible, and provides information on the corrosiveness of the pore solution environment surrounding the embedded metal. The usefulness of the method is demonstrated by showing how it can be used to evaluate the threshold chloride content of hardened ordinary portland cement paste at which corrosion begins and by using it to evaluate the relative efficacy of several admixed corrosion inhibitors.

  14. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact.

    Science.gov (United States)

    Aubert, J E; Husson, B; Sarramone, N

    2007-07-19

    This second of two articles dealing with the utilization of MSWI fly ash in blended cement studies the effects of two variants of the stabilization process on the behavior of the treated fly ash (TFA) introduced into cement-based mortars. From a technological point of view, the modifications of the process are very efficient and eliminate the swelling produced by the introduction of MSWI fly ash in cement-based mortars. TFA has a significant activity in cement-based mortars and can also advantageously replace a part of the cement in cement-based material. From an environmental point of view, the results of traditional leaching tests on monolithic and crushed mortars highlight a poor stabilization of some harmful elements such as antimony and chromium. The use of a cement rich in ground granulated blast furnace slag (GGBFS) with a view to stabilizing the chromium is not efficient. Since neither adequate tests nor quality criteria exist to evaluate the pollutant potential of a waste with a view to reusing it, it is difficult to conclude on the environmental soundness of such a practice. Further experiments are necessary to investigate the environmental impact of TFA introduced in cement-based mortars depending on the reuse scenario.

  15. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview

    Directory of Open Access Journals (Sweden)

    Swaptik Chowdhury

    2015-06-01

    Full Text Available With increasing industrialization, the industrial byproducts (wastes are being accumulated to a large extent, leading to environmental and economic concerns related to their disposal (land filling. Wood ash is the residue produced from the incineration of wood and its products (chips, saw dust, bark for power generation or other uses. Cement is an energy extensive industrial commodity and leads to the emission of a vast amount of greenhouse gases, forcing researchers to look for an alternative, such as a sustainable building practice. This paper presents an overview of the work and studies done on the incorporation of wood ash as partial replacement of cement in concrete from the year 1991 to 2012. The aspects of wood ash such as its physical, chemical, mineralogical and elemental characteristics as well as the influence of wood ash on properties such as workability, water absorption, compressive strength, flexural rigidity test, split tensile test, bulk density, chloride permeability, freeze thaw and acid resistance of concrete have been discussed in detail.

  16. Performance Evaluation of Sugarcane Bagasse Ash-Based Cement for Durable Concrete

    OpenAIRE

    Bahurudeen, A.; Santhanam, Manu

    2014-01-01

    Sugarcane bagasse ash (SCBA) is obtained as a by-product from cogeneration combustion boilers in sugar industries. Bagasse ash is mainly composed of reactive silica and can be used as pozzolanic material in concrete. Previous studies have reported that the utilization of SCBA as pozzolanic material in concrete can significantly improve its performance. A comprehensive investigation of durability performance of bagasse ash in concrete is not available in existing literature. In all previous st...

  17. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A.A. [Westinghouse Hanford Co., Richland, WA (United States); Olson, R.A.; Tennis, P.D. [Northwestern Univ., Evanston, IL (United States). Center for Advanced Cement-Based Materials] [and others

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  18. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases

    Energy Technology Data Exchange (ETDEWEB)

    Monteagudo, S.M., E-mail: sm.monteagudo@alumnos.upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Moragues, A., E-mail: amoragues@caminos.upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Gálvez, J.C., E-mail: jaime.galvez@upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Casati, M.J., E-mail: mariajesus.casati@upm.es [Departamento de Vehículos Aeroespaciales, Escuela de Ingeniería Aeronáutica, Universidad Politécnica de Madrid (Spain); Reyes, E., E-mail: encarnacion.reyes@upm.es [Departamento de Ingeniería Civil: Construcción, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid 28040 (Spain)

    2014-09-20

    Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data.

  19. Research on the Skidproof and Wearable Cement Concrete Pavements%水泥混凝土路面抗滑、耐磨性的研究

    Institute of Scientific and Technical Information of China (English)

    谷惠菊; 毕东辉

    2000-01-01

    通过分析水泥砼路面抗滑、耐磨性的影响因素,介绍了水泥砼路面抗滑、耐磨性的技术条件及措施。%Through the analyses of the skidproof and wearable cement concrete pavements the countermeasures are given.

  20. 7th NCB international seminar on cement and building materials. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Topics covered include: mining and mine environment (including CO{sub 2} mitigation in cement concrete industries), and project engineering and management (in volume 1); productivity enhancement and process optimisation (upgrading/cost reduction, grinding/refractories, process optimisation and control, and maintenance) (in volume 2); plant environment and pollution control (including global climate change) performance of concrete, and Portland and blended cements (in volume 3); special cements and binders, total quality management and energy management (in volume 4); and supplementary papers in volume 5.

  1. Hydration of tricalcium silicate in blended Cements manufactured with cuban tuffs

    Directory of Open Access Journals (Sweden)

    Duque Fernández, Gabriel Luis

    1989-03-01

    Full Text Available The tricalcium silicate (alite hydration velocity in cements with and without additives is studied in the presence of "Las Carolinas" quarry tuffs from Cienfuegos province, Cuba, the alite hydration velocity is enhanced reaching velocity constants 1.5 higher than in the standard cement.

    Se estudia la velocidad de hidratación del silicato tricálcico (alita presente en el cemento con y sin adiciones, demostrándose que en presencia de tobas del yacimiento "Las Carolinas" en la provincia de Cienfuegos, Cuba, se acelera la velocidad de hidratación de este componente, obteniéndose constantes de velocidad de reacción aproximadamente 1,5 veces mayores que en el cemento patrón.

  2. Experimental Investigation and Theoretical Modeling of Nanosilica Activity in Concrete

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2014-01-01

    Full Text Available This paper presents experimental investigations and theoretical modeling of the hydration reaction of nanosilica blended concrete with different water-to-binder ratios and different nanosilica replacement ratios. The developments of chemically bound water contents, calcium hydroxide contents, and compressive strength of Portland cement control specimens and nanosilica blended specimens were measured at different ages: 1 day, 3 days, 7 days, 14 days, and 28 days. Due to the pozzolanic reaction of nanosilica, the contents of calcium hydroxide in nanosilica blended pastes are considerably lower than those in the control specimens. Compared with the control specimens, the extent of compressive strength enhancement in the nanosilica blended specimens is much higher at early ages. Additionally, a blended cement hydration model that considers both the hydration reaction of cement and the pozzolanic reaction of nanosilica is proposed. The properties of nanosilica blended concrete during hardening were evaluated using the degree of hydration of cement and the reaction degree of nanosilica. The calculated chemically bound water contents, calcium hydroxide contents, and compressive strength were generally consistent with the experimental results.

  3. 1D Compressibility of DMS Treated With Cement-GGBS Blend

    Directory of Open Access Journals (Sweden)

    Kaliannan Suaathi

    2017-01-01

    Full Text Available Great quantities of dredged marine soils (DMS have been produced from the maintenance of channels, anchorages and for harbour development. DMS have the potential to pose ecological and human health risks and it is also considered as a geowaste. Malaysia is moving towards the sustainability approach and one of the key factors to achieve it is to reduce waste. Thus, this geowaste should be generated as a new resource to substitute soil for civil works such as for land reclamation and backfilling. This shows the improved settlement of consolidation in treated DMS. DMS is referred to as a cohesive soil which includes clayey silt, sandy clay, silty clay and organic clay. This type of soil has low strength and high compressibility. The objectives were achieved through literature review analysis and also laboratory test which was one dimensional oedometer test. On the other hand, treated DMS with more ground granulated blast furnace slag (GGBS gives a lower settlement compared to specimen with higher percentage of cement in a treated soil. Thus this shows that cement content can be reduced in soil solidification when GGBS is added. The optimum binder ratio found was 3:7 where 3 is cement and 7 is GGBS.

  4. Manufacturing of mortars and concretes non-traditionals, by Portland cement, metakaoline and gypsum (15.05%

    Directory of Open Access Journals (Sweden)

    Talero, R.

    1999-12-01

    Full Text Available In a thorough previous research (1, it appeared that creation, evolution and development of the values of compressive mechanical strength (CS and flexural strength (FS, measured in specimens 1x1x6cm of mortar type ASTM C 452-68 (2, manufactured by ordinary Portland cement P-1 (14.11% C3A or PY-6 (0.00% C3A, metakaolin and gypsum (CaSO4∙2H2O -or ternary cements, CT-, were similar to the ones commonly developed in mortars and concretes of OPC. This paper sets up the experimental results obtained from non-traditional mortars and concretes prepared with such ternary cements -TC-, being the portland cement/metakaolin mass ratio, as follows: 80/20, 70/30 and 60/40. Finally, the behaviour of these cements against gypsum attack, has been also determined, using the following parameters: increase in length (ΔL%, compressive, CS, and flexural, FS, strengths, and ultrasound energy, UE. Experimental results obtained from these non-traditional mortars and concretes, show an increase in length (ΔL, in CS and FS, and in UE values, when there is addition of metakaolin.

    En una exhaustiva investigación anterior (1, se pudo comprobar que la creación, evolución y desarrollo de los valores de resistencias mecánicas a compresión, RMC, y flexotracción, RMF, proporcionados por probetas de 1x1x6 cm, de mortero 1:2,75, selenitoso tipo ASTM C 452-68 (2 -que habían sido preparadas con arena de Ottawa, cemento portland, P-1 (14,11% C3A o PY- 6 (0,00% C3A, metacaolín y yeso (CaSO4∙2H2O-, fue semejante a la que, comúnmente, desarrollan los morteros y hormigones tradicionales de cemento portland. En el presente trabajo se exponen los resultados experimentales obtenidos de morteros y hormigones no tradicionales, preparados con dichos cementos ternarios, CT, siendo las proporciones porcentuales en masa ensayadas, cemento portland/metacaolín, las siguientes: 80/20, 70

  5. Evaluation of Photocatalytic Properties of Portland Cement Blended with Titanium Oxynitride (TiO2−xNy Nanoparticles

    Directory of Open Access Journals (Sweden)

    Juan D. Cohen

    2015-07-01

    Full Text Available Photocatalytic activity of Portland cement pastes blended with nanoparticles of titanium oxynitride (TiO2−xNy was studied. Samples with different percentages of TiO2−xNy (0.0%, 0.5%, 1%, 3% and TiO2 (1%, 3% were evaluated in order to study their self-cleaning properties. The presence of nitrogen in the tetragonal structure of TiO2 was evidenced by X-ray diffraction (XRD as a shift of the peaks in the 2θ axis. The samples were prepared with a water/cement ratio of 0.5 and a concentration of Rhodamine B of 0.5 g/L. After 65 h of curing time, the samples were irradiated with UV lamps to evaluate the reduction of the pigment. The color analysis was carried out using a Spectrometer UV/Vis measuring the coordinates CIE (Commission Internationale de l’Eclairage L*, a*, b*, and with special attention to the reddish tones (Rhodamine B color which correspond to a* values greater than zero. Additionally, samples with 0.5%, 1%, 3% of TiO2−xNy and 1%, 3% of TiO2 were evaluated under visible light with the purpose of determining the Rhodamine B abatement to wavelengths greater than 400 nm. The results have shown a similar behavior for both additions under UV light irradiation, with 3% being the addition with the highest photocatalytic efficiency obtained. However, TiO2−xNy showed activity under irradiation with visible light, unlike TiO2, which can only be activated under UV light.

  6. Study on performance of high strength pumping concrete compounded by fly ash composite powder under low water-cement ratio%低水胶比下粉煤灰复合矿粉配制高强泵送混凝土的性能研究

    Institute of Scientific and Technical Information of China (English)

    龙小明; 吴福飞; 董双快; 侍克斌; 郭江华

    2014-01-01

    In order to investigate the performance of high performance concrete compounded by fly ash composite powder under low water-cement ratio (0.20),the paper discovered through mechanical proper-ty and microstructure analysis that the strength of fly ash concrete is low in early period but high in late period.The strength of slag micro powder concrete can rapidly increase in early phase .The strength of concrete is obvious when two complementary complex mixed .The work performance is better and meets the requirements of pumping concrete when fly ash , slag single blending and composite admixture .The Ca(OH)2 produced by surface-active of SiO2 and Al2O3 of particle and cement can occur volcano ashes reaction and create C-S-H gel that can reduce Ca ( OH) 2 in the concrete interface region .pozzolan cement produced in a slurry , Refinement and reduction of concrete .The unhydrated particles can be filled with concrete and significantly improve the density of concrete , reduce calcium silicon ratio of concrete .%为了探讨低水胶比(0.20)下粉煤灰复合矿粉高性能混凝土的性能,对其力学性能和微观形貌进行了实验分析。结果表明:粉煤灰混凝土早期强度低后期强度高,矿渣微粉混凝土早期强度发展迅速,两者复掺时对混凝土强度的互补较明显;粉煤灰、矿渣单掺和复掺时高性能混凝土拌和物的工作性较好,均满足泵送混凝土对工作性的要求;其颗粒表面活性的Al2O3和SiO2与水泥产生的Ca(OH)2在浆体中发生火山灰反应,生成C-S-H凝胶,细化和减少混凝土界面区域的Ca( OH)2,未水化的颗粒能够填充于混凝土,能够明显地改善混凝土的密实度,降低混凝土的钙硅比。

  7. Chloride diffusivity in red mud-ordinary portland cement concrete determined by migration tests

    Directory of Open Access Journals (Sweden)

    Daniel Véras Ribeiro

    2011-01-01

    Full Text Available Red mud, which is a solid waste produced in the alumina production process, is classified as dangerous due to its high pH. In this work, the concentration of chlorides was monitored by measuring the conductivity of the anolyte, which initially was distilled water. The steady and nonsteady-state chloride diffusion coefficients were estimated from the "time lag"� and "equivalent time" between diffusion and migration experiments. The capillary water absorption, apparent porosity and pore size distribution of concretes were also analyzed. The addition of red mud apparently ensured lower chloride diffusion in the tested mixtures due to its superfine particle-size distribution and its "filler"� effect. Red mud lengthened the service life of the concrete to 35 years (double that of the reference concrete. This finding is very positive since it indicates a delay in the onset of the rebar corrosion process caused by the migration of chloride ions.

  8. Comparison of Cement-Based and Polymer-Based Concrete Pipes for Analysis of Cost Assessment

    Directory of Open Access Journals (Sweden)

    Orhan Bozkurt

    2013-01-01

    Full Text Available As the variety of materials utilized in construction industry has expanded, new techniques have been used in order to optimize the quality and efficiency of output. Therefore, recent innovations taking place in the construction industry led researchers to increase the mechanical efficiency of the output more than the cost effectiveness of it. However, especially professionals experiencing in the industry look into the cost effectiveness of the work. In other words, they also want researchers to justify the innovative techniques economically. The aim of this study is to provide a comparative analysis of the cost efficiency of polymer concrete used to manufacture durable and long-lasting reinforced concrete structures.

  9. 水泥与混凝土外加剂适应性地解决%Adaptability solution of cement and concrete additive

    Institute of Scientific and Technical Information of China (English)

    封培然

    2014-01-01

    结合XM水泥厂具体情况,在对影响其水泥与混凝土外加剂适应性因素进行分析,提出改善熟料冷却速度,降低出厂水泥中温度,更换原燃材料,使用助磨剂等建议与措施。在实施部分措施后,XM水泥与外加剂的适应性差的问题得到较好解决。%The factors of compatibility between cement and concrete additive were analysed, combined with particular case of XM ce-ment plant, a series of measures were put forward including clinker cooling speed improvement, reducing finished cement temperature, changing raw material and fuel and using grinding agent, etc. By some measures, the adaptability problems between cement and concret dditive of XM cement plant were solved sucessfully.

  10. The influence of natural pozzolana mineralogical composition in the properties of blended cement

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-09-01

    Full Text Available The pozzolana activity is the main property of the active additions but, in order to select them, we have to consider - between other factors- its mineralogical composition with a great influence, not only in the active component, but also in other cement properties. In the present work we have studied 4 different Cuban natural pozzolanes, characterized with the help of X ray diffraction and with thermic and chemical analysis. The pozzolanic activity was also evaluated through a chemical and physicomechanic method. Some cements were prepared with different contents of each one of the pozzolanics, and analysed their physicomechanic and chemical properties. Finally, we found that the pozzolanics mineralogical composition has a great influence in the pozzolanic activity and in the properties of mixed cements. Also we found that it 5 possible to obtain the best resistances in the time and the smaller needs of water when the vitreous phase prevail in the additions.

    La actividad puzolánica es la propiedad fundamental de las adiciones activas, pero para la selección de la misma se debe considerar, entre otros factores, su composición mineralógica, que influye no sólo en los constituyentes activos, sino también en muchas propiedades de los cementos. En el presente trabajo, como material puzolánico se estudiaron 4 puzolanas naturales cubanas, las cuales fueron caracterizadas mediante difracción de Rayos X, análisis térmico y análisis químico; se evaluó, además, la actividad puzolánica mediante un método químico y otro físico-mecánico. Se prepararon cementos con diferentes contenidos de cada una de las puzolanas y se analizaron sus propiedades químicas y físico-mecánicas. Se concluye que la composición mineralógica de las puzolanas influye de forma determinante en la actividad puzolánica y en las propiedades de los cementos mezclados; que los mejores desarrollos de resistencias en el tiempo y los menores requerimientos

  11. 变压式水泥混凝土智能养护研究%The study of intelligent curing cement concrete by changing water pressure

    Institute of Scientific and Technical Information of China (English)

    甘露

    2015-01-01

    为实现施工现场水泥混凝土养护的智能化、自动化,提出了变压式水泥混凝土智能养护,变压式智能混凝土养护机通过检测混凝土路面、桥面或者楼板的温度湿度,并通过ZigBee无线传输将数据传给主机,主机根据相关数据改变出水水压,控制定时器及电磁阀,实现混凝土的定向定距喷灌,对提高养护效率以及养护规范性有重要作用。%To implement the intelligent of the cement concrete auto curing,this paper puts forward pressure type cement concrete intelligent main-tenance,variable pressure type intelligent concrete curing machine through the test of concrete pavement and bridge deck or slab temperature, humidity,and through the ZigBee wireless transmission to transmit the data to host,the host according to the relevant data change of water pres-sure,water control timer and solenoid valve,realize the directional distance of concrete irrigation,to improve the efficiency of maintenance and maintenance normative has vital function.

  12. Concrete

    OpenAIRE

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  13. State of chemical modeling modules for the degradation of concrete and cements

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A.

    1997-04-15

    This report describes the conceptual framework upon which modeling activities will be needed to predict the chemistry of water in contact with concrete and its degradation products cover a broad area, from developing databases for existing abiotic codes, to developing codes that can simulate the chemical impact of microbial activities at a level of sophistication equivalent to that of the abiotic modeling codes, and ultimately, to simulating drift-scale chemical systems in support of hydrological, geochemical,a nd engineering efforts.

  14. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Latex Admixtures for Portland Cement Concrete and Mortar.

    Science.gov (United States)

    1986-07-01

    Examples of polymers used as latex admixtures for concrete and mor- tar in the United States are PVA, styrene-butadiene, polyacrylates (acrylics), and...the substrate by removing all loose and disintegrating material. Oil, grease, or other chemicals should be re- moved with a detergent , and the... detergent should be removed by several wash- ings with water. Because of the surface film characteristics of a latex mixture, the mortar should be placed as

  15. Fundamental Properties of Magnesium Phosphate Cement Mortar for Rapid Repair of Concrete

    OpenAIRE

    2016-01-01

    Fundamental properties of magnesium phosphate cement (MPC) were investigated in this paper. The setting time and compressive and bond (i.e., flexural and tensile bond) strengths were measured to assess the applicability, and hydration product was detected by the X-ray diffraction. The specimens were manufactured with magnesia and potassium dihydrogen phosphate (K2HPO4) was added to activate hydration process. The Borax (Na2B4O7·10H2O) was used as a retarder to mitigate overwhelming rapid hard...

  16. Calcium aluminate cement concrete: durablllty and conversión. A fresh look at an old subject

    Directory of Open Access Journals (Sweden)

    George, C. M.

    1992-12-01

    Full Text Available This paper re-examines the relationship between durability and conversion of calcium aluminate cement concretes, CACC. Conversion is a natural and inevitable process whereby these materials reach a stable mature condition. Numerous structures built more than half a century ago remain serviceable and in service today. Some of these are illustrated. They are the best testament to the durability of converted concrete having survived far longer in the converted than the unconverted condition. The unique rapid hardening characteristics of CACC offer a valuable selfheating capability. Conversión is immediate and this leads to better long term strengths because more cement is hydrated. Moreover, recent work has shown that the thermodynamically stable hydrates of converted CAC are intrinsically more resistant to attack from such aggressive agents as sulphuric acid. This provides an explanation of the excellent long term performance of Fondu concretes, for example in many saewer applications. Our knowledge and understanding today of the durability of calcium alumínate bonded materials has been built on close to 100 years of accumulated experience and laboratory studies. We know how to use these materials and we know what to expect from them. We can be confident that they will serve us well in the century ahead.

    Este trabajo examina de nuevo la relación entre durabilidad y conversión de hormigones de cemento aluminoso, HAC (High Alumina Cement. La conversión es un proceso natural e inevitable a través del cual este material consigue una condición definitiva y estable. Numerosas estructuras que se edificaron hace más de medio siglo siguen utilizables y utilizadas hoy en día. Algunas de estas estructuras vienen ilustradas en este trabajo. Ellas sirven como mejor ejemplo de la durabilidad del hormigón convertido, ya que han sobrevivido mucho más tiempo en el estado convertido que en el no convertido. Las singulares caracter

  17. Fundamental Properties of Magnesium Phosphate Cement Mortar for Rapid Repair of Concrete

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2016-01-01

    Full Text Available Fundamental properties of magnesium phosphate cement (MPC were investigated in this paper. The setting time and compressive and bond (i.e., flexural and tensile bond strengths were measured to assess the applicability, and hydration product was detected by the X-ray diffraction. The specimens were manufactured with magnesia and potassium dihydrogen phosphate (K2HPO4 was added to activate hydration process. The Borax (Na2B4O7·10H2O was used as a retarder to mitigate overwhelming rapid hardening. Mercury intrusion porosimetry was used to examine the pore structure of MPC mortar, and simultaneously rapid chloride penetration test was performed. As a result, the compressive strength of MPC mortar was mostly achieved within 12 hours; in particular, the MPC mortar at 4.0 of M/P ranked the highest value accounting for 30.0 MPa. When it comes to tensile and flexural bond to old substrate in mortar patching, the MPS had the higher tensile and flexural strengths, accounting for 1.9 and 1.7 MPa, respectively, compared to OPC mortar patching. Unlike Portland cement mortar, the MPC mortar contained mainly air void rather than capillary pores in the pore distribution. Presumably due to reduced capillary pore in the MPC, the MPC indicated lower penetrability in the chloride penetration test.

  18. High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.

    2012-12-01

    Full Text Available This paper assesses the performance of mortars and concretes based on alkali activated granulated blastfurnace slag (GBFS/metakaolin (MK blends when exposed to high temperatures. High stability of mortars with contents of MK up to 60 wt.% when exposed to 600 °C is identified, with residual strengths of 20 MPa following exposure to this temperature. On the other hand, exposure to higher temperatures leads to cracking of the concretes, as a consequence of the high shrinkage of the binder matrix and the restraining effects of the aggregate, especially in those specimens with binders containing high MK content. A significant difference is identified between the water absorption properties of mortars and concretes, and this is able to be correlated with divergences in their performance after exposure to high temperatures. This indicates that the performance at high temperatures of alkali-activated mortars is not completely transferable to concrete, because the systems differ in permeability. The differences in the thermal expansion coefficients between the binder matrix and the coarse aggregates contribute to the macrocracking of the material, and the consequent reduction of mechanical properties.

    Este artículo evalúa el desempeño de morteros y hormigones basados en mezclas de escoria siderúrgica (GBFS/metacaolín (MK, activadas alcalinamente expuestos a temperaturas altas. Se identifica una elevada estabilidad en morteros con contenidos de MK de hasta un 60% cuando se exponen a temperaturas de 600 ºC, con una resistencia residual de 20 MPa posterior a la exposición a esta temperatura. Por otra parte, la exposición a temperaturas más elevadas conduce al agrietamiento de los hormigones como consecuencia de una elevada contracción de la matriz cementante y las restricciones por efecto de los áridos, especialmente en aquellos especímenes con cementantes que contienen altos contenidos de MK. Se identifican diferencias significativas en

  19. Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R cement mortars

    Directory of Open Access Journals (Sweden)

    Payá, J.

    2008-12-01

    Full Text Available This paper reports on a study of the corrosion levels in steel bars embedded in mortars made with a blend of Portland cement and (0-20% spent fluid catalytic cracking catalyst residue (FC3R, with a variable (0.3-0.7 water/binder (w/b ratio. The specimens were stored in the following conditions: relative humidity of 40, 80 or 100% and CO2 concentrations of 5 and 100%. The steel corrosion rate was measured with polarization resistance techniques. In the absence of aggressive agents, the steel was found to remain duly passivated in mortars with an FC3R content of up to 15% under all the conditions of relative humidity tested. The reinforcement corrosion level in mortars with a w/b ratio of 0.3 and 15% FC3R subjected to accelerated carbonation was similar to the level observed in the unblended Portland cement control mortar.En este trabajo se ha estudiado el nivel de corrosión de barras de acero embebidas en morteros de cemento Portland con relación agua/material cementante (a/mc variable (0,3-0,7, en los que parte del cemento (0-20% se sustituyó por catalizador de craqueo usado (FC3R. Las condiciones de conservación de las probetas elaboradas fueron las siguientes: distintas humedades relativas (40, 80 y 100% y dos concentraciones de CO2 (5 y 100%. La velocidad de corrosión de los aceros se midió mediante la técnica de resistencia de polarización. Se ha podido determinar que, bajo las distintas condiciones de humedad relativa y ausencia de agresivo, los aceros se mantuvieron correctamente pasivados en los morteros con contenidos de FC3R de hasta el 15%. El nivel de corrosión que presenta el refuerzo embebidos en morteros con sustitución de un 15% de cemento por FC3R y relación a/mc 0,3, al ser sometidos a un proceso de carbonatación acelerada, era muy similar al mostrado por el mortero patrón, sin FC3R.

  20. Influence of Elevated Temperatures on Pet-Concrete Properties

    Science.gov (United States)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  1. Influence of the waste glass in the axial compressive strength of Portland cement concrete; Influencia dos residuos vitreos na resistencia a compressao axial do concreto de cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Junior, E.J.P.; Paiva, A.E.M., E-mail: edson.jansen@hotmail.com [Instituto Federal de Educacao, Ciencia e Tecnologia do Maranhao (PPGEM/IFMA), Sao Luis, MA (Brazil). Programa de Pos-Graduacao em Engenharia de Materiais

    2012-07-01

    In this work, was studied the influence of the incorporation of waste glass, coming from the stage of thinning and polishing of a company of thermal glass treatments, in the axial compressive strength of Portland cement concrete. The coarse and ground aggregates used was crushed stone and sand, respectively. For production of the concrete, percentages of glass residues of 5%, 10% and 20% had been used in substitution to the sand, and relations water/cement (a/c) 0,50, 0,55 and 0,58. The cure of the test bodies was carried through in 7, 14 and 28 days. The statistics analysis of the results was carried out through of the analysis of variance for each one of the cure times. From the results of the compressive strength of the concrete, it could be observed that the concrete has structural application for the relation a/c 0,5, independently of waste glass percentage used, and for the relation a/c 0,55 with 20% of waste glass. (author)

  2. Topological calculation of key parameters of fibre for production of foam concrete based on cement-free nanostructured binder

    Directory of Open Access Journals (Sweden)

    KHARKHARDIN Anatoly Nikolaevich

    2016-08-01

    Full Text Available Fiber reinforcement is the process of introduction of fibers of different origins into binding system to enhance strength, stress-strain behavior of products and structures. Maximal effect of reinforcing process is possible when optimal parameters (length and consumption of fibre are determined. Moreover one need to consider particle-size composition and hardening process of binding system. In this paper the critical length of natural and sinthesized fibres as well as minimally required content in cellular systems is calculated with the mathematical apparatus of structural topology. As an example the foam concrete based on cement-free nanostructured binder with basalt fibre and microreinforcing constructional polymeric fibre is studied. Fiber diameter, refined with microstructure analysis, accomplished by SEM-microscopy and experimentally determined packing density in loose and compact state are applied as input parameters. Measurement of the fibre topological characteristics with acceptable is accomplished according to material porosity and pore size. So the minimal effective fibre length taking into account homogeneous distribution in bulk of composite matrix is less of 1 mm; minimal fibre consumption is 0,2–0,5 (by wt. %. Irrational optimization leads to unreasonable cost growth of final materials as well as formation of balling inclusions that negatively affects on final performance of composite.

  3. Surface Modification of Fly Ashes with Carbide Slag and Its Effect on Compressive Strength and Autogenous Shrinkage of Blended Cement Pastes

    Institute of Scientific and Technical Information of China (English)

    HAO Chengwei; DENG Min; MO Liwu; LIU Kaiwei

    2012-01-01

    Surfaces of grade Ⅲ fly ashes were modified through mixing with carbide slag and calcining at 850 ℃ for 1 h.Mineralogical compositions and surface morphology of fly ashes before and after modification were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM),respectively.Effect of surface-modified fly ashes on compressive strength and autogenous shrinkage of blended cement pastes was investigated.Microstructures of cement pastes were examined by backscattered electron (BSE) imaging and mercury intrusion porosimetry (MIP).The experimental results showed that β-C2S was formed on the surfaces of fly ashes after modification.Hydration of β-C2S on the surface-modified fly ashes densified interface zone and enhanced bond strength between particles of fly ashes and hydrated clinkers.In addition,surface modification of fly ashes tended to decrease total porosity and 10-50 nm pores of cement pastes.Surface modification of fly ashes increased compressive strength and reduced autogenous shrinkage of cement pastes.

  4. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  5. 利用磷石膏制备低热、微膨胀复合水泥的研究%Preparation of Low Hydration Heat, Micro-expansive Blended Cements Using Phosphogypsum

    Institute of Scientific and Technical Information of China (English)

    石正国; 郭辉

    2012-01-01

    To utilize phosphogypsum more efficiently in building materials, low hydration heat, micro-expansive blended cements were prepared by adding phosphogypsum and alkali activator in blended cements. Hydration properties of the blended cements were characterized by DSC, XRD, SEM and isothermal calorimetry. The results show the hydration process of blended cement can be delayed by phosphogypsum. Through adding alkali activator and/or larger amount of phosphogypsum, the setting time of blended cement can be reduced significantly and the compressive strength can also be improved. When the addition of phosphogypsum exceeded 10% , the hardened cement pastes exhibited micro-expansive behavior due to the generation of AFt ( perhaps gypsum dihydrate). The expansion ratio of hardened cement pastes can be controlled by adjusting the addition of phosphogypsum.%为大量利用磷石膏,本文采用在复合水泥中掺加磷石膏的方法,开展了制备低热、微膨胀复合水泥的试验研究,并采用DSC、XRD、SEM及等温水化热仪表征了该复合水泥的水化特征.研究结果表明:磷石膏具有显著的缓凝效果,通过掺加Na2SO4和提高磷石膏掺量的方法,可大幅度缩短水泥的凝结时间、提高水泥的早期强度.当磷石膏掺量超过10%时,水泥水化产物中钙矾石量显著增加,并出现二水石膏,硬化水泥浆体呈现出微膨胀性.通过调整磷石膏的掺量,可控制复合水泥的膨胀率.

  6. Migrating corrosion inhibitor blend for reinforced concrete: Part 1 -- Prevention of corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, B.; Buechler, M.; Stalder, F.; Boehni, H.

    1999-12-01

    The efficiency of a migrating corrosion inhibitor in preventing corrosion of mild steel was investigated in saturated calcium hydroxide (Ca[OH]{sub 2}) solutions and in mortar. The protective effect of the inhibitor against pitting corrosion caused by chloride attack and against uniform corrosion as a result of carbonation was determined. Results showed that high concentrations ({approx}10%) allowed the inhibition of pitting corrosion tritiation in solution containing 1 M/L sodium chloride (NaCl). However, inhibiting properties can be lost by evaporation of the volatile constituent of the inhibitor or by the precipitation of the nonvolatile fraction of the inhibitor in presence of calcium ions. Addition of the inhibitor blend to mortar yielded a retardation of the corrosion initiation in the case of chloride-induced corrosion, but o significant reduction in corrosion rate. No effect was found in carbonated samples, and no influence on the corrosion rate was detected. Additionally, the estimation of the extent of the retarding effect on corrosion initiation on real structures was difficult, as the inhibitor was found to evaporate from the mortar. This evaporation resulted in a loss of inhibiting properties. Hence, the long-term efficiency of the inhibitor could not be guaranteed.

  7. Study of Control Methods for the Acid Consumption of the Excess-sulfate Phosphogypsum Slag Cement Concrete%过硫磷石膏矿渣水泥混凝土耗酸量控制方法研究

    Institute of Scientific and Technical Information of China (English)

    林宗寿; 吕治江

    2015-01-01

    The mixing amount of the Portland cement had great impact on the performance of the Excess-Sulfate-phosphogypsum slag cement concrete.High addition of Portland cement leads to a significant drop of the later strength of the Excess-Sulfate phosphogypsum slag cement concrete;low addition of Portland cement leads to a significant drop of the early strength of the Excess-Sulfate phosphogypsum slag cement concrete.This study explored that controlling the acid consumption of PSC pulp in the Excess-Sulfate phosphogypsum slag cement concrete could effectively control the proportion of the Portland cement in the Excess-Sulfate phosphogypsum slag cement concrete at a suitable level, and thus improve the performance of the Excess-Sulfate phosphogypsum slag cement concrete.The filtrate acid con-sumption of PSC pulp in the Excess-Sulfate phosphogypsum slag cement concrete should be controlled between 0.10 mmol/g and 0.25 mmol/g.%过硫磷石膏矿渣水泥混凝土中硅酸盐水泥的掺量对其性能影响极大,掺量过高后期强度将大幅度下降,掺量过低早期强度将会很低。该文通过试验发现:控制过硫磷石膏矿渣水泥混凝土中 PSC 浆的耗酸量,可以有效控制过硫磷石膏矿渣水泥混凝土中硅酸盐水泥的适宜配比,显著提高过硫磷石膏矿渣水泥混凝土的性能。过硫磷石膏矿渣水泥混凝土中的 PSC 浆滤液耗酸量应控制0.10~0.25 mmol/g 之间。

  8. 机场水泥混凝土道面施工质量控制技术%Quality Control Technology for Airport Cement Concrete Pavement Construction

    Institute of Scientific and Technical Information of China (English)

    董军; 贡文献

    2011-01-01

    针对机场水泥混凝土道面施工中容易出现掉边掉角、表面网状或环状裂纹、板体断裂和蜂窝麻面等质量通病,根据大面积混凝土铺筑施工的特点和环境因素,综合分析其质量通病产生的原因,并提出相应的施工控制措施,在实践中取得了明显效果,可供水泥混凝土道面施工参考.%For the common quality defects on airport cement concrete pavement such as side or corner peeling,surface pattern crack or annular crack, slab fracture, and voids and pits, according to the characteristics of large area concrete pavement construction and environmental factors, the causes of these quality defects are analyzed and the corresponding control measures are put forward, which have achieved significant effect in practical engineering. These measures can be reference for cement concrete pavement construction.

  9. Study on properties of high strength blended cements with small amount of clinker%少熟料高标号复合水泥的性能

    Institute of Scientific and Technical Information of China (English)

    程麟; 李东旭

    2001-01-01

    工业废渣用于水泥混合材的研究一直是水泥研究领域的热点问题。从实际应用看,活性高的混合材,如矿渣已得到充分的利用。而活性低的混合材,如粉煤灰,利用率较低。针对矿渣、磷渣和粉煤灰的特点,通过强度和孔结构测试,研究了少熟料高标号复合水泥。强度和孔结构研究表明,利用混合材的优势互补原理,并引入外加剂可以得到性能优异的少熟料复合水泥。%Adding industrial refuses to cement as mixing materials is a hot topic in the cememt industry. In the practice viewpoint, high active mixing materials, such as slag have been used effectively. However, the mixing materials of low activity, have not been used effectively. Blended cements of high strength with small amount of clinker and large amount of mixing materials such as blast furnace slag, phosphorous slag and fly ash were studied in this paper. By means of analysis of strength and pore structure, results showed that blended cements of small amount clinker, have good properties, it can be made by making use of some advantages of additives and adding admixtures.

  10. Strength-permeability Model of Pervious Cement Concrete%透水性混凝土强度-渗透性模型试验研究

    Institute of Scientific and Technical Information of China (English)

    崔新壮; 欧金秋; 张娜; 高智珺; 隋伟

    2013-01-01

    High permeability is an important characteristic of pervious concrete . For the existing permeability testing devices of pervious concrete ,the specimen sidewall leakage is serious due to the large numbers of open pores on the surface of specimens . To solve the problem ,a new permeability testing method for pervious concrete was developed and a composite sidewall structure with waterproof daub , flexible rubber cushion and rigid sleeve sidewall was proposed .Meanwhile ,the strength and permeability of pervious cement concrete are incompatible with a reciprocal relationship .However ,limited research has been conducted on the relationship between them .Effects of water-cement ratio (W/C) ,aggregate-cement ratio and porosity on the properties of pervious concrete , including strength and permeability , were studied . Furthermore , strength-porosity model , permeability-porosity model and strength-permeability model were established .Tests reveal that :a) There is an optimum W/C of pervious concrete ,at which strength reaches the maximum ;b) The relationship between the strength and W/C shows a downward quadratic curve ,and the permeability is proportional to porosity and aggregate-cement ratio ;c) The relationship between strength and permeability of pervious cement concrete can be well fitted with the Lorentzian function ,and the strength decreases when the permeability increases ,but the rate of reduction decreases gradually .The optimum combination of strength and permeability should be determined based on the specific engineering requirements in design .%高透水性是透水性混凝土的重要特征,现有的透水性混凝土渗透系数测试装置存在试件侧壁渗漏问题,为此提出了一种试件侧面防水涂抹+柔性夹层+套筒刚性壁的防侧漏复合结构,提高了渗透系数测试精度。透水性混凝土的透水性和强度是一对矛盾体,此消彼长,但目前对它们之间关系缺乏系统的研究。通过

  11. 浅谈水泥混凝土路面平面及接缝设计%Discussion on Cement Concrete Pavement Plane and Joints Design

    Institute of Scientific and Technical Information of China (English)

    郝勇

    2011-01-01

    对于不配钢筋的水泥混凝土路面,须按照温度应力的计算方法确定板块平面尺寸,并遵循一定的规则将公路路面分割为整齐的平面块体,以防止不规则裂缝的产生.%For the cement concrete pavement which is not equipped with rebar, we should determine the plate plane size in accordance with the calculating method of temperature stress, and make road surface divide into tidy flat block following certain rules to prevent irregular cracks.

  12. Proceedings of the Fifth CANMET/ACI International Conference on Recent Advances in Concrete Technology : volume 1 and supplementary papers

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, V.M. (ed.) [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Venturino, M. (comp.)

    2001-07-01

    This conference brought together researchers from industry, academia, and government agencies from around the world to discuss the recent advances in concrete technology and to discuss areas that need more research. The presentations focused on all aspects of concrete technology and sustainability with most of them dealing with the issue of supplementing cementing materials with admixtures such as fly ash. In addition to the referenced proceedings, a book of supplementary papers was also published. Cement blends were found to prolong the longevity of concrete. An added benefit is that they avoid the huge cost of repairs and replacement cycles. The use of fly ash in cement is considered to be a viable waste product material for cement mixtures. A total of 64 papers were presented at this conference, of which 13 have been processed separately for inclusion in the database. refs., tabs., figs.

  13. Thermogravimetric analysis of phase transitions in cement compositions mixed by sodium silicate solution

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2014-01-01

    Full Text Available This paper presents a study of the capability to modify cement by mechanical activation of sodium silicate water solution. Admixtures or blends of binding agents were employed for modifying concrete properties. The liquid glass is applied to protect from chemically or physically unfavorable environmental impacts, such as acidic medium and high temperature. The sodium silicate is a high-capacity setting accelerator. The increasing of the liquid glass proportion in the mix leads to the degradation of the cement paste plasticity and for this reason it is necessary to reduce the amount of liquid glass in the cement paste. The activation of dilute water solution of sodium silicate into rotary pulsating apparatus directly before tempering of the cement paste is an effective way to decrease mass fraction of liquid glass in the cement paste. The results of the combined influence of liquid glass and mechanical activation on physicochemical processes taking place in cement stone are represented in this research. Thermogravimetric analysis was used in order to study cement blends. Thermogravimetric analysis of modified cement stone assays was performed by thermo analyzer SETARAM TGA 92-24. The results of the analysis of phase transition taking place under high-temperature heating of cement stone modified by the mechanical activation of the water solution of the sodium silicate were introduced. Thermograms of cement stone assays were obtained at different hardening age. The comparison of these thermograms allows us to come to a conclusion on the formation and the retention during long time of a more dense structure of the composite matrix mixed by the mechanical activation of sodium silicate water solution. The relation between the concrete composition and its strength properties was stated. Perhaps, the capability of modified concrete to keep calcium ions in sparingly soluble hydrosilicates leads to the increase in its durability and corrosion resistance.

  14. Improvement Concretes Outside Admixture and Cement Compatible Measure%论改善混凝土外掺剂与水泥适应性的措施

    Institute of Scientific and Technical Information of China (English)

    赵小萍

    2009-01-01

    文章论述了水泥与外加剂的适应性是影响混凝土质量的重要因素,提出几点改善措施:即新型高性能减水荆的开发应用、外加剂的复合使用、减水剂的掺入方法、适当"增硫法"和适当调整混凝土配合比.%This article elaborated the cement and the admixture compatibility is affects the concretes quality the important attribute, proposes sev-eral improvement measures: new high performance water reducing agent development application, admixture compound use, the water reducing a-gent mixes in the method, suitable "increases the sulfur law", appropriate readjustment proportioning of concrete.

  15. 水泥混凝土桥面铺装施工质量控制%Pavement construction quality control of cement concrete bridge deck

    Institute of Scientific and Technical Information of China (English)

    贾志民

    2009-01-01

    Combining with construction practice of the bridge deck pavement, the author introduces the quality control points in the cement concrete bridge deck pavement construction from aspects of hinge joint concrete construction and bridge deck pavement concrete construction, so as to perfect bridge deck pavement construction technology, ensure that the bridge deck concrete pavement layer has design strength, in-tegrity and anti-permeability, anti-crack and anti-impact performance.%结合桥面铺装的施工实践,从铰缝混凝土施工和桥面铺装混凝土施工两方面介绍了水泥混凝土桥面铺装施工中的质量控制要点,以完善桥面铺装施工工艺,保证桥面混凝土铺装层具有设计强度、整体性及抗渗抗裂抗冲击性.

  16. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    Science.gov (United States)

    Zanjani Zadeh, Vahid

    characterization of ITZ with direct mechanical tests confirms that the zone is highly heterogeneous. The heterogeneity seemed to be due to admixture effect, amount of available water, shape, size and type of the aggregate or internal curing agent. The nanoscale mechanical behavior of C-S-H phases in cement paste formed by ordinary portland cement, cements blended with fly ash and blast furnace slag, and cement with kenaf and lightweight aggregate are virtually identical. Nevertheless, the volume fractions of the hydration products were different. Mechanical properties of hydration products for damaged concretes were decreased. Lightweight aggregate can alleviate the thermal degradation in the hydration products, although more degradation was identified in lightweight aggregates' ITZ than in bulk paste. Nanomechanical results were linked to the bulk mechanical properties at the macrosale. A multiscale level model was defined based on morphology and length scale of the structural elements in each material. The ultimate goal of this research is to control the bulk mechanical properties of sustainable cementitious materials from their micromechanical properties so that the concrete composition could be optimized. This will help to produce more geo-friendly concrete, which is the second most used material on earth.

  17. 1st International Conference on Calcined Clays for Sustainable Concrete

    CERN Document Server

    Favier, Aurélie

    2015-01-01

    This volume focuses on research and practical issues linked to Calcined Clays for Sustainable Concrete. The main subjects are geology of clays, hydration and performance of blended systems with calcined clays, alkali activated binders, economic and environmental impacts of the use of calcined clays in cement based materials. Topics addressed in this book include the influence of processing on reactivity of calcined clays, influence of clay mineralogy on reactivity, geology of clay deposits, Portland-calcined clay systems, hydration, durability, performance, Portland-calcined clay-limestone systems, hydration, durability, performance, calcined clay-alkali systems, life cycle analysis, economics and environmental impact of use of calcined clays in cement and concrete, and field applications. This book compiles the different contributions of the 1st International Conference on Calcined Clays for Sustainable Concrete, which took place in Lausanne, Switzerland, June, 23-25, 2015.The papers present the latest  res...

  18. Incorporation of Mineral Admixtures in Sustainable High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Nima Farzadnia

    2011-07-01

    Full Text Available Concrete is a widely used construction material around the world, and its properties have been undergoing changes through technological advancement. Numerous types of concrete have been developed to enhance the different properties of concrete. So far, this development can be divided into four stages. The earliest is the traditional normal strength concrete which is composed of only four constituent materials, which are cement, water, fine and coarse aggregates. With a fast population growth and a higher demand for housing and infrastructure, accompanied by recent developments in civil engineering, such as high-rise buildings and long-span bridges, higher compressive strength concrete was needed. At the beginning, reducing the water-cement ratio was the easiest way to achieve the high compressive strength. Thereafter, the fifth ingredient, a water reducing agent or super plasticizer, was indispensable. However, sometimes the compressive strength was not as important as some other properties, such as low permeability, durability and workability. Thus, high performance concrete was proposed and widely studied at the end of the last century. Currently, high-performance concrete is used in massive volumes due to its technical and economic advantages. Such materials are characterized by improved mechanical and durability properties resulting from the use of chemical and mineral admixtures as well as specialized production processes. This paper reviews the incorporation of mineral admixtures in binary, ternary and quaternary blended mortars in concrete.

  19. Development and Evaluation of Cement-Based Materials for Repair of Corrosion-Damaged Reinforced Concrete Slabs

    OpenAIRE

    Liu, Rongtang; Olek, J.

    2001-01-01

    In this study, the results of an extensive laboratory investigation conducted to evaluate the properties of concrete mixes used as patching materials to repair reinforced concrete slabs damaged by corrosion are reported. Seven special concrete mixes containing various combinations of chemical or mineral admixtures were developed and used as a patching material to improve the durability of the repaired slabs. Physical and mechanical properties of these mixes, such as compressive strength, stat...

  20. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    Energy Technology Data Exchange (ETDEWEB)

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  1. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  2. 碱-磷渣-粉煤灰混凝土力学性能和耐久性%MECHANICAL PROPERTIES AND DURABILITY OF ALKALI ACTIVATED PHOSPHOR SLAG FLY ASH CEMENT CONCRETE

    Institute of Scientific and Technical Information of China (English)

    方永浩; 宣文; 王锐; 庞二波

    2009-01-01

    The mechanical properties and durability of alkali activated phosphor slag fly ash cement (AAPFC) concrete were investi-gated, and the interface structures between the hardened cement paste and aggregate were observed by scanning electron microscope (SEM). The results show that the compressive strengths of the AAPFC concrete are higher and the static elastic moduli are lower than those of the Portland cement concretes with the similar water to cement ratios; the fi, ost-resistance and chloride impermeability of the AAPFC concrete are much better than those of the Portland cement concrete, while the AAPFC concretes are much more susceptible to carbonation. The SEM observation shows that there exists an oriented arrangement of Ca(OH)2 crystals at the interface between the hardened Portland cement paste and aggregate, which weaken the bond between the hardened cement paste and aggregate, but there is no such a weak bond existing in the AAPFC concretes.%研究了用碱激发磷渣_粉煤灰胶凝材料(atkali activated phosphor slag fly ash cement,AAPFC)制各的混凝土的力学性能和耐久性,并用扫描电子显微镜观察了形成的水泥石与骨料的界面结构.结果表明:相对于硅酸盐水泥混凝土,AAPFC混凝土具有强度高,弹性模量较低的特点;其抗冻性和抗氯离子渗透性显著优于硅酸盐水泥混凝土,但抗碳化性不及后者.硅酸盐水泥混凝土中水泥石与骨料界面上存在大量定向排列的Ca(OH)2,造成弱结合,而AAPFC混凝土中水泥石与骨料问结合紧密.

  3. 过硫磷石膏矿渣水泥混凝土安定性控制方法研究%Study of Control Methods for the Soundness of the Excess-sulfate Phosphogypsum Slag Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    林宗寿; 吕治江

    2015-01-01

    硅酸盐水泥熟料掺量对过硫磷石膏矿渣水泥混凝土的后期强度影响很大,熟料掺量过高,过硫磷石膏矿渣水泥混凝土的后期强度将大幅度下降,甚至会造成安定性不良,使混凝土结构破坏。该文对过硫磷石膏矿渣水泥混凝土安定性的控制方法进行了探索,发现通常的水浸法不能在短期内检验过硫磷石膏矿渣水泥混凝土的安定性。控制过硫磷石膏矿渣水泥混凝土7 d 强度增进率,可有效控制过硫磷石膏矿渣水泥混凝土的后期强度,避免出现安定性不良现象。%Addition of the portland cement clinker had great impact on the long-term strength of the excess-sulfate phosphogypsum slag cement concrete.Adding too much portland cement clinker would lead to a significant drop of the long-term strength of the excess-sulfate phosphogypsum slag cement concrete,and it would also cause poor soundness and damage to the concrete structure.This study explored the methods of controlling the soundness of the excess-sul-fate phosphogypsum slag cement concrete.Researchers found that the normal water-immersion method could not test the soundness of the excess-sulfate phosphogypsum slag cement concrete in short-term.Researchers found that con-trolling the rate of 7 days strength development of the excess-sulfate phosphogypsum slag cement concrete could effec-tively control the long-term strength and the soundness of the excess-sulfate phosphogypsum slag cement concrete.

  4. Self Compacting Concrete And Its Properties

    Directory of Open Access Journals (Sweden)

    S. Mahesh

    2014-08-01

    Full Text Available Self-compacting concrete (SCC, which flows under its own weight and doesn’t require any external vibration for compaction, has revolutionized concrete placement. Such concrete should have relatively low yield value to ensure high flow ability, a moderate viscosity to resists segregation and bleeding and must maintain its homogeneity during transportation, placing and curing to ensure adequate structural performance and long term durability. Self-compacting concrete (SCC can be defined as a fresh concrete which possesses superior flow ability under maintained stability (i.e. no segregation thus allowing self-compaction that is, material consolidation without addition of energy. Self-compacting concrete is a fluid mixture suitable for placing in structures with Congested reinforcement without vibration and it helps in achieving higher quality of surface finishes. However utilization of high reactive Metakaolin and Flyash asan admixtures as an effective pozzolan which causes great improvement in the porestructure. The relative proportions of key components are considered by volumerather than by mass. self compacting concrete (SCC mix design with 29% of coarse aggregate, replacement of cement with Metakaolin and class F flyash, combinations of both and controlled SCC mix with 0.36 water/cementitious ratio(by weight and388 litre/m3 of cement paste volume. Crushed granite stones of size 16mm and12.5mm are used with a blending 60:40 by percentage weight of total coarse aggregate. Self-compacting concrete compactibility is affected by the characteristics of materials and the mix proportions; it becomes necessary to evolve a procedure formix design of SCC. The properties of different constituent materials used in this investigation and its standard tests procedures for acceptance characteristics of self compacting concrete such as slump flow, V-funnel and L-Box are presented.

  5. 硫铝酸盐水泥混凝土抗氯离子侵蚀机理分析%Analysis of Mechanism of Resistance to Chloride Ion Erosion of Sulphoaluminate Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    赵军; 蔡高创; 高丹盈

    2011-01-01

    采用欧洲BUILD492《非稳态氯离子迁移试验法》测定普通硅酸盐水泥与硫铝酸盐水泥混凝土的氯离子非稳态扩散系数,应用X射线衍射分析(XRD)、扫描电镜分析(SEM)以及孔结构分析分别对这种水泥水化产物和水泥石内部结构进行研究,并对其抗氯离子侵蚀性能及其抵抗机理进行了研究分析.结果表明:硫铝酸盐水泥是提高混凝土抗氯盐侵蚀性能的一种理想胶凝材料.随着水灰比的降低,硫铝酸盐水泥的抗氯离子侵蚀能力逐渐增强.%For measuring chloride diffusion coefficient of Portland cement concrete and sulphoaluminate cement-based concrete, the method of chloride migration coefficient from non-steady-state experiments is a-dopted. And their cement hydration products and internal structure were researched by the application of X-ray diffraction analysis(XRD) and scanning electron microscopy analysis(SEM). According to the above studies, the resistance to chloride ion erosion of sulphoaluminate cement and the resistance mechanism of the cement were analyzed. The results show that sulphoaluminate cement is an ideal cementitious material which can significantly improve the resistance to chloride ion erosion of the concrete. At the same time, the performance of the cement is gradually improved with the lower water-cement ratio.

  6. Operations Guide and Modification Analysis for Use of the CE (Corps of Engineers) Concrete Quality Monitor on Roller-Compacted Concrete and Soil Cement.

    Science.gov (United States)

    1985-07-01

    Donald Samanie, DAEN- ECC -C. The research was performed by the Engineering and Materials Division (EM), U.S. Army Construction Engineering Research...1O-5 gal) of of fresh concrete, mix the sample to ensure homo . the actual sample, using an Eppendorf, into the meter’s , geneity, and weigh out two...the 12- to 15-kg (26.4- to 33-b) gate (this takes about I to 1.5 min). Remove the No. 5 concrete sample, mix the sample to ensure homo - sieve

  7. 水灰比对再生混凝土抗压强度影响的研究%Study of Water Cement Ratios on Compressive Strength of Recycled Concrete

    Institute of Scientific and Technical Information of China (English)

    席鹏

    2014-01-01

    指出了再生混凝土是将废弃混凝土经过清洗、破碎、分级,并按一定比例相互配合后得到的,是将再生骨料作为部分或者全部骨料配置的混凝土。水灰比是影响混凝土的抗压强度的主要因素。不同的水灰比对混凝土的其它方面的性能也有一定的影响。在相同的水灰比下,普通混凝土的性能与再生混凝土的性能又是否存在着差异,是试验研究的问题。试验采用不同的水灰比,将再生混凝土与普通混凝土的强度进行了比较,分析了不同水灰比对再生混凝土强度的影响。%Recycled concrete is made of waste concrete by cleaning ,crushing ,grading and under a certain proportion of mutual cooperation ,and is configured by concrete recycled aggregate as part of or all of the aggregate .The water cement ratio influences the strength of concrete ,and different water cement ratios also influence concrete′s other properties .This test focuses on the problems of whether there are some influences on the recycled concrete performance and whether there are differences between the performance of ordinary concrete and recycled concrete performance in the same water cement ratio .By adopting different water -cement ratios to the recycled concrete and normal concrete strength ,it compares their durability ,carbonation resistance .Finally ,it analyzes the influences of different water cement ratios on the properties of recycled concrete .

  8. Lunar concrete: Prospects and challenges

    Science.gov (United States)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  9. Effects of chemical and mineral additives and the water/cement ratio on the thermal resistance of Portland cement concrete; O efeito de aditivos quimicos e minerais e da relacao agua/cimento na resistencia ao calor do concreto de concreto de cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Leandro Cesar Dias; Morelli, Arnaldo C.; Baldo, Joao Baptista [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais

    1998-07-01

    The exposure of Portland concrete to high temperatures (>250 deg C) can damage drastically the microstructural integrity of the material. Since the water/cement ratio as well as the inclusion of superplasticizers and mineral additives (silica fume) can alter constitutively and micro structurally the material, in this work it was investigated per effect of these additions on the damage resistance of portland concrete after exposure to high temperatures. (author)

  10. Recycling of demolished concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  11. Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM

    Directory of Open Access Journals (Sweden)

    Syed Zaighum Abbass

    2013-02-01

    Full Text Available Carbon dioxide (CO2 a major Green House Gas (GHG in the atmosphere, is believed to be largely responsible for global climate change through industrial emissions. The level of CO2 concentration has exponentially increased from about 280 ppm at the start of the industrial revolution to about 380 ppm to date. Although Kyoto protocol has bound industrialized nations to reduce green house gas emissions by 5.2% below 1990 levels around year 2008-2012, but violation continues. The cement industry is one of the major emitter of green house gases, particularly CO2 due to its energy intensive production process. It is estimated that approximately 1 tone of CO2 is released during the manufacturing of each tone of Portland cement. Most of CO2 emissions originate from burning fossil fuels and de-carbonization of limestone in a cement plant. During past several decades, the use of by-product materials in concrete, either as components of blended cements or as admixtures, has increased significantly. In this study, another alternate Supplementary Cementing Material (SCM, Laterite has been used with the objectives: to evaluate the performance of cement containing different percentages of laterite (5, 10, 15, 20, 25, and 30 %; to identify the optimum replacement percentage; and to investigate the effects of different concentrations of laterite on various properties of cement. For that purpose, laterite was tested: before blending (for elemental and mineralogical composition by using XRF, SEM and XRD: after blending (Elemental analysis using XRF, fineness test by using Blaine’s air permeability test and for particle size % on 45, 90 and 200 µ sieve, respectively; and after hydration (for mineralogical analysis using SEM. Furthermore, physical tests of manufactured cement, i.e., water consistency, setting time, Le-Chatlier-expansion and compressive strength were also evaluated and compared with limestone and fly-ash cement blends. The results show that with the

  12. Pavement structure mechanics response of flexible on semi-flexible overlay that based on the old cement concrete pavement damage

    Directory of Open Access Journals (Sweden)

    Jiang Ruinan

    2015-01-01

    Full Text Available The old cement pavement damage status directly affect the design of the paving renovation. Based on the state of the old road investigation, combined with the research data at home and abroad, use the control index that average deflection, deflection value and CBR value to determine the reasonable time to overlay. Draw up the typical pavement structure according to the principle of combination of old cement pavement overlay structure design, and calculated that the tensile stress and shear stress in asphalt layer ,semi-flexible layer and the tensile in the old cement pavement adopting BISA3.0 statics finite element analysis model when modulus in the old road was diminishing. Use the computed result to analyses the influence of old road damage condition the influence of pavement structure.

  13. Sustainable construction: Composite use of tyres and ash in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.; Chang, S.R. [University of Glamorgan, Pontypridd (United Kingdom). Faculty of Advanced Technology

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  14. 中高水灰比混凝土强度与工作性能的研究%Research on High Water-Cement Ratio of Concrete Strength and Workability

    Institute of Scientific and Technical Information of China (English)

    王翠英

    2014-01-01

    The water-cement ratio (W/B) decides the performance of concrete. The use of super-soleplate ce-ment can result in a relatively higher strength for high water-cement ratio concrete. During the hydration ultra-sul-fur cement can form a large number of ettringite crystals so as to resist shrinkage of concrete section. Therefore, high water-cement ratio of the concrete guarantees its performance as well as its strength. The main contents of the experiment:(1)Ultra-sulfur cement in different proportions of water requirement of normal consistency, fluidity, setting time.(2)Using different proportions of ultra-sulfur cement concrete of the slump and compressive and flex-ural strength test. It aims to find a good concrete, mix of the strength and workability through experiments.%混凝土依赖水灰比(W/B)获得工作性能,中高水灰比混凝土之所以有较高的强度,是因为使用了超硫酸盐水泥。超硫水泥在水化期间能够形成大量的钙矾石晶体,从而抵抗了部分混凝土的收缩,因此中高水灰比混凝土在工作性得到保证的同时,也具有较高的强度。本研究内容是:(1)超硫水泥在不同配比下的标准稠度需水量、流动度、凝结时间。(2)使用不同配比超硫水泥的混凝土的坍落度、扩展度、含气量及抗压抗折强度实验。通过实验找出强度和工作性能良好的混凝土配合比。

  15. Flexural strengthening of reinforced concrete beams with carbon fibers reinforced polymer (CFRP sheet bonded to a transition layer of high performance cement-based composite

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP. This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

  16. Carbon-Coated-Nylon-Fiber-Reinforced Cement Composites as an Intrinsically Smart Concrete for Damage Assessment during Dynamic Loading

    Institute of Scientific and Technical Information of China (English)

    Zhenjun ZHOU; Zhiguo XIAO; Wei PAN; Zhipeng XIE; Xixian LUO; Lei JIN

    2003-01-01

    Concrete containing short carbon-coated-nylon fibers (0.4~2.0 vol. pct) exhibited quasi-ductile response by developing a large damage zone prior to fracture localization. In the damage zone, the material was microcracked but continued to local strain-harden. The carbon-coated-nylon-fiber-reinforced concrete composites (NFRC) were found to be an intrinsically smart concrete that could sense elastic and inelastic deformation, as well as fracture. The fibers served to bridge the cracks and the carbon coating gave the conduction path. The signal provided came from the change in electrical resistance, which was reversible for elastic deformation and irreversible for inelastic deformation and fracture. The resistance decrease was due to the reduction of surface touch resistance between fiber and matrix and the crack closure. The resistance irreversible increase resulted from the crack opening and breakage of the carbon coating on nylon fiber.

  17. Influence of Varieties and Dosage of Cement on Properties of Foamed Concrete%水泥品种和用量对泡沫混凝土性能的影响

    Institute of Scientific and Technical Information of China (English)

    王炜; 张云飞

    2013-01-01

    By using chemical foaming method, dry apparent density≤250kg/m3 foamed concrete was prepared with four kinds of 42.5 grade cement as cementing material andⅡgrade fly ash instead of part of cement. The influence of four kinds of cement with different proportions on foaming rate, the slurry stability, compressive strength, dry apparent density, the volume water absorption rate and thermal conductivity of foamed concrete was studied. The results showed that varieties and dosage of cement had different influences on foamed concrete performances to different extent, especially on compressive strength markedly. Among four kinds of cement, the effect of Portland cement occupied the first place, sulfur aluminate cement came second, ordinary Portland cement the third, Portland blast furnace cement the worst.%  分别以4种42.5水泥作为胶凝材料,使用Ⅱ级粉煤灰替代部分水泥,利用化学发泡法制备了干表观密度≤250 kg/m3的泡沫混凝土。研究了4种水泥对此种泡沫混凝土的发泡倍数、浆体稳定性、抗压强度、干表观密度、体积吸水率和导热系数的影响。试验结果表明:水泥的品种和用量对该泡沫混凝土的各种性能有着不同程度的影响,尤其是对泡沫混凝土抗压强度的影响较明显;4种水泥相比,其中,硅酸盐水泥的效果最好,硫铝酸盐水泥的效果次之,普通硅酸盐水泥的效果第三,矿渣硅酸盐水泥的效果最差。

  18. Cold Weather Construction Materials. Part 2. Regulated-Set Cement for Cold Weather Concreting. Field Validation of Laboratory Results.

    Science.gov (United States)

    1981-09-01

    been used by the civilian sec- tor for a number of years in such activities as highway patching, slip- form tunnel liners, and cast-in-place roof...for this minimum needs to be verified. Once known, this will also dictate the earliest times at which formwork or concrete protection could be removed

  19. Cold Weather Construction Materials. Part 2. Field Validation of Laboratory Tests on Regulated-Set Cement for Cold Weather Concreting.

    Science.gov (United States)

    1982-12-01

    patches, slipform tunnel liners and cast-in- place roof decking. Letters requesting information (construction problems, cracking, durability, cost, etc...this minimum mst be verified. Once known, this will also dictate the earliest times at which formwork or concrete protection could be removed. The

  20. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview

    OpenAIRE

    2015-01-01

    With increasing industrialization, the industrial byproducts (wastes) are being accumulated to a large extent, leading to environmental and economic concerns related to their disposal (land filling). Wood ash is the residue produced from the incineration of wood and its products (chips, saw dust, bark) for power generation or other uses. Cement is an energy extensive industrial commodity and leads to the emission of a vast amount of greenhouse gases, forcing researchers to look for an alterna...

  1. Bending Mechanical Properties of Cement Concrete with Fiber Grid Reinforcement%纤维格栅增强水泥混凝土的弯曲力学特性

    Institute of Scientific and Technical Information of China (English)

    颜祥程; 翁兴中; 寇雅楠; 梁磊; 张广显

    2012-01-01

    In order to investigate the influence of fiber grid type, surface treatment and coarse aggregate limiting grain size on bending mechanical properties of cement concrete, fourteen group specimens with dimensions of 150 mm X ISO mm x 600 mm were tested through four-point bending experiments. The failure processes of the specimens were analyzed, the mechanical mechanism of the interaction between fiber grid and cement concrete was discussed, and some suggestions about the use of fiber grid were proposed. The research result shows that brittle failure characterizes the damage of the specimens. Fiber grid greatly improves the bending mechanical properties of cement concrete, and the bending strength of cement concrete is improved by 6. 62% to 31.40%. When coarse aggregate limiting grain size is 20 mm compared with 40 mm, the bending strength of cement concrete increases by 2.72% to 9.97%. The bending strength of cement concrete is improved by 8. 30% to 11. 88% when fiber grid surface is treated with epoxy resin.%为研究纤维格栅类型、纤维格栅表面处理及粗集料最大粒径对水泥混凝土弯曲力学特性的影响,对14组150 mm× 150 mm ×600 mm的水泥混凝土试件进行了四点弯曲试验,分析了试件破坏过程,探讨了纤维格栅与水泥混凝土相互作用的力学机理,提出了纤维格栅使用的若干建议.结果表明:试件属于脆性破坏;纤维格栅明显改善了水泥混凝土的弯曲力学特性,使水泥混凝土的抗弯强度提高6.62% ~31.40%;与粗集料最大粒径为40mm时相比,粗集料最大粒径为20mm时,水泥混凝土的抗弯强度提高2.72% ~9.97%;纤维格栅表面经环氧树脂处理后,试件的抗弯强度提高8.30% ~ 11.88%.

  2. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  3. MODE II FRACTURE PARAMETERS FOR VARIOUS SIZES OF BEAMS IN PLAIN CONCRETE

    Directory of Open Access Journals (Sweden)

    Darsigunta Seshaiah

    2015-11-01

    Full Text Available Blended aggregate in concrete and arriving at the structural properties of blended aggregate concrete is a thrust area. Pumice is very light and porous igneous rock that is formed during volcanic eruptions.Cinder is a waste material obtained from steel manufacturing units. Shear strength is a property of major significance for wide range of civil engineering materials and structures. Shear and punching shear failures particularly in deep beams, in corbels and in concrete flat slabs are considered to be more critical and catastrophic than other types of failures. This area has received greater attention in recent years. For investigating shear type of failures, from the literature it is found that double central notched (DCN specimen geometry proposed by Prakash Desai and V.Bhaskar Desai is supposed the best suited geometry. In this present experimental investigation an attempt is made to study the Mode-II fracture property of light weight blended aggregate cement concrete combining both the pumice and cinder in different proportions, and making use of DCN test specimen geometry . By blending the pumice and cinder in different percentages of 0, 25, 50, 75 and 100 by volumeof concrete, a blended light weight aggregate concrete is prepared. By using this the property such as in plane shear strength is studied. Finally an analysis is carried out regarding Mode-II fracture properties of blended concrete. It is concluded that the Ultimate load in Mode-II is found to decrease continuously with the percentage increase in Pumice aggregate content. It is also observed that the ultimate stress in Mode II is found to increase continuously with percentage increase in cinder aggregate content.

  4. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  5. Carbonation of ternary cementitious concrete systems containing fly ash and silica fume

    Directory of Open Access Journals (Sweden)

    Eehab Ahmed Badreldin Khalil

    2015-04-01

    Full Text Available Carbonation is quite a complex physical negative effect phenomenon on concrete especially in the ones containing ternary blends of Portland Cement, fly ash, and silica fume. Nine selected concrete mixtures were prepared with various water to cementitious materials’ ratios and various cementitious contents. The concrete mixtures were adapted in such a way to have the same workability and air content. The fresh concrete properties were kept near identical in slump, air content, and unit weight. The variation was in the hardened concrete mechanical properties of compression and tension strength. The carbonation phenomenon was studied for these mixes showing at which mixes of ternary cementitious content heavy carbonation attacks maybe produced. The main components of such mixes that do affect the carbonation process with time were presented.

  6. Feedback experience from a 30 years old concrete using cement with a high content of blast furnace slag; Retour d'experience sur un beton age de 30 ans contenant un ciment riche en laitier

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Ch. [Holcim, Obourg (Belgium); Lion, M.; Jeanpierre, A. [Electricite de France (EDF), Ceidre-TEGG, 13 - Aix en Provence (France); Ammouche, A. [LERM, 13 - Arles (France)

    2009-08-15

    In this study, we analyze the aspect of a slag cement concrete used in the seventies for the construction of the walls of a structure located close to the channel sea. From different characterization tests (chemical, physical, and micro structural), it can be conclude that the concrete is not showing any pathology and any important attack, due to the marine environment. After being exposed during 30 years, the chlorides ions have not reach the steel metal bar reinforcement and the carbonation depth is still low. This study details the results of chloride diffusion coefficient and carbonation depth measurements, sulfates and chloride quantification, XRD analysis, and SEM examination. (authors)

  7. Nondestructive Handheld Fourier Transform Infrared (FT-IR) Analysis of Spectroscopic Changes and Multivariate Modeling of Thermally Degraded Plain Portland Cement Concrete and its Slag and Fly Ash-Based Analogs.

    Science.gov (United States)

    Leung Tang, Pik; Alqassim, Mohammad; Nic Daéid, Niamh; Berlouis, Leonard; Seelenbinder, John

    2016-05-01

    Concrete is by far the world's most common construction material. Modern concrete is a mixture of industrial pozzolanic cement formulations and aggregate fillers. The former acts as the glue or binder in the final inorganic composite; however, when exposed to a fire the degree of concrete damage is often difficult to evaluate nondestructively. Fourier transform infrared (FT-IR) spectroscopy through techniques such as transmission, attenuated total reflectance, and diffuse reflectance have been rarely used to evaluate thermally damaged concrete. In this paper, we report on a study assessing the thermal damage of concrete via the use of a nondestructive handheld FT-IR with a diffuse reflectance sample interface. In situ measurements can be made on actual damaged areas, without the need for sample preparation. Separate multivariate models were developed to determine the equivalent maximal temperature endured for three common industrial concrete formulations. The concrete mixtures were successfully modeled displaying high predictive power as well as good specificity. This has potential uses in forensic investigation and remediation services particularly for fires in buildings.

  8. Countermeasures for Cracks and Broken Board of Cement Concrete Pavement in Hexi Corridor Area%浅谈河西走廊地区水泥混凝土路面断板裂缝防治对策

    Institute of Scientific and Technical Information of China (English)

    徐继承

    2013-01-01

    Through the brief analysis of causes of cracks and broken board in cement concrete pavement in Hexi Corridor area, this paper expounds the prevention and treatment measures of cement concrete pavement construction in temperate mainland climate zone, which has reference significance for the road pavement construction in desert region of northwestern China.%  本文通过河西走廊地区水泥混凝土路面断板、裂缝成的简要分析,阐述了温带大陆型气候区水泥混凝土路面施工的预防和处治措施,对我国西北干旱、荒漠区路面施工具有借鉴意义。

  9. 水泥混凝土路面快速薄层修补设计与施工方法%Rapid thin-layer mending design and construction methods of cement concrete pavement

    Institute of Scientific and Technical Information of China (English)

    谢子荣

    2015-01-01

    The paper introduces the development conditions of rapid thin-layer mending material of cement concrete pavement,analyzes strengthe-ning design of rapid thin-layer mending structure of cement concrete pavement and recovering pavement function design,and explores its applica-bility construction strategies,so as to achieve good mending effect.%介绍了水泥混凝土路面快速薄层修补材料的发展状况,对水泥混凝土路面快速薄层修补结构补强设计与恢复路面功能设计进行了分析,探讨了其实用性的施工策略,以收到良好的修补效果。

  10. Use of Rice Husk-Bark Ash in Producing Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Sumrerng Rukzon

    2014-01-01

    Full Text Available This paper presents the use of blend of Portland cement with rice husk-bark ash in producing self-compacting concrete (SCC. CT was partially replaced with ground rice husk-bark ash (GRHBA at the dosage levels of 0%–40% by weight of binder. Compressive strength, porosity, chloride penetration, and corrosion of SCC were determined. Test results reveal that the resistance to chloride penetration of concrete improves substantially with partial replacement of CT with a blend of GRHBA and the improvement increases with an increase in the replacement level. The corrosion resistances of SCC were better than the CT concrete. In addition, test results indicated that the reduction in porosity was associated with the increase in compressive strength. The porosity is a significant factor as it affects directly the durability of the SCC. This work is suggested that the GHRBA is effective for producing SCC with 30% of GHRBA replacement level.

  11. 贝克曼梁法测试水泥砼路面弯沉及路面持荷能力评价%Backman Beam Method Test of Cement Concrete Pavement Deflection and Pavement Loading Capacity Evaluation

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Backman beam method for detection of the cement concrete pavement is widely used at home and abroad, and it is the main method of cement concrete pavement strength of our survey, there are a lot of the joint of cement concrete pavement, in the long-term running effect and infiltration of rainwater ef-fect, very easy to cause the void beneath slab. According to the Backman beam method detection deflection data, this paper pr-oposes treatment scheme on the plate considering the road blo-ck bearing capacity, load transfer capability, and verifies.%  贝克曼梁法检测水泥混凝土路面板底脱空是国内外广泛使用的方法,也是我国水泥混凝土路面路面强度调查的主要方法,水泥混凝土路面有很多接缝,在长期行车作用及雨水渗入作用下,很容易造成板底脱空。本文根据贝克曼梁法检测的弯沉数据,在综合考虑路面板块承载能力、传荷能力的情况对板块提出了处理方案,并进行了实例验证。

  12. Mechanism of Reflection Crack Prevention by Gravel Transformation of Old Cement Concrete Pavement%旧水泥混凝土路面碎石化后防止反射裂缝机理

    Institute of Scientific and Technical Information of China (English)

    罗岩; 张涛

    2011-01-01

    At present, gravel transformation technology is commonly used to prevent reflection crack on asphalt overlay in domestic when cement concrete pavement is out of service or damaged for whatever reason.In this paper, through analyzing the causes of cracks on asphalt overlay that is directly paved on cement concrete pavement, the mechanism of reflection crack prevention by gravel transformation of cement concrete pavement is analyzed.%目前,水泥混凝土路面到达其使用年限,或其他原因遭受破坏需要重建时,国内多采用碎石化工艺来防止沥青罩面反射裂缝的产生.通过对水泥混凝土面板上直接加铺沥青层开裂成因的探讨,分析了水泥混凝土路面经碎石化后防止反射裂缝的机理.

  13. 小议桥梁工程中水泥混凝土技术性能及其应用%Technical Performance of Cement Concrete and Its Application in the Bridge Project

    Institute of Scientific and Technical Information of China (English)

    宫北辰

    2012-01-01

    在桥梁工程中应用最广泛的是普通混凝土:以水泥为胶凝材料,以砂,石为骨料,加水拌制成的水泥混凝土.普通混凝土normal concrete一般指以水泥为主要胶凝材料,与水、砂、石子,必要时掺入化学外加剂和矿物掺合料,按适当比例配合,经过均匀搅拌、密实成型及养护硬化而成的人造石材.因此,水泥混凝土技术性能控制对工程质量保证至关重要.%What is the most widely used in bridge engineering is the normal concrete which takes the cement as the cementitious material, the sand and stone as the aggregate, and then add water to mix. Normal concrete is generally refers to the artificial stone with cement which is the main cementitious material, water, sand and gravel, including chemical admixtures and mineral admixtures if necessary, with an appropriate proportion, uniform mixing, forming dense and conservation rigidification. Therefore, the technical performance control of cement concrete is essential to project quality assurance.

  14. Coagulated silica - a-SiO2 admixture in cement paste

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Rovnaníková, Pavla; Pavlík, Zbyšek

    2016-07-01

    Amorphous silica (a-SiO2) in fine-grained form possesses a high pozzolanic activity which makes it a valuable component of blended binders in concrete production. The origin of a-SiO2 applied in cement-based composites is very diverse. SiO2 in amorphous form is present in various amounts in quite a few supplementary cementing materials (SCMs) being used as partial replacement of Portland cement. In this work, the applicability of a commercially produced coagulated silica powder as a partial replacement of Portland cement in cement paste mix design is investigated. Portland cement CEM I 42.5R produced according to the EU standard EN 197-1 is used as a reference binder. Coagulated silica is applied in dosages of 5 and 10 % by mass of cement. The water/binder ratio is kept constant in all the studied pastes. For the applied silica, specific surface area, density, loss on ignition, pozzolanic activity, chemical composition, and SiO2 amorphous phase content are determined. For the developed pastes on the basis of cement-silica blended binder, basic physical properties as bulk density, matrix density, and total open porosity are accessed. Pore size distribution is determined using MIP analysis. Initial and final setting times of fresh mixtures are measured by automatic Vicat apparatus. Effect of silica admixture on mechanical resistivity is evaluated using compressive strength, bending strength, and dynamic Young's modulus measurement. The obtained data gives evidence of a decreased workability of paste mixtures with silica, whereas the setting process is accelerated. On the other hand, reaction activity of silica with Portland cement minerals results in a slight decrease of porosity and improvement of mechanical resistivity of cement pastes containing a-SiO2.

  15. 土工布在水泥混凝土路面加铺沥青混凝土层结构中的抗剪试验分析%Analysis of Shear-Bearing Test for Geotextile Between Cement Concrete and Asphalt Concrete Overlay

    Institute of Scientific and Technical Information of China (English)

    侯荣国; 牛开民; 田波

    2011-01-01

    在水泥混凝土路面加铺沥青混凝土面层(简称“白加黑”)的路面结构中,利用层间铺设土工布来延缓、减少反射裂缝是一种经常被采用的技术方案.但铺设土工布后,层间黏结力下降,容易造成沥青混凝土加铺层推移而致过早破坏.针对此现象,运用有关力学软件计算分析了水泥混凝土面板与沥青混凝土加铺层结构中的层间剪应力,发现层间光滑时的剪应力大于层间黏结时的剪应力;同时,通过试验路与室内试验,分析了铺有土工布的水泥混凝土面板与沥青混凝土层之间的抗剪能力,发现土工布满足层间抗剪要求,但抗剪富余系数不大,因此铺有土工布的水泥混凝土路面加铺沥青混凝土层的路面结构容易发生推移破坏.%To prevent reflective cracking, the geotextile is often layed between cement concrete pavement and asphalt concrete overlay. But cohesion between two layers is reduced after construction of geotextile, so it creates moving of asphalt concrete overlay. The shear stress between old cement concrete pavement and asphalt concrete overlay is analyzed through finite element model. It is found that shear stress is bigger on the assumption of perfectly smooth compared to the assumption of perfectly junction.Through experiment road and indoor test, shear-bearing capacity between cement concrete pavement and asphalt concrete overlay is analyzed while the geotextile is layed. It is found that the geotextile can satisfy the request for single shear-bearing, but redundancy coefficient is low, so moving of asphalt overlay is created easily when the geotextile is layed between old cement concrete pavement and asphalt concrete overlay.

  16. The optimization of concrete mixtures for use in highway applications

    Science.gov (United States)

    Moini, Mohamadreza

    . Conducted research enabled further reduction of cement contents to 250 kg/m3 (420 lb/yd3) as required for the design of sustainable concrete pavements. This research demonstrated that aggregate packing can be used in multiple ways as a tool to optimize the aggregates assemblies and achieve the optimal particle size distribution of aggregate blends. The SCMs, and air-entraining admixtures were selected to comply with existing WisDOT performance requirements and chemical admixtures were selected using the separate optimization study excluded from this thesis. The performance of different concrete mixtures was evaluated for fresh properties, strength development, and compressive and flexural strength ranging from 1 to 360 days. The methods and tools discussed in this research are applicable, but not limited to concrete pavement applications. The current concrete proportioning standards such as ACI 211 or current WisDOT roadway standard specifications (Part 5: Structures, Section 501: Concrete) for concrete have limited or no recommendations, methods or guidelines on aggregate optimization, the use of ternary aggregate blends (e.g., such as those used in asphalt industry), the optimization of SCMs (e.g., class F and C fly ash, slag, metakaolin, silica fume), modern superplasticizers (such as polycarboxylate ether, PCE) and air-entraining admixtures. This research has demonstrated that the optimization of concrete mixture proportions can be achieved by the use and proper selection of optimal aggregate blends and result in 12% to 35% reduction of cement content and also more than 50% enhancement of performance. To prove the proposed concrete proportioning method the following steps were performed: • The experimental aggregate packing was investigated using northern and southern source of aggregates from Wisconsin; • The theoretical aggregate packing models were utilized and results were compared with experiments; • Multiple aggregate optimization methods (e.g., optimal

  17. 地聚合物水泥路面快速修补材料性能研究%Study on the Properties of Geopolymer Concrete Using as Rapid Repair Materials for Cement Pavement

    Institute of Scientific and Technical Information of China (English)

    常利; 艾涛; 延西利; 吕霖; 杨慧成

    2014-01-01

    针对水泥路面修补后开放交通时间偏长、耐久性较差和施工工艺复杂的问题,采用固体复合激发剂、粉煤灰和偏高岭土及其他外加剂制备一种地聚合物水泥快速修补材料,并对其混凝土力学性能、界面粘结性能、收缩率、抗冻性能进行测试.结果表明,当掺入10%的复合激发剂和10%的普通硅酸盐水泥时,地聚合物水泥的早期力学性能达到最优,所制备的地聚合物水泥混凝土修补材料具有快凝早强和优良的耐久性等特点,扫描电子显微镜(SEM)微观分析表明,由于碱激发反应和未激发粉煤灰的填充效应,地聚合物水泥混凝土具有致密的微观结构.%In order to solve long opening-to-traffic time,poor durability and complex process of concrete pavement repaired problem,a kind of rapid repair geopolymer material was prepared using the solid composite activator,fly ash,metakaolin and other admixtures.The properties of the working performance,mechanical properties,bonding performance between New and old Concrete,shrinkage,frost resistance of geopolymer-cement-concrete were tested.The experimental results show that with 10% compound activators and 10% ordinary Portland cement,the early mechanical properties of the geopolymer cement can achieve the optimal; the rapid repair geopolymer-cement-concrete has the advantages of quick setting early strength and excellent durability.The scanning electron microscopy (SEM) results indicatethat the geopolymer-cement-concrete has micro compact structure as the result of the filling effect of inactivated fly ash and alkali activated reaction.

  18. Porous Structure of Road Concrete

    OpenAIRE

    2016-01-01

    Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such st...

  19. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  20. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  1. 不同胶凝材料的精细混凝土高温后力学性能%MECHANICAL PROPERTY OF FINE GRAINED CONCRETE WITH DIFFERENT CEMENTING MATERIAL AFTER EXPOSURE TO HIGH-TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    沈玲华; 王激扬; 徐世烺; 付晔

    2015-01-01

    为了改善用于纤维编织网增强混凝土基体材料的精细混凝土的耐高温性能,该文进行了120个40mim×40mm×160mm棱柱体的高温后抗折强度试验和240个40mm×40mm×40mm立方体的高温后抗压强度试验.考察了不同胶凝材料对精细混凝土试件高温后力学性能的影响,包括外掺纳米材料以及以高铝水泥作为主要胶凝材料的影响.结果表明:体积掺量为1.5%和3.0%纳米SiO2气凝胶粉末未能改善精细混凝十的耐高温性能,质量掺量为5.0%纳米陶瓷粉在目标温度TR=800℃时使基体混凝土的抗压和抗折强度分别提高84.2%和120.9%.当TR=800℃时,采用高铝水泥作为主要胶凝材料的试件力学性能均比普通精细混凝土试件大幅提高;各组掺入活性粉末的高铝水泥混凝土试件在TR=800℃时,相对抗压和抗折强度均比未掺活性粉末时有所提高.%To improve the high temperature resistance of fine grained concrete for textile reinforced concrete matrices,120 prism specimens (40mm×40mm×160mm) for flexural tests and 240 cube specimens (40mm×40mm×40mm) were prepared in this paper for compressive strength tests after exposure to high temperature.The effects of different cementing materials on mechanical properties of fine grained concrete were studied,including the effect of nanomaterial admixtures and the use of alumina cement as main cementing material.The results show that nanometer SiO2 aerogel powder cannot improve the high temperature resistance of fine grained concrete when volume fraction is 1.5% or 3.0%.Nanosized ceramic powder with quality content of 5.0% can improve the residual compressive and flexural strength of fine grained concrete by 84.2% and 120.9%,respectively,over that of concrete without nanosized ceramic powder at 800℃.When TR=800℃,mechanical properties of specimens with alumina cement as the main cementing material increase greatly compared with ordinary fine grained

  2. Stabilization of NaCl-containing cuttings wastes in cement concrete by in situ formed mineral phases.

    Science.gov (United States)

    Filippov, Lev; Thomas, Fabien; Filippova, Inna; Yvon, Jacques; Morillon-Jeanmaire, Anne

    2009-11-15

    Disposal of NaCl-containing cuttings is a major environmental concern due to the high solubility of chlorides. The present work aims at reducing the solubility of chloride by encapsulation in low permeability matrix as well as lowering its solubility by trapping into low-solubility phases. Both the studied materials were cuttings from an oil-based mud in oil drillings containing about 50% of halite, and cuttings in water-based mud from gas drilling containing 90% of halite. A reduction in the amount of dissolved salt from 41 to 19% according to normalized leaching tests was obtained by addition of potassium ortho-phosphate in the mortar formula of oil-based cuttings, while the aluminium dihydrogeno-phosphate is even more efficient for the stabilization of water-based cuttings with a NaCl content of 90%. Addition of ortho-phosphate leads to form a continuous and weakly soluble network in the cement matrix, which reduces the release of salt. The formed mineralogical phases were apatite and hydrocalumite. These phases encapsulate the salt grains within a network, thus lowering its interaction with water or/and trap chloride into low-solubility phases. The tested approaches allow to develop a confinement process of NaCl-containing waste of various compositions that can be applied to wastes, whatever the salt content and the nature of the drilling fluids (water or oil).

  3. Maximizing Sustainability of Concrete through the Control of Moisture Rise and Drying Shrinkage Using Calcined Clay Pozzolan

    Directory of Open Access Journals (Sweden)

    John Solomon Ankrah

    2016-01-01

    Full Text Available The Ghanaian concrete industry is really a booming industry due to many infrastructural developments and the surge in residential development. However, many developmental projects that utilize concrete do suffer from the negative impact of moisture rise including paint peeling-off, bacterial and fungi growth, and microcracks as well as unpleasant looks on buildings. Such negative outlook resulting from the effects of moisture rise affects the longevity of concrete and hence makes concrete less sustainable. This study seeks to develop materials that could minimize the rise of moisture or ions through concrete medium. The experimental works performed in this study included pozzolanic strength activity index, water sorptivity, and shrinkage test. Calcined clay produced from clay was used as pozzolan to replace Portland cement at 20%. The strength activity test showed that the cement containing the calcined material attained higher strength activity indices than the control. The thermal gravimetric analysis showed that the pozzolan behaved partly as a filler material and partly as a pozzolanic material. The sorptivity results also showed that the blended mix resulted in lower sorptivity values than the control mortar. The study recommends that calcined clay and Portland cement mixtures could be used to produce durable concrete to maximize sustainability.

  4. Kinetic and morphological differentiation of Ettringites in plain and blended Portland cements using Metakaolin and the ASTM C 452-68 test. Part I: kinetic differentiation

    Directory of Open Access Journals (Sweden)

    Talero, R.

    2008-12-01

    Full Text Available In this first part of the study, the results obtained in prior research with XRD and SEM, as well as the Le Chatelier-Ansttet test were confirmed with the ASTM C 452-68 test. To this end, 20%, 30% and 40% metakaolin (MK was added to ten Portland cements, six OPCs and four SRPCs. Both the ten plain PCs and the 30 metakaolin (MK blends were tested for two years under ASTM C 452-68 specifications, determining not only the percentage increase in length, ΔL(%, of the specimens, but also the sulphate content in the curing water. Other parameters studied included: chemical analysis of the cementitious materials used and specific properties of some of the cements tested.The experimental results, ΔL(% versus time, re-confirmed that the formation rate of ettringite from the reactive alumina, Al2O3r-, present in the pozzolan must be substantially higher than the formation rate of ettringite from the C3A present in the PC. This was verified by the variation of the sulphate content in the specimen curing water throughout the test. In light of those findings, in this article these two types of ettringite are denominated rapid forming ettringite or ett-rf, and slow forming ettringite or ett-lf.En esta Parte I de la investigación, se han logrado verificar mediante el ensayo ASTM C 452-68, los resultados obtenidos en anteriores investigaciones realizadas con DRX y SEM y el ensayo Le Chatelier-Ansttet. Para ello, a 10 cementos Portland –6 CPO y 4 CPRS– se les añadió 20%, 30% y 40% de metakaolín (MK. Tanto los 10 CP como los 30 de sus mezclas con metakaolín (MK, se ensayaron durante 2 años, mediante dicho método ASTM C 452-68, y a sus probetas no sólo se les determinó su incremento porcentual de longitud, ΔL(%, sino además, el contenido de sulfatos de sus aguas de conservación. Otras determinaciones complementarias fueron: análisis químico de los materiales cementiceos utilizados y propiedades específicas de algunos cementos ensayados

  5. 成型方式和养护条件对多孔改性水泥混凝土性能的影响%Influence of Molding Method and Curing Conditions on Properties of Porous Modified Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    王中合

    2014-01-01

    As a result of adding cement modifier and large porosity, porous modified cement concrete has different properties on different molding method or curing condition. Through the comparative test of dif-ferent molding methods and different curing condition, concrete porosity, bulk density, compressive strength and flexural strength are detected. The test results show that, porous modified concrete molding should adopt the method of light vibration in a short time or artificial pound. Its curing condition is stan-dard curing early, then natural curing.%由于添加了水泥改性剂且空隙率大,不同成型方式和养护条件对多孔改性水泥混凝土的性能产生不同的影响。通过不同成型方式和不同养护条件对比试验,检测混凝土的空隙率、毛体积密度、抗压强度、抗弯拉强度等性能。试验结果表明,多孔改性水泥混凝土成型宜采用短时间轻振或人工插捣的方式;适宜的养护条件是早期保湿养护,而后进行自然养护。

  6. The Gravel Construction Technology and Quality Control of Cement Concrete Pavement%水泥混凝土路面碎石化施工工艺及质量控制

    Institute of Scientific and Technical Information of China (English)

    王方河

    2013-01-01

    The technology of rubblization is an important me-ans to overhaul of cement concrete pavement, which broke the cement concrete pavement into smal interlocking particles to provide ideal primary for the new asphalt concrete overlay. In this article, the author bases on the example of rebuild project of G312 Luan, and talk about some ideas on the gravel constr-uction technology and quality control.%  碎石化技术是水泥混凝土路面大修改造的重要手段,该技术通过将水泥混凝土路面破碎成小粒径嵌挤颗粒,从而为新的沥青混凝土加铺层提供理想的基层。本文主要结合G312六安段改建工程的实际情况,对碎石化施工工艺及质量控制谈一点心得。

  7. 水泥混凝土路面施工养护措施的可行性及有效性%Feasibility and Effectiveness of the Timely Curing Methods in Cement Concrete Pavement

    Institute of Scientific and Technical Information of China (English)

    于蕾; 张金喜

    2012-01-01

    系统研究了不同养护措施对水泥混凝土路面早期塑性收缩裂缝防治效果,对比分析了喷洒养护剂养护、覆盖遮盖物养护、混凝土上方喷雾养护、二次抹压养护等常用养护措施养护效果的优劣,总结了新浇筑混凝土路面的及时养护材料和施工方法,为水泥混凝土路面施工中有效抑制塑性收缩裂缝提供参考意见和建议.%Experiments are carried out to compare the feasibility and effectiveness of curing methods for preventing the early-age plastic shrinkage cracking of the cement concrete pavement.These methods include spraying concrete curing compound for curing,covering the awning for curing,spraying water mist over the pavement for curing,and smoothing the surface of the pavement multiply for curing.The effective curing materials and methods for preventing the early-age plastic shrinkage cracking of the cement concrete pavement are summarized.These curing materials and methods can offer references and advices for the units during construction.

  8. Analysis of Force Bearing Properties of Cement Concrete Pavement Base Analysis%水泥混凝土路面基层受力特性分析

    Institute of Scientific and Technical Information of China (English)

    王国业; 胡昌斌; 杨建军; 李生效

    2011-01-01

    Base is an important component of the cement concrete pavement structure.EevrFE 3-D finite element program is adopted to analyze the force bearing properties of the base.When single axle load works on the centre of the slab longitudinal joint edge,the force beating of the base is in the most unfavorable condition,and the closer the cohesion of the interlayer is ,the greater the base stress is.The base stress increases in accordance with the increase of the base module, but decreases with the increase of the pavement slab thickness, the base thickness, the base reaction module and the thickness and module of the base cushion layer.It is found that in comparison with the affecting degrees of all the structural layers on the base stress, the base module and thickness as well as the properfies of the interlayer contact face are the major elements of affecting the force bearing properties of the base.%采用EevrFE三维有限元程序对混凝土基层的受力特性进行分析.当单轴轴载作用于板纵缝边缘中部时,基层受力最为不利,层间粘结越紧密基层应力越大;基层应力随基层模量的增加而增大,但随路面板厚度、基层厚度和地基反应模量以及垫层厚度和模量的增大而降低.对比各结构层对基层应力的影响程度发现,基层模量和厚度以及层间接触界面特性是影响基层受力特性的主要因素.

  9. Discussion on the Performance of Pervious Concrete Under Different Blending Modes%不同掺和方式下的透水混凝土性能探讨

    Institute of Scientific and Technical Information of China (English)

    李频

    2016-01-01

    Aiming at the problem that the traditional impermeable cement pavement has bad effects on urban ecological environment, a new type of permeable concrete material was proposed and the performance of this new type of concrete was tested through experiments. The ceramic and stone were used as the coarse aggregate by single or compound admixture form, pervious concrete with different mixture ratio was constructed in the experiment. Finally through the performance test, effect of different water cement ratio, aggregate size, target porosity on pervious concrete compressive strength and permeability coefficient was obtained, so as to provide experimental reference data for application of pervious concrete in different places.%针对传统水泥路面不透水给城市生态环境造成的影响问题,提出一种新型透水混凝土材料,并通过实验了解这种新型混凝土的性能。以陶粒、石子作为粗骨料,采用单掺和复掺的形式,构建不同配合比下的透水混凝土实验组。最后通过性能测试,得到不同水胶比、骨料粒径、目标孔隙率对透水混凝土抗压强度和透水系数的影响,从而为透水混凝土在不同地方的应用提供实验参考数据。

  10. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  11. Influence Factor of Thermal Conductivity of Cement Concrete and Its Prediction Model%水泥混凝土导热性能影响因素及预估模型研究

    Institute of Scientific and Technical Information of China (English)

    刘凯; 王芳; 王选仓

    2012-01-01

    In order to improve the efficiency of snow melting and deicing, pavement concrete material that possesses good thermal conductivity was studied. Concrete mixture of common concrete, steel fiber concrete and carbon fiber concrete were obtained through laboratory testing. Thermal conductivity of these concrete was measured by thermal conductivity detector. The influence of factors on thermal conductivity, namely, aggregate volume content, sand percentage, water-cement ratio, temperature, fiber type and content were investigated. Various factors were sorted based on generalized gray correlation method. Prediction model of thermal conductivity of three kinds of concrete were established according to the test results and the influence. The results show that steel fiber concrete is strongly recommended as melting-snow and deicing pavement material. Fiber type and content plays dominant role on thermal conductivity. The influence of aggregate volume content, temperature and water-cement ratio is greater than the sand percentage.%为提高融冰雪效率,研究具有良好导热性能的混凝土铺面材料,通过试验得出了普通、钢纤维、碳纤维混凝土的配合比,采用热传导仪测定了它们的导热系数λ.系统研究了骨料体积分数、砂率、水灰比、温度、纤维种类和掺量对混凝土导热系数的影响规律,并基于广义灰关联法对各因素进行排序,依据测试结果和影响规律建立了以上3类混凝土导热系数预估模型.结果表明:钢纤维混凝土最适宜作为融冰雪路面材料;纤维种类和掺量对混凝土导热性能起主导作用,骨料体积分数、温度和水灰比的影响次之,砂率的影响最小.

  12. Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement

    Science.gov (United States)

    Khanna, Om Shervan

    The characteristics of cement kiln dusts (CKDs) and their effects as partial replacement of Portland Cement (PC) were studied in this research program. The cement industry is currently under pressure to reduce greenhouse gas (GHG) emissions and solid by-products in the form of CKDs. The use of CKDs in concrete has the potential to substantially reduce the environmental impact of their disposal and create significant cost and energy savings to the cement industry. Studies have shown that CKDs can be used as a partial substitute of PC in a range of 5--15%, by mass. Although the use of CKDs is promising, there is very little understanding of their effects in CKD-PC blends. Previous studies provide variable and often conflicting results. The reasons for the inconsistent results are not obvious due to a lack of material characterization data. The characteristics of a CKD must be well-defined in order to understand its potential impact in concrete. The materials used in this study were two different types of PC (normal and moderate sulfate resistant) and seven CKDs. The CKDs used in this study were selected to provide a representation of those available in North America from the three major types of cement manufacturing processes: wet, long-dry, and preheater/precalciner. The CKDs have a wide range of chemical and physical composition based on different raw material sources and technologies. Two fillers (limestone powder and quartz powder) were also used to compare their effects to that of CKDs at an equivalent replacement of PC. The first objective of this study was to conduct a comprehensive composition analysis of CKDs and compare their characteristics to PC. CKDs are unique materials that must be analyzed differently from PC for accurate chemical and physical analysis. The present study identifies the chemical and physical analytical methods that should be used for CKDs. The study also introduced a method to quantify the relative abundance of the different

  13. Synthesis of knowledge on the long-term behaviour of concretes. Applications to cemented waste packages; Synthese des connaissances sur le comportement a long terme des betons. Application aux colis cimentes

    Energy Technology Data Exchange (ETDEWEB)

    Richet, C.; Galle, C.; Le Bescop, P.; Peycelon, H.; Bejaoui, S.; Tovena, I.; Pointeau, I.; L' Hostis, V.; Levera, P

    2004-03-01

    As stipulated in the former law of December 91 relating to 'concrete waste package', a progress report (phenomenological reference document) was first provided in 1999. The objective was to make an assessment of the knowledge acquired on the long-term behaviour of cement-based waste packages in the context of deep disposal and/or interim storage. The present document is an updated summary report. It takes into account a new knowledge assessment, considers coupled mechanisms and should contribute to the first performance studies (operational calculations). Handling and radio-nuclides (RN) confinement are the two major functional properties requested from the concrete used for the waste packages. In unsaturated environment (interim storage/disposal prior to closing), the main problem is the generation of cracks in the material. This aspect is a key parameter from the mechanical point of view (retrievability). It can have a major impact on the disposal phase (confinement). In saturated environment (disposal post-closing phase), the main concern is the chemical degradation of the waste package concrete submitted to underground waters leaching. In this context, the major thema are: the durability of the concretes under water (chemical degradation) and in unsaturated medium (corrosion of reinforcement), matter transport, RN retention, chemistry / transport / mechanical couplings. On the other hand, laboratory data on the behaviour of concretes are used to evaluate the RN source term of waste packages in function of time (concrete waste package OPerational Model, i.e. 'Concrete MOP'). The 'MOP' provides the physico-chemical description of the RN release in relationship with the waste package degradation itself. This description is based on simplified phenomenology for which only dimensioning mechanisms are taken into account. The use of Diffu-Ca code (basic module for the MOP) on the CASTEM numerical plate-form, already allows operational

  14. 电炉氧化钢渣在水泥和混凝土中的应用研究%Investigation to application of electric fumace oxidizing slag being used in cement and concrete

    Institute of Scientific and Technical Information of China (English)

    刘智伟; 李宇; 苍大强

    2014-01-01

    电炉氧化钢渣(简称电炉钢渣)是电炉炼钢产生的副产品,具有较好的潜在胶凝活性,介绍了将活化处理后的电炉钢渣粉应用于水泥和混凝土中,研究了钢渣水泥的力学强度、标准稠度需水量、凝结时间、安定性和混凝土抗压强度、抗渗性等性能,研究表明:电炉钢渣粉可以用于生产42.5级钢渣硅酸盐水泥(简称,钢渣水泥)和C40混凝土,不仅拓宽电炉钢渣综合利用途径,还能实现良好的经济效益和环保效益。%Electric fumace oxidizing slag (electric fumace slag) is the byproduct in the process of metallurgy of electric fumace,which has preferable and potential gelation activity.Introduced that activated electric fumace slag powder was used in steel slag cement and concrete,investigated the mechanical strength,water requirement for normal consistency,setting time and invariability of cement,and the pressive strength,impermeability of concrete.The results showed that activated electric fumace slag powder could be used to produce 42.5 steel slag cement and C40 concrete,which not only widen its comprehensive utilization path,but achieve favorable economic and environmental benefits.

  15. 土工布在水泥混凝土路面加铺沥青层中的应用%Application of geotextile in cement concrete pavement paving asphalt layer

    Institute of Scientific and Technical Information of China (English)

    王强林

    2011-01-01

    Combining with the application of geotextile in the construction of Gui-Liu highway pavement paving asphalt layer, this paper detailedly elaborated the application of geotextile in cement concrete pavement paving asphalt concrete surface layer, emphatically introduced the materi- al properties and construction technology of geotextile, accumulated valuable experience for future similar projects construction.%结合土工布在桂柳高速公路路面加铺沥青层工程的应用,详细阐述了土工布在水泥混凝土路面加铺沥青混凝土面层中的应用,着重介绍了土工布的材料特性和施工工艺,为今后同类工程施工积累了宝贵经验。

  16. Prediction of Compressive Strength of Self compacting Concrete with Flyash and Rice Husk Ash using Adaptive Neuro-fuzzy Inference System

    Directory of Open Access Journals (Sweden)

    S. S, Pathak

    2012-10-01

    Full Text Available Self-compacting concrete is an innovative concrete that does not require vibration for placing and compaction. It is able to flow under its own weight, completely filling formwork and achieving full compaction even in congested reinforcement without segregation and bleeding. In the present study self compacting concrete mixes were developed using blend of fly ash and rice husk ash. Fresh properties of theses mixes were tested by using standards recommended by EFNARC (European Federation for Specialist Construction Chemicals and Concrete system. Compressive strength at 28 days was obtained for these mixes. This paper presents development of Adaptive Neuro-fuzzy Inference System (ANFIS model for predicting compressive strength of self compacting concrete using fly ash and rice husk ash. The input parameters used for model are cement, fly ash, rice husk ash and water content. Output parameter is compressive strength at 28 days. The results show that the implemented model is good at predicting compressive strength.

  17. Diffusion Decay Coefficient for Chloride Ions of Concrete Containing Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Jae-Im Park

    2016-01-01

    Full Text Available The diffusion coefficient for chloride ions and the diffusion decay coefficient for chloride ions are essential variables for a service life evaluation of concrete structures. They are influenced by water-binder ratio, exposure condition, curing temperature, cement type, and the type and use of mineral admixture. Mineral admixtures such as ground granulated blast furnace slag, fly ash, and silica fume have been increasingly used to improve resistance against chloride ions penetration in concrete structures built in an offshore environment. However, there is not enough measured data to identify the statistical properties of diffusion decay coefficient for chloride ions in concrete using mineral admixtures. This paper is aimed at evaluating the diffusion decay coefficient for chloride ions of concrete using ordinary Portland cement or blended cement. NT BUILD 492 method, an electrophoresis experiment, was used to measure the diffusion coefficient for chloride ions with ages. It was revealed from the test results that the diffusion decay coefficient for chloride ions was significantly influenced by W/B and the replacement ratio of mineral admixtures.

  18. Kinetic and morphological differentiation of ettringites in plain and blended Portland cements with metakaolin and the ASTM C 452-68 test. Part II: Morphological differentiation by SEM and XRD analysis

    Directory of Open Access Journals (Sweden)

    Talero, R.

    2009-03-01

    Full Text Available The same cementitious materials (OPCs, SRPCs and matekaolin, MK, the same blended cements and the same ASTM C 452-68 test than in Part I, were used. Other complementary determinations were: chemical analysis of cementing materials, SEM and XRD analysis of ettringites and specific properties of some cement tested and of their pastes.The experimental results have also demonstrated that when 7.0% SO3, equivalent to 15.05% of gypsum, was added to the M pozzolan-containing Portland cement and tested with the ASTM C 452-68 method, it was not found to behave aggressively but rather as “setting regulator ”, because the increase in mechanical strengths over time and setting times in these mixes were, therefore, similar to the pattern observed in any PC. However, when the gypsum content was raised to triple than that amount (21.0% SO3, it behaved aggressively. In both cases, logically, ettringite from both origins were involved in the resulting beneficial or adverse behavior.En esta Parte II se utilizaron los mismos materiales cementíceos (CPO, CPRS, y metakaolín, MK, los mismos cementos de mezcla y el mismo método de ensayo ASTM C 452-68 que en la Parte I. Otras determinaciones complementarias fueron: análisis químico de los materiales cementíceos, análisis por DRX y SEM de ettringitas y propiedades específicas de algunos cementos ensayados y de sus pastas.Los resultados experimentales obtenidos han demostrado también que, el 7.0% de SO3 presente en los 30 cementos de mezcla con MK, ensayados conforme el método ASTM C 452-68, no se comporta como agresivo sino como ”regulador de fraguado”, porque los tiempos de fraguado y el aumento de resistencias mecánicas fueron como los de cualquier CP. De aquí que algunos de esos cementos de mezcla puedan ser considerados “cementos hidráulicos expansivos”, el resto, no. Sin embargo, cuando la cantidad de yeso aportada fue el triple (21,0% SO3, se comportó como agresivo, motivo por el cual

  19. 磨细固硫灰渣作为混合材对水泥性能的影响%Performance of Cement Blending Pulverized Ash and Slag from Fluidized Bed Combustion

    Institute of Scientific and Technical Information of China (English)

    牛茂威; 谢小莉; 林洲; 张克; 钱觉时

    2013-01-01

    Fluidized bed combustion (FBC) ash and slag with higher anhydrite and f-CaO may cause poor volume stability used as cement mixing materials. By controlling the dosage of the FBC ash and slag, grinding them to different fineness, the standard consistency requirement, linear expansion rate and mortar strength of the cement blended FBC ash and slag were tested, and compared with the ordinary Portland cement. Results show that increasing the fineness of FBC ash and slag, especially for the ash, could reduce the standard consistency requirement of the cement and delay the setting time. Variation in fineness of FBC ash and slag has no significant influence on the shrinkage in air curing, and higher fineness would accelerate the early expansion in moisture curing, which is within a safe range. The increase of the fineness of FBC ash and slag promotes remarkably the strength of the cement. It is suggested that milling is beneficial to utilization of the FBC ash and slag in cement.%  流化床固硫灰渣含有较高无水石膏和f-CaO,作为水泥混合材利用时会存在体积稳定性问题。在控制固硫灰渣掺量前提下,将固硫灰渣粉磨至不同细度,测试了掺加固硫灰渣的水泥标准稠度需水量、线性膨胀率和胶砂强度,并与普通硅酸盐水泥进行对比。结果表明,提高固硫灰渣细度,特别是固硫灰细度,能使水泥标准稠度需水量减少;固硫灰渣细度提高,水泥凝结时间有所延长;自然养护条件下,固硫灰渣细度变化对水泥收缩没有明显影响,潮湿养护下,磨细固硫灰渣早期能够释放较多膨胀,但处于可控范围;固硫灰渣细度增加,水泥强度明显提高。磨细有利于固硫灰渣作为水泥混合材利用。

  20. Porosity of Concrete - Morphological Study of Model Concrete

    NARCIS (Netherlands)

    Hu, J.

    2004-01-01

    This study has developed a comprehensive methodological framework for characterizing geometrical and morphological aspects of pore space in cementitious materials and explored its application to actual cement pastes and model concretes for the purpose of predicting mechanical and transport propertie

  1. Cements containing by-product gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Bensted, J. [University of Greenwich, London (United Kingdom). School of Biological and Chemical Sciences

    1995-12-31

    Chemical by-product gypsum can readily replace natural gypsum in Portland cements and in blended cements like Portland pfa cement and Portland blast furnace cement without technical detriment in many instances. Indeed, sometimes the technical performance of the cement can be enhanced. The hydration chemistry is often changed, in that where there is at least some retardation of setting, more AFT phase (ettringite) is formed during early hydration at the expense of calcium silicate hydrates. By-product gypsum can also replace natural gypsum in speciality products like calcium aluminate cement-Portland cement mixes for producing quick setting cements and in calcium sulphoaluminate-type expansive cements. However, by-products gypsum have proved to be less successful for utilization in API Classes of oilwell cements, because of the greater difficulty in obtaining batch-to-batch consistency in properties like thickening time and slurry rheology. 11 refs., 3 figs., 5 tabs.

  2. Anti-sliding performance analysis of cement concrete pavement based on BP neural network%基于BP神经网络的水泥混凝土路面抗滑性能分析

    Institute of Scientific and Technical Information of China (English)

    喻小毛

    2012-01-01

    以水泥混凝土路面材料设计方案以及月降水量为输入,以路面摩擦系数表征路面抗滑性能为输出,利用BP神经网络分析水泥混凝土路面抗滑性能,研究表明,BP网络能考虑不同公路的实际差异,找到路面材料设计方案及月降水量与抗滑性能的最佳组合,为实际施工提供指导。%Taking cement concrete pavement material design scheme and monthly precipitation as the input, and taking anti-friction coefficient embodying anti-sliding property as the output, the paper analyzes the anti-sliding performance of cement concrete pavement by applying BP neu- ral network. Results show that BP network finds out the optimal combination of pavement material design scheme and monthly precipitation and anti-sliding performance by considering various highway conditions, which has provided guidance for actual construction.

  3. 硫铝酸盐水泥混凝土抗高浓度硫酸镁侵蚀性能研究%Study on the Resistance to High Concentration of Magnesium Sulfate Attack on Sulfate Aluminate Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    刘向楠; 唐新军; 苏建彪; 张涛; 张傲齐

    2015-01-01

    In some part of the drought and salinity region in the south of Xinjiang ,concrete buildings are confronted with double erosion problems of sulphate and magnesium salt in high concentrations .In this study ,the influence of water/ce-ment ratio ,erosion of solution concentration and erosion time on the erosion resistance of sulfate aluminium cement con-crete were studied with“the concrete resistance to sulfate erosion experiment method”(method K ) .What’s more ,both of the macroscopic and microscopic observation methods such as scanning electron microscope (SEM ) and energy spectrum analysis (EDS ) were used to analyze and reveal the mechanism of sulfate attack resistance .It is found that lowering the water/cement ratio can effectively increase the erosion resistance of sulphate aluminium cement in magnesium sulfate ero-sion environment;the double erosion damage of erosion solution to sulphate aluminium cement mortar specimens has obvi-ous correlation with the concentration of sulfate ions;gypsum which generates in large numbers is the main reason of the surface erosion on the surface of the mortar specimens .%新疆南疆部分干旱多盐碱地区混凝土建筑物面临高浓度硫酸盐、镁盐双重侵蚀破坏问题。通过水泥抗硫酸盐侵蚀试验方法(K法)研究了水灰比、侵蚀溶液浓度、侵蚀龄期等对硫铝酸盐水泥混凝土抗硫酸盐侵蚀能力的影响,并采用宏观观测和扫描电镜(SEM )、能谱(EDS )等微观观测方法,分析和揭示其抗硫酸盐侵蚀机理。结果表明,降低水胶比能有效提高硫铝酸盐水泥胶砂试件抗高浓度硫酸盐、镁盐侵蚀性能;在镁离子浓度一定时,侵蚀溶液对硫铝酸盐水泥胶砂试件的双重侵蚀破坏作用与硫酸根离子浓度具有明显的相关性;石膏的大量生成是造成胶砂试件表面剥蚀破坏的主要原因。

  4. Dynamic Response of Concrete and Concrete Structures.

    Science.gov (United States)

    1986-05-30

    Strain Rate Effects on Fracture (ed. S. Mindess and S. P. Shah), Symposium ’- S, Boston, Dec. 1985, Materials Research Society Symp. Proceedings, ". Vol...Reinforced Concrete Subjected to Impact Loading," in Cement-Based Composites: Strain-Rate Effects on Fracture (ed. S. Mindess and S.P. Shah) Materials

  5. Grout cement. ; Grout cement to fill ground/grout cement to fill cracks. Chunyuyo cement. ; Jiban chunyuyo cement /hibiware chunyuyo cement

    Energy Technology Data Exchange (ETDEWEB)

    Okaue, H. (Nittetsu Cement Co. Ltd., Hokkaido (Japan))

    1991-09-01

    Ground grout cement is grouted into the ground under high pressure in high water ratio (100 to 1000%) in the form of milk differing from concrete in terms of the water-cement ratio. The grouted milk is governed by characteristics of the cement the milk itself possesses, resulting in variable grouting modes, which are divided in fracture grouting, permeation grouting and boundary grouting. Their applications include cutting off of water in dams, ground reinforcement, prevention of water gushing in tunnel excavation, natural ground reinforcement, improvement of sandy soil and prevention of its collapse, and stabilization of ground for urban civil engineering works such as subway, water supply and sewerage constructions. Grout cement to fill cracks in concrete structures is so grouted into cracks that the slurry fills up contiguous cracks to a certain level and goes upward while pushing out air or water existing in the cracks. The slurry filled into the cracks solidifies and hardens while being absorbed into the concrete, and finally integrates with the concrete. The grout cement is used to rework such concrete structures as dams, tunnels, and bridge bases. 6 figs., 4 tabs.

  6. Rice husk derived waste materials as partial cement replacement in lightweight concrete Utilização de resíduos derivados da casca de arroz como substitutos parciais do cimento no concreto leve

    Directory of Open Access Journals (Sweden)

    Celso Yoji Kawabata

    2012-10-01

    Full Text Available In this study rice husk ash (RHA and broiler bed ash from rice husk (BBA, two agricultural waste materials, have been assessed for use as partial cement replacement materials for application in lightweight concrete. Physical and chemical characteristics of RHA and BBA were first analyzed. Three similar types of lightweight concrete were produced, a control type in which the binder was just CEMI cement (CTL and two other types with 10% cement replacement with, respectively, RHA and BBA. All types of similar lightweight concrete were prepared to present the same workability by adjusting the amount of superplasticizer. Properties of concrete investigated were compressive and flexural strength at different ages, absorption by capillarity, resistivity and resistance to chloride ion penetration (CTH method and accelerated carbonation. Test results obtained for 10% cement replacement level in lightweight concrete indicate that although the addition of BBA conducted to lower performance in terms of the degradation indicative tests, RHA led to the enhancement of mechanical properties, especially early strength and also fast ageing related results, further contributing to sustainable construction with energy saver lightweight concrete.Neste trabalho, cinzas de casca de arroz (RHA e cinzas de cama de frango (BBA, dois resíduos agrícolas, foram avaliadas para uso como substitutos parciais do cimento para produção de concreto leve. Características físicas e químicas de RHA e BBA foram analisadas. Três tipos semelhantes de concreto leve foram produzidos, um controle em que o ligante era totalmente cimento CEM I (CTL e dois outros tipos de concreto, com substituição de 10% com RHA e BBA, respectivamente. Todos os tipos de concreto leve foram feitos através do ajuste da quantidade de superplastificante para apresentarem a mesma trabalhabilidade. Propriedades de concreto investigados foram resistência à compressão e à flexão em diferentes idades

  7. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  8. Cement and concrete porosity measurement

    Directory of Open Access Journals (Sweden)

    Lichtner, B.

    1974-03-01

    Full Text Available Not availableLa porosidad del hormigón, en la que, por una parte influye, el valor agua/cemento (valor a/c dado previamente, y por otra, está sometida a variaciones según crece la edad del hormigón (1, es de importancia decisiva para el desarrollo de sus propiedades tecnológicas. Las modificaciones de la estructura de los poros pueden intervenir para definir el progreso de la madurez, que se caracteriza por la hidrólisis, hidratación y disposición. Objeto de los análisis efectuados en el Instituto del Vidrio, Cerámica y Aglomerantes de la Universidad Técnica de Berlín y del Centro Federal para Comprobación de Materiales (BAM de Berlín, fueron las mediciones de porosidad en el mortero de cemento y hormigón en función del valor a/c y la edad.

  9. 纤维水泥砂浆与混凝土界面黏结性能钻芯拉拔试验研究%Core drilling and pull-off tests of interfacial bond behaviors between fiber cement mortar and concrete

    Institute of Scientific and Technical Information of China (English)

    卜良桃; 周云鹏

    2016-01-01

    To investigate the interfacial bond behaviors between fiber cement mortar and concrete with core drilling and pull⁃off tests, medium⁃sized columnar concrete samples enclosed with different strengths of polyvinyl alcohol fiber cement mortar, polypropylene fiber cement mortar, and steel fiber cement mortar were prepared. Core drilling and pull⁃off tests were conducted on the samples to obtain the pulling force with failure occurring at the interface, and the results of different kinds of samples from pull⁃off tests were compared with the axial tensile strength of concrete and compressive strength of fiber cement mortar. The results show that the interfacial bond strength between synthetic fiber cement mortar and concrete is higher than that between steel fiber cement mortar and concrete, and that the interfacial bond strength is positively correlated with the axial tensile strength of concrete and compressive strength of fiber cement mortar. There is also a linear correlation between the interfacial bond strength and compressive strength of fiber cement mortar.%为研究纤维水泥砂浆与混凝土界面黏结性能,采用钻芯拉拔法试验制作模拟中型柱混凝土构件,并分别外包不同强度的聚乙烯醇纤维水泥砂浆、聚丙烯纤维水泥砂浆、钢纤维水泥砂浆。对制作的试验构件进行钻芯拉拔试验,得出界面破坏时的拉拔力,将得到的不同类型的纤维水泥砂浆构件拉拔力数据与构件混凝土轴心抗拉强度、纤维水泥砂浆抗压强度进行比较分析。结果表明,在该试验中合成纤维水泥砂浆的界面黏结强度比钢纤维水泥砂浆的界面黏结强度高;界面黏结强度与构件混凝土轴心抗拉强度呈正相关关系,与纤维水泥砂浆抗压强度呈正相关关系,界面黏结力与砂浆抗压强度呈线性相关关系。

  10. 粉煤灰地聚合物在水泥混凝土路面修复中的应用研究%Application of Fly Ash Geopolymer in Cement Concrete Pavement Repair

    Institute of Scientific and Technical Information of China (English)

    朱宝权

    2015-01-01

    为解决水泥混凝土路面修补材料存在的路面开放交通时间偏长和耐久性较差的问题,通过进一步实验、研究粉煤灰地聚合物混凝土制备、特性及机理,并将其应用于水泥混凝土路面的快速修补。实验后,粉煤灰地聚合物早期抗弯拉强度高,其力学强度、粘结强度均满足路面修补混凝土的技术要求,在路面快速修补材料中应用前景十分广阔。%To address the problems of a relatively long open transport time and poor durability for cement concrete pave-ment repair material,through further experiments,preparation,characteristics and mechanism of fly ash geopolymer con-crete,it was applied to the quick fix of cement concrete pavement.After the experiments,the anti-flexural-tensile strength of fly ash geopolymer was high at the early stage,and its mechanical strength and bond strength could both meet the tech-nology requirements of pavement mending concrete,which could have broad application prospects in the rapid repair materi-als of pavement.

  11. Ancient concrete works

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    It is commonly believed that the ancient Romans were the first to create and use concrete. This is not true, as we can easily learn from the Latin literature itself. For sure, Romans were able to prepare high-quality hydraulic cements, comparable with the modern Portland cements. In this paper, we will see that the use of concrete is quite older, ranging back to the Homeric times. For instance, it was used for the floors of some courts and galleries of the Mycenaean palace at Tiryns

  12. Rendering the loss of strength in dry concretes with addition of milled asphalt through microscopic analysis

    Directory of Open Access Journals (Sweden)

    T. Sachet

    Full Text Available Milled asphalt removed from old pavement carpets requires tenable handling easily reachable through its incorporation within other paving materials. This work deals with the effects of such incorporation to dry compacted concretes. Fine, intermediate, coarse and whole portions of milled asphalts were blended to a reference concrete. Mechanical tests disclosed remarkable losses on its strengths and modulus of elasticity; for the stereoscope and scanning microscopy pointed out impaired transition zones between the cement paste and the milled aggregates involved by thin asphalt films. Nevertheless, the mechanical results shown that the concretes with incorporated milled asphalt aggregates are suitable for use in pavement layers as bases and sub-bases even with reduced mechanical parameters.

  13. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    Energy Technology Data Exchange (ETDEWEB)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Nukleare Entsorgung (INE)

    2015-07-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH){sub 2}. Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  14. Low-pH concrete: design, characterisation and durability; Les betons bas pH - formulation, caracterisation et etude a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Codina, M

    2007-09-15

    Using of Portland cement in association with clay in a deep geological repository could present some difficulties. The clay properties may be altered by the high pH conditions set by the cement pore water. Moreover, a high temperature rise caused by cement hydration in massive concrete elements could induce microcracking of the material. Investigations have thus been carried out to formulate low alkalinity and low-heat blended cements referred as 'low-pH' binders, which would show an improved compatibility with the repository environment and which could be used to elaborate high-strength concrete. A list of specifications to be checked by the concrete materials has been defined including pore solution pH around 11, temperature rise during hydration less than 20 C, moderate shrinkage and high compression strength (superior to 70 MPa). Several systems comprising Portland cement, a pozzolana (silica fume or fly ash) and blast furnace slag were compared. All blends were characterized by high amounts of additions, the OPC fractions ranging only from 20 to 60%. The pore solution pH values of the blended pastes were within the range [11.7 - 12.2] after one year of hydration. The decrease in pH as compared to a reference made with OPC was due to a i) strong reduction of the alkali concentration in the pore water, ii) depletion or decrease of the portlandite content in the blends and iii) enrichment of C-S-H with silica. These low pH binders were successfully used to prepare high strength concretes (pH pore-water values within the range [10.7 - 11.6] according to the binders) with usual tools of civil engineering. Finally, leaching tests carried out in pure water indicated a very slow decalcification (reduced by a factor 4) of the blended pastes, as compared to a Portland cement paste. The mineralogical evolution and leached fluxes could be modelled by using a coupled reactive transport code (HYTEC). (author)

  15. Principles of technological design of wasteless chemical processes based on the use of wastes for production of alkaline slag cements and concretes

    Energy Technology Data Exchange (ETDEWEB)

    Glukhovskii, V.D.; Chernobaev, I.P.; Emel' yanov, B.M.; Semenyuk, A.P.

    1985-05-20

    The strength characteristics of alkaline slag-cement made with the use of waste from alkaline sealing of metals are presented. The cement was prepared from granulated blast-furnance slag with average component contents in the following ranges (mass %): SiO/sub 2/ 36.0-40.2, Al/sub 2/O/sub 3/ 4-18.2, FeO 0.1-3.7, MnO 0.4-5.2, CaO 33.1-48.8, MgO 2.2-9.8. With the use of wastes from the descaling process in alkali melts for production of alkaline slag cements it is possible to obtain highly effective cements of type 700-900, which is 2 to 3 times the value for portland cements. Therefore, the use of wastes from alkaline descaling for production of alkaline slag cements is of great economic and conservational significance. It is possible to devise a wasteless process of scale removal from metals; this is an important advantage of the alkaline scaling method over acid pickling.

  16. Industrial trial to produce a low clinker, low carbon cement

    Directory of Open Access Journals (Sweden)

    Vizcaíno-Andrés, L. M.

    2015-03-01

    Full Text Available A preliminary assessment of conditions for the industrial manufacture of a new cementitious system based on clinker-calcined clay and limestone, developed by the authors, referred as “low carbon cement” is presented. The new cement enables the substitution of more than 50% of the mass of clinker without compromising performance. The paper presents the follow-up of an industrial trial carried out in Cuba to produce 130 tonnes of the new cement at a cement plant. The new material proved to fulfill national standards in applications such as the manufacture of hollow concrete blocks and precast concrete. No major differences either in the rheological or mechanical properties were found when compared with Portland cement. Environmental assessment of the ternary cement was made, which included comparison with other blended cements produced industrially in Cuba. The new cement has proven to contribute to the reduction of above 30% of carbon emissions on cement manufacture.Se presenta la evaluación preliminar de las condiciones de fabricación industrial de un nuevo sistema cementicio a partir del empleo de clínquer; arcillas calcinadas y piedra caliza; desarrollado por los autores; denominado “cemento de bajo carbono”. El nuevo cemento posibilita la reducción de más de un 50% de la masa de clínquer; sin comprometer el comportamiento del material. El presente trabajo presenta el monitoreo de la producción industrial en una planta en Cuba; de 130 t del nuevo cemento. El cemento obtenido cumple con las regulaciones nacionales de calidad y su empleo tiene similar rendimiento que el cemento Pórtland para la producción de bloques y hormigón de 25 MPa. Se realiza el análisis de impacto ambiental del cemento ternario mediante la comparación con otros cementos producidos industrialmente. El nuevo cemento puede contribuir a la reducción de más del 30% de las emisiones de CO2 asociadas a la manufactura de cemento.

  17. DECISION MAKING MODELING OF CONCRETE REQUIREMENTS

    Directory of Open Access Journals (Sweden)

    Suhartono Irawan

    2001-01-01

    Full Text Available This paper presents the results of an experimental evaluation between predicted and practice concrete strength. The scope of the evaluation is the optimisation of the cement content for different concrete grades as a result of bringing the target mean value of tests cubes closer to the required characteristic strength value by reducing the standard deviation. Abstract in Bahasa Indonesia : concrete+mix+design%2C+acceptance+control%2C+optimisation%2C+cement+content.

  18. Efeito da aplicação do poliestireno sulfonado (PSSNa como aditivo em argamassas e concretos de cimento Portland CPV32 Effect of PSSNa as admixture in mortars and concrete of cement portand CPV32

    Directory of Open Access Journals (Sweden)

    Betina Royer

    2005-03-01

    Full Text Available Neste trabalho foi investigado o uso do Poliestireno sulfonado (PSSNa, produzido a partir de copos plásticos descartáveis de Poliestireno (PS, como aditivo em argamassas e concretos de cimento Portland CPV32. A avaliação do PSSNa como aditivo foi baseada em ensaios de fluidez e resistência mecânica à compressão de corpos de prova. Foi observado, em argamassas com relação água/cimento (a/c de 0,48, um aumento na fluidez com o aumento das porcentagens de PSSNa (0,25 a 1,00%. A adsorção do PSSNa sobre as partículas de cimento melhora a dispersão dos componentes da argamassa, aumentando a resistência mecânica à compressão dos corpos de prova após a cura. A aplicação do PSSNa em concreto apresentou o mesmo efeito. O abatimento do concreto sem PSSNa foi de 50 mm, atingindo cerca de 200 mm com o uso do polieletrólito. Devido à elevada plasticização observada é possível empregar o PSSNa como aditivo redutor de água. Foi produzido um concreto com o mesmo abatimento da referência sem aditivo reduzindo-se a quantidade de água em 20,8%. O ganho de resistência mecânica à compressão obtido foi de 21,5 e 26,3 %, respectivamente aos 7 e 28 dias de cura. Estes resultados mostraram que soluções de PSSNa podem atuar eficientemente como aditivo superplastificante ou redutor de água em argamassas e concretos.In this work an investigation was made of the effects from adding PSSNa, obtained from disposable polystyrene (PS cups, as admixture agent in mortars and concrete with varying ratios from 0.25 to 1.00%. The evaluation of PSSNa as additive was based on results of fluidity and mechanical strength to compression. In mortars with water/cement ratio of 0.48, an increase in flow was observed when the dosage of PSSNa varied from 0.25 to 1.00%. The dispersion of mortar components was improved due to the adsorption of PSSNa on cement particles, which increased the mechanical strength of mortars. Similar results were obtained with the

  19. 全组分废弃混凝土再生水泥熟料烧成及水化性能研究%Study of sintering process and hydration of recycled cement clinker produced from all components of waste concrete

    Institute of Scientific and Technical Information of China (English)

    艾红梅; 常钧; 卢洪正; 燕芳; 韩立东

    2013-01-01

    With regards to the existing technical problems for the cementitious reusage of waste concrete in our country which lead to the low efficiency of various component separation in waste concrete ,high production cost and large energy consumption ,a new technology roadmap is raised using all components of waste concrete as part raw materials and burning clinker for producing recycled cement . The burnability of recycled cement raw mixtures , the mineral components of recycled cement clinker and the strength and microstructure of hydrated recycled cement are all investigated .The experimental results show that the technology of recycled cement produced from all components of waste concrete is feasible and the burnability of raw mixtures is good .However ,the strength of hydrated recycled cement mortar is lower than the technical requirements of Portland cement clinker strength ,due to the difference of experimental conditions between the laboratory and plant ;sintered recycled cement clinker admixed with the seed crystals of Portland cement clinker ,its mineral compositions and hydration products are basically the same as the industrial cement clinker .In addition ,the microstructure of C-S-H gel in the hydration products is also similar .%  针对我国废弃混凝土胶凝化再生利用技术存在的组分分离导致材料利用率低、生产成本和能耗高等问题,提出利用以石灰岩为粗骨料的全组分废弃混凝土作为生料原料,煅烧熟料、制备再生水泥的新思路。研究了再生水泥的生料易烧性以及熟料的矿物组成、水化强度和水化产物的微观形貌。结果表明:全组分废弃混凝土再生水泥技术是可行的;再生水泥生料易烧性较好,熟料胶砂强度低于硅酸盐水泥熟料技术要求,试验条件是影响强度的主要因素;引入熟料晶种煅烧的再生水泥熟料,其主要矿物成分和水化产物的组成与参比工业熟料基本相同

  20. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  1. A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash

    KAUST Repository

    Celik, Kemal

    2014-09-01

    The purpose of this study is to compare the effects of Portland cement replacement on the strength and durability of self-consolidating concretes (SSC). The two replacement materials used are high-volume natural pozzolan (HVNP), a Saudi Arabian aluminum-silica rich basaltic glass and high-volume Class-F fly ash (HVFAF), from Jim Bridger Power Plant, Wyoming, US. As an extension of the study, limestone filler (LF) is also used to replace Portland cement, alongside HVNP or HVFAF, forming ternary blends. Along with compressive strength tests, non-steady state chloride migration and gas permeability tests were performed, as durability indicators, on SCC specimens. The results were compared to two reference concretes; 100% ordinary Portland cement (OPC) and 85% OPC - 15% LF by mass. The HVNP and HVFAF concrete mixes showed strength and durability results comparable to those of the reference concretes; identifying that both can effectively be used to produce low-cost and environmental friendly SCC. © 2013 Elsevier Ltd. All rights reserved.

  2. Study on properties of rice husk ash and its use as cement replacement material

    Directory of Open Access Journals (Sweden)

    Ghassan Abood Habeeb

    2010-06-01

    Full Text Available This paper investigates the properties of rice husk ash (RHA produced by using a ferro-cement furnace. The effect of grinding on the particle size and the surface area was first investigated, then the XRD analysis was conducted to verify the presence of amorphous silica in the ash. Furthermore, the effect of RHA average particle size and percentage on concrete workability, fresh density, superplasticizer (SP content and the compressive strength were also investigated. Although grinding RHA would reduce its average particle size (APS, it was not the main factor controlling the surface area and it is thus resulted from RHA's multilayered, angular and microporous surface. Incorporation of RHA in concrete increased water demand. RHA concrete gave excellent improvement in strength for 10% replacement (30.8% increment compared to the control mix, and up to 20% of cement could be valuably replaced with RHA without adversely affecting the strength. Increasing RHA fineness enhanced the strength of blended concrete compared to coarser RHA and control OPC mixtures.

  3. Concrete Block Pavements

    Science.gov (United States)

    1983-03-01

    1967, Cedergren 1974, Federal Highway .’,U .. V,47 -’":: 37 Administration 1980). Block pavements have essentially the same prob- lems with moisture...Vicksburg, Miss. Cedergren , H. R. 1974. Drainage of Highway and Airfield Pavements, John Wiley and Sons, New VOk. I Cement and Concrete Association

  4. Experimental study of porosity properties of tunnel's high performance porous cement concrete%隧道高性能多孔水泥混凝土孔隙率特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    时啸林; 扈惠敏

    2012-01-01

    孔隙率是隧道路面多孔水泥混凝土的重要技术指标之一,保证多孔混凝土试件成型后或路面铺筑后的实测孔隙率与目标孔隙率基本一致,同时保证其具有足够大小的有效孔隙率,是高性能多孔混凝土隧道路面配合比设计的关键.依据隧道路面的功能要求,文章选定目标孔隙率为18%.级配对混凝土强度影响非常明显,随着10~15mm集料比例的增加,强度先增大后减小.当采用玄武岩等吸水率偏大的集料制备多孔水泥混凝土时,在有效孔隙率计算中应考虑集料吸水的影响.矿料级配对孔隙率的影响规律为:随着10~15 mm集料比例的增大,计算孔隙率变化幅度很小,且与目标孔隙率(18%)接近;有效孔隙率呈增大的趋势,实测孔隙率先减小后增大;级配2#-2实测孔隙率最小且与目标孔隙率最接近.依据孔隙率及强度试验结果,选取级配2#-2为最佳级配.%Porosity is one of the important technical indexes of porous cement concrete which is used in tunnel pavement. The key of mix proportion design of tunnel's high performance porous cement concrete is to make the observed porosity be consistent with the target porosity after forming the porous concrete specimen or paving the pavement, and to ensure that it has enough effective porosity. Based on the functional requirement of the tunnel pavement, the target porosity of 18% is chosen in this paper. Gradation has significant effect on the strength of concrete. With the increase of the ratio of 10—15 mmaggregate, the strength firstly increases and then decreases. When the aggregate with higher water absorptivity such as basalt is adopted to prepare porous cement concrete, the effect of the aggregate's water absorption should be considered in the calculation of the effective porosity. The affecting principles of the aggregate gradation on the porosity are as follows: with the increase of ratio of 10—15 mm aggregate, the calculation

  5. The research of concrete pavement patching material based on magnesium phosphate cement%磷酸盐水泥基普通混凝土路面修补剂的研究

    Institute of Scientific and Technical Information of China (English)

    周启兆; 焦宝祥; 丁胜; 刘孝江; 蔡玉斌; 成扬

    2011-01-01

    A kind of magnesium phosphate cement(MPC) cementing agent for the use of cement concrete pavement patching is researched. The main factora influencing final setting time and compressive strength of MPC were explored. The results show that the final setting time of the optimizing MPC samples reaches 20 min.thP compressive strength of samples cured for 3 d and 28 d reaches respectively 43 MPa and 62 MPa,and its bond strength reaches respectively 6.2 MPa and 8.6 MPa when MPC made by horax and magnesium oxide which has a surface area of 1889cm2/g.the mol ratio of disodium hydrogen phosphate and potassium dihydrogen phosphate to be 1/5.%研究了一种用于水泥混凝土路面修补用的磷酸镁水泥(MPC)胶结剂,探讨了影响磷酸镁水泥终凝时间和抗压强度的主要因素.结果表明,以比表面积为1889 cm2/g的氧化镁粉末,与磷酸氢二钠/磷酸二氧钾(摩尔比)=1/5复合,并掺加硼砂可以制备终凝时间20min,3d和28d抗压强度分别达43、62MPa,粘结强度达6.2、8.6 MPa的磷酸镁水泥.

  6. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  7. Mechanical property and hydration mechanism of slag blended magnesium phosphate cement%矿渣磷酸镁水泥的力学性能和水化机理

    Institute of Scientific and Technical Information of China (English)

    侯磊; 李金洪; 王浩林

    2011-01-01

    以高炉矿渣作为磷酸镁水泥(MPC)的活性混合材料,研究了MPC的凝固时间、力学性能、物相组成和显微结构,并探讨了矿渣MPC的作用机理.实验固定磷镁比为25%,硼镁比为7.5%,矿渣掺量分别为磷镁总质量的0%、10%、20%、30%和40%.结果表明,矿渣参与了水化反应并提高了MPC的胶凝性能,随着矿渣掺量增大,矿渣MPC的抗压强度提高,但矿渣水化产生的膨胀应力会破坏MPC的内部结构,因此其抗折强度随矿渣掺量增大而降低.矿渣MPC的主要水化产物为六水合磷酸镁铵(MgNH4PO4·6 H2O),矿渣的掺入使凝胶相增加,并有部分Ca2+进入MgNH4PO4·6 H2O品格,使水化产物的形貌、大小发生变化.样品中剩余较多死烧镁和矿渣颗粒,可起骨料作用.%Blast-furnace slag was used as an active addition of magnesium phosphate cement. The influence of blast-furnace slag on the setting time, mechanical property, mineral phase and microstucture of slag blended magnesium phosphate cement (MPC) was studied. The prescription was designed as follows: the ratio of monoammonium phosphate to magnesia was 25% in mass, the borax additive amount to magnesia was 7.5% , the additive amount of blast-furnace slag was 0% , 10%, 20%, 30% and 40% separately in the ratio of total amount of dead burned magnesia and monoammonium phosphate to MPC. The results show that slag might participate the hydration, which improves the bonding of MPC, and the compressive strength of slag-blended MPC is improved with the increasing additive amount of slag. However, slag might results in expansion stress during hydration process, which causes lattice disturbance in hardened MPC, so the flexual strength decreases with the increasing additive amount of slag at the same time. The main hydration product of slag blended MPC is struvite (MgNH4PO4·6 H2O), the content of amorphous phase might increase after being mixed with slag in MPC, and Ca2+ ions in slag can result

  8. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    Directory of Open Access Journals (Sweden)

    A. Abdel Rahman

    2016-09-01

    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  9. Application of High Flowing Concrete Cementation and Rock Filled in the Construction of Power Station%高流态混凝土胶结堆石筑坝技术在电站建设中的应用

    Institute of Scientific and Technical Information of China (English)

    文江云

    2012-01-01

    静海水电站采用混凝土砌石重力坝作为水电站拦河坝,从方便施工和宜于质量控制两方面出发,拟用高流态混凝土胶结堆石筑坝技术,通过现场试验,论证了混凝土胶结堆石坝技术措施效果明显,该技术能够满足大坝设计要求,并且具有施工效率高、经济效益好、质量稳定等优点.%Jinghai Hydropower Station adopts concrete masonry gravity dam as hydropower dam. Considering of facilitating the construction and appropriate for quality control, the construction technology of cementation and rock filled with flowing concrete is a good choice. Through on-site test, the results show that the technology is very effective. The technology can meet the design requirements of the dam, and has the good construction efficiency, economic, and structure stability.

  10. Application of Old Cement Concrete Pavement in Steel Fiber Reinforced Concrete Surface Layer%浅谈旧水泥砼路面加铺钢纤维砼面层的应用

    Institute of Scientific and Technical Information of China (English)

    丁海萍; 刘妙

    2013-01-01

    Layered steel fiber concrete pavement is a new kind of pavement structure.The steel fiber is bestrewed on top and under surface of the concrete pavement plate at the time of construction,and two layers of steel fiber concrete network is formed.It can protect the position easily damaged in concrete pavement effectively,and It is important to improve bending ability of concrete pavement and reduce the thickness of concrete pavement at design time.The performance and road condition of this pavement structure is very good after consign,and pavement maintenance cost is very low.It can increase the service life of pavement greatly.The social and economic benefit is significant at the same time.%上下层布式钢纤维砼路面是一种比较新颖的路面结构.在施工的时候,在砼路面板顶面和底面上撒布钢纤维,并形成两层的钢纤维砼网.可以有效的保护砼路面容易发生破损的部位,对提升砼路面的抗弯拉能力也有很大的帮助,并能够在设计的时候,降低砼路面的厚度.这种结构的路面结构在施工交付使用后,使用的性能非常好,路面状况也很好,路面的养护和维修费用低.同时能较大提高路面的使用寿命,其社会效益、经济效益特别显著.

  11. Properties of Concrete on Replacement of Coarse Aggregate and Cementitious Materials with Styfoam And Rice Husk Ash Respectively

    Directory of Open Access Journals (Sweden)

    Ananya Sheth

    2016-07-01

    Full Text Available This paper reports an experimental investigation on the influence of Rice Husk Ash (RHAand Expanded Poly Styrene (EPS on the mechanical properties and the properties of fresh concrete of the produced RHA and EPS blended concrete. EPS aggregates were used to replace coarse aggregates by volume with an aim to decrease the unit weight. Locally produced RHA was used to replace cement by its weight with an aim to increase workability. Mixture proportioning was performed to produce target strength of 65 MPa. Past researches regarding complete replacement of coarse aggregates with EPS aggregates have shown strength of less than 10 MPa. Hence, our aim is to achieve strength of 25-30 MPa thereby utilizing environmentally sustainable concrete in the rapidly developing low cost housing sectors of developing countries.

  12. 高吸水性树脂对高强混凝土浆体孔结构的影响%Effect of Super-absorbent Polymer on Pore Structure of Hardened Cement Paste in High-strength Concrete

    Institute of Scientific and Technical Information of China (English)

    孔祥明; 张珍林

    2013-01-01

    Effect of pre-soaked super-absorbent polymer (SAP) as an internal curing agent on the pore structure and the permeability of high-strength concrete were investigated. The samples were characterized by mercuryintrusion porosimetry and scanning electron microscopy. The superficial water absorption and chloride diffusion coefficient of concrete were determined. The results show that the internal curing water introduced by the pre-soaked SAP increases the total porosity of the hardened cement paste due to the voids left by the dried SAP gel particles. However, the threshold radius of the hardened cement paste with SAP is similar to that of the reference specimen, indicating that the addition of the pre-soaked SAP has a slight influence on the capillary pore structure of hardened cement pastes when the effective water-cement ratios are constant. Compared to the blank cement paste with the same total water-cement ratio, the addition of the pre-soaked SAP changes the pore structure of cement pastes due to the different spatial distributions of the two types of water, internal curing water introduced by the pre-soaked SAP and the extra free mixing water. In addition, the threshold radius of the specimen with SAP is much smaller than that of the specimen when the amount of the free mixing water increases. The total water-cement ratio is a dominant factor to determine the total porosity of hardened cement paste and the effective water-cement ratio determines the threshold pore size.%采用压汞实验、扫描电子显微镜观察、表层吸水率及氯离子扩散系数测定实验研究了预吸水高吸水性树脂(super-absorbent polymer,SAP)作为内养护剂掺入高强混凝土后对混凝土微观孔隙结构的影响。结果表明:在基准混凝土配合比基础上,通过预吸水SAP引入5%~10%的内养护水,硬化水泥浆的总孔隙率从22.7%增大到28.7%~30.8%,这是由于预吸水SAP失水干燥后形成的较大孔隙所致;但是硬

  13. 一种水泥混凝土引气剂引气效果的评价方法%Evaluation method aboutair-entraining effectof the cement concrete air-entraining agent

    Institute of Scientific and Technical Information of China (English)

    柯国炬

    2014-01-01

    利用氢氧化钙饱和溶液模拟水泥碱液的离子环境,测定不断稀释下引气剂饱和氢氧化钙溶液的表面张力,找到表面张力出现拐点的引气剂浓度,对引气剂的引气作用效果进行定性和定量判断,提出了一种水泥混凝土引气剂引气效果的评价方法。测得:A、B、C、D四种引气剂的饱和碱液表面张力拐点时对应的浓度分别为0.2×10-4、0.64×10-3、0.128×10-2、0.4×10-4。引气混凝土试验中,固定配合比下,混凝土达到7%的含气量,有效固含量4%的引气剂A、B、C、D的掺量分别为水泥用量的0.03‰、0.6‰、1‰、0.06‰。%Simulate cement alkali ion environmentthrough calcium hydroxide saturated solution ,measure surface tension of continuous-ly dilution air entraining agent saturated calcium hydroxide solution ,and then find the inflection point concentration value of the surface tension.After the qualitative and quantitative judgments of air-entraining agent entraining effects ,a concrete air entraining agent evaluation method is proposed.The corresponding concentrations inflection saturated lye surface tension value of A,B,C,Drespectively are 0.2×10-4, 0.64×10-3,0.128×10-2,0.4×10-4.In entraining concrete trials,under fixed proportions,in order to make the air content of concrete around 7%,needed 4%solid content entraining agent A,B,C,D respectively werethe amount of cement content 0.03‰,0.6‰,1‰,0.06‰.

  14. Design of ecological concrete by particle packing optimization

    NARCIS (Netherlands)

    Fennis, S.A.A.M.

    2011-01-01

    The goal of this research project on Ecological Concrete was to reduce the CO2-emission of concrete and to reuse secondary materials form concrete production and other industries simultaneously. This also minimizes the use of natural resources and the production costs. To replace cement in concrete

  15. 旧水泥混凝土路面缩缝加设传力杆的力学效应分析%MECHANICS EFFECTIVENESS AND ANALYSIS OF THE CONSTRACTION JIONT ADDED DOWEL BAR ON OLD CEMENT CONCRETE PAVEMENT

    Institute of Scientific and Technical Information of China (English)

    陈骁; 宋祖科

    2013-01-01

    In order to study the comprehensive effectiveness induced by adding dowel bars, we add dowel bars to contraction joints on old cement concrete of expressway pavement, and construct different testing roads in accordance with different design plans. The test indicates that the transfer coefficient of contraction joints without adding dowel bars is 0.2-0.4, which is improved to 0.7-1.0 when dowel bars is added, and the transfer capacity is improved 2~5 times. The average deflection value of a direct loading concrete board falls from 0.587mm to 0.331mm, reduced about 1.8 times. The three-dimensional model of adding dowel bars to old cement concrete pavement by ANSYS finite element analysis was established, made a simulation comparison to 5 kinds of contraction joint design program for broken and no broken boards respectively. Research indicates that it is quite economic and reasonable to add 8 dowel bars to a contraction joint section on old cement concrete pavement when the diameter is 28mm and spacing 26cm, adding dowel bars will bring enormously benefits, thus provides a theory basis for the economical and reasonable transformation design plan.%为研究旧水泥混凝土路面加设传力杆带来的综合效应,对某高速公路路面缩缝加设传力杆,并修筑了不同方案的试验路,测试表明:未加设传力杆缩缝的传荷系数为0.2~0.4,加设后提高到0.7~1.0,传荷能力提高了2倍~5倍;直接受荷板的平均挠度值从0.587mm降到0.331mm,减少约1.8倍.通过ANSYS有限元建立旧水泥混凝土路面缩缝加设传力杆的三维模型,分别对已断板和未断板的5种缩缝设计方案进行的模拟对比,研究表明:旧水泥混凝土路面缩缝断面加设8根传力杆,直径28mm,间距26cm是比较经济合理的,缩缝加设传力杆将会产生很大效益,为确定经济、合理的改造设计方案提供理论依据.

  16. Composition and Morphology of Product Layers in the Steel/Cement Paste Interface in Conditions of Corrosion and Cathodic Protection in Reinforced Concrete

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.; De Wit, J.H.W.; Fraaij, A.L.A.; Boshkov, N.

    2007-01-01

    The present study explores the formation of corrosion products on the steel surface in reinforced concrete in conditions of corrosion and subsequent transformation of these layers in conditions of cathodic protection (CP). Of particular interest was to investigate if the introduced pulse CP (as cost

  17. Rubberized Concrete Durability Against Abrasion

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    Full Text Available Durability performance of rubberized concrete against abrasion is presented in this paper. Surface depth loss was measured when abrasion load was constantly applied on concrete surface at each 500 interval rotation. Specimen with water-to cement ratio of 0.50 and 0.35 was prepared and tested at 28 days of curing age. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against wear when added with crumb rubber. Results showed that crumb rubber shows good potential in providing abrasion resistance to concrete mix. However, in the case of rubberized concrete with silica fume, abrasion resistance was found to be slightly decreased with compressive strength more than 50N/mm2 due to the lack of low elastic modulus of CR particles to accommodate with denser cement matrix.

  18. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  19. Impact of separated bottom ashes on the parameters of concrete mix and hardened concrete

    Directory of Open Access Journals (Sweden)

    Wałach Daniel

    2016-01-01

    This paper analyses the impact of the addition of bottom ashes obtained from hard coal combustion in conventional and fluidised bed boilers on the properties of fresh and hardened concrete. A concrete mix composition was developed by an experimental method, which was then modified with the use of bottom ashes. The impact of the substitution of cement and aggregates with bottom ash on the concrete properties was examined. For all the obtained series of concretes, tests were performed for the consistency of the fresh concrete using the concrete slump test, the compressive strength and tensile strength of the concrete after 3, 7 and 28 days of maturing and their absorption. The experiments have shown significant declines in the strength parameters of the concretes being analysed in the case of the substitution of cement with separated bottom ash. However, substituting relevant aggregate fractions with separated bottom ash resulted in an increase in both the compressive strength and the tensile strength in the analysed concretes.

  20. Characterization of the leaching behaviour of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment.

    Science.gov (United States)

    van der Sloot, H A

    2002-01-01

    The leaching behaviour of cement-based products-both construction products and cement-stabilized wastes--have been shown to be similar after assessing the leaching characteristics by means of a pH dependence leaching test. This procedure is particularly suited to identifying the chemical speciation of materials. Geochemical modelling has shown a number of solubility controlling phases in this largely inorganic matrix, that can very well explain the observed leaching patterns as a function of pH. Understanding these relationships allows the prediction of leaching behaviour under other exposure conditions and to improve the ultimate quality of products, if so desired. The role of ettringite-type phases for the binding of oxyanions in the pH range above pH 12 has been identified before and confirmed in this work. The order of incorporation follows from the ratio between the maximum leachability at mildly alkaline pH and at high pH. Increased levels of sulfate negatively influence the binding of oxyanions in cement-stabilized waste through site competition.

  1. Inorganic contaminants attenuation in acid mine drainage by fly ash and fly ash-ordinary Portland cement (OPC) blends : column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gitari, W.M. [Venda Univ., Thohoyandou (South Africa). Dept. of Ecology and Resources Management, School of Environmental Studies; Petrik, L.F.; Etchebers, O. [Western Cape Univ., Bellville (South Africa). Environmental and Nanosciences Group, Dept. of Chemistry; Key, D.L. [Western Cape Univ., Bellville (South Africa). Dept. of Chemistry; Okujeni, C. [Western Cape Univ., Bellville (South Africa). Dept. of Earth Sciences

    2010-07-01

    The infiltration of acid mine drainage (AMD) material into mine voids is one of the environmental impacts of underground coal mining. In this study, the mitigation of AMD in a mine void was simulated in laboratory conditions. Various mixtures of fly ash, solid residues, and Portland cement were added to packed columns over a 6-month period. The fly ash additions generated near-neutral to alkaline pH levels, which in turn induced precipitation, co-precipitation, and adsorption contaminant attenuation mechanisms. A modelling study demonstrated that the precipitation of ferrihydrite, Al-hydroxides, Al-oxyhydroxysulphates, gypsum, ettringite, manganite, and rhodochrosite lowered contaminant levels. Results of the study indicated that the pH regime and acidity level of the AMD strongly influenced both the leaching of the toxic trace elements as well as the attenuation of the AMD. 3 refs., 2 figs.

  2. Fine-grained concrete with organomineral additive

    Directory of Open Access Journals (Sweden)

    Solovyov Vitaly

    2016-01-01

    Full Text Available The article deals with the issues concerning the formation of the structure and properties of fine-grained concrete with organomineral additive produced through mechanochemical activation of thermal power plant fly ash together with superplasticizer. The additive is produced in a high-speed activator at the collision particles’ speed of about 80 m/s. The use of the additive in fine-grained concrete in the amounts of 0.5-1% increased the strength by 30-50% and reduced the size and volume of pores. The cement consumption in such concrete is close to the cement consumption in common concrete of equal resistance.

  3. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  4. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  5. The use of particle packing models to design ecological concrete

    NARCIS (Netherlands)

    Fennis, S.A.A.M.; Walraven, J.C.; Den Uijl, J.A.

    2009-01-01

    Ecological concrete can be designed by replacing cement with fillers. With low amounts of cement it becomes increasingly important to control the water demand of concrete mixtures. In this paper a cyclic design method based on particle packing is presented and evaluated on the basis of experiments o

  6. Solidificación-Estabilización de Cromo, Níquel y Plomo en una Matriz Sólida de Hormigón Fabricada con Cemento Portland Solidification-Stabilization of Chromium, Nickel and Lead in a Concrete Solid Matrix of Portland Cement

    Directory of Open Access Journals (Sweden)

    René A Lara-Díaz

    2009-01-01

    Full Text Available Se validó la técnica de cementación como alternativa para la solidificación-estabilización de residuos sintéticos de metales pesados, cromo, níquel y plomo, usando probetas sólidas de hormigón de cemento Portland. El proceso de cementación se realiza a partir de una mezcla base para obtener hormigón con resistencia a la compresión de 29.4 N/mm², los metales fueron incorporados como sales metálicas en el agua de amasado. Se realizaron pruebas de resistencia a la compresión, lixiviación de metales por la prueba PECT con absorción atómica y se calculó la eficiencia de retención. El hormigón fabricado con cemento Portland es adecuado para su uso en la solidificación-estabilización de níquel y plomo a una concentración máxima de 0.43% para níquel y 1.94% para plomo.The technique of cementation was validated as an alternative method for the solidification-stabilization of heavy metal synthetic wastes, chromium, nickel and lead, using concrete solid cylinders made of Portland cement. The cementation process takes place starting with a concrete mixture base with compressive strength of 29.4 N/mm². Metals were incorporated as metallic salts in the mixing water. Tests of compressive strength, leaching of metals by PECT with atomic absorption were performed and retention efficiencies were calculated. Concrete made with Portland cement is appropriate for the solidification-stabilization of nickel and lead, with maximum concentrations of 0.43% of nickel and 1.94% of lead in concrete.

  7. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  8. Early Age Fracture Mechanics and Cracking of Concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart

    2003-01-01

    Modern high performance concretes have low water cement ratios and do often include silica fume. Also early age high strength cements are often applied and when all these factors sum up, it turns out that the cracking sensibility is dramatically increased in com- parison with ordinary concrete...... if applied in early age. The results are only valid after 24 hours for fast and normal hardening cements and after 48 hours for slow hardening cements. This is con¯rmed in a finite element model. The fracture properties of early age concrete have been determined. The framework of the investigations has been...

  9. Concrete with the addition of a high level of fly ash and effect of the additive on the concrete

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo Lorente, A.J.

    1986-12-01

    Flyash is usually considered an acceptable substitute for Portland cement in concrete mixtures. However, this article is studying a type of concrete in which flyash makes up between 40 and 80% of the total weight of the conglomerate material, being considered as an additional ingredient to Portland cement, aggregates and water as well as requiring different proportions. 42 refs., 9 figs., 7 tabs.

  10. 水泥混凝土在机场道面除冰液作用下的化学腐蚀%Chemical Corrosion of Cement Concrete Exposed to Airport Pavement Deicers

    Institute of Scientific and Technical Information of China (English)

    马好霞; 余红发; 卢一亭; 刘曙光; 付同仁

    2012-01-01

    The immersion tests that ordinary Portland concrete (OPC) and high performance concrete (HPC) specimens placed in calcium magnesium acetate (CMA) of 3. 5%, 12. 5% and 25% mass fraction of solution were carried out, and the mass loss and the relative dynamic elastic modulus were measured. Meanwhile, the surface exfoliative characteristics of specimens were observed, the corrosion resistances between Portland cement HPC and resisting sulfate cement HPC in CMA were compared. The results show that the surface exfoliative phenomenon and the quality loss are the main characteristics of corrosive damage in the CMA, its inner relative dynamic elastic modulus doesn't reduced significantly. The concrete's CMA corrosive exfoliative degree is related with the concentration of CMA solution and the corrosion time. When soaked corrosive time is more than 450 d, the corrosive exfoliative phenomena grow serious when the CMA's concentration becomes greater, the corrosive exfoliative phenomenon is more obvious. The 25 % mass fraction of CMA solution has the most severe corrosion in OPC among the three kinds of concrete and the HPC-P·II 52. 5 is better than the HPC-P · HSR42. 5. Therefore, the CMA's corrosion and damage to the concrete are the surface corrosion not the interior corrosion, and the research of CMA to the concrete corrosion damage mechanism provides reliable experimental basis for the future. Furthermore, adopting HPC-P · II 52. 5 cement can solve the corrosive and damage problem which caused by the CMA deicing fluid and can provide a basis for the airport pavement HPC's research in the northern region.%进行了普通混凝土(OPC)和高性能混凝土(HPC)试件在质量分数为3.5%,12.5%,25%的醋酸钙镁(CMA)溶液中的浸泡试验,测定了腐蚀过程中混凝土试件的质量变化和相对动弹性模量,跟踪了试件表面的剥落特征,比较了硅酸盐水泥HPC和抗硫酸盐水泥HPC的抗CMA腐蚀性.结果表明:CMA对水泥混凝土的腐

  11. Influence of Mineral Additives on Environmental Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    Lebedeva Ramunė

    2016-10-01

    Full Text Available Hydraulic concrete is a composite material that consists of coarse and fine aggregates and a binder, which transforms from liquid to solid state while curing and is exposed to destructive impacts during exploitation. The research was carried out with various cements – Portland cement, slag Portland cement, slag cement and limestone. The results of research showed that quantity of slag in hardened Portland cement paste influences freezing-thawing of concrete for hydraulic structures. Hydraulic concrete under impact of the Baltic Sea is influenced by sea water and freezing and thawing cycles. Under the mentioned impacts exerted simultaneously, experiment results enable assessment of durability of hydraulic concrete. The objective of the work is to assess the impact of the environment of the Baltic Sea on changes in properties of hydraulic concrete after cyclic freezing and thawing.

  12. Use of Recycled Aggregate and Fly Ash in Concrete Pavement

    Directory of Open Access Journals (Sweden)

    Myle N. James

    2011-01-01

    Full Text Available Problem statement: Recycled materials aggregate from the demolished concrete structures and fly ash from burning coal shows the possible application as structural and non structural components in concrete structures. This research aims to evaluate the feasibility of using concrete containing recycled concrete aggregate and fly ash in concrete pavement. Approach: Two water cement ratio (0.45 and 0.55 the compressive strength, modulus of electricity and flexural strength for concrete with recycled aggregate and fly ash with 0, 25% replacing cement in mass were considered. Results: The material properties of recycled aggregate concrete with fly ash indicate comparable results with that of concrete with natural aggregate and without fly ash. Conclusion/Recommendations: The recycled materials could be used in concrete pavement and it will promote the sustainability of concrete.

  13. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  14. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  15. Material Properies of Intermediate Materials between Concrete and Gravelly Soil

    Science.gov (United States)

    Uchimura, Taro; Kuramochi, Yuko; Thai, Bach Thuan

    Compaction and strength properties of cement-mixed well-graded gravel are studied. Such materials can also be considered as a kind of concrete materials which has much lower cement contents than usual. New concepts on material properties related to their mixture ratio of cement, gravel (aggregate) and water, as well as their compaction density, are proposed, unifying the concepts of geotechnical engineering and concrete engineering. For materials with higher cement contents, the compaction curve becomes flat, with lower maximum compaction density, and higher optimum water contents. The triaxial compressive strength are clearly affected by the dry density, as well as the cement contents.

  16. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  17. A Review for Characterization of Silica Fume and Its Effects on Concrete Properties

    Directory of Open Access Journals (Sweden)

    Mohammad Panjehpour

    2011-12-01

    Full Text Available Mineral additions which are also known as mineral admixtures have been used in Portland cement for many years. There are two types of additions which are commonly mixed into the Portland clinker or blended directly with cement these days. They are crystalline, also known as hydraulically inactive additions and pozzolanic, which are hydraulically active additions. Silica fume is very reactive pozzolan, while it is used in concrete because of its fine particles, large surface area and high SiO2 content. Silica fume is much fined separated silica obtained as a by-product in industry. It is used as an admixture in the concrete mix and it has significant effects on the properties of the resulting material. Simultaneously, silica fume can be also utilized in production of refectory and porcelain, to increase intensity and durability. In addition, it can improve the overall performance of the material as filler used in coating resin, paint, rubber and other high molecular materials. This review paper discusses the effects of silica fume on the concrete properties such as strength, modulus, ductility, permeability, chemical attack resistance, corrosion, freeze-thaw durability, creep rate. Characterisation of silica fume as well as its physical and chemical properties will also be reviewed in this paper.

  18. 硅酸盐-硫铝酸盐水泥超轻泡沫混凝土孔结构及性能研究%Study of the Pore Structure and Performance of the Silicate Sulphoaluminate Cement Super-lght Foam Concrete

    Institute of Scientific and Technical Information of China (English)

    陈小弋

    2014-01-01

    The silicate sulphoaluminate cement super light fo- am concrete is currently a new concrete structure. It is a cem- ent of certain proportion which has beter compressive strength and seting time. This paper took it as a starting point, making a preliminary study of the pore structure and the properties of the super-light foam concrete.%硅酸盐-硫铝酸盐水泥超轻泡沫混凝土是当前一种新型的混凝土结构,经过一定比例配置出的其水泥也具有较好的抗压强度和凝结时间。本文以此为出发点,对其水泥超清泡沫混凝土孔结构及性能的优势做了初步研究。

  19. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  20. ASSESSMENT OF DEFORMATION AND STRENGTH OF SOILS STRENGTHENED BY CEMENTING

    Directory of Open Access Journals (Sweden)

    Sainov Mihail Petrovich

    2014-09-01

    Full Text Available Currently there are few studies of deformation and strength properties of loose soils strengthened by cementing. Based on the data of already arranged grout curtains it was determined that in cemented gravel-pebble soil there are 7...9 % of cement, which is less than in concrete. To assess deformation and strength of such soils it is possible to use the data of tests conducted by other authors, where the effect of cement contents on sand-cement mix properties was studied. Analysis of experimental data showed that cemented soil may be identified with concrete only with high content of cement (more than 10 %. At cement content 7...9 % in soil the strength deformation of cemented soil varies to a small extent. Its deformation becomes 2-3 times less. It greatly depends on compression stresses. The formulae are proposed which permit assessing the effect of compression and cement content on deformation of cemented soil. It is shown that strength of cemented soil is less than that even of the weakest concrete. It has a sufficiently high cohesion, but the friction angle is approximately the same as that of the initial soil.

  1. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    Science.gov (United States)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  2. Multi-species Ionic Diffusion in Concrete with Account to Interaction Between Ions in the Pore Solution and the Cement Hydrates

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    The penetration and leaching of ionic species in concrete are studied by using a model based on the Nernst-Planck equations. A finite element procedure is used to solve the coupled non-linear governing equations. A numerical example is performed in which the results are compared to measured...... electron probe micro analysis (EPMA) data. A close agreement of the simulated results to measured data is found for the specific studied example. The model includes the ionic species Cl-, Na+, OH-, Ca2+, K+ and SO42- and solid phases with variable composition. From the EPMA measurements the total...... relevance in terms of standard solubility thermodynamics. On the other hand the presented model is capable of accurately simulate the well documented peak behavior of the chloride profiles and the measured high content of calcium ions in pore solution under conditions when also chlorides is present...

  3. Study on mechanical behaviors of interface with cemented soil slurry between gravel and concrete by simple shear tests%水泥土泥皮下土与结构接触面的单剪特性

    Institute of Scientific and Technical Information of China (English)

    彭凯; 朱俊高; 冯树荣; 蔡昌光; 朱晟

    2013-01-01

    The mechanical behaviors of the interface between coarse-grained soil and concrete are investigated by simple shear tests under conditions of cemented soil slurry (clay mixed with cement grout).The results show that the relation curve between shear stress and shear strain appears stress-strain softening and shear dilatation is significant.The point of peak strength and the position when the shear dilatation occurs are related to normal stress.In addition,shear dilatation occurs before the shear stress reaches peak value.In shear failure state,with the same height,the shear displacement increases as the normal stress increases.While with the same normal stress and at the same height,the shear displacement increases as the concrete content increases.A particle flow model of simple shear test between interface between coarse-grained soil and concrete is constructed by PFC (particle flow code).The disturbed height of the sample and the main influence factors are determined by analyzing the laws of particle motion at different heights inside the sample.The PFC results show disturbed height of the sample is related to maximum particle diameter of the soil,normal stress and roughness of the interface (with or without slurry) etc.In terms of the coarse-grained soil,the shear displacement is significant in the area which is close to the interface and about 3-4 times of the maximum particle diameter,and informed the obvious shear band.Further,the thickness of the interface can be regarded as the value.%采用大型单剪仪进行粗粒土与混凝土接触面在水泥土泥皮(粘土中掺入水泥)条件下的剪切试验,揭示泥皮条件下接触面的力学特性与机理.试验结果表明,峰值强度以及剪胀发生所对应的位置与法向应力大小有关,峰值强度所对应的剪应变滞后于产生剪胀的位置.剪切破坏时,在同一高度处,法向应力越大,切向位移也越大;同样的法向应力及高度处,切向位移随水泥含

  4. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  5. Effect of nano materials in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Sudipta Naskar

    2016-09-01

    Full Text Available In general, cement based concrete can be replaced by low calcium fly-ash based geopolymer concrete regarding the adverse effect of the manufacture of ordinary Portland cement on environment. Nowadays, nano technology has an important role in the field of construction industries. It has been seen that several properties of cement based concrete are affected by different nano materials. As low calcium fly-ash based geopolymer concrete is an alternate option for cement based concrete, nano materials may also have some influence on it. An experimental program has been taken up on low calcium fly-ash based M25 grade geopolymer concrete having 16 (M concentration of activator liquid. Different percentage of nano materials viz. nano silica, carbon nano tube, titanium di-oxide were also used to investigate the effect of nano materials on geopolymer concrete. Geopolymer concrete with 1% titanium di-oxide shows appreciable improvement in compressive strength although pH remains almost same in all cases.

  6. Recent advances on self healing of concrete

    NARCIS (Netherlands)

    Schlangen, H.E.J.G.; Jonkers, H.M.; Qian, S.; Garcia, A.

    2010-01-01

    In this paper an overview is given of new developments obtained in research on self healing of cracks in cement based materials and asphalt concrete. At Delft University various projects are running to study self healing mechanisms. The first project that is discussed is Bacterial Concrete, in which

  7. Autogenous Deformation and Internal Curing of Concrete

    NARCIS (Netherlands)

    Lura, P.

    2003-01-01

    High-performance concrete (HPC) is generally characterized by a low water/binder ratio and by silica-fume addition, which guarantee a low porosity and a discontinuous capillary pore structure of the cement paste. Modern concretes possess some highly advantageous properties compared to traditional co

  8. Self-compacting fibre-reinforced concrete

    NARCIS (Netherlands)

    Grunewald, S.; Walraven, J.C.

    2001-01-01

    The project 'self-compacting fibre-reinforced concrete (SCFRC)' is part of the Dutch STW/PPM program - 'cement-bonded materials' - DCT.4010. Subproject III to which the project ,SCFRC' belongs deals with the development of new high performance concretes. The project 'SCFRC' aims at investigating the

  9. How Concrete is Concrete

    OpenAIRE

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these tw...

  10. Blended Learning

    NARCIS (Netherlands)

    Van der Baaren, John

    2009-01-01

    Van der Baaren, J. (2009). Blended Learning. Presentation given at the Mini symposium 'Blended Learning the way to go?'. November, 5, 2009, The Hague, The Netherlands: Netherlands Defence Academy (NDLA).

  11. Structural Concrete Prepared with Coarse Recycled Concrete Aggregate: From Investigation to Design

    Directory of Open Access Journals (Sweden)

    Valeria Corinaldesi

    2011-01-01

    Full Text Available An investigation of mechanical behaviour and elastic properties of recycled aggregate concrete (RAC is presented. RACs were prepared by using a coarse aggregate fraction made of recycled concrete coming from a recycling plant in which rubble from concrete structure demolition is collected and suitably treated. Several concrete mixtures were prepared by using either the only virgin aggregates (as reference or 30% coarse recycled aggregate replacing gravel and by using two different kinds of cement. Different water-to-cement ratios were adopted ranging from 0.40 to 0.60. Concrete workability was always in the range 190–200 mm. Concrete compressive strength, elastic modulus, and drying shrinkage were evaluated. Results obtained showed that structural concrete up to C32/40 strength class can be manufactured with RAC. Moreover, results obtained from experimentation were discussed in order to obtain useful information for RAC structure design, particularly in terms of elastic modulus and drying shrinkage prediction.

  12. Strength of Concrete Containing Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Parvez Imraan Ansari

    2015-04-01

    Full Text Available This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5% of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives better performance when it compared with 0.5%and 1.5% basalt fibre mix in concrete specimens.

  13. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    Durability studies are carried out at BKM as part of the research project "Design Methods for Fibre Reinforced Concrete" (FRC) involving BKM, The Concrete Research Center at DTI, Building Technology at Aalborg University, Rambøll, 4K-Beton and Rasmussen & Schiøtz. Concrete beams with or without...... structure are made on specimens drilled or sawed from beams after unloading (mechanical load). The pore structure of the concretes will be studied by microscopy, sorption and suction curves. The test programme involves three different concrete qualities (water-cement ratios). Both steel fibres (ZP...

  14. Working characteristics of concrete-cored deep cement mixing piles under embankments%路堤荷载下混凝土芯水泥土搅拌桩工作特性研究

    Institute of Scientific and Technical Information of China (English)

    Chi WANG; Yong-fu XU; Ping DONG

    2014-01-01

    研究目的:研究混凝土芯水泥土搅拌桩在路堤荷载下的荷载传递规律和变形控制机理。  创新要点:评价路堤荷载下混凝土芯水泥土搅拌桩的地基处理效果,测量混凝土芯的竖向应力变化规律和复合地基桩土荷载分担特点,并分析填土过程中混凝土芯水泥土搅拌桩复合地基的固结规律。  研究方法:通过埋设沉降板、分层沉降管、测斜管、土压力盒、孔隙水压力计以及钢筋应力计,在路堤填筑过程中对混凝土芯水泥土搅拌桩复合地基进行了长期现场试验。  重要结论:1.混凝土芯水泥土搅拌桩复合地基的总沉降、工后沉降以及深层水平位移控制效果均较好,优于普通水泥土搅拌桩复合地基;2.混凝土芯水泥土搅拌桩复合地基的桩土应力比以及荷载分担比均大于普通水泥土搅拌桩复合地基,能有效减小土体表面的荷载量,对于控制沉降有一定的效果。3.在路堤这种柔性荷载作用下,混凝土芯水泥土搅拌桩上部会出现一定的负摩擦阻力,存在一个“中性点”。4.混凝土芯水泥土搅拌桩复合地基的固结速率较快,能有效控制由于主固结引起的长期沉降。%The concrete-cored deep cement mixing (DCM) pile is a new kind of composite pile created by inserting a precast core pile into the DCM column socket and has only been used in a few expressway projects to date. In this paper, full scale field tests of composite foundations reinforced by both concrete-cored DCM piles and by conventional DCM columns under embankments were conducted in northeast of Nanjing Surrounding Expressway (NS-N Expressway), China. With the installation of settlement plates, multipoint settlement gauges, inclinometers, piezometers, pressure transducers, and steel stress meters, the results of plate load tests and long-term monitoring, including ultimate bearing capacity, total settlement

  15. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  16. 7 CFR 2902.42 - Wood and concrete sealers.

    Science.gov (United States)

    2010-01-01

    ... Items § 2902.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from damage caused by... 7 Agriculture 15 2010-01-01 2010-01-01 false Wood and concrete sealers. 2902.42 Section...

  17. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  18. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  19. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  20. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    Science.gov (United States)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  1. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2002-01-01

    Concrete prisms were made with four cement types including cements with fly ash and/or blast furnace slag and three waterto- cement (w/c) ratios. Chloride penetration and corrosion of rebars were stimulated by subjecting prisms to cyclic loading with salt solution and drying. Concrete resistivity, s

  2. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita

    2004-01-01

    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  3. Design and Model Test of Cement Concrete Pavement Slab Based on Phase Change and Temperature Control%相变控温水泥混凝土路面板设计及模型试验

    Institute of Scientific and Technical Information of China (English)

    高英力; 胡柏学; 贺敬; 杨文剑

    2011-01-01

    Based on the phase change energy storage material and functionally-graded material design method, the conventional structure of cement concrete pavement slab was designed for enhancing the function of anti-freezing and wear-resistance, and the model test of pavement slab was carried out. The step cooling test method was adopted to select the composite phase change material, and then it was placed in the high-strength seamless steel pipe. The size of the formed cement concrete pavement slab model was 500 mm × 400 mm × 80 mm. Anti-freezing and wearresistance property test of the model was carried out. Results indicate that phase change temperature point of the selected phase change material is about 5 ℃, and at the point, the liquidsolid phase transition happens to reject heat which can play better ice-melting effect and delay or control the low-temperature freezing phenomena of the pavement slab model surface. The wearresistance of the pavement slab surface material is excellent and its 28-day wear rate is only 51.9% of the standard limited value. The reinforced role of steel pipe in the phase change function layer can prevent the problem of inconsistent volume deformation between the main structure layer and surface layer and also can enhance interface stability.%引入相变储能材料及梯度功能材料设计方法,对传统水泥混凝土路面板结构进行防冻、耐磨功能设计,开展路面板模型试验研究.采取步冷试验方法,将优选出的复合相变储能材料封装入高强度无缝钢管中,制成500 mm×400 mm×80 mm的水泥混凝土路面板模型,进行模型的防冻性能和耐磨性能试验.结果表明:优选的相变材料体系相变温度点可控制在5℃左右,并产生液-固相变过程,放出热量,起到了较好的融冰效果,延缓或控制了路面板模型表面的低温冰冻现象;表面层材料耐磨性优良,28 d磨耗率仅为标准限值的51.9%;相变功能层中钢管的加筋作用可防止主

  4. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  5. Life Cycle Assessment of Completely Recyclable Concrete

    Directory of Open Access Journals (Sweden)

    Mieke De Schepper

    2014-08-01

    Full Text Available Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.

  6. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  7. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  8. 钻环测量水泥混凝土板表面残余应力的试验研究%THE RESEARCH OF CORE RING METHOD TO MEASURE RESIDUAL STRESS ON THE SURFACE OF CEMENT CONCRETE SLAB

    Institute of Scientific and Technical Information of China (English)

    李新凯; 侯相深; 马松林

    2012-01-01

    水泥混凝土在强度形成过程中,水泥砂浆体积变形受到约束后将导致水泥混凝土内产生残余应力。对水泥混凝土路面板而言,板表层水泥砂浆的体积变形受外部环境影响更严重,因此板表面存在较大的残余应力,超过其抗弯拉强度时将导致微观裂缝的出现。目前,根据金属工程中测量表面残余应力的钻孔法,相关学者提出了钻环测量水泥混凝土表面残余应力的方法,并对其可行性进行了分析。该文将在该方法可行性分析的基础上,建立有限元模型对钻环过程进行模拟,确定室内试验时钻环法的相关技术参数,然后浇注水泥混凝土板,考虑加载和不加载两种工况进行室内试验,试验结果表明:钻环能够释放板表面的残余应力,该方法可以用于水泥混凝土表面残余应力测量。%In the procedure of concrete strength development, the changes in cementitious material volume results in the production of internal residual stress. Because the volume changes of cement pasted on the surface are influnced more obviously by environmental factors, the residual stress on the surface of rigid pavement slab will develop quickly and may lead to the appearance of micro crackings. According to the hole drilling strain gage (HDSG) method which is often used to measure residual stress in metal structure, some researchers developed the core ring strain gage (CRSG) method for concrete structures and the feasibility of this method was studied. In this paper a finite element model (FEM) is developed to simulate the process of core ring drilling in concrete slab. The parameters in CRSG method are selected based on FEM's results for different cases. Large scale slabs are casted in laboratory and tests using CRSG method to measure residual stress are conducted. The test results of two cases (loading on slab comer and no loading) indicate that CRSG method can release

  9. Corrosion Effects on the Strength Properties of Steel Fibre Reinforced Concrete Containing Slag and Corrosion Inhibitor

    OpenAIRE

    Sivakumar Anandan; Sounthararajan Vallarasu Manoharan; Thirumurugan Sengottian

    2014-01-01

    Corrosion in steel can be detrimental in any steel rebar reinforced concrete as well as in the case of steel fibre reinforced concrete. The process of corrosion occurring in steel fibre incorporated concrete subjected to corrosive environment was systematically evaluated in this study. Concrete specimens were prepared with steel fibre inclusions at 1.5% Vf (volume fraction) of concrete and were added in slag based concrete (containing manufactured sand) and replaced with cement at 20%, 40%, ...

  10. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    NARCIS (Netherlands)

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accou

  11. 过硫磷石膏矿渣水泥混凝土中 PSC 浆磷石膏含量测定方法研究%Study of the Determination Methods of the PSC Pulp Phosphogypsum Content in the Excess-sulfate Phosphogypsum Slag Cement Concrete

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    通过分离过硫磷石膏矿渣水泥混凝土中的过硫磷石膏矿渣水泥浆,并测定各原料的 SO 3含量,然后根据各原料 SO 3的平衡关系,计算出了过硫磷石膏矿渣水泥混凝土中的过硫磷石膏矿渣水泥浆的磷石膏含量。经实验反复验证,显示磷石膏含量的测定误差均可在1.0%范围之内,可作为过硫磷石膏矿渣水泥混凝土生产过程中磷石膏配合比的日常控制和测定方法。%Through the separation of the Excess-Sulfate Phosphogypsum Slag pulp from the Excess-Sulfate Phosph-ogypsum Slag Cement Concrete,and the determination of the SO 3 content in each material,this study calculated the Phosphogypsum Content in the Excess-Sulfate Phosphogypsum Slag pulp of the Excess-Sulfate Phosphogypsum Slag Cement Concrete according to the equilibrium relationship of SO 3 in each material.Through repeated verification,it showed that the measurement deviation of the Phosphogypsum Content is within 1.0% range,so this method can be used to daily control and determine the mix proportion of the Phosphogypsum during the production of the Excess-Sul-fate Phosphogypsum Slag Cement Concrete.

  12. Blended learning

    DEFF Research Database (Denmark)

    Dau, Susanne

    2016-01-01

    of navigating different learning environment. Blended learning is conceptualized as an ecological learning process where sociality, mobility, interactionality, structures, spatiality, identity and emotionality are central dimension affiliated to blended learning as way-finding. Based on the findings......Blended Learning has been implemented, evaluated and researched for the last decades within different educational areas and levels. Blended learning has been coupled with different epistemological understandings and learning theories, but the fundamental character and dimensions of learning...... in blended learning are still insufficient. Moreover, blended learning is a misleading concept described as learning, despite the fact that it fundamentally is an instructional and didactic approach (Oliver & Trigwell, 2005) addressing the learning environment (Inglis, Palipoana, Trenhom & Ward, 2011...

  13. Use of waste ash from palm oil industry in concrete.

    Science.gov (United States)

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  14. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    Directory of Open Access Journals (Sweden)

    Mark Bediako

    2015-01-01

    Full Text Available The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC and Portland limestone cement (PLC, CSIR-BRRI Pozzomix, Dangote OPC, and Diamond PLC. The chemical compositions were analyzed with X-Ray Fluorescence (XRF spectrometer. Student’s t-test was used to test the significance of the variation in chemical composition between standard literature values and each of the commercial cement brands. Analysis of variance (ANOVA was also used to establish the extent of variations between chemical compositions and brand name of the all commercial Portland cement brands. Student’s t-test results showed that there were no significant differences between standard chemical composition values and that of commercial Portland cement. The ANOVA results also indicated that each brand of commercial Portland cement varies in terms of chemical composition; however, the specific brands of cement had no significant differences. The study recommended that using any brand of cement in Ghana was good for any construction works be it concrete or mortar formation.

  15. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Directory of Open Access Journals (Sweden)

    Stephen Adeyemi Alabi

    2013-12-01

    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  16. Discussion of the evolution of the chloride migration coefficient of Portland cement concrete tested by the rapid chloride migration (RCM) test at long-term curing periods up to 5 years

    NARCIS (Netherlands)

    Yu, Z.; Ye, G.; Hunger, M.; Noort, R.

    2013-01-01

    Chloride-induced corrosion of reinforced concrete is one of the main deterioration mechanisms leading to shortening of the service life of concrete structures. Therefore, assessment of the resistance of concrete to chloride ingress plays an important role in predicting the service life of such struc

  17. Nonlinear analysis of massive concrete at successive construction

    OpenAIRE

    2013-01-01

    The presented doctoral thesis deals with numerical analysis of fresh mass concrete, that is concrete whose temperature rise due to heat of cement hydration must be controlled. The thesis consists of two parts. In the first part, a numerical model which solves a fully coupled problem of water, moist air, and heat transfer in fresh concrete and mechanical analysis is presented. Basic equations are deduced from the model of the porous body, which describes concrete as a material, composed of ...

  18. Malaysian Rice Husk Ash – Improving the Durability and Corrosion Resistance of Concrete: Pre-review

    Directory of Open Access Journals (Sweden)

    Hamidi Abdulaziz

    2010-03-01

    Full Text Available

    The objective of this paper is to presents and study a pre-review of Malaysian rice ash ask as a partial cement replacement in different percentage, grinding time and performance corrosion of RHA blended concrete. The increasing demand for producing durable

  19. Modeling the Time-to Corrosion Cracking of the Cover Concrete in Chloride Contaminated Reinforced Concrete Structures

    OpenAIRE

    Liu, Youping

    1996-01-01

    Significant factors on steel corrosion in chloride contaminated reinforced concrete and time-to-corrosion cracking were investigated in this study. Sixty specimens were designed with seven admixed chloride contents, three concrete cover depths, two reinforcing steel bar diameters, two exposure conditions, and a typical concrete with water to cement ratio of 0.45. Corrosion current density (corrosion rate), corrosion potential, ohmic resistance of concrete and temperature were measured monthly...

  20. Quality control chart for crushed granite concrete

    Directory of Open Access Journals (Sweden)

    Ewa E. DESMOND

    2016-07-01

    Full Text Available A chart for assessing in-situ grade (strength of concrete, has been developed in this study. Four grades of concrete after the Nigerian General Specification for Roads and bridges (NGSRB-C20, C25, C30 and C35, is studied at different water-cement ratios for medium and high slump range. The concrete mixes are made from crushed granite rock as coarse aggregate with river sand as fine aggregate. Compression test on specimens are conducted at curing age of 1, 3, 7, 14, 21, 28 and 56 days. Results on concrete workability from slump values, and water-cement ratios revealed that specimens with lower water-cement ratio were less workable but had higher strength, compared to mixes with higher water cement ratio. A simple algorithm using nonlinear regression analysis performed on each experimental data set produced Strength-Age (S-A curves which were used to establish a quality control chart. The accuracy of these curves were evaluated by computing average absolute error (AAS, the error of estimate (EoE and the average absolute error of estimate (Abs EoE for each concrete mix. These were done based on the actual average experimental strengths to measure how close the predicted values are to the experimental data set. The absolute average error of estimate (Abs. EoE recorded was less than ±10% tolerance zone for concrete works.

  1. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2015-08-01

    Full Text Available Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  2. Personal exposure to inhalable cement dust among construction workers.

    NARCIS (Netherlands)

    Peters, S.M.; Thomassen, Y.; Fechter-Rink, E.; Kromhout, H.

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and

  3. EFFECT OF CURING METHODS AND WET CURING DURATION ON PROPERTIES OF PLAIN AND SLAG-CEMENT CONCRETE%养护措施和湿养护时间对掺与未掺矿渣混凝土性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘竞; 邓德华; 刘赞群

    2008-01-01

    Three curing methods were used for concrete curing with wet cotton mats, a curing agent and plastic film. The strength, shrinkage, central temperature and chloride permeability under various curing methods were studied. The effect of wet curing duration (1, 7, 14 and 28 d) on the strength, impermeability and corrosion resistance for protecting internal reinforcement of plain and slag-cement concrete (in which 40% (in mass) cement was replaced by blast furnace slag) was studied by experiments including strength, chloride penetration depth immersed in 5% (in mass) NaCl solution, half-cell potential and concrete cover cracking time in accelerated corrosion. The results show the proper curing methods can effectively increase the strength, reduce the central temperature due to hydration heat and the early shrinkage strain and improve the chloride impermeability. Longer wet curing duration is essential to achieve higher strength, durability and corrosion resistance characteristics while inadequate wet curing resulted in poorer chloride impermeability and corrosion resistance for both plain and slag cement concrete, but especially for slag cement concrete. The plain cement concrete is relatively more tolerant to inadequate curing. The higher potential chloride penetration resistance can not be activated later in the natural environment if wet curing was ceased on the 7th day.%研究了采用湿棉絮覆盖、喷养护剂、塑料薄膜密封3种养护措施对混凝土强度、收缩、中心温升、氯离子渗透性的影响,并通过不同龄期强度、氯离子渗透深度(5%NaCl溶液介质,质量分数)、钢筋腐蚀电位、加速腐蚀保护层开裂时间研究湿养护时间(1,7,14d和28d)对未掺和掺矿渣(等量取代水泥40%,质量分数)混凝土强度、抗渗性、护筋性的影响.结果表明:合适的养护措施能有效提高混凝土强度和抗渗性,降低水化温升和早期收缩.对未掺与掺矿渣的混凝土,更长的湿养护有

  4. Strength of Concrete Containing Basalt Fibre

    OpenAIRE

    2015-01-01

    This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5%) of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives be...

  5. Blended Learning

    Science.gov (United States)

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  6. Blended Learning

    Science.gov (United States)

    Tucker, Catlin; Umphrey, Jan

    2013-01-01

    Catlin Tucker, author of "Blended Learning in Grades 4-12," is an English language arts teacher at Windsor High School in Sonoma County, CA. In this conversation with "Principal Leadership," she defines blended learning as a formal education program in which a student is engaged in active learning in part online where they…

  7. Blended learning

    DEFF Research Database (Denmark)

    Staugaard, Hans Jørgen

    2012-01-01

    Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid.......Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid....

  8. Variability in properties of Salado Mass Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Wakeley, L.D.; Harrington, P.T. [US Army Engineer Waterways Experiment Station, Vicksburg, MS (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  9. Size Effect for Normal Strength Concrete in Uniaxial Tension

    Institute of Scientific and Technical Information of China (English)

    李庆斌; 尹玉先

    2004-01-01

    This paper presents a new size effect model for normal strength concrete subjected to uniaxial tension. The model is based on two extremes, sand cement paste in uniaxial tension and a sand-cement-paste/rock interface in uniaxial tension. Uniaxial tension tests with normal strength concrete measuring the tensile strength of normal strength concrete specimens with different geometrical shapes and different ratios of the aggregate size to the characteristic dimension of the concrete specimen show a significant size effect. The theoretical size effect law prediction agrees well with the experimental data.

  10. Pervious Concrete

    OpenAIRE

    2012-01-01

    Pervious concrete is a type of concrete with little or no fines which give a large void. This enables high permeability and because of this it enables water to percolate through the concrete. Pervious concrete have been used in many years both as pavement material and on several other applications in the U.S and in other countries in Western Europe. In Norway pervious concrete is not currently in use. This thesis aims to investigate if pervious concrete can withstand the harsh Norwegian clima...

  11. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-based Materials

    NARCIS (Netherlands)

    Zhang, M.

    2013-01-01

    Cement-based materials are the most widely used man-made materials in the world. The durability of cement-based materials has been a major concern due to the premature failure and serviceability issues of many reinforced concrete structures. Durability of cement-based materials is to a large content

  12. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    Science.gov (United States)

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  13. Mechanism and Preventive Technology of the Thaumasite Form of Sulfate Attack on Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The deterioration mechanism of thaumasite towards cement or concrete structure and the deterioration pattern of in-situ construction caused by the formation of thaumasite were studied in this paper. To improve the TSA (the thaumasite form of sulfate attack) resistance, the cement type, water to cement ratios, the mineral admixture and the circumstance factors should be taken into consideration.

  14. Blended Learning

    DEFF Research Database (Denmark)

    Gynther, Karsten

    2012-01-01

    Artiklen giver en grundlæggende introduktion til begrebet blended learning og sætter fokus på didaktiske spørgsmål som: Hvad er blended learning? Hvilke forskellige former ser vi i dag i danske uddannelser? Hvorfor udbydes uddannelser i stigende grad i et blended learning format? Hvilke didaktiske...... principper kan man som underviser tage i brug, når man skal designe et blended learning forløb? Hvad er den grundlæggende didaktiske forskel på tilstedeværelsesundervisning og netbaseret undervisning? Og hvilke kritiske perspektiver er det vigtigt at have med, når en uddannelsesinstitution beslutter sig...... for at re-designe traditionel tilstedeværelsesundervisning til blended learning?...

  15. Blended learning

    DEFF Research Database (Denmark)

    Dau, Susanne

    2016-01-01

    in blended learning are still insufficient. Moreover, blended learning is a misleading concept described as learning, despite the fact that it fundamentally is an instructional and didactic approach (Oliver & Trigwell, 2005) addressing the learning environment (Inglis, Palipoana, Trenhom & Ward, 2011......Blended Learning has been implemented, evaluated and researched for the last decades within different educational areas and levels. Blended learning has been coupled with different epistemological understandings and learning theories, but the fundamental character and dimensions of learning......) instead of the learning processes behind. Much of the existing research within the field seems to miss this perspective. The consequence is a lack of acknowledgement of the driven forces behind the context and the instructional design limiting the knowledge foundation of learning in blended learning. Thus...

  16. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  17. Nanomodified magnesian schungite protective concrete

    Directory of Open Access Journals (Sweden)

    A.S. Ryzhov

    2010-03-01

    Full Text Available Currently, there is increasing demand for building materials with low permeability to the radioactive gas radon and materials that have protective properties against radiation exposure and non-ionizing radiation. Formulations have been developed and now special building flooring and plaster radiation protective mixtures are commercially available. With the acceleration the pace of development of nuclear energy safe utilization of liquid and solid radioactive waste is a vital task for the survival of humanity.With the use of innovative magnesian barite and magnesian schungite composites opportunities to solidify LRW and solid radioactive waste monolithing are expanded. Magnesium-schungite nanostructured concrete exceed heavy concrete on Portland cement by gamma radiation and strength characteristics reducing multiplicity. Formulations are protected by a patent for an invention.The paper shows a clear advantage of magnesia cement (compared with Portland cement in terms of specific mass energy parameters Em and Wm. The data demonstrates that the magnesia cement is characterized by higher parameters of maximum frequency of oscillation of the atoms ?m, which, apparently, is the key to explaining the increased protection (shielding properties of materials based on magnesia cement mixed with shungite of gamma radiation and exposure to radiofrequency electromagnetic radiation the range.Magnesium-schungite radiation-shielding materials are approved by Rospotrebnadzor for use for collective protection to reduce the income of radon in indoor air, gamma and x-ray production, residential, public and administrative buildings, as well as in food, pharmaceutical, medical and child care.

  18. Substantial global carbon uptake by cement carbonation

    Science.gov (United States)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  19. 水泥混凝土路面实测FWD数据与表观路况关系探讨%Relationship between FWD Data and Visual Survey Conditions for Cement Concrete Pavement

    Institute of Scientific and Technical Information of China (English)

    苏卫国; 卢辉

    2007-01-01

    The main areas that can be evaluated by Falling Weight Deflectometer (FWD) testing of PCC (Portland Cement Concrete) pavement includes: joint load transfer, voids under the slabs, roadbed' s strength, slab's rigidity,uniformity of strength for the subgrade and pavement. At present, researchers have developed many evaluation models with the FWD testing data; however, few of them are practical. The main problem is lack of basic in-situ data, so none of the models are feasible without excessive field testing. Based on FWD field testing data and a large number of pictures of a highway, analyzed the relationships between values derived from FWD measurement in-situ and pavement condition data which was collected by means of field visual surveying or testing on an existing PCC pavement of a highway. Some qualitative or quantitative methods for obtaining joint load transfer and pavement stiffness and load-bearing capacity of the existing PCC slab were discussed. The concept of evaluating the overall load-bearing capacity of the pavement structure with a summation of FWD deflections in center of the loading plate is proposed.%采用落锤式弯沉仪(FWD)实验数据评价旧水泥混凝土路面的主要范围包括:接缝传荷能力、板底脱空判别、路基强度、混凝土板体刚度、路基路面强度的均匀性等.目前,研究者建立了许多采用FWD数据的评价模型,但实用性欠佳,主要问题在于缺乏基础性的现场实测数据,因而模型的可靠性较差.文中基于某国道水泥混凝土路面的FWD实测数据及大量路况表观调查照片,分析FWD实测参数与旧水泥混凝土路面状况调查实录及测试数据间的某些相关性,探索旧水泥混凝土板的接缝传荷能力、弯曲刚度、综合承载能力等定性或定量的判别方法,提出利用FWD加载中心弯沉值总水平评价旧水泥混凝土路面综合承载能力的设想.

  20. Dynamic response of cement concrete pavement under aircraft taxiing load%飞机滑行作用下水泥混凝土道面板动响应分析

    Institute of Scientific and Technical Information of China (English)

    翁兴中; 寇雅楠; 颜祥程

    2012-01-01

    研究了飞机滑行作用下机场水泥混凝土道面板动响应问题.将道面结构视为粘弹性层状地基上单块四边自由的矩形板,采用半解析法,建立力学模型和计算方法.飞机滑行作用在道面板上的荷载是由自身重量和滑行产生的升力决定的;并计算了飞机滑行作用下道面板的响应.采用在道面内部钻孔安装位移传器的方法,对H-6飞机以不同滑行速度通过道面板时,道面板产生的动挠度进行了实测.计算结果与实测结果对比表明,两者误差在3%以内.说明所建立的计算方法是正确的,该方法可用来进行机场水泥混凝土道面板在飞机滑行作用下动响应的计算.%The dynamic responses of airfield cement concrete pavement were analysed when an aircraft taxies on the pavement. The pavement was regarded as a single rectangular slab with free edges resting on a viscoelastic layered foundation. A semi-analysis method was proposed and a mechanical model was established to calculate the dynamic response of slab under aircraft taxiing load, which consists of its weight and the lift force. The displacement transducers were installed inside the hole drilled on the pavement, and the dynamic deflections of the slab were measured when H-6 aircraft taxies on the pavement at different velocities. The theoretical solutions compared with the experimental results show the relative error between them is less than 3%. It indicates that the calculating method is correct and effective.

  1. Energy Efficiency Improvement and Cost Saving Opportunities for the Concrete Industry

    OpenAIRE

    Kermeli, Katerina; Worrell, E.; Masanet, Eric

    2011-01-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficienc...

  2. 水泥混凝土桥梁长寿命桥面铺装层复合结构疲劳特性%Fatigue Performance of Composite Structure for Perpetual Pavement on Cement Concrete Bridge Deck

    Institute of Scientific and Technical Information of China (English)

    钱振东; 王江洋; 王亚奇

    2012-01-01

    In order concrete bridge, to design the perpetual pavement with excellent fatigue behavior for the cement based on the characteristics required for perpetual road pavement, three composite structures were tested with four-point flexural bending test to investigate fatigue properties based on the Weibull distribution theory. The double-logarithm fatigue equations for perpetual pavement were established. The results show that the fatigue lives of three composite structures follow the double-parameter Weibull distribution. With the failure probability of 0.1, the fatigue performance of composite structure, when the lower layer is AC while the lower layer uses epoxy asphalt mixture (EAM) as a substitute for stone mastic asphalt (SMA), is improved significantly. In addition, the fatigue performance of composite structure, when the lower layer is EAM while the upper layer uses SMA as a substitute for asphalt concrete (AC), is improved more. The combination structure of EAM and SMA has the best fatigue performance, and totally satisfies the structure design feature requirement for perpetual pavement. The research results provide a reliable foundation for the further study of the perpetual bridge deck pavement.%为了构建疲劳性能优异的水泥混凝土桥梁长寿命铺装结构,借鉴长寿命沥青路面设计的基本思路,选取3种铺装复合结构方案,采用应变控制的四点弯曲疲劳试验,并基于Weibull分布理论对复合结构的疲劳特性进行分析,建立长寿命桥面铺装复合结构双对数疲劳预估方程。研究结果表明:3种铺装复合结构的疲劳寿命均服从双参数Weibull分布;在失效概率为0.1时,复合结构上面层同为AC,下面层采用环氧沥青混合料(EAM)代替SMA后,其疲劳性能得到提高,复合结构下面层同为EAM,上面层采用SMA代替AC后,疲劳性能得到再次提高;"EAM+SMA"的组合具有较好的抗疲劳性能,同时满足长寿命桥面铺装的结构最优设

  3. Assessment of Historic Concrete and Masonry by Broadband Vibration Testing

    Science.gov (United States)

    2010-08-01

    reinforcement Voids Reinforcement corrosion 3 Beams: Voids Areas of segregation (in concrete placed without proper controls, the cement paste...of bond between wythes cracking environmental deterioration of masonry units. Brick masonry ( veneer ): Most problems visible to inspection

  4. Damage of Concrete Parking Aprons From Auxiliary Power Unit (APU) exhaust and Spilled Jet Oils

    Science.gov (United States)

    1992-04-01

    attacking the sulphoaluminates as well. Finally, the Portland cement binder may have to be replaced by a neutral material (pH of 7) such as polymer concrete... sulphoaluminates (8) as well. Finally, the Portland cement binder may have to be replaced by a neutral material (pH of 7) such as polymer concrete or

  5. An alternative approach to estimate the W/C ratio of hardened concrete using image analysis

    NARCIS (Netherlands)

    Valcke, S.; Nijland, T.G.; Larbi, J.A.

    2009-01-01

    The water cement (w/c) ratio is a typical quality parameter for concrete. The NT Build 361 Nordtest method is a standard for estimating the w/c ratio in hardened concrete and is based on the relationship between the ilc ratio and the capillary porosity in the cement paste. The latter can be estimate

  6. Self-cleaning geopolymer concrete - A review

    Science.gov (United States)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  7. Micro Environmental Concrete

    Science.gov (United States)

    Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.

    Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

  8. 混凝土与水泥制品行业上半年继续领跑建材工业%The First Half of 2011 for Concrete and Cement Products Industry: Go on Leading the Building Materials Industry Growth

    Institute of Scientific and Technical Information of China (English)

    沈冰

    2011-01-01

    今年以来,全社会固定资产投资依然保持较快增长,意味着混凝土与水泥制品行业生产与经济增长的外在动力依然强劲.上半年,混凝土与水泥制品行业经济运行延续了上年平稳较快发展的态势,行业主要产品和经济效益实现平稳较快增长,继续领跑建材工业.The fixed assets investment growth remained fast in the first half of 2011,meaning the driving force of concrete and cement products production and economic growth still strong.The performance of the concrete and cement products industry maintained the momentum of the steady and rapid development in the first half of the year;the output of main products grew steadily as well as the profit making.It continued to lead the growth of the building materials industry.

  9. Applications and Properties of Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Amit Rai1 ,

    2014-05-01

    Full Text Available In conventional concrete, micro-cracks develop before structure is loaded because of drying shrinkage and other causes of volume change. When the structure is loaded, the micro cracks open up and propagate because of development of such micro-cracks, results in inelastic deformation in concrete. Fibre reinforced concrete (FRC is cementing concrete reinforced mixture with more or less randomly distributed small fibres. In the FRC, a numbers of small fibres are dispersed and distributed randomly in the concrete at the time of mixing, and thus improve concrete properties in all directions. The fibers help to transfer load to the internal micro cracks. FRC is cement based composite material that has been developed in recent years. It has been successfully used in construction with its excellent flexural-tensile strength, resistance to spitting, impact resistance and excellent permeability and frost resistance. It is an effective way to increase toughness, shock resistance and resistance to plastic shrinkage cracking of the mortar. These fibers have many benefits. Steel fibers can improve the structural strength to reduce in the heavy steel reinforcement requirement. Freeze thaw resistance of the concrete is improved. Durability of the concrete is improved to reduce in the crack widths. Polypropylene and Nylon fibers are used to improve the impact resistance. Many developments have been made in the fiber reinforced concrete.

  10. Experimental Study on Measurement of Carbonation Depth of Concrete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the test results, the differences of the carbonized depth of concrete measured by phenolphthalein indicator and rainbow indicator were discussed, the effects of the water to cement ratio of concrete, the carbonized age and the relative humidity of environment on the carbonized depth of concrete and the depth of half-carbonized zone corresponding to green zone measured by rainbow indicator were also analyzed.It is proved that the depth measured by phenolphthalein indicator is always smaller than that measured by rainbow indicator, and the half-carbonized zone can only be measured by rainbow indicator. The carbonized and half-carbonized depths of concrete are influenced by the carbonation age, the water to cement ratio of concrete and the relative humidity of environment. It is suggested that the phenolphthalein indicator can be used to measure the carbonized depth of concrete when the strength grade of concrete is below C45, otherwise, the rainbow indicator should be utilized.

  11. Salado mass concrete: Mixture development and preliminary characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wakeley, L.D.; Ernzen, J.J.; Neeley, B.D. [Army Engineer Waterways Experiment Station, Vicksburg, MS (United States). Structures Lab.; Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States)

    1994-06-01

    A salt-saturated concrete proportioned with Class H oilwell cement, Class F fly ash, and a shrinkage compensating component was developed to meet performance requirements for mass placement as seal components at the Waste Isolation Pilot Plant. Target properties of the concrete included 8-in. slump 3 hr after mixing, no aggregate segregation, heat rise of < 25{degrees}F 4 hr after mixing, compressive strength of 4,500 psi at 180 days, minimal volume change, and probable geochemical stability for repository conditions. Thermal and mechanical properties of promising candidate concrete mixtures were measured. Modulus of elasticity and creep behavior were similar to those of ordinary portland cement mass concretes. Thermal expansion for the salt-saturated concrete developed here was typical of ordinary concrete with similar silicate aggregates. Thermal conductivity, diffusivity, and specific heat approximated values measured for other mass concretes and were similar to values of the host salt rock.

  12. Recycling of PET bottles as fine aggregate in concrete.

    Science.gov (United States)

    Frigione, Mariaenrica

    2010-06-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  13. Effect of Naphthalene Water Reducer on the Corrosion Behavior of Reinforcing Steel in Hardened Cement Paste and Simulated Concrete Pore Solution%萘系减水剂对硬化水泥浆体及孔隙液中钢筋腐蚀的影响

    Institute of Scientific and Technical Information of China (English)

    唐聿明; 张杰; 左禹

    2009-01-01

    Hardened cement paste and simulated concrete pore solution were prepared.The effects of naphthalene water reducer added in the simulated concrete pore solution and hardened cement paste on the corrosion behavior of reinforcing steels were studied.Results show that naphthalene water reducer can slightly accelerate the corrosion of the reinforcing steel in the simulated concrete pore solution.However,the addition of the naphthalene water reducer up to 0.5% in hardened cement paste led to decrease of the corrosion rate of the reinforcing steel,and the antirusting ability of naphthalene water reducer for the reinforcing steel increased with increasing time.The reasons may be that the introduction of naphthalene water reducer contributed to reduced amount of pores and increased the density of the hardened cement paste,hence inhibiting the corrosion of the reinforcing steel.%为了研究外加剂对混凝土中钢筋腐蚀的影响,模拟了混凝土孔隙液及制备了硬化水泥浆体,研究了添加不同含量的萘系减水剂对钢筋腐蚀的影响.结果表明:在模拟混凝土孔隙液中加入萘系减水剂对钢筋腐蚀有轻微的促进作用,当减水剂含量达到一定值时腐蚀增大的趋势就会消失;在硬化水泥浆体中加入萘系减水剂可以减缓钢筋的腐蚀,添加0.5%萘系减水剂阻锈效果最明显,且随着时间的延长,萘系减水剂对硬化水泥浆体中钢筋的阻锈效果增加;加入减水剂增强了硬化水泥浆体的密实性,从而减缓了钢筋的腐蚀.

  14. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  15. Engineering Properties of Alkali-Activated Fly Ash Concrete

    OpenAIRE

    2006-01-01

    This paper reports the results of experimental research on certain engineering properties of a new (portland cement-free) concrete made with alkali-activated fly ash. Laboratory tests were conducted to determine its (bending and compression) mechanical strength, modulus of elasticity, bond strength, and shrinkage. The results show that mortar and concrete made with portland cement-free activated fly ash develop a high mechanical strength in short periods of time, have a moderate modulus of el...

  16. [In situ measurement of the permeability of concrete by FTIR-MIR].

    Science.gov (United States)

    Lin, Jun-ren; Lin, Zhong-yu; Du, Rong-gui; Lin, Chang-jian

    2011-05-01

    Fourier transform infrared spectroscopy with multiple internal reflection mode (FTIR-MIR) has been applied for the first time to measure the permeability of concrete. The effect of water-cement ratio and curing time on the microstructure and permeability of concrete was studied. Also, the penetration process of H2O and SO4(2-) through the concrete specimens was investigated. The results indicated that the movement of H2O through unsaturated concrete was mainly caused by capillary suction and the movement of SO4(2-) through unsaturated concrete should take into account diffusion, advection caused by a capillary suction flow and the reaction between SO4(2-) and the cement hydration products. The permeability of concrete was determined by its microstructure. With the decrease in water-cement ratio and the increase in curing time, the porosity and the connectivity of pores in concrete decreased, which resulted in the decrease of concrete permeability.

  17. Designing concrete for durability

    Directory of Open Access Journals (Sweden)

    Boyd, A. J.

    2001-12-01

    Full Text Available Some of the factors affecting the durability of modern concrete structures are discussed, with an emphasis on the problems caused by modern portland cements. This is followed by a description of some concrete durability issues of current interest, such as plastic shrinkage, seawater attack, and sulfate attack. The strategies for testing for durability are also discussed. It is concluded that, to produce durable concretes, a holistic approach to concrete construction must be adopted.

    Se discuten algunos de los factores que influyen en la durabilidad de las estructuras de hormigón modernas, haciendo énfasis en los problemas causados por el cemento Portland. A esto sigue una descripción de algunas cuestiones de interés general de la durabilidad del hormigón tales como la retracción plástica, el ataque por agua de mar y el ataque por sulfatos. Se discuten también las estrategias de los ensayos de durabilidad. Se concluye que para producir hormigones durables se debe adoptar un enfoque holístico de la construcción con hormigón.

  18. Damage model of fresh concrete in sulphate environment

    Institute of Scientific and Technical Information of China (English)

    张敬书; 张银华; 冯立平; 金德保; 汪朝成; 董庆友

    2015-01-01

    A model of damage to fresh concrete in a corrosive sulphate environment was formulated to investigate how and why the strength of corroded concrete changes over time. First, a corroded concrete block was divided into three regions:an expanded and dense region;a crack-development region;and a noncorroded region. Second, based on the thickness of the surface corrosion layer and the rate of loss of compressive strength of the corroding region, a computational model of the concrete blocks’ corrosion-resistance coefficient of compressive strength in a sulphate environment was generated. Third, experimental tests of the corrosion of concrete were conducted by immersing specimens in a corrosive medium for 270 d. A comparison of the experimental results with the computational formulae shows that the calculation results and test results are in good agreement. A parameter analysis reveals that the corrosion reaction plays a major role in the corrosion of fresh concrete containing ordinary Portland cement, but the diffusion of the corrosion medium plays a major role in the corrosion of concrete mixtures containing fly ash and sulphate-resistant cement. Fresh concrete with a high water-to-cement ratio shows high performance during the whole experiment process whereas fresh concrete with a low water-to-cement ratio shows poor performance during the late experiment period.

  19. BEHAVIOUR OF LIGHTWEIGHT CONCRETE CONTAINING PERIWINKLE SHELLS AT ELEVATED TEMPERATURE

    Directory of Open Access Journals (Sweden)

    F. FALADE

    2010-12-01

    Full Text Available This study presents the results of the investigation of the response of lightweight concrete to elevated temperature. Available literature indicates that research works have not been carried out in this area. The variables are: mix proportion, water/cement ratio, curing age and temperature. The parameters that were measured are: compressive strength, density and bond characteristics of the concrete matrix. The results showed that the compressive strength of concrete decreased with increase in water/cement ratio and temperature but increased with increase in curing age and cement content while the density decreased with increase in temperature. The bond between the concrete matrix also decreased as the temperature increased. Lightweight concrete containing periwinkle shells is only suitable for structures that will be subjected to temperature less than 300oC.

  20. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    Science.gov (United States)

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  1. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.

    Science.gov (United States)

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-07-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.

  2. Effects of Thaumasite Formation on the Performance of Portland-limestone Concrete Stored in Magnesium Sulfate Solution

    Institute of Scientific and Technical Information of China (English)

    GAO Lixiong; YAO Yan; WANG Ling

    2005-01-01

    The influence of thaumasite formation on the performance of Portland- limestone cement concrete stored in magnesium sulfate solution was studied. The experimental results show that the deterioration of Portlandlimestone cement concrete is higher than that of Portland cement concrete. The more the content of limestone, the more serious the deterioration of concrete, and also the lower the temperature, the earlier the deterioration of concrete. Thaumasite was detected to form in the Portland-limestone pastes when stored in 10wt% MgSO4 solution at 3- 10 ℃ and it was easy to form at lower temperatures.

  3. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  4. Topics in Cement and Concrete Research

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    2006-01-01

    In recent decades, the construction sector has faced many changes. One of these changes is the shift in the role of national government from one-sided practices in which the government was solely responsible for strategic and long-term spatial planning to a multi-actor and multi-level arena. One out

  5. Use of metallic fibers in concretes

    Directory of Open Access Journals (Sweden)

    Kherbache Souad

    2014-04-01

    Full Text Available The addition of a waste (fibers in construction materials, particularly, the concretes is a technique increasingly used, for several reasons, either ecological, or economic, or to improve some properties in a fresh or hardened state. In our work we studied the behavior of the concrete and the mortar containing metallic fibers resulting from the unit BCR which is in Bordj-Menaiel in Algeria (metallic fibers resulting from the rejection at the end of the domestic operation of silvering of the tools and which is stored in plastic bags which are preserved in metal containers. Our work consists to study the behavior of the concretes and the mortars containing these fibers of cement substitution. We noted that the use of these fibers in the concretes in substitution of cement decreases its of compressive strength and flexural strength but to 10% of waste these strength remain acceptable.

  6. DEVELOPING A NEW GENERATION OF HIGH PERFORMANCE COMPOSITE CEMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the different components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast-furnace slag, high grade fly ash, silica fume etc.

  7. Deteriorated Concrete from Liner of WIPP Waste Shaft

    Science.gov (United States)

    1992-06-01

    for US Department of Energy. Bensted, J. 1989. "Novel Cements - Sorel and Related Chemical Cements," il Cemento , Vol 86, No. 4, pp 217-228. Ben-Yair, M...Waste Isolation Pilot Plant. Massazza, F. 1985. "Concrete Resistance to Sea Water and Marine Environment," il Cemento , Vol 82, No. 1, pp 3-26. Mather

  8. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  9. Further Study of the Dynamic Tensile Failure of Concrete.

    Science.gov (United States)

    1988-04-01

    Concrete and Cement Materials, Wright-Patterson AFB, OH (October 1986). 6. E. K. Attiogbe and D. Darwin , "Submicroscopic Cracking of Cement Paste and... Cartwright , W. Heckman, and B. Bain is gratefully tion. The input waveforms, measured at _+ 7.6 cm acknowledged. from the midpoint of the rod, are

  10. Correlation Between Initial Calcium Oxide Content of Slag Blended Cement and Mortar Leaching Mass Loss%矿渣混合水泥中初始氧化钙含量与砂浆溶蚀质量损失的关系

    Institute of Scientific and Technical Information of China (English)

    王培铭; 庞敏; 刘贤萍

    2016-01-01

    In the accelerated corrosion 142 d, the leaching mass loss behavior of Portland cement and slag blended cement of three different slag contents (50%, 70% and 90%, in mass fraction) mortar with two different pre-cured ages (28 and 180 d) was investigated. The initial CaO content, calcium hydroxide (CH) content and total hydration degree were analyzed. Based on the relation between CH content and initial CaO content in cement as well as mass loss, the correlation between the initial CaO content and mass loss, and the effect of total hydration degree on mass loss were studied. The results show that the mass loss of all the specimens of two different pre-cured age increase with the increase of leaching time (after 84 d increased slowly), decrease with the increase of addition of slag in blended cement. That is slag can improve the corrosion resistance performance, the fundamental cause of above improvement lies in slag reduced the CH content and hydration degree of blended cement paste. The mass loss with leaching time of 84 d and CH content (0 except) in cement paste, as well as the hydration degree (only slag blended cement) has the following linear relationship respectively. The former is y=0.207 5x–0.015 7, the latter is y=0.029 6x–0.125 4. The mass loss with leaching time of 84 d and initial CaO content in cement has a logarithmic relationship. Pre-cured 28 d, the regression equation is y=6.059ln(x)–22.164. Pre-cured 180 d, the regression equation is y=7.612 3ln(x)–27.656. Based on the logarithmic relationship, cement mortar corrosion resistance can be preliminary judged.%研究了2个预养护龄期(28和180 d)的硅酸盐水泥和3个矿渣粉掺量(50%、70%和90%)的混合水泥砂浆在加速溶蚀142 d 内的溶蚀质量损失规律,分析了硅酸盐水泥和混合水泥初始 CaO 含量、浆体中氢氧化钙(CH)含量和水化程度,基于浆体中 CH 含量与水泥初始 CaO 含量,以及溶蚀质量损失之间的

  11. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  12. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  13. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding h