WorldWideScience

Sample records for bleached kraft pulp

  1. Multivariate Analysis of Hemicelluloses in Bleached Kraft Pulp Using Infrared Spectroscopy.

    Science.gov (United States)

    Chen, Zhiwen; Hu, Thomas Q; Jang, Ho Fan; Grant, Edward

    2016-12-01

    The hemicellulose composition of a pulp significantly affects its chemical and physical properties and thus represents an important process control variable. However, complicated steps of sample preparation make standard methods for the carbohydrate analysis of pulp samples, such as high performance liquid chromatography (HPLC), expensive and time-consuming. In contrast, pulp analysis by attenuated total internal reflection Fourier transform infrared spectroscopy (ATR FT-IR) requires little sample preparation. Here we show that ATR FT-IR with discrete wavelet transform (DWT) and standard normal variate (SNV) spectral preprocessing offers a convenient means for the qualitative and quantitative analysis of hemicelluloses in bleached kraft pulp and alkaline treated kraft pulp. The pulp samples investigated include bleached softwood kraft pulps, bleached hardwood kraft pulps, and their mixtures, as obtained from Canadian industry mills or blended in a lab, and bleached kraft pulp samples treated with 0-6% NaOH solutions. In the principal component analysis (PCA) of these spectra, we find the potential both to differentiate all pulps on the basis of hemicellulose compositions and to distinguish bleached hardwood pulps by species. Partial least squares (PLS) multivariate analysis gives a 0.442 wt% root mean square errors of prediction (RMSEP) for the prediction of xylan content and 0.233 wt% RMSEP for the prediction of mannan content. These data all support the idea that ATR FT-IR has a great potential to rapidly and accurately predict the content of xylan and mannan for bleached kraft pulps (softwood, hardwood, and their mixtures) in industry. However, the prediction of xylan and mannan concentrations presented a difficulty for pulp samples with modified cellulose crystalline structure. © The Author(s) 2016.

  2. Removal of COD and color loads in bleached kraft pulp effluents by bottom ashes from boilers.

    Science.gov (United States)

    Van Tran, A

    2008-07-01

    The effectiveness of the bottom ashes from biomass and coal-fired boilers in removing chemical oxygen demand (COD) and colorloads in effluents of a kraft pulp bleachery plant is investigated. The effluents tested are those of the sulfuric acid treatment (A stage) of a hardwood kraft pulp, and of the first acidic (chlorine or chlorine dioxide) and second alkaline (extraction) stages in the chlorine and elemental chlorine-free (ECF) bleaching lines of hardwood and softwood kraft pulps. The coal-fired boiler's bottom ashes are unable to remove either COD or color load in the bleached kraft pulp effluents. However, the bottom ashes of the biomass boiler are effective in removing COD and color loads of the acidic and alkaline effluents irrespective of the bleaching process or wood species. In particular, these ashes increase the pH of all the effluents examined.

  3. Study on the Modification of Bleached Eucalyptus Kraft Pulp Using Birch Xylan

    Science.gov (United States)

    Wenjia Han; Chuanshan Zhao; Thomas Elder; Rendang Yang; Dongho Kim; Yunqiao Pu; Jeffery Hsieh; Arthur J. Ragauskas

    2012-01-01

    In this study, birch xylan was deposited onto elementally chlorine free (ECF) bleached eucalyptus kraft pulp, and the corresponding changes in physical properties were determined. An aqueous 5% birch xylan solution at pH 9 was added to 5 wt% slurry of bleached kraft eucalyptus fibers, with stirring at 70 C for 15 min after which the pH was adjusted to 5–6. The xylan...

  4. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor

    Science.gov (United States)

    Addleman, Katherine; Archibald, Frederick

    1993-01-01

    The ability of 10 dikaryotic and 20 monokaryotic strains of Trametes (Coriolus) versicolor to bleach and delignify hardwood and softwood kraft pulps was assessed. A dikaryon (52P) and two of its mating-compatible monokaryons (52J and 52D) derived via protoplasting were compared. All three regularly bleached hardwood kraft pulp more than 20 brightness points (International Standards Organization) in 5 days and softwood kraft pulp the same amount in 12 days. Delignification (kappa number reduction) by the dikaryon and the monokaryons was similar, but the growth of the monokaryons was slower. Insoluble dark pigments were commonly found in the mycelium, medium, and pulp of the dikaryon only. Laccase and manganese peroxidase (MnP) but not lignin peroxidase activities were secreted during bleaching by all three strains. Their laccase and MnP isozyme patterns were compared on native gels. No segregation of isozyme bands between the monokaryons was found. Hardwood kraft pulp appeared to adsorb several laccase isozyme bands. One MnP isozyme (pI, 3.2) was secreted in the presence of pulp by all three strains, but a second (pI, 4.9) was produced only by 52P. A lower level of soluble MnP activity in one monokaryon (52D) was associated with reduced bleaching ability and a lower level of methanol production. Since monokaryon 52J bleached pulp better than its parent dikaryon 52P, especially per unit of biomass, this genetically simpler monokaryon will be the preferred subject for further genetic manipulation and improvement of fungal pulp biological bleaching. Images PMID:16348851

  5. Ozone bleaching of South African Eucalyptus grandis kraft pulps containing high levels of hexenuronic acids

    CSIR Research Space (South Africa)

    Andrew, JE

    2013-08-01

    Full Text Available was a preliminary investigation into the use of ozone in bleaching sequences for kraft pulps produced from South African Eucalyptus grandis wood chips, which typically contained high amounts of hexenuronic acids (HexA). The objective of the study...

  6. Kinetics of Strong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs)

    Science.gov (United States)

    Qianqian Wang; Xuebing Zhao; J.Y. Zhu

    2014-01-01

    Cellulose nanocrytals (CNCs) are predominantly produced using the traditional strong acid hydrolysis process. In most reported studies, the typical CNC yield is low (approximately 30%) despite process optimization. This study investigated the hydrolysis of a bleached kraft eucalyptus pulp using sulfuric acid between 50 and 64 wt % at temperatures of 35−80 °C...

  7. Laccase for biobleaching of eucalypt kraft pulp by means of a modified industrial bleaching sequence.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2012-01-01

    Biobleaching of kraft pulp is a possible application of laccase, but it has not been described in detail for complete industrial bleaching sequences yet. Therefore, in this work, the biobleaching of Eucalyptus globulus kraft pulp was performed using a modified industrial totally chlorine-free sequence. The modification consisted in the substitution of an enzymatic delignification stage, based on the application of laccase from Trametes villosa, for the first alkaline extraction one. The enzymatic stage was performed with several synthetic and natural mediators, namely 1-hydroxybenzotriazole (HBT), violuric acid (VA), methyl syringate, and syringaldehyde. Several pulp properties were analyzed after each stage of the bleaching process--kappa number, ISO brightness, viscosity, and optical properties of CIEL*a*b* system. The new biobleaching sequence improved the pulp properties, in comparison to the conventional bleaching sequence, if HBT or VA was used as mediators. VA was selected as the best mediator of those tested and the effect of its concentration in the enzymatic stage was subsequently studied. Reducing the initial concentration by 30%, the same pulp quality was obtained, but if the reduction attained 60%, an important decrease in pulp integrity was detected. The modified bleaching sequence could improve the bleached pulp properties (kappa number 10%, ISO brightness 1%, and viscosity 5%) in comparison to the mill sequence. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  8. Use of xylanase in the TCF bleaching of eucalyptus kraft pulp

    Energy Technology Data Exchange (ETDEWEB)

    Roncero, B.; Vidal, T.; Torres, A.L.; Colom, J.F. [Universitat Politecnia de Catalunya, Terrassa (Spain)

    1996-10-01

    Environmental pressures are forcing the pulp and paper industry to develop new technologies that reduce or eliminate the presence of various contaminants in bleaching plant effluents. Oxygen delignification techniques, replacement of elemental chlorine with chlorine dioxide, ozone, hydrogen peroxide and new agents as well as the use of xylanase enzymes for biobleaching, reduce o eliminate the production of chlorinated organic substances. This paper compares the sequence XOZP with OZP in the bleaching of Eucalyptus globulus kraft pulps. It has been studied the influence of enzymatic treatment on the consumption of bleaching agents: ozone and hydrogen peroxide. Chemical, physical, optical and refining properties of pulps, as well as COD and colour of effluent are also studied. The xylanase treatment is positive and it is possible to manufacture fully bleached pulps at high brightness and viscosity without using chlorine compounds at a low ozone and hydrogen peroxide consumption.

  9. Recycling of water in bleached kraft pulp mills by using electrodialysis.

    Energy Technology Data Exchange (ETDEWEB)

    Fracaro, A. T.; Henry, M. P.; Pfromm, P.; Tsai, S.-P.

    1999-01-15

    Conservation of water in bleached kraft pulp mills by recycling the bleach plant effluent directly without treatment will cause accumulation of inorganic ''non-process elements'' (NPEs) and serious operational problems. In this work, an electrodialysis process is being developed for recycling the acidic bleach plant effluent of bleached kraft pulp mills. In this process, electrodialysis functions as a selective kidney to remove inorganic NPEs from bleach plant effluents, before they reach the recovery cycle. Acidic bleach plant effluents from several mills using bleaching sequences based on chlorine dioxide were characterized. The total dissolved solids were mostly inorganic NPEs. Sodium was the predominant cation and chloride was present at significant levels in all these effluents. In laboratory electrodialysis experiments, selective removal of chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently. Rejection of organic compounds was up to 98%. Electrodialysis was shown to be resistant to membrane fouling and scaling, in a 100-hour laboratory experiment. Based on a model mill with 1,000 ton/day pulp production, the economic analysis suggests that the energy cost of electrodialysis is less than $200/day, and the capital cost of the stack is about $500,000.

  10. Laccase-HBT bleaching of eucalyptus kraft pulp: influence of the operating conditions.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2008-12-01

    Different operating conditions (viz. pulp consistency, oxygen pressure and treatment time) in the biobleaching of eucalyptus kraft pulp with the laccase-HBT system was tested in order to describe their effect and normalize a biobleaching protocol. A high O(2) pressure (0.6MPa) was found to result in improved laccase-assisted delignification of the pulp. Also, a high pulp consistency (10%) and a short treatment time (2h) proved the best choices with a view to obtaining good pulp properties (kappa number and ISO brightness) under essentially mild conditions. The laccase-HBT treatment was found to result in slight delignification (in the form of a 20-27% decrease in kappa number); however, an alkaline extraction stage raised delignification to 41-45%, a much higher level than those obtained in the control tests (16-23%). Also, the use of hydrogen peroxide in the extraction stage resulted in improved brightness (14-19%), but in scarcely improved delignification (4-7%). Treating the pulp with the laccase-HBT system reduced the amount of hydrogen peroxide required for subsequent alkaline bleaching by a factor of 3-4 relative to control tests.

  11. Bleaching of kraft pulps produced from green liquor pre-hydrolyzed South African Eucalyptus grandis wood chips

    CSIR Research Space (South Africa)

    Andrew, JE

    2014-01-01

    Full Text Available The effect of hemicellulose pre-extraction of South African Eucalyptus grandis wood chips using green liquor, on subsequent kraft pulping and bleaching processes was studied. This was done in the context of a biorefinery mill producing both ethanol...

  12. Bleached kraft pulp production from Pinus tecunumanii (Eguiluz e Perry Produção de polpa kraft branqueada de Pinus tecunumanii (Eguiluz e Perry

    Directory of Open Access Journals (Sweden)

    Leonel F. Torres

    2005-06-01

    Full Text Available The use of 12-year-old Pinus tecunumanii (Eguiluz e Perry grown in Colombia was evaluated for bleached kraft pulp production. Kraft pulps of kappa number 30 ± 1 were produced, and oxygen delignified and bleached to 90% ISO with ECF processes. The bleached pulps produced under optimum conditions were evaluated with regard to their strength properties. Pinus tecunumanii wood required low effective alkali charge to reach the desired kappa number and the unbleached pulp showed high oxygen delignification efficiency and bleachability when a OD(EODED sequence was used. The bleached pulps presented good physical-mechanical properties, which are comparable to those obtained with more traditional pines such as Pinus taeda and Pinus radiata. The results demonstrate that this tropical pine species is a suitable raw material for bleached kraft pulp productionForam avaliadas amostras de Pinus tecunumanii de (Eguiluz e Perry com 12 anos de idade procedente da Colômbia, para produção de polpa de kraft branqueada. Produziram-se polpas kraft com número kappa 30±1, deslignificada com oxigênio e branqueada a 90% ISO por processo ECF. As polpas branqueadas foram produzidas em condições ótimas e avaliadas com relação às suas propriedades de resistência. A madeira de Pinus tecunumanii exigiu baixa carga de álcali efetivo para alcançar o número kappa desejado, e a polpa marrom mostrou eficiência na deslignificação com oxigênio e alta branqueabilidade quando submetida à seqüência OD(EODED. As polpas branqueadas apresentaram boas propriedades físico-mecânicas, em comparação com aquelas obtidas das espécies tradicionais de Pinus, como o Pinus taeda e o Pinus radiata. Os resultados indicaram que essa espécie de pinus tropical é uma matéria-prima satisfatória para produção de polpa de kraft branqueada.

  13. Alkaline peroxide treatment of ECF bleached softwood kraft pulps: part 2. effect of increased fiber charge on refining, wet-end application, and hornification

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Jeffery S. Hsieh; Arthur J. Ragauskas

    2007-01-01

    The effect of increased fiber charge on refining, cationic starch adsorption, and hornification was examined. Two pulps were investigated: (1) a softwood (SW) kraft pulp (KP) which was bleached elementally chlorine-free (ECF) and sewed as control; and (2) a control pulp treated with alkaline peroxide, which had a higher fiber charge. It was shown that increased fiber...

  14. THE EFFECT OF WATER REDUCTION IN KRAFT PULP WASHING IN ECF BLEACHING

    Directory of Open Access Journals (Sweden)

    Tânia Cristina Frigieri

    Full Text Available ABSTRACT The main objective of this work was to study the technical viability of using the cellulose bleaching effluent, at several stages of the process, seeking fresh water reduction in pulp washing, and evaluating its effect on pulp quality. Eucalyptus spp. industrial cellulosic pulp with oxygen was used in this experiment. The same bleaching sequence D(E+PDP was performed ten times, under the same conditions (temperature, consistency and time. Counter current washing was used in the bleaching stages, and each sequence was carried out with different washing factors: 9, 6, 3, 0 m3 of distilled water/ton of pulp, trying to reach brightness of 92 ± 0,5% ISO. The ten sequences sought to achieve the stability of the effluent organic load, measured by the chemical oxygen demand (COD. Then, the COD results were compared to the brightness ones from the bleached pulp. The evaluated results from the ten sequences and four different washings showed an increasing in COD due to the organic load accumulation, resulting from the reuse of effluent from previous sequences. This COD increasing provided the lower brightness results during the cycles, besides the water reduction, evidencing the necessity of washing between bleaching stages. In this study, the obtained result for the pulp washing up to 3m3/t was tolerable and even recommended. On the other hand, the pulp without any washing (0m3/t, due to the lack of enough brightness, it is commercially unviable.

  15. Biological treatment of the effluent from a bleached kraft pulp mill using basidiomycete and zygomycete fungi.

    Science.gov (United States)

    Freitas, A C; Ferreira, F; Costa, A M; Pereira, R; Antunes, S C; Gonçalves, F; Rocha-Santos, T A P; Diniz, M S; Castro, L; Peres, I; Duarte, A C

    2009-05-01

    Three white-rot fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium) and one soft-rot fungi (Rhizopus oryzae) species confirmed their potential for future applications in the biological treatment of effluents derived from the secondary treatment of a bleached kraft pulp mill processing Eucalyptus globulus. Among the four species P. sajor caju and R. oryzae were the most effective in the biodegradation of organic compounds present in the effluent, being responsible for the reduction of relative absorbance (25-46% at 250 nm and 72-74% at 465 nm) and of chemical oxygen demand levels (74 to 81%) after 10 days of incubation. Laccase (Lac), lignin (Lip) and manganese peroxidases (MnP) expression varied among fungal species, where Lac and LiP activities were correlated with the degradation of organic compounds in the effluent treated with P. sajor caju. The first two axes of a principal component analysis explained 88.9% of the total variation among sub-samples treated with the four fungus species, after different incubation periods. All the variables measured contributed positively to the first component except for the MnP enzyme activity which was the only variable contributing negatively to the first component. Absorbances at 465 nm, LiP and Lac enzyme activities were the variables with more weight on the second component. P. sajor caju revealed to be the only species able to perform the biological treatment without promoting an increment in the toxicity of the effluent to the Vibrio fischeri, as it was assessed by the Microtox assay. The opposite was recorded for the treatments with the other three species of fungus. EC(50-5 min) values ranging between 28 and 57% (effluent concentrations) were recorded even after 10 to 13 days of treatment with P. chrysosporium, R. oryzae or with T. versicolor.

  16. Alkaline peroxide treatment of ECF bleached softwood kraft pulps. Part 1. characterizing the effect of alkaline peroxide treatment on carboxyl groups of fibers

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Arthur J. Ragauskas

    2007-01-01

    The influence of alkaline peroxide treatment has been characterized on elementally chlorine-free (ECF) bleached softwood (SW) kraft pulp. The results indicate that fiber charge increased with an increase in peroxide charge: a maximum fiber charge increment of 16.6% was obtained with 8.0% more peroxide charge on oven-dried (0.d.) pulp at 60.0°C. Two primary bleaching...

  17. Lignin Peroxidase Activity Is Not Important in Biological Bleaching and Delignification of Unbleached Kraft Pulp by Trametes versicolor

    Science.gov (United States)

    Archibald, Frederick S.

    1992-01-01

    The discovery in 1983 of fungal lignin peroxidases able to catalyze the oxidation of nonphenolic aromatic lignin model compounds and release some CO2 from lignin has been seen as a major advance in understanding how fungi degrade lignin. Recently, the fungus Trametes versicolor was shown to be capable of substantial decolorization and delignification of unbleached industrial kraft pulps over 2 to 5 days. The role, if any, of lignin peroxidase in this biobleaching was therefore examined. Several different assays indicated that T. versicolor can produce and secrete peroxidase proteins, but only under certain culture conditions. However, work employing a new lignin peroxidase inhibitor (metavanadate ions) and a new lignin peroxidase assay using the dye azure B indicated that secreted lignin peroxidases do not play a role in the T. versicolor pulp-bleaching system. Oxidative activity capable of degrading 2-keto-4-methiolbutyric acid (KMB) appeared unique to ligninolytic fungi and always accompanied pulp biobleaching. PMID:16348775

  18. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp.

    Science.gov (United States)

    Kumar, Sharad; Haq, Izharul; Prakash, Jyoti; Singh, Sudheer Kumar; Mishra, Shivaker; Raj, Abhay

    2017-05-01

    Xylanases have important industrial applications but are most extensively utilized in the pulp and paper industry as a pre-bleaching agent. We characterized a xylanase from Bacillus amyloliquefaciens strain SK-3 and studied it for kraft pulp bleaching. The purified enzyme had a molecular weight of ~50 kDa with optimal activity at pH 9.0 and 50 °C. The enzyme showed good activity retention (85%) after 2 h incubation at 50 °C and pH 9.0. This enzyme obeyed Michaelis-Menten kinetics with regard to beechwood xylan with K m and V max values of 5.6 mg/ml, 433 μM/min/mg proteins, respectively. The enzyme activity was stimulated by Mn 2+ , Ca 2+ and Fe 2+ metal ions. Further, it also showed good tolerance to phenolics (2 mM) in the presence of syringic acid (no loss), cinnamic acid (97%), benzoic acid (94%) and phenol (97%) activity retention. The thermostability of xylanase was increased by 6.5-fold in presence of sorbitol (0.75 M). Further, pulp treated with 20U/g of xylanase (20IU/g) alone and with sorbitol (0.75M) reduced kappa number by 18.3 and 23.8%, respectively after 3 h reaction. In summary, presence of xylanase shows good pulp-bleaching activity, good tolerance to phenolics, lignin and metal ions and is amenable to thermostability improvement by addition of polyols. The SEM image showed significant changes on the surface of xylanase-treated pulp fiber as a result of xylan hydrolysis.

  19. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    Science.gov (United States)

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  20. Industrial hygiene aspects of a sampling survey at a bleached-kraft pulp mill in British Columbia.

    Science.gov (United States)

    Astrakianakis, G; Svirchev, L; Tang, C; Janssen, R; Anderson, J; Band, P; Le, N; Fang, R; Bert, J

    1998-10-01

    To validate exposure estimates used to investigate correlations between exposure and cancer risk, 1678 personal measurements were collected for 46 job titles during 73 day shifts at a bleached-kraft pulp mill. Measurements included shift-long average and short-term exposures to carbon monoxide, chlorine dioxide (ClO2), and hydrogen sulfide; and shift-long average exposures to calcium oxide and wood dust (WD). Overall results indicate low levels of exposure with a few noteworthy exceptions. Although ClO2 was the exclusive bleaching agent, 77 area samples indicated that chlorine (Cl2), not ClO2 was present in all areas apart from the chemical preparation area (chem-prep) and during a pulp spill. The highest shift-long exposures to Cl2 were measured in the chip yard and are attributed to uncontrolled stack emissions. Finally, WD samples collected from several laborers significantly exceeded regulatory limits, with the highest exposures measured in the steam and recovery area. For short-term exposures to ClO2 in chem-prep, 12 of 17 data-logging electro-chemical sensor sample results showed at least one peak that exceeded the short-term exposure limit of 0.3 ppm. The use of data-logging equipment quantified short-term exposures that previously had been characterized only anecdotally. The peaks were correlated with tasks and upset conditions and, given their transient nature, these exceedances could not have been detected using shift-long average-based sampling devices. Since the respiratory effects of significant short-term exposures to irritant gases such as Cl2 and ClO2 are well-documented, data-logging instruments are necessary to characterize exposures in the pulp and paper industry.

  1. Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique.

    Science.gov (United States)

    Larsson, Madeleine; Truong, Xu-Bin; Björn, Annika; Ejlertsson, Jörgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

    2015-01-01

    Anaerobic digestion of alkaline kraft elemental chlorine-free bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed reactors resulted in significantly higher biogas production (250±50 vs. 120±30 NmL g [Formula: see text]) and reduction of filtered total organic carbon (fTOC) (60±5 vs. 43±6%) for wastewater from processing of hardwood (HW) compared with softwood (SW). In all cases, the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics, a stable anaerobic process was maintained with hydraulic retention times (HRTs) between 7 and 14 h. Lowering the HRT (from 13.5 to 8.5 h) did not significantly affect the process, and the stable performance at 8.5 h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation, but the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization.

  2. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    Science.gov (United States)

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  3. UV pretreatment of Alkaline Bleaching Wastewater from a Kraft Pulp and Paper Mill prior to Anaerobic Digestion in a Lab scale UASB Reactor

    OpenAIRE

    Karlsson, Marielle

    2013-01-01

    The effects of UV pretreatment on alkaline bleaching (EOP) wastewater from a kraft pulp and paper mill were investigated prior to anaerobic digestion (AD) in an upflow anaerobic sludge blanket (UASB) reactor. The aim was to enhance the methane production, increase the reduction of total organic carbon (TOC) and determine the best UV exposure time. The exposure time of 2.6 minutes partially degraded the organic material in the EOP wastewater since it generated higher biogas and methane product...

  4. Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement.

    Science.gov (United States)

    Duarte, Marta C Teixeira; da Silva, Elizete Cristina; de Bulhões Gomes, Isabel Menezes; Ponezi, Alexandre Nunes; Portugal, Edilberto Princi; Vicente, João Roberto; Davanzo, Ednilson

    2003-05-01

    The extracellular productions of beta-xylanase, beta-xylosidase, beta-glucosidase, beta-mannanase, arabinosidase, alpha-glucuronidase, alpha-galactosidase and Fpase from Bacillus pumilus CBMAI 0008 were investigated with three different xylan sources as substrate. The enzymatic profiles on birchwood, Eucalyptus grandis and oat were studied at alkaline and acidic pH conditions. B. pumilus CBMAI 0008 grown on the three carbon sources produced mainly beta-xylanase. At pH 10, the levels of xylanase were 328, 160 and 136 U/ml, for birch, oat and E. grandis, respectively. beta-Mannanase production was induced on E. grandis (5 U/ml) and arabinofuranosidase on oat (5 U/ml). Although small quantities of alpha-glucuronidase had been produced at pH 10, activity at pH 4.8 was 1.5 U/ml, higher than observed for Aspergillus sp. in literature reports. Preliminary assays carried out on E. grandis kraft pulp from an industrial paper mill (RIPASA S.A. Celulose e Papel, Limeira, SP, Brazil) showed a reduction of 0.3% of chlorine use in the pulp treated with the enzymes, resulting in increased brightness, compared to conventional bleaching. The enzymes were more efficient if applied before the initial bleaching sequence, in a non-pre-oxygenated pulp.

  5. Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp.

    Science.gov (United States)

    Moldes, D; Díaz, M; Tzanov, T; Vidal, T

    2008-11-01

    The natural phenolic compounds syringaldehyde and vanillin were compared to the synthetic mediators 1-hydroxybenzotriazole, violuric acid and promazine in terms of boosting efficiency in a laccase-assisted biobleaching of eucalyptus kraft pulp. Violuric acid and 1-hydroxybenzotriazole revealed to be the most effective mediators of the bioprocess. Nevertheless, laccase-syringaldehyde system also improved the final pulp properties (28% delignification and 63.5% ISO brightness) compared to the process without mediator (23% and 61.5% respectively), in addition to insignificant denaturation effect over laccase. The efficiency of the biobleaching process was further related to changes in non-conventionally used optical and chromatic parameters of pulp, such as (L*), chroma (C*) and dye removal index (DRI) showing good correlation. Adverse coupling reactions of the natural phenolic mediators on pulp lignin were predicted by electrochemical studies, demonstrating the complexity of the laccase-mediator reaction on pulp.

  6. Assessment of status of white sucker (Catostomus commersoni) populations exposed to bleached kraft pulp mill effluent.

    Science.gov (United States)

    Miller, David H; Tietge, Joseph E; McMaster, Mark E; Munkittrick, Kelly R; Xia, Xiangsheng; Ankley, Gerald T

    2013-07-01

    Credible ecological risk assessments often need to include analysis of population-level impacts. In the present study, a predictive model was developed to investigate population dynamics for white sucker (Catostomus commersoni) exposed to pulp mill effluent at a well-studied site in Jackfish Bay, Lake Superior, Canada. The model uniquely combines a Leslie population projection matrix and the logistic equation to translate changes in the fecundity and the age structure of a breeding population of white sucker exposed to pulp mill effluent to alterations in population growth rate. Application of this density-dependent population projection model requires construction of a life table for the organism of interest, a measure of carrying capacity, and an estimation of the effect of stressors on vital rates. A white sucker population existing at carrying capacity and subsequently exposed to pulp mill effluent equivalent to a documented exposure experienced during the period 1988 to 1994 in Jackfish Bay would be expected to exhibit a 34% to 51% annual decrease in recruitment during the first 5 yr of exposure and approach a population size of 71% of carrying capacity. The Jackfish Bay study site contains monitoring data for biochemical endpoints in white sucker, including circulating sex steroid concentrations, that could be combined with population modeling to utilize the model demonstrated at the Jackfish Bay study site for investigation of other white sucker populations at sites that are less data-rich. Copyright © 2013 SETAC.

  7. Arundo donax L. reed: new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps.

    Science.gov (United States)

    Shatalov, A A; Pereira, H

    2005-05-01

    A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.

  8. Influence of kraft pulping on carboxylate content of softwood kraft pulps

    Science.gov (United States)

    Zheng Dang; Thomas Elder; Arthur J. Ragauskas

    2006-01-01

    This study characterizes changes in fiber charge, which is the carboxylate content of fibers, for two sets of kraft pulps: (1) conventional laboratory cooked loblolly pine kraft pulps and (2) conventional pulping (CK) versus low solids pulping (LS) pulps. Laboratory kraft pulping of loblolly pine was carried out to study the influence of pulping conditions, including...

  9. Kraft pulping and ECF bleaching of Eucalyptus globulus pretreated by the white-rot fungus Ceriporiopsis subvermispora - doi: 10.4025/actascitechnol.v34i3.12410

    Directory of Open Access Journals (Sweden)

    Claudio Salazar

    2012-05-01

    Full Text Available Eucalyptus globulus wood chips were decayed by the lignin-degrading fungus Ceriporiopsis subvermispora as a pretreatment step before kraft pulping. Weight and component losses of wood after the biotreatment were the following: weight (5%, glucans (1.5%, xylans (4.3%, lignin (5.7% and extractives (57.5%. The residual amount of lignin (expressed by the kappa number in pulps from biotreated wood chips was lower than that of pulps from the undecayed control. Depending on the delignification degree, kraft biopulps presented similar or up to 4% increase in pulp yield and 20% less hexenuronic acids (HexA than control pulps. The extended delignification with O2 decreases approximately 50% of the kappa number of the pulps and increases brightness, but had no effect in HexA reduction. The bleaching steps with chlorine dioxide (D0ED1 sequence decreased the kappa number up to 97%, increased pulp brightness up to 84% ISO and decreased HexA amount up to 91%. The use of C. subvermispora in biopulping of E. globulus generated important benefits during the production of kraft pulps that are reflected in a high pulp yield, low residual lignin content, low HexA amount, high brightness and viscosity of the biopulps as compared with pulps produced from untreated wood chips.

  10. Bio-conventional bleaching of kadam kraft-AQ pulp by thermo-alkali-tolerant xylanases from two strains of Coprinellus disseminatus for extenuating adsorbable organic halides and improving strength with optical properties and energy conservation.

    Science.gov (United States)

    Lal, Mohan; Dutt, Dharm; Tyagi, C H

    2012-04-01

    Two novel thermo-alkali-tolerant crude xylanases namely MLK-01 (enzyme-A) and MLK-07 (enzyme-B) from Coprinellus disseminatus mitigated kappa numbers of Anthocephalus cadamba kraft-AQ pulps by 32.5 and 34.38%, improved brightness by 1.5 and 1.6% and viscosity by 5.75 and 6.47% after (A)XE(1) and (B)XE(1)-stages, respectively. The release of reducing sugars and chromophores was the highest during prebleaching of A. cadamba kraft-AQ pulp at enzyme doses of 5 and 10 IU/g, reaction times 90 and 120 min, reaction temperatures 75 and 65°C and consistency 10% for MLK-01 and MLK-07, respectively. MLK-07 was more efficient than MLK01 in terms of producing pulp brightness, improving mechanical strength properties and reducing pollution load. MLK-01 and MLK-07 reduced AOX by 19.51 and 42.77%, respectively at 4% chlorine demands with an increase in COD and colour due to removal of lignin carbohydrates complexes. A. cadamba kraft-AQ pulps treated with xylanases from MLK-01 to MLK-07 and followed by CEHH bleaching at half chlorine demand (2%) showed a drastic reduction in brightness with slight improvement in mechanical strength properties compared to pulp bleached at 4% chlorine demand. MLK-01 reduced AOX, COD and colour by 43.83, 39.03 and 27.71% and MLK-07 by 38.34, 40.48 and 30.77%, respectively at half chlorine demand compared to full chlorine demand (4%). pH variation during prebleaching of A. cadamba kraft-AQ pulps with strains MLK-01 and MLK-07 followed by CEHH bleaching sequences showed a decrease in pulp brightness, AOX, COD and colour with an increase in mechanical strength properties, pulp viscosity and PFI revolutions to get a beating level of 35 ± 1 °SR at full chlorine demand.

  11. Anaerobic biodegradability and toxicity of wastewaters from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps.

    NARCIS (Netherlands)

    Vidal, G.; Soto, M.; Field, J.; Mendez-Pampin, R.; Lema, J.M.

    1997-01-01

    Chlorine bleaching effluents are problematic for anaerobic wastewater treatment due to their high methanogenic toxicity and low biodegradability. Presently, alternative bleaching processes are being introduced, such as elemental chlorine-free (ECF) and total chlorine-free (TCF) bleaching. The

  12. MINERAL ELEMENTS IN WOODS OF EUCALYPTUS AND BLACK WATTLE AND ITS INFLUENCE IN A BLEACHED KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    André Fredo

    2009-09-01

    Full Text Available Effluents are one of the most important problems in a pulp mill regarding to environmental subjects. With the purpose to reduce them, the mills are closing the internal cycles and reducing the water consumption. The wood, as the most significant source of non-process elements to the system, is responsible for some troubles to the industrial process. With the aim of evaluating their intake and to offer some informations for closing the loop, the contents of Al, Ca, Cu, Fe, K, Mg, Mn, Na, Ni, and Si were analysed in Acacia mearnsii, Eucalyptus dunnii, Eucalyptus globulus globulus, Eucalyptus grandis and Eucalyptus saligna woods. Wood samples were prepared by oven burning and acidic digestion methods, following analysis by ICP (inductively coupled plasm. Using also the results from silvicultural evaluation of trees and stands, they were calculated which elements were carried out from the site in larger amounts (K, Ca, Na, Al, Mn and Si and the species which exported largest amount of these elements (Eucalyptus dunnii and Eucalyptus globulus. The species with lower growth were Eucalyptus globulus and Eucalyptus dunnii, that leads to a bigger elements input and more potential industrial troubles. It was observed a range of 3.8 (Eucalyptus grandis up to 6 (Eucalyptus dunnii kg of analised mineral elements introduced to the process per ton of umbleached pulp produced. The Acacia mearnsii showed the lower level for Fe, Mn and Ni, being useful for oxygen, ozone and peroxide bleaching. The silicon observed in woods was in low concentration although the high values of this element in industrial liquor cycle. This leads to state that there is some contamination with soil when harvesting and handling the wood. Special care must be taken with both high ash and high mineral elements species, such as Eucalyptus dunnii and Eucalyptus globulus.

  13. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually and in combi......A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually...... of anaerobic inhibitors such as adsorbable organic halogens (36 mg/L), total sulfur (170 mg/L), and resin and fatty acids (3.2 mg/L). Therefore, the total bleaching effluent from hardwood kraft pulping may be considered for full-scale anaerobic wastewater treatment, either as a singular stream or as part...... of a composite stream including other in-mill effluents....

  14. Understanding the Nature and Reactivity of Residual Lignin for Improved Pulping and Bleaching Efficiency; FINAL

    International Nuclear Information System (INIS)

    Yuan-Zong Lai

    2001-01-01

    One of the most formidable challenges in kraft pulping to produce bleached chemical pulps is how to effectively remove the last 5-10% of lignin while maintaining the fiber quality. To avoid a severe fiber degradation, kraft pulping is usually terminated in the 25-30 kappa number range and then followed by an elementally chlorine free (ECF) or a totally chlorine free (TCF) bleaching sequence to reduce the environmental impacts

  15. Understanding the Nature and Reactivity of Residual Lignin for Improved Pulping and Bleaching Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yuan-Zong Lai

    2001-11-30

    One of the most formidable challenges in kraft pulping to produce bleached chemical pulps is how to effectively remove the last 5-10% of lignin while maintaining the fiber quality. To avoid a severe fiber degradation, kraft pulping is usually terminated in the 25-30 kappa number range and then followed by an elementally chlorine free (ECF) or a totally chlorine free (TCF) bleaching sequence to reduce the environmental impacts.

  16. Kraft pulping of industrial wood waste

    Science.gov (United States)

    Aziz. Ahmed; Masood. Akhtar; Gary C. Myers; Gary M. Scott

    1998-01-01

    Most of the approximately 25 to 30 million tons of industrial wood waste generated in the United States per year is burned for energy and/or landfilled. In this study, kraft pulp from industrial wood waste was evaluated and compared with softwood (loblolly pine, Douglas-fir) and hardwood (aspen) pulp. Pulp bleachability was also evaluated. Compared to loblolly pine...

  17. Evaluation of bleachability on pine and eucalyptus kraft pulps

    Directory of Open Access Journals (Sweden)

    Marcela Freitas Andrade

    2013-09-01

    Full Text Available In recent decades, the pulp industry has been changing and improving its manufacturing processes in order to enhance production capacity, product quality and environmental performance. The aim of this study was to evaluate the bleachability effect on the efficient washing and alkaline leaching in eucalyptus and pine Kraft pulps using three different bleaching sequences: AD(EPD, A/D(EPDP and DHT(EPDP. This study was carried out in two stages. In the first part, the optimum conditions for pulp bleaching in order to achieve a brightness of 90% ISO were established. The second step was a comparative study between the pulps that received alkaline leaching and efficient washing with reference pulp (without treatment. The brightness, viscosity, kappa number and HexA in pulp were analyzed. The three sequences studied reached the desired brightness, but the sequence AD(EPD produced a lower reagent consumption for the same brightness. In the three sequences studied, the efficient washing of the pulp after oxygen delignification has contributed significantly to the removal of dissolved organic and inorganic materials in the pulp and the alkaline leaching decreased significantly the pulp kappa number due to a higher pulp delignification and bleachability.

  18. Polyoxometalate delignification of birch kraft pulp and effect on residual lignin

    Science.gov (United States)

    Biljana Bujanovic; Richard S. Reiner; Sally A. Ralph; Rajai H. Atalla

    2011-01-01

    To advance the understanding of delignification with polyoxometalates (POMs) that have been explored for use in bleaching of chemical pulps, the transformation of lignin during anaerobic treatment of birch kraft pulp with an equilibrated POM mixture composed of Na5(+2)[SiV1(-0.1)MoW10(+0.1)O

  19. Biochemical methane potential of kraft bleaching effluent and codigestion with other in-mill streams

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Dahl, Olli; Master, Emma

    2016-01-01

    A biochemical methane potential assay was conducted to investigate the anaerobic digestibility of bleaching effluent from hardwood kraft pulping and the potential of codigestion with other effluents from an integrated pulp and paper mill. Four in-mill streams were tested individually...... degradation and methane generation. Chemical oxygen demand (COD) removal ranged from 57%-76%, and methane generation was 220-280 mL/g COD contained in the wastewater, depending on the degree of dilution. When codigestion was tested, the composite consisting of total bleaching effluent, chemithermomechanical...

  20. Preventing Strength Loss of Unbleached Kraft Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Martin Hubbe; Richard Venditti; John Heitmann

    2003-04-16

    Kraft pulp fibers lose inter-fiber bonding ability when they are dried during the manufacture of paper. Adverse environmental consequences of this loss include (a) limitations on the number of times that kraft fibers can be recycled, (b) reduced paper strength, sometimes making it necessary to use heavier paper or paperboard to meet product strength requirements, increasing the usage of raw materials, (c) decreased rates of paper production in cases where the fiber furnish has been over-refined in an attempt to regain inter-fiber bonding ability. The present study is the first of its type to focus on unbleached kraft fibers, which are a main ingredient of linerboard for corrugated containers. About 90 million tons of unbleached kraft fiber are used worldwide every year for this purpose.

  1. The impact of kappa number composition on eucalyptus kraft pulp bleachability

    Directory of Open Access Journals (Sweden)

    M. M. Costa

    2007-03-01

    Full Text Available Consumption of chemicals during ECF bleaching of kraft pulp correlates reasonably well with kappa number, which measures with KMnO4 the total amount of oxidizable material in the pulp. However, the method does not distinguish between the oxidizable material in residual lignin and other structures susceptible to oxidation, such as hexenuronic acids (HexAs, extractives and carbonyl groups in the pulp. In this study an attempt is made to separate the main contributors to the kappa number in oxygen - delignified eucalyptus Kraft pulps and evaluate how these fractions behave during ECF bleaching using chlorine dioxide as the sole oxidant (DEDD sequence. Residual lignin and HexAs proved to be the main fractions contributing to the kappa number and chlorine dioxide consumption in ECF bleaching. Pulp bleachability with chlorine dioxide increases with increasing HexAs content of the pulp but chlorine dioxide per se does not react with HexAs. Reduction of pulp with sodium borohydride under conditions for removing carbonyl groups has no impact on bleachability. No correlation was found between the pulp of the extractive content and pulp bleachability. The removal of HexAs prior to ECF bleaching significantly decreases the formation of chlorinated organics in the pulp (OX and filtrates (AOX as well as of oxalic acids in the filtrates.

  2. Eucalyptus kraft pulp production: Thermogravimetry monitoring

    International Nuclear Information System (INIS)

    Barneto, Agustin G.; Vila, Carlos; Ariza, Jose

    2011-01-01

    Highlights: → Thermogravimetric analysis can be used to monitor the pulping process in a pulp mill. → ECF bleaching process affects the crystalline cellulose volatilization. → The fibre size has an influence on composition and thermal behavior of pulp. - Abstract: Under oxidative environment the thermal degradation of lignocellulosic materials like wood or pulp is sensitive to slight composition changes. For this, in order to complement the chemical and X-ray diffraction results, thermogravimetric analyses (TGA) were used to monitor pulp production in a modern pulp mill. Runs were carried out on crude, oxygen delignified and bleached pulps from three eucalyptus woods from different species and geographical origins. Moreover, with the modeling of thermogravimetric data, it was possible to obtain an approximate composition of samples which includes crystalline and amorphous cellulose. TGA results show that pulping has an intensive effect on bulk lignin and hemicellulose, but it has limited influence on the removal of these substances when they are linked to cellulose microfibril. The stages of oxygen delignification and bleaching, based in chlorine dioxide and hydrogen peroxide, increase the crystalline cellulose volatilization rate. These changes are compatible with a more crystalline microfibril. The influence of the fibre size on pulp composition, crystallinity and thermal degradation behavior was observed.

  3. Biobleaching of oxygen delignified kraft pulp by several white rot fungal strains.

    NARCIS (Netherlands)

    Moreira, M.T.; Feijoo, G.; Sierra-Alvarez, R.; Lema, J.; Field, J.A.

    1997-01-01

    Twenty-five white rot fungal strains were tested for their ability to bleach Eucalyptus globulus oxygen delignified kraft pulp (OKP). Under nitrogen-limited culture conditions, eight outstanding biobleaching strains were identified that increased the brightness of OKP by more than 10 ISO units

  4. Catalysis: A Potential Alternative to Kraft Pulping

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2014-01-01

    A thorough analysis of the kraft pulping process makes it obvious why it has dominated for over a century as an industrial process with no replacement in sight. It uses low-cost raw materials; collects and regenerates over 90% of the chemicals needed in the process; and is indifferent to wood raw material and good at preserving the cellulose portion of the wood, the...

  5. From research to innovation: The case of biotechnical pulp bleaching

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, R.

    1996-05-01

    The paper studies the emergence and development of a research-based innovation, enzyme-aided bleaching of kraft pulp. The idea of a new bleaching method was formulated in a meeting at the Biotechnical Laboratory of Technical Research Centre of Finland (VTT) in January 1984. The method was based on the use of hemicellulases. The Biotechnology Laboratory has actively studied hemicellulases for several years and they were hence immediately available for experiments. The Biotechnology Laboratory collaborated with the Fibre Chemistry Laboratory of the Finnish Pulp and Paper Research Institute (FPPRI), which knew different kinds of pulps and was skilled in the analysis of their paper technical qualities. With this combination of knowledge the results were achieved without delay.

  6. Effects of ozone on kraft process pulp mill effluent

    International Nuclear Information System (INIS)

    Mohammed, A.; Smith, D.W.

    1992-01-01

    Effluent from a kraft process pulp mill was studied in a batch reactor for ozone doses between 50 and 200 mg O 3 /L to identify the suitability of ozone application locations in the treatment process and see the improvements in biotreatability of wastewaters from a kraft process pulp mill. Laboratory acclimatized seed were used for (Biochemical Oxygen Demand) BOD tests for ozonated and unozonated samples. The inhibitory effects were minimized by using optimum dilutions. The studies were divided into three major sections: characterization of mill effluent; ozone system calibration, and reactor design; and ozonation of mill effluent. Seed for BOD tests were acclimatized in batch units for primary, bleach and secondary effluents separately. The results were analyzed using the open-quote t close-quote test for paired experiments and an ANOVA table for statistical confirmation. Residuals were plotted to check the assumptions of constant variance and normal distribution. It was concluded that ozone is most effective for the removal of color and the increase of BOD in secondary effluent. 21 refs., 9 figs., 7 tabs

  7. The role of bleaching in pulp mill effluent effects on fish

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, J.; Hodson, P.; Cross, T. [Queen`s Univ., School of Environmental Studies, Queen`s Univ., Kingston, ON (Canada); Van Heiningen, A. [New Brunswick Univ., Limerick Pulp and Paper Centre, Fredericton, NB (Canada)

    1999-05-01

    Sources and potency of mixed function oxygenase (MFO)-inducing compounds within a 5-stage chlorine dioxide bleaching sequence at a pulp and paper mill was determined. Environmental concerns regarding chlorinated organic materials and their toxicity to aquatic organisms caused many mills to switch to elemental chlorine-free bleaching processes, with the most common being the chlorine dioxide bleaching process. However, even with this switch, effluent from kraft pulp mills still affect aquatic organisms. In this study, bleach plant filtrates were collected from two kraft mills in Ontario. The filtrates were used in fish bioassays to assess MFO-inducing potency. Results showed that potency varied depending on the wood used (softwood or hardwood) and the bleaching stage. Filtrates produced in a lab were weak MFO inducers compared to mill filtrates.14 refs., 6 figs.

  8. Air pollution control in kraft pulp mills.

    Science.gov (United States)

    Bhatia, S P; de Souza, T L; Azarniouch, M K; Prahacs, S

    1978-02-01

    A patented gas scrubbing process, whereby the emissions of malodorous reduced sulphur compounds are effectively and economically reduced, is described. Stack gases are scrubbed with an alkaline suspension of activated carbon. Reduced sulphur compounds as well as sulphur oxides are converted to sodium salts which are subsequently recovered and utilized for pulping. The process also reduces particulate emissions. It does not produce subsequent waste disposal problems and has little or, in some cases, zero net cost, on account of the simultaneous recovery of heat and chemicals. Furthermore, the paper also reviews some innovations made in gas chromatography techniques, for the measurement of trace quantities of sulphur compounds present in kraft mill emissions.

  9. WOOD BASIC DENSITY EFFECT OF Eucalyptus grandis x Eucalyptus urophylla CLONES ON BLEACHED PULP QUALITY

    Directory of Open Access Journals (Sweden)

    Sheila Rodrigues dos Santos

    2010-08-01

    Full Text Available The study analyzed the wood basic density effect in two Eucalyptus grandis x Eucalyptus urophylla hybrid clones (440 kg/m3 e 508 kg/m3 on bleached pulp quality (fiber dimensions and physical-mechanical properties. The woods performance on pulping, bleaching and beating results were analyzed. The Kraft pulping was carried out in forced circulation digester in order to obtain 17±1 kappa number targets. The pulps were bleached to 90±1 using delignification oxygen and D0EOPD1 bleaching sequence. Bleached pulp of low basic density clone showed, significantly, lowest revolutions number in the PFI mill to reach tensile index of 70 N.m/g, low Schopper Riegler degree and generated sheets with higher values to bulk and opacity. These characteristics and properties allow concluding that bleached pulp of low basic density clone was the most indicated to produce printing and writing sheets. The bleached pulp of high basic density clone showed higher values of bulk and capillarity Klemm and lower water retention value when analyzed without beating. The bleached pulp of high basic density clone showed more favorable characteristics to the production of tissue papers.

  10. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.

    Science.gov (United States)

    Oñate, Elizabeth; Rodríguez, Edgard; Bórquez, Rodrigo; Zaror, Claudio

    2015-01-01

    This paper reports experimental results on the sequential use of ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) to fractionate alkaline extraction bleaching effluents from kraft cellulose production. The aim was to unveil the way key pollutants are distributed when subjected to sequential UF/NF/RO membrane separation processes. Alkaline bleaching effluents were obtained from a local pinewood-based mill, featuring elementary chlorine free bleaching to produce high-brightness cellulose. The experimental system was based on a laboratory-scale membrane system, DSS LabStak® M20 Alfa Laval, using Alfa Laval UF and NF/RO membranes, operated at a constant transmembrane pressure (6 bar for UF membranes and 32 bar for NF/RO membranes), at 25°C. Results show that 78% chemical oxygen demand (COD) and total phenols, 82% adsorbable organic halogens (AOX) and 98% colour were retained by UF membranes which have molecular weight cut-off (MWCO) above 10 kDa. In all, 16% of original COD, total phenols and AOX, and the remaining 2% colour were retained by UF membranes within the 1 to 10 kDa MWCO range. Chloride ions were significantly present in all UF permeates, and RO was required to obtain a high-quality permeate with a view to water reuse. It is concluded that UF/NF/RO membranes offer a feasible option for water and chemicals recovery from alkaline bleaching effluents in kraft pulp production.

  11. Reutilization of effluents from laccase-mediator treatments of kraft pulp for biobleaching.

    Science.gov (United States)

    Moldes, D; Vidal, T

    2011-02-01

    Several effluents from laccase-mediator treatments of kraft pulp were recovered and subsequently reused with fresh pulp in order to simulate recirculation of effluents during biobleaching. The effluents were used as a new bleaching stage without any modification except enzyme addition. Pulp treated with effluents were afterwards chemically bleached by using the simple sequence LQPo, where L represents the treatment with effluent and laccase addition, Q is a chelating stage and Po is an alkaline peroxide stage. This system showed a promising potential on delignification, with kappa number ranging from 5.5 to 6.6 after LQPo sequence, depending on the type of effluent employed in L stage. Improvements on pulp brightness were also reported compared with control experiment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Modeling chlorine dioxide bleaching of chemical pulp

    OpenAIRE

    Tarvo, Ville

    2010-01-01

    This doctoral thesis deals with the phenomenon-based modeling of pulp bleaching. Previous bleaching models typically utilize one or two empirical correlations to predict the kinetics in kappa number development. Empirical correlations are simple to develop, but their parameters are often tied to the validation system. A major benefit of physico-chemical phenomenon models is that they are valid regardless of the reaction environment. Furthermore, modeling the bleaching processes at molecular l...

  13. Pulp and paper production from Spruce wood with kraft and ...

    African Journals Online (AJOL)

    Picea orientalis) wood collected from the Black Sea Region of Turkey. Fiber properties, carbohydrate contents, strength and optical properties of resultant paper were included to determine the properties of these pulp samples. Optimum kraft ...

  14. 40 CFR 63.445 - Standards for the bleaching system.

    Science.gov (United States)

    2010-07-01

    ...) Bleaching systems bleaching pulp from kraft, sulfite, or soda pulping processes that use any chlorinated compounds; or (3) Bleaching systems bleaching pulp from mechanical pulping processes using wood or from any process using secondary or non-wood fibers, that use chlorine dioxide. (b) The equipment at each bleaching...

  15. Kraft pulp from budworm-infested jack pine

    Science.gov (United States)

    J. Y. Zhu; Gary C. Myers

    2006-01-01

    This study evaluated the quality of kraft pulp from bud-worm-infested jack pine. The logs were classified as merchantable live, suspect, or merchantable dead. Raw materials were evaluated through visual inspection, analysis of the chemical composition, SilviScan measurement of the density, and measurement of the tracheid length. Unbleached pulps were then refined using...

  16. Fate of Residual Lignin during Delignification of Kraft Pulp by Trametes versicolor

    Science.gov (United States)

    Reid, Ian D.

    1998-01-01

    The fungus Trametes versicolor can delignify and brighten kraft pulps. To better understand the mechanism of this biological bleaching and the by-products formed, I traced the transformation of pulp lignin during treatment with the fungus. Hardwood and softwood kraft pulps containing 14C-labelled residual lignin were prepared by laboratory pulping of lignin-labelled aspen and spruce wood and then incubated with T. versicolor. After initially polymerizing the lignin, the fungus depolymerized it to alkali-extractable forms and then to soluble forms. Most of the labelled carbon accumulated in the water-soluble pool. The extractable and soluble products were oligomeric; single-ring aromatic products were not detected. The mineralization of the lignin carbon to CO2 varied between experiments, up to 22% in the most vigorous cultures. The activities of the known enzymes laccase and manganese peroxidase did not account for all of the lignin degradation that took place in the T. versicolor cultures. This fungus may produce additional enzymes that could be useful in enzyme bleaching systems. PMID:9603823

  17. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Science.gov (United States)

    Solihat, Nissa Nurfajrin; Fajriutami, Triyani; Adi, Deddy Triyono Nugroho; Fatriasari, Widya; Hermiati, Euis

    2017-01-01

    Kraft pulping of sweet sorghum bagasse (SSB) has been used for effective delignification method for cellulose production. This study was conducted to evaluate the performance pulp kraft of SSB for reducing sugar production. The study intended to investigate the effect of active alkali and sulfidity loading variation of SSB pulp kraft on reducing sugar yield per biomass. The SSB pulp was prepared after pulping using three variations of active alkali (17, 19, and 22%) and sulfidity loading (20, 22, and 24%) at 170°C for 4 h with liquor to wood ratio of 10. A total of 9 pulps were obtained from these pretreatments. Delignification pretreatment has been succesfully removed lignin and hemicellulose more than 90% and 50%, respectively. Increasing active alkali and sulfidity loading has significantly increased lignin removal caused by disruption of the cell wall structure for releasing lignin into black liquor in the cellulose extraction. The enzymatic hydrolysis of pulp was carried out with cellulase loading of 40 FPU per g substrate in the shaking incubator at 50°C and 150 rpm for 78 h. For each 24 h, the reducing sugar yield (DNS assay) has been observed. Even though the lignin and hemicellulose loss occurred along with higher active alkali loading, this condition tends to decrease its yield. The reducing sugar concentration varied between 7-8 g/L. Increasing active alkali and sulfidity was significantly decreased the reducing sugar per biomass. Pulp delignified by 17% active alkali and 20% sulfidity has demonstrated the maximum reducing sugar yield per biomass of 45.57% resulted after 72 h enzymatic hydrolysis. These results indicated that kraft pulping was success to degrade more lignin and hemicellulose content to facilitate the enzyme for breaking down the cellulose into its sugar monomer. A high loss of lignin and hemicellulose are not single factor to improve digestibility of SSB. This sugar has potential for yeast fermented into bioethanol.

  18. Delignification of wood and kraft pulp with polyoxometalates

    Science.gov (United States)

    Edward L. Springer; Richard S. Reiner; Ira A. Weinstock; Rajai H. Atalla; Michael W. Wemple; Elena M. G. Barbuzzi

    1998-01-01

    Finely divided aspen and spruce woods and a high lignin pine kraft pulp have been selectively delignified to low lignin levels using aqueous solutions of polyoxometalates under anaerobic conditions. The reduced polyoxometalates in the solutions can be reoxidized with oxygen and act as wet oxidation catalysts for the mineralization of the solubilized lignin and...

  19. Measurement of cellulose content, Kraft pulp yield and basic density ...

    African Journals Online (AJOL)

    Previous descriptions of multisite and multispecies near infra-red (NIR) spectroscopic calibrations for predicting cellulose content (CC) and Kraft pulp yield (KPY) in eucalypt woodmeal demonstrated that large, single calibrations provide precise predictions for a wide range of sites and species. These have since been used ...

  20. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  1. The role of organic matter lost in kraft pulping material balances .

    Science.gov (United States)

    Luonsi, A; Lento, S; Halttunen, S; Ala-Kaila, K

    2003-01-01

    Efficiency improvement in a pulp mill includes minimisation of environmental discharges simultaneously with the development of pulp quality and production economy. Material balances in production processes, including fate of sidestreams, are key in proceeding these matters. Different approaches of determining the material balances increase understanding of process behaviour. We have focused on measuring sidestream (carryovers, washing water, filtrate) dissolved organic matter (DOM) in fibreline unit process blocks of softwood ECF bleached kraft production. The DOM was analysed by traditional wastewater methods (volatile solids, organic carbon, chemical oxygen demand). The measured data was combined with primarily simulated water balances and routine operational mill data in a simulation model. From this balance, yield estimate included, lost organic matter through complete degradation (CD) and volatile organic compounds (VOC) can be calculated throughout the fibreline. The sensitivity of this considerable amount (23-35 kgDVS/adt in total) to various factors is discussed in this paper.

  2. Effect of depth beating on the fiber properties and enzymatic saccharification efficiency of softwood kraft pulp.

    Science.gov (United States)

    Gao, Wenhua; Xiang, Zhouyang; Chen, Kefu; Yang, Rendang; Yang, Fei

    2015-01-01

    Commercial bleached softwood kraft pulp was mechanically fibrillated by a PFI-mill with beating revolution from 5000 to 30,000 r. The extent of fibrillating on the pulp was evaluated by beating degree, fiber morphological properties (fiber length, width, coarseness and curls index), water retention value (WRV) and physical properties of paper made from the pulp. Depth beating process significantly affected the pulp fibrillations as showed by the decreased fiber length and width as well as the SEM analysis, but the effects were limited after beating revolution of 15,000. Depth beating process also improved the total internal pore and inter-fibril surface areas as shown by the increased WRV values. Substrate enzymatic digestibility (SED) of beaten pulp at 5000 revolutions could reach 95% at cellulase loading of 15 FPU/g of glucan. After the enzymatic hydrolysis, the size of the pulp residues was reduced to micro-scale, and a relative uniform size distribution of the residues appeared at 10,000 r beating revolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Kraft Pulp And Paper Properties of Sweet Sorghum Bagasse (Sorghum bicolor L Moench

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2015-05-01

    Full Text Available This study investigated the potency of sweet sorghum (Sorghum bicolor bagasse as raw material for pulp and paper using kraft pulping. The effects of alkali and sulfidity loading on kraft pulp and paper properties were also investigated. The pulping condition of the kraft pulp consisted of three levels of alkali loading (17, 19 and 22% and sulfidity loading (20, 22 and 24%. The maximum cooking temperature was 170°C for 4 h with a liquid to wood ratio of 10:1. Kraft pulping of this Numbu bagasse produced good pulp indicated by high screen yield and delignification selectivity with a low Kappa number (< 10. The unbleached pulp sheet produced a superior brightness level and a high burst index. The increase of active alkali loading tended to produce a negative effect on the pulp yield, Kappa number and paper sheet properties. Therefore, it is suggested to use a lower active alkaline concentration.

  4. Effects of tertiary treatment by fungi on organic compounds in a kraft pulp mill effluent.

    Science.gov (United States)

    Rocha-Santos, Teresa; Ferreira, Filipe; Silva, Lurdes; Freitas, Ana Cristina; Pereira, Ruth; Diniz, Mário; Castro, Luísa; Peres, Isabel; Duarte, Armando Costa

    2010-05-01

    Pulp and paper mills generate a plethora of pollutants depending upon the type of pulping process. Efforts to mitigate the environmental impact of such effluents have been made by developing more effective biological treatment systems in terms of biochemical oxygen demand, chemical oxygen demand, colour and lignin content. This study is the first that reports an evaluation of the effects of a tertiary treatment by fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium and Rhizopus oryzae) on individual organic compounds of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (final effluent). The tertiary treatment with P. sajor caju, T. versicolor and P. chrysosporium and R. oryzae was performed in batch reactors, which were inoculated with separate fungi species and monitored throughout the incubation period. Samples from effluent after secondary and after tertiary treatment with fungi were analysed for both absorbance and organic compounds. The samples were extracted for organic compounds using solid-phase extraction (SPE) and analysed by gas chromatography-mass spectrometry (GC/MS). The efficiencies of the SPE procedure was evaluated by recovery tests. A total of 38 compounds (carboxylic acids, fatty alcohols, phenolic compounds and sterols) were identified and quantified in the E. globulus bleached kraft pulp mill final effluent after secondary treatment. Recoveries from the extraction procedure were between 98.2% and 99.9%. The four fungi species showed an adequate capacity to remove organic compounds and colour. Tertiary treatment with R. oryzae was able to remove 99% of organic compounds and to reduce absorbance on 47% (270 nm) and 74% (465 nm). P. sajor caju, T. versicolor and P. chrysosporium were able to remove 97%, 92% and 99% of organic compounds, respectively, and reduce 18% (270 nm) to 77% (465 nm), 39% (270 nm) to 58% (465 nm) and 31% (270 nm) to 10% (465 nm) of absorbance

  5. Effect of plantation density on kraft pulp production from red pine (Pinus resinosa Ait.)

    Science.gov (United States)

    J.Y. Zhu; G.C. Myers

    2006-01-01

    Red pine (Pinus resinosa Ait.) butt logs from 38 year old research plots were used to study the effect of plantation stand density on kraft pulp production. Results indicate that plantation stand density can affect pulp yield, unrefined pulp mean fibre length, and the response of pulp fibre length to pulp refining. However, the effect of plantation stand density on...

  6. Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Bhosle, N.B.

    released by enzyme treatment showed a characteristic peak at 280 nm indicating the presence of lignin in the released coloring matter. Enzymatic prebleaching of kraft pulp showed 20 % reduction in kappa number of the pulp without much change in viscosity...

  7. Biobleaching of eucalypt kraft pulp with a two laccase-mediator stages sequence.

    Science.gov (United States)

    Moldes, D; Cadena, E M; Vidal, T

    2010-09-01

    A new biobleaching sequence, with two enzymatic stages based on the application of laccase-mediator systems, was tested (L(1)EL(2)QPo) in order to increase the effectiveness of enzyme delignification on eucalypt kraft pulp. Different synthetic -1-hydroxybenzotriazole (HBT) and violuric acid (VA) - and natural - syringaldehyde (SyAl) - mediators were used in the laccase stages and the biobleached pulp were compared in terms of chemical, optical and physico-mechanical properties. The pulp bleached with HBT or VA showed similar delignification (64.1% and 65.9% respectively) and optical properties (86.4% and 86.1% ISO brightness respectively) than an industrial TCF pulp (68.3% delignification and 84.8% ISO brightness). SyAl improved these properties in a lower extent (56.71% delignification and 80.52% ISO brightness). Regarding physico-mechanical properties of pulp, the biobleaching sequence had no a negative effect, even some slight improvements were observed in very specific cases. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Cellulose kraft pulp reinforced polylactic acid (PLA composites: effect of fibre moisture content

    Directory of Open Access Journals (Sweden)

    Elias Retulainen

    2016-06-01

    Full Text Available PLA offers a competitive and CO2 neutral matrix to commonly used polyolefin polymer based composites. Moreover, the use of PLA reduces dependency on oil when producing composite materials. However, PLA has a tendency of hydrolytic degradation under melt processing conditions in the presence of moisture, which remains a challenge when processing PLA reinforced natural fibre composites. Natural fibres such as cellulose fibres are hygroscopic with 6–10 wt% moisture content at 50–70% relative humidity conditions. These fibres are sensitive to melt processing conditions and fibre breakage (cutting also occur during processing. The degradation of PLA, moisture absorption of natural fibres together with fibre cutting and uneven dispersion of fibres in polymer matrix, deteriorates the overall properties of the composite. In the given research paper, bleached softwood kraft pulp (BSKP reinforced PLA compounds were successfully melt processed using BSKP with relatively high moisture contents. The effect of moist BSKP on the molecular weight of PLA, fibre length and the mechanical properties of the composites were investigated. By using moist never-dried kraft pulp fibres for feeding, the fibre cutting was decreased during the melt compounding. Even though PLA degradation occurred during the melt processing, the final damage to the PLA was moderate and thus did not deteriorate the mechanical properties of the composites. However, comprehensive moisture removal is required during the compounding in order to achieve optimal overall performance of the PLA/BSKP composites. The economic benefit gained from using moist BSKP is that the expensive and time consuming drying process steps of the kraft pulp fibres prior to processing can be minimized.

  9. Evaluation of bleached kraft mill process water using Microtox(R), Ceriodaphnia dubia, and Menidia beryllina toxicity tests.

    Science.gov (United States)

    Middaugh, D P; Beckham, N; Fournie, J W; Deardorff, T L

    1997-05-01

    To determine whether a 7- to 10-d embryo toxicity/teratogenicity test with the inland silverside fish, Menidia beryllina, is a sensitive indicator for evaluation of bleached kraft mill effluents, we compared this test with the Microtox(R) 15-min acute toxicity test and the Ceriodaphnia dubia 7-d chronic toxicity test. Water samples used in each test were collected from three areas in a bleached kraft pulp and paper mill using a 100% chlorine dioxide bleaching process: 1) river water prior to use in the mill; 2) the combined acid/base waste stream from the pulping process prior to biological treatment in the aerated stabilization basin (ASB); and 3) the effluent from the ASB with a retention time of approximately 11 d. Relative toxicity determined by the three tests for each water sampling location was compared. All three toxicity tests were predictive indicators of toxicity; however, the C. dubia and M. beryllina tests were the more similar and sensitive indicators of toxicity. Process water (ASB influent) prior to biological treatment in the ASB was toxic at all concentrations using the Microtox(R) and C. dubia tests. The fish embryo test showed no toxicity at 1% concentrations, slight toxicity at 10%, and acute toxicity at the 100% ASB influent concentration. Tests with biologically-treated ASB effluent indicated a substantial reduction in observed toxicity to Microtox(R) bacteria, C. dubia, and M. beryllina. No toxic responses were observed in any test at a 1% ASB effluent concentration which was the approximate effluent concentration in the receiving river following mixing. No relationship was found among any toxicological response and effluent levels of adsorbable organic halides, polychlorinated phenolic compounds, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, total suspended solids, color, chemical oxygen demand, or total organic carbon.

  10. Environmental assessment of different advanced oxidation processes applied to a bleaching Kraft mill effluent.

    Science.gov (United States)

    Muñoz, Iván; Rieradevall, Joan; Torrades, Francesc; Peral, José; Domènech, Xavier

    2006-01-01

    Different advanced oxidation processes (AOPs) have been applied to remove the organic carbon content of a paper mill effluent originating from the Kraft pulp bleaching process. The considered AOPs were: TiO(2)-mediated heterogeneous photocatalysis, TiO(2)-mediated heterogeneous photocatalysis assisted with H(2)O(2), TiO(2)-mediated heterogeneous photocatalysis coupled with Fenton, photo-Fenton, ozonation and ozonation with UV-A light irradiation. The application of the selected AOPs all resulted in a considerable decrease in dissolved organic carbon (DOC) content with variable treatment efficiencies depending upon the nature/type of the applied AOP. A Life Cycle Assessment (LCA) study was used as a tool to compare the different AOPs in terms of their environmental impact. Heterogeneous photocatalysis coupled with the Fenton's reagent proved to have the lowest environmental impact accompanied with a moderate-to-high DOC removal rate. On the other hand, heterogeneous photocatalysis appeared to be the worst AOP both in terms of DOC abatement rate and environmental impact. For the studied AOPs, LCA has indicated that the environmental impact was attributable to the high electrical energy (power) consumption necessary to run a UV-A lamp or to produce ozone.

  11. Producing a True Lignin Depolymerase for Biobleaching Softwood Kraft Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Simo Sarkanen

    2002-02-04

    This project constituted an intensive effort devoted to producing, from the white-rot fungus Tramets Cingulata, a lignin degrading enzyme (lignin depolymerase) that is directly able to biobleach or delignify softwood kraft pulp brownstock. To this end, the solutions in which T. cingulata was grown contained dissolved kraft lignin which fulfilled two functions; it behaved as a lignin deploymerase substrate and it also appeared to act as an inducer of enzyme expression. However, the lignin depolymerase isoenzymes (and other extracellular T. cingulata enzymes) interacted very strongly with both the kraft lignin components and the fungal hypae, so the isolating these proteins from the culture solutions proved to be unexpectedly difficult. Even after extensive experimentation with a variety of protein purification techniques, only one approach appeared to be capable of purifying lignin depolymerases to homogeneity. Unfortunately the procedure was extremely laborious; it involved the iso electric focusing of concentrated buffer-exchanged culture solutions followed by electro-elution of the desired protein bands from the appropriate polyacrylamide gel segments

  12. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    Energy Technology Data Exchange (ETDEWEB)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was

  13. Lignin modification in the initial phase of softwood kraft pulp delignification with polyoxometalates (POMs)

    Science.gov (United States)

    Biljana Bujanovic; Sally A. Ralph; Richard S. Reiner; Rajai H. Atalla

    2007-01-01

    Commercial softwood kraft pulp with kappa number 30.5 (KP30.5) was delignified with polyoxometalates (POM, Na5(+2)[SiV1(-0.1)MoW10(+0.1)O40]), and POM-treated kraft pulp of kappa number 23.6 was obtained (KPPOM,23.6). Residual lignin from pulps was isolated by mild acid hydrolysis and characterized by analytical and spectral methods to gain insight into lignin...

  14. FT–Raman investigation of bleaching of spruce thermomechanical pulp

    Science.gov (United States)

    U.P. Agarwal; L.L. Landucci

    2004-01-01

    Spruce thermomechanical pulp was bleached initially by alkaline hydrogen peroxide and then by sodium dithionite and sodium borohydride. Near-infrared Fourier-transform–Raman spectroscopy revealed that spectral differences were due primarily to coniferaldehyde and p-quinone structures in lignin, new direct evidence that bleaching removes p-quinone structures. In...

  15. A Comparison Between Alkali Peroxide and Activated Peroxide Processes in Bleaching Hardwoods Chemi-mechanical Pulp

    Directory of Open Access Journals (Sweden)

    Farhad Zeyni

    2013-06-01

    Full Text Available Unbleached chemi-mechanical pulp of 85% pulp yield and produced from hornbeam, beech and populus woods respectively by 3:1:1 ratio, was used for peroxide bleaching. Two bleaching systems, alkali peroxide (conventional bleaching and activated peroxide by TAED activator, were used for pulp bleaching. Bleaching treatments included different percentages of hydrogen peroxide and caustic soda consumption. In this research, the hydrogen peroxide consumption rate, pulp yield, process selectivity, bleached pulp brightness and bleaching effluent pollution load (COD were investigated. Results showed that, brightness values were increased by bleach chemicals charge rising, in both bleaching systems, but the increasing trend was downward. Also, pulp yield was decreased by increase of chemical charges, but residual peroxide was raised. The activated peroxide process compare to conventional process had lower efficiency and brightness improvement values of pulp were less than those of alkali peroxide process. But pulp yield and effluent pollution load was less by activated peroxide bleaching.

  16. Delignification of eucalypt kraft pulp with manganese-substituted polyoxometalate assisted by fungal versatile peroxidase.

    Science.gov (United States)

    Marques, Gisela; Gamelas, José A F; Ruiz-Dueñas, Francisco J; del Rio, José C; Evtuguin, Dmitry V; Martínez, Angel T; Gutiérrez, Ana

    2010-08-01

    Oxidation of the manganese-substituted polyoxometalate [SiW(11)Mn(II)(H(2)O)O(39)](6-) (SiW(11)Mn(II)) to [SiW(11)Mn(III)(H(2)O)O(39)](5-) (SiW(11)Mn(III)), one of the most selective polyoxometalates for the kraft pulp delignification, by versatile peroxidase (VP) was studied. First, SiW(11)Mn(II) was demonstrated to be quickly oxidized by VP at room temperature in the presence of H(2)O(2) (K(m)=6.4+/-0.7 mM and k(cat)=47+/-2s(-1)). Second, the filtrate from eucalypt pulp delignification containing reduced polyoxometalate was treated with VP/H(2)O(2), and 95-100% reoxidation was attained. In this way, it was possible to reuse the liquor from a first SiW(11)Mn(III) stage for further delignification, in a sequence constituted by two polyoxometalate stages, and a short intermediate step consisting of the addition of VP/H(2)O(2) to the filtrate for SiW(11)Mn(II) reoxidation. When the first ClO(2) stage of a conventional bleaching sequence was substituted by the two-stage delignification with polyoxometalate (assisted by VP) a 50% saving in ClO(2) was obtained for similar mechanical strength of the final pulp. (c) 2010 Elsevier Ltd. All rights reserved.

  17. The assessment of chromophores in bleached cellulosic pulps employing UV-Raman spectroscopy.

    Science.gov (United States)

    Loureiro, Pedro E G; Fernandes, António J S; Carvalho, M Graça V S; Evtuguin, Dmitry V

    2010-07-02

    UV-Resonance Raman (UV-RR) coupled with UV-visible Diffuse Reflectance (UV-vis DR) spectroscopy was applied to a solid-state study of chromophores in Eucalyptus globulus kraft cellulosic pulps bleached by chlorine dioxide and hydrogen peroxide. The UV-RR spectra were acquired at 325nm laser beam excitation, which was shown to be appropriate for selective analysis of chromophore structures in polysaccharides. The proposed approach allowed the monitoring of chromophores in pulps and to track the extent of polysaccharide oxidation. However, precaution was suggested while performing a quantitative analysis of chromophores at the characteristic band of approximately 1600cm(-1) because of charge transfer complexes (CTCs) that exist in the pulp. These CTCs can affect the intensity of the aforementioned band by diminishing the conjugate state in the chromophore moieties. The amount of carbonyl and carboxyl groups in polysaccharides correlated with the intensity of the band at 1093cm(-1). The analysis of UV-RR spectra revealed xylan as an important source of chromophores in eucalypt kraft pulp. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. POM-assisted electrochemical delignification and bleaching of chemical pulp

    Science.gov (United States)

    Helene Laroche; Mohini Sain; Carl Houtman; Claude Daneault

    2001-01-01

    A polyoxometalate-catalyzed electrochemical process has shown good selectivity in delignifying pulp. This breakthrough in redox catalysis shows promise for the development of a new environmentally benign technology for pulp bleaching. The electrochemical process, applied with a mildly alkaline electrolyte solution containing trace amounts of a vanadium-based...

  19. Dental pulp vascular permeability changes induced by dental bleaching

    Directory of Open Access Journals (Sweden)

    Cristiane da Costa

    2012-02-01

    Full Text Available Aiming to compare the effect of different light sources for dental bleaching on vascular permeability of dental pulps, forty-eight incisors were used. The bleaching agent (35 % hydrogen peroxide was activated by halogen light; LED (Light Emitting Diode or LED, followed by laser phototherapy (LPT (λ = 780 nm; 3 J/cm². After the bleaching procedures, the animals received an intra-arterial dye injection and one hour later were sacrificed. The teeth were diaphanized and photographed. The amount of blue stain content of each dental pulp was quantified using a computer imaging program. The data was statistically compared (p < 0.05. The results showed a significant higher (p < 0.01 dye content in the groups bleached with halogen light, compared with the control, LED and LED plus LPT groups. Thus, tooth bleaching activated by LED or LED plus LPT induces lesser resulted in increased vascular permeability than halogen light.

  20. Corrosion testing in flash tanks of kraft pulp mills

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, S.J.; Stead, N.J.

    1999-11-01

    The corrosion observed in the first flash tanks in kraft pulp mills with modified cooking practices was characterized. Coupons of carbon steel (CS), several stainless steels (SS), and Ti were exposed at two mills. At one mill, identical sets of coupons were exposed in the No. 1 and No. 2 flash tank. At the other mill, three identical sets of coupons were placed in flash tank No. 1. The results of the exposures showed that both CS and Ti suffered high rates of general corrosion, while the SS suffered varying degrees of localized attack. The ranking of the corrosion resistance in the flash tank was the same that would be expected in a reducing acid environment. Attack by organic acids was concluded to be the most likely cause of corrosion of the flash tanks.

  1. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    Science.gov (United States)

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 77 FR 55698 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Science.gov (United States)

    2012-09-11

    ... for kraft, soda and semi-chemical pulping vent gases; sulfite pulping processes; and bleaching systems... vents, pulping process condensates) at chemical, mechanical, secondary fiber and non- wood pulp mills... chemical recovery processes at kraft, soda, sulfite and stand-alone semi- chemical pulp mills was...

  3. Relationship between lignin structure and delignification degree in Pinus pinaster kraft pulps.

    Science.gov (United States)

    Baptista, C; Robert, D; Duarte, A P

    2008-05-01

    This study examines the structure of residual and dissolved lignins from Pinus pinaster pulps obtained at different degrees of delignification by laboratory conventional kraft pulping. The cooking H factor was varied from 85 to 8049. The residual and dissolved lignin samples were characterised by elemental analysis, residual carbohydrate content, permanganate oxidation and 13C NMR spectroscopy. The reflectance factor of the pulps was also determined in order to tentatively correlate the delignification degree and residual lignin structure with the pulp colour. The obtained results confirmed that the delignification degree increases the condensation of the lignin structure, which might have an influence upon the observed increased pulp colour. The lack of selectivity of kraft pulping process in the case of more delignified pulps was also shown.

  4. Alkaline Pulping and Bleaching of Acacia auriculiformis Grown in Bangladesh

    OpenAIRE

    JAHAN, M. Sarwar; SABINA, Rowshan; RUBAIYAT, Arjumand

    2014-01-01

    The physical, chemical, and morphological characteristics of Acacia auriculiformis were evaluated in terms of its suitability for papermaking. The fiber length (1.1 mm) of A. auriculiformis in this study was within the range of tropical hardwoods. The lignin content in A. auriculiformis was 19.4% and a-cellulose 44.1%, which was within the range of other acacias, but that of extractives was higher. Soda, soda-AQ, and kraft processes were studied in pulping. Screened pulp yield was increased w...

  5. An environmental systems analysis of the Kraft pulp industry in Thailand

    NARCIS (Netherlands)

    Warit, J.

    2006-01-01

    The pulp industry inThailandis of economic and social importance because of its production value, the revenues from export and the employment in this sector. The eucalyptus-based Kraft pulp industry plays an

  6. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    Science.gov (United States)

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Natural and recombinant fungal laccases for paper pulp bleaching

    NARCIS (Netherlands)

    Sigoillot, C.; Record, E.; Belle, V.; Robert, J.L.; Levasseur, A.; Punt, P.J.; Hondel, C.A.M.J.J. van den; Fournel, A.; Sigoillot, J.C.; Asther, M.

    2004-01-01

    Three laccases, a natural form and two recombinant forms obtained from two different expression hosts, were characterized and compared for paper pulp bleaching. Laccase from Pycnoporus cinnabarinus, a well known lignolytic fungus, was selected as a reference for this study. The corresponding

  8. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  9. Green liquor impregnation and Kraft pulping of South African Pinus Patula – “A practical approach to provide cost savings in a Kraft mill’s pulping operation”

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2011-02-01

    Full Text Available The effect of green liquor pre-treatment (GLP) on Kraft pulping of Pinus Patula has been investigated. Wood chips were pre-treated with green liquor, and subsequently subjected to Kraft pulping to achieve a target Kappa number of 65-70. The results...

  10. Process parameters affecting the delignification of eucalyptus kraft pulp with peroxyacetic acid

    OpenAIRE

    Chandranupap, P.; Chaivichit, P.; Chandranupap, P.

    2004-01-01

    Various process parameters affecting eucalyptus kraft pulp delignification with peroxyacetic acid were investigated. The results showed that pH was an important factor. The delignification rate increased with increasing pH to the value of 6. High delignification rate was obtained when the pulp was chelated with Na4-EDTA prior to the peroxyacetic acid stage. Therefore, delignification reaction rate depends on peroxyacid charge, temperature, pH and metal content of pulp.

  11. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge.

    Directory of Open Access Journals (Sweden)

    Martijn Eikelboom

    Full Text Available The Multi-Criteria Decision Analysis (MCDA procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery, economic (overall costs, value of products and technical (maintenance and operation, feasibility of implementation. The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry. Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery.

  12. A multi-criteria decision analysis of management alternatives for anaerobically digested kraft pulp mill sludge

    Science.gov (United States)

    Eikelboom, Martijn; Lopes, Alice do Carmo Precci; Silva, Claudio Mudadu; Rodrigues, Fábio de Ávila; Zanuncio, José Cola

    2018-01-01

    The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste management options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic digestion of sludge is advantageous because it produces biogas that may be used to generate electricity, heat and biofuels. However, adequate management of the digested sludge is essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp mill digested sludge applied to land may pose risks to the environment and public health if the sludge has not been properly treated. This study is aimed to compare several recycling alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae. The MCDA procedure considered nine criteria into three domains to compare digested sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to pathogens, risk of pollution, material and energy recovery), economic (overall costs, value of products) and technical (maintenance and operation, feasibility of implementation). The most suitable management options for digested sludge from kraft pulp mills were found to be composting and incineration (when the latter was coupled with recycling ash to the cement industry). Landfill disposal was the worst option, presenting low performance in feasibility of implementation, risk of pollution, material and energy recovery. PMID:29298296

  13. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    Science.gov (United States)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  14. 40 CFR 63.443 - Standards for the pulping system at kraft, soda, and semi-chemical processes.

    Science.gov (United States)

    2010-07-01

    ... Paper Industry § 63.443 Standards for the pulping system at kraft, soda, and semi-chemical processes. (a... operator of each pulping system using a semi-chemical or soda process subject to the requirements of this... kraft, soda, and semi-chemical processes. 63.443 Section 63.443 Protection of Environment ENVIRONMENTAL...

  15. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    Energy Technology Data Exchange (ETDEWEB)

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  16. Papermaking Properties of Carpinus betulus with kraft, Soda and Soda-Urea Pulping Processes

    Directory of Open Access Journals (Sweden)

    Rasoul Darstan

    2013-06-01

    Full Text Available This research was carried out in order to comparatively investigate the hornbeam kraft, soda and soda-urea papermaking properties. The selected treatment in kraft process had an average yield of 44.43% and kappa number of 23.75. In soda process the selected treatment had an average yield of 38.75% and kappa number of 19.28. In soda-urea process, the selected treatments had an average yield of 39.85, 40.1, 40.5, 39.8 and 40.61 and kappa number of 21.21, 22.33, 22.66, 25.28 and 26.85. After refining the selected pulp to reach the freeness of 400±25 ml CSF, 60 g/m2 handsheets were made and physical, mechanical and optical properties were measured. Results showed that kraft pulps had higher yield and better refinability than soda and soda-urea pulps. Papers made from kraft process had higher strength properties than those made of soda and soda-urea process. With addition of urea, yield and kappa number of pulps increased. The highest improvement in tensile index, breaking length and tear index was achieved with addition of 3% urea and the highest improvement in burst index was achieved with adding 4% urea. Results of brightness measurements showed that papers from kraft and soda processes had the lowest and highest brightness degree respectively. With the addition of urea, brightness of papers decreased.

  17. Alkaline pulping of some eucalypts from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  18. PROCESS FOR THE PRODUCTION OF DISSOLVING PULP FROM TREMA ORIENTALIS (NALITA) BY PREHYDROLYSIS KRAFT AND SODA-ETHYLENEDIAMINE (EDA) PROCESS

    OpenAIRE

    M. A. Quaiyyum; A. Noori; Labooni Ahsan; M. Sarwar Jahan

    2008-01-01

    This paper presents a preliminary study for the production of dissolving pulp from Trema orientalis (Nalita). Water prehydrolysis kraft and soda-ethylenediamine (EDA) pulping for the production of dissolving pulp from T. orientalis was investigated. Prehydrolysis at 150 and 170 oC did not produce pulp with high α-cellulose content when using the kraft process. But addition of 0.25 % H2SO4 in prehydrolysis liquor increased the purity of the pulp with the sacrifice of pulp yield and viscosity. ...

  19. Delignification of Pinus radiata kraft pulp by treatment with a yeast genetically modified to produce laccases; Deslignificacion de pasta kraft de Pinus radiata con una levadura geneticamente modificada para producir lacasa

    Energy Technology Data Exchange (ETDEWEB)

    Arana-Cuenca, A.; Tellez-Jurado, A.; Yague, S.; Ferminan, E.; Carbajo, J. M.; Dominguez, A.; Gonzalez, T.; Villar, J. C.; Gonzalez, A. E.

    2010-07-01

    Cellulose pulp bleaching is one of the main biotechnological applications of fungal laccases due to their capacity to degrade lignin from unbleached pulp. This application requires low cost enzyme production and higher enzyme concentrations than those obtained from the natural fungal producers. Heterologous expression of laccase in yeasts is an option for producing these enzymes on an industrial scale. In this work, we have demonstrated the heterologous expression of the cglcc1 gene, responsible for laccase production in the basidiomicetous fungus Coriolopsis gallica, in the yeast Kluyveromyces lactis. In order to know if the transformed yeast has delignificant capability, a Pinus radiata kraft pulp has been incubated with it. After the treatment, a significant decrease in kappa number (13%) and in lignin content (22%) was observed. These results showed the delignificant capability of this transformed yeast. It can be concluded that the use of genetically modified microorganisms that do not demonstrate cellulolitic activity can produce high laccase levels and delignify cellulose pulps with a potential applications in cellulose pulp bleaching. (Author) 25 refs.

  20. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  1. STUDIES ON HIBISCUS CANNABINUS, HIBISCUS SABDARIFFA, AND CANNABINUS SATIVA PULP TO BE A SUBSTITUTE FOR SOFTWOOD PULP- PART 1: AS-AQ DELIGNIFICATION PROCESS

    OpenAIRE

    Dharm Dutt; J. S. Upadhyaya; C. H. Tyagi

    2010-01-01

    Hibiscus cannabinus, Hibiscus sabdariffa, and Cannabinus sativa, which are renewable non-woody fiber resources having characteristics similar to that of softwood (bast fibers), when used together with hardwood (core fibers), gave higher pulp yield with good mechanical strength properties when using an alkaline sulphite-anthraquinone (AS-AQ) pulping process rather than a conventional kraft pulping process and bleached more readily than kraft and soda pulps with a CEHH bleaching sequence. A com...

  2. Biofilms from micro/nanocellulose of NaBH4-modified kraft pulp

    Indian Academy of Sciences (India)

    Industrial applications of microfibrillated cellulose (MFC) and nanofibrillated cellulose (NFC) have been inuse for some time; however, there is a need to improve the production steps and at the same time to obtain better qualityproducts. NFC and MFC were generated from NaBH 4 -modified kraft pulp, produced from a red ...

  3. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp

    Science.gov (United States)

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNCMA). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower the...

  4. Influence of storage temperature of eucalypt chips on the quality of wood and of kraft pulp

    Energy Technology Data Exchange (ETDEWEB)

    Zvinakevicius, C.; Foelkel, C.E.B.; Andrade, J.R.

    1978-01-01

    Storage of eucalypt chips at high temperature (up to 70 degrees C) led to a reduction in yield and strength (particularly folding strength) of kraft pulp made from the chips. Storage also increased the content of 1% NaOH extractives in the chips and lowered their pH.

  5. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp.

    Science.gov (United States)

    Kansoh, Amany L; Nagieb, Zeinat A

    2004-02-01

    Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase and mannanase, singly or in combination, either sequentially or simultaneously. Enzymes were obtained from Streptomyces galbus NR that had been cultivated in a medium, containing either xylan of sugar cane bagasse or galactomannan of palm-seeds, when they were used as sole carbon sources from local wastes in fermentation media. No cellulase activity was detected. Incubation period, temperature, initial pH values and nature of nutritive constituents were investigated. Optimum production of both enzymes was achieved after 5 days incubation on a rotary shaker (200 rpm) at 35 degrees C and initial pH 7.0. Partial purification of xylanase and mannanase in the cultures supernatant were achieved by salting out at 40-60 and 60-80% ammonium sulphate saturation with a purification of 9.63- and 8.71-fold and 68.80 and 62.79% recovery, respectively. The xylanase and mannanase from S. galbus NR have optimal activity at 50 and 40 degrees C, respectively. Both enzymes were stable at a temperature up to 50 degrees C. Xylanase and mannanase showed highest activity at pH 6.5 and were stable from 5.0 to 8.0 and from 5.5 to 7.5, respectively. The partial purified enzymes preparations of xylanase and mannanase enzymes showed high bleaching activity, which is an important consideration for industry. Xylanase was found to be more effective for paper-bleaching than mannanase. When xylanase and mannanase were dosed together (simultaneously), both enzymes were able to enhance the liberation of reducing sugars and improve pulp bleachability, possibly as a result of nearly additive interactions. The simultaneous addition of both enzymes was more effective in pulp treatment than their sequential addition.

  6. Inflammatory response of human dental pulp to at-home and in-office tooth bleaching

    Directory of Open Access Journals (Sweden)

    Maysa Magalhães Vaz

    Full Text Available ABSTRACT Tooth bleaching is a technique of choice to obtain a harmonious smile, but bleaching agents may damage the dental pulp. Objective: This study evaluated the inflammatory responses of human dental pulp after the use of two bleaching techniques. Material and Methods: Pulp samples were collected from human third molars extracted for orthodontic reasons and divided into three groups: control - no tooth bleaching (CG (n=7; at-home bleaching with 15% carbamide peroxide (AH (n = 10, and in-office bleaching with 38% hydrogen peroxide (IO (n=12. Pulps were removed and stained with hematoxylin-eosin for microscopic analysis of inflammation intensity, collagen degradation, and pulp tissue organization. Immunohistochemistry was used to detect mast cells (tryptase+, blood vessels (CD31+, and macrophages (CD68+. Chi-square, Kruskal-Wallis, and Mann Whitney tests were used for statistical analysis. The level of significance was set at p0.05. No mast cells were found in the pulp samples analyzed. Conclusion: In-office bleaching with 38% hydrogen peroxide resulted in more intense inflammation, higher macrophages migration, and greater pulp damage then at-home bleaching with 15% carbamide peroxide, however, these bleaching techniques did not induce migration of mast cells and increased the number of blood vessels.

  7. Optical Approach To The Measurement Of Delignification In Kraft Pulping: Part B: Using Infrared Spectroscopy.

    Science.gov (United States)

    Adam, E.; Sugden, N.

    1986-10-01

    A study of the infrared (IR) absorption characteristics of dried kraft pulp sheets was made. This was done in order to assess the potential of using this approach as the basis for determining residual lignin, or Kappa number, in pulp after cooking. Strong positive linear correlations were obtained between Kappa number and IR absorbance at 1509 cm-for pulps made from different wood species, produced in different mills and having a Kappa number range of 13-37. For pulps from some mills, made from the same wood furnish and having a small Kappa number range, the degree of correlation was seriously reduced. The method requires the use of moisture-free pulp specimens in the measurement of absorbance. It is suggested that it would be more suitable as the basis for a laboratory instrument than for an on-line, process Kappa number sensor.

  8. Kinetics of liquid-solid reactions in naphthenic acid conversion and Kraft pulping

    Science.gov (United States)

    Yang, Ling

    Two liquid-solid reactions, in which the morphology of the solid changes as the reactions proceeds, were examined. One is the NA conversion in oil by decarboxylation on metal oxides and carbonates, and the other is the Kraft pulping in which lignin removal by delignification reaction. In the study of the NA conversion, CaO was chosen as the catalyst for the kinetic study from the tested catalysts based on NA conversion. Two reaction mixtures, carrier oil plus commercial naphthenic acids and heavy vacuum gas oil (HVGO) from Athabasca bitumen, were applied in the kinetic study. The influence of TAN, temperature, and catalyst loading on the NA conversion and decarboxylation were studied systematically. The results showed that the removal rate of TAN and the decarboxylation of NA were both independent of the concentration of NA over the range studied, and significantly dependent on reaction temperature. The data from analyzing the spent catalyst demonstrated that calcium naphthenate was an intermediate of the decarboxylation reaction of NA, and the decomposition of calcium naphthenate was a rate-determining step. In the study on the delignification of the Kraft pulping, a new mechanism was proposed for the heterogeneous delignification reaction during the Kraft pulping process. In particular, the chemical reaction mechanism took into account the heterogeneous nature of Kraft pulping. Lignin reacted in parallel with sodium hydroxide and sodium sulfide. The mechanism consists of three key kinetic steps: (1) adsorption of hydroxide and hydrosulfide ions on lignin; (2) surface reaction on the solid surface to produce degraded lignin products; and (3) desorption of degradation products from the solid surface. The most important step for the delignification process is the surface reaction, rather than the reactions occurring in the liquid phase. A kinetic model has, thus, been developed based on the proposed mechanism. The derived kinetic model showed that the mechanism

  9. Improvement in rice straw pulp bleaching effluent quality by incorporating oxygen delignification stage prior to elemental chlorine-free bleaching.

    Science.gov (United States)

    Kaur, Daljeet; Bhardwaj, Nishi K; Lohchab, Rajesh Kumar

    2017-10-01

    Environmental degradation by industrial and other developmental activities is alarming for imperative environmental management by process advancements of production. Pulp and paper mills are now focusing on using nonwood-based raw materials to protect forest resources. In present study, rice straw was utilized for pulp production as it is easily and abundantly available as well as rich in carbohydrates (cellulose and hemicelluloses). Soda-anthraquinone method was used for pulp production as it is widely accepted for agro residues. Bleaching process during paper production is the chief source of wastewater generation. The chlorophenolic compounds generated during bleaching are highly toxic, mutagenic, and bioaccumulative in nature. The objectives of study were to use oxygen delignification (ODL) stage prior to elemental chlorine-free (ECF) bleaching to reduce wastewater load and to study its impact on bleached pulp characteristics. ODL stage prior to ECF bleaching improved the optical properties of pulp in comparison to only ECF bleaching. When ODL stage was incorporated prior to bleaching, the tensile index and folding endurance of the pulp were found to be 56.6 ± 1.5 Nm/g and 140, respectively, very high in comparison to ECF alone. A potential reduction of 51, 57, 43, and 53% in BOD 3 , COD, color, and AOX, respectively was observed on adding the ODL stage compared to ECF only. Generation of chlorophenolic compounds was reduced significantly. Incorporation of ODL stage prior to bleaching was found to be highly promising for reducing the toxicity of bleaching effluents and may lead to better management of nearby water resources. Graphical abstract ᅟ.

  10. Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching.

    Science.gov (United States)

    Pouyet, Frédéric; Chirat, Christine; Potthast, Antje; Lachenal, Dominique

    2014-08-30

    The formation of carbonyl groups during the ozone treatment (Z) of eucalyptus (Eucalyptus grandis and Eucalyptus urophylla hybrid) kraft pulps and their behaviors during subsequent alkaline stages were investigated by the CCOA method with carbazole-9-carboxylic acid [2-(2-aminooxethoxy)-ethoxy] amide (CCOA) as the carbonyl-selective fluorescence label. Several pulp samples with or without lignin and hexenuronic acids (hexA) were used to elucidate the effects of these components when present in unbleached kraft pulp. Both hexA and lignin increased the formation of carbonyl groups on cellulose and hemicellulose during ozonation. It was concluded that radicals are likely formed when ozone reacts with either lignin or hexA. These carbonyl groups were involved in cellulose depolymerization during subsequent alkaline extraction stages with sodium hydroxide (E) and alkaline hydrogen peroxide (P, in ZEP or ZP). Their numbers decreased after E but increased during P when H2O2 was not stabilized enough. Several ways to minimize the occurrence of carbonyl group formation are suggested. Copyright © 2014. Published by Elsevier Ltd.

  11. Pulp and paper production from Spruce wood with kraft and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... Science and Technology Series, Gummerus Printing, Jyvaskyla,. Finland. Hafızoglu H, Deniz I (2007). Wood Chemistry, KTU Faculty of Forestry. Progress, Trabzon. Johansson A, Altonen O, Ylinen P (1987). Organasolv Pulping Methods and Pulping Properties, Biomass, 13(15): 45-52. Kırcı H (2006).

  12. Influência da densidade básica da madeira na qualidade da polpa kraft de clones hibrídos de Eucalyptus grandis W. Hill ex Maiden X Eucalyptus urophylla S. T. Blake Effect of wood basic density on kraft pulp quality of hybrid Eucalyptus grandis W. Hill ex Maiden X Eucalyptus urophylla S.T. Blake clones

    Directory of Open Access Journals (Sweden)

    Simone Cristina Setúbal Queiroz

    2004-12-01

    Full Text Available Foram estudados dois clones de Eucalyptus com densidades básicas de 447 e 552 kg/m³. O processo kraft foi utilizado para a produção de celulose, tendo sido aplicadas diferentes cargas de álcali para se obterem polpas com número kappa 18 ± 0,5. As polpas foram branqueadas pela seqüência ODEopDD, a alvuras de 90 ± 1% ISO, e refinadas, sendo suas propriedades físico-mecânicas e ópticas analisadas. A madeira de baixa densidade mostrou-se mais recomendável para a produção de celulose, por ter apresentado maior rendimento depurado, viscosidade da polpa mais elevada, ter requerido menor carga de álcali no cozimento, ter proporcionado menor teor de sólidos no licor residual e menor consumo de reagentes químicos no branqueamento. As propriedades mecânicas e estruturais das polpas não foram afetadas significativamente pela densidade básica das madeiras.Two hybrid Eucalyptus clones having 447 kg/m³ and 552 kg/m³ basic densities were used for this study. The kraft process was used for pulping the wood chips to kappa number 18±0.5 and different alkali charges were applied to reach this delignification target. Pulp was bleached to 90±1% ISO using the ODEopDD bleaching sequence. The bleached pulp was refined and its physical-mechanical properties were determined. The lower density wood was recommended for pulp production due to its lower alkali requirement for pulping, higher screened yield, superior pulp viscosity, lower black liquor solids content and lower bleaching chemical requirement. Wood basic density did not affect significantly the mechanical and structural pulp properties.

  13. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method

    Science.gov (United States)

    J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero

    2014-01-01

    An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 “Hexeneuronic acid content of chemical pulp”) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...

  14. Yield-increasing additives in kraft pulping: Effect on carbohydrate retention, composition and handsheet properties

    Energy Technology Data Exchange (ETDEWEB)

    Vaaler, David Andre Grimsoeen

    2008-07-01

    In this thesis, increased hemicellulose retention during kraft pulping has been studied. The work has been divided into three parts: i) Development of an accessible and reliable method for determination of carbohydrate composition of kraft pulps ii) Investigation of the composition and molecular mass distributions of the carbohydrates in kraft pulps with increased hemicellulose content iii) Investigation of the effect of increased hemicellulose content on the sheet properties of kraft pulps with increased hemicellulose content. A method for carbohydrate determination was developed. In this method, enzymes are used to hydrolyse the pulp into monosaccharides. A relatively mild acid hydrolysis is performed prior to detection on an HPLC with an RI-detector. The pulp is not derivatized and no pre-treatment (mechanical or chemical) is needed to determine the carbohydrate composition using the method developed here. Peak deconvolution software is used to improve the accuracy. Polysulphide and H2S primarily increase the glucomannan yield, which can be boosted by up to 7 % on o.d. wood. However, the cellulose yield is more affected by the cooking time and the maximum yield increase of cellulose is approximately 2 % on o.d. wood compared to an ordinary kraft pulp. The cooking time is influenced by sulphide ion concentration, AQ addition and the final Kappa number. The xylan yield is remarkably stable, however the alkali profile during the cook may influence the xylan yield. Surface xylan content of the fibres depends on residual alkali concentration in the black liquor. The molecular mass distributions of cellulose and hemicellulose were determined for pulps with increased hemicellulose content using size exclusion chromatography. Deconvolution by peak separation software is used to gain information about the degree of polymerization for cellulose and hemicellulose. The average DP of glucomannan in the kraft fibre was found to be 350 +- 30 and the average DP of xylan in the

  15. Chemical characteristics and Kraft pulping of tension wood from Eucalyptus globulus labill Características químicas e polpação Kraft de madeira de tração de Eucalyptus globulus labill

    Directory of Open Access Journals (Sweden)

    María Graciela Aguayo

    2012-12-01

    Full Text Available Tension (TW and opposite wood (OW of Eucalyptus globulus trees were analyzed for its chemical characteristics and Kraft pulp production. Lignin content was 16% lower and contained 32% more syringyl units in TW than in OW. The increase in syringyl units favoured the formation of β-O-4 bonds that was also higher in TW than in OW (84% vs. 64%, respectively. The effect of these wood features was evaluated in the production of Kraft pulps from both types of wood. At kappa number 16, Kraft pulps obtained from TW demanded less active alkali in delignification and presented slightly higher or similar pulp yield than pulps made with OW. Fiber length, coarseness and intrinsic viscosity were also higher in tension than in opposite pulps. When pulps where refined to 30°SR, TW pulps needed 18% more revolutions in the PFI mill to achieve the same beating degree than OW pulps. Strength properties (tensile, tear and burst indexes were slightly higher or similar in tension as compared with opposite wood pulps. After an OD0(EOD1 bleaching sequence, both pulps achieved up to 89% ISO brightness. Bleached pulps from TW presented higher viscosity and low amount of hexenuronic acids than pulps from OW. Results showed that TW presented high xylans and low lignin content that caused a decrease in alkali consumption, increase pulp strength properties and similar bleaching performance as compared with pulps from OW.Madeira de tração e oposta de árvores de Eucalyptus globulus foram analisadas quanto a suas características químicas e produção de polpa Kraft. A caracterização química da madeira de tração (TW de Eucalyptus globulus Labill. mostrou um conteúdo similar de celulose, alto conteúdo de xilanas e baixo conteúdo de lignina quando comparada com a madeira oposta (OW de uma mesma árvore. O conteúdo de lignina foi 16% menor e contém 32% mais unidades siringila em TW que em OW. O aumento das unidades siringila favoreceu a formação de ligações

  16. Effect of Dispersion and Bleaching on the Mechanical and Optical Properties of Deinked Recycled Pulp

    Directory of Open Access Journals (Sweden)

    yahya hamzeh

    2016-06-01

    Full Text Available In this study the effects of oxidative bleaching and mechanical dispersion in different conditions on the optical and mechanical properties of deinked recycled pulp was investigated. Industrial deinked pulp was treated in the different conditions, including dispersion, combined oxidative bleaching during dispersion, and separate dispersion and then oxidative bleaching. Handsheet papers were made from obtained pulps and then scanned and taken photos were analyzed by Digimizer software, version 4.1.1.0 to analysis spot content. Optical and mechanical properties of obtained handsheets were determined and compared. Results indicated that mechanical dispersion decreased spot content and brightness and increased yellowing of the handsheets. Moreover, mechanical dispersion increased dry and wet tensile and burst strengths, water retention value (WRV, ash content and decreased tear strength of handsheet papers. This study revealed that combined dispersing and oxidative bleaching of de-inked pulp provided superior results in comparison to the separate dispersing and oxidative bleaching.

  17. In-office bleaching effects on the pulp flow and tooth sensitivity – case series

    Directory of Open Access Journals (Sweden)

    Andrés Felipe CARTAGENA

    2015-01-01

    Full Text Available Laser Doppler flowmetry (LDF is a noninvasive method capable of evaluating variations in pulp blood flow (PBF and pulp vitality. This method has thus far not been used to assess changes in blood flow after in-office bleaching. The aim of this case series report was to measure changes in PBF by LDF in the upper central incisor of three patients submitted to in-office bleaching. The buccal surfaces of the upper arch were bleached with a single session of 35% hydrogen peroxide gel with three 15-min applications. The color was recorded using a value-oriented Vita shade guide before in-office bleaching and one week after the procedure. The tooth sensitivity (TS in a verbal scale was reported, and PBF was assessed by LDF before, immediately, and one week after the bleaching session. The lower arch was submitted to dental bleaching but not used for data assessment. A whitening degree of 3 to 4 shade guide units was detected. All participants experienced moderate to considerable TS after the procedure. The PBF readings reduced 20% to 40% immediately after bleaching. One week post-bleaching, TS and PBF were shown to be equal to baseline values. A reversible decrease of PBF was detected immediately after bleaching, which recovered to the baseline values or showed a slight increase sooner than one week post-bleaching. The LDF method allows detection of pulp blood changes in teeth submitted to in-office bleaching, but further studies are still required.

  18. Soda-anthraquinone, kraft and organosolv pulping of holm oak trimmings.

    Science.gov (United States)

    Alaejos, J; López, F; Eugenio, M E; Tapias, R

    2006-11-01

    The operating conditions for an organosolv (ethyleneglycol) and two alkaline (soda-anthraquinone and kraft) processes for obtaining cellulose pulp and paper from holm oak (Quercus ilex) wood trimmings were optimized. A range of variation for each process variable (viz. temperature, cooking time and soda or ethyleneglycol concentration) was established and a central composite experimental design involving three independent variables at three different variation levels was applied. The results obtained with the three cooking processes used were compared and those provided by the kraft process were found to be the best. Thus, the tensile index values it provided (5.9-16.3 N m/g) were 23.7% and 41.5% better than those obtained with the soda-AQ and ethyleneglycol processes, respectively. Also, the kraft process provided the best burst index, brightness and kappa number values. Based on the optimum working ranges, the temperature and cooking time were the variables resulting in the most and least marked changes, respectively, in pulp properties.

  19. Characterization of solid wastes from kraft pulp industry for ceramic materials development purposes

    International Nuclear Information System (INIS)

    Rodrigues, L.R.; Francisco, M.A.C.O.; Sagrillo, V.P.D.; Louzada, D.M.; Entringer, J.M.S.

    2016-01-01

    The Kraft pulp industry generates a large amount of solid wastes. Due this large quantity, the target of this study is characterize inorganic solid wastes, dregs, grits and lime mud, from the step of reagents recovery of Kraft process, aiming evaluate the potentiality of their use as alternative raw material on development of ceramic materials. Initially, the wastes were dried and ground, then they were subjected to the following characterization techniques: pH analysis, particle size analysis, X ray fluorescence, X ray diffraction, differential thermal analysis and thermogravimetric analysis and scanning electron microscopy. According to the results, it may be concluded that these wastes could be used as raw material in production of red ceramic and luting materials. (author)

  20. Estimation of Acacia melanoxylon unbleached Kraft pulp brightness by NIR spectroscopy

    Directory of Open Access Journals (Sweden)

    António J. A. Santos

    2015-08-01

    Full Text Available Aim of the study: The ability of NIR spectroscopy for predicting the ISO brightness was studied on unbleached Kraft pulps of Acacia melanoxylon R. Br. Area of study: Sites covering littoral north, mid interior north and centre interior of Portugal. Materials and methods: The samples were Kraft pulped in standard identical conditions targeted to a kappa number of 15. A Near Infrared (NIR partial least squares regression (PLSR model was developed for the ISO brightness prediction using 75 pulp samples with a variation range of 18.9 to 47.9 %. Main results: Very good correlations between NIR spectra and ISO brightness were obtained. Ten methods were used for PLS analysis (cross validation with 48 samples, and a test set validation was made with 27 samples. The 1stDer pre-processed spectra coupling two wavenumber ranges from 9404 to 7498 cm-1 and 4605 to 4243 cm-1 allowed the best model with a root mean square error of ISO brightness prediction of 0.5 % (RMSEP, a r2 of 99.5 % with a RPD of 14.7. Research highlights: According to AACC Method 39-00, the present model is sufficiently accurate to be used for process control (RPD ≥ 8

  1. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan.

    Science.gov (United States)

    Li, Zongquan; Dou, Hongyan; Fu, Yingjuan; Qin, Menghua

    2015-11-05

    The presence of transition metals during the hydrogen peroxide bleaching of pulp results in the decomposition of hydrogen peroxide, which decreases the bleaching efficiency. In this study, chitosans were used as peroxide stabilizer in the alkaline hydrogen peroxide bleaching of aspen chemithermomechanical pulp (CTMP). The results showed that the brightness of the bleached CTMP increased 1.5% ISO by addition of 0.1% chitosan with 95% degree of deacetylation during peroxide bleaching. Transition metals in the form of ions or metal colloid particles, such as iron, copper and manganese, could be adsorbed by chitosans. Chitosans could inhibit the decomposition of hydrogen peroxide catalyzed by different transition metals under alkaline conditions. The ability of chitosans to inhibit peroxide decomposition depended on the type of transition metals, chitosan concentration and degree of deacetylation applied. The addition of chitosan slightly reduced the concentration of the hydroxyl radical formed during the hydrogen peroxide bleaching of aspen CTMP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. EVALUATION OF EUCALYPTUS KRAFT PULP LIGNIN THROUGH THE NITROBENZENE OXIDATION, COPPER OXIDE REDUCTION AND ACIDOLYSIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Gustavo Ventorim

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813337This study aimed to evaluate the sensitiveness of the information obtained for the residual lignin from Eucalyptus grandis kraft pulps analyzed through the nitrobenzene oxidation, copper oxide (CuO reduction and acidolysis techniques. The chips were cooked, resulting pulps of kappa number 14,5 and 16,9, respectively. Both lignins’ pulps were evaluated through three methods (nitrobenzene oxidation, copper oxide oxidation and acidolysis. Then, they were subjected to an oxygen delignification stage. The 16,9 kappa number pulp resulted in higher levels of non-condensed lignin structures by the acidolysis method, higher syringyl/vanillin ratios (S/V by the nitrobenzene and copper oxide methods and better performance in the oxygen delignification stage. The different methods allowed to differ the residual lignin pulps with kappa number 14,5 and 16,9, and the nitrobenzene oxidation method showed the highest sensitiveness in this study results.

  3. Grouping eucalyptus species in kraft pulp process for cost reduction

    Directory of Open Access Journals (Sweden)

    Apiwan Pichayadecha

    2014-12-01

    Full Text Available The objective of this research is to study the level of the important factors that can decrease total cost of pulp production. First of all, experts and experienced users identify the factors that affect the total production cost by applying the principle of 4M 1E cause and effect diagram. Then the primary factors were chosen based on 80% of their significance and tested by hypothesis for two population means. It was found that at the 95% confidence level the significant factors that have effects on the total production cost are amount of Effective alkali in white liquor and Kappa number. However, the proportion of easy delignification according to Eucalyptus species is considered as a significant factor based on various studies. Box-Behnken experiment is designed with respect to 3 mentioned factors and 3 levels of each factor. The response surface method (RSM is employed to determine the non-linear relation between the total cost as the response and the proportion of easy delignification, amount of Effective alkali in white liquor and Kappa number. To minimize the total cost, the optimal values of each factor are 75% of easy delignification, 112 grams per liter of Effective alkali in white liquor and 13.5 of kappa number. Under this optimal condition, the average total cost per ton of Eucalyptus is 13,393.91 Baht which is significantly less than the total cost of 15,517.06 Baht per ton before improvement.

  4. Investigation of ESEM/EDX to measure liquor penetration and diffusion in Eucalyptus grandis wood chips during kraft pulping

    CSIR Research Space (South Africa)

    Grzeskowiak, V

    2011-01-01

    Full Text Available 2011. 6. Quinde A. (1994). Pulping additives in kraft pulping: Past, present and future. Spring Conference Canadian Pulp and Paper Ass. Jasper, Alberta. May 19 ? 21. 7. Stamm A.J. (1953). Diffusion and penetration mechanism of liquids into wood... and aspen wood chips using SEM/EDXA. J. Pulp and Paper Sci. 22(3): 71-77. 10. Jensen W., Folgelberg B.C. and Johanson M. (1960). Studies on the possibilities of using radioactive tracers to follow the penetration of cooking liquors into wood. Paperi ja...

  5. Biological and advanced treatment of sulfate pulp bleaching effluents

    International Nuclear Information System (INIS)

    Çeçen, F.; Urban, W.; Haberl, R.

    1992-01-01

    Spent bleaching effluents (from chlorination (C) and extraction (E) stages) of a sulfate pulp mill were subjected to bench-scale biological and advanced treatment. Although > 90 % of the influent BOD 5 could be removed in an activated sludge process, the effluent still contained high amounts of resistant substances. The maximum COD removal was about 50 %; the removal rates achieved in the parameters TOC, DOC, AOX, SAK (254 nm) were even lower. The biological treatment led to an increase in color (436 nm) up to 40 %. The biologically pretreated effluent was further treated by ozone or ozone/irradiation. The DOC, COD, color (436 nm), SAK (254 nm) and AOX removal rates amounted to 61 %, 81 %, 98 %, 92 % and 92 %, respectively. These methods led simultaneously to an increase in biological biodegradability as reflected by an increase in BOD 5 . A comparison of the results obtained for raw and biologically pretreated wastewaters showed that biodegradable substances should first be removed from the wastewater since otherwise the effectiveness of these methods decreased. The coagulation/flocculation of biologically pretreated effluent showed that FeCl3 was the most effective coagulant and that removal rates > 90 % could be achieved. The treatment with various powder activated carbons showed that a dosage of 10 g/l was required to achieve elimination rates > 90 % in the parameters DOC, COD, color (436 nm) and SAK (254 nm). Adsorption isotherms were developed for every activated carbon and adsorption constants were calculated. (author)

  6. The Comparison of Kraft Pulp Properties from Stem and Branchwood of Hornbeam

    Directory of Open Access Journals (Sweden)

    Ebrahim Pouryazdian

    2014-05-01

    Full Text Available The utilization of tree branches as potential resource of fibers, that can be supply raw materials for pulp and paper industries, additionally, increases the productivity of tree. This research was done in order to compare pulp and paper properties from branch wood and stem wood and feasibility utilization that in pulp and paper industries. Stem and branch wood samples of hornbeam with mean diameter about 15 cm were obtained from Shastkolateh educational forest (Gorgan.The measurement of fibers was done with using Franklin method and light microscopic and chemical compositions were determined according to TAPPI test methods. The Kraft pulps from stem and branch wood were prepared under constant condition include sulfudity 20%, Max temp 170˚C and Liquor to wood ratio 5/1 and variable condition include active alkali 14%, 16% and 18%, and cooking time of 90, 120 and 150 min. Ultimately mechanical properties of Handsheet were measured according TAPPI test method The statistical analysis of results indicated that independent effects of wood, active alkali, and time were significant on pulp yield and Kappa number. Comparing the pulp yield and Kappa number means were showing that yield of stem wood pulp is higher than branch wood and its kappa number is less. Analysis mechanical properties on stem and branch wood Hand sheets showed that mechanical properties of Hand sheet from stem wood are higher than branch wood. There is none meaningful difference between the most mechanical properties hand sheets of stem and branch wood, that produced under cooking condition include sulfudity 20%, active alkali 18% and cooking time 150 min. therefore this condition would suggest for simultaneous cooking branch and stem wood

  7. Growth of Pinus radiada in soil containing solid waste from the kraft pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.; Vicuna, R.; Gonzalez, B.; Bronfman, M. [Pontificia Universidad Catolica de Chile, Facultad de Ciencias Biologicas, Santiago (Chile); Osses, M. [Celulosa Arauco y Constitucion, Arauco (Chile); Toro, J.; Balocchi, C.; Rodriguez, E. [Bioforest, S.A, Concepcion (Chile)

    2000-06-01

    The germination and growth of Pinus radials Don. plantlets in solid residues deriving from a Kraft pulp industry was evaluated. Plant conditions were monitored by histological studies of roots and shoot-tips, as well as by plant analyses of several essential and non essential elements. The solids employed consisted of ashes, fly-ashes, dregs, grits, primary sludge, brown stock screening rejects and various mixtures of them. Their addition, in a range of combinations to sandy/metamorphic or marine terrace/clay soils, resulted in effective and sustained growth under greenhouse conditions. Low proportions of wastes favored growth in most cases, indicating that they may act as fertilisers. In some experiments, especially in those where waste was added in proportions ranging from 50% to 60%, germination and/or development were slightly affected. Two-year old field experiments have confirmed that in spite of the high pH values, Na ion content or elevated water retention capacity exhibited by some of the solids tested, their use is beneficial for the growth of radiate pine. To date, we have not observed negative effects other than growth inhibition when some solids are present at concentrations above 60%. Our preliminary results suggest that an adequate use as fertiliser of solid waste from the Kraft pulp industry may constitute a profitable alternative in its management. (orig.)

  8. The number of bleaching sessions influences pulp tissue damage in rat teeth.

    Science.gov (United States)

    Cintra, Luciano Tavares Angelo; Benetti, Francine; da Silva Facundo, Aguinaldo Cândido; Ferreira, Luciana Louzada; Gomes-Filho, João Eduardo; Ervolino, Edilson; Rahal, Vanessa; Briso, André Luiz Fraga

    2013-12-01

    Hydrogen peroxide tooth bleaching is claimed to cause alterations in dental tissue structures. This study investigated the influence of the number of bleaching sessions on pulp tissue in rats. Male Wistar rats were studied in 5 groups (groups 1S-5S) of 10 each, which differed by the number (1-5) of bleaching sessions. In each session, the animals were anesthetized, and 35% hydrogen peroxide gel was applied to 3 upper right molars. Two days after the experimental period, the animals were killed, and their jaws were processed for light microscope evaluation. Pulp tissue reactions were scored as follows: 1, no or few inflammatory cells and no reaction; 2, session, necrotic tissue in the pulp horns and underlying inflammatory changes were observed. The extent and intensity of these changes increased with the number of bleaching sessions. After 5 sessions, the changes included necrotic areas in the pulp tissue involving the second third of the radicular pulp and intense inflammation in the apical third. The number of bleaching sessions directly influenced the extent of pulp damage. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Future trends in environmental impact of eucalyptus-based Kraft pulp industry in Thailand: a scenario analysis

    NARCIS (Netherlands)

    Jawjit, W.; Kroeze, C.; Soontaranun, W.; Hordijk, L.

    2008-01-01

    This study explores possible future trends in the environmental impact of the Kraft pulp industry in Thailand between 2000 and 2020. Scenarios were developed to analyze the effect of different options to reduce the future environmental impact, and the costs associated with the implementation of

  10. Tooth bleaching induces changes in the vascular permeability of rat incisor pulps.

    Science.gov (United States)

    Ferreira, Vanessa Guarino; Nabeshima, Cleber Keiti; Marques, Márcia Martins; Paris, Adriana Fraga Costa Samos; Gioso, Marco Antônio; dos Reis, Rodrigo Sant'anna Aguiar; Machado, Manoel Eduardo de Lima

    2013-10-01

    To evaluate the inflammatory response in dental pulps of rat incisors subjected to tooth bleaching protocols with different HP concentrations and application times. 42 incisors from Wistar rats were submitted to tooth bleaching using concentrations of 25% or 35% HP for treatment times of 15, 30 or 45 minutes. Four non-bleached teeth were used as controls. The animals received an intravenous injection of India ink immediately after the bleaching procedure and were sacrificed 1 hour later. Six bleached teeth from each group and three controls were made transparent, and one sample from each group was processed for histological analysis. The data were statistically analyzed using Kruskal Wallis and Dunn's tests (P ink content was significantly higher in the samples that were bleached with 35% HP for 30 minutes and with both HP concentrations (25 and 35%) for 45 minutes than in the controls. For the samples bleached with the same HP concentration, the ink content was higher in samples that were bleached for 45 minutes. These results indicate that HP tooth bleaching can induce an increase in vascular permeability in rat incisors. Importantly, this increase is more dependent on the length of the bleaching procedure than on the concentration of the bleaching agent.

  11. Novel bleaching of thermomechanical pulp for improved paper properties

    Science.gov (United States)

    Marguerite S. Sykes; John H. Klungness; Freya. Tan

    2002-01-01

    Production of mechanical pulp is expected to increase significantly to meet the growing global demand for paper. Mechanical pulping uses wood resources more efficiently with less negative impact on the environment than does chemical pulping. However, several problems related to mechanical pulping need to be resolved: high energy consumption, low paper strength...

  12. Efeito do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio Effect of residual lignin content and nature on the efficiency and selectivity of ozone bleaching

    Directory of Open Access Journals (Sweden)

    Elenice Pereira Maia

    2003-04-01

    Full Text Available Neste estudo foram avaliados os efeitos do conteúdo e da natureza da lignina residual na eficiência e na seletividade do branqueamento com ozônio de polpa kraft convencional (kraft e pré-deslignificada com oxigênio (kraft-O. Constatou-se que a eficiência do branqueamento com ozônio se eleva com o aumento do conteúdo de lignina residual da polpa. O tratamento com ozônio é mais seletivo para polpas kraft-O, mas para um mesmo tipo de polpa a seletividade de branqueamento com ozônio se eleva com o aumento de lignina residual. A eficiência do branqueamento com ozônio aumenta com o teor de lignina fenólica na polpa, entretanto a seletividade é negativamente afetada pela presença destas estruturas.This study aimed to evaluate the effect of residual lignin content and nature on the efficiency and selectivity of ozone bleaching of conventional (kraft and oxygen delignified (kraft-O pulps. Ozone bleaching efficiency was found to be enhanced by increasing pulp residual lignin content. Ozone treatment is more selective for kraft-O pulps, but for a given type of pulp (kraft or kraft-O, ozone bleaching selectivity increases with increasing pulp lignin content. Ozone bleaching efficiency increases with increasing pulp lignin phenolic hydroxyl content whereas selectivity is negatively affected by these structures.

  13. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp.

    Science.gov (United States)

    Lin, Xiao-qiong; Han, Shuang-yan; Zhang, Na; Hu, Hui; Zheng, Sui-ping; Ye, Yan-rui; Lin, Ying

    2013-02-05

    Past studies have revealed major difficulties in applications of xylanase in the pulp and paper industry as enzymes isolated from many different species could not tolerate high temperatures or highly alkaline conditions. The thermostable xylanase A from Bacillus halodurans C-125 (C-125 xylanase A) was successfully cloned and expressed in Pichia pastoris with a yield as high as 3361 U/mL in a 2 L reactor. Its thermophilic and basophilic properties (optimal activity at 70 °C and pH 9.0), together with the fact it is cellulase-free, render this enzyme attractive for compatible applications in the pulp and paper industry. The pretreatment of wheat straw pulp with C-125 xylanase A at pH 9.0 and 70 °C for 90 min induced the release of both chromophores (Ab(237), Ab(254), Ab(280)) and hydrophobic compounds (Ab(465)) into the filtrate as well as sugar degradation. Moreover, the addition of 10 U xylanase to 1 g wheat straw pulp (dry weight) as pretreatment improved brightness by 5.2% ISO and decreased the kappa number by 5.0% when followed by hydrogen peroxide bleaching. In addition, compared with two commercial enzymes, Pulpzyme HC and AU-PE89, which are normally incorporated in ECF bleaching of wheat straw pulp, C-125 xylanase A proved to be more effective in enhancing brightness as well as preserving paper strength properties. When evaluating the physical properties of pulp samples, such as tensile index, tearing index, bursting index, and post-color (PC) number, the enzymes involved in pretreating pulps exhibited better or the same performances as chemical treatment. Compared with chemical bleaching, chlorine consumption can be significantly reduced by 10% for xylanase-pretreated wheat straw pulp while maintaining the brightness together with the kappa number at the same level. Scanning electron microscopy revealed significant surface modification of enzyme-pretreated pulp fibers with no marked fiber disruptions. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Process for purification of waste water produced by a Kraft process pulp and paper mill

    Science.gov (United States)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  15. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp.

    Science.gov (United States)

    Parize, Delne Domingos da Silva; Oliveira, Juliano Elvis de; Williams, Tina; Wood, Delilah; Avena-Bustillos, Roberto de Jesús; Klamczynski, Artur Piotr; Glenn, Gregory Melvin; Marconcini, José Manoel; Mattoso, Luiz Henrique Capparelli

    2017-10-15

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNC MA ). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower thermal stability. Then, PLA/CNC and PLA/CNC MA nanocomposites were successfully obtained by solution blow spinning (SBS) using dimethyl carbonate (DMC) as solvent. CNC and CNC MA indicated to be acting both as nucleating agents or growth inhibitors of PLA crystal and tends to favor the formation of PLA crystals of higher stability. A fraction of the nanocrystals indicate to be exposed on the surface of the PLA fibers, since the hydrophilicity of the composite films increased significantly. Such composites may have potential application as filtering membranes or adsorbents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli.

    Science.gov (United States)

    Kawaguchi, Hideo; Katsuyama, Yohei; Danyao, Du; Kahar, Prihardi; Nakamura-Tsuruta, Sachiko; Teramura, Hiroshi; Wakai, Keiko; Yoshihara, Kumiko; Minami, Hiromichi; Ogino, Chiaki; Ohnishi, Yasuo; Kondo, Ahikiko

    2017-07-01

    Caffeic acid (3,4-dihydroxycinnamic acid) serves as a building block for thermoplastics and a precursor for biologically active compounds and was recently produced from glucose by microbial fermentation. To produce caffeic acid from inedible cellulose, separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) reactions were compared using kraft pulp as lignocellulosic feedstock. Here, a tyrosine-overproducing Escherichia coli strain was metabolically engineered to produce caffeic acid from glucose by introducing the genes encoding a 4-hydroxyphenyllactate 3-hydroxylase (hpaBC) from Pseudomonas aeruginosa and tyrosine ammonia lyase (fevV) from Streptomyces sp. WK-5344. Using the resulting recombinant strain, the maximum yield of caffeic acid in SSF (233 mg/L) far exceeded that by SHF (37.9 mg/L). In the SSF with low cellulase loads (≤2.5 filter paper unit/g glucan), caffeic acid production was markedly increased, while almost no glucose accumulation was detected, indicating that the E. coli cells experienced glucose limitation in this culture condition. Caffeic acid yield was also negatively correlated with the glucose concentration in the fermentation medium. In SHF, the formation of by-product acetate and the accumulation of potential fermentation inhibitors increased significantly with kraft pulp hydrolysate than filter paper hydrolysate. The combination of these inhibitors had synergistic effects on caffeic acid fermentation at low concentrations. With lower loads of cellulase in SSF, less potential fermentation inhibitors (furfural, 5-hydroxymethyfurfural, and 4-hydroxylbenzoic acid) accumulated in the medium. These observations suggest that glucose limitation in SSF is crucial for improving caffeic acid yield, owing to reduced by-product formation and fermentation inhibitor accumulation.

  17. Effects of bleaching agents and adhesive systems in dental pulp: a literature review

    OpenAIRE

    Oliveira, Maria Antonieta Veloso Carvalho de; Quagliatto, Paulo Sérgio; Magalhães, Denildo; Biffi, João Carlos Gabrielli

    2012-01-01

    The dental pulp may be exposed to several irritants that are potentially noxious to the health and functions of this tissue. Each type of irritant or injury has different effects on the pulp, which are generally characterized by acute inflammation, chronic inflammation or necrosis. Common examples of irritants are dental caries, cavity preparation procedures, traumatic injuries, and chemical substances like bleaching agents and adhesive systems. The present study aimed to review the current k...

  18. Influence of whitening gel on pulp chamber temperature rise by in-office bleaching technique

    Directory of Open Access Journals (Sweden)

    Sandro Cordeiro Loretto

    Full Text Available INTRODUCTION: Dental bleaching is a conservative method for the aesthetic restoration of stained teeth. However, whitening treatments are likely to cause adverse effects when not well planned and executed. OBJECTIVE: This study evaluated the influence of whitening gel on temperature rise in the pulp chamber, using the in-office photoactivated dental bleaching technique. MATERIAL AND METHOD: The root portion of an upper central human incisor was sectioned 3mm below the cemento-enamel junction. The root canal was enlarged to permit the insertion of the K-type thermocouple sensor (MT-401 into the pulp chamber, which was filled with thermal paste to facilitate the transfer of heat during bleaching. Three photosensitive whitening agents (35% hydrogen peroxide were used: Whiteness HP (FGM, Whiteness HP Maxx (FGM and Lase Peroxide Sensy (DMC. An LED photocuring light (Flash Lite - Discus Dental was used to activate the whitening gels. Six bleaching cycles were performed on each group tested. The results were submitted to one-way ANOVA and LSD t-test (α<0.05. RESULT: The lowest mean temperature variation (ºC was detected for Lase Peroxide Sensy (0.20, while the highest was recorded for Whiteness HP (1.50. CONCLUSION: The Whiteness HP and Whiteness HP Maxx whitening gels significantly affected the temperature rise in the pulp chamber during bleaching, and this variation was dependent on the type of whitening gel used.

  19. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    Science.gov (United States)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2017-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  20. Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R. Gleisner; T.A. Kuster; U. Baxa; S.E. McNeil

    2012-01-01

    This study reports the production of cellulose nanofibrils (CNF) from a bleached eucalyptus pulp using a commercial stone grinder. Scanning electronic microscopy and transmission electronic microscopy imaging were used to reveal morphological development of CNF at micro and nano scales, respectively. Two major structures were identified (1) highly kinked, naturally...

  1. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application

    NARCIS (Netherlands)

    Record, E.; Asther, M.; Sigoillot, C.; Pagès, S.; Punt, P.J.; Delattre, M.; Haon, M.; Hondel, C.A.M.J.J. van den; Sigoillot, J.C.; Lesage-Meessen, L.; Asther, M.

    2003-01-01

    A well-known industrial fungus for enzyme production, Aspergillus niger, was selected to produce the feruloyl esterase FAEA by homologous overexpression for pulp bleaching application. The gpd gene promoter was used to drive FAEA expression. Changing the nature and concentration of the carbon source

  2. Ecotoxicological studies with newly hatched larvae of Concholepas concholepas (Mollusca, Gastropoda): bioassay with secondary-treated kraft pulp mill effluents.

    Science.gov (United States)

    Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés

    2013-12-01

    The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. © 2013 Elsevier Inc. All rights

  3. Effect of Urea Addition on Soda Pulping of Oak Wood

    OpenAIRE

    Cho, Nam-Seok; Matsumoto, Yuji; Cho, Hee-Yeon; Shin, Soo-Jeong; Oga, Shoji

    2008-01-01

    Many studies have been conducted to find a sulfur-free additive for alkaline pulping liquors that would have an effect similar to that of sulfide in kraft pulping. Some reagents that partially fulfill this role have been found, but they are too expensive to be used in the quantities required to make them effective. As an alternative method to solve air pollution problem and difficulty of pulp bleaching of kraft pulping process, NaOH-Urea pulping was applied. The properties of NaOH-Urea pul...

  4. Development of a combined piezoresistive pressure and temperature sensor using a chemical protective coating for Kraft pulp digester process monitoring

    Science.gov (United States)

    Mohammadi, Abdolreza R.; Bennington, Chad P. J.; Chiao, Mu

    2011-01-01

    We have developed an integrated piezoresistive pressure and temperature sensor for multiphase chemical reactors, primarily Kraft pulp digesters (pH 13.5, temperatures up to 175 °C, reaching a local maximum of 180 °C and pressures up to 2 MPa). The absolute piezoresistive pressure sensor consisted of a large square silicon diaphragm (1000 × 1000 µm2) and high resistance piezoresistors (10 000 Ω). A 4500 Ω buried piezoresistive wire was patterned on the silicon chip to form a piezoresistive temperature sensor which was used for pressure sensor compensation and temperature measurement. A 4 µm thick Parylene HT® coating, a chemically resistant epoxy and a silicone conformal coating were deposited to passivate the pressure sensor against the caustic environment in Kraft digesters. The sensors were characterized up to 2 MPa and 180 °C in an environment chamber. A maximum thermal error of ±0.72% full-scale output (FSO), an average sensitivity of 0.116 mV (V kPa)-1 and a power consumption of 0.3 mW were measured in the pressure sensor. The sensors' resistances were measured before and after test in a Kraft pulping cycle and showed no change in their values. SEM pictures and topographical surfaces were also analyzed before and after pulp liquor exposure and showed no observable changes.

  5. In vitro study of the pulp chamber temperature rise during light-activated bleaching

    Directory of Open Access Journals (Sweden)

    Thaise Graciele Carrasco

    2008-10-01

    Full Text Available This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39 was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39 not to receive the bleaching agent. Three groups (n=13 were formed for each condition (bleach or no bleach according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LEDlaser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p0.01. When the bleaching agent was applied, there were significant differences among groups (p<0.01: halogen light induced the highest temperature rise (1.41±0.64ºC, and LED-laser system the lowest (0.33±0.12ºC; however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC. LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED

  6. Positive and negative aspects of soda/anthraquinone pulping of hardwoods.

    Science.gov (United States)

    Francis, R C; Bolton, T S; Abdoulmoumine, N; Lavrykova, N; Bose, S K

    2008-11-01

    The positive aspects of the non-sulfur soda/anthraquinone (SAQ) process are mostly tied to improved energy efficiency while lower pulp brightness after bleaching is its most significant drawback. A credible method that quantifies bleachability as well as an approach that solves the problem for SAQ pulps from hardwoods will be described. A straight line correlation (R2=0.904) was obtained between O2 kappa number and final light absorption coefficient (LAC) value after standardized OD0EpD1 bleaching of nine hardwood kraft pulps from three laboratories and one pulp mill. The bleachability of pulps from four different soda processes catalyzed by anthraquinone (AQ) and 2-methylanthraquinone (MAQ) was compared to that of conventional kraft pulps by comparing O2 kappa number decrease and final LAC values. It was observed that a mild hot water pre-hydrolysis improved the bleachability of SAQ pulps to a level equal to that of kraft.

  7. Colour and chloride removal from kraft pulp mill effluent using ion exchange

    International Nuclear Information System (INIS)

    Yun, G.; Ikehata, K.; Buchanan, I.D.

    2002-01-01

    Two weakly basic ion exchange resins (WBA) and seven strongly basic ion exchange resins (SBA) were evaluated on a bench scale for colour and chloride ion removal from kraft pulp mill effluent. Chloride ion was selected as a surrogate for non-process anions. Batch testing was carried out to determine effective resins and regenerants for colour and chloride removal. Although all of the WBA and SBA tested removed colour from the effluent to some extent, the results from the screening tests indicate that three SBA (IRA958, IRA458 and IRA900) have higher potential for complete removal of colour from the effluent. The three resins were successfully regenerated to nearly their original colour removal capacity using 1 N NaOH combined with 1 N NaCl. A macroporous acrylic SBA, IRA958, exhibited the highest average exchange capacity of the resins tested during three colour removal and two regeneration cycles. IRN78 and 4400OH, gel-type styrene-divinylbenzene SBA in the hydroxide form, were found to be effective for chloride removal. Breakthrough studies were conducted at various flow rates through columns of differing bed depths. The effectiveness of the selected resins and regenerating solutions was confirmed with these studies for both colour and chloride removal. (author)

  8. Use of perborate in the bleaching of ethanolamine pulp from olive wood

    International Nuclear Information System (INIS)

    Ramos, E.; Torre, M.J. de la; Gutiérrez, J.C.

    2016-01-01

    In this work, we studied the influence of the bleacher concentration(2.5-5.5%), temperature (60-80 ºC) and time (60-180 min) on the reagent (perborate) consumption by dry pulp, various properties of the bleached pulp (yield, kappa number, brightness and viscosity/kappa numberratio), and some physical properties of paper sheets obtainedfrom it (tear index, burst index, stretch and breakinglength). The pulp was previously obtained by ethanolamine-soda-anthraquinone cooking of olive wood. A face-centred composite factor design was used to derive equations relating the pulp properties to the operational variables with a view to identifying the optimum operating conditions. The equations thus obtained reproduced the experimental results with errors less than 10% in all cases.The most suitable operating conditions were found to be alow temperature (60 ºC), a long time (180 min) and a highperborate concentration (5,5%). Because the pulp brightness achieved never exceeded 63% -not even under themost drastic conditions-, the process should not be used with one-step bleaching sequences. (Author)

  9. Use of perborate in the bleaching of ethanolamine pulp from olive wood

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, E.; Torre, M.J. de la; Gutiérrez, J.C.

    2016-11-01

    In this work, we studied the influence of the bleacher concentration(2.5-5.5%), temperature (60-80 ºC) and time (60-180 min) on the reagent (perborate) consumption by dry pulp, various properties of the bleached pulp (yield, kappa number, brightness and viscosity/kappa numberratio), and some physical properties of paper sheets obtainedfrom it (tear index, burst index, stretch and breakinglength). The pulp was previously obtained by ethanolamine-soda-anthraquinone cooking of olive wood. A face-centred composite factor design was used to derive equations relating the pulp properties to the operational variables with a view to identifying the optimum operating conditions. The equations thus obtained reproduced the experimental results with errors less than 10% in all cases.The most suitable operating conditions were found to be alow temperature (60 ºC), a long time (180 min) and a highperborate concentration (5,5%). Because the pulp brightness achieved never exceeded 63% -not even under themost drastic conditions-, the process should not be used with one-step bleaching sequences. (Author)

  10. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber

    Directory of Open Access Journals (Sweden)

    Akiko Haruyama

    2016-01-01

    Full Text Available This study evaluated the microtensile bond strength (μTBS of 1-step self-etch adhesives (1-SEAs and 2-step self-etch adhesives (2-SEAs to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H2O2 solution with quartz-tungsten-halogen light-curing unit (Group 1 and 3.5% H2O2-containing titanium dioxide (TiO2 (Pyrenees® activated with 405-nm violet diode laser for 15 min (Group 2. Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μTBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μTBS of 2-SEA was significantly greater (with no failed specimens than 1-SEA (where 21 out of 36 failed. These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H2O2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H2O2 bleaching.

  11. Resin Bonding of Self-Etch Adhesives to Bovine Dentin Bleached from Pulp Chamber.

    Science.gov (United States)

    Haruyama, Akiko; Kameyama, Atsushi; Kato, Junji; Takemoto, Shinji; Oda, Yutaka; Kawada, Eiji; Takahashi, Toshiyuki; Furusawa, Masahiro

    2016-01-01

    This study evaluated the microtensile bond strength ( μ TBS) of 1-step self-etch adhesives (1-SEAs) and 2-step self-etch adhesives (2-SEAs) to pulp chamber dentin immediately after bleaching with 2 types of common bleaching techniques. Pulp chamber dentin of bovine teeth was bleached using 30% hydrogen peroxide (H 2 O 2 ) solution with quartz-tungsten-halogen light-curing unit (Group 1) and 3.5% H 2 O 2 -containing titanium dioxide (TiO 2 ) (Pyrenees®) activated with 405-nm violet diode laser for 15 min (Group 2). Unbleached specimens were placed in distilled water for 15 min and used as controls. After treatment, dentin was bonded with resin composite using 1-SEA or 2-SEA and stored in water at 37°C for 24 h. Each specimen was sectioned and trimmed to an hourglass-shape and μ TBS was measured. Fractured specimens were examined under a scanning electron microscope to determine fracture modes. All specimens in Group 1 failed before proper bonding tests. In Group 2, the μ TBS of 2-SEA was significantly greater (with no failed specimens) than 1-SEA (where 21 out of 36 failed). These results indicate that 2-SEA is a better adhesive system than 1-SEA on bleached dentin. Our results also demonstrated that application of H 2 O 2 significantly decreases bond strength of resin to dentin; however, in the case of nonvital tooth bleaching, Pyrenees® is a better alternative to the conventional 30% H 2 O 2 bleaching.

  12. Biodegradation of kraft-lignin by Bacillus sp. isolated from sludge of pulp and paper mill.

    Science.gov (United States)

    Raj, Abhay; Reddy, M M Krishna; Chandra, Ram; Purohit, Hemant J; Kapley, Atya

    2007-12-01

    Eight bacterial strains were isolated on kraft lignin (KL) containing mineral salt medium (L-MSM) agar with glucose and peptone from the sludge of pulp and paper mill. Out of these, ITRC-S8 was selected for KL degradation, because of its fast growth at highest tested KL concentration and use of various lignin-related low molecular weight aromatic compounds (LMWACs) as sole source of carbon and energy. The bacterium was identified by biochemical tests as Gram-positive, rod-shaped and non-motile. Subsequent 16S rRNA gene sequencing showed 95% base sequence homology and it was identified as Bacillus sp. In batch experiments, a decrease in pH was observed initially followed by an increase till it reached an alkaline pH, which did not alter the culture growth significantly. The bacterium reduced the colour and KL content of 500 mg l(-1 )KL in MSM, in the presence of glucose and peptone, at pH 7.6, temperature 30 degrees C, agitation of 120 rpm and 6 days of incubation by 65 and 37% respectively. Significant reduction in colour and KL content in subsequent incubations is indicative of a co-metabolism mechanism, possibly due to initial utilization of added co-substrates for energy followed by utilization of KL as a co-metabolic. The degradation of KL by bacterium was confirmed by GC-MS analysis indicating formation of several LMWACs such as t-cinnamic acid, 3, 4, 5-trimethoxy benzaldehyde and ferulic acid as degradation products, which were not present in the control (uninoculated) sample. This favours the idea of biochemical modification of the KL polymer to a single monomer unit.

  13. Production of value added chemicals from xylan extraction in a Kraft pulp mill and the effect on pulp quality

    OpenAIRE

    Helmerius, Jonas; Vinblad von Walter, Jonas; Rova, Ulrika; Berglund, Kris; Hodge, David

    2008-01-01

    In the Kraft process hemicelluloses are lost in the cooking procedure to the black liquor stream, which is subsequently burnt in the recovery boiler to recover cooking chemicals and to produce steam and energy. Hemicelluloses have a low heating value compared to lignin and therefore recovery of hemicelluloses at an earlier stage of the Kraft process followed by biochemical conversionintohighvalue-conversion intohighvalue-into high value-added products might offer a muchbettereconomicopportuni...

  14. The effect of wood supply and bleaching process on pulp brightness stability O efeito do tipo de madeira e do processo de branqueamento na estabilidade da alvura da polpa

    Directory of Open Access Journals (Sweden)

    Romildo Lopes Oliveira

    2006-06-01

    Full Text Available One hundred different 5.5-year-old Eucalyptus grandis x Eucalyptus urophylla wood clones were cooked to kappa number 15-17.5 and the resulting kraft pulps oxygen-delignified to kappa 9.5-11.5 under fixed conditions, except for chemical charges. Thirteen samples showing large variations in effective alkali requirement, pulp yield and O-stage efficiency and selectivity were selected for brightness reversion studies. These samples were bleached to 90-91% ISO by DEDD and DEDP sequences and their brightness stability and chemical characteristics determined. Heat reversion of the eucalyptus kraft pulps was strongly influenced by the wood supply, with brightness loss varying in the range of 2.1-3.6 and 0.8-1.7 %ISO for ODEDD and ODEDP bleached pulps, respectively. Pulps bleached by the ODEDP sequence showed reversion values 1.3-1.9 % ISO lower than those bleached by the ODEDD sequence. Pulp carbonyl content decreased by 35-40% during the final peroxide bleaching stage. Carbonyl and carboxyl groups correlated positively with brightness reversion, as did permanganate number and acid soluble lignin. Pulp final viscosity and metal and DCM extractives contents showed no significant correlation with brightness reversion. Pulping, oxygen delignification and ECF bleaching performances also showed no correlation with brightness reversion.Madeiras de 100 diferentes clones de Eucalyptus grandis e Eucalyptus urophylla, com aproximadamente 5,5 anos de idade, foram cozidas ao número kappa 15-17,5. As polpas kraft produzidas foram pré-deslignificadas com oxigênio ao número kappa 9,5-11,5, sob condições fixas. Treze polpas, que mostraram grandes variações na exigência da carga de álcali efetivo e rendimento no processo de polpação, seletividade e eficiência no estágio de Pré-O, foram selecionadas e branqueadas à alvura DE 90-91% ISO pelas seqüências DEDD e DEDP, para estudos de estabilidade de alvura e características químicas. A reversão de

  15. Lipophilic extractives from several nonwoody lignocellulosic crops (flax, hemp, sisal, abaca) and their fate during alkaline pulping and TCF/ECF bleaching.

    Science.gov (United States)

    Marques, Gisela; del Río, José C; Gutiérrez, Ana

    2010-01-01

    The fate of lipophilic extractives from several nonwoody species (flax, hemp, sisal and abaca) used for the manufacturing of cellulose pulps, was studied during soda/anthraquinone (AQ) pulping and totally chorine free (TCF) and elemental chlorine free (ECF) bleaching. With this purpose, the lipophilic extracts from the raw materials and their unbleached and bleached industrial pulps, were analyzed by gas chromatography-mass spectrometry. Aldehydes, hydroxyfatty acids and esterified compounds such as ester waxes, sterol esters and alkylferulates strongly decreased after soda/AQ pulping while alkanes, alcohols, free sterols and sterol glycosides survived the cooking process. Among the lipophilic extractives that remained in the unbleached pulps, some amounts of free sterols were still present in the TCF pulps whereas they were practically absent in the ECF pulps. Sterol glycosides were also removed after both TCF and ECF bleaching. By contrast, saturated fatty acids, fatty alcohols and alkanes were still present in both bleached pulps.

  16. Extraction of hemicellulose from South African eucalyptus grandis using weak white liquor activation technology and its impact on kraft pulping efficiency

    CSIR Research Space (South Africa)

    Johakimu, Jonas K

    2017-09-01

    Full Text Available , near neutral pH during woodchips activation, a short wood activation time (15 min), and weak white liquor to water ratio of 20:80 is required. The concentration of hemicelluloses in the extract was approximately 2.0 g/L. During kraft pulping, weak white...

  17. A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry

    Energy Technology Data Exchange (ETDEWEB)

    Eric D. Larson; Stefano Consonni; Ryan E. Katofsky; Kristiina Iisa; W. James Frederick

    2007-03-31

    Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Program of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be

  18. Laccases, Manganese Peroxidases and Xylanases used for the bio-bleaching of paper pulp; an environmental friendly approach.

    Science.gov (United States)

    Saleem, Rabia; Khurshid, Mohsin; Ahmed, Safia

    2018-01-21

    The paper and pulp industry is a capital and resource-intensive industry that contributes to ecosystem toxicity and affects human beings. Bio-bleaching is a promising substitute for chlorine-based chemical methods in the bleaching process. In this study xylanase, laccase and manganese peroxidase isolated from white rot fungi were used for pre-bleaching and bleaching of oven-dried wheat straw pulp. During the sequential enzymatic treatment of oven-dried pulp, the brightness was improved and kappa number was reduced by 3.1% and 3.1 points respectively after xylanase treatment, 0.3% and 0.4 points after laccase treatment and 3% and 0.2 points after MnP treatment. During separate treatment of pulp samples with individual enzymes, brightness and kappa number improved by 8% and 3 points respectively after xylanase treatment, by 5% and 1.7 points after laccase treatment and 5% and 1.8 points after treatment with MnP. During subsequent treatment with 4% sodium hypochlorite, the brightness was further improved by 27.9 % for xylanase-treated pulp and 29% for the laccase and MnP treated pulp. The xylanase was found most efficient in comparison to laccase and MnP in the reduction of kappa number and improvement of brightness. These results clearly indicate the role of laccase, MnP and xylanase from white rot fungi as effective bio-bleaching agents. Therefore these enzymes can facilitate the bleaching process without threat to the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Efficacy of tooth bleaching with and without light activation and its effect on the pulp temperature: an in vitro study.

    Science.gov (United States)

    Hahn, Petra; Schondelmaier, Nina; Wolkewitz, Martin; Altenburger, Markus Jörg; Polydorou, Olga

    2013-01-01

    The aim of this in vitro study was to evaluate the colour stability of bleaching after light activation with halogen unit, laser, LED unit or chemical activation up to 3 months after treatment. Four groups of teeth (n = 20) were bleached with Opalescence Xtra Boost (38% hydrogen peroxide) using four different methods: activation with halogen, LED, laser or chemical activation only. All teeth were bleached in one session for four times (4 × 15 min) and the colour was evaluated using a spectrophotometer at the following time points: before bleaching, immediately after bleaching, 1 day, and 1 and 3 months after the end of bleaching. Between the tested time points, the teeth were stored in 0.9% NaCl solution. Additionally, the temperature increase in the pulp chamber was measured using a measuring sensor connected to a computer. Bleaching with the halogen unit showed the highest colour change. Halogen unit, laser and chemical activation resulted in whiter teeth after 1 and 3 months compared to the colour after the end of the bleaching procedure (p ≤ 0.05). Three months after the end of bleaching, the shade changes observed were-halogen: 7.1 > chemical activation: 6.2 > LED: 5.4 > laser: 5.2. Halogen showed the highest temperature increase (17.39°C ± 1.96) followed by laser (14.06°C ± 2.55) and LED (0.41°C ± 0.66) (p light activation did not show any advantages compared to chemical bleaching. Although halogen unit showed the higher shade's change, its use resulted also in the higher pulp temperature. According to the present findings, light activation of the bleaching agent seems not to be beneficial compared to bleaching without light activation, concerning the colour stability up to 3 months after bleaching and the pulp temperature caused during the bleaching procedure.

  20. Effect of Laccase-Mediated Biopolymer Grafting on Kraft Pulp Fibers for Enhancing Paper’s Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Lourdes Ballinas-Casarrubias

    2017-11-01

    Full Text Available High-resistance paper was manufactured by laccase-grafting of carboxymethyl cellulose (CMC and chitosan (CPX on Kraft pulp fiber. The reaction was mediated in the presence of laccase by one of the following polyphenols in the presence of air: gallic acid (GA, vanillic acid (VA and catechol (1,2–DHB. Enzyme was added at constant loading (24 kg ton−1, 1% pulp consistency, 0.005% CMC, pH = 6.3 ± 0.5 and 2 mM of mediator. CPX content was assessed at two levels (0% and 0.005%. Treated pulps were analyzed by different mechanical tests (ring crush, mullen, corrugating medium test (CMT flat crush of corrugating medium test and tension. An improvement in these parameters was obtained by biopolymer coupling and selected mediator. When using GA, three parameters increased more than 40%, while ring crush increased 120%. For the case of VA, properties were enhanced from 74% to 88% when CPX was added. For 1,2–DHB, there was not found a statistically significant difference between the results in the presence of CPX. Scanning electron microscopy, confocal microscopy, FTIR and 13C NMR were used in all papers in order to evaluate grafting. Hence, it was possible to correlate polymerization with an improvement of paper’s mechanical properties.

  1. Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill

    International Nuclear Information System (INIS)

    Martins, Fernanda Machado; Munhoz Martins, Joaniel; Ferracin, Luiz Carlos; Cunha, Carlos Jorge da

    2007-01-01

    Four residues generated in a Kraft, pulp and paper plant, were characterized by X-ray fluorescence spectroscopy (XFA), powder X-ray diffraction (XRD), thermogravimmetric analysis (TG) and Fourier transform infrared spectroscopy (FTIR). A quantitative phase composition model, that accounts for the observed data and for the physico-chemical conditions of formation, was postulated for each material. Emphasis was given on the identification of the mineral components of each material. The green liquor dregs and the lime mud contain Calcite and Gipsite. The slaker grits contains Calcite, Portlandite, Pirssonite, Larnite and Brucite. The Calcite phase, present in the dregs and in the lime mud, has small amounts of magnesium replacing calcium. The wood ash contains Quartz as the major crystalline mineral phase

  2. Physical and Mechanical Properties of Cellulose Nanofibril Films from Bleached Eucalyptus Pulp by Endoglucanase Treatment and Microfluidization

    Science.gov (United States)

    Wangxia Wang; Ronald C. Sabo; Michael D. Mozuch; Phil Kersten; J. Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase (Ph-GH5) from the archaeon Pyrococcus horikoshii and a commercial endoglucanase (FR) were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNF) and subsequently to CNF films. TEM imaging indicated that Ph-GH5 produced longer and more entangled CNF than FR with the same number...

  3. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    Science.gov (United States)

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased.

  4. Extended oxygen delignification of high kappa softwood pulp in a flow-through reactor

    OpenAIRE

    Jafari, Vahid

    2015-01-01

    Julkaistu vain painettuna, saatavuus katso Bibid. Published only in printed form, availability see Bibid Oxygen delignification (O-delignification) is an important tool for improving yield, reducing lignin content of pulp and lowering the bleach chemical consumption in the pulp and paper industries. This process is designed after cooking to maximize the delignification rate in comparison to the final phase of Kraft cooking without sacrificing pulp quality. In order to improve the yield of ...

  5. Process integration study of a kraft pulp mill converted to an ethanol production plant – part B: Techno-economic analysis

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore; Åsblad, Anders

    2012-01-01

    In a previous study by the authors, energy efficiency measures in a conceptual kraft pulp mill converted to a lignocellulosic ethanol plant were investigated. The results suggested a number of different process designs which would give a substantial improvement in steam economy in the ethanol plant, compared to the original design. In the present study the different process designs are evaluated from an economic point-of-view, in order to determine if energy efficiency measures and increasing by-product sales decrease the production cost of ethanol from this specific process, or if the increased costs related to the implementation of these measures overshadow the benefits from increased by-product sales. The different energy efficiency measures are compared with less capital demanding alternatives (i.e. including low or no energy efficiency improvements) in order to assess the economic benefits of different strategies when converting a kraft pulp mill to ethanol production. The study indicates the economic importance of considering energy efficiency measures when repurposing a kraft pulp mill to an ethanol plant. It is also shown that, within the context of this study, a larger investment in measures will give better economic results than less capital demanding alternatives (with less improvement in energy efficiency). From an economic and energy efficiency viewpoint many of the suggested process designs will give approximately similar results, therefore the process design should be made based on other criteria (e.g. low complexity, low maintenance). - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Energy efficiency measures lead to lower ethanol production cost. ► If capital costs and raw material prices are low the production cost could be as low as 365 €/m 3 EtOH.

  6. Characterization of solid wastes from kraft pulp industry for ceramic materials development purposes; Caracterizacao de residuos solidos da industria de celulose tipo kraft visando sua aplicacao no desenvolvimento de materiais ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.R.; Francisco, M.A.C.O.; Sagrillo, V.P.D.; Louzada, D.M.; Entringer, J.M.S. [Instituto Federal do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2016-07-01

    The Kraft pulp industry generates a large amount of solid wastes. Due this large quantity, the target of this study is characterize inorganic solid wastes, dregs, grits and lime mud, from the step of reagents recovery of Kraft process, aiming evaluate the potentiality of their use as alternative raw material on development of ceramic materials. Initially, the wastes were dried and ground, then they were subjected to the following characterization techniques: pH analysis, particle size analysis, X ray fluorescence, X ray diffraction, differential thermal analysis and thermogravimetric analysis and scanning electron microscopy. According to the results, it may be concluded that these wastes could be used as raw material in production of red ceramic and luting materials. (author)

  7. Physicochemical and pulp tissue dissolution properties of some household bleach brands compared with a dental sodium hypochlorite solution.

    Science.gov (United States)

    Jungbluth, Holger; Peters, Christine; Peters, Ove; Sener, Beatrice; Zehnder, Matthias

    2012-03-01

    Many clinicians use household bleach to irrigate root canals. Sodium hypochlorite solutions are also available from dental suppliers. We compared physicochemical features of these products and investigated their impact on pulp tissue dissolution. Six different brands of household bleach were bought from drugstores. These were compared with Chlor-XTRA and technical NaOCl solutions of controlled concentration and alkalinity regarding their chlorine content (wt% NaOCl), pH, alkaline capacity, osmolarity, surface tension (Wilhelmy plate method), and price. Bovine pulp tissue (n = 10 specimens per group) dissolution at 37°C by test and control solutions adjusted to 1.0% NaOCl was assessed. Reduction in tissue weight was compared between groups by one-way analysis of variance, followed by Bonferroni correction (P Safeway Bleach Summit Fresh) was slightly alkalized; the other solutions under investigation were not. Osmolarity was similar between products. The surface tension of Chlor-XTRA and Safeway Bleach Summit Fresh was about half that of the other solutions. Tissue dissolution was statistically similar (P > .05) among all solutions. Price was about 100-fold higher per liter of Chlor-XTRA compared with household bleach. Other than its price, the Chlor-XTRA solution had no unique features. In contrast to an earlier report, reduced surface tension did not result in greater soft tissue dissolution by NaOCl. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. EFFECTS OF XYLAN IN EUCALYPTUS PULP PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bianca Moreira Barbosa

    2016-06-01

    Full Text Available The search for a better use of wood in the pulp industry has fuelled interest in a more rational use of its components, particularly xylans. The impact of xylans removal and of xylans redeposition on pulp properties for tissue and P&W paper grades are discussed in this paper. Kraft pulp (15.6% xylans treatment with 10-70 g.L-1 NaOH resulted in pulps of 14.5-5.9% xylans. The treatments decreased pulp lignin and HexA contents and caused significant positive impact on subsequent oxygen delignification and ECF bleaching. Xylan removal decreased pulp beatability, water retention value and tensile index but increased drainability, water absorption capacity, capillarity Klemm and bulk. Overall, xylan depleted pulps showed almost ideal properties for tissue paper grade pulps. In a second step of the research, xylans extracted from unbleached (BXL and bleached eucalyptus pulps (WXL by cold caustic extraction (CCE were added to a commercial brown pulp in the oxygen delignification (O-stage and further bleached. Xylans deposition occurred at variable degree (up to 7% on pulp weight depending upon the O-stage reaction pH. Pulp bleachability was not impaired by WXL xylan deposition but slightly negatively affected by BXL xylans. Pulp beatability was improved by xylan deposition. The deposited xylans were quite stable across bleaching and beating, with the WXL xylans being more stable than the BXL ones. At low energy consumption, the deposited xylans improved pulp physical and mechanical properties. Xylans extraction by CCE with subsequent deposition onto pulp in the O-stage proved attractive for manufacturing high xylan P&W paper grades.

  9. Spectroscopic determination of anthraquinone in kraft pulping liquors using a membrane interface

    Science.gov (United States)

    X.S. Chai; X.T. Yang; Q.X. Hou; J.Y. Zhu; L.-G. Danielsson

    2003-01-01

    A spectroscopic technique for determining AQ in pulping liquor was developed to effectively separate AQ from dissolved lignin. This technique is based on a flow analysis system with a Nafion membrane interface. The AQ passed through the membrane is converted into its reduced form, AHQ, using sodium hydrosulfite. AHQ has distinguished absorption characteristics in the...

  10. RE-UTILIZATION OF INORGANIC SOLID WASTE (LIME MUD AS FOREST ROAD STABILIZER FROM THE CHEMICAL RECOVERY PROCESS IN KRAFT PULP MILL

    Directory of Open Access Journals (Sweden)

    Habip Eroğlu

    2005-04-01

    Full Text Available Waste handling is a concern in all pulp and paper mills. Best available techniques for reducing waste is to minimize the generation of solid waste and/or reuse these materials, wherever practicable. One of the most important solid wastes is lime mud which is generated from the kraft pulping in its chemical recovery process. This paper explores the composition of lime mud resulting from the chemical recovery unite of kraft pulp mill and investigation of this waste for re-using beneficially on sub grade and pavement of forest road as a alternative disposal method. Lime mud obtained from the re-causticising process in SEKA pulp mill that utilizes wheat straw and reed as the principal raw material was supplied with % 47 water content and its chemical and physical characterisations was performed according to standard methods. Dried waste to environmental condition was mixed with certain amount to composite cement for using on pavement and sandy clay, loamy clay and clay soils for enriching forest road sub grade properties. In order to investigate the lime mud addition on pavement and sub grade properties necessary physical tests were performed. As a consequence this study reveals that while waste of lime mud causes environmental and economical problem with conventional disposal techniques and/or abandoning to environment, this waste can be used as good stabilisation materials on forest road sub-grade and pavement without any environmental problem.

  11. Pilot study investigating ambient air toxics emissions near a Canadian kraft pulp and paper facility in Pictou County, Nova Scotia.

    Science.gov (United States)

    Hoffman, Emma; Guernsey, Judith R; Walker, Tony R; Kim, Jong Sung; Sherren, Kate; Andreou, Pantelis

    2017-09-01

    Air toxics are airborne pollutants known or suspected to cause cancer or other serious health effects, including certain volatile organic compounds (VOCs), prioritized by the US Environmental Protection Agency (EPA). While several EPA-designated air toxics are monitored at a subset of Canadian National Air Pollution Surveillance (NAPS) sites, Canada has no specific "air toxics" control priorities. Although pulp and paper (P&P) mills are major industrial emitters of air pollutants, few studies quantified the spectrum of air quality exposures. Moreover, most NAPS monitoring sites are in urban centers; in contrast, rural NAPS sites are sparse with few exposure risk records. The objective of this pilot study was to investigate prioritized air toxic ambient VOC concentrations using NAPS hourly emissions data from a rural Pictou, Nova Scotia Kraft P&P town to document concentration levels, and to determine whether these concentrations correlated with wind direction at the NAPS site (located southwest of the mill). Publicly accessible Environment and Climate Change Canada data (VOC concentrations [Granton NAPS ID: 31201] and local meteorological conditions [Caribou Point]) were examined using temporal (2006-2013) and spatial analytic methods. Results revealed several VOCs (1,3-butadiene, benzene, and carbon tetrachloride) routinely exceeded EPA air toxics-associated cancer risk thresholds. 1,3-Butadiene and tetrachloroethylene were significantly higher (p towns and contribute to poor health in nearby communities.

  12. Unexpected promotion of PCDD/F formation by enzyme-aided Cl2bleaching in non-wood pulp and paper mill.

    Science.gov (United States)

    Fang, Liping; Zheng, Minghui; Liu, Guorui; Zhao, Yuyang; Liu, Wenbin; Huang, Linyan; Guo, Li

    2017-02-01

    Enzyme-aided Cl 2 bleaching is widely considered as promising replacements for conventional Cl 2 bleaching in wood pulp and paper mills. However, the effects of using enzyme-aided bleaching on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the non-wood pulp and paper mills are unclear. A field study was performed to investigate PCDD/F formation when enzyme-aided Cl 2 bleaching was used to replace conventional Cl 2 bleaching in non-wood pulp and paper mills. Unexpectedly, the PCDD/F toxic equivalents (TEQs) in solid samples were higher when using enzyme-aided bleaching (0.49-5.4 pg TEQ/g) than that using conventional Cl 2 bleaching (0.15-2.44 pg TEQ/g). Large amounts of octachlorodibenzo-p-dioxin were formed during the enzyme-aided bleaching process. This could have been because enzyme strongly promoted the release of organic molecules bound to lignin and thus accelerated the formation of octachlorodibenzo-p-dioxin through organic molecular precursors. Although enzyme-aided Cl 2 bleaching was previously considered to be efficient for reducing PCDD/F releases and to be the best available technologies and best environmental practices for wood pulp and paper mills, the results obtained in this study suggested the necessity and urgency to evaluate the suitability of enzyme-aided Cl 2 bleaching for non-wood pulp and paper mills that intensively practiced in developing countries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical pulping of waste pineapple leaves fiber for kraft paper production

    Directory of Open Access Journals (Sweden)

    Waham Ashaier Laftah

    2015-07-01

    Full Text Available The main objective of this study is to evaluate the implementation of acetone as a pulping agent for pineapple leaves. Mixtures of water and acetone with concentration of 1%, 3%, 5%, 7%, and 10% were used. The effects of soaking and delignification time on the paper properties were investigated. Thermal and physical properties of paper sheet were studied using thermogravimetric analysis (TGA and tearing resistance test respectively. The morphological properties were observed using microscope at 200× magnification. The paper sheet produced from pulping with 3% acetone concentration shows the highest mechanical properties. Papers strength was improved by increasing the delignification time. The delignification time was reduced by cooking the pineapple leaves at a temperature of 118 °C under applied pressure of 80 kPa which has remarkable effect on paper strength.

  14. Chemical pulping of waste pineapple leaves fiber for kraft paper production

    OpenAIRE

    Laftah, Waham Ashaier; Abdul Rahaman, Wan Aizan Wan

    2015-01-01

    The main objective of this study is to evaluate the implementation of acetone as a pulping agent for pineapple leaves. Mixtures of water and acetone with concentration of 1%, 3%, 5%, 7%, and 10% were used. The effects of soaking and delignification time on the paper properties were investigated. Thermal and physical properties of paper sheet were studied using thermogravimetric analysis (TGA) and tearing resistance test respectively. The morphological properties were observed using microscope...

  15. Effects of intensive silvicultural treatments on kraft pulp quality of loblolly and slash pine

    Science.gov (United States)

    Charles E. Courchene; Alexander Clark; Monique L. Belli; William Jason Cooper; Barry D. Shiver

    2000-01-01

    Intensive forest-management practices have been shown to greatly increase the growth rates of southern pines. A joint study was undertaken to evaluate the wood and pulp quality from fast-grown 14-year-old loblolly pine from the Piedmont and 17-year-old slash pine from the Coastal Plain. The properties were compared to 24-year-old plantation-grown controls. three sets...

  16. Integrating the processes of a Kraft pulp and paper mill and its supply chain

    International Nuclear Information System (INIS)

    Mesfun, Sennai; Toffolo, Andrea

    2015-01-01

    Highlights: • A process integration model that establishes material stream connections among typical Nordic forest industries is developed. • Potential benefit of the operating the different industries in one site is studied using pinch analysis. • Different scenarios considered to assess impact of prioritization on how to utilize excess biomass. • Results indicate large potential for improved biomass resource utilization. - Abstract: This paper investigates the possibility of combining different forest industries (a pulp and paper mill, its supply chain, and a wood-pellet plant) into an integrated industrial site in which they share a common heat and power utility. Advanced process integration and optimization techniques are used to study the site from both material and energy viewpoints. An existing pulp and paper mill is used as the site core plant and its pulp and paper production rates are kept fixed as they are in reality, while the other material flow links among the plants are based on the current industrial situation in Sweden. Different scenarios are evaluated in order to reflect the two main objectives that can be pursued (increased electricity production or biomass resource saving) and the two technologies that can be considered for the shared CHP system (boilers and product gas fired gas turbines). The corresponding non-integrated (standalone) configurations are compared to these scenarios to quantify the potential benefits of the integration. Investment opportunity is also calculated for the considered scenarios as an indicator of the economic convenience

  17. Production of cellulase-free xylanase by the recombinant Bacillus subtilis and its applicability in paper pulp bleaching.

    Science.gov (United States)

    Verma, Digvijay; Satyanarayana, T

    2013-01-01

    A metagenomic xylanase gene (Mxyl) was successfully cloned into shuttle vector pWH1520 and expressed in Bacillus subtilis extracellularly. On induction with xylose, recombinant xylanase secretion commenced after 6 h. Identifying critical variables for recombinant xylanase production by one-variable-at-time approach followed by optimization of the selected variables (xylose, inoculum density, incubation density) by response surface methodology (RSM) led to three-fold enhancement in extracellular xylanase production (119 U mL(-1) ). When the pulp was treated with recombinant xylanase at 80°C and pH 9.0, kappa number of the pulp was reduced with concomitant increase in brightness and 24% reduction in chlorine consumption. This is the first report on the expression of metagenomic xylanase gene in Bacillus subtilis extracellularly and its utility in developing an environment-friendly pulp bleaching process. © 2013 American Institute of Chemical Engineers.

  18. Excess heat from kraft pulp mills. Trade-offs between internal and external use in the case of Sweden. Part 2. Results for future energy market scenarios

    International Nuclear Information System (INIS)

    Joensson, Johanna; Berntsson, Thore; Svensson, Inger-Lise; Moshfegh, Bahram

    2008-01-01

    In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden - Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO 2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases. (author)

  19. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 1: Methodology

    International Nuclear Information System (INIS)

    Svensson, Inger-Lise; Joensson, Johanna; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    Excess heat from a kraft pulp mill can be used either internally to increase the level of efficiency in the mill, or externally for example as district heating. This paper presents an approach to investigate the competition between external and internal use through modelling the pulp mill and an energy company (ECO) within the same system boundary. Three different sizes of ECOs with different district heating demands are studied. To investigate the competitiveness of using industrial excess heat as district heating compared with other heat production techniques, the option of investing in excess heat use is introduced, along with the possibility for the ECO to invest in biomass combined heat and power (CHP), waste CHP and natural gas combined cycle (NGCC). To evaluate the robustness of the model, alternative solutions are identified and will be used as a comparison to the optimal solutions. The model has been verified by comparing the results with previous studies concerning kraft pulp mills and with related studies regarding district heating and real ECOs. Finally, the approach presented in this part of the study will be used in the second part in order to investigate the trade-off between internal and external use of excess heat under different future energy market scenarios

  20. A primary estimation of PCDD/Fs release reduction from non-wood pulp and paper industry in China based on the investigation of pulp bleaching with chlorine converting to chlorine dioxide.

    Science.gov (United States)

    Xiao, Qingcong; Song, Xiaoqian; Li, Wenchao; Zhang, Yuanna; Wang, Hongchen

    2017-10-01

    Chlorine bleaching technology (C process, CEH process, H process and theirs combination), which was identified as a primary formation source of PCDD/Fs, is still widely used by the vast majority of Chinese non-wood pulp and paper mills (non-wood PMs). The purpose of this study was to provide information and data support for further eliminating dioxin for non-wood PMs in China, and especially to evaluate the PCDD/Fs release reduction for those mills converting their pulp bleaching processes from CEH to ECF. The PCDD/Fs concentrations of the bleached pulp and bleaching wastewater with ECF bleaching were in the ranges of 0.13-0.8 ng TEQ kg -1 , and 0.15-1.9 pg TEQ L -1 , respectively, which were far lower than those with CEH process, indicating that the ECF process is an effective alternative bleaching technology to replace CEH in Chinese non-wood PMs to reduce dioxin release. The release factor via flue gas of the alkali recovery boiler in Chinese non-wood PMs was first reported to be 0.092 μg TEQ Ad t -1 in this study. On the assumption that pulp bleaching processes of all Chinese non-wood PMs were converted from CEH to ECF, the annual release of PCDD/Fs via the bleaching wastewater and bleached pulp would be reduced by 79.1%, with a total of 1.60 g TEQ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Isolation and characterization of bacterial strains Paenibacillus sp. and Bacillus sp. for kraft lignin decolorization from pulp paper mill waste.

    Science.gov (United States)

    Chandra, Ram; Singh, Shail; Krishna Reddy, M M; Patel, D K; Purohit, Hemant J; Kapley, Atya

    2008-12-01

    Eight aerobic bacterial strains were isolated from pulp paper mill waste and screened for tolerance of kraft lignin (KL) using the nutrient enrichment technique in mineral salt media (MSM) agar plate (15 g/L) amended with different concentrations of KL (100, 200, 300, 400, 500, 600 ppm) along with 1% glucose and 0.5% peptone (w/v) as additional carbon and nitrogen sources. The strains ITRC S6 and ITRC S8 were found to have the most potential for tolerance of the highest concentration of KL. These organisms were characterized by biochemical tests and further 16S rRNA gene (rDNA) sequencing, which showed 96.5% and 95% sequence similarity of ITRC S(6) and ITRC S(8) and confirmed them as Paenibacillus sp. and Bacillus sp., respectively. KL decolorization was routinely monitored with a spectrophotometer and further confirmed by HPLC analysis. Among eight strains, ITRC S(6) and ITRC S(8) were found to degrade 500 mg/L of KL up to 47.97% and 65.58%, respectively, within 144 h of incubation in the presence of 1% glucose and 0.5% (w/v) peptone as a supplementary source of carbon and nitrogen. In the absence of glucose and peptone, these bacteria were unable to utilize KL. The analysis of lignin degradation products by GC-MS analysis revealed the formation of various acids as lignin monomers which resulted in a decrease in pH and a major change in the chromatographic profile of the bacterial degraded sample as compared to the control clear indications of biochemical modification of KL due to the bacterial ligninolytic system by ITRC S(6), namely, acetic acid, propanoic acid, butanoic acid, guaiacol, hexanoic acid, and ITRC S(8), namely acetic acid, propanoic acid, ethanedioic acid, furan carboxylic acid, 2-propanoic acid, butanoic acid, 3-acetoxybutyric acid, propanedioic acid, acetoguiacone, 1,2,3-thiadiazole, 5-carboxaldixime, 4-hydroxy-3,5-dimethoxyphenol, and dibutyl phthalate, indicating the bacterium characteristic to degrade G and S units of lignin polymer.

  2. Mill Designed Bio bleaching Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current

  3. ISOLASI, SKRINING DAN IDENTIFIKASI JAMUR XILANOLITIK LOKAL YANG BERPOTENSI SEBAGAI AGENSIA PEMUTIH PULP YANG RAMAH LINGKUNGAN (Isolation, Screening and Identification Xylanolytic Local Fungi that Potentially as Pulp Bleaching Agents

    Directory of Open Access Journals (Sweden)

    Elisa Nurnawati

    2015-01-01

    Xylanase has great potential for industry application. Application of xylanase can be done in pretreatment of pulp bleaching in the pulp and paper industry. Enzyme application can reduce the use of chlorine compounds that are harmful to the environment. Therefore, xylanase that used in pulp bleaching should be free of cellulase activity. Fungi are one of the groups of microbes that are able to produce xylanase. The aims of this study was to obtain local xylanase-producing fungal isolates from soil that assumed contain of xylan. The source of fungal isolates were the soil around the pulp and paper industry; Acacia forests in the district Ogan Ilir and Muara Enim, South Sumatra; Wanagama, Yogyakarta; sawmills in Palembang and Yogyakarta; and Palembang landfill. Based on the initial screening in the agar basal medium, 111 fungal isolates were obtained. Most of them were the xylanase-producing fungi, but only 12 fungal isolates that have high xylanolytic capabilities. Further screening was performed on xylan liquid basal medium. The results showed that the fungus identified as Chaetomium globosum, Penicillium simplicissimum, Aspergillus tamarii and Monocillium have higher xylanase specific activity than the other isolates. They were also have lignolytic and cellulolytic activities. Therefore, fungal xylanase potentially developed as a pulp bleaching agent.

  4. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp.

    Science.gov (United States)

    Loranger, Eric; Piché, André-Olivier; Daneault, Claude

    2012-09-10

    Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr) and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH) and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

  5. Influence of High Shear Dispersion on the Production of Cellulose Nanofibers by Ultrasound-Assisted TEMPO-Oxidation of Kraft Pulp

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-09-01

    Full Text Available Cellulose nanofibers can be produced using a combination of TEMPO, sodium bromide (NaBr and sodium hypochlorite, and mechanical dispersion. Recently, this process has been the subject of intensive investigation. However, studies on the aspects of mechanical treatment of this process remain marginal. The main objective of this study is to evaluate the high shear dispersion parameters (e.g., consistency, stator-rotor gap, recirculation rate and pH and determine their influences on nanocellulose production using ultrasound-assisted TEMPO-oxidation of Kraft pulp. All nanofiber gels produced in this study exhibited rheological behaviors known as shear thinning. From all the dispersion parameters, the following conditions were identified as optimal: 0.042 mm stator-rotor gap, 200 mL/min recycle rate, dispersion pH of 7 and a feed consistency of 2%. High quality cellulose gel could be produced under these conditions. This finding is surely of great interest for the pulp and paper industry.

  6. Understanding the Nonproductive Enzyme Adsorption and Physicochemical Properties of Residual Lignins in Moso Bamboo Pretreated with Sulfuric Acid and Kraft Pulping.

    Science.gov (United States)

    Huang, Caoxing; He, Juan; Min, Douyong; Lai, Chenhuan; Yong, Qiang

    2016-12-01

    In this work, to elucidate why the acid-pretreated bamboo shows disappointingly low enzymatic digestibility comparing to the alkali-pretreated bamboo, residual lignins in acid-pretreated and kraft pulped bamboo were isolated and analyzed by adsorption isotherm to evaluate their extents of nonproductive enzyme adsorption. Meanwhile, physicochemical properties of the isolated lignins were analyzed and a relationship was established with non-productive adsorption. Results showed that the adsorption affinity and binding strength of cellulase on acid-pretreated bamboo lignin (MWLa) was significantly higher than that on residual lignin in pulped bamboo (MWLp). The maximum adsorption capacity of cellulase on MWLp was 129.49 mg/g lignin, which was lower than that on MWLa (160.25 mg/g lignin). When isolated lignins were added into the Avicel hydrolysis solution, the inhibitory effect on enzymatic hydrolysis efficiency of MWLa was found to be considerably stronger than that with MWLp. The cellulase adsorption on isolated lignins was correlated positively with hydrophobicity, phenolic hydroxyl group, and degree of condensation but negatively with surface charges and aliphatic hydroxyl group. These results suggest that the higher nonproductive cellulase adsorption and physicochemical properties of residual lignin in acid-pretreated bamboo may be responsible for its disappointingly low enzymatic digestibility.

  7. Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper.

    Science.gov (United States)

    Gupta, Vijaya; Garg, Shruti; Capalash, Neena; Gupta, Naveen; Sharma, Prince

    2015-05-01

    To reduce pollution and cost of treatment for fresh and recycled paper, co-production of xylanase and laccase was carried out in the same production medium using two compatible species of Bacillus. These co-produced enzymes were used for deinking of old newsprint (ONP) and biobleaching of eucalyptus Kraft pulp. Solid-state co-cultivation of Bacillus sp. and B. halodurans FNP135 was optimized statistically by response surface methodology for the co-production of xylanase (X) and laccase (L). A significant increase in production of xylanase (2.1-fold, 1,685 IU/g) and laccase (2.04-fold, 2,270 nkat/g) was observed under optimized conditions viz. pH (10.5), inoculum size (10 + 10 %) and moisture:substrate ratio (0.8:1). Both the enzymes showed identical temperature and pH optima of 70 °C and 9, respectively, and were used for deinking of ONP pulp and biobleaching of kraft pulp. In case of ONP pulp deinking, the XL treatment increased brightness (11.8 %), freeness (17.8 %), breaking length (34.8 %), burst factor (2.77 %) and tear factor (2.4 %). In case of kraft pulp biobleaching, XL treatment showed a significant increase in brightness (13 %), whiteness (106.15 %) breaking length (49 %), burst factor (6.9 %), tear factor (23 %), and viscosity (11.68 %) and reduction in kappa number (15 %) after alkali extraction and peroxide stage. This enhancement of pulp properties revealed a synergistic effect of xylanase and laccase produced in one setup.

  8. Purification and characterization of a cellulase-free, thermostable endo-xylanase from Streptomyces griseorubens LH-3 and its use in biobleaching on eucalyptus kraft pulp.

    Science.gov (United States)

    Wu, Hao; Cheng, Xianbo; Zhu, Yongfeng; Zeng, Wei; Chen, Guiguang; Liang, Zhiqun

    2018-01-01

    Xylanase is an important enzyme involved in degrading xylan. In this study, an extracellular cellulase-free, thermostable endo-xylanase which was produced by Streptomyces griseorubens LH-3 with bagasse semi-cellulose as a carbon source was purified and characterized. The xylanase was purified 4-fold with a recovery yield of 21.6% by precipitation with 25-55% (NH 4 ) 2 SO 4 , Mono Q ion exchange chromatography and sephacryl S-200 HR gel filtration chromatography. It appeared as a monomeric protein on SDS-PAGE gel and had an apparent molecular weight of 45.5 kDa with specific activity of 434 IU/mg. Using birchwood xylan as substrate, the maximum velocity (V max ) and Michaelis-Menten constant (K m ) were found to be 1.44 mg/ml and 2.05 μmol/min mg, respectively. The purified xylanase was active at pH 4.0-8.0 with an optimum pH of 5.0. It was stable at temperatures between 30°C and 50°C, exhibiting maximum activity at 60°C. Hg 2+ and Al 3+ inhibited the enzyme activity significantly. Enzymatic product analysis indicated that the enzyme was an endo-xylanase, whose hydrolysis products were mainly a series of short-chain xylooligosaccharides. Furthermore, it was used for biobleaching of eucalyptus kraft pulp, and results showed that this purified xylanase increased the brightness of the pulp by 14.5% and reduced the kappa number by 24.5%. All these industrially relevant characteristics made it had potential application in the pulp and paper industry as a biobleaching agent. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Science.gov (United States)

    2010-07-01

    ... TOXCHEM (Environment Canada's Wastewater Technology Centre and Environmega, Ltd.) model, version 1.10, or... the Pulp and Paper Industry. Subpart S requires this procedure in § 63.453(p)(3) to be followed during...

  10. PENENTUAN KOMPOSISI OPTIMUM BUBURAN KERTAS KRAFT LINER 150 GSM MENGGUNAKAN METODE MIXTURE EXPERIMENT (Studi kasus: Pabrik Pulp & Paper PT.Z

    Directory of Open Access Journals (Sweden)

    Johnson Saragih

    2015-11-01

    Full Text Available Tujuan dari penelitian ini adalah bagaimana caranya memilih komposisi dari campuran buburan kertas sehingga posisi optimum dapat tercapai, dengan tercapainya komposisi optimum tersebut diharapkan dapat  meningkatkan kualitas kertas yang diproduksi.Adapun komposisi buburan kertas yang ingin dicapai adalah  konsistensi sebesar untuk campuran ,pada campuran satu, tingkat freeness sebesar pada campuran dua dan tingkat internal bonding sebesar   pada campuran tiga. Percobaan dilakukan dengan metoda mixture experiment untuk sampel percobaan buburan kertas sebanyak 500 gr. Titik percobaan dibangkitkan dengan software minitab sebanyak 14 titik percobaan.Adapun komposisi campuran yang optimal diperoleh untuk total campuran diperoleh sebesar 71.23 % ( 356.15 gr Waste Paper, 8.72% (43.55gr Pulp (NUKP, 3.54% (17.7 gr Air, 5.7%(28.5 gr Rosin, 3.29 % (16.4 gr Aluminium Sulfat ( Al2(SO43, dan 7.55 %(37.75gr Starch. Dengan komposisi tersebut akan dihasilkan produk yang memenuhi spesifikasi yang telah ditetapkan perusahaan. Berdasarkan pengukuran kapabilitas proses  campuran satu, pada kertas kraft liner 150 gsm di perusahaan  untuk tingkat konsistensi, adalah sebesar 0.47 dan setelah dilakukan percobaan yang optimal, berubah menjadi 1.11 berarti  terdapat peningkatan sebesar 136.7 %.Pada campuran dua untuk tingkat freeness adalah 0.45 berubah menjadi 1.14 berarti meningkat sebesar 153.3 %, sedangkan pada campuran tiga untuk tingkat internal bonding dari 0.55 berubah menjadi 1.15 berarti meningkat sebesar 109 %. Kata kunci: mixture experiment; konsistensi; freeness; internal bonding Abstract The aim of the research are how to choose composition from pulp paper mix, so that optimum position can be achieved, with the achievement of optimum composition, it can be expected to increase quality of paper production.While the pulp paper composition to achieve are consistency as big as for mixing on first mix, freeness level as big as on second mix and internal

  11. Quality evaluation of dissolving pulp fabricated from banana plant stem and its potential for biorefinery.

    Science.gov (United States)

    Das, Atanu Kumar; Nakagawa-Izumi, Akiko; Ohi, Hiroshi

    2016-08-20

    The study was conducted to evaluate the quality of dissolving pulp of Musa sapientum L. (banana) plant stem and its potential for biorefinery. Introduction of pre-hydrolysis prior to any alkaline pulping process helps to reduce the content of hemicellulose and consequently produce acceptably high content of cellulose pulp. Water pre-hydrolysis was done at 150°C for 90min. The amount of lignin, xylan and glucan in the extracted pre-hydrolysis liquor (PHL) was 1.6, 4.9 and 1.6%, respectively. Pulping of pre-extracted chips was done following soda-AQ, alkaline sulfite and kraft process. The ratio of chip to liquor was 1:7 for both pre-hydrolysis and pulping. The kraft pulping process with 20% active alkali and 25% sulfidity at 150°C for 90min showed the best result. The lowest kappa number was 26.2 with a considerable pulp yield of 32.7%. The pulp was bleached by acidic NaClO2 and the consistency was 10% based on air-dried pulp. The lowest amount of 7% NaClO2 was used for the bleaching sequence of D0ED1ED2. After D0ED1ED2 bleaching, the pulp showed that α-cellulose, brightness and ash were 91.9, 77.9 and 1.6% respectively. The viscosity was 19.9cP. Hence, there is a possibility to use banana plant stem as a raw material for dissolving grade pulp and other bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    Energy Technology Data Exchange (ETDEWEB)

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  13. A utilização de perácidos na deslignificação e no branqueamento de polpas celulósicas The use of peracids in delignification and cellulose pulp bleaching

    Directory of Open Access Journals (Sweden)

    Lilian Borges Brasileiro

    2001-12-01

    Full Text Available Peracids are strong oxidant species and their use is being largely studied in the delignification and cellulose pulp bleaching. Some of them has already an industrial application, specially in non-conventional bleaching sequences like ECF (Elemental chlorine free and TCF (Totally chlorine free. This review presents the main aspects of the structure, properties, preparation and reaction of peracids (peracetic acid, peroxymonosulfuric acid and their mixture with lignin, specially for peracetic acid. Information about bleaching and delignification of wood pulps with peracids and the factors affecting its efficiency are also presented.

  14. Carbon Fibres from Kraft Lignin

    OpenAIRE

    Norberg, Ida

    2012-01-01

    Kraft lignin has a high potential for use in more valuable applications than its current use as fuel in pulp mills and integrated pulp and paper mills. The possibility of using kraft lignin, a green material with a carbon content of more than 60 %, for the manufacturing of carbon fibres was investigated in this thesis. The strong and lightweight carbon fibre material has many potential application areas, e.g. in cars; the main obstacle limiting its demand is the high production cost, with the...

  15. Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp.

    Directory of Open Access Journals (Sweden)

    Wangning Yu

    Full Text Available Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. This gene, svidyp, consists of 1,215 bp encoding a polypeptide of 404 amino acids. The gene encoding SviDyP was cloned, heterologously expressed in Escherichia coli, and then purified. The recombinant protein could efficiently decolorize several triarylmethane dyes, anthraquinonic and azo dyes under neutral to alkaline conditions. The optimum pH and temperature for SviDyP was pH 7.0 and 70°C, respectively. Compared with other DyP-type peroxidases, SviDyP was more active at high temperatures, retaining>63% of its maximum activity at 50-80°C. It also showed broad pH adaptability (>35% activity at pH 4.0-9.0 and alkali-tolerance (>80% activity after incubation at pH 5-10 for 1 h at 37°C, and was highly thermostable (>60% activity after incubation at 70°C for 2 h at pH 7.0. SviDyP had an accelerated action during the biobleaching of eucalyptus kraft pulp, resulting in a 21.8% reduction in kappa number and an increase of 2.98% (ISO in brightness. These favorable properties make SviDyP peroxidase a promising enzyme for use in the pulp and paper industries.

  16. Application of a novel alkali-tolerant thermostable DyP-type peroxidase from Saccharomonospora viridis DSM 43017 in biobleaching of eucalyptus kraft pulp.

    Science.gov (United States)

    Yu, Wangning; Liu, Weina; Huang, Huoqing; Zheng, Fei; Wang, Xiaoyu; Wu, Yuying; Li, Kangjia; Xie, Xiangming; Jin, Yi

    2014-01-01

    Saccharomonospora viridis is a thermophilic actinomycete that may have biotechnological applications because of its dye decolorizing activity, though the enzymatic oxidative system responsible for this activity remains elusive. Bioinformatic analysis revealed a DyP-type peroxidase gene in the genome of S. viridis DSM 43017 with sequence similarity to peroxidase from dye-decolorizing microbes. This gene, svidyp, consists of 1,215 bp encoding a polypeptide of 404 amino acids. The gene encoding SviDyP was cloned, heterologously expressed in Escherichia coli, and then purified. The recombinant protein could efficiently decolorize several triarylmethane dyes, anthraquinonic and azo dyes under neutral to alkaline conditions. The optimum pH and temperature for SviDyP was pH 7.0 and 70°C, respectively. Compared with other DyP-type peroxidases, SviDyP was more active at high temperatures, retaining>63% of its maximum activity at 50-80°C. It also showed broad pH adaptability (>35% activity at pH 4.0-9.0) and alkali-tolerance (>80% activity after incubation at pH 5-10 for 1 h at 37°C), and was highly thermostable (>60% activity after incubation at 70°C for 2 h at pH 7.0). SviDyP had an accelerated action during the biobleaching of eucalyptus kraft pulp, resulting in a 21.8% reduction in kappa number and an increase of 2.98% (ISO) in brightness. These favorable properties make SviDyP peroxidase a promising enzyme for use in the pulp and paper industries.

  17. Pengaruh Ph Terhadap Brightness Pulp Pada Tahap Eo Di Unit Bleaching Difiberline 1 Di PT. Riau Andalan Pulp And Paper,Tbk. Pelalawan Riau

    OpenAIRE

    M.Fahrurrozy

    2012-01-01

    092401021 Pulp merupakan sebagai bahan baku untuk pembuatan kertas. Standar mutu pulp diukur dengan brightness dan kekuatan serat pulp tersebut. pH yang dipakai pada tahap ini ialah dalam suasana basa. Hal ini ditujukan untuk menurunkan kappa number pulp karena apabila kappa number masih tinggi, ini akan berpengaruh pada brightness yang inggin dicapai dan kekuatan serat pulp akan rendah. Dapat disimpulkan bahwa pH sangat berpengaruh pada tahap ini oleh karena itu pengawasan pH harus dala...

  18. Utilización de Eucalyptus spp. Alternativas de plantaciones uruguayas para pulpa Kraft

    Directory of Open Access Journals (Sweden)

    Javier Doldán

    2011-05-01

    Full Text Available Las plantaciones de Eucalyptus globulus han mostrado desiguales tasas de crecimiento en diferentes regiones de Uruguay. Esto ha motivado la búsqueda de otros orígenes de semilla y especies para la producción de pulpa de celulosa. Propiedades papeleras de las pulpas blanqueadas (ECF de especies alternativas llevan a intuir que podrían ser atractivas para mercados de pulpa de fibra corta. En este trabajo se realiza un comparativo del E. grandis, E. dunnii, E. maidenii y E. globulus (procedencia de semilla “Jeeralang” con el E. globulus predominante en Uruguay. Se discute el potencial de estas maderas como base para una mezcla en cocción, basándose en el análisis de propiedades físicas (densidad aparente básica, propiedades pulpables (rendimiento, carga de álcali activo en cocción Kraft y consumo de madera y propiedades papeleras. En trabajos previos se han encontrado diferencias significativas entre el comportamiento pulpable del Eucalyptus globulus y Eucalyptus maidenii, sugiriendo que nosería recomendable mezclar estas especies. La misma conclusión se podría extender a las especies de Eucalyptus estudiadas. Sin embargo, teniendo en cuenta los similares requerimientos en las cargas de álcali activo, la mezcla entre especies alternativas podría ser aplicada.AbstractEucalyptus globulus plantations have shown different growth rates in different sites in Uruguay. This fact has triggered the search for other pulp wood species and seed provenance. Paper making properties of ECF bleached pulps of alternative speciessuggest that these species could be perfectly used as hardwood bleached pulp raw materials. This study intends to compare alternativeUruguayan pulpwood species E. grandis, E. dunnii, E. maidenii and “Jeeralang” a seed provenance of E. globulus to the E. globulus most widely cultivated in the country. Physical properties of wood (Basic Density, Kraft pulping performance (pulp yield, active alkali and wood consumption

  19. Polyoxometalates in Oxidative Delignification of Chemical Pulps: Effect on Lignin

    Directory of Open Access Journals (Sweden)

    Kolby Hirth

    2010-03-01

    Full Text Available Chemical pulps are produced by chemical delignification of lignocelluloses such as wood or annual non-woody plants. After pulping (e.g., kraft pulping, the remaining lignin is removed by bleaching to produce a high quality, bright paper. The goal of bleaching is to remove lignin from the pulp without a negative effect on the cellulose; for this reason, delignification should be performed in a highly selective manner. New environmentally-friendly alternatives to conventional chlorine-based bleaching technologies (e.g., oxygen, ozone, or peroxide bleaching have been suggested or implemented. In an attempt to find inorganic agents that mimic the action of highly selective lignin-degrading enzymes and that can be applicable in industrial conditions, the researchers have focused on polyoxometalates (POMs, used either as regenerable redox reagents (in anaerobic conditions or as catalysts (in aerobic conditions of oxidative delignification. The aim of this paper is to review the basic concepts of POM delignification in these two processes.

  20. Modification of pine pulp during oxygen delignification by xylan self-assembly.

    Science.gov (United States)

    Grigoray, Olga; Järnström, Joakim; Heikkilä, Elina; Fardim, Pedro; Heinze, Thomas

    2014-11-04

    Self-assembly is a technique of preparing functional materials based on targeted intermolecular interactions involving different macromolecules. In this work, hardwood xylan was disassembled from wood and birch bleached kraft pulp using pressurized hot water extraction (HWX) and cold alkali extraction (CAX), respectively. The extracted biopolymers were characterized using gas chromatography (GC), size exclusion chromatography (SEC) and Fourier transform infrared spectroscopy (FTIR), and subsequently added into an oxygen delignification reactor containing pine kraft pulp. The assembly of xylan-pulp fiber was characterized using advanced time-of-flight secondary ion mass spectrometry (ToF-SIMS) and imaging. The xylan-pine pulp assembly was not significantly removed during the whole elemental chlorine free bleaching sequence or during low consistency refining. Modified fibers had superior mechanical properties compared to the reference pulp. Our concept can be easily applied in the pulp and paper industry, and it opens new possibilities for the utilization of fully bio-based fibers in new materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Utilização de surfactantes, na polpação kraft de madeira de eucalipto, como auxiliar na remoção de extrativos lipofílicos Surfactant utilization in kraft pulping of eucalyptus wood to improve lipophilic extractives removal

    Directory of Open Access Journals (Sweden)

    Deusanilde de Jesus Silva

    2004-12-01

    Full Text Available Problemas de deposição de "pitch" em fábricas de celulose e de papel são atribuídos aos extrativos lipofílicos existentes na madeira. Uma das maneiras mais eficientes de controlar essa deposição é através da remoção de seus precursores do sistema, logo que possível, nas etapas de cozimento, lavagem da polpa marrom e pré-deslignificação com oxigênio. O uso de surfactantes como aditivos da polpação tem sido investigado, mas há grande deficiência de informações técnicas, e a aplicação industrial é, ainda, incipiente. A proposta deste trabalho foi analisar a viabilidade de minimizar a deposição de "pitch", intensificando a remoção de suas substâncias precursoras na etapa de polpação pelo uso de tensoativos sintéticos com propriedades umectantes e solubilizantes. Foram testados 20 princípios ativos de surfactantes em cozimento kraft convencional de madeira de eucalipto. Os resultados, alguns estatisticamente significativos, apontaram redução do teor de substâncias lipofílicas na polpa marrom. Foi observado que a remoção dos extrativos lipofílicos da madeira é afetada, inversamente, pelo teor de óxido de eteno na molécula do surfactante. Outros parâmetros de cozimento, como deslignificação, rendimento, teor de rejeitos e viscosidade da polpa, foram também avaliados.Extractives are pitch precursors and may decrease pulping efficiency and affect pulp quality. Probably, the most efficient way to minimize pitch problems is to remove their precursors from the system during cooking, pulp washing and oxygen delignification. Use of surfactants as pulping additives has been investigated but technical information is deficient and industrial application is very incipient. The objective of this study was to analyze the performance of different surfactants as additives for kraft pulping of Eucalyptus wood. Twenty surfactants with different basic chemical structures were used. The results demonstrated that

  2. Treatment of real industrial wastewaters through nano-TiO2 and nano-Fe2O3 photocatalysis: case study of mining and kraft pulp mill effluents.

    Science.gov (United States)

    Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R

    2017-06-01

    High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.

  3. Evaluation of the anaerobic degradation of black liquor from a Kraft pulp plant with addition of organic co-substrates.

    Science.gov (United States)

    Buzzini, A P; Sakamoto, I K; Varesche, M B; Pires, E C

    2009-01-01

    The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect.

  4. Process design and economics of a flexible ethanol-butanol plant annexed to a eucalyptus kraft pulp mill.

    Science.gov (United States)

    Pereira, Guilherme C Q; Braz, Danilo S; Hamaguchi, Marcelo; Ezeji, Thaddeus C; Maciel Filho, Rubens; Mariano, Adriano P

    2018-02-01

    This work proposes a strategy, from a process design standpoint, for pulp companies to enter the Brazilian ethanol market. The flexible plant converts eucalyptus-derived glucose to either ethanol or butanol (according to market conditions) and xylose only to butanol production. Depending on the biomass pretreatment technology, Monte Carlo simulations showed that the Net Present Value (NPV) of the flexible plant increases by 20-28% in relation to an ethanol-dedicated plant. Whereas the lower costs of the steam explosion technology turns the investment more attractive (NPV = 184 MMUSD; IRR = 29%), the organosolv technology provides better flexibility to the plant. This work also shows that excessive power consumption is a hurdle in the development of flash fermentation technology chosen for the flexible plant. These results indicate that conventional batch fermentation is preferable if the enzymatic hydrolysis step operates with solids loading up to 20 wt%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1,4-xylanase for applications in pulp bleaching.

    Science.gov (United States)

    Boonyapakron, Katewadee; Jaruwat, Aritsara; Liwnaree, Benjamas; Nimchua, Thidarat; Champreda, Verawat; Chitnumsub, Penchit

    2017-10-10

    In the pulp bleaching industry, enzymes with robust activity at high pH and temperatures are desirable for facilitating the pre-bleaching process with simplified processing and minimal use of chlorinated compounds. To engineer an enzyme for this purpose, we determined the crystal structure of the Xyn12.2 xylanase, a xylan-hydrolyzing enzyme derived from the termite gut symbiont metagenome, as the basis for structure-based protein engineering to improve Xyn12.2 stability in high heat and alkaline conditions. Engineered cysteine pairs that generated exterior disulfide bonds increased the k cat of Xyn12.2 variants and melting temperature at all tested conditions. These improvements led to up to 4.2-fold increases in catalytic efficiency at pH 9.0, 50°C for 1h and up to 3-fold increases at 60°C. The most effective variants, XynTT and XynTTTE, exhibited 2-3-fold increases in bagasse hydrolysis at pH 9.0 and 60°C compared to the wild-type enzyme. Overall, engineering arginines and phenylalanines for increased pK a and hydrogen bonding improved enzyme catalytic efficiency at high stringency conditions. These modifications were the keys to enhancing thermostability and alkaliphilicity in our enzyme variants, with XynTT and XynTTTE being especially promising for their application to the pulp and paper industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of different activation processes on H2O2/TAED bleaching of Populus nigra chemi-thermo mechanical pulp

    OpenAIRE

    Qiang Zhao; Dezhi Sun; Zhaohong Wang; Junwen Pu; Xiaojuan Jin; Mian Xing

    2012-01-01

    Tetra acetyl ethylene diamine (TAED) was used as an activator in H2O2 bleaching to improve bleaching efficiency. The present work was aimed at confirming different activations for various H2O2/TAED bleaching processes, including the addition of acetic anhydride and the step-addition of sodium hydroxide. The results showed that an acetic anhydride dosage of 1%, an acetic anhydride treatment time of 10 min, and an addition time of 45 min were the optimal treatment conditions. The optimum proces...

  7. Biodegradability and toxicity assessment of bleach plant effluents treated anaerobically.

    Science.gov (United States)

    Chaparro, T R; Botta, C M; Pires, E C

    2010-01-01

    As part of an experimental project on the treatment of bleach plant effluents the results of biodegradability and toxicity assessment of effluents from a bench-scale horizontal anaerobic immobilized bioreactor (HAIB) are discussed in this paper. The biodegradability of the bleach plant effluents from a Kraft pulp mill treated in the HAIB was evaluated using the modified Zahn-Wellens test. The inoculum came from a pulp mill wastewater treatment plant and the dissolved organic carbon (DOC) was used as the indicator of organic matter removal. The acute and chronic toxicity removal during the anaerobic treatment was estimated using Daphnia similis and Ceriodaphnia silvestrii respectively. Moreover, the evaluation of chromosome aberrations (CA), micronucleus frequencies (MN) and mitotic index (IM) in Allium cepa cells were used as genotoxicity indicators. The results indicate that the effluents from the anaerobic reactor are amenable to aerobic polishing. Acute and chronic toxicity were reduced by 90 and 81%, respectively. The largest CA and MN incidence in the meristematic cells of A. cepa were observed after exposure to the raw bleach plant effluent. The HAIB was able to reduce the acute and chronic toxicity as well as chromosome aberrations and the occurrence of micronucleus.

  8. Alkaliphilic endoxylanase from lignocellulolytic microbial consortium metagenome for biobleaching of eucalyptus pulp.

    Science.gov (United States)

    Weerachavangkul, Chawannapak; Laothanachareon, Thanaporn; Boonyapakron, Katewadee; Wongwilaiwalin, Sarunyou; Nimchua, Thidarat; Eurwilaichitr, Lily; Pootanakit, Kusol; Igarashi, Yasuo; Champreda, Verawat

    2012-12-01

    Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-beta-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at 65-70 degrees C with an optimal pH at 9- 10 and retaining >80% activity at pH 9, 60 degrees C for 1 h. Xyn3F showed a Vmax of 2,327 IU/mg and Km of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

  9. Engineering structural integrity issues in the pulp and paper industry

    International Nuclear Information System (INIS)

    Garner, A.; Singbeil, D.

    2002-01-01

    ESI issues for Pulp and Paper (P and P) plant are reviewed. Five typical processes are covered, namely: Chemical Pulping, Bleaching, Chemical Recovery, Mechanical Pulping and Papermaking. Equipment, chemical environments and failure modes are summarized with examples from each process. Pressure, temperature, corrosion and rotation are typical sources of risk, which is managed by appropriate inspection. The nature of the P and P Industry and its technology supply is summarized: current trends are consolidation and outsourcing. Three examples are presented to illustrate typical ESI issues: deaerator cracking where the P and P Industry alerted others to this serious cross-industry problem; pressure vessel safety factors and inconsistent international codes; and caustic cracking in continuous kraft digesters, which required rapid and concerted action to diagnose and control. In the future better predictability, data-bases, more formal risk based inspection and fitness-for-service assessments are envisaged. (author)

  10. Synthesis and characterization of kraft lignin-based epoxy resins

    OpenAIRE

    El Mansouri, Nour-Eddine; Yuan, Qiaolong; Huang, Farong

    2011-01-01

    Epoxidization is an interesting way to develop a new application of lignin and therefore to improve its application potential. In this work, kraft lignin-based epoxy resins were obtained by the epoxidization reaction, using the kraft lignin recovered directly from pulping liquor and modified by a methylolation reaction. The methylolated lignins were obtained by the reaction of original kraft lignin with formaldehyde and glyoxal, which is a less volatile and less toxic aldehyde. 1H-NMR spectro...

  11. Estratégia de análise da qualidade de madeira de Eucalyptus sp. para produção de celulose A laboratory technique to establish Eucalyptus sp. wood quality for kraft pulp production

    Directory of Open Access Journals (Sweden)

    José Lívio Gomide

    2004-06-01

    Full Text Available Estudou-se uma nova técnica laboratorial de análise de qualidade da madeira de Eucalyptus sp. para produção de polpa celulósica kraft. A técnica consiste em realizar, simultaneamente, quatro cozimentos de cavacos utilizando diferentes cargas de álcali ativo para estabelecer a característica de deslignificação da madeira. Pelo uso de equações de regressão, calcula-se o álcali ativo necessário para obter o número kappa desejado, o rendimento, a viscosidade e álcali consumido para o kappa objetivo. Os estudos estatísticos evidenciaram que uma única batelada de quatro cozimentos é suficiente, não sendo necessário realizar repetições.A new laboratory technique was tested to determine Eucalyptus sp. wood quality for kraft pulp production. This technique consists in performing four cooks simultaneously using different active alkali charges to establish the wood delignification characteristics. Based on regression equation it is possible to determine the alkali charge necessary to obtain a desired kappa number and the yield, viscosity and the alkali consumed for the target kappa. Statistical analysis demonstrated that a set of four cooks without replication is sufficient to determine the wood quality characteristics.

  12. A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process.

    Science.gov (United States)

    Shen, Jing; Kaur, Ishneet; Baktash, Mir Mojtaba; He, Zhibin; Ni, Yonghao

    2013-01-01

    To recover dissolved organics in pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process, a new combined process concept of sequential steps of activated carbon adsorption, ion exchange resin treatment, and membrane concentration, was proposed. The removal of lignin in the PHL was achieved in the activated carbon adsorption step, which also facilitates the subsequent operations, such as the membrane filtration and ion exchange resin treatment. The ion exchange resin treatment resulted in the removal/concentration of acetic acid, which opens the door for acetic acid recovery. The membrane filtration is to recover/concentrate the dissolved sugars. The combined process resulted in the production of PHL-based concentrate with relatively high concentration of hemicellulosic sugars, i.e., 22.13%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2005-12-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result in lime mud difficult to dewater, has not become true. Important experiences have come out which could be used as a base in further investigations.

  14. Hygroscopic slaking of lime with steam or humid air. New energy effective lime slaking technology in kraft pulping; Hygroskopisk slaeckning av kalk med aanga eller fuktig luft. Ny energieffektiv teknik foer slaeckning av mesakalk i sulfatmassaindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist, Roland

    2003-07-15

    Lime stone is widely used in chemical recovery for regeneration of white liquor in kraft pulping. Slaked (hydrated) lime is used to convert (causticize) sodium carbonate into sodium hydroxide, whereby lime mud (calcium carbonate) precipitates from the solution. Lime mud is dried and reburned in a lime kiln, where burned lime (calcium oxide) is formed. The circle is closed when lime is slaked (hydrated) in green liquor in an exotherm reaction. Problems with traditional slaking method is that heat is recovered at low temperatures. With the method described in this report there is potential to increase heat recovery in the causticizing plant. The forecasted method means that lime is slaked with steam or humid air, for example combined with a lime mud drier and a lime kiln. The task has included slaking of burned lime with steam or humid hot air, on purpose to test a specific machine equipment in pilote scale, and to investigate temperatures and hydratization rates able to reach. Also the lime slaked with steam/humid air should be compared with burned lime slaked in green liquor when green liquor is causticized, and to investigate the dewatering properties of formed lime mud. The target group is pulp and paper industry using the kraft process. The tests have been performed at SMA Svenska Mineral AB plant (lime burning) at Sandarne Sweden in years 2004-2005. Project owner has been the Swedish company Torkapparater AB, and the project is performed inside the 'Vaermeforsk Program for Pulp and Paper Industry 2004-2005'. Other partners, besides SMA Svenska Mineral AB, has been Stora Enso Skoghalls Bruk, Carnot AB, AaF Process AB and KTH Energiprocesser. Hydrated lime of varying slaking rates has been produced at temperatures up to 270 deg C. Caustizicing being performed show that dewatering properties of lime mud formed is quite up to the standard of lime mud from burned lime slaked in green liquor. The apprehension, that the hygroscopic slaked lime should result

  15. Comparison of various pulping characteristic of Fraxinus angustifolia ...

    African Journals Online (AJOL)

    This study was carried out in order to investigate the suitability of ash (Fraxinus angustifolia Vahl.), a native tree (species) in Turkey, for pulp and paper making. Four pulping methods, which included NSSC, cold soda, kraft and kraft + anthraquinone pulping processes, were used for this study. The test materials were ...

  16. Simulation of pulp mill wastewater recycling after tertiary treatment.

    Science.gov (United States)

    Fontanier, V; Albet, J; Baig, S; Molinier, J

    2005-12-01

    The aim of this work is to study the possibilities of effluent recycling in a bleached Kraft pulp mill, for a better water management. To avoid problems associated with effluent recycling (corrosion, odors, loss in pulp and paper quality), wastewaters have to be treated before recycling. This study is particularly focused on organic matter removal. Several treatments are applied on a biological secondary effluent: adsorption on activated carbon, coagulation with ferric chloride or alum sulfate, precipitation with lime, ozonation and catalytic ozonation. These techniques are compared in terms of COD (Chemical Oxygen Demand) removal. Catalytic ozonation is finally chosen as the most effective solution to achieve 50% of COD removal in the effluent. The characteristics of the effluent treated according to this technique are then used to simulate the impact of its reuse in the process for pulp production. The study is focused on the changes in these parameters in the various stages of bleaching and final washing when water is replaced by the wastewater treated or directly issued from the wastewater treatment plant. The simulation demonstrates the need of a tertiary treatment to eliminate COD in order to avoid possible reactant overconsumption and decrease in pulp brightness. Chloride and sulfate ions which could cause corrosion should also be removed.

  17. Chapter 6: Prehydrolysis Pulping with Fermentation Coproducts

    Science.gov (United States)

    T.H. Wegner; C.J. Houtman; A.W. Rudie; B.L. Illman; P.J. Ince; E.M. Bilek; T.W. Jeffries

    2013-01-01

    Although the term “integrateed biorefinery” is new, the concept has long been familiar to the pulp and paper industry, where processes include biomass boilers providing combined heat and power, and byproducts of pulping include turpentine, fatty acids and resin acids. In the dominant kraft (or sulfate) pulping process, dissolved lignin and chemicals from the pulp...

  18. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC-MS/FID.

    Science.gov (United States)

    Lourenço, Ana; Gominho, Jorge; Marques, António Velez; Pereira, Helena

    2012-11-01

    Eucalyptus globulus sapwood and heartwood showed no differences in lignin content (23.0% vs. 23.7%) and composition: syringyl-lignin (17.9% vs. 18.0%) and guaiacyl-lignin (4.8% vs. 5.2%). Delignification kinetics of S- and G-units in heartwood and sapwood was investigated by Py-GC-MS/FID at 130, 150 and 170°C and modeled as double first-order reactions. Reactivity differences between S and G-units were small during the main pulping phase and the higher reactivity of S over G units was better expressed in the later pulping stage. The residual lignin composition in pulps was different from wood or from samples in the initial delignification stages, with more G and H-units. S/G ratio ranged from 3 to 4.5 when pulp residual lignin was higher than 10%, decreasing rapidly to less than 1. The S/H was initially around 20 (until 15% residual lignin), decreasing to 4 when residual lignin was about 3%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties.

    Science.gov (United States)

    Spence, Kelley L; Venditti, Richard A; Habibi, Youssef; Rojas, Orlando J; Pawlak, Joel J

    2010-08-01

    Films of microfibrillated celluloses (MFCs) from pulps of different yields, containing varying amounts of extractives, lignin, and hemicelluloses, were produced by combining refining and high-pressure homogenization techniques. MFC films were produced using a casting-evaporation technique and the physical and mechanical properties (including density, roughness, fold endurance and tensile properties) were determined. Homogenization of bleached and unbleached Kraft pulps gave rise to highly individualized MFCs, but not for thermo-mechanical pulp (TMP). The resulting MFC films had a roughness equivalent to the surface upon which the films were cast. Interestingly, after homogenization, the presence of lignin significantly increased film toughness, tensile index, and elastic modulus. The hornification of fibers through a drying and rewetting cycle prior to refining and homogenization did not produce any significant effect compared to films from never-dried fibers, indicating that MFC films can potentially be made from low-cost recycled cellulosic materials. (c) 2010 Elsevier Ltd. All rights reserved.

  20. 40 CFR 430.00 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... (Fa) B Bleached Papergrade Kraft and Soda Market pulp at bleached kraft mills (Ga); paperboard, coarse... semi-chemical mills using an ammonia base or a sodium base (Ba). G Mechanical Pulp Pulp and paper at...

  1. VOC Control in Kraft Mills; FINAL

    International Nuclear Information System (INIS)

    Zhu, J.Y.; Chai, X.-S.; Edwards, L.L.; Gu, Y.; Teja, A.S.; Kirkman, A.G.; Pfromm, P.H.; Rezac, M.E.

    2001-01-01

    The formation of volatile organic compounds (VOCs), such as methanol, in kraft mills has been an environmental concern. Methanol is soluble in water and can increase the biochemical oxygen demand. Furthermore, it can also be released into atmosphere at the process temperatures of kraft mill-streams. The Cluster Rule of the EPA now requires the control of the release of methanol in pulp and paper mills. This research program was conducted to develop a computer simulation tool for mills to predict VOC air emissions. To achieve the objective of the research program, much effort was made in the development of analytical techniques for the analysis of VOC and determination of vapor liquid partitioning coefficient of VOCs in kraft mill-streams using headspace gas chromatography. With the developed analytical tool, methanol formation in alkaline pulping was studied in laboratory to provide benchmark data of the amount of methanol formation in pulping in kraft mills and for the validation of VOC formation and vapor-liquid equilibrium submodels. Several millwide air and liquid samplings were conducted using the analytical tools developed to validate the simulation tool. The VOC predictive simulation model was developed based on the basic chemical engineering concepts, i.e., reaction kinetics, vapor liquid equilibrium, combined with computerized mass and energy balances. Four kraft mill case studies (a continuous digester, two brownstock washing lines, and a pre-evaporator system) are presented and compared with mill measurements. These case studies provide valuable, technical information for issues related to MACT I and MACT II compliance, such as condensate collection and Clean-Condensate-Alternatives (CCA)

  2. Failure analysis of a heat exchanger used of a wood pulp bleaching process; Analise de falha de um trocador de calor utilizado no processo de branqueamento da polpa de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.B.V.; Moreto, J.A.; Rossino, L.S.; Spinelli, D.; Tarpani, J.R. [Universidade de Sao Paulo (SMM/EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia de Materais, Aeronautica e Automobilistica

    2010-07-01

    This study involved an investigation of the failure of a heat exchanger used in the ozone destruction stage of a wood pulp bleaching process at a pulp plant. The following procedures were carried out to determine the causes of the failure: a chemical analysis of the component, atomic absorption spectroscopy, measurements of hardness and of corrosion-related mass loss, characterization by scanning electron microscopy, and chemical microanalysis by X-ray energy dispersive spectroscopy. The corrosion damage of the heat exchanger was caused by chloric and sulfuric acid, which led to pitting, grooving and cracking, as well as generalized corrosion of the component (AISI 316L steel). Nitric acid caused minimal damage to the heat exchanger, with minor generalized corrosion and occasional pitting. White crystals rich in sulfur and chlorine were identified as the corrosive agents acting inside the heat exchanger. (author)

  3. Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Zhen [Hunan Univ. Changsha (China); Zeng, Guangming [Hunan Univ. Changsha (China); Huang, Fang [Georgia Inst. of Technology, Atlanta, GA (United States); Kosa, Matyas [Georgia Inst. of Technology, Atlanta, GA (United States); Huang, Danlian [Hunan Univ. Changsha (China); Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2015-04-09

    Kraft lignin (KL) from black liquor is an abundantly available, inexpensive aromatic resource that is regarded as a low value compound by the pulp and paper industry, necessitating the development of new applications.

  4. Kraft kasvatab Nordea haaret Eestis / Vahur Kraft

    Index Scriptorium Estoniae

    Kraft, Vahur, 1961-

    2006-01-01

    Avades lähikuudel seitse uut harukontorit, toimub Nordea Panga juhatuse esimehe Vahur Krafti juhtimisel suurim laienemine ettevõtte ajaloos. Ühtlasi peab Kraft jätkuvalt oluliseks internetipanga ja teiste elektrooniliste teenuste arendamist

  5. Effects of Non Process Elements in the chemical recovery system of a kraft pulp mill from the incineration in the recovery boiler of biological sludge; Effekter av PFG vid indunstning och foerbraenning av bioslam i ett massabruks sodapanna

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbom, Johan

    2003-01-01

    The purpose of this project was to investigate the effects of incineration of biological sludge in the recovery boiler of a Swedish Kraft pulp mill, StoraEnso Pulp AB Skutskaers Bruk, which has practiced incineration of sludge in the recovery boiler during the last two years. The following aspects of the technique were investigated: Experience from operation of incineration of biological sludge in the recovery boiler; The content of Non-Process Elements (NPE) in process flows and evaluate the risks of incrustations in the system; The build-up of NPE in the chemicals recovery system and the estimated increase in make-up lime demand; and Technical risks for mills with different process equipment. This study comprises the following NPE: aluminium, silicon, phosphorus, magnesium, calcium, chloride, iron, manganese, potassium, copper, and nitrogen. The operational experience from the system for hydrolysis of the biological sludge and evaporation/incineration in the recovery boiler is excellent. The handling of the sludge takes place in a closed system that demands little supervision and maintenance. Overall, the mill has not seen any negative effects that can be explained by increased intake of NPEs to the chemical recovery system. Aluminium can lead to troublesome incrustations of sodium-aluminium-silicates on the heat surfaces in the evaporation plant. An effective elimination of aluminium by the green liquor dreg is obtained with the double salt hydrotalcite if the quotient Mg/Al is kept higher than 4-5 in the black liquor. The need for make-up lime has increased due to the build-up of phosphorus in the lime. Depending on the level of make-up lime the need will increase 2-5 kg/ t{sub 90} at a price of 2-5 kr/t{sub 90}. If a higher level of phosphorus is accepted instead of increasing lime make-up the running costs will be somewhat higher, 0,5-1 kr/t{sub 90} due to increased ballast. NO{sub x} in the flue gases from the recovery boiler has not increased since the

  6. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    user

    lignin content and lignin type present in these wood species. The infra red analysis of the pulp obtained from the various wood species confirmed the chemical integrity of the pulps obtained from all the hard wood species surveyed. Key words: Kraft pulp, Nigerian wood species, pulp yield, cellulose. INTRODUCTION.

  7. Cynara cardunculus L. alkaline pulps: alternatives fibres for paper and paperboard production.

    Science.gov (United States)

    Abrantes, S; Amaral, M E; Costa, A P; Duarte, A P

    2007-11-01

    The pulping of Cynara cardunculus L. (cardoon) was performed under conditions for kraft, kraft-AQ and soda-AQ processes. The best results in terms of delignification degree, expressed as kappa number, pulp viscosity and screened yield, were obtained for the kraft-AQ process with 0.20% of anthraquinone (AQ). The papermaking potential of the selected pulp was studied attending to biometric fibre characterisation, refining aptitude, optical and strength properties. All properties were compared against a Eucalyptus globulus pulp at different refining degrees. The cardoon pulp was also evaluated concerning its potential to board manufacture, alone and in mixtures with pine pulp, giving rise to promising results for liner manufacture.

  8. Laser Teeth Bleaching: Evaluation of Eventual Side Effects on Enamel and the Pulp and the Efficiency In Vitro and In Vivo

    Science.gov (United States)

    De Moor, Roeland Jozef Gentil; Meire, Maarten August; De Coster, Peter Jozef

    2015-01-01

    Light and heat increase the reactivity of hydrogen peroxide. There is no evidence that light activation (power bleaching with high-intensity light) results in a more effective bleaching with a longer lasting effect with high concentrated hydrogen peroxide bleaching gels. Laser light differs from conventional light as it requires a laser-target interaction. The interaction takes place in the first instance in the bleaching gel. The second interaction has to be induced in the tooth, more specifically in the dentine. There is evidence that interaction exists with the bleaching gel: photothermal, photocatalytical, and photochemical interactions are described. The reactivity of the gel is increased by adding photocatalyst of photosensitizers. Direct and effective photobleaching, that is, a direct interaction with the colour molecules in the dentine, however, is only possible with the argon (488 and 415 nm) and KTP laser (532 nm). A number of risks have been described such as heat generation. Nd:YAG and especially high power diode lasers present a risk with intrapulpal temperature elevation up to 22°C. Hypersensitivity is regularly encountered, being it of temporary occurrence except for a number of diode wavelengths and the Nd:YAG. The tooth surface remains intact after laser bleaching. At present, KTP laser is the most efficient dental bleaching wavelength. PMID:25874258

  9. Kraft cooking of gamma irradiated wood, (2)

    International Nuclear Information System (INIS)

    Inaba, Masamitsu; Meshitsuka, Gyosuke; Ishizu, Atsushi; Nakano, Junzo

    1981-01-01

    Pre-irradiation of wood in alkaline aqueous ethanol increases kraft pulp yield by up to 1.2%, as already reported. In order to clarify the mechanism of the pulp yield gain, the behaviors of lignin and carbohydrates during pre-irradiation and cooking were investigated. The results are summarized as follows: 1) γ-Irradiation of guaiacylethane in alkaline aqueous ethanol produced 5-(1-hydroxyethyl)-guaicylethane, which is formed by radical coupling between α-hydroxyethyl radical from ethanol and guaiacylethane radical having an unpaired electron at C-5. 5,5'-Dehydrodiguaiacylethane, which may be a predominant product produced by γ-irradiation in the absence of ethanol, was also detected. 2) The yield of vanillin obtained by nitrobenzene oxidation of MWL decreased with an increase of γ-ray dosage. The presence of ethanol during γ-irradiation lessened the extent of this decrease and also the degradation of cellobiose. 3) Gel filtration of the products obtained by γ-irradiation of MWL and cellobiose in the presence of 14 C-ethanol showed the possible combination between ethanol and MWL or cellobiose. 4) Molecular weight distributions of kraft lignin obtained from pre-irradiated beech chips were compared with those obtained from unirradiated chips. This result shows that γ-irradiation in the presence of ethanol decreases the ability of lignin to condense during kraft cooking. (author)

  10. Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna.

    Science.gov (United States)

    Chamorro, Soledad; López, Daniela; Brito, Pablina; Jarpa, Mayra; Piña, Benjamin; Vidal, Gladys

    2016-12-01

    The implementation of elemental chlorine-free (ECF) bleaching methods has drastically reduced the aquatic toxicity of Kraft mill effluents during the last decade. However, the residual toxicity of Kraft mill effluents is still a potential concern for the environment, even when subjected to secondary wastewater treatment. The aim of this study is characterize potential sublethal effects of ECF Kraft mill effluents using Daphnia magna as model species. D. magna exposed towards increasing concentration of ECF Kraft mill effluent showed a significant, dose-dependent reduction in feeding. Conversely, post-feeding assay, life history, and allometric growth analyses showed stimulatory, rather than inhibitory effects in exposed animals at low concentrations, while high concentrations of ECF Kraft mill effluents reduced their reproductive output. These results suggest a hormetic effect in which moderate concentrations of the effluent had a stimulatory effect with higher concentrations causing inhibition in some variables.

  11. Vertical distribution of AhR-activating compounds in sediments contaminated by modernized pulp and paper industry.

    Science.gov (United States)

    Ratia, H; Oikari, A

    2014-03-01

    Increased ethoxyresorufin-O-deethylase (EROD) activity is a sensitive biomarker of exposure to the chemicals which activate the aryl hydrocarbon receptor (AhR) and induce the cytochrome P450 system, such as many polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs). Pulp bleaching was one of the main sources of PCDDs and PCDFs until elemental chlorine free (ECF) and total chlorine free bleaching processes since 1990s have remarkably decreased but not completely eliminate discharges of these chemicals. In addition, historically contaminated sediments may act as a source of these persistent contaminants. In this study, the contamination history and recovery of a watercourse heavily loaded by the chemical wood industry were studied by analyzing PCDDs, PCDFs and PCBs from vertical sediment samples and by measuring hepatic EROD activity from rainbow trout intraperitoneally dosed with the sediment extracts. No PCDDs or PCDFs were found above the chromatographic limit of detection from the study area and only small amounts of PCB congeners 101, 138, 153, and 180 were present. No increased EROD activity was observed in fish indicating the absence of any AhR-activating compounds in the surface sediment, to about 15 cm depth, representing about the last 20 years when kraft pulping and ECF bleaching with activated wastewater treatment have been used. It can be concluded that nowadays organochlorines and other AhR-ligands do not harm the previously heavily polluted watercourse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Comparative study of percentage yield of pulp from various Nigerian ...

    African Journals Online (AJOL)

    Comparative study of percentage yield of pulp from various Nigerian wood species using the kraft process. ... African Journal of Environmental Science and Technology ... The infra red analysis of the pulp obtained from the various wood species confirmed the chemical integrity of the pulps obtained from all the hard wood ...

  13. Properties of kenaf from various cultivars, growth and pulping conditions

    Science.gov (United States)

    James S. Han; Ernest S. Miyashita; Sara J. Spielvogel

    1999-01-01

    The physical properties of kenaf offer potential as an alternative raw material for the manufacture of paper. Investigations to date have not determined whether core and fiber should be pulped together or separately. Kenaf bast and core fibers of different cultivars were pulped under various kraft pulping conditions and physical properties: density, Canadian Standard...

  14. Application of enzymes in the pulp and paper industry

    Science.gov (United States)

    Bajpai

    1999-03-01

    The pulp and paper industry processes huge quantities of lignocellulosic biomass every year. The technology for pulp manufacture is highly diverse, and numerous opportunities exist for the application of microbial enzymes. Historically, enzymes have found some uses in the paper industry, but these have been mainly confined to areas such as modifications of raw starch. However, a wide range of applications in the pulp and paper industry have now been identified. The use of enzymes in the pulp and paper industry has grown rapidly since the mid 1980s. While many applications of enzymes in the pulp and paper industry are still in the research and development stage, several applications have found their way into the mills in an unprecedented short period of time. Currently the most important application of enzymes is in the prebleaching of kraft pulp. Xylanase enzymes have been found to be most effective for that purpose. Xylanase prebleaching technology is now in use at several mills worldwide. This technology has been successfully transferred to full industrial scale in just a few years. The enzymatic pitch control method using lipase was put into practice in a large-scale paper-making process as a routine operation in the early 1990s and was the first case in the world in which an enzyme was successfully applied in the actual paper-making process. Improvement of pulp drainage with enzymes is practiced routinely at mill scale. Enzymatic deinking has also been successfully applied during mill trials and can be expected to expand in application as increasing amounts of newsprint must be deinked and recycled. The University of Georgia has recently opened a pilot plant for deinking of recycled paper. Pulp bleaching with a laccase mediator system has reached pilot plant stage and is expected to be commercialized soon. Enzymatic debarking, enzymatic beating, and reduction of vessel picking with enzymes are still in the R&D stage but hold great promise for reducing energy

  15. Peroxy bleaches

    International Nuclear Information System (INIS)

    Carson, P.A.; Fairclough, C.S.; Mauduit, C.; Colsell, M.

    2006-01-01

    Fabric laundering is now a sophisticated chemical process involving a variety of operations including bleaching. The chemistry of peroxy bleaches is described including the use of novel organic compounds to provide effective bleaching at the lower temperatures of modern wash cycles. The instability of peroxy compounds is illustrated using cameo case histories to relate theory and practice. Techniques available for determining their thermochemistry are summarised. A model is provided for hazard and risk assessment of development projects in general (particularly those involving new molecules, processes or formulations) from ideas phase through exploratory laboratory investigations to pilot plant scale-up and eventual manufacture and commercial exploitation. This paper is a prelude to Part 2, which describes the determination of thermodynamic and kinetic properties of peroxy bleaches and discusses the implication of the results in terms of precautions for their safe storage and incorporation into detergent formulations during processing

  16. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching.

    Science.gov (United States)

    Betini, J H A; Michelin, M; Peixoto-Nogueira, S C; Jorge, J A; Terenzi, H F; Polizeli, M L T M

    2009-10-01

    This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.

  17. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    Science.gov (United States)

    Li, Jian [Marietta, GA; Chai, Xin Sheng [Atlanta, GA; Zhu, Junyoung [Marietta, GA

    2008-06-24

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  18. Combustion properties of kraft black liquors; Mustalipeaen koostumuksen vaikutus lipeaen poltto-ominaisuuksiin

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Siistonen, H.; Heikkinen, T.; Malkavaara, P. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The aim of this work is to study the combustion properties of kraft black liquors from modified cooking. Both the industrial and laboratory-made black liquors are included. In addition, changes in the combustion properties of the spent liquors obtained by mixing prior to combustion different chlorine-free bleach liquors with black liquor are studied. (author)

  19. RELATIONSHIP BETWEEN CRYSTALLINE STRUCTURE AND OPTICAL PROPERTIES OF WHEAT (Triticum aestevum L. STRAW SODA-OXYGEN PULP

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2003-04-01

    Full Text Available In this study; pulp was produced with soda-oxygen process by using wheat (Triticum aestevum L. straw as raw material and this pulp bleached with hypocholoride (H and peroxyde (P stages. It was found that crystalline properties of unbleached and bleached pulp samples increased by removing amorphous components. In addition, paper sheets made from unbleached and bleached soda-oxygen pulp and determined their optical properties. Consequently; while crystalline properties of pulp samples was rising with HP bleaching, it was determined that optical properties of paper sheets improved with bleaching.

  20. Evaluating pulp stiffness from fibre bundles by ultrasound

    Science.gov (United States)

    Karppinen, Timo; Montonen, Risto; Määttänen, Marjo; Ekman, Axel; Myllys, Markko; Timonen, Jussi; Hæggström, Edward

    2012-06-01

    A non-destructive ultrasonic tester was developed to measure the stiffness of pulp bundles. The mechanical properties of pulp are important when estimating the behaviour of paper under stress. Currently available pulp tests are tedious and alter the fibres structurally and mechanically. The developed tester employs (933 ± 15) kHz tweezer-like ultrasonic transducers and time-of-flight measurement through (9.0 ± 2.5) mm long and (0.8 ± 0.1) mm thick fibre bundles kept at (19.1 ± 0.4) °C and (62 ± 1)% RH. We determined the stiffness of soft wood pulps produced by three kraft pulping modifications: standard kraft pulp, (5.2 ± 0.4) GPa, prehydrolysis kraft pulp, (4.3 ± 0.4) GPa, and alkali extracted prehydrolysis kraft pulp, (3.3 ± 0.4) GPa. Prehydrolysis and alkali extraction processes mainly lowered the hemicellulose content of the pulps, which essentially decreased the fibre-wall stiffness hence impairing the stiffness of the fibre networks. Our results indicate that the method allows ranking of pulps according to their stiffness determined from bundle-like samples taken at an early phase of the papermaking process.

  1. The Effect of Preheating Treatment and non-simultaneous Addition of Chemicals on the Efficiency of Hydrogen Peroxide Bleaching of Chemi-mechanical pulp(CMP

    Directory of Open Access Journals (Sweden)

    Rabi Behrooz

    2011-12-01

    Results obtained from measuring optical and physical properties of handsheets showed that in all treatments at the same peroxide charge, non-simultaneous addition of chemicalswithpretreatment (process 3 caused better improvement in brightness and density of the paper. Also opacity، yellowness and caliper were lower in this process than the others. To reach a given brightness, hydrogen peroxide can be decreased. Therefore, by using the modified bleaching process we can economize on consumption of chemicals, by decreasing peroxide and alkali consumption at 1% and 23.8% to reach a given brightness. Also, COD load in this process at both levels of peroxide was lower than the other processes and therefore, it may decrease environmental contamination and effluent treatment requirement.

  2. The effects of high energy radiation on the pulping properties of Pinus radiation and Eucalyptus regnans

    International Nuclear Information System (INIS)

    McLaren, K.G.; Garland, C.P.; Higgins, H.G.

    1976-01-01

    Studies have been made of the effects of high energy radiation on the pulping behaviour of Eucalyptus regnans and Pinus radiata. Pre-irradiation of wood chips with small doses of 60 Co gamma radiation (up to about 0.2 Mrad) caused little degradation of the cellulose, and had only minor effects on the kraft pulping properties of both wood species. Pulp yield, Kappa number and strength properties of the pulps showed little change. There was also little effect on the bisulphite cooking of Pinus radiata. As the dose was increased to 1 Mrad, degradation of cellulose (as indicated by degree of polymerisation measurements) became significant, and Kraft pulp yields from both woods showed small reductions. The Kappa number and physical properties of these pulps were little affected at this dose level. A gamma radiation dose of 10 Mrad produced marked depolymerisation of the cellulose, and big reductions in kraft and neutral sulphite semi-chemical pulp yields. The kraft pulps showed a much higher lignin content. Some low dose (0.15 Mrad) irradiations on thin chips were carried out with a 1 MeV electron accelerator. In contrast to comparable gamma irradiations, this treatment produced discernible changes in kraft pulping behaviour. The pulp yield, under the same cooking conditions, appears to be slightly higher, but the Lignin content of the pulp was increased. (Author)

  3. Kraft lignin depolymerisation by based catalysed degradation (BCD) - The effect of process parameters on conversion degree and structural features of BCD fractions

    OpenAIRE

    Schmiedl, Schmiedl; Böringer, Sarah; Schweppe, Rainer; Liitiä, Tiina; Rovio, Stella; Tamminen, Tarja; Rencoret, Jorge; Gutiérrez Suárez, Ana; Río Andrade, José Carlos del; Río Andrade, José Carlos del

    2014-01-01

    The objective of the study is the generation of oxy-aromatic compounds (monomer, oligomer) from Eucalyptus- Kraft-lignin via multi-stage processes. These processes (1st base catalysed degradation & 2nd separation of the organic phase from reactor water) have to be feasible in bio refineries & in new Pulp-mill bio refineries as a new technology module. The Eucalyptus-Kraft-lignin (Suzano Pulp & Paper) was used for catalyzed conversion into oxy aromatics. Subsequently, the effect of process par...

  4. Effect of type of fungal culture, type of pellets and pH on the semi-continuous post-treatment of an anaerobically-pretreated weak black liquor from kraft pulp industry

    International Nuclear Information System (INIS)

    Robledo-Narvaez, P. N.; Ortega-Clemente, L. A.; Ponce-Noyola, M. T.; Rinderknecht-Seijas, N. F.; Poggi-Varaldo, H. M.

    2009-01-01

    It is well known that fungi belonging to the Basidiomycetes (such as Trametes versicolor, Lentinus edodes, Phanerochaete chrysosporium) are microorganisms with a demonstrated capability of degrading lignin and its derivatives using a powerful and diverse group of enzymes. Because of these features, ligninolytic fungi have been used for the treatment or post-treatment of a variety of recalcitrant and toxic effluents, those of the Kraft industry among them. Yet, most of reported fungal treatments so far required the supplementation with glucose or other soluble carbohydrates, pH 4 to 4,5, and their effective performance was demonstrated only for short periods of operation time. (Author)

  5. Effect of type of fungal culture, type of pellets and pH on the semi-continuous post-treatment of an anaerobically-pretreated weak black liquor from kraft pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Robledo-Narvaez, P. N.; Ortega-Clemente, L. A.; Ponce-Noyola, M. T.; Rinderknecht-Seijas, N. F.; Poggi-Varaldo, H. M.

    2009-07-01

    It is well known that fungi belonging to the Basidiomycetes (such as Trametes versicolor, Lentinus edodes, Phanerochaete chrysosporium) are microorganisms with a demonstrated capability of degrading lignin and its derivatives using a powerful and diverse group of enzymes. Because of these features, ligninolytic fungi have been used for the treatment or post-treatment of a variety of recalcitrant and toxic effluents, those of the Kraft industry among them. Yet, most of reported fungal treatments so far required the supplementation with glucose or other soluble carbohydrates, pH 4 to 4,5, and their effective performance was demonstrated only for short periods of operation time. (Author)

  6. Gamma ray induced chromophore modification of softwood thermomechanical pulp

    International Nuclear Information System (INIS)

    Robert, S.; Daneault, C.; Viel, C.; Lepine, F.

    1992-01-01

    This study focuses on bleaching a softwood (black spruce, balsam fur) thermomechanical pulp with gamma rays. Gamma rays are known for their enormous penetrating power, along with their ionizing properties. They can generate highly energetic radicals capable of oxidizing lignin chromophores. The authors studied the influence of isopropyl alcohol, sodium borohydride, oxygen, hydrogen peroxide, nitrogen dioxide and water along with gamma ray irradiation of the pulps. The authors measured the optimal dose and dose rate, along with the influence of the radical scavengers like oxygen on the bleaching effect of gamma irradiated pulps. They observe various degrees of bleaching of these pulps. Evidence relates this bleaching to the generation of perhydroxyl anions upon irradiation of water. Also, they were able to pinpoint the influence of the dose rate on the rate of formation and disappearance of these perhydroxyl anions and their influence on bleaching kinetics. Stability toward photoyellowing, and photoyellowing's kinetic of papers from these pulps was also studied

  7. Production and improved bleaching abilities of a thermostable ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... 121, 137 and 334 U/ml, when using birch wood xylan, beech wood xylan and corncobs xylan respectively, as substrates. .... carried out under optimized nutritional and fermentation conditions for maximum yield of the ..... 11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb.

  8. Electrochemical delignification of wood pulp using polyoxometalate mediators

    Science.gov (United States)

    R.S. Reiner; E.L. Springer; R.H. Atalla

    2003-01-01

    It has been found that polyoxometalates (POMs) can act as mediators in the electrochemical oxidation of lignin in pulps. An electrochemical cell, with a Nafion® membrane separating the anode and cathode compartments, was used in the delignification experiments. A softwood kraft pulp was placed in the anode compartment with a buffered 0.01M solution of the...

  9. EFEITO DA QUALIDADE DA MADEIRA NO DESEMPENHO DA POLPAÇÃO KRAFT

    Directory of Open Access Journals (Sweden)

    Danila Morais de Carvalho

    2014-01-01

    Full Text Available The aim of this study was to evaluate the wood quality in the kraft pulping performance under two different pulping conditions at two delignification degrees based on results for the yield, brightness, viscosity, and k/ kappa corrected index. Eucalyptus wood (A, B, and C was analyzed about their physicochemical properties (basic and apparent density, insoluble and soluble lignin content, extractive content, ash and insoluble ash in hydrochloric acid and used for pulp production by modified kraft cooking, using two different pulping conditions: Condition I (PI - 16.5% effective alkali, 30% sulfidity, and 155º of cooking temperature; and Condition II (PII - 17.5% effective alkali, 32% sulfidity,and 147ºC cooking temperature. Both conditions were performed to kappa number 15.5 ± 0.5 and 18.0 ± 0.5. The following pulping parameters and pulp properties produced were evaluated: H factor, screened yield, viscosity, brightness, hexenuronic acid content, and the k/kappa corrected index. The A wood, which had lower extractives and lignin content in its constitution, as well as lower basic and apparent density when compared with B and C woods, showed good results for cooking parameters, especially the pulp produced at PII condition at kappa number 18.0 ± 0.5.Also, the A wood showed higher screened yield, brightness, and viscosity comparing to the other pulps produced. Those pulps produced with higher kappa number have lower k/kappa corrected index.

  10. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    Energy Technology Data Exchange (ETDEWEB)

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied

  11. Penggunaan Larutan Ekstrak Etanol dari Temulawak Sebagai Fotosensitizer di Dalam Pemutihan (Pengelantangan Pulp dengan Penyinaran Lampu

    Directory of Open Access Journals (Sweden)

    Arif Perdana

    2016-04-01

    lama apabila dibandingkan dengan oksigen dialirkan secara langsung menuju pulp.    Kata Kunci : pemutihan, pulp, oksigen singlet, kecerahanABSTRACTEtanol extract from temulawak can used as fotosensitizer in  pulp bleaching with lamp irradiating, which is in this pulp bleaching obtained singlet oxygen. This singlet oxygen can degradate lignin in pulp so that pulp  brightness increase  significantly after pulp bleaching. The brightness increasing obtained in pulp bleaching with lamp irradiating with bleaching time 60 minute dan use etanol extract from temulawak as fotosensitizer which the  brightness increasing is 4,23 %. Non lamp irradiating bleaching pulp cant increase brightness significantly. Brightness increasing which is obtained in this bleaching is 2,36 % in singlet oxygen generator not closed and 3,28 % in singlet oxygen generator closed. In bleaching with direct addition oxygen in bleaching reactor obtain brightness increase equal to 2,75 %. The cause increase of brightness in non lamp irradiating bleaching pulp and singlet oxygen generator not closed more than non lamp irradiating bleaching pulp and singlet oxygen generator closed is the existence of probability amount of foton which come into reactor is more in non lamp irradiating bleaching pulp and singlet oxygen generator not closed, so that amount of excited electron from fotosensitizer and singlet oxygen formed larger. While the cause of increase of brightness in bleaching with direct addition oxygen in bleaching reaktor is larger than non lamp irradiating bleaching pulp and singlet oxygen generator closed is triplet oxygen which oxydize pulp indirectly go to bleching reactor, but pass fotosensitizer solution particularly. So there is some of oxygen still in fotosensistizer solution and if oxygen go to bleaching pulp require some time more than compared with direct addition oxygen in bleaching reactor.                               Keywords : bleaching, singlet oxygen

  12. Influence of the chemical composition on the combustion properties of kraft black liquor; Mustalipeaen koostumuksen vaikutus lipeaen poltto-ominaisuuksiin

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Siistonen, H.; Malkavaara, P. [Jyvaeskylae Univ. (Finland). Inst. of Chemistry

    1997-10-01

    The aim of this work is to study the combustion properties of kraft black liquors from modified cooking. Both the industrial and laboratory-made black liquors are included. In addition, changes in the combustion properties of the spent liquors obtained by mixing prior to combustion different chlorine-free bleach liquors with black liquor are studied. (orig.)

  13. Nova tecnologia de branqueamento de celulose adaptada ao fechamento do circuito de água A novel bleaching technology adapted to partial bleach plant closure

    Directory of Open Access Journals (Sweden)

    Marcelo Moreira Costa

    2006-02-01

    Full Text Available A Celulose Nipo-Brasileira é uma das maiores produtoras de celulose kraft branqueada de eucalipto no Brasil. Produz 860.000 tsa/ano em duas linhas, que são equipadas com digestores contínuos. Ambas as linhas fabricam polpa ECF (Elemental Chlorine Free com as seqüências Dhot(EOPD(EPD e D(EOPDP, respectivamente, na linha 1 e 2. A fábrica tem tratamento do efluente com lodo ativado com dois tanques de aeração com capacidade para 20.000 m³, equipados com aeradores superficiais seguidos por quatro clarificadores secundários (dois para cada reator. Nas últimas décadas, a fábrica tem otimizado e vem mudando seus processos, a fim de melhorar a preservação ambiental. Com o objetivo de reduzir o volume de efluente, DQO e carga de AOX, a seqüência Ahot(EOPD(PO proposta foi avaliada em testes laboratoriais, com reciclagem de filtrado parcial. Este artigo propôs a reciclagem de filtrado, que reduz o volume de efluente da fábrica em 9 m³/tsa (tonelada secada ao ar, isto é, mais ou menos 50% do total. O filtrado recuperado é parcialmente desviado para o ciclo de recuperação e para o estágio de deslignificação oxigênio. A reutilização do filtrado Ahot no ciclo de recuperação é para substituir os filtrados, atualmente usados para lavar lama de cal e "dregs". O impacto dos NPEs no ciclo de cálcio não foi significante. Essa estratégia permitiu uma recuperação de carga alcalina de 12 kg NaOH/tsa de polpa, que, do contrário, seria perdida. A branqueabilidade da polpa e a sua qualidade não foram afetadas significativamente. O efluente descartado, proveniente das etapas D(PO, mostrou-se com baixas cargas de cor, de DQO, de AOX e de uma boa biodegradabilidade (DBO5/DQO.Celulose Nipo-Brasileira is one of the largest eucalyptus bleached kraft pulp mills in Brazil. It produces 860,000 tpy in two lines that are equipped with continuous digesters. Line 1 and line 2 produces ECF (Elemental Chlorine Free pulp with the sequences: Dhot

  14. Stimulation of increased short-term growth and development of the mayfly, baetis tricaudatus, from the Thompson River basin following exposure to biologically treated pulp mill effluent

    Energy Technology Data Exchange (ETDEWEB)

    Lowell, R.B.; Culp, J.M.; Wrona, F.J.

    1994-12-31

    This report summarizes a portion of the ongoing Fraser River Action Plan investigations of pulp mill effluent effects on aquatic life. The report presents the results of a toxicity experiment using bleached kraft mill effluent from a mill on the Thompson River in Kamloops, British Columbia. This effluent has the potential for both nutrient enrichment and toxic effects on aquatic ecosystems. The experiment was designed as a first attempt to examine the relative nature of these two effects as determined by the response to the effluent of the mayfly, an abundant benthic macroinvertebrate in the river. Food-dependent effects were determined by exposing the mayflies to effluent for two weeks within artificial streams arranged in a 2x3 factorial design. Responses measured included survival, growth, and development. Possible mechanisms for the responses are discussed.

  15. Bambu como matéria-prima para papel: IV - Estudos sôbre o emprêgo de cinco espécies de Bambusa,na produção de celulose sulfato Bamboo as a raw material for the pulp and paper industry: IV - Study of Bambusa tuldoides, B. textilis, B. ventricosa, B. malingensis and B. dissimulator in the production of kraft pulp

    Directory of Open Access Journals (Sweden)

    Anísio Azzini

    1971-05-01

    Full Text Available Com o presente trabalho, os autores dão continuidade aos estudos com que se procura determinar as características papeleiras das principais espécies de bambu com bom desenvolvimento nas condições ecológicas do Estado de São Paulo. Bambusa tuldoides, B. textilis, B. ventricosa, B. malingensis e B. dissimulator foram estudadas levando-se em consideração as seguintes variáveis: dimensões dos colmos, densidade básica, análise micrométrica das fibras, rendimento em celulose sulfato (Kraft e características físico-mecânicas das pastas produzidas. As densidades básicas médias calculadas para as espécies em estudo não apresentaram muita variação, com valores extremos de 0,62 e 0,78. Relativamente ao comprimento médio das fibras, as espécies de bambu estudadas mostraram ocupar uma posição intermediária entre as resinosas e as principais espécies arbóreas folhosas utilizadas pela indústria de papel. Os rendimentos médios em celulose sulfato, considerando cinco repetições, foram de 43,75% para B. textilis, 42,53% para B. tuldoides, 41,74% para B. ventricosa, 36,57% para B. dissimulator e 35,82% para B. malingensis, com número de permanganato variando de 18,37 a 17,03. Análise estatística dos dados de resistência do papel demonstrou que B. dissimulator, com exceção do índice de rasgo, apresentou maiores valores que as demais espécies em estudo.Five bamboo species, very similar in the agronomic features, were studied in the production of kraft pulp. All of them have culms with about 9 m in height, 4-5 cm in diameter and weight of 4-5 kg, growing very well in the soil and climate conditions of São Paulo State. Determinations of the basic density of culms and dimension of fibres were made. Chips were obtained mechanically and the cookings were made by the sulfate process at 160°C for l hour, using 14% Na(20 and 25% sul-phidity. Bambusa textilis and B. tuldoides which yielded, respectively 43.75% and 42.53% of

  16. Anaerobic treatment of cellulose bleach plant wastewater: chlorinated organics and genotoxicity removal

    Directory of Open Access Journals (Sweden)

    T. R. Chaparro

    2011-12-01

    Full Text Available This study assessed the removal efficiency of organic matter and how it relates to the decrease of toxic and mutagenic effects when an anaerobic reactor is used to treat the bleaching effluent from two kraft pulp mills. Parameters such as COD (chemical oxygen demand, DOC (dissolved organic carbon, AOX (adsorbable organic halogen, ASL (acid soluble lignin, color, chlorides, total phenols and absorbance values in the UV-VIS spectral region were measured. The acute and chronic toxicity and genetic toxicity assessments were performed with Daphnia similis, Ceriodaphnia sp. and Allium cepa L, respectively. The removal efficiency of organic matter measured as COD, ranged from 45% to 55%, while AOX removal ranged from 40% to 45%. The acute toxic and chronic effects, as well as the cytotoxic, genotoxic and mutagenic effects, decrease as the biodegradable fraction of the organics is removed. These results, together with the organic load measurement of the effluents of the anaerobic treatment, indicate that these effluents are recalcitrant but not toxic. As expected, color increased when the anaerobic treatment was applied. However, the colored compounds are of microbial origin and do not cause an increase in genotoxic effects. To discharge the wastewater, it is necessary to apply a physico-chemical or aerobic biological post-treatment to the effluents of the anaerobic reactor.

  17. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  18. POLPAÇÃO KRAFT E KRAFT/AQ DA MADEIRA PRÉ-HIDROLISADA DE HÍBRIDO DE Eucalyptus urophylla x grandis

    Directory of Open Access Journals (Sweden)

    Rafael dos Santos

    2016-01-01

    Full Text Available The wood of the gender Eucalyptus occupies a prominence place among other cellulose sources due to its chemical composition, its low cost, abundance and availability. Among the chemical pulping processes, kraft process is the most extensively one used for the production of cellulosic pulps starting from eucalyptus wood. The anthraquinone (AQ usage in the pulping has as main purposes to increase the delignification rate as well as to protect the pulp from the carbohydrate degradation. The present work has aimed to use the anthraquinone as an addictive in the cooking seeking to reduce the load of applied sulphidity without harming the quality of the pulp. The kraft and kraft/AQ cooking were accomplished in rotative laboratorial digester being varied the active alkali initially (10, 13, 16 and 19% and, later, the sulphidity (5, 10, 15, 20 and 25%, maintaining the other conditions constant aiming to obtain pulp with kappa number close to nine. Starting from the variation of the active alkali and of the sulphidity, delignification curves were established between active alkali and kappa number and, sulphidity and kappa number, where it was possible to establish the minimum necessary amounts of alkali, as well as of the sulphidity. Starting from the cooking, it was possible to establish the active alkali and sulphidity loads of 17,4% and 8,8%, respectively. The cooking to the certain conditions presented screened yield of 48,63%, and the yield based on the initial mass of wood was of 42,24%, obtaining a high quality pulp, in other words, with low number kappa and hemicelluloses tenor (0,41% and high tenor of alpha cellulose (98,49%.

  19. 75 FR 35792 - Agency Information Collection Activities: Proposed Collection; Comment Request; Information...

    Science.gov (United States)

    2010-06-23

    ... production process units include operations such as pulping, bleaching, chemical recovery and papermaking. Different pulping processes are used, including chemical processes (kraft, soda, sulfite and semi-chemical... chemical pulp mills (kraft, sulfite, semi-chemical and soda wood pulping processes). For existing kraft and...

  20. Methanol-based pulping of Eucalyptus globulus

    Energy Technology Data Exchange (ETDEWEB)

    Gilarranz, M.A.; Oliet, M.; Rodriguez, F.; Tijero, J. [Universidad Complutense de Madrid, Madrid (Spain). Dept. de Ingenieria Quimica

    1999-06-01

    The dissolution of wood components using organosolv pulping was discussed. Solvents such as ethanol and methanol can provide more efficient utilization of the lignocellulosic feedstock, ease of bleachability, and lower capital production costs compared to the kraft process. In this study, the autocatalyzed pulping of Eucalyptus globulus wood in a methanol-water media was examined. The influence of pulping temperature, pulping time and methanol concentration on pulp properties were determined by a surface response method. One of the advantages of using methanol pulping of hardwoods compared to ethanol pulping is the low boiling point of methanol which makes its recovery easy from pulping black liquor by distillation. The price of methanol is also very low compared to other solvents. The optimum pulping conditions were found to be a cooking temperature of 185 degrees C, a cooking time of 110 minutes and a methanol concentration of 50 per cent. These conditions yielded a pulp with a low kappa number and a viscosity value of 110 mL/g. When ethanol pulping was used under the same conditions, the resulting pulp had a higher kappa number and a lower viscosity. 27 refs., 2 tabs., 8 figs.

  1. 40 CFR 63.441 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... the pulp produced by the kraft, soda, or semi-chemical pulping process. Bleaching means brightening of... pulping process produces intermediate yields ranging from 55 to 90 percent. Soda pulping means a chemical... same function as those previously listed. Kraft pulping means a chemical pulping process that uses a...

  2. The Fractionation of Loblolly Pine Woodchips Into Pulp For Making Paper Products

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kadam, PhD

    2006-11-30

    The overall goal of the project was to test the PureVision biomass fractionation technology for making pulp from loblolly pine. A specific goal was to produce a pulp product that is comparable to pulp produced from the kraft process, while reducing the environmental effects of the kraft process, known to be a highly pollutant process. The overall goal of the project was met by using the biomass fractionation concept for making pulp product. This proof-of-concept study, done with Southern pine pinchips as feedstock, evaluated NaOH concentration and residence time as variables in single-stage cocurrent pulping process. It can be concluded that 1% NaOH is adequate for effective delignification using the PureVision process; this is about 1/3 of that used in the kraft process. Also, the PureVision process does not use sulfur-based chemicals such as N2S and hence, is environmentally more benign.

  3. Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophilus.

    Science.gov (United States)

    Zheng, Zhiqiang; Li, Huazhong; Li, Lun; Shao, Weilan

    2012-03-01

    The recombinant laccase from Thermus thermophilus was applied to the biobleaching of wheat straw pulp. The best bleaching effect was when the pulp was treated with 3 U laccase g(-1) dry pulp at 90°C, pH 4.5, 8% consistency for 1.5 h. Under these conditions, the pulp brightness was increased by 3.3% ISO, and the pulp kappa number was decreased by 5.6 U. Enzymatic treatment improved the bleachability of wheat straw pulp but caused no damage to the pulp fibers. The use of enzyme-treated pulp saved 25% H(2)O(2) consumption in subsequent peroxide bleaching without decreasing the final brightness. Pulp biobleaching in the presence of 5 mM ABTS further increased the pulp brightness by 1.5% ISO. This is the first report on the application of laccase from T. thermophilus in the pulp and paper sector.

  4. Optimization of pulping conditions of abaca. An alternative raw material for producing cellulose pulp.

    Science.gov (United States)

    Jiménez, L; Ramos, E; Rodríguez, A; De la Torre, M J; Ferrer, J L

    2005-06-01

    The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.

  5. Investigation of pulping and paper making potential of weeds

    Directory of Open Access Journals (Sweden)

    omid Ghaffarzadeh Mollabashi

    2017-08-01

    Full Text Available Increasing use of wood products accompanying with resource constraint has revealed the importance of nonwood based material. In this study, pulping and papermaking potential of three varieties of weeds including Xanthium spinosum, Carthamus tinctorius and Cyperus papyrus have been considered. At first, chemical components of the samples i.e. cellulose, lignin and extractives have been measured following TAPPI standard test methods. Afterwards, pulping process based as soda and Kraft has been carried out and the pulp properties i.e. screen yield and reject, kappa number, caliper, bust index, tear index, brightness have been considered. According to the results, the amount cellulose, lignin and extractives have been measured for the Xanthium spinosum %38.15, %13.5 and 4.72, respectively. Theses parameters have been estimated about %38.25, %10.3 and % 2.95 for Carthamus tinctorius and %38.8, %19.2 and 4.4 in case of papyrus. The yield of soda and Kraft pulp of the papyrus was more than Xanthium spinosum and Carthamus tinctorius. Among all treatments, the highest screen yield related to soda pulping of Cyperus papyrus by %39.8 which has been obtained by 175 centigrade as a maximum temperature, L/W: 6/1, active alkaline: %30 and 90 minutes as the time at temperature. The lowest and highest amounts of the tear index were related to soda pulp sample of the Carthamus tinctorius and Kraft pulp sample of Xanthium spinosum by 2.49 and 8.1, respectively. In addition, the lowest and highest amounts of the bursting index were related to soda pulp sample of the Cyperus papyrus and Kraft pulp sample of Xanthium spinosum by 0.61and 2.48, respectively. Meanwhile, soda pulp sample of the Cyperus papyrus showed the highest amount of brightness with %45 ISO.

  6. Calibration and validation of a modified ASM1 using long-term simulation of a full-scale pulp mill wastewater treatment plant.

    Science.gov (United States)

    Keskitalo, Jukka; Jansen, Jes la Cour; Leiviskä, Kauko

    2010-04-14

    A mathematical model modified from the well established Activated Sludge Model no. 1 was used for modelling a full-scale wastewater treatment plant (WWTP) in a bleached kraft pulp mill. Effluents from the pulp and paper industry are typically nutrient deficient, which was considered in the model. The wastewater characterization and model calibration were based on respirometric batch experiments with sludge and wastewater sampled from the WWTP. The model performance was validated in a long-term simulation using routinely measured process data from the WWTP as the model inputs. The simulation results proved useful in evaluating nutrient dosage strategies at the WWTP and in troubleshooting poor treatment plant performance. However, in order to achieve a completely accurate description of nitrogen removal, more complex phenomena would have to be included in the model. Even though the simulated period was long compared to the brief measurement campaign used in the model calibration, the model was able to describe the treatment plant's behaviour. The calibrated model can be expected to stay valid for a long time, which allows the use of deterministic modelling in practical applications at pulp and paper WWTPs.

  7. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    Science.gov (United States)

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  8. Vahur Kraft soovitab elektritootmise erastada / Vahur Kraft ; interv. Vallo Toomet

    Index Scriptorium Estoniae

    Kraft, Vahur, 1961-

    2003-01-01

    Eesti Panga president Vahur Kraft soovitab seoses Iraagi sõja ja ebakindlusega maailmas suhtuda ettevaatlikult majanduskasvu prognoosi ning näeb maksureformi läbiviimiseks vajaliku kokkuhoiu võimalusi hariduse, tervishoiu ja sotsiaalkindlustuse reformimisel. Diagramm. Tabel. Vt. samas: Andrus Säälik. Tulude alla jõuavad ka toetused

  9. Kinetic modeling of kraft delignification of Eucalyptus globulus

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A.; Rodriguez, F.; Gilarranz, M.A.; Moreno, D.; Garcia-Ochoa, F. [Univ. Complutense, Madrid (Spain). Dept. de Ingenieria Quimica

    1997-10-01

    A kinetic model for the kraft pulping delignification of Eucalyptus globulus is proposed. This model is discriminated among some kinetic expressions often used in the literature, and the kinetic parameters are determined by fitting of experimental results. A total of 25 isothermal experiments at liquor-to-wood ratios of 50 and 5 L/kg have been carried out. Initial, bulk, and residual delignification stages have been observed during the lignin removal, the transitions being, referring to the lignin initial content, about 82 and 3%. Carbohydrate removal and effective alkali-metal and hydrosulfide consumption have been related with the lignin removal by means of effective stoichiometric coefficients for each stage, coefficients also being calculated by fitting of the experimental data. The kinetic model chosen has been used to simulate typical kraft pulping experiments carried out at nonisothermal conditions, using a temperature ramp. The model yields simulated values close to those obtained experimentally for the wood studied and also ably reproduces the trends of the literature data.

  10. Pulp and paper from blue agave waste from tequila production.

    Science.gov (United States)

    Idarraga, G; Ramos, J; Zuñiga, V; Sahin, T; Young, R A

    1999-10-01

    Pulping of blue agave waste, from the production of tequila, was evaluated by both chemical and biomechanical pulping processes. Two conventional and two organosolv systems were used to pulp the agave waste under a standard set of conditions. The soda-ethanol process was superior in terms of delignification and pulp properties in comparison to the soda and ethanol organosolv processes for pulping of agave waste; however, the kraft process gave the best strength properties. In general, the strength of the agave waste pulps was rather poor in comparison to wood and other agro-based pulps; however, the tear strength was relatively high. This result is typical of poorly bonded sheets and may be due to the coarseness of the agave fibers and/or loss of hemicelluloses in the steaming process for the tequila production. Fungal treatment of the agave waste with Ceriporiopsis subvermispora reduced the energy consumption for mechanical refining but gave biomechanical pulps with inferior strength properties. The blue agave chemical pulps should be suitable for blending with softwood kraft pulps for publication grade paper.

  11. Fluidization Characteristics of Medium-High-Consistency Pulp Fiber Suspensions with an Impeller

    Directory of Open Access Journals (Sweden)

    Ye Daoxing

    2016-01-01

    Full Text Available When the mass concentration exceeds 7%, pulp suspensions stop flowing and act like a solid. To investigate the fluidization characteristics of medium-high-consistency pulp suspensions and achieve pulp fluidization and pumping, experiments were carried out with waste tissue pulp and unbleached kraft pulp. The objectives of this paper were to study the rheology of medium-high-consistency pulp and to determine accurate parameters for the physical Herschel-Bulkley model. To validate this model, computational fluid dynamics (CFD results were compared to experimental data. The simulation values were very similar and were in agreement with experimental results.

  12. Enzyme processes for pulp and paper : a review of recent developments

    Science.gov (United States)

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    The pulp and paper industry is applying new, ecologically sound technology in its manufacturing processes. Many interesting enzymatic applications have been proposed in the literature. Implemented technologies tend to change the existing industrial process as little as possible. Commercial applications include xylanases in prebleaching kraft pulps and various enzymes...

  13. Use of polymers and a surfactant in the treatment of Kraft process wastewater

    OpenAIRE

    Seyffert, Hans J.

    1988-01-01

    This study-investigated the use of cationic polymers, and a surfactant, EHDABr, in the color removal treatment of Kraft pulp and paper wastewater. Four polymers were evaluated for their color removal performance by jar test procedures. The polymers removed between 77 and 87% of the wastewater color. The affect of pH upon polymer performance varied with the polymer tested. Powdered activated carbon addition improved the performance of the polymers. The color removal abili...

  14. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    OpenAIRE

    maryam allahdadi; sahab Hedjazi; mahdi jonoobi; Ali abdolkhani; laya Jamalirad

    2017-01-01

    In this research, appearance quality and decay resistance of polylactic acid (PLA) based green composites made from monoethanolamine (MEA) bagasse pulp, alkaline sulfite-anthraquinone (AS) bagasse pulp, bleached soda (B S) bagasse pulp, unbleached soda (UN S) bagasse pulp (UN S) bagasse pulp and raw bagasse fibers (B) were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor) on the neat PLA and composites with natural fibers duri...

  15. Research studies on tropical hardwoods for pulp and paper manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Escolano, J.O.; Tamolang, F.N.

    1981-01-01

    Kraft cooking of hardwood mixtures containing combinations of Shorea polysperma, S. negrosensis, Pentocone contorta, S. squamata, Dipterocarpus grandifluorus, Anisoptera thurifera, S. blume, and Hopea acuminata at 170 degrees gave pulp in 48% yield, with permanganate No. 13.8, burst factor 70-80, tear factor 129-130, MIT double folds 475-700, and breaking length 8500-9800 m. Physiochemical and strength characteristics of tropical hardwoods and their pulps are also reviewed.

  16. Cellulose pulp produced from bulrush fiber

    Directory of Open Access Journals (Sweden)

    Vania Karine Dick Wille

    Full Text Available ABSTRACT: Brazil continues to use wood as the principal raw material source for the pulp industry; although, non-wood fibers have been revealed to be a competent substitute to produce paper with different and exceptional properties. Keeping this in focus, this study aimed to assess potential of Schoenoplectus californicus fibers (C. A. Mey. Soják, commonly identified as bulrush or reed, in cellulosic pulp generation, as an alternative fiber source for the pulp and paper industry. On analyzing the chemical composition of reed fibers, extractives of lignin, carbohydrates, uronic acids and minerals were reported. Physico-chemical characteristics of reed-based cellulosic pulp were estimated including viscosity, hexenuronic acids, etc., as well as anatomical features of length, width, etc. From the chemical analyses of the reed the presence of high concentrations of extractives and silica was clear, making them unfit as raw material for cellulosic pulp production. Pulp kraft pulping process produced brown pulps low in viscosity (34.5m Pa.s and hexenuronic acid content. Reed is thus classifiable as short-fiber source for pulp and paper industries.

  17. Possible mechanism for anthraquinone species diffusion in alkaline pulping

    Science.gov (United States)

    X.-S. Chai; J. Samp; Q.X. Hou; S.-H Yoon; J.Y. Zhu

    2007-01-01

    An analysis of the effectiveness of anthraquinone (AQ) in kraft-AQ pulping in terms of its mechanism of transport has been conducted. Our previous work showed that caustic solutions of wood lignin can decrease the membrane exclusion for anthraquinones, i.e., the presence of wood lignin enhances the ability of AQ to pass through a membrane when a reducing agent is...

  18. Microscopic observations during longitudinal compression loading of single pulp fibers

    Science.gov (United States)

    Irving B. Sachs

    1986-01-01

    Paperboard components (linerboard adn corrugating medium) fail in edgewise compression because of failure of single fibers, as well as fiber-to-fiber bonds. While fiber-to-fiber-bond failure has been studied extensively, little is known about the longitudinal compression failure of a single fiber. In this study, surface alterations on single loblolly pine kraft pulp...

  19. Fungal demethylation of Kraft lignin.

    Science.gov (United States)

    Zou, Linyou; Ross, Brian M; Hutchison, Leonard J; Christopher, Lew P; Dekker, Robert F H; Malek, Lada

    2015-06-01

    Demethylation of industrial lignin has been for long coveted as a pathway to the production of an abundant natural substitute for fossil-oil derived phenol. In an attempt to possibly identify a novel Kraft lignin-demethylating enzyme, we surveyed a collection of fungi by using selected ion flow tube-mass spectrometry (SIFT-MS). This method readily identifies methanol resulting from lignin demethylation activity. Absidia cylindrospora, and unidentified Cylindrocladium sp. and Aspergillus sp. were shown to metabolize lignin via different pathways, based on the HPLC analysis of lignin fragments. Of these three, Cylindrocladium and Aspergillus were shown to retain most of the lignin intact after 3 weeks in culture, while removing about 40% of the available methoxy groups. Our results demonstrate that after optimization of culture and lignin recovery methods, biological modification of Kraft lignin may be a feasible pathway to obtaining demethylated lignin for further industrial use. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  20. Synthesis of pulping processes with fiber loading methods for lightweight papers

    Science.gov (United States)

    John H. Klungness; Roland Gleisner; Masood Akhtar; Eric G. Horn; Mike Lentz

    2003-01-01

    Pulping technologies can be synthesized with fiber loading with simultaneous alkaline peroxide bleaching to produce lightweight high-opacity printing papers. We compared the results of recent experiments on combining oxalic acid pretreated wood chips used for thermomechanical pulp (TMP) with fiber loading and previous experiments on combining similar pulps treated with...

  1. PEMUTIHAN PULP DENGAN HIDROGEN PEROKSIDA

    Directory of Open Access Journals (Sweden)

    Ahmad M. Fuadi

    2012-01-01

    Full Text Available The use of bleaching agent has increased as the result of increasing of paper consumption. The conventional bleaching agent that commonly used is material containing of chlorine. This material is not environmentally friendly and should be replaced by environmentally benign chemical, such as H2O2. About 40 gram of dry Akasia pulp was mixed with 600 ml of distilled water was put into plastic bag heated in a water bath. When the temperature reached 630C, a solution of 4 % of H2O2 and distilled water was added to obtain 5 % consistency. This mixture was put into water bath and was heated for 2 hours. The same procedure was conducted with various concentration of H2O2, time and pH. At the end of the process, the pulp was dewatered and washed. The filtrate obtained from the initial dewatering was used to determine the residual of H2O2. The pulp was analyzed to determine brightness, fiber strength and kappa number. The maximum achievement of brightness was 62,1 % ISO, 6.86 of kappa number and 1.02 kg/15 mm of fiber strength, which are reached at16 % of the use of H2O2, pH 11 and 5 hours of bleaching time. This achievement is similar to bleaching result by the additional of 4% H2O2. Inefficient usage of H2O2 was caused by some metal ions in the pulp which facilitate the decomposition of H2O2 to produce oxygen and water which has not effect on increasing the brightness. To improve the bleach ability of H2O2, initial treatment to remove metal ions from pulp should be done. Seiring dengan meningkatnya kebutuhan kertas, kebutuhan bahan pemutih juga mengalami kenaikan. Saat ini bahan pemutih yang banyak digunakan adalah senyawa yang mengandung khlor. Senyawa ini sangat tidak ramah lingkungan, oleh karena itu, perlu dicari bahan yang ramah lingkungan untuk menggantikannya. Salah satunya adalah hidrogen peroksida. Pulp dari pohon akasia sebanyak 40 gram kering dicampur dengan 600 ml aquadest dimasukkan dalam kantung plastik dipanaskan dalam water bath

  2. Tooth Whitening And Temperature Rise With Two Bleaching Activation Methods

    Science.gov (United States)

    Abu-ElMagd, D. M.; El-Sayad, I. I.; Abd El-Gawad, L. M.

    2009-09-01

    To measure the tooth whitening and the surface and Intrapulpal temperature increase in vitro on freshly extracted upper human central incisors after chemical, Zoom AP light and diode laser activated bleaching. Thirty caries-free upper human incisors were selected. Teeth were divided into three equal groups according to the methods of activation of the bleaching agent (n = 10). A whitening gel containing hydrogen peroxide was applied to the buccal surface of all teeth. Group I was bleached using chemically activated hydrogen peroxide gel, for three applications of 15 min each. Group II was bleached with high intensity advanced power Zoom activation light (Zoom AP), for three applications of 15 min each. Group III was bleached with diode laser activation technique, where the teeth were irradiated with 2 Watt diode laser for three applications of 30 sec each. The whitening degree was assessed using an image analysis system, while temperature rise was recorded using a thermocouple on the external tooth surface and Intrapulpal. The degree of whitening increased significantly in all groups. However, the percentage of whitening was not statistically significantly different between the three groups. In addition, group II showed statistically significant higher mean rise in both surface and pulp temperatures than group I and group III. Chemical bleaching produces the same whitening effect as Zoom AP light and laser, with no surface or pulpal temperature rise. Laser application is faster and produces less surface and pulp temperature increase than Zoom AP light. Diode laser used to activate bleaching gels is not considered dangerous to the vitality of dental pulp using power settings of 2 W.

  3. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    Science.gov (United States)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  4. Method and apparatus for assaying wood pulp fibers

    Science.gov (United States)

    Gustafson, Richard [Bellevue, WA; Callis, James B [Seattle, WA; Mathews, Jeffrey D [Neenah, WI; Robinson, John [Issaquah, WA; Bruckner, Carsten A [San Mateo, CA; Suvamakich, Kuntinee [Seattle, WA

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  5. Vital tooth bleaching with Nightguard vital bleaching.

    Science.gov (United States)

    Haywood, V B; Robinson, F G

    1997-01-01

    Between July 1994 and May 1996, several landmark articles were published concerning the safety and efficacy of vital tooth bleaching with 10% carbamide peroxide in a customfitted tray. The American Dental Association (ADA) published guidelines for ADA acceptance, and three products received approval. Long-term clinical trials on 38 patients indicated 92% successful bleaching after 6 weeks of treatment. Results were stable in 74% of the patients at 1.5 years, and in 62% of the patients at 3-year follow-up with no further treatment. Clinical pulpal studies and periodontal studies indicated no detrimental safety problems, although some laboratory cell studies suggested concerns. The noncarcinogenic potential of 10% carbamide peroxide was established in animal studies. Successful bleaching of tetracycline-stained teeth was achieved after 6 months of treatment, with no tooth problems detected clinically or by scanning electron micrograph. Extended treatment times are effective on other stains from dentinogenesis imperfecta or nicotine. On insertion in the mouth, 10% carbamide peroxide elevated the pH in the tray and saliva. After 4 hours of clinical wear, over 60% of the newer, thicker materials (Opalescence [Ultraclent Products, South Jordon, UT] and Platinum [Colgate Oral Pharmaceuticals, Canton, MA]) was present and active in the tray. Nightguard vital bleaching seems to be the most cost-efficient, user-friendly, patient-accepted method of bleaching teeth available to the profession and is safe and effective. Over-the-counter products can have harmful effects on tooth structure and may not lighten teeth.

  6. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    OpenAIRE

    maryam allahdadi; sahab hejazi; mahdi jonoobi; ali abdolkhani; laya jamalirad

    2016-01-01

    In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene) on physical-mechanical properties of low density polyethylene (LDPE) composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA) bagasse pulp, alkaline sulfite-anthraquinone (AS) bagasse pulp, bleached soda ...

  7. Efeito do teor de lignina da madeira de Eucalyptus globulus Labill. no desempenho da polpação kraft

    Directory of Open Access Journals (Sweden)

    Gabriel Valim Cardoso

    2011-01-01

    Full Text Available In this research, it was analyzed the lignin content effect of Eucalyptus globulus Labill. wood in kraft pulping optimization. Seventy-two laboratory cooking were made with wood chips obtained from six Eucalyptus globulus trees selected from a group of 50 trees. The wood chips from three trees with the lowest lignin content, with average 20.53%, were mixed proportionally based on the tree weights, obtaining the sample of low lignin content wood. The same was made to obtain the sample for wood chips with the highest lignin content, with average 23.02%. The two lignin levels were statistically different. The two wood samples had basic densities statistically not different. Using three maximum temperatures levels (160, 165 and 170ºC, and three active alkali charged (17, 18.5 and 20%, the wood chips were converted to kraft pulps. The pulps were then characterized to analyze the influence of the distinct treatments employed in the cooking on their properties. The effect of the cooking conditions was expressed by mathematical models in order to determine the optimum points for each of the evaluated properties. The optimization process indicated maximum temperature of 168ºC, and active alkali of 19%, for maximum kraft pulping yield to achieve kappa number 18; this result was for woods with low lignin content. For woods containing the high lignin content, the optimization showed maximum cooking temperature of 169ºC and active alkali of 19% for kappa number of 18. The average reduction of 2.49% in wood lignin content resulted a correspondent gain of 2.2% in the kraft yield (o.d. basis and a reduction on the active alkali charge of 1.2% (o.d. basis to achieve kappa numbers from 16 to 19, preserving pulp properties. If the option is to work with kappa number 19 instead of 16, the gain in kraft yield is approximately 2%. Therefore, when working with low lignin content wood and kappa number 19 instead of 16, a substantial gain of approximately 4.2% is

  8. 78 FR 31315 - Kraft Pulp Mills NSPS Review

    Science.gov (United States)

    2013-05-23

    ... lime kilns is PM with an aerodynamic diameter less than or equal to 2.5 micrometers (PM 2.5 ). The EPA... informational purposes. To increase the ease and efficiency of data submittal and improve data accessibility... to be removed with alkaline scrubbing, resulting in a removal efficiency much lower than that...

  9. Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane

    Energy Technology Data Exchange (ETDEWEB)

    Chinga-Carrasco, Gary, E-mail: gary.chinga.carrasco@pfi.no [Paper and Fibre Research Institute (PFI) (Norway); Kuznetsova, Nina; Garaeva, Milyausha [Kazan National Research Technological University (KNRTU) (Russian Federation); Leirset, Ingebjorg [Paper and Fibre Research Institute (PFI) (Norway); Galiullina, Guzaliya; Kostochko, Anatoly [Kazan National Research Technological University (KNRTU) (Russian Federation); Syverud, Kristin [Paper and Fibre Research Institute (PFI) (Norway)

    2012-12-15

    This study explores the production and surface modification of microfibrillated cellulose (MFC), based on unbleached and bleached Pinus radiata pulp fibres. Unbleached Pinus radiata pulp fibres tend to fibrillate easier by homogenisation without pre-treatment, compared to the corresponding bleached MFC. The resulting unbleached MFC films have higher barrier against oxygen, lower water wettability and higher tensile strength than the corresponding bleached MFC qualities. In addition, it is demonstrated that carboxymethylation can also be applied for production of highly fibrillated unbleached MFC. The nanofibril size distribution of the carboxymethylated MFC is narrow with diameters less than 20 nm, as quantified on high-resolution field-emission scanning electron microscopy images. The carboxymetylation had a larger fibrillation effect on the bleached pulp fibres than on the unbleached one. Importantly, the suitability of hexamethyldisilazane (HMDS) as a new alternative for rendering MFC films hydrophobic was demonstrated. The HMDS-modified films made of carboxymethylated MFC had oxygen permeability levels better than 0.06 mL mm m{sup -2} day{sup -1} atm{sup -1}, which is a good property for some packaging applications.

  10. Bleached and unbleached MFC nanobarriers: properties and hydrophobisation with hexamethyldisilazane

    Science.gov (United States)

    Chinga-Carrasco, Gary; Kuznetsova, Nina; Garaeva, Milyausha; Leirset, Ingebjørg; Galiullina, Guzaliya; Kostochko, Anatoly; Syverud, Kristin

    2012-12-01

    This study explores the production and surface modification of microfibrillated cellulose (MFC), based on unbleached and bleached Pinus radiata pulp fibres. Unbleached Pinus radiata pulp fibres tend to fibrillate easier by homogenisation without pre-treatment, compared to the corresponding bleached MFC. The resulting unbleached MFC films have higher barrier against oxygen, lower water wettability and higher tensile strength than the corresponding bleached MFC qualities. In addition, it is demonstrated that carboxymethylation can also be applied for production of highly fibrillated unbleached MFC. The nanofibril size distribution of the carboxymethylated MFC is narrow with diameters less than 20 nm, as quantified on high-resolution field-emission scanning electron microscopy images. The carboxymetylation had a larger fibrillation effect on the bleached pulp fibres than on the unbleached one. Importantly, the suitability of hexamethyldisilazane (HMDS) as a new alternative for rendering MFC films hydrophobic was demonstrated. The HMDS-modified films made of carboxymethylated MFC had oxygen permeability levels better than 0.06 mL mm m-2 day-1 atm-1, which is a good property for some packaging applications.

  11. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    Science.gov (United States)

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Life cycle greenhouse gases and non-renewable energy benefits of kraft black liquor recovery

    International Nuclear Information System (INIS)

    Gaudreault, Caroline; Malmberg, Barry; Upton, Brad; Miner, Reid

    2012-01-01

    The life cycle greenhouse gas (GHG) and fossil fuel benefits of black liquor recovery are analyzed. These benefits are due to the production of energy that can be used in the pulping process or sold, and the recovery of the pulping chemicals that would otherwise need to be produced from other resources. The fossil GHG emissions and non-renewable energy consumption of using black liquor in the kraft recovery system are approximately 90% lower than those for a comparable fossil fuel-based system. Across all scenarios, the systems relying on black liquor solids achieve a median reduction of approximately 140 kg CO 2 eq./GJ of energy produced, compared to the systems relying on fossil fuels to provide the same energy and pulping chemical production functions. The benefits attributable to the recovery of pulping chemicals vary from 44% to 75% of the total benefit. Applied to the total production of kraft pulp in the U.S., the avoided emissions are equivalent to the total Scopes 1 and 2 emissions from the entire U.S. forest products industry. These results do not depend on the accounting method for biogenic carbon (because biogenic CO 2 emissions are the same for the systems compared) and the results are valid across a range of assumptions about the displaced fossil fuel, the GHG-intensity of the electricity grid, the fossil fuels used in the lime kiln, and the level of cogeneration at pulp and paper mills. The benefits occur without affecting the amount of wood harvested or the amount of chemical pulp produced. -- Highlights: ► Black liquor, a by-product of kraft pulping, represents about half of the energy used in the paper industry. ► The greenhouse gases (GHG) benefits of black liquor recovery compared to an equivalent fossil fuel system were analyzed. ► The GHG emissions of the black liquor system are approximately 90% lower than those for the fossil fuel system. ► The benefits from the recovery of the chemicals vary from 44% to 75% of the total benefit.

  13. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.

    Science.gov (United States)

    Ai, Jun; Tschirner, Ulrike

    2010-01-01

    Switchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.78 mm, a very narrow fiber length distribution and high fines content. Willow and hybrid poplar have lower fines content but a very low average fiber length (0.42 and 0.48 mm LWW). In addition, the four biomass species showed distinctly different chemical compositions. Switchgrass was defibered successfully using Soda and Soda Anthraquinone (AQ) pulping and demonstrated good paper properties. Both fast-growing wood species pulped well using the Kraft process, and showed acceptable tensile strength, but low tear strength. Alfalfa stems reacted very poorly to Soda and Soda AQ pulping but responded well to Kraft and Kraft AQ. Pulps with tensile and tear strength considerably higher than those found for commercial aspen pulps were observed for alfalfa. All four biomass species examined demonstrated low pulp yield. The highest yields were obtained with poplar and switchgrass (around 43%). Considering the short fibers and low yields, all four biomass types will likely only be used in paper manufacturing if they offer considerable economic advantage over traditional pulp wood.

  14. Bleach vs. Bacteria

    Science.gov (United States)

    ... Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds Posted April 2, 2014 Your ... hypochlorous acid to help kill invading microbes, including bacteria. Researchers funded by the National Institutes of Health ...

  15. Application of enzyme for improvement of Acacia APMP pulping and refining of mixed pulp for printing papermaking in Vietnam.

    Science.gov (United States)

    Dien, Le Quang; Hoang, Phan Huy; Tu, Do Thanh

    2014-02-01

    This study assesses the influence of commercial enzyme (FibreZyme LBR) treatment applied to APMP pulp and to the mixture of 55% Acacia CTMP75 pulp, 30% soft-wood bleached chemical pulp (LBKP 90 from Chile) and 15% hard-wood bleached chemical pulp (NPKP 90 from Indonesia). The treatment was conducted at different temperatures, reaction times and enzyme dosages. The APMP and mixed pulp treated with the enzyme showed a significant decrease of refining time to achieve the same refining degree (Schopper-Riegler freeness, °SR) and better mechanical-physical properties due to the development of fibrillation. The fibre morphology difference between before and after treatment was revealed by the microscopic observations performed by a scanning electron microscope (SEM). The SEM analysis showed that the surface of the enzyme-treated fibre had some swelling and fibrillar phenomenon that lead to strong paper properties such as tear index, tensile index and burst index.

  16. Nonvital tooth bleaching: a review of the literature and clinical procedures.

    Science.gov (United States)

    Plotino, Gianluca; Buono, Laura; Grande, Nicola M; Pameijer, Cornelis H; Somma, Francesco

    2008-04-01

    Tooth discoloration varies in etiology, appearance, localization, severity, and adhesion to tooth structure. It can be defined as being extrinsic or intrinsic on the basis of localization and etiology. In this review of the literature, various causes of tooth discoloration, different bleaching materials, and their applications to endodontically treated teeth have been described. In the walking bleach technique the root filling should be completed first, and a cervical seal must be established. The bleaching agent should be changed every 3-7 days. The thermocatalytic technique involves placement of a bleaching agent in the pulp chamber followed by heat application. At the end of each visit the bleaching agent is left in the tooth so that it can function as a walking bleach until the next visit. External bleaching of endodontically treated teeth with an in-office technique requires a high concentration gel. It might be a supplement to the walking bleach technique, if the results are not satisfactory after 3-4 visits. These treatments require a bonded temporary filling or a bonded resin composite to seal the access cavity. There is a deficiency of evidence-based science in the literature that addresses the prognosis of bleached nonvital teeth. Therefore, it is important to always be aware of the possible complications and risks that are associated with the different bleaching techniques.

  17. Characterization and sensory preference of fermented dairy beverages prepared with different concentrations of whey and araticum pulp

    Directory of Open Access Journals (Sweden)

    Alexsandra Valéria Sousa Costa de Lima

    2016-12-01

    Full Text Available The objective of this study was to develop a fermented dairy beverage flavored with araticum pulp, assess its physicochemical characteristics, microbiological quality, and sensory preference by the consumer. Araticum pulp was prepared using two different methods: with or without bleaching (50 ºC/5 minutes. Formulations of fermented dairy beverages consisting of whey (50%, standardized pasteurized milk (50%, and seven different concentrations of bleached araticum pulp (5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0% w/v were prepared. In addition, seven formulations of fermented dairy beverage, without adding araticum pulp, and consisting of varying proportions of whey (40, 50, 60, 70, 80, 90, and 100% were developed. In all formulations, thickeners/stabilizers were added. All araticum pulp samples (with and without bleach and fermented dairy beverages (with and without araticum pulp were analyzed for the relevant physicochemical properties: pH, titratable acidity, acidity of pulp, acidity of fermented beverage, moisture, ash, fat, protein, crude fiber, ascorbic acid, carbohydrates, total solids, and caloric values. Microbiological counts of coliforms at 35 °C and 45 °C in the pulp and beverage, and molds and yeasts and Salmonella sp. in the pulp were obtained. Additionally, sensory analysis regarding preferences of the different fermented dairy beverage formulations was also performed. The araticum pulp samples without bleach, showed higher values of pH, moisture, protein, total fiber, and ascorbic acid, as compared to bleached pulp samples, while bleached araticum pulp showed higher values for other physicochemical parameters. Microbiological results showed that all pulps and fruit-dairy beverages were suitable for consumption. It was found that there was no significant consumer preference between different fermented beverage formulations, according to the different percentages of pulp. However, the formulations consisting of 40, 50, 60, and 70

  18. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    Energy Technology Data Exchange (ETDEWEB)

    Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  19. Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.

    Science.gov (United States)

    Sánchez, Rafael; Espinosa, Eduardo; Domínguez-Robles, Juan; Loaiza, Javier Mauricio; Rodríguez, Alejandro

    2016-11-01

    Wheat straw was cooked under different pulping processes: Soda (100°C, 7% NaOH, 150min), Kraft (170°C, 16% alkalinity, 25% sulfidity, 40min) and Organosolv (210°C, 60% ethanol, 60min). Once the pulps were obtained, lignocellulose nanofibers (LCNF) were isolated by mechanical process and TEMPO-mediated oxidation followed by a high pressure homogenization. After pulping process, the different pulps were characterized and its chemical composition was determined. The pulps characterization indicates that the Soda process is the process that, despite producing less delignification, retains much of the hemicelluloses in the pulp, being this content a key factor in the nanofibrillation process. Regarding the LCNF obtained by mechanical process, those nanofibers isolated from Organosolv wheat pulp (OWP) and Kraft wheat pulp (KWP) show low values for nanofibrillation yield, specific surface area and greater diameter. However, those nanofibers isolated from Soda wheat pulp (SWP) reach much higher values for these parameters and presents a diameter of 14nm, smaller than those obtained by TEMPO-mediated oxidation from OWP. Smaller diameters are generally obtained in TEMPO-oxidized LCNF. This work concludes that the lignin content does not affect greatly to obtain LCNF as does the hemicellulose content, so it is accurate to use a soft pulping process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optical property analysis of thermally and photolytically aged Eucalyptus Camaldulensis chemithermomechanical pulp (CTMP)

    Science.gov (United States)

    Yao Chen; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark; Jianmin Gao

    2012-01-01

    To investigate the optical properties of chemithermomechanical pulp (CTMP) from Eucalyptus camaldulensis, one group of samples of CTMP was aged by heating, and another group was first subjected to bleaching with different bleaching agents, and then aging by exposure to sunlight. Chromophores were analyzed using diffuse reflectance UV-Vis spectra (...

  1. Structural characterization of Kraft lignins from different spent cooking liquors by 1D and 2D Nuclear Magnetic Resonance spectroscopy

    International Nuclear Information System (INIS)

    Fernández-Costas, C.; Gouveia, S.; Sanromán, M.A.; Moldes, D.

    2014-01-01

    Three Kraft lignins isolated from black liquors of several paper pulp mills of the North of Spain and Portugal were structurally characterized by using monodimensional ( 1 H and 13 C) and bidimensional Nuclear Magnetic Resonance (NMR) spectrometry. From the latter, 13 C– 1 H heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) were employed. Lignins from black liquors are usually burned for power generation. Nevertheless, they could become high value added products within a biorefinery context. In that case, a good understanding of their structure is a prior step to transform them. From all the NMR techniques studied, HSQC has risen as the most powerful tool in lignin characterization. Kraft cooking conditions and the type of wood seem to be the main factors that determine the differences observed in the lignins. All the samples have shown an important decrease in the number of β–O–4′ linkages, due to the Kraft process, and resinol has become the most resistant linkage to the process. Moreover, all samples seem to be mainly linked to a one polysaccharide: xylan. Several parameters like S/G ratio, portion of phenolic and aliphatic hydroxyls, amount of aromatic protons and other structural aspects were also estimated. - Highlights: • Lignins from three Kraft spent liquors were obtained by acid precipitation. • Structural characterization of the dissolved lignins was performed by NMR. • Wood source and pulping conditions determine the lignin characteristics. • Kraft process implies cleavage of β–O–4 linkages and survival of resinol linkages. • Comparison of the samples would aid decisions on its future revalorization

  2. Use of Excel ion exchange equilibrium solver with WinGEMS to model and predict NPE distribution in the Mead/Westvaco Evandale, TX, hardwood bleach plant

    Science.gov (United States)

    Christopher Litvay; Alan Rudie; Peter Hart

    2003-01-01

    An Excel spreadsheet developed to solve the ion-exchange equilibrium in wood pulps has been linked by dynamic data exchange to WinGEMS and used to model the non-process elements in the hardwood bleach plant of the Mead/Westvaco Evandale mill. Pulp and filtrate samples were collected from the diffusion washers and final wash press of the bleach plant. A WinGEMS model of...

  3. Kinetic modeling of formic acid pulping of bagasse.

    Science.gov (United States)

    Tu, Qiliang; Fu, Shiyu; Zhan, Huaiyu; Chai, Xinsheng; Lucia, Lucian A

    2008-05-14

    Organic solvent or organosolv pulping processes are alternatives to soda or kraft pulping to delignify lignocellulosic materials for the production of paper pulp. Formic acid, a typical organosolv system, has been presently examined under atmospheric pressure to pulp bagasse fibers. It was shown that efficient bagasse pulping was achieved when the formic acid concentration was limited to 90% (v/v). A statistical kinetic model based on the experimental results for the delignification of bagasse during formic acid pulping was developed that can be described as follows: D (delignification) = 0.747 x C(formicacid) (1.688) x (1 - e(-0.05171t)), an equation that can be used to predict the lignin content in formic acid during the pulping process. The delignification of bagasse by 90% formic acid was almost completed after approximately 80 min, while extended pulping did not improve the delignification but tended to degrade the carbohydrates in bagasse, especially the hemicelluloses, which were rapidly hydrolyzed at the onset of pulping.

  4. Avaliação do emprego de microfiltração para remoção de fibras do efluente de branqueamento de polpa celulósica Evaluation of the use of microfiltration for removal of fiber from bleaching pulp mill effluent

    Directory of Open Access Journals (Sweden)

    Míriam Cristina Santos Amaral

    2013-03-01

    Full Text Available O processo de branqueamento é o estágio em que ocorre a maior perda de fibras durante a fabricação de polpa celulósica. Além de ser uma perda de produto, estas fibras aumentam a concentração de matéria orgânica do efluente dificultando seu tratamento. O objetivo deste trabalho foi avaliar o emprego de microfiltração (MF na remoção de fibras de efluente de branqueamento alcalino de polpa celulósica. Foi empregada membrana de poli(éter imida com tamanho médio de poros de 0,5 µm e área de filtração de 0,05 m². O efeito das condições operacionais no fluxo permeado foi avaliado através do monitoramento do perfil de fluxo durante a operação em diferentes condições de velocidade de escoamento (Reynolds de 1.226, 1.653 e 2.043, pH da alimentação (7, 10 e 10,6, temperatura (28, 43 e 48°C e pressão de operação através da avaliação da pressão crítica. Os resultados mostraram que a MF é um processo eficiente para remoção de fibras, apresentado 99% eficiência de remoção de sólidos suspensos. O melhor desempenho da operação de MF foi obtido empregando pH 7, pressão de 1 bar e Re de 1.653. Os resultados mostram que a redução do fluxo se deve principalmente à formação de torta.The bleaching process is the stage where there is the greatest loss of fibers during the pulp production. Besides being a waste of product, these fibers increase the concentration of organic matter in the effluent and make the treatment of effluent more difficult. The aim of this study was to evaluate the use of microfiltration (MF in the removal of fiber of effluent of alkaline bleaching pulp mill. The membrane employed was hollow fiber poly (ether imide, with average pore size of 0.5 µm and filtration area of 0.05 m². The effect of operating conditions on the permeate flux was evaluated by monitoring the flux profile during operation in different conditions of flow velocity (Reynolds 1,226, 1,653 and 2,043, pH of feeding (7, 10

  5. 75 FR 76005 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Science.gov (United States)

    2010-12-07

    ... production process units include operations such as pulping, bleaching, chemical recovery, and papermaking. Different pulping processes are used, including chemical processes (kraft, soda, sulfite, and semi-chemical... or paperboard products, including: mills that carry out chemical wood pulping (kraft, sulfite, soda...

  6. Application Of Flash X-Ray Radiography To Problems In The Pulp And Paper Industry

    Science.gov (United States)

    Farrington, Theodore E.

    1988-02-01

    The use of flash x-ray radiography to investigate high speed multiphase flows is demonstrated. Both fundamental and practical problems of interest to the pulp and paper industry are used as examples. More specifically, studies of concentrated fiber suspension flows, kraft black liquor sprays and impulse drying are discussed.

  7. Combustion properties of kraft black liquors; Ligniinifraktion vaikutus mustalipeaen poltto-ominaisuuksiin

    Energy Technology Data Exchange (ETDEWEB)

    Alen, R.; Rantanen, K.; Ekman, J.; Malkavaara, P. [Jyvaeskylae Univ. (Finland)

    1996-12-01

    The aim of this investigation was to find relationships between the structure of the dissolved lignin and the combustion properties (pyrolysis time, char burning time, and swelling) of softwood and hardwood kraft black liquors. In this conjunction, pine and birch chips, as well as their two mixtures (the mass ratios of pine chips to birch chips were 80:20 and 60:40), were delignified by conventional kraft pulping. In each cook series, a liquor sample was withdrawn at certain time intervals to obtain liquor samples with different chemical composition. The black liquors obtained were analyzed with respect to the content of lignin and `lignin monomers`, but also the molecular-mass distribution and the mass average molecular mass of lignin were made. In addition, the dissolved lignin was characterized by NMR spectroscopy and elemental analysis. Further data on the chemical structures of lignin in black liquors were obtained by identifying various degradation products formed from this material during oxidative (CuO oxidation) and pyrolytic treatments. Several correlations between the `structural parameters` of the dissolved lignin and the combustion properties of black liquor were found. These correlations were significant especially in the case of pine cook. The results revealed many findings which are, together with the earlier data, useful for a better understanding of the thermochemical behavior of different kraft black liquors during combustion in a recovery furnace. (author)

  8. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp.

    Science.gov (United States)

    Sondhi, Sonica; Sharma, Prince; George, Nancy; Chauhan, Prakram Singh; Puri, Neena; Gupta, Naveen

    2015-04-01

    Degradation of residual lignin in kraft pulp by chemical bleaching is implicated in causing environmental pollution. The use of thermo- and alkali-tolerant bacterial laccases is considered to be important biological alternative to chemical processing. Laccases from Bacillus species have shown promise in this respect but their intracellular/spore bound presence make their industrial application economically unfeasible. We report here on a novel extracellular active thermo-alkali-stable laccase (SN4 laccase)  which is active at 90 °C and pH 8.0 using 2,6-dimethoxyphenol as substrate from Bacillus tequilensis SN4. SN4 laccase retained 27 % activity for 5 min at 100 °C and more than 80 % activity for 24 h at 70 °C. The enzyme is also stable at a higher pH (9.0-10.0). Enzyme production was optimized by submerged fermentation. Relatively high yields (18,356 nkats ml -1 ) of SN4 laccase was obtained in a medium containing 650 μM MnSO 4 , 350 μM FeSO 4 , and 3.5 % ethanol. A 764-fold increase in laccase activity was observed under optimal conditions. In addition, reduction in kappa number and increase in brightness of softwood pulp by 28 and 7.6 %, respectively, were observed after treatment with SN4 laccase without a mediator. When N-hydroxybenzotriazole was used as a mediator, the kappa number was decreased to 47 % and brightness was increased to 12 %.

  9. [Application of enzymes in pulp and paper industry].

    Science.gov (United States)

    Lin, Ying

    2014-01-01

    The application of enzymes has a high potential in the pulp and paper industry to improve the economics of the paper production process and to achieve, at the same time, a reduced environmental burden. Specific enzymes contribute to reduce the amount of chemicals, water and energy in various processes. This review is aimed at presenting the latest progresses of applying enzymes in bio-pulping, bio-bleaching, bio-deinking, enzymatic control of pitch and enzymatic modification of fibers.

  10. BLEACHING NEPTUNE BALLS

    Directory of Open Access Journals (Sweden)

    BONET Maria Angeles

    2014-05-01

    Full Text Available Posidonia Oceanic is a seaweed from Mediterranean Sea and it is more concentrated at the Balerian SEA. This implies the Valencian Community also. It forms vaste underwater meadows in the sea and are part of the Mediterranean ecosystem. It is a sea-grass specie with fruits and flowers. Leaves are ribbon-like and they grow in winter and at the end of summer some of them are separated and arrive to some sea line. Fuit is separated and can floate, it is known as “the olive of the sea” mainly in Italy, or as the Neptune Balls. As it can be used in different fields, it is is being studied in order ro have the precitice tests. Some authors have reported the manufacturing of fully bio-based comites with a gluten matrix by hot-press molding. And it has been considered as an effective insulator for building industry or even though to determine the presence of mercure in the Mediterranean sea some years ago. As many applications can be designed from that fibers, it has been considered to be bleached in order to used them in fashionable products. Consequently, its original brown color is not the most suitable one and it should be bleached as many other cellulosic fibers. The aim of this paper is to bleache neptune balls however, the inner fibers were not accessible at all and it implied not to bleach the inner fibers in the neptune ball. Further studiesd will consider bleaching the individualized fibers.

  11. Rice straw pulp obtained by using various methods.

    Science.gov (United States)

    Rodríguez, Alejandro; Moral, Ana; Serrano, Luis; Labidi, Jalel; Jiménez, Luis

    2008-05-01

    Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).

  12. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  13. Production of cellulose nanofibrils from bleached eucalyptus fibers by hyperthermostable endoglucanase treatment and subsequent microfluidization

    Science.gov (United States)

    Wangxia Wang; Michael D. Mozuch; Ronald C. Sabo; Phil Kersten; J.Y. Zhu; Yongcan Jin

    2015-01-01

    A GH5 hyperthermostable endoglucanase from the archaeon Pyrococcus honkoshii (ph-GH5) and a commercial endoglucanase FR were used to treat bleached eucalyptus pulp (BEP) fibers to produce cellulose nanofibrils (CNFs) through subsequent microfluidization Enzymatic treatments facilitated CNF production due to the reduced degree of polymerization (DP)...

  14. Preparation of lumen-loaded kenaf pulp with magnetite (Fe3O4)

    International Nuclear Information System (INIS)

    Zakaria, S.; Ong, B.H.; Ahmad, S.H.; Abdullah, M.; Yamauchi, T.

    2005-01-01

    Magnetic pulps were prepared from unbleached kenaf (hibiscus cannabinus L.) kraft pulps. Fe 3 O 4 or magnetite powder was used to load into the pulp's lumen and pit. Aluminum sulphate [Al 2 (SO 4 ) 3 ] (alum) and polyethylenimine (PEI), both mainly function as retention aid were used throughout the experiment and found to be beneficial in the preparation of this magnetic pulps. The ash content method was used to determine the amount of magnetite retained in the lumen and pit. The utilization of PEI up to 2% per pulp fibres was found to be the best result on lumen loading. The deposition of magnetite powder in lumen and pit is found decrease as the addition of PEI used is more than 2% per pulp fibres. Scanning electron microscope (SEM) clearly shows the distribution of magnetite deposited in the lumen. Tensile index and folding endurance of the loaded fibre decreased slightly as the percentage of loading pigment increased

  15. Kraft cooking of gamma irradiated wood, (1)

    International Nuclear Information System (INIS)

    Inaba, Masamitsu; Meshitsuka, Gyosuke; Nakano, Junzo

    1979-01-01

    Studies have been made of kraft cooking of gamma irradiated wood. Beech (Fagus crenata Blume) wood meal suspended in aqueous alkaline alcohol was irradiated up to 1.5 KGy (0.15 Mrad) with gamma rays from a Co-60 source in the presence or absence of oxygen. The irradiated wood meals were washed thoroughly with fresh water, air dried and cooked under the ordinary cooking conditions. The results are summarized as follows: (1) Pre-irradiation in aqueous alkali have negligible effect on kraft cooking. (2) In the case of ethanol addition (50 g/l), pre-irradiation in vacuo shows acceleration of delignification and stabilization of carbohydrates during kraft cooking. Cooked yield gain by pre-irradiation was about 1.2% in all over the range of delignification from 80 to 90%. Aqueous ethanol without alkali also shows positive but smaller effect than that with alkali. (3) Propanol, iso-propanol and butanol show positive but smaller effects than ethanol. However, methanol does not show any positive effect. (4) Irradiation in the presence of oxygen does not show any attractive effect on kraft cooking. (author)

  16. Ground beetle populations near a kraft mill

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, R.; Hastings, L.; Mercer, W.R.; Smith, A.

    1973-02-01

    Twenty species of ground beetles (Family Carabidae) and one species of carrion beetle (Family Silphidae) were collected in six stations east of a kraft paper mill in Thunder Bay, Ontario, from May to August, 1971. The beetle population decreased markedly towards the mill. There was no apparent statistical difference in size variation of specimens near the mill and those further away.

  17. Preparation of Cellulose Nanofibrils from Bamboo Pulp by Mechanical Defibrillation for Their Applications in Biodegradable Composites.

    Science.gov (United States)

    Guimarães, Mario; Botaro, Vagner Roberto; Novack, Kátia Monteiro; Neto, Wilson Pires Flauzino; Mendes, Lourival Marin; Tonoli, Gustavo H D

    2015-09-01

    There is a growing interest in cellulose nanofibrils from renewable sources for various industrial applications. However, there is a lack of information on cellulose arising from bamboo pulps. Nanofibrils from refined bamboo pulps, including bleached, unbleached, and unrefined/unbleached, were obtained by mechanical defibrillation for use in biodegradable composites. The influence of industrial processes, such as pulping and refining of unbleached pulps, as well as of alkali pretreatments and bleaching of refined pulps, on the chemical composition of the samples was analyzed. Morphological, structural, thermal, optical and viscometric properties were investigated as a function of the number of passages of refined/bleached suspensions through a defibrillator. For the unbleached suspensions, the effects of refining and bleaching on the properties of nanofibrils were evaluated, fixing the number of passages through the defibrillator. Microscopic studies demonstrated that nanoscale cellulose fibers were obtained from both pulps, with a higher yield for the refined/bleached and refined/unbleached pulp, at the expense of the unbleached/unrefined pulps. The study showed that, in addition to the effectiveness of the pre-treatments, there was an increase in the production efficiency of nanofibrils, as well as in the transparency of the bleached suspensions, while viscosity, thermal stability and crystallinity had reduced levels as the number of passages through the defibrillator increased, showing a gradual improvement in the transition from the micro- to the nano-scale. The present study contributed to the different methods that are available for the production of bamboo cellulose nanofibrils, which can be used in the production of biodegradable composites for various applications.

  18. Production of biofuels from lignocellulosic biomass in pulp and paper mill effluents for low carbon society

    OpenAIRE

    Thakur, Indu Shekhar; Nakagoshi, Nobukazu

    2011-01-01

    Carbon Dioxide (CO2) is the most prominent Green House Gas (GHGs) in the Earth's atmosphere is responsible for climate change and other environmental problems. However, CO2 may be converted into organic compounds and lignocellulosic biomass. The pulp and paper mill is a major industrial sector utilizing huge amount of natural product (woody and non-woody plants), inorganic and organic materials along with large volume of water in different stages of the paper manufacturing. In kraft pulping, ...

  19. Fracture resistance of endodontically-treated teeth: effect of combination bleaching and an antioxidant.

    Science.gov (United States)

    Khoroushi, Maryam; Feiz, Atieh; Khodamoradi, Roghayeh

    2010-01-01

    This in vitro study assessed the fracture resistance of endodontically-treated teeth undergoing combination bleaching with 38% and 9.5% hydrogen peroxide gels as in-office and at-home bleaching techniques, respectively. In addition, the effect of an antioxidizing agent, sodium ascorbate, was investigated. Sixty maxillary premolars were endodontically-treated, received a glass ionomer barrier as a mechanical seal and were embedded in acrylic resin up to the cemento-enamel junction. The specimens were divided into four groups (n = 15) as follows: G I: no bleaching, access cavity restored with resin composite (negative control); G II: bleached for three weeks daily using 9.5% hydrogen peroxide for two hours and three sessions of in-office bleaching using 38% hydrogen peroxide every seven days, then restored (positive control); G III: bleached similar to G II and restored after one week; G IV: bleached similar to G II, along with the use of an antioxidizing agent for 24 hours, then restored. In each in-office and at-home bleaching session, the whitening gels were applied to the buccal surface of the tooth and placed inside the pulp chamber (inside/outside bleaching technique). Finally, the specimens underwent fracture resistance testing; the data were analyzed using ANOVA and Scheffé's test (alpha = 0.05). Significant differences were observed among the study groups (p 0.05). Within the limitations of the current study, it can be concluded that the fracture resistance of endodontically-treated teeth decreases after combination bleaching. The use of sodium ascorbate can reverse decreased fracture resistance.

  20. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam.

    Science.gov (United States)

    Pan, Xuejun; Saddler, Jack N

    2013-01-28

    Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs.

  1. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam

    Directory of Open Access Journals (Sweden)

    Pan Xuejun

    2013-01-01

    Full Text Available Abstract Background Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs. Results Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL or hardwood kraft lignin (HKL from 25% to 70% (molar percentage in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w HEL or 9-28% (w/w HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. Conclusions It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w HEL or 19-23% (w/w HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs.

  2. Effect of replacing polyol by organosolv and kraft lignin on the property and structure of rigid polyurethane foam

    Science.gov (United States)

    2013-01-01

    Background Lignin is one of the three major components in plant cell walls, and it can be isolated (dissolved) from the cell wall in pretreatment or chemical pulping. However, there is a lack of high-value applications for lignin, and the commonest proposal for lignin is power and steam generation through combustion. Organosolv ethanol process is one of the effective pretreatment methods for woody biomass for cellulosic ethanol production, and kraft process is a dominant chemical pulping method in paper industry. In the present research, the lignins from organosolv pretreatment and kraft pulping were evaluated to replace polyol for producing rigid polyurethane foams (RPFs). Results Petroleum-based polyol was replaced with hardwood ethanol organosolv lignin (HEL) or hardwood kraft lignin (HKL) from 25% to 70% (molar percentage) in preparing rigid polyurethane foam. The prepared foams contained 12-36% (w/w) HEL or 9-28% (w/w) HKL. The density, compressive strength, and cellular structure of the prepared foams were investigated and compared. Chain extenders were used to improve the properties of the RPFs. Conclusions It was found that lignin was chemically crosslinked not just physically trapped in the rigid polyurethane foams. The lignin-containing foams had comparable structure and strength up to 25-30% (w/w) HEL or 19-23% (w/w) HKL addition. The results indicated that HEL performed much better in RPFs and could replace more polyol at the same strength than HKL because the former had a better miscibility with the polyol than the latter. Chain extender such as butanediol could improve the strength of lignin-containing RPFs. PMID:23356502

  3. Biopulping of sugarcane bagasse and decolorization of kraft liquor by the laccase produced by Klebsiella aerogenes NCIM 2098

    Directory of Open Access Journals (Sweden)

    Jha H.

    2013-12-01

    Full Text Available Aims: Laccase, a copper-containing enzyme, oxidizes variety of aromatic compounds. Since laccase is essential for lignin degradation, it can be used for lignin removal in the pulp and paper industry (biopulping. Laccase is also employed as a dechlorinating agent (biobleaching, along with the removal of phenolic and other aromatic pollutants. In the present investigation it was aimed to employ the laccase produced by the bacterium Klebsiella aerogenes along with the bacterium itself in biopulping of sugarcane bagasse and biobleaching of kraft liquor effluent. Methodology and results: A laccase was isolated from the bacterium K. aerogenes, purified to homogeneity and characterized. The enzyme was purified by conventional techniques following salt precipitation, ion exchange chromatography, and affinity chromatography on Con A sepharose. The purified laccase was found to be monomeric glycoprotein with a Mr of 64 kDa when measured by Sephadex G-200 gel chromatography and SDS-PAGE. The Vmax and Km of laccase towards the substrate guaiacol was determined. The optimum pH of the laccase was found to be 5.0. biopulping and biobleaching activities were determined by TAPPI standard methods. Treatment of sugarcane baggase by K. aerogenes also significantly reduced lignin content of the bagasse. Conclusion, significance and impact of study: The bacterium K. aerogenes and a laccase produced by it were used separately for biopulping of sugarcane bagasse and biobleaching of kraft liquor effluent. Treatment with both brought significant reduction in lignin content and kappa number of the pulp. The handsheets prepared from the treated pulp showed improved brightness without affecting the strength properties of paper. The bacterium and the laccase efficiently decolorized the kraft liquor proving to have biobleaching potential.

  4. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  5. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  6. Molecular weight distribution of Pinus radiata kraft mill wastewater treated by anaerobic digestion.

    Science.gov (United States)

    Vidal, G; Videla, S; Diez, M C

    2001-04-01

    Kraft mill is responsible for massive discharge of highly polluted effluents. The main characteristics of this effluent are high toxicity and low biodegradability due to tannin, lignin and chlorophenol compounds. The composition may vary dramatically depending, for instance, on the utilised feedstock and process. The purpose of this work was to investigate the molecular weight distribution of Pinus radiata kraft pulping wastewater treated by anaerobic digestion by using two types of anaerobic reactors: fixed bed and sludge blanket. Anaerobic sludge blanket (UASB) and anaerobic filter (AF) were operated. In both reactors, the total alkalinity ranged between 1.0 and 1.5 g CaCO3/l, while the organic load rate (OLR) was increasing during operation from 1.2 to 3.3 gCOD/l d. COD and total phenolic compounds (UV215) removal ranged between 30-50% and 13-20%, respectively, while the BOD5 removal ranged 60-90%. However only a partial biodegradation (10-43%) of tannin and lignin was observed. Results from ultrafiltration analyses indicated that the fraction with a molecular weight (MW) 10,000 MW fraction, colour and COD fraction increased by 14% and 5%, respectively, after anaerobic treatment. It can be concluded from this study, that treatment with UASB or AF reactors is not enough, under the conditions tested, for a large COD removal from Pinus radiata wastewater.

  7. Anthraquinone effect on kraft cooking curve for the wood of Eucalyptus grandis x Eucalyptus urophylla hybrid

    Directory of Open Access Journals (Sweden)

    Magnos Alan Vivian

    2017-12-01

    Full Text Available This study aimed to evaluate the effects of anthraquinone addition in the cooking curve, with different loads of reagents, through the kraft pulping process, of Eucalyptus grandis x Eucalyptus urophylla wood, to infer about the process parameters. The wood was transformed into chips and classified to conduct the kraft cooking curves. The applied loads were from 10% to 24% of active alkali, with an anthraquinone charge of 0.05% (on dry wood. We evaluated raw and screened yield, reject content, kappa number (delignification level and residual active alkali. We observed that the addition of anthraquinone did not affect the process raw yield, but increased the screened yield by reducing reject content, especially for low loads of active alkali (10% and 12%. Another effect observed was the reduction of the kappa number with the addition of anthraquinone, which indicates the increase of the wood delignification rate. This is reinforced by the lower residual active alkali, which implies greater use of reagents in the process.

  8. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogenetic or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.

  9. Integrating black liquor gasification with pulping - Process simulation, economics and potential benefits

    Science.gov (United States)

    Lindstrom, Erik Vilhelm Mathias

    Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit

  10. ANTHRAQUINONE ADDITION IN THE ALKALINE PULPING OF Eucalyptus saligna

    Directory of Open Access Journals (Sweden)

    Lúcia Helena Jerônimo

    2009-10-01

    Full Text Available The present work evaluated different alkaline pulping conditions for Eucalyptus saligna wood. The objective was to evaluate the influence of the anthraquinone (AQ on the reduction of the total reduced sulfur (TRS in the aerial emissions, by reducing the sulfidity. The experiment consisted of 8 cooking with active alkali varying from  19 to 21%, sulfidity from  0 to 20% and anthraquinone from 0 to 0.1%, aiming to obtain  kappa numbers in the range 15.5±1.5. The H factor was used to control the relation time/temperature along cooking. The addition of anthraquinone increased the delignification rate allowing sulfidity reduction. The kraft/AQ pulping with sulfidities of 5 and 10% presented satisfactory results, making it possible the replacement of conventional kraft cooking, giving a reduction in process sulfidity without harms in pulping. In spite of a slightly lower performance, the soda/AQ cooking has potential to be used where the smell is a critical problem in the industrial operation.

  11. [Vital pulp therapy of damaged dental pulp].

    Science.gov (United States)

    Xuedong, Zhou; Dingming, Huang; Jianguo, Liu; Zhengwei, Huang; Xin, Wei; Deqin, Yang; Jin, Zhao; Liming, Chen; Lin, Zhu; Yanhong, Li; Jiyao, Li

    2017-08-01

    The development of an expert consensus on vital pulp therapy can provide practical guidance for the improvement of pulp damage care in China. Dental pulp disease is a major type of illness that adversely affects human oral health. Pulp capping and pulpotomy are currently the main methods for vital pulp therapy. Along with the development of minimal invasion cosmetic dentistry, using different treatment technologies and materials reasonably, preserving healthy tooth tissue, and extending tooth save time have become urgent problems that call for immediate solution in dental clinics. This paper summarizes the experiences and knowledge of endodontic experts. We develop a clinical path of vital pulp therapy for clinical work by utilizing the nature, approach, and degree of pulp damage as references, defense and self-repairing ability of pulp as guidance, and modern technologies of diagnosis and treatment as means.

  12. Inverkan av pH på fiber- och pappersegenskaper : Olika pH-nivåer vid malning och arkformning

    OpenAIRE

    Jansson, Jennie

    2015-01-01

    The effect of pH on fiber and paper properties, during beating and sheet formation, was investigated for three different pulps. The pulps were pH adjusted to four different pH levels between 3 and 9. Isotropic laboratory sheet were made of both unbeaten and beaten pulps. The beaten neutral sulfite semi-chemical pulp and bleached softwood kraft pulp were affected by changes in pH; bleached softwood kraft pulp in a minor extent due to less fiber surface charges. Compared to the other pH levels,...

  13. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp.

    Science.gov (United States)

    Walia, Abhishek; Mehta, Preeti; Guleria, Shiwani; Shirkot, Chand Karan

    2015-09-01

    Alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost is an actinomycete that produces industrially important and environmentally safer thermostable cellulase-free xylanase, which is used in the pulp and paper industry as an alternative to the use of toxic chlorinated compounds. Strain CKMX1 was previously characterized by metabolic fingerprinting, whole-cell fatty acids methyl ester analysis, and 16S rDNA and was found to be C. cellulans CKMX1. Crude enzyme (1027.65 U/g DBP) produced by C. cellulans CKMX1, having pH and temperature optima of 8.0 and 60 °C, respectively, in solid state fermentation of apple pomace, was used in the production of bleached wheat straw pulp. Pretreatment with xylanase at a dose of 5 U/g after pulping decreased pulp kappa points by 1.4 as compared with the control. Prebleaching with a xylanase dose of 5 U/g pulp reduced the chlorine charge by 12.5%, increased the final brightness points by approximately 1.42% ISO, and improved the pulp strength properties. Xylanase could be substituted for alkali extraction in C-Ep-D sequence and used for treating chemically bleached pulp, resulting in bleached pulp with higher strength properties. Modification of bleached pulp with 5 U of enzyme/g increased pulp whiteness and breaking length by 1.03% and 60 m, respectively; decreased tear factor of pulp by 7.29%; increased bulk weight by 3.99%, as compared with the original pulp. Reducing sugars and UV-absorbing lignin-derived compound values were considerably higher in xylanase-treated samples. Cellulosimicrobium cellulans CKMX1 has a potential application in the pulp and paper industries.

  14. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    Science.gov (United States)

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  15. Fermentation and chemical treatment of pulp and paper mill sludge

    Science.gov (United States)

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  16. Fluoropolymer use in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Magdzinski, L.

    1999-11-01

    Fluoropolymers are ubiquitous in the pulp and paper industry. Fluoropolymer-lined pumps, valves, pipes, tanks, scrubbers, and towers are encountered frequently in the pulp mill. Chemically resistant fluoropolymer filter fabrics are used in bleach plant washers and flue gas scrubbers. In the recovery cycle, fluoropolymer coatings and fluoroelastomers are used as gaskets and expansion joints in accumulators and heat exchangers. Fluoropolymer-containing paper machine fabrics, roll covers, and greases provide corrosion-free, clean and smooth performance. The array of fluorinated materials for different applications is detailed. New corrosion and caustic resistant filter fabrics, surfacing veils, paints and ductwork are presented.

  17. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    Science.gov (United States)

    Kidalova, Lucia; Stevulova, Nadezda; Geffert, Anton

    2014-06-01

    Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  18. Alkaline pulping with additives of date palm rachis and leaves from Sudan.

    Science.gov (United States)

    Khristova, P; Kordsachia, O; Khider, T

    2005-01-01

    Soda-anthraquinone (soda-AQ), alkaline sulphite-anthraquinone (AS-AQ) and alkaline sulphite-anthraquinone-methanol (ASAM) pulping of date palm rachis and leaves from Sudan was carried under different conditions, and pulps with variable yields and mechanical properties were obtained. The date palm rachis gave best yields and mechanical properties with the AS-AQ or the ASAM process, while the leaves were best pulped with the soda method with low yield, but very good strength properties. Blending with 10% and 30% kenaf bark pulp was beneficial, especially for the AS-AQ pulps. Totally chlorine free (TCF) bleached rachis pulps were obtained of high brightness and strength properties suitable for use in writing and printing papers.

  19. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    Directory of Open Access Journals (Sweden)

    Kidalova Lucia

    2014-06-01

    Full Text Available Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  20. Pretreatment of pulp mill secondary sludge for high-rate anaerobic conversion to biogas.

    Science.gov (United States)

    Wood, Nicholas; Tran, Honghi; Master, Emma

    2009-12-01

    Three pretreatment methods were compared based on their ability to increase the extent and rate of anaerobic bioconversion of pulp mill secondary sludge to biogas. The pretreatment technologies used in these experiments were: (i) thermal pretreatment performed at 170 degrees C; (ii) thermochemical (caustic) pretreatment performed at pH 12 and 140 degrees C; and (iii) sonication performed at 20 kHz and 1 W mL(-1). Sludge samples were obtained from a sulfite and a kraft pulp mill, and biochemical methane potential (BMP) assays were performed using microbial granules obtained from a high-rate anaerobic digester operating at a pulp mill. Biogas production from untreated sludge was 0.05 mL mg(-1) of measured chemical oxygen demand (COD) and 0.20 mL mg(-1) COD for kraft and sulfite sludge, respectively. Thermal pretreatment had the highest impact on sludge biodegradability. In this case, biogas yield and production rate from sulfite sludge increased by 50% and 10 times, respectively, while biogas yield and production rate from kraft sludge increased by 280% and 300 times, respectively. Biogas yield correlated to soluble carbohydrate content better than soluble COD.

  1. Fracture resistance of teeth submitted to several internal bleaching protocols.

    Science.gov (United States)

    Leonardo, Renato de Toledo; Kuga, Milton Carlos; Guiotti, Flávia Angélica; Andolfatto, Carolina; Faria-Júnior, Norberto Batista de; Campos, Edson Alves de; Keine, Kátia Cristina; Dantas, Andrea Abi Rached

    2014-03-01

    The aim of this study was to evaluate the fracture resistance of teeth submitted to several internal bleaching protocols using 35% hydrogen peroxide (35HP), 37% carbamide peroxide (37CP), 15% hydrogen peroxide with titanium dioxide nanoparticles (15HPTiO2) photoactivated by LED-laser or sodium perborate (SP). After endodontic treatment, fifty bovine extracted teeth were divided into five groups (n = 10): G1-unbleached; G2-35HP; G3-37CP; G4-15HPTiO2 photoactivated by LED-laser and G5-SP. In the G2 and G4, the bleaching protocol was applied in 4 sessions, with 7 days intervals between each session. In the G3 and G5, the materials were kept in the pulp teeth for 21 days, but replaced every 7 days. After 21 days, the teeth were subjected to compressive load at a cross head speed of 0.5 mm/min, applied at 135° to the long axis of the root using an eletromechanical testing machine, until teeth fracture. The data were submitted to ANOVA and Tukey tests (α = 5%). The 35HP, 37CP, 15HPTiO2 and SP showed similar fracture resistance teeth reduction (p > 0.05). All bleaching treatments reduced the fracture resistance compared to unbleached teeth (p endodontically-treated teeth, but there were no differences between each other. There are several internal bleaching protocols using hydrogen peroxide in different concentrations and activation methods. This study evaluated its effects on fracture resistance in endodontically-treated teeth.

  2. Energy conservation in the pulp and paper industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Almost 40 specific research and development ideas were formulated by the 67 participants at this workshop. Projects were assessed with the following criteria in mind: potential energy savings, cost, risk, Federal role, time frame, and priority. Data are tabulated on the projects followed by six topics discussed by panel members: waste and recycling, energy management in the mill, papermaking, pulping and bleaching, power generation in the mill, and coating and conversion. Three summary speeches are included. (MCW)

  3. The pulping of esparto grass by sodium monosulfite

    OpenAIRE

    Akchiche, Omar; Messaoud, Boureghda

    2007-01-01

    Traditionally, the esparto's limbs, in the manufacturing process of the cellulosic pulps, are delignified according to the process chlorinates alkaline which alternate the action of caustic's soda and chlorine; the reason is that these sheets cannot be free from the silica which they contain that only in strongly alkaline medium. In spite of the relative simplicity of implementation of this process, it does not remain free from grievance about it: low yield, an excessive consumption of bleach...

  4. The degradation of kraft lignin during hydrothermal treatment for phenolics

    Directory of Open Access Journals (Sweden)

    Tang Kai

    2015-09-01

    Full Text Available Kraft lignin was hydrothermally depolymerized at low temperature/short time in water for producing value-added phenolics. The effects of residence time (15, 60 min and reaction temperature (130, 180, 230ºC on yields of oils and phenolic compounds were studied in detail. Total oil yield was found to range between 7% and 10%. The compositions of oils were analyzed by GC-MS to confirm the main compound to be guaiacol (2-methoxy phenol in the range of 12–55% of oil depending on different reaction conditions. The most interesting was the finding that maximum value of total oil yield (10% of kraft lignin and guaiacol amount (55% of oil was obtained at 130ºC/15, 60 min which is a low reaction temperature/short time, while the residual kraft lignins were analyzed by FTIR with respect to the conversion mechanism of kraft lignin by this process.

  5. AVALIAÇÃO DOS RESÍDUOS DE UMA SERRARIA PARA A PRODUÇÃO DE CELULOSE KRAFT

    Directory of Open Access Journals (Sweden)

    Lucas Cândido Barbosa

    2014-01-01

    Full Text Available The forest-based industries have low yield and generate large amounts of waste, especially the primary processing industries, such as sawmills. In Brazil, initiatives are being created to combine the use of sawmill residues to pulp production. With this in mind, this study aimed to evaluate the performance of amedium-sized sawmill in the city of Rio Grande, in Rio Grande do Sul state, and to promote physical and chemical analysis of waste wood generated in the sawing process. It was used 20 logs of Pinus elliottii , divided into two diameter classes. The residues, except the sawdust, collected for analysis were disposed in the courtyard of the company in the form of chips. The following physical and chemical properties of the chips were examined: density, extractives content soluble in acetone, acetyl groups, soluble and insoluble lignin on acid (Klason lignin, uronic groups and carbohydrates. Comparing the results of the wood properties to the ones found in literature, it was evaluated the quantity and quality of waste that can be used as feedstock for the production of kraft pulp. As the main results there was a slight increase of sawing yields in the larger diameters logs compared to the smaller diameters. From the physical and chemical analyses, it was obtained the following results: density of 0.402 g / cm ³, cellulose content of 43.67% and 24.37% for hemicellulose, klason lignin of 26.75% and 3,80% for extractives content. As conclusion, the low sawing yield can be associated to the lack of a classification diametric and appropriate diagrams sections, resulting in a greater loss in the form of waste. Regarding the chemical and physical composition of the sawmill residues, the results were within the standards of quality wood used for kraft pulp of softwood material, presenting some advantages over younger woods commonly used in industry.

  6. Fungal treatment of hemp-based pulp and paper mill wastes

    African Journals Online (AJOL)

    SERVER

    2008-02-05

    Feb 5, 2008 ... for acid-line effluents (67% AOX (adsorbable organic halogens), 44% TOC 8 total organic carbon), 97% color) were obtained ... Key words: Hemp, bleaching, adsorbable organic halogens, pulping, Penicillium camemberti, molecular weight .... Fractions were collected and ring structures were followed with ...

  7. The corrosion of titanium and some other construction materials during hydrogen peroxide bleaching according to the field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hyoekyvirta, O.; Pohjanne, P.; Heinaevaara, A. [Oy METSA-BOTNIA Ab, Kaskinen' s mill, 64260 Kaskinen (Finland); Hirvonen, J. [VTT Automation, Industrial Automation, P.O. Box 1301, FIN-02044 (Finland); Lewenstam, A. [Center for Process Analytical Chemistry and Sensor Technology ' ProSens' Abo Akademi University, 20500 Abo (Finland)

    1999-07-01

    In a Finnish pulp mill, the field measurements of different materials were performed in different stages of peroxide bleaching: P{sub 1} and P{sub 2}. The field measurements were performed with three different sensors. The sensors were designed in co-operation with Valmet Automation Kajaani Oy. Each sensor measured the corrosion potential, the redox potential and the weight losses of three different materials. Simultaneously, the data of the most important parameters of bleaching, i.e. temperature, pH, peroxide flow rate and concentration, mass flow, consistency, residuals, flow rate and concentration of alkaline, were collected in the data logger by a dedicated program. The results proved that the corrosion of different materials (stainless steel S31654, nickel-based alloy N10276 and titanium Gr. 5) could be estimated with field experiments. The uniform corrosion of titanium occurred in a certain bleaching situation. The field measurements gave a good estimation of whether the material dissolved during process operation or process disorders. Our results clearly show that the mixing of the chemicals can be reliably estimated, and thus advantageous for a pulp mill. The materials studied withstood the bleaching significantly better if the chemicals were mixed directly with a pulp. Usually the chemicals are mixed with alkaline and then added to the pulp. The field measurements could also be applied in ozone and in the peracetic acid bleaching stage. The sensors can be utilized as tools during process monitoring or diagnostics. With the aid of monitoring it is possible to clarify how the different process operation models affect the corrosion of materials. (author)

  8. Final Technical Report Steam Cycle Washer for Unbleached Pulp

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, Yvonne; Salminen, Reijo; Karlsnes, Andy

    2008-09-22

    through the pulping phases. Most water used in the pulping process ends up as warm waste water in the mill’s effluent discharge, which subsequently pollutes receiving waterways and carries an enormous amount of energy with it. Wash water reduction in brown stock washing with the Steam Cycle Washers (SCW) will save energy, up to 1+ million BTUs per ton of pulp in the evaporators alone. Reduction of liquid volume through bleaching stages will save process heat energy in the amount of 2+ million BTUs per ton of pulp, and as much as 80 – 100 kWhrs of electrical power per ton of pulp due to reduced pumping costs. Currently, the technical barriers to water reduction in chemical pulping are basically as follows: • conventional pulp washers wash the pulp at 10 - 14% consistency, • conventional pulp washers use 12 – 16 tons of wash water per ton of pulp, and • they leave 30 – 70 lbs of soda (Na2SO4) per ton of pulp as soda loss into the washed pulp. The amount of wash water in excess of the amount of process liquid in the pulp is called Dilution Factor (DF), even though it is not a factor in the mathematical sense but an addition. Modern pulp washing lines can wash efficiently with a DF of 3 but most pulp mills in the United States are washing with a DF of 5-7. Therefore, at 10% washing consistency 14-16 tons of wash water is required and 14% consistency requires 11-13 tons of wash water.

  9. Comparison of Radicular Peroxide Leakage from four Commonly used Bleaching agents following Intracoronal Bleaching in Endodontically treated teeth - An In Vitro Study.

    Science.gov (United States)

    Madhu, Ks; Hegde, Swaroop; Mathew, Sylvia; Lata, DA; Bhandi, Shilpa H; N, Shruthi

    2013-08-01

    Non vital bleaching is simple, conservative procedure for esthetic correction of discolored endodontically treated teeth. The aim of this study was to determine and compare the amount of peroxide leakage from four different bleaching agents i.e superoxol, sodium perborate, combination of superoxol & sodium perborate and carbamide peroxide during intracoronal bleaching, as the safe and effective bleaching is the need of the hour. 50 extracted maxillary centrals were selected for the study. Following standardized protocol access, cleaning and shaping by step back technique and obturation was done using guttapercha and AH plus sealer. Access was sealed with Cavit G and outer root surface was coated with wax and nail varnish. The teeth were separated into crown and root and the root portion was placed in plastic tube containing distilled water for 7days.After incubation, 3mm of gutta-percha was removed below CEJ and 2mm glass ionomer cement base was placed. Grouped into five categories based on the bleaching agent placed in pulp chamber as -group1 (control)-distilled water, group 2-sodium perborate with distilled water , group 3- 30% hydrogen peroxide ,group 4-mixture of sodium perborate and 30% hydrogen peroxide and group 5-10% carbamide peroxide gel. Peroxide leakage was measured after 24hrs using ferrothiocyanate method and optical density using spectrophotometer. Statistical analysis of the data was conducted using ANOVA and multiple comparisons within the groups was done using BONFERRONI method (Post-Hoc tests). The results showed highest peroxide penetration from 30% hydrogen peroxide followed by mixture of sodium perborate with 30% hydrogen peroxide, mixture of sodium perborate with distilled water and least penetration from 10% carbamide peroxide gel. The results were statistically significant. Radicular peroxide leakage in 10% carbamide peroxide was significantly lower than the other tested bleaching agents making it a very safe alternative for intracoronal

  10. Optimization of Bleaching Parameters for Soybean Oil

    Directory of Open Access Journals (Sweden)

    Tomislav Domijan

    2012-01-01

    Full Text Available The final stage of edible soybean oil manufacture is refining, the most delicate phase of which is bleaching. At this step, undesirable substances are removed, such as pigments, traces of metals, phospholipids and certain degradation products. However, certain valuable compounds such as tocopherols and sterols may also be removed, significant loss of oxidative stability can occur, and fatty acid content may increase. To avoid these negative oil changes, bleaching parameters such as the concentration of bleaching clay, temperature and duration should be optimized. Since bleaching conditions depend on the properties of the bleaching clay as well as on the type of crude oil, bleaching parameters should be optimized with different types of clay for each vegetable oil. Since such optimization has not yet been reported for soybean oil treated with Pure-Flo® Supreme Pro-Active bleaching adsorbent, this study investigates the effect of bleaching parameters on bleaching efficiency, oxidative stability and the content and composition of bioactive compounds (tocopherols and sterols using the above mentioned clay in this type of oil. Results show that the amount of clay had the greatest influence on bleaching efficiency, especially according to the Lovibond scale, on transparency, and on phosphorus content. Temperature and clay amount significantly affected oxidative stability, in particular the formation of secondary oxidation products. Increasing the amount of clay decreased tocopherol content of the bleached oil. Neutralized soybean oil bleached for 20 min at 95 °C with 1 % Pure-Flo® Supreme Pro-Active bleaching clay showed the highest oxidative stability, best bleaching efficiency, and most favourable sterol content, although tocopherol content was reduced.

  11. Spatiotemporal assessment (quarter century) of pulp mill metal(loid) contaminated sediment to inform remediation decisions.

    Science.gov (United States)

    Hoffman, Emma; Lyons, James; Boxall, James; Robertson, Cam; Lake, Craig B; Walker, Tony R

    2017-06-01

    A bleached kraft pulp mill in Nova Scotia has discharged effluent wastewater into Boat Harbour, a former tidal estuary within Pictou Landing First Nation since 1967. Fifty years of effluent discharge into Boat Harbour has created >170,000 m 3 of unconsolidated sediment, impacted by inorganic and organic contaminants, including metal[loid]s, polycyclic aromatic hydrocarbons (PAHs), dioxins, and furans. This study aimed to characterize metal(loid)-impacted sediments to inform decisions for a $89 million CAD sediment remediation program. The remediation goals are to return this impacted aquatic site to pre-mill tidal conditions. To understand historical sediment characteristics, spatiotemporal variation covering ~quarter century, of metal(loid) sediment concentrations across 103 Boat Harbour samples from 81 stations and four reference locations, were assessed by reviewing secondary data from 1992 to 2015. Metal(loid) sediment concentrations were compared to current Canadian freshwater and marine sediment quality guidelines (SQGs). Seven metal(loid)s, As, Cd, Cr, Cu, Pb, Hg, and Zn, exceeded low effect freshwater and marine SQGs; six, As, Cd, Cr, Pb, Hg, and Zn, exceeded severe effect freshwater SQGs; and four, Cd, Cu, Hg, and Zn, exceeded severe effect marine SQGs. Metal(loid) concentrations varied widely across three distinct temporal periods. Significantly higher Cd, Cu, Pb, Hg, and Zn concentrations were measured between 1998 and 2000, compared to earlier, 1992-1996 and more recent 2003-2015 data. Most samples, 69%, were shallow (0-15 cm), leaving deeper horizons under-characterized. Geographic information system (GIS) techniques also revealed inadequate spatial coverage, presenting challenges for remedy decisions regarding vertical and horizontal delineation of contaminants. Review of historical monitoring data revealed that gaps still exist in our understanding of sediment characteristics in Boat Harbour, including spatial, vertical and horizontal, and temporal

  12. Intra-pulpal temperature rise of different tooth types during dental bleaching supported by an Er,Cr:YSGG laser. A pilot study.

    Science.gov (United States)

    Strakas, D; Tolidis, K; Koliniotou-Koumpia, E; Vanweersch, L; Franzen, R; Gutknecht, N

    2016-01-01

    The purpose of this pilot in vitro study was to evaluate the temperature increase in the pulp chamber of the teeth, during Er,Cr:YSGG bleaching, as well as to show which teeth are the most susceptible in terms of pulp temperature increase during laser-activated bleaching treatment. Although Er:YAG studies have been published on this subject, it is the first time Er,Cr:YSGG wavelength is tested. Fifteen teeth were tested--3 each of the following--(maxillary central incisors, lateral incisors, canines, premolars and mandibular incisors). The bleaching procedure comprised an Er,Cr:YSGG laser (2780 nm, Waterlase MD, Biolase, USA) and a yellow-coloured bleaching agent with a concentration of 38 % H2O2 (Power whitening, WHITEsmile GmbH, Germany). The tip used was a 6-mm long Z-type glass tip (MZ8) of a 800 μm diameter. Average output power was set to 1.25 W, pulse duration 700 μs (S-mode), whilst the pulse repetition rate was 10 Hz. The results showed that the most susceptible teeth in terms of pulp temperature increase were the lateral maxillary incisors and the mandibular incisors. The mean temperature increase on these teeth was 1.06 and 1.00 °C, respectively, on 60 s Er,Cr:YSGG-supported bleaching.

  13. Critical factors affecting laccase-mediated biobleaching of pulp in paper industry.

    Science.gov (United States)

    Singh, Gursharan; Kaur, Kavleen; Puri, Sanjeev; Sharma, Prince

    2015-01-01

    Next to xylanases, laccases from fungi and alkali-tolerant bacteria are the most important biocatalysts that can be employed for eco-friendly biobleaching of hard and soft wood pulps in the paper industry. Laccases offer a potential alternative to conventional, environmental-polluting chlorine and chlorine-based bleaching and has no reductive effect on the final yield of pulp as compared to hemicellulases (xylanases and mannanases). In the last decade, reports on biobleaching with laccases are based on laboratory observations only. There are several critical challenges before this enzyme can be implemented for pulp bleaching at the industrial scale. This review discusses significant factors like redox potential, laccase mediator system (LMS)-synthetic or natural, pH, temperature, stability of enzyme, unwanted grafting reactions of laccase, and cost-intensive production at large scale which constitute a great hitch for the successful implementation of laccases at industrial level.

  14. The influence of irradiation of gamma-rays on the pulping and paper making, (4)

    International Nuclear Information System (INIS)

    Suzuki, Kyoji; Inoue, Kaoru; Hanamura, Norio; Mori, Kenji

    1980-01-01

    The influence of gamma-irradiation on the beating properties of unbleached kraft pulps was studied, and the changes of the mechanical and chemical properties of the sheet made from those pulps were also investigated. The results obtained were as follows: (1) When the unbeaten pulp was treated with gamma-ray, the degree of polymerization of cellulose was decreased rapidly and the formation of aldehyde and carboxyl groups in pulp was observed in addition to that the beating time of irradiated pulps was reduced comparing with non-irradiated pulp. These effects increased roughly in proportion to the radiation dose. (2) Gamma-irradiation was more effective in wet state (moisture content = 70 - 80%) than air dry state. This may be due to the degradation products of water by gamma-irradiation. (3) The mechanical properties (breaking length, tear and burst factors) of the sheets made from irradiated pulps were considerably deteriorated at 10 7 R, but there was a slight deterioration up to 10 6 R. (4) Comparing the result of the mechanical properties, the strengths of the various sheets were shown in the following order: the sheet irradiated after paper making gt the sheet irradiated before beating (air dry state) gt the sheet irradiated before beating (wet state). (author)

  15. Operational factors and nutrient effects on activated sludge treatment of Pinus radiata kraft mill wastewater.

    Science.gov (United States)

    Diez, M C; Castillo, G; Aguilar, L; Vidal, G; Mora, M L

    2002-06-01

    The biodegradability of Pinus radiata bleached kraft mill wastewater by an activated sludge treatment during a period of 280 days was evaluated. The effect of varying hydraulic retention time (HRT) in the range of 48 to 4.5 h and nitrogen (N) and phosphorus (P) addition on removal of biological oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (TSS and VSS), total phenolic compounds, tannin and lignin and reduction of toxicity was investigated. Removal of BOD5 was higher than 90% when HRT varied from 16 to 6 h, but decreased when HRT was less than 6 h. Similar performance was observed for COD removal, which was about 60% when HRT was varied from 16 to 6 h. Removal of total phenolic compounds and tannin and lignin was seriously affected by HRT. N and P addition to maintaining a ratio of 100:5:0.3 provided optimal BOD5, COD and suspended solids removal when HRT varied from 16 to 7 h, and no toxicity (using Daphnia) was detected in the treated effluent. When HRT was less than 6 h, the system showed destabilisation and pH, COD, BOD5 and suspended solids removal decreased.

  16. 40 CFR 63.440 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... use the following processes and materials: (1) Kraft, soda, sulfite, or semi-chemical pulping processes using wood; or (2) Mechanical pulping processes using wood; or (3) Any process using secondary or... 17, 1993; (2) Each pulping system or bleaching system for the processes specified in paragraph (a)(1...

  17. Biodegradation of kraft lignin by a bacterial strain Comamonas sp. B-9 isolated from eroded bamboo slips.

    Science.gov (United States)

    Chen, Y H; Chai, L Y; Zhu, Y H; Yang, Z H; Zheng, Y; Zhang, H

    2012-05-01

    The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B-9. Comamonas sp. B-9 was inoculated into kraft lignin-mineral salt medium (KL-MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low-molecular-weight compounds revealed that Comamonas sp. B-9 was able to degrade kraft lignin (KL). COD in KL-MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l(-1) and laccase (Lac) of 1250 U l(-1) were observed at 4th and 6th day, respectively. The low-molecular-weight compounds such as ethanediol, 3, 5-dimethyl-benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B-9 based on GC-MS analysis. This study confirmed that Comamonas sp. B-9 could utilize KL as a sole carbon source and degrade KL to low-molecular-weight compounds. Comamonas sp. B-9 may be useful in the utilization and bioconversion of lignin and lignin-derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B-9 in treatment of wastewater in pulp and paper industry is a meaningful work. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  18. Dentist-prescribed home bleaching: current status.

    Science.gov (United States)

    Dunn, J R

    1998-08-01

    White teeth have been an indicator of physical attractiveness throughout history. Only recently have we been able to whiten teeth with few side effects, making tooth bleaching a popular and effective dental treatment. The American Dental Association (ADA) has established guidelines on safety and effectiveness for tooth bleaching. External stains from aging or inherent dark color are more responsive to bleaching than internal stains. Dentist-prescribed home bleaching--including a careful dental exam, custom-fabricated trays, tacky high-viscosity gels, adequate instructions, and recall exams--has been shown to be an effective method for bleaching teeth. Trays can be worn overnight or during the day with similar effectiveness. The bleaching effect can last up to 3 years with more than 50% success.

  19. Methods for facilitating microbial growth on pulp mill waste streams and characterization of the biodegradation potential of cultured microbes.

    Science.gov (United States)

    Mathews, Stephanie L; Ayoub, Ali S; Pawlak, Joel; Grunden, Amy M

    2013-12-12

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.

  20. Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin-carbohydrates complexes.

    Science.gov (United States)

    Huang, Caoxing; He, Juan; Li, Xin; Min, Douyong; Yong, Qiang

    2015-09-01

    Kraft pulping was performed on bamboo residues and its impact on the chemical compositions and the enzymatic digestibility of the samples were investigated. To improve the digestibility of sample by degrading the xylan and lignin-carbohydrates complexes (LCCs), xylanase and α-L-arabinofuranosidase (AF) were supplemented with cellulase. The results showed more carbohydrates were remained in the samples pulped with low effective alkali (EA) charge, compared to conventional kraft pulping. When 120 IU/g xylanase and 15 IU/g AF were supplemented with 20 FPU/g cellulase, the xylan degradation yield of the sample pulped with 12% EA charge increased from 68.20% to 88.35%, resulting in an increased enzymatic saccharification efficiency from 58.98% to 83.23%. The amount of LCCs in this sample decreased from 8.63/100C9 to 2.99/100C9 after saccharification with these enzymes. The results indicated that degrading the remained xylan and LCCs in the pulp could improve its enzymatic digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Modification of paper properties by the pretreatment of wastepaper pulp with Graphiumputredinis, Trichodermaharzianum and fusant xylanases.

    Science.gov (United States)

    Savitha, S; Sadhasivam, S; Swaminathan, K

    2009-01-01

    Graphiumputredinis, Trichodermaharzianum and fusant were used in the present study to produce extracellular xylanases, an important industrial enzyme used in pulp and paper industry produced in a minimal medium supplemented with oat spelt xylan (1%, w/v) pH 7.0 at 27+/-2 degrees C. The enzyme was purified to homogeneity by DEAE-Cellulose and Superdex 75 FPLC column, respectively. The enzyme was found to be a monomer as determined by SDS gel electrophoresis. The optimum pH and temperature for purified G. putredinis, T. harzianum and fusant xylanases were 5.0-6.0 and 50-70 degrees C, respectively. Pretreatment of paper pulp with G. putredinis, T. harzianum and fusant xylanases decreased pulp kappa number. Xylanases particularly that of fusant at 5 IU/g pulp concentration and 1.5% pulp consistency at 60 degrees C for 18 h followed by EDED process yielded good quality paper from waste paper pulp. A significant increase in pulp brightness and improvement in various pulp properties, viz. burst capacity, thickness and bulkness of the treated pulp were observed in comparison to the conventional chemical bleaching. Easy purification and high stability of these enzymes makes it amicable for industrial applications.

  2. Biodegradation behaviors and color change of composites based on type of bagasse pulp/polylactic acid

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2017-05-01

    Full Text Available In this research, appearance quality and decay resistance of polylactic acid (PLA based green composites made from monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (B S bagasse pulp, unbleached soda (UN S bagasse pulp (UN S bagasse pulp and raw bagasse fibers (B were investigated. For the investigation of biodegradation behaviors, effect of the white rot fungi (Coriolus versicolor on the neat PLA and composites with natural fibers during 30 and 60 days were studied. It is found that when the bagasse fibers were incorporated into composites matrix, percentage weight reduction and stiffness of samples have been increased. Also, the rate of loss mentioned of the composites made from bagasse pulp fibers were superior to the relevant raw bagase fibers. This can be explained by the removal of non-cellulosic components such as lignin and hemicelluloses from the fibers by pulping process. Also, the results indicates the inferior of surface qualities of fabricated composites regarding to neat PLA. Depending on the fiber type, different reductions of the surface qualities were attained. However, the degree of color change of the composites with any type of bagasse pulp fibers were lower compared with composite with raw bagasse fiber. Finally, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability.

  3. Effect of Bagasse Chemical Pulping and Coupling Agent on the Physical - Mechanical Properties of Composites Based on Bagasse pulp/Low density polyethylene

    Directory of Open Access Journals (Sweden)

    maryam allahdadi

    2016-12-01

    Full Text Available In this research, effect of reinforcing bagasse pulp and raw bagasse fibers and applying coupling agent MAPE (Maleic Anhydride Polyethylene on physical-mechanical properties of low density polyethylene (LDPE composites were studided. Fresh bagasse were collected from an experimental field in Khuzestan and after investigating anatomy and chemical properties of Different pulp fibers including monoethanolamine (MEA bagasse pulp, alkaline sulfite-anthraquinone (AS bagasse pulp, bleached soda (BS bagasse pulp, unbleached soda (UNS bagasse pulp and raw bagasse fibers (B were prepared. Then, composites with 30wt.% fiber content were manufactured by twin-screw extrusion followed by compression molding processing. The mechanical and physical properties of these composites were analyzed and compared. Results revealed that the chemical pulping dissolved a fraction of lignin and hemicelluloses so that the linkage potential and aspect ratio of bagasse fibers was improved and consequently, as compared with the raw bagasse fibers, bagasse pulp fibers have better reinforcing capability. The best overall properties were achieved with MEA and AS/AQ fibers. Addition of 5% (wt/wt of coupling agent MAPE resulted in a significant enhancement in the tensile strength, tensile modulus and impact strength in line with the improvement of the fiber-matrix interfacial adhesion making more effective the transfer of stress from the matrix to the rigid reinforcement.

  4. Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane: Ion exchange membrane fouling identification and mechanisms.

    Science.gov (United States)

    Haddad, Maryam; Mikhaylin, Sergey; Bazinet, Laurent; Savadogo, Oumarou; Paris, Jean

    2017-02-15

    Integrated forest biorefinery offers promising pathways to sustainably diversify the revenue of pulp and paper industry. In this context, lignin can be extracted from a residual stream of Kraft pulping process, called black liquor, and subsequently converted into a wide spectrum of bio-based products. Electrochemical acidification of Kraft black liquor by electrodialysis with bipolar membrane results in lignin extraction and caustic soda production. Even though the implementation of this method requires less chemicals than the chemical acidification process, fouling of the ion exchange membranes and especially bipolar membrane impairs its productivity. Membrane thickness and ash content measurements along with scanning electron microscopy (SEM), elemental analysis (EDX) and X-ray photoelectron spectrometry (XPS) analysis were performed to identify the nature and mechanisms of the membrane fouling. The results revealed that the fouling layer mostly consisted of organic components and particularly lignin. Based on our proposed fouling mechanisms, throughout the electrodialysis process the pH of the black liquor gradually decreased and as a result more proton ions were available to trigger protonation reaction of lignin phenolic groups and decrease the lignin solubility. Due to the abundance of the proton ions on the surface of the cation exchange layers of the bipolar membrane, destabilized lignin macro-molecules started to self-aggregate and formed lignin clusters on its surface. Over the time, these lignin clusters covered the entire surface of the bipolar membrane and the spaces between the membranes and, eventually, attached to the surface of the cation exchange membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ole Bjørn Kraft 1893-1980

    DEFF Research Database (Denmark)

    Skov, Christian Houlberg

    2010-01-01

    Ole Bjørn Kraft (1893-1980) var en central konservativ politiker i årene før og efter anden verdenskrig. Han markerede sig som udpræget idépolitiker og opnåede ad flere omgange at blive minister.......Ole Bjørn Kraft (1893-1980) var en central konservativ politiker i årene før og efter anden verdenskrig. Han markerede sig som udpræget idépolitiker og opnåede ad flere omgange at blive minister....

  6. Corrosion Study of Stainless Steels in Peracetic Acid Bleach Media With and Without Chloride and Chelant

    Directory of Open Access Journals (Sweden)

    Rohtash

    2014-12-01

    Full Text Available The paper industries are adopting non-chlorine containing chemicals e.g. peroxide, ozone, peracids etc. as alternate of chlorine based bleach chemicals e.g. chlorine and chlorine dioxide etc. with the aim of eco-friend atmospheres. Changeover to the new chemicals in the bleaching process is likely to affect the metallurgy of the existing bleach plants due to change in the corrosivity of the media. Accordingly, corrosion investigations were performed in a peracid namely peracetic acid to test the suitability of austenitic stainless steels 654SMO, 265SMO, 2205, 317L and 316L. The performance of above stainless steels was evaluated through long term immersion tests and Electrochemical polarization measurements in peracetic acid (PAA bleach media at pH value 4 maintaining concentration 0.2 % as active oxygen along with three chloride levels 0, 500 and 1000 ppm in pulp-free laboratory. To study the effect of corrosion inhibitors with extending limit of chloride in liquors, measurements were also made with two types of chelants- EDTA & MgSO4. The results showed that corrosivity of PAA reduced by addition of chelant while increased with concentration of Cl¯. The results also exhibited that EDTA is better inhibitor than MgSO4.

  7. Penetration of hydrogen peroxide and degradation rate of different bleaching products.

    Science.gov (United States)

    Marson, F C; Gonçalves, R S; Silva, C O; Cintra, L T Â; Pascotto, R C; Santos, P H Dos; Briso, A L F

    2015-01-01

    This study's aim was to evaluate the degradation rate of hydrogen peroxide (H2O2) and to quantify its penetration in tooth structure, considering the residence time of bleaching products on the dental enamel. For this study, bovine teeth were randomly divided according to the bleaching product received: Opalescence Xtra Boost 38%, White Gold Office 35%, Whiteness HP Blue 35%, Whiteness HP Maxx 35%, and Lase Peroxide Sensy 35%. To analyze the degradation of H2O2, the titration of bleaching agents with potassium permanganate was used, while the penetration of H2O2 was measured via spectrophotometric analysis of the acetate buffer solution, collected from the artificial pulp chamber. The analyses were performed immediately as well as 15 minutes, 30 minutes, and 45 minutes after product application. The data of degradation rate of H2O2 were submitted to analysis of variance (ANOVA) and Tukey tests, while ANOVA and Fisher tests were used for the quantification of H2O2, at the 5% level. The results showed that all products significantly reduced the concentration of H2O2 activates at the end of 45 minutes. It was also verified that the penetration of H2O2 was enhanced by increasing the residence time of the product on the tooth surface. It was concluded that the bleaching gels retained substantial concentrations of H2O2 after 45 minutes of application, and penetration of H2O2 in the dental structure is time-dependent.

  8. Environmental health assessment of the benthic habitat adjacent to a pulp mill discharge. I. Acute and chronic toxicity of sediments to benthic macroinvertebrates.

    Science.gov (United States)

    Sibley, P K; Legler, J; Dixon, D G; Barton, D R

    1997-04-01

    In this study, we assessed the acute and chronic toxicity of sediments contaminated by bleached kraft pulp mill effluent (BKME). Sediments were collected in August 1991 and 1992, and May 1993 from eight stations exposed directly to the effluent and from four reference sites.Acute toxicity was determined for five macroinvertebrates (Hyalella azteca, Daphnia magna, Chironomus riparius, Hexagenia spp., and Tubifex tubifex) using pore water, elutriate, and bulk sediment exposures. Chronic toxicity was assessed using C. tentans and H. azteca (growth and survival) and D. magna and T. tubifex (reproduction) in bulk sediment exposures. Mortality declined with decreasing proximity to the outfall; acute toxicity (>20% mortality after 48 h)was observed at the two stations closest to the outfall (300 and 400 m). At 300 m, pore water was consistently more toxic than elutriate or bulk sediment phases, resulting in 100% mortality for all invertebrates except T. tubifex (23%). Elutriate exposures were toxic to C. riparius (88%), D. magna (54%), and Hexagenia (47%), but not H. azteca. Bulk sediments were toxic to Hexagenia (100%) and D. magna(88%), but not to C. riparius or H. azteca. In chronic tests, mortality in H. azteca and T. tubifex was highest at 300 and 400 m, indicating that toxicity observed in the short-term aqueous exposures adequately predicted long-term toxicity in bulk sediments. In both acute and chronic tests, mortality was significantly correlated with the concentration of extractable organic chlorines (EOCl) in the sediment, with LC50 values ranging from 4500 to 5500 mg EOCl/kg organic carbon. Growth of C. tentans larvae was depressed at 300 and 400 m in August 91 but enhanced in May 93 relative to the reference sites. Growth of H.azteca also declined near the outfall in August 91 sediments and was approximately one half that observed in 92/93 sediments; however, growth did not differ among stations in 92 or 93. Reproductive output in D. magna (neonates) and T

  9. Potassium methyl siliconate-treated pulp fibers and their effects on wood plastic composites: Water sorption and dimensional stability

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Monlezun

    2013-01-01

    Potassium methyl siliconate (PMS) was investigated as a new nano modifier of wood fiber and wood flour to improve the compatibility between the fiber/flour and the plastic matrix in fiber reinforced plastic composites. Before injection molding, bleached and brown pulp fibers and mixed species wood flour were pretreated in PMS solutions. The morphology of the treated...

  10. THE BLEACHING SYNDROME: MANIFESTATION OF A POST ...

    African Journals Online (AJOL)

    User

    exception, Western ideals are an environmental force that disrupts the well-being of African descended women in particular, resulting in the Bleaching Syndrome. Although the literature acknowledges racism among the list of colonial pathologies, amidst idealization of light skin neglect of the Bleaching Syndrome has been ...

  11. Rehe ja Kraft napsasid hiidudelt turuosa / Piret Reiljan

    Index Scriptorium Estoniae

    Reiljan, Piret, 1983-

    2007-01-01

    Nordea ja Sampo Pank on viimase aastaga uute ärilaenude mahtu kasvatanud 100 protsenti. Diagramm: Uute ärilaenudega esirinnas Nordea ja Sampo. Kommenteerivad: Priit Põldoja, Ahti Asmann, Aivar Rehe, Vahur Kraft ja Alo Lillepea. Vt. samas: Kodulaenude andmisel näpistab Sampo Ühispangalt turgu

  12. Võlakoorem tuhmistab Eesti võimalusi / Vahur Kraft

    Index Scriptorium Estoniae

    Kraft, Vahur, 1961-

    2003-01-01

    Eesti Panga president Vahur Kraft hoiatab liiga kergekäelise laenuvõtmise eest. Tema sõnul on Eesti Pank valmis vajaduse korral kasutama võimalusi nii laenuandjate kui ka -võtjate mõjutamiseks. Riigi stabiliseerimisreservist

  13. Recyclable zein-coated kraft paper and linerboard

    Science.gov (United States)

    Nicholas Parris; Marguerite Sykes; Leland C. Dickey; Jack L. Wiles; Thomas J. Urbanik; Peter H. Cooke

    2002-01-01

    Recyclability of kraft paper and linerboard coated with commercial zein and paraffin wax or a zein-lipid mixture was evaluated using conventional recycling processes. Zein, an alcohol-soluble protein from corn, exhibits both grease and water vapor barrier properties. Strength properties, grease resistance, and water vapor barrier proper-ties were measured on handsheets...

  14. Microhardness of demineralized enamel following home bleaching and laser-assisted in office bleaching

    Science.gov (United States)

    Ghanbarzadeh, Majid; Akbari, Majid; Hamzei, Haniye

    2015-01-01

    Background There is little data regarding the effect of tooth whitening on microhardness of white spot lesions. This study was conducted to investigate the effect of home-bleaching and laser-assisted in-office bleaching on microhardness of demineralized enamel. Material and Methods Forty bovine incisors were selected and immersed in a demineralizing solution for 12 weeks to induce white spot lesions. Enamel blocks were prepared and randomly assigned to two groups of 20 each. The first group underwent home bleaching with 15% carbamide peroxide which was applied for 8 hours a day over a period of 15 days. In the second group, in-office bleaching was performed by 40% hydrogen peroxide and powered by irradiation from an 810 nm gallium-aluminum-arsenide (GaAlAs) diode laser (CW, 2W). This process was performed for 3 sessions every seven days, in 15 days. The specimens were stored in Fusayama Meyer artificial saliva during the experiment. Surface microhardness was assessed before and after the bleaching therapies in both groups. Results Microhardness decreased significantly following both home bleaching and laser-assisted in-office bleaching (p<0.05). There were no significant differences in hardness values among the two groups either before (p=0.131) or after (p=0.182) the bleaching procedures. Conclusions Tooth whitening through home bleaching or laser-assisted in-office bleaching can result in a significant reduction in microhardness of white spot lesions. Therefore, it is suggested to take protective measures on bleached demineralized enamel. Key words:White spot lesion, bleaching, laser, microhardness, demineralized enamel, home bleaching, in-office bleaching. PMID:26330939

  15. BLEACHING IN VITAL TEETH: A LITERARY REVIEW

    Directory of Open Access Journals (Sweden)

    Felipe Fagundes Soares

    2007-12-01

    Full Text Available Tooth bleaching technique has presented a significant evolution, promoting higher satisfaction and comfort to the patients. Therefore, the aim of this study was to present the bleaching agents and the techniques, discussing advantages and disadvantages of each one, and the effect of these agents in the oral environment. The main agents used in the bleaching technique are the hydrogen peroxide and the carbamide peroxide, promoting the bleaching effect through oxidation of organic compounds. The application of these agents can be made at home or at a doctor office. During treatment, it may occur some adverse effects, such as tooth sensibility, increasing of dental porosity, and some interactions with the restorative material. However, these adverse effects can be eliminated or controlled when the treatment is executed under professional orientation. When the bleaching technique is well indicated and correctly conducted, it is associated with significantly positive results.

  16. Remediation and toxicity removal from Kraft E1 paper mill effluent by ozonization.

    Science.gov (United States)

    Freire, R S; Kubota, L T; Durán, N

    2001-08-01

    The degradation of Kraft E1 pulp mill effluent was studied by four different ozonization oxidation systems (O3/pH3, O3/pH11, O3/pH11/H2O2, O3/pH11/UV). The investigation was focused on the reduction of total organic carbon (TOC), total phenols, color and acute toxicity (monitoring by inhibition of Escherichia coli respiration). For a reaction time of 90 minutes, the O3/pH11/UV was the most effective process for decoloration (45%). The O3/pH11/H2O2, O3/pH11/UV and O3/pH11 processes showed the best results for total phenols reduction (approximately/= 90%). None of the studied processes showed a significant TOC reduction. The O3/pH11/UV and O3/pH11 processes were effective for the acute toxicity reduction. Different kinetic parameters were also determined in order to quantify the reactivity of the effluent towards the applied oxidation systems.

  17. Quantification of peroxide ion passage in dentin, enamel, and cementum after internal bleaching with hydrogen peroxide.

    Science.gov (United States)

    Palo, R M; Bonetti-Filho, I; Valera, M C; Camargo, C H R; Camargo, Sea; Moura-Netto, C; Pameijer, C

    2012-01-01

    The aim of this study was to evaluate the amount of peroxide passage from the pulp chamber to the external enamel surface during the internal bleaching technique. Fifty bovine teeth were sectioned transversally 5 mm below the cemento-enamel junction (CEJ), and the remaining part of the root was sealed with a 2-mm layer of glass ionomer cement. The external surface of the samples was coated with nail varnish, with the exception of standardized circular areas (6-mm diameter) located on the enamel, exposed dentin, or cementum surface of the tooth. The teeth were divided into three experimental groups according to exposed areas close to the CEJ and into two control groups (n=10/group), as follows: GE, enamel exposure area; GC, cementum exposed area; GD, dentin exposed area; Negative control, no presence of internal bleaching agent and uncoated surface; and Positive control, pulp chamber filled with bleaching agent and external surface totally coated with nail varnish. The pulp chamber was filled with 35% hydrogen peroxide (Opalescence Endo, Ultradent). Each sample was placed inside of individual flasks with 1000 μL of acetate buffer solution, 2 M (pH 4.5). After seven days, the buffer solution was transferred to a glass tube, in which 100 μL of leuco-crystal violet and 50 μL of horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined by spectrophotometer and converted into microgram equivalents of hydrogen peroxide. Data were submitted to Kruskal-Wallis and Dunn-Bonferroni tests (α=0.05). All experimental groups presented passage of peroxide to the external surface that was statistically different from that observed in the control groups. It was verified that the passage of peroxide was higher in GD than in GE (pdental hard tissues, reaching the external surface and the periodontal tissue. The cementum surface was less permeable than were the dentin and enamel surfaces.

  18. Biofilms from micro/nanocellulose of NaBH4-modified kraft pulp

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... The complex structure of lignocellulosic biomass is the main obstacle in fractionating cellulose, which is organized into fibrils in the structure. The fibrils are aligned parallel to each other and surrounded by a matrix of lignin and hemi- celluloses. The lignin limits cell permeability and causes insignificant cell ...

  19. Biofilms from micro/nanocellulose of NaBH4-modified kraft pulp

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... (figure 2). Some minor chemical shifts observed could be attributed to the packing effect of the supramolecular structures due to different chemical reactions and physical processings [46]. C4 peaks give insights about crystalline and non-crystalline forms. They were obtained as doubled- collateral peaks at ...

  20. Effect of hot-water extraction on alkaline pulping of bagasse.

    Science.gov (United States)

    Lei, Yichao; Liu, Shijie; Li, Jiang; Sun, Runcang

    2010-01-01

    The effect of hot-water extraction on alkaline pulping was investigated. The properties of black liquor and pulp strength of bagasse were analyzed. The extraction was conducted at 160 degrees C for 30min where 13.2% of the mass was dissolved in the extraction liquor. Untreated bagasse and extracted bagasse were digested by soda and soda-AQ processes at 17% and 15.5% (with 0.1% AQ) alkali charge (NaOH). Cooking temperatures were 160 degrees C and 155 degrees C respectively. The pulp from extracted bagasse had a lower Kappa number and a higher viscosity compared to the pulp from the untreated bagasse. The black liquor from pulping extracted bagasse had a lower solid content, a lower viscosity and a lower silica content, but a higher heating value than that from pulping of untreated bagasse. Hot-water extraction resulted in a significant decrease in bleaching chemical consumption and the formation of chlorinated organics. Pulp strength properties such as the tensile index and the burst index were found to be lower, but the tear index, bulk, opacity and pulp freeness were found to be higher when hot-water extraction was applied. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Sharma, Himanshu; Sharma, Divya S

    Children/adolescent's orodental structures are different in anatomy and physiology from that of adults, therefore require special attention for bleaching with oxidative materials. Hydroxyl radical (OH . ) generation from bleaching agents has been considered directly related to both its clinical efficacy and hazardous effect on orodental structures. Nonetheless bleaching agents, indirectly releasing hydrogen peroxide (H 2 O 2 ), are considered safer yet clinically efficient. Apart from OH . , perhydroxyl radicals (HO 2 . ) too, were detected in bleaching chemistry but not yet in dentistry. Therefore, the study aims to detect the OH . and HO 2 . from bleaching agents with their relative integral value (RIV) using 31 P nuclear magnetic resonance ( 31 PNMR) spectroscope. Radicals were generated with UV light in 30% H 2 O 2 , 35% carbamide peroxide (CP), sodium perborate tetrahydrate (SPT) and; neutral and alkaline 30% H 2 O 2 . Radicals were spin-trapped with DIPPMPO in NMR tubes for each test agents as a function of time (0, 1, 2, 3min) at their original pH. Peaks were detected for OH . and HO 2 . on NMR spectrograph. RIV were read and compared for individual radicals detected. Only OH . were detected from acidic and neutral bleaching agent (30% acidic and neutral H 2 O 2 , 35%CP); both HO 2 . and OH . from 30% alkaline H 2 O 2 ; while only HO 2 . from more alkaline SPT. RIV for OH . was maximum at 1min irradiation of acidic 30%H 2 O 2 and 35%CP and minimum at 1min irradiation of neutral 30%H 2 O 2 . RIV for HO 2 . was maximum at 0min irradiation of alkaline 30%H 2 O 2 and minimum at 2min irradiation of SPT. The bleaching agents having pH- neutral and acidic were always associated with OH . ; weak alkaline with both OH . and HO 2 . ; and strong alkaline with HO 2 . only. It is recommended to check the pH of the bleaching agents and if found acidic, should be made alkaline to minimize oxidative damage to enamel itself and then to pulp/periodontal tissues. H 2 O 2

  2. Jüri Kraft : Eesti eksport nõuab Euroopa Liitu minekut / Jüri Kraft ; interv. Sulev Oll

    Index Scriptorium Estoniae

    Kraft, Jüri, 1935-

    2003-01-01

    Kahe kergetööstusettevõtte, Sangari ja Mivari nõukogu esimees, endine ENSV kergetööstusminister Jüri Kraft leiab, et kui Eesti ei astu EL-i ja loobub soodsast ekspordivõimalusest, kordub Eestis 1990. aastate alguse olukord

  3. Paper Pulp Panoply.

    Science.gov (United States)

    Marque, Margo E.

    1999-01-01

    Explains that creating paper-pulp bowls is designed to acquaint students with the beginning vocabulary and finger dexterity needed to sculpt clay. Describes the process of making paper-pulp bowls and identifies important vocabulary words. Provides directions for making paper bowl forms and lists the materials. (CMK)

  4. [Assessment of tooth bleaching efficacy with spectrophotometer].

    Science.gov (United States)

    Zhu, Wenhao; Liu, Chang; Pan, Jie

    2014-06-01

    To analyze the changes in CIE L*, a*, and b* at cervical, body, and incisal sites after tooth bleaching by using a spectrophotometer. Sixty-seven intact and healthy maxillary central incisors were in-vestigated. These incisors were darker than A3 according to the Vita Classical shade guide. The CIE tooth shade parameters L*, a*, and b* were simultaneously recorded at three tooth areas (cervical, body, and incisal) with a spectrophotometer before and after tooth bleaching (35%H2O2 coordinating with Beyond whitening accelerator irradiating). The shade dif-ferential (DeltaE) was calculated. ANOVA, paired t-test, and Pearson correlation analysis were used for data analysis. The efficacy rates of tooth bleaching were satisfactory, with 86.6%, 86.6%, and 85.1% in the cervical, body, and incisal sites, respectively. The average values of DeltaE were 5.09, 4.44, and 4.40 in the cervical, body, and incisal sites. Tooth bleaching significantly increased L* and significantly decreased a* and b* in all tooth areas (P spectrophotometer could objectively evaluate the whitening effect of tooth bleaching at the different tooth sites. The tooth bleaching system (35%H202 coordinating with Beyond whitening accelerator irradiating) exerts powerful bleaching actions in most of the tooth areas investigated. The order of tooth bleaching effectiveness is cervicalbody>incisal. Yellow coloration is decreased mainly at the cervical site, and brightness was increased mostly at theincisal site. The effectiveness of tooth bleaching increases as the baseline b* value increases.

  5. Application of cellulosic nanofibers to replace with imported long- fiber pulps in paper made from bagasse

    Directory of Open Access Journals (Sweden)

    Reza ghofran

    2017-02-01

    Full Text Available In this research, different additives of cellulose nanofibers, cationic starch and polyacrylamide to bagasse pulp and their impact on the handsheet strengths were investigated aiming to replace with imported long-fiber softwood pulp in Pars paper factory. For this purpose, first 3% bleached bagasse cellulose nanofibers, 3% unbleached nano-lignocellulosic fibers, 0.5, 0.7 and 1% cationic starch, and 0.03, 0.05 and 0.1% cationic polyacrylamide were added separately to bagasse pulp. In the next stage,3% bleached bagasse cellulose nanofibers and 3% unbleached nano-lignocellulosic fibers along with 0.5% cationic starch or 0.05% cationic polyacrylamide were used. The results showed, adding nano-cellulose fibers along with cationic polyacrylamide or starch have increased handsheet strengths significantly. Yet, the best treatment was the addition of 3% nano-lignocellulose along with 0.5% cationic starch which resulted in the higher tensile and burst strengths and lower tear and fold strengths than that of adding 12.5% long fibers to bagasse pulp. So that, comparing with paper made from pure bagasse pulp it showed the increase of 16.57% in tensile index, 8.47% in burst index, 9.77% in tear index, and 168.85% in folding strength.

  6. Pulpal inflammation after vital tooth bleaching with 38% hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Ardiny Andriani

    2012-06-01

    Full Text Available Background: In-office vital tooth bleaching is a treatment to remove tooth stains. Tooth sensitivity is one of side effect commonly complained by patients receiving this treatment. Purpose: The aim of this study was to examine histological inflammatory cells infiltration of dental pulp after application of 38% H2O2 as a vital tooth bleaching agent. Methods: Under informed consent, a total of 15 premolars from 8 healthy subjects scheduled for orthodontic extraction were used in this study. Thirty eight percent H2O2 was applied on the buccal surface of the treated group. The treated teeth were extracted after 1 hour, 5, 8, and 15 days. All specimens were embedded in paraffin wax, sectioned serially and stained with Hematoxyllin Eosin. Histological specimens were then observed under a light microscope. Results: All treated groups showed a slight disorganization of odontoblasts layer and slight inflammation in the pulp tissue adjacent to the 38% H2O2 application site. The number of polymorphonuclear leukocytes (PMN had increased significantly 1 hour after application of 38% H2O2 (p<0.05, while macrophages had significantly increased 5 days after the application (p<0.05. The most intense PMN and macrophages infiltration was found 5 days after the application and gradually decreased 8 days after application of38% H2O2. Conclusion: Application of 38% H2O2 as a vital tooth bleaching agent induces acute inflammation in human dental pulp; however, the inflammation will decrease 8 days after the application.Latar belakang: Perawatan pemutihan gigi vital metode in-office merupakan tindakan untuk menghilangkan pewarnaan pada gigi. Salah satu efek samping yang sering dikeluhkan oleh pasien yang menjalani perawatan ini adalah sensitivitas gigi. Tujuan: Penelitian ini bertujuan untuk mengamati infiltrasi sel inflamasi pada pulpa gigi setelah aplikasi H2O2 38% sebagai bahan pemutih gigi. Metode: Sampel penelitian ini berupa 15 gigi premolar yang berasal dari 8

  7. Cellulose fibril aggregation studies of Eucalyptus dissolving pulps using atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2006-11-01

    Full Text Available AGGREGATION STUDIES OF Eucalyptus DISSOLVING PULPS USING ATOMIC FORCE MICROSCOPY V. Chunilall1,3, J.Wesley-Smith2 and T. Bush1,3 1CSIR, Forestry and Forest Product Research Centre, P.O. Box 17001, Congella, 4013, South Africa. 2Electron Microscope... individual fibrils (cellulose molecules) and these, in turn, form fibril aggregates. Atomic force microscopy (AFM) has revealed that there is a marked increase in the lateral fibril aggregate dimension (LFAD) during pulping and bleaching1. Furthermore...

  8. Technology Prospecting on Enzymes for the Pulp and Paper Industry

    Directory of Open Access Journals (Sweden)

    Braz Jose Demuner

    2011-09-01

    Full Text Available The use of enzymes in the pulp and paper industry was introduced in the 1986. However, their use has been relatively minor. This prospective study aims at enhancing the understanding of the most important advances regarding the use of enzymes in this industry and to identify the future trends of this technology. Information gathered from the Web of Science shows a growing number of papers published on this topic indicating an increased interest in this issue. A study on patents also displayed a high number documents related to this technology. Cellulase, xylanase, laccase and lipase are the most important enzymes that can be used in the pulp and paper processes. Furthermore, the key objectives of enzymes development have been in the bleaching boosting with xylanases and fiber modification with cellulases. The current and future trends on the development of enzymes are focused on increasing their thermostability and their alkalinity strength.

  9. Properties of OCC Pulp

    Directory of Open Access Journals (Sweden)

    Masoumeh Moradi

    2013-06-01

    Full Text Available Old Corrugated Container (OCC recycled pulp provided by a local paper manufacturing company was treated by lactase enzyme. The pulp was sampled from headbox and treated by enzyme in the conditions of consistency 2%, pH 5, reaction time 2 hours, and reaction temperature 60 °C in dosing levels of 0.005, 0.01 and 0.015 % based on oven-dried weight of pulp. Fiber classification of the control pulp showed 31.3 % of fines content and 0.82 mm average fiber length. Results have indicated that lactase treatment decreased kappa number and SR degree to 20% and 14 degrees, respectively which consequently facilitated the drainage of pulp. The extraction of treated samples showed a peak at around 280 nm, confirming the delignification of pulp by enzyme. Microscopic observation of fiber walls of the treated sample indicated a local separation of middle lamella, fiber linting and removal of fines from fiber surface. The highest Water Retention Value (WRV was measured to be at 0.015% enzyme addition level. The apparent density of handsheets made from treated samples was lower compared with the handsheets made of control pulp resulting in loss of paper strengths.

  10. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and

  11. Can marine cloud brightening reduce coral bleaching?

    OpenAIRE

    Latham, J; Kleypas, J; Hauser, R; Parkes, B; Gadian, A

    2013-01-01

    Increases in coral bleaching events over the last few decades have been largely caused by rising sea surface temperatures (SST), and continued warming is expected to cause even greater increases through this century. We use a Global Climate Model to examine the potential of marine cloud brightening (MCB) to cool oceanic surface waters in three coral reef provinces. Our simulations indicate that under doubled CO conditions, the substantial increases in coral bleaching conditions from current v...

  12. Mergers and acquisitions : the case of Kraft Foods and Cadbury

    OpenAIRE

    Ribeiro, Sara Isabel de Paula

    2013-01-01

    The aim of this dissertation is to focus on a determinant aspect of Corporate Finance that is Mergers and Acquisitions (M&A). This dissertation not only provides a practical analysis of main issued regarding a process of M&A, but also provides a theoretical framework about M&A. Specifically, this dissertation explores the real case of Kraft Foods - world’s second largest manufacturer and packager food products – and Cadbury - the world’s second largest confectionery firm. ...

  13. A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.

    1990-12-01

    Experimental effort for the program to evaluate physical properties of kraft black liquors is now proceeding well. Experimental work includes pulping, liquor analysis, lignin purification and characterization, vapor-liquid equilibria, heat capacity, heats of solution and combustion, and viscosity measurements. Measurement of thermal conductivity has not yet begun. Collection of the data necessary for development of generalized correlations is proceeding, but will require about two more years. The digester is operating very well. It is now possible to operate the digester as a closed, rotating reactor or as a batch reactor with liquor circulation. When operated with liquor circulation, temperatures within the chip bed can be monitored during cooking. Cooking is reproducible, and cooks are being performed to produce liquors for experimental studies. The digester could be further modified to permit us to conduct rapid exchange batch pulping or to permit us to simulate continuous pulping. Liquors to be used in experimental studies are concentrated in our large scale evaporator or in our small scale evaporator. The large scale evaporator is used to concentrate liquors to about 50% solids for storage and for use in studies requiring high solids liquors. The small scale evaporator is used for preparing final samples to as high as 85% solids and for measuring vapor-liquid equilibria. Liquors are now routinely analyzed to determine all components, except higher molecular weight organic acids and extractives. Lignin determination by uv-visible means has been improved. Lignin purification from black liquor has been improved and lignin molecular weights are determined routinely. Work on lignin molecular weight distribution is still not satisfactory, but recent developments holds promise.

  14. Internationalisation; KonKraft-rapport 4; Internasjonalisering

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    disintegrate. The obvious strategy to pursuit is to strengthen Norway's position as a dynamic and leading competence center for oil- and gas activities. Recruitment and development of sufficient competencies is generally a major challenge for the oil- and gas trade. Shortage of human capital leads to increased wage pressure which in the long run may weaken profits and competitiveness. In some of the petroleum clusters the companies try to find solutions to counteract the negative effects of the battle for the best brains. Through the project KonKraft INTSOK has unveiled high ambitions concerning increased internationalisation throughout the Norwegian petroleum cluster, except for Northern Norway. Here there is still an opposition against activities in the region, as well as in the Barents sea. INTSOK's intention with the project has been to describe its multitude. Therefore eight very different environments where selected to make a closer study on the development in different regions. The environments represent a variety of sizes, geography and trades. Some of the clusters are new or under establishment, others are already in full operation. Together the eight environments cover a major part of the value chain in the Norwegian offshore sector. The project has clearly demonstrated that cluster development contributes both to internationalisation as well as keeping the companies in Norway. Some main findings: The positive development in the drilling cluster of Southern Norway - the Node cluster - has created strong impact: The cluster ranks among the world's leading on drilling equipment and barely any oil or gas environment has had a similar expansion. The Kongsberg environment is not an offshore cluster, but an overall technology cluster where offshore applications is one of several technology areas. The companies develop and produce a broad range of advanced products and systems. The turnover among the offshore companies amounts to 65% of the total turnover for

  15. The influence of irradiation of gamma-rays on the pulping and paper making, (3)

    International Nuclear Information System (INIS)

    Mori, Kenji; Sasaki, Toru; Hasegawa, Kunihiko.

    1979-01-01

    Dissolving pulp (DP) containing no lignin and cold soda pulp containing much amount of lignin were used for the study of the influence of gamma irradiation. Experiments were made in the presence of air, water, methanol, acetic anhydride, acetic anhydride + methanol, dioxane, dimethyl sulfoxide and 1% NaOH solution. Irradiation was made for 100 hours at 20 - 21 deg. C; total irradiation dose was 1.47 x 10 7 R. (1) In case of dimethyl sulfoxide, and especially in case of 1% NaOH solution, the yield decreased by irradiation, with cold soda pulp particularly. (2) In case of the pulp immersed in water, the brightness of pulp was not improved by irradiation, but in methanol, it was remarkably improved. Since the improvement was observed in both DP and cold soda pulps, it is caused by the action of oxidizing bleach with small amount of oxygen in the air remaining in the material, instead of the change in the quality of lignin. (3) By infrared analysis, methanol did not react with the lignin in cold soda pulp even under irradiation. (4) The acetylation was accelerated by irradiation. (J.P.N.)

  16. Physical properties of kraft black liquor. Final report. Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  17. Water requirements of the pulp and paper industry

    Science.gov (United States)

    Mussey, Orville D.

    1955-01-01

    Water, of varied qualities, is used for several purposes in the manufacture of pulp and paper, as a vehicle for transporting the constituents of paper in the paper machines; as process water for cooking wood chips to make pulp; as a medium for heat transfer; and for washing the pulpwood, the woodpulp, and the machines that handle the pulp. About 3,200 million gallons of water was withdrawn from surface- and ground-water sources each day during 1950 for the use of the pulp and paper industry. This is about 4 percent of the total estimated industrial withdrawal of water in the Nation The paper industry in the United States has been growing at a rapid rate. It has increased about tenfold in the last 50 years and has doubled every 15 years. The 1950 production of paper was about 24 million tons, which amounts to about 85 percent of the domestic consumption. In 1950, the pulp mills of the country produced more than 14 million tons of woodpulp, which supplied about 85 percent of the demand by the paper mills and other industries. The remainder of the fiber for paper manufacture was obtained from imported woodpulp, from reclaimed wastepaper, and from other fibers including rags and straw. The nationwide paper consumption for 1955 has been estimated at 31,700,000 tons. Woodpulp is classified according to the process by which it is made. Every woodpulp has characteristics that are carried over into the many and diverse grades of paper. Groundwood pulp is manufactured by simply grinding up wood and refining the resulting product. Soda, sulfite, and sulfate pulps are manufactured by chemically breaking down the lignin that cements the cellulose of the wood together and removing, cleaning, and sometimes bleaching the resulting fibers. Some woodpulp is produced by other methods. Sulfate-pulp mills are increasing in number and in rated daily capacity and are manufacturing more than half of the present domestic production of woodpulp. Most of the newer and larger woodpulp mills

  18. Alternative bleaching methods for Cheddar cheese whey.

    Science.gov (United States)

    Kang, E J; Smith, T J; Drake, M A

    2012-07-01

    Residual annatto colorant (norbixin) in fluid Cheddar cheese whey can be bleached. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact the flavor of dried whey protein. The objective of this study was to evaluate alternative methods for bleaching liquid whey: ultraviolet radiation (UV), acid-activated bentonite (BT), and ozone (OZ). Colored Cheddar cheese whey was manufactured followed by pasteurization and fat separation. Liquid whey was subjected to one of 5 treatments: control (CT) (no bleaching; 50 °C, 1 h), HP (250 mg/kg; 50 °C, 1 h), UV (1 min exposure; 50 °C), BT (0.5% w/w; 50 °C, 1 h), or OZ (2.2g/h, 50 °C, 1 h). The treated whey was then ultrafiltered, diafiltered, and spray-dried to 80% whey protein concentrate (WPC80). The entire experiment was replicated 3 times. Color (norbixin extraction and measurement), descriptive sensory, and instrumental volatile analyses were conducted on WPC80. Norbixin elimination was 28%, 79%, 39%, and 15% for HP, BT, UV, and OZ treatments, respectively. WPC80 from bleached whey, regardless of bleaching agent, had lower sweet aromatic and cooked/milky flavors compared to unbleached CT (P < 0.05). The HP and BT WPC80 had higher fatty flavor compared to the CT WPC80 (P < 0.05), and the UV and OZ WPC80 had distinct mushroom/burnt and animal flavors. Volatile compound results were consistent with sensory results and confirmed higher relative abundances of volatile aldehydes in UV, HP, and OZ WPC80 compared to CT and BT WPC80. Based on bleaching efficacy and flavor, BT may be an alternative to chemical bleaching of fluid whey. The 2 approved chemical bleaching agents for whey, hydrogen peroxide (HP) and benzoyl peroxide (BP), negatively impact flavor of dried whey protein, and restrictions on these agents are increasing. This study evaluated 3 alternatives to chemical bleaching of fluid whey: UV radiation, ozone, and bentonite. © 2012 Institute of Food

  19. Temperament and perception of tooth bleaching results

    Directory of Open Access Journals (Sweden)

    Katarzyna Mehr

    2016-09-01

    Full Text Available Background . The neurophysiological process of perceiving the results of tooth bleaching requires the correct interaction between the central nervous system and the organs of sight. Exaggerated beliefs concerning defective facial features may enhance inner attitudes about one’s own color of dentition, as well as a feeling of dissatisfaction with the degree of leaching. Objectives. The study aimed to assess the degree of the patient satisfaction with the results of tooth bleaching in relation to their temperament. Material and methods. There were 68 generally healthy volunteers, aged 28–38 years, with external discolorations of the teeth. They had never undergone dental bleaching and their frontal teeth did not have any fillings. After clinical evaluation and the completion of formalities, the patients were asked to fill in Strelau’s temperament questionnaire. Questionnaires and visual status were assessed three times by three doctors: before bleaching, and then 24 hours and two weeks after the home-bleaching operation, which was done with the use of Opalescence (Ultradent in uniform sequence. Results . There were practically no adverse side results, except a periodic dentin hypersensitivity that occurred periodically in 44 patients. The results of the visual assessment performed by the physicians did not differ. The questionnaire data showed that women were more critical of the results in relation to the expectations. Among elancholics, full satisfaction was declared by 41%, whereas among sanguine people, full satisfaction was obtained by 85%. Satisfaction with the aesthetic results was associated with bleaching by at least 4 degrees. Conclusions . Patients’ temperament affects their subjective evaluation of the effectiveness of tooth bleaching, which should be taken into consideration in the patient’s individual dental treatment plan.

  20. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification

    Science.gov (United States)

    Ingrid C. Hoeger; Sandeep S. Nair; Arthur J. Ragauskas; Yulin Deng; Orlando J. Rojas; J.Y. Zhu

    2013-01-01

    Laboratory mechanical softwood pulps (MSP) and commercial bleached softwood kraft pulps (BSKP) were mechanically fibrillated by stone grinding with a SuperMassColloider®. The extent of fibrillation was evaluated by SEM imaging, water retention value (WRV) and cellulase adsorption. Both lignin content and mechanical treatment significantly affected deconstruction and...

  1. Characterization of Lignocellulosic-Poly(lactic acid) reinforced composites

    Science.gov (United States)

    Q.X. Hou; X.S. Chai; R. Yang; T. Elder; A.J. Ragauskas

    2005-01-01

    The effects of adding poly(lactic acid) (PLA) to the physical strength of paper test sheets prepared from three unbleached loblolly pine kraft pulps with different amounts of lignin and an aspen bleached chemothermomechanical pulp were studied. The physical strength studies demonstrated that relatively low levels of PLA addition (0.5-4.0%) could dramatically improve...

  2. Combined Bleaching Technique Using Low and High Hydrogen Peroxide In-Office Bleaching Gel.

    Science.gov (United States)

    Rezende, M; Ferri, L; Kossatz, S; Loguercio, A D; Reis, A

    2016-01-01

    The aim of this study was to evaluate the efficacy, color stability, risk, and intensity of tooth sensitivity (TS) of combined bleaching techniques performed with 20% or 35% hydrogen peroxide for an in-office protocol. Thirty patients were randomly divided into two groups and submitted to a single 45-minute in-office bleaching session with 35% hydrogen peroxide or 20% hydrogen peroxide. At-home bleaching was performed with 10% carbamide peroxide for two hours daily over the course of two weeks. The color was evaluated with the value-oriented shade guide Vita Classical at different periods up to 12 months after bleaching. Patients recorded the intensity of TS using a five-point verbal scale. Color change data were submitted to a two-way repeated-measures analysis of variance and Tukey test (α=0.05). The absolute risk and intensity of TS were compared with the Fisher exact test and Mann-Whitney test, respectively (α=0.05). On average, an effective and similar whitening of three units in shade guide was observed for both groups, which remained stable for 12 months. When both protocols were compared, the one with hydrogen peroxide 35% showed a higher risk (p=0.02) and intensity of TS (p=0.04). In regard to the TS intensity, no significant difference was observed up to 48 hours after in-office bleaching (p=0.09) and during the at-home bleaching phase of the study (p=0.71). The combined bleaching technique using at-home bleaching associated with in-office bleaching was effective and stable over the course of 12 months, regardless of the concentration of the hydrogen peroxide used for in-office bleaching. However, the protocol with 20% hydrogen peroxide produced lower risk and intensity of TS.

  3. Coronal microleakage with five different temporary restorative materials following walking bleach technique: An ex-vivo study

    Directory of Open Access Journals (Sweden)

    G. P. V Srikumar

    2012-01-01

    Full Text Available Context: Walking bleach technique uses 30% hydrogen peroxide and sodium perborate, and this paste mixture causes loosening of the coronal temporary restorative materials and thus decreasing its clinical effectiveness and causing irritation to the patients oral tissues. In the present study, sealing ability of hygroscopic coronal temporary restorative materials were compared with the other commonly used temporary restorative materials. Aim: To evaluate the effects of walking bleach material on the marginal sealing ability and coronal microleakage of the hydrophilic temporary restorative materials with that of the other commonly used temporary restorative materials in endodontic practice. Materials and Methods: Seventy-five extracted human maxillary central incisor teeth were prepared chemo-mechanically and obturated with gutta-percha in lateral condensation technique. Surface of each tooth was double coated with cyanoacrylate glue. All the teeth were randomly divided in to five groups. Out of 15 teeth in each group, 10 teeth served as experimental specimens, in which bleaching agent was placed in the pulp chamber and 5 teeth served as control, in which no bleaching agent was placed. The access cavities were restored with temporary restorative materials being tested per each group respectively. The specimens were then immersed in 1% India ink dye and subjected to thermo cycling for 7 days. All the teeth were longitudinally sectioned and observed with stereomicroscope and were graded according to the depth of linear dye penetration. Statistical Analysis Used: Mann-Whitney U test and Kruskal-Wallis test. Results: Hydrophilic temporary restorative materials Cavit G and Coltosol F have shown minimal coronal dye leakage with better sealing ability when exposed to walking bleach paste mixture in the dye penetration tests compared to other commonly used temporary restorative materials. Conclusion: Marginal sealing ability of Cavit G and Coltosol F were

  4. Coronal microleakage with five different temporary restorative materials following walking bleach technique: An ex-vivo study.

    Science.gov (United States)

    Srikumar, G P V; Varma, K Ravi; Shetty, K Harish; Kumar, Pramod

    2012-10-01

    Walking bleach technique uses 30% hydrogen peroxide and sodium perborate, and this paste mixture causes loosening of the coronal temporary restorative materials and thus decreasing its clinical effectiveness and causing irritation to the patients oral tissues. In the present study, sealing ability of hygroscopic coronal temporary restorative materials were compared with the other commonly used temporary restorative materials. To evaluate the effects of walking bleach material on the marginal sealing ability and coronal microleakage of the hydrophilic temporary restorative materials with that of the other commonly used temporary restorative materials in endodontic practice. Seventy-five extracted human maxillary central incisor teeth were prepared chemo-mechanically and obturated with gutta-percha in lateral condensation technique. Surface of each tooth was double coated with cyanoacrylate glue. All the teeth were randomly divided in to five groups. Out of 15 teeth in each group, 10 teeth served as experimental specimens, in which bleaching agent was placed in the pulp chamber and 5 teeth served as control, in which no bleaching agent was placed. The access cavities were restored with temporary restorative materials being tested per each group respectively. The specimens were then immersed in 1% India ink dye and subjected to thermo cycling for 7 days. All the teeth were longitudinally sectioned and observed with stereomicroscope and were graded according to the depth of linear dye penetration. Mann-Whitney U test and Kruskal-Wallis test. Hydrophilic temporary restorative materials Cavit G and Coltosol F have shown minimal coronal dye leakage with better sealing ability when exposed to walking bleach paste mixture in the dye penetration tests compared to other commonly used temporary restorative materials. Marginal sealing ability of Cavit G and Coltosol F were not influenced by the effects of bleaching agent compared to other temporary restorative materials used in

  5. Study of Cellulose-Rich Materials Recovered After Dissolution of Sulphite Pulp from South African Eucalyptus Wood in [C2mim][OAc]/co-Solvent Mixtures

    CSIR Research Space (South Africa)

    Tywabi, Z

    2017-09-01

    Full Text Available the structure of lignocellulosic materials. Mixtures of the IL 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) and dimethylsulfoxide (DMSO) or dimethylformamide (DMF) were used to dissolve South African eucalyptus raw (unbleached) and final (bleached) pulp...

  6. Preparation of lumen-loaded kenaf pulp with magnetite (Fe{sub 3}O{sub 4})

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, S.; Ong, B.H.; Ahmad, S.H.; Abdullah, M.; Yamauchi, T

    2005-02-15

    Magnetic pulps were prepared from unbleached kenaf (hibiscus cannabinus L.) kraft pulps. Fe{sub 3}O{sub 4} or magnetite powder was used to load into the pulp's lumen and pit. Aluminum sulphate [Al{sub 2}(SO{sub 4}){sub 3}] (alum) and polyethylenimine (PEI), both mainly function as retention aid were used throughout the experiment and found to be beneficial in the preparation of this magnetic pulps. The ash content method was used to determine the amount of magnetite retained in the lumen and pit. The utilization of PEI up to 2% per pulp fibres was found to be the best result on lumen loading. The deposition of magnetite powder in lumen and pit is found decrease as the addition of PEI used is more than 2% per pulp fibres. Scanning electron microscope (SEM) clearly shows the distribution of magnetite deposited in the lumen. Tensile index and folding endurance of the loaded fibre decreased slightly as the percentage of loading pigment increased.

  7. Utilization of softwood kraft lignin as adhsive for the manufacture of reconstituted wood

    Science.gov (United States)

    Lin-Wu Zhao; Bruce F. Griggs; Chen-Loung Chen; Josef S. Gratzl; Chung-Yun Hse

    1994-01-01

    Reaction conditions for hydroxymethylation of pine kraft lignin (KL) were optimized by kinetic studies of the reaction. Characterization of the resulting hydroxymethylated kraft lignin (HMKL) indicated that about 0.36 mole of the -CH2OH/C9 unit was introduced into the ognin under the optimal reaction conditions, of which...

  8. Precipitation and valorisation of lignin obtained from South African Kraft mill black liquor

    CSIR Research Space (South Africa)

    Namane, Mpho

    2016-04-01

    Full Text Available . In this thesis, the isolation and recovery of lignin from kraft mill black liquor was examined, an in-depth characterisation of the polymer was undertaken, and finally, a method for the potential valorisation of the lignin from a South African kraft mill...

  9. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    Energy Technology Data Exchange (ETDEWEB)

    Lucia, Lucian A

    2013-04-19

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  10. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30.

    Science.gov (United States)

    Wang, Wei; Kang, Li; Lee, Yoon Y

    2010-05-01

    Paper mill sludge is a solid waste material generated from pulping and papermaking operations. Because of high glucan content and its well-dispersed structure, paper mill sludges are well suited for bioconversion into value-added products. It also has high ash content originated from inorganic additives used in papermaking, which causes hindrance to bioconversion. In this study, paper mill sludges from Kraft process were de-ashed by a centrifugal cleaner and successive treatment by sulfuric acid and sodium hydroxide, and used as a substrate for cellulase production. The treated sludge was the only carbon source for cellulase production, and predominantly inorganic nutrients were used as the nitrogen source for this bioprocess. The cellulase enzyme produced from the de-ashed sludge exhibited cellulase activity of 8 filter paper unit (FPU)/mL, close to that obtainable from pure cellulosic substrates. The yield of cellulase enzyme was 307 FPU/g glucan of de-ashed sludge. Specific activity was 8.0 FPU/mg protein. In activity tests conducted against the corn stover and alpha-cellulose, the xylanse activity was found to be higher than that of a commercial cellulase. Relatively high xylan content in the sludge appears to have induced high xylanase production. Simultaneous saccharification and fermentation (SSF) was performed using partially de-ashed sludge as the feedstock for ethanol production using Sacharomyces cerevisiae and the cellulase produced in-house from the sludge. With 6% (w/v) glucan feed, ethanol yield of 72% of theoretical maximum and 24.4 g/L ethanol concentration were achieved. These results were identical to those of the SSF using commercial cellulases.

  11. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Lei Hu

    2017-01-01

    Full Text Available Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  12. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration.

    Science.gov (United States)

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental pulp ECM from swine and evaluated whether it could mediate pulp regeneration. Dental pulps were acquired from the mandible anterior teeth of swine 12 months of age and decellularized with 10% sodium dodecyl sulfate (SDS) combined with Triton X-100. Pulp regeneration was conducted by seeding human dental pulp stem cells into decellularized pulp and transplanted subcutaneously into nude mice for 8 weeks. The decellularized pulp demonstrated preserved natural shape and structure without any cellular components. Histological analysis showed excellent ECM preservation and pulp-like tissue, and newly formed mineralized tissues were regenerated after being transplanted in vivo. In conclusion, decellularized swine dental pulp maintains ECM components favoring stem cell proliferation and differentiation, thus representing a suitable scaffold for improving clinical outcomes and functions of teeth with dental pulp diseases.

  13. Comparison between traditional and laser bleaching treatment

    Science.gov (United States)

    Cesar, Ilene C. R.; Redigolo, Marcela L.; Liporoni, Priscila C. S.; Munin, Egberto

    2001-10-01

    Fifteen human embedded third molars were used in this in vitro study to evaluate the effects of two bleaching products associated or not with Argon laser application. The samples received a cervical-apical cut and were longitudinally cut into 4 parts resulting in 75 specimens. These parts were divided at random into 5 groups and submitted to the traditional power bleaching procedure for enamel. Group 1 was separated as a control group. Group 2 was exposed to 37 % carbamide peroxide bleaching solution and developed with an Argon laser application. The same solution was used in Group 3 but the bleaching was developed with an halogen lamp irradiation. 35 % carbamide peroxide were used in Groups 4 and 5. One was developed as Group 2 and the other as Group 3. The samples were analyzed under a photoreflectance experiment. We observed that Group 2 presented more white spectra than Group 3. However, Groups 4 and 5 showed the same results independent of the use of the laser or the halogen lamp for the light curing. Comparing both bleaching products, the 35 % carbamide peroxide was more efficient on its purposes than the other one.

  14. A Chemical Approach to Mitigate Coral Bleaching

    Science.gov (United States)

    Marty-Rivera, M.; Yudowski, G.

    2016-02-01

    Changes in sea surface temperature and irradiance can induce bleaching and increase mortality in corals. Coral bleaching occurs when symbiotic algae living inside the coral is degraded or expelled, reducing the availability of energetic resources. Oxidative stress has been suggested as a possible molecular mechanism triggering bleaching. We hypothesized that reduction of reactive oxygen species (ROS) during stress could mitigate or prevent coral bleaching. We utilized the coral Porites Astreoides as our model to test the effects of two natural antioxidants, catechin and Resveratrol, on thermally induced bleaching. Coral fragments were exposed to four treatments: high temperature (32°C), high temperature plus antioxidants (1μM), ambient temperature (25°C), or ambient temperature (25°C) plus antioxidant for four days. A total of 8 corals were used per treatment. We measured several photobiological parameters, such as maximum quantum yield and light curves to assess the viability of symbiodinium spp. after thermal stress in the presence of antioxidants. Preliminary experiments on a model species, the sea anemone Aiptasia pallida and corals, showed that exposure to antioxidants reduced intracellular levels of ROS. Additionally, antioxidant-treated anemones showed higher photosynthetic efficiency (67%) than those exposed to high-temperature alone.

  15. Mechanical and thermal properties of electron beam-irradiated polypropylene reinforced with Kraft lignin

    Science.gov (United States)

    Sugano-Segura, A. T. R.; Tavares, L. B.; Rizzi, J. G. F.; Rosa, D. S.; Salvadori, M. C.; dos Santos, D. J.

    2017-10-01

    Polypropylene reinforced with Kraft lignin composites (0, 2.5, 5.0 and 10.0 wt% lignin) were submitted to electron beam (EB) irradiation at doses of 0, 50, 100 and 250 kGy. Kraft lignin incorporation maintained Young´s modulus values, even at electron beam doses up to 100 kGy (10 wt% lignin). The yield stress losses were also reduced by the addition of lignin to polypropylene. Fourier transform infrared spectroscopy (FTIR) results showed low formation of carboxyl and hydroxyl groups for composites containing lignin. Dynamic mechanical analysis (DMA) curves indicated a synergistic effect between Kraft lignin and electron beam irradiation on the storage modulus (E´). Several properties evolved as a function of the Kraft lignin content. Synergistic effects between Kraft lignin incorporation and electron beam radiation contribute to applications that require the mechanical and thermal properties of iPP to be maintained, even after high doses of electron beam radiation.

  16. On luminescence bleaching of tidal channel sediments

    DEFF Research Database (Denmark)

    Fruergaard, Mikkel; Pejrup, Morten; Murray, Andrew S.

    2015-01-01

    We investigate the processes responsible for bleaching of the quartz OSL signal from tidal channel sediment. Tidal dynamics are expected to play an important role for complete bleaching of tidal sediments. However, no studies have examined the amount of reworking occurring in tidal channels...... and on tidal flats due to the mixing caused by currents and waves. We apply bed level data to evaluate the amount of vertical sediment reworking in modern tidal channels and at a tidal flat. Cycles of deposition and erosion are measured with a bed level sensor, and the results show that gross sedimentation...... was several times higher than net sedimentation. We propose that tidal channel sediment is bleached either on the tidal flat before it is transported to the tidal channels and incorporated in channel-fill successions or, alternatively, on the shallow intertidal part of the channel banks. Based...

  17. Side effects of external tooth bleaching

    DEFF Research Database (Denmark)

    Bruzell, E.M.; Pallesen, Ulla; Thoresen, N.R.

    2013-01-01

    Objective The study was performed to assess the risk of at-home and in-office bleaching procedures, and to recognise potential predictors for side effects. Design Multi-centre, questionnaire-based prospective study with follow-ups at around 14 days and around one year post-treatment. Setting......-office = 39.3% [n = 28]; p >0.05; 95% CI [OR]: 0.198‑1.102) whereas prevalence of gingival irritation was higher after in-office treatment (at-home = 14.0%; in-office = 35.7%; p effects...... attributed to the bleaching treatment in the at-home and in-office groups, respectively. Predictors for side effects were tooth sensitivity, surface loss and gingivitis when observed at inclusion. Treatment-related predictors were bleaching concentration and contact between tray and gingiva. Conclusions...

  18. Short communication: The influence of solids concentration and bleaching agent on bleaching efficacy and flavor of sweet whey powder.

    Science.gov (United States)

    Jervis, M G; Smith, T J; Drake, M A

    2015-04-01

    Recent studies have demonstrated the effect of bleaching conditions and bleaching agent on flavor and functional properties of whey protein ingredients. Solids concentration at bleaching significantly affected bleaching efficacy and flavor effects of different bleaching agents. It is not known if these parameters influence quality of sweet whey powder (SWP). The purpose of this study was to determine the effects of solids concentration and bleaching agent on the flavor and bleaching efficacy of SWP. Colored cheddar whey was manufactured, fat separated, and pasteurized. Subsequently, the whey (6.7% solids) was bleached, concentrated using reverse osmosis (RO) to 14% solids, and then spray dried, or whey was concentrated before bleaching and then spray dried. Bleaching treatments included a control (no bleaching, 50 °C, 60 min), hydrogen peroxide (HP; 250 mg/kg, 50 °C, 60 min), benzoyl peroxide (50 mg/kg, 50 °C, 60 min), lactoperoxidase (20 mg/kg of HP, 50 °C, 30 min), and external peroxidase (MaxiBright, DSM Food Specialties, Delft, the Netherlands; 2 dairy bleaching units/mL, 50 °C, 30 min). The experiment was repeated in triplicate. Sensory properties and volatile compounds of SWP were evaluated by a trained panel and gas chromatography-mass spectrometry, respectively. Bleaching efficacy (norbixin destruction) and benzoic acid were measured by HPLC. Differences in bleaching efficacy, sensory and volatile compound profiles, and benzoic acid were observed with different bleaching agents, consistent with previous studies. Solids concentration affected bleaching efficacy of HP, but not other bleaching agents. The SWP from whey bleached with HP or lactoperoxidase following RO had increased cardboard and fatty flavors and higher concentrations of lipid oxidation compounds compared with SWP from whey bleached before RO. The SWP bleached with benzoyl peroxide after RO contained less benzoic acid than SWP from whey bleached before RO. These results indicate that

  19. Strategies for decolorization and detoxification of pulp and paper mill effluent.

    Science.gov (United States)

    Garg, Satyendra K; Tripathi, Manikant

    2011-01-01

    The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various

  20. Kraft Foods, Inc. in India — The Cadbury Acquisition

    OpenAIRE

    V. S. Pai; Ram Subramanian

    2014-01-01

    When the United States-based Kraft Foods, Inc. (KFI) acquired the United Kingdom-based Cadbury plc, KFI got entry into the Indian market. KFI CEO, Irene Rosenfeld had targeted the developing markets as key for the company to achieve a 5% organic growth rate and the strong position of Cadbury India augured well for expanding KFI's presence in that market. However, after nearly a year since the acquisition, KFI was moving slowly in India and appeared content to consolidate Cadbury's market pres...

  1. Tooth Bleaching: Current Concepts of the Procedure in Cosmetic ...

    African Journals Online (AJOL)

    Less caustic agents more recently introduced, in the late 1900s, have revived the interest of the dental profession in the art of tooth bleaching. These agents are now being packaged as bleaching kits, which may be used for in-office bleaching by the dentist or used at home by the patient under the supervision of the dentist.

  2. Bond strength of resin composite to light activated bleached enamel

    African Journals Online (AJOL)

    2015-09-02

    Sep 2, 2015 ... Conclusion: The various irradiation treatments following the application of the whiteness HP bleaching agent to enamel did not significantly reduce the µTBS within a 14‑day period. Key words: Bleaching agents, lasers, lasers neodymium: yttrium aluminum garnet, resin bonding, tooth bleaching. Date of ...

  3. Influência dos atributos do solo sobre a qualidade da madeira de Pinus taeda para produção de celulose Kraft Influence of soil attributes on quality of Pinus taeda wood for cellulose Kraft production

    Directory of Open Access Journals (Sweden)

    Patrícia Aparecida Rigatto

    2004-04-01

    characteristics, as well as their relation to cellulose production. Eight sites with twelve-year-old trees were selected based on soil type, soil texture and primary vegetation. The soil variables studied were bulk density, total porosity, macroporosity, water availability, fertility and grain size distribution. For tree selection, dendrometric measurements of 50 trees were taken per site, and 5 average size trees selected per site. Total and commercial height and DBH were measured and discs removed. Tree samples were analyzed for basic density, chemical composition, tracheid morphological characteristics, nutritional status and Kraft cellulose production. The soil chemical attributes exerted significant influence on wood quality, but the soil physical attributes showed greater influence on cellulose productivity. Sites with higher growth rate and those with clay texture showed lower values of basic density, higher content of extract and lignin, thus showing lower content of holocellulose and cellulose, shorter and wider tracheids with thinner walls and higher lumen diameters, and lower cellulose yield. Based on these results, it was concluded that cellulose pulp characteristics can be estimated by analyzing wood characteristics combined with the existing site edaphic conditions.

  4. Biomechanical pulping of kenaf

    Science.gov (United States)

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  5. Infection and Pulp Regeneration

    Directory of Open Access Journals (Sweden)

    Sahng G. Kim

    2016-03-01

    Full Text Available The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed.

  6. Electronomicroscopic evaluation of the microlesional aspects in the pulp dentinal complex after repeated whitening therapy

    Science.gov (United States)

    Bodea, Rodica; Jianu, Rodica; Marchese, Cristian; Vasile, Liliana

    2012-06-01

    The aim of this study was to examine cellular and matriceal dynamics within pulp tissue of the teeth with repeated bleaching. Material and method - The study was made on 25 patients aged between 15 and 45, to whom bleaching method of the premolars with indication of extraction in orthodontic purposes was applied. None of the subjects smoked and throughout the investigation no antibiotics had been used. We initiated an intensive oral hygiene program, and we removed the supragingival and subgingival deposits. Oral hygiene and the gingival health were evaluated before every session of bleaching. During each visit the dentition was cleaned professionally and if needed the subjects were reinstucted in proper oral hygiene. After 3 and 5 successive bleachings of the teeth, we removed the dental pulps and we extracted the premolars. The pulpal biopsies were fixed in buffed formaldehyde 10% for 48 hours, then paraffinized, sectioned at 3-5 μ and stained with topographic, H&E and trichrome stained. For the electonomicroscopic study we used the Lehner technique to process the biopsies (n=3) after the reinclusion of the pieces from the paraffine blocks in Epon, postfixated in buffered glutaraldehyde, micro sectioned at 0,5 μ, contrastated with Pb citrate (stained) and examination in transmission electronic microscopy with Philips microscope. Results - At cellular and matriceal level we observed a marked collagen fibrillogenesis in the presence of active fibroblasts, with well developed cellular organites and fibroclastic aspects which suggest matriceal active repair. The microvascular network presents an activated endothelium with turgescent endothelial cells, with intracitoplasmatic resorbtion vacuols, well developed Golgi Complex. Conclusion - We interpreed the cell - matriceal lesions in the context of the acute inflammatory process in the first lesional phase and chronic scleroatrophic process after successive bleaching.

  7. [Scalp burns induced by hair bleaching].

    Science.gov (United States)

    Bouschon, P; Bursztejn, A-C; Waton, J; Brault, F; Schmutz, J-L

    2018-03-14

    Hair bleaching is increasingly being carried out in hairdressing salons. The products used are a mixture of hydrogen peroxide and persulfates, both active chemical agents. Scalp burns secondary to hair bleaching are a traumatic adverse effect rarely discussed in publications that continue to be little known among healthcare professionals. We report the case of a 15-year-old girl with a plaque of scarring alopecia on the vertex. This lesion resulted from a deep burn following a hair-bleaching procedure. Healing took around 4 months, resulting in discomfort for our patient. This is a rare case of scarring alopecia following a basic chemical burn to the scalp. The oxidation reaction induced by the mixture of hydrogen peroxide and persulfates, prepared in a basic medium, causes bleaching of the melanin pigments in hair. The clinical presentation of a single, well limited, painful, oozing ulceration located at the vertex was similar to the other cases published in the literature. Although a chemical burning mechanism is most often incriminated, the procedure is always coupled with use of a heat source and associated thermal burn may occur. The delayed appearance of the lesion appears to be caused by the forming of surfactants by the hydrogen peroxide/persulfate mixture, resulting in slow dissolution of the oxidizing compounds within the stratum corneum. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. ADSORPTION ON HEAT REGENERATED SPENT BLEACHING ...

    African Journals Online (AJOL)

    Preferred Customer

    KINETICS AND THERMODYNAMICS OF AQUEOUS Cu(II) ADSORPTION ON. HEAT REGENERATED SPENT BLEACHING EARTH. Enos W. Wambu1*, Gerald K. Muthakia2*, Joseph K. wa-Thiong'o1 and Paul M. Shiundu3. 1Department of Chemistry, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya.

  9. Bleaching of the discolored traumatized tooth

    DEFF Research Database (Denmark)

    Dahl, Jon E.; Kopperud, Siemen E.; Pallesen, Ulla

    2018-01-01

    This chapter focuses on the treatment of discolored traumatized teeth, most of them being non-vital and subsequently, endodontically treated. Tooth bleaching based upon hydrogen peroxide as the active agent, applied directly or produced in a chemical reaction from sodium perborate or carbamide pe...

  10. The use of biomass energy in the pulp and paper industry and the prospects for black liquor gasification combined cycle generation

    International Nuclear Information System (INIS)

    Nilsson, L.J.

    1995-01-01

    The world production of paper and paperboard products, which increased 3.3% per year since 1980, reached 243 million tonnes in 1991 and is expected to continue to grow by about 2.5% per year over the next decade. Consumption levels in 1990 ranged from 2.8 kg per capita in India to 313 kg per capita in the United States. The biggest producers of pulp are the United States, Canada and the Scandinavian countries, but much of the expansion of pulp production capacity is taking place in countries such as Brazil, Chile and Indonesia. The pulp and paper industry has always relied on biomass as a fuel source to meet process energy demands. Kraft pulping is the most common process accounting for about two thirds of world wood pulp production. Energy recovered from burning black liquor, a lignin-rich by-product, in a chemicals recovery boiler typically provides most of the on-site demand for heat and electricity in a modem kraft pulp mill. Another important fuel source is bark and wood waste generated at the mill. Aging recovery boilers in industrialized countries and increasing electricity/heat demand ratios are stimulating interest in alternative co-generation technologies. Most of the interest in new biomass and black liquor co-generation technologies focuses on those that would utilize gas turbines rather than steam turbines. Gas turbines are generally characterized by higher electricity/heat ratios than steam turbines, as well as lower unit capital costs. With the black liquor and biomass gasification technologies that are now being developed and demonstrated, the energy needs of an energy-efficient kraft pulp mill could be met and 40-50 MW of baseload power would be available for export. Using, in addition, currently unused logging residues for fuel would increase that potential. The pulp and paper industry is likely to be an important early market for advanced biomass-based cogeneration technology owing to its access to biomass fuels and the potential for co

  11. In-Office Bleaching During Orthodontic Treatment.

    Science.gov (United States)

    Gomes, Mauricio Neves; Dutra, Hélio; Morais, Alexandre; Sgura, Ricardo; Devito-Moraes, André Guaraci

    2017-04-01

    To demonstrate that it is possible to pursue teeth whitening treatment protocols during orthodontic treatment with no esthetic loss. Many patients undergoing orthodontic treatment desire to have a straight and well aligned dentition, but also whiter teeth. For many years, it was believed that carrying out a whitening treatment with positioned orthodontic brackets in place would result in localized spots on the enamel labial surfaces of teeth. However, a deeper understanding of the bleaching process suggests that the oxidation caused by products, which results from hydrogen peroxide decomposition, are able to diffuse peripherally into the tooth structure and reach even that under the cemented brackets. Two in-office-bleaching treatments were performed in patients using orthodontic fixed braces in two or three 40-minute sessions using a 35% hydrogen peroxide. In-office bleaching is possible and effective, even with orthodontic brackets in position. The teeth were successfully bleached despite the presence of brackets. All biological criteria have been fulfilled satisfying patients' expectations of aligned and whitened teeth in less time than if treatments had been performed separately, with satisfactory results and no esthetic loss. The whitening of teeth is possible during orthodontic treatment with fixed braces without any esthetic loss. The in-office bleaching treatment with brackets in position also may act as a motivation factor, preventing patient withdrawal or treatment interruption. Therefore, at the end of the orthodontic treatment, the patient is able to display an aligned, functional and whitened smile. (J Esthet Restor Dent 29:83-92, 2017). © 2016 Wiley Periodicals, Inc.

  12. Global warming and recurrent mass bleaching of corals.

    Science.gov (United States)

    Hughes, Terry P; Kerry, James T; Álvarez-Noriega, Mariana; Álvarez-Romero, Jorge G; Anderson, Kristen D; Baird, Andrew H; Babcock, Russell C; Beger, Maria; Bellwood, David R; Berkelmans, Ray; Bridge, Tom C; Butler, Ian R; Byrne, Maria; Cantin, Neal E; Comeau, Steeve; Connolly, Sean R; Cumming, Graeme S; Dalton, Steven J; Diaz-Pulido, Guillermo; Eakin, C Mark; Figueira, Will F; Gilmour, James P; Harrison, Hugo B; Heron, Scott F; Hoey, Andrew S; Hobbs, Jean-Paul A; Hoogenboom, Mia O; Kennedy, Emma V; Kuo, Chao-Yang; Lough, Janice M; Lowe, Ryan J; Liu, Gang; McCulloch, Malcolm T; Malcolm, Hamish A; McWilliam, Michael J; Pandolfi, John M; Pears, Rachel J; Pratchett, Morgan S; Schoepf, Verena; Simpson, Tristan; Skirving, William J; Sommer, Brigitte; Torda, Gergely; Wachenfeld, David R; Willis, Bette L; Wilson, Shaun K

    2017-03-15

    During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.

  13. Global warming and recurrent mass bleaching of corals

    Science.gov (United States)

    Hughes, Terry P.; Kerry, James T.; Álvarez-Noriega, Mariana; Álvarez-Romero, Jorge G.; Anderson, Kristen D.; Baird, Andrew H.; Babcock, Russell C.; Beger, Maria; Bellwood, David R.; Berkelmans, Ray; Bridge, Tom C.; Butler, Ian R.; Byrne, Maria; Cantin, Neal E.; Comeau, Steeve; Connolly, Sean R.; Cumming, Graeme S.; Dalton, Steven J.; Diaz-Pulido, Guillermo; Eakin, C. Mark; Figueira, Will F.; Gilmour, James P.; Harrison, Hugo B.; Heron, Scott F.; Hoey, Andrew S.; Hobbs, Jean-Paul A.; Hoogenboom, Mia O.; Kennedy, Emma V.; Kuo, Chao-Yang; Lough, Janice M.; Lowe, Ryan J.; Liu, Gang; McCulloch, Malcolm T.; Malcolm, Hamish A.; McWilliam, Michael J.; Pandolfi, John M.; Pears, Rachel J.; Pratchett, Morgan S.; Schoepf, Verena; Simpson, Tristan; Skirving, William J.; Sommer, Brigitte; Torda, Gergely; Wachenfeld, David R.; Willis, Bette L.; Wilson, Shaun K.

    2017-03-01

    During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.

  14. Crown discoloration promoted by materials used in regenerative endodontic procedures and effect of dental bleaching: spectrophotometric analysis.

    Science.gov (United States)

    Santos, Luciane Geanini Pena Dos; Felippe, Wilson Tadeu; Souza, Beatriz Dulcineia Mendes de; Konrath, Andrea Cristina; Cordeiro, Mabel Mariela Rodríguez; Felippe, Mara Cristina Santos

    2017-01-01

    To assess tooth crown's color after intracanal treatment with triple antibiotic paste (TAP) or calcium hydroxide (CH); cervical sealing with glass ionomer cement (GIC) or mineral trioxide aggregate (MTA); and bleaching with carbamide peroxide. After pulp removal and color spectrophotometer measurement, 50 bovine incisors were divided into 4 experimental groups and one control (untreated). Experiments were performed in phases (Ph). Ph1: TAP (ciprofloxacin, metronidazole, minocycline), TAPM (ciprofloxacin, metronidazole, amoxicillin), DAP (ciprofloxacin, metronidazole), or CH treatment groups. After 1 and 3 days (d); 1, 2, 3 weeks (w); and 1, 2, 3 and 4 months (m), color was measured and medications were removed. Ph2: GIC or MTA cervical sealing, each using half of the specimens from each group. Color was assessed after 1d, 3d; 1w, 2w, 3w; 1m and 2m. Ph3: Two bleaching sessions, each followed by color measurement. Data were analyzed with ANOVA and post-hoc Holm-Sidak method. Ph1: Specimens of TAP group presented higher color alteration (ΔE) mean than those of TAPM group. No significant difference was found among TAP or TAPM and CH, DAP or Control groups. Ph2: cervical sealing materials showed no influence on color alteration. Ph3: Different ΔE means (from different groups), prior to bleaching, became equivalent after one bleaching session. TAP induces higher color alteration than TAPM; color alteration increases over time; cervical sealing material has no influence on color alteration; and, dental bleaching was able to recover, at least partially, the tooth crown's color.

  15. Crown discoloration promoted by materials used in regenerative endodontic procedures and effect of dental bleaching: spectrophotometric analysis

    Directory of Open Access Journals (Sweden)

    Luciane Geanini Pena dos SANTOS

    Full Text Available Abstract Regenerative endodontic procedure (REP has been proposed as a new approach to treat immature permanent teeth. However, materials used in REP for root canal disinfection or cervical sealing may induce tooth discoloration. Objectives To assess tooth crown’s color after intracanal treatment with triple antibiotic paste (TAP or calcium hydroxide (CH; cervical sealing with glass ionomer cement (GIC or mineral trioxide aggregate (MTA; and bleaching with carbamide peroxide. Material and Methods After pulp removal and color spectrophotometer measurement, 50 bovine incisors were divided into 4 experimental groups and one control (untreated. Experiments were performed in phases (Ph. Ph1: TAP (ciprofloxacin, metronidazole, minocycline, TAPM (ciprofloxacin, metronidazole, amoxicillin, DAP (ciprofloxacin, metronidazole, or CH treatment groups. After 1 and 3 days (d; 1, 2, 3 weeks (w; and 1, 2, 3 and 4 months (m, color was measured and medications were removed. Ph2: GIC or MTA cervical sealing, each using half of the specimens from each group. Color was assessed after 1d, 3d; 1w, 2w, 3w; 1m and 2m. Ph3: Two bleaching sessions, each followed by color measurement. Data were analyzed with ANOVA and post-hoc Holm-Sidak method. Results Ph1: Specimens of TAP group presented higher color alteration (ΔE mean than those of TAPM group. No significant difference was found among TAP or TAPM and CH, DAP or Control groups. Ph2: cervical sealing materials showed no influence on color alteration. Ph3: Different ΔE means (from different groups, prior to bleaching, became equivalent after one bleaching session. Conclusions TAP induces higher color alteration than TAPM; color alteration increases over time; cervical sealing material has no influence on color alteration; and, dental bleaching was able to recover, at least partially, the tooth crown’s color.

  16. Understanding pulp delignification by laccase-mediator systems through isolation and characterization of lignin-carbohydrate complexes.

    Science.gov (United States)

    Du, Xueyu; Li, Jiebing; Gellerstedt, Göran; Rencoret, Jorge; Del Río, José C; Martínez, Angel T; Gutiérrez, Ana

    2013-09-09

    The effects and mechanism of pulp delignification by laccases in the presence of redox mediators have been investigated on unbleached eucalyptus kraft pulp treated with laccases from Pycnoporus cinnabarinus (PcL) and Myceliophthora thermophila (MtL) and 1-hydroxybenzotriazole (HBT) and methyl syringate (MeS) as mediators, respectively. Determination of the corrected κ number in eucalyptus pulps after the enzymatic treatments revealed that the PcL-HBT system exhibited a more remarkable delignification effect than the MtL-MeS system. To obtain further insight, lignin-carbohydrate complexes were fractionated and subsequently characterized by nuclear magnetic resonance, thioacidolysis (followed by gas chromatography and size exclusion chromatography), and pyrolysis-gas chromatography-mass spectrometry (pyrolysis-GC-MS) analyses before and after the enzymatic treatments and their controls. We can conclude that the laccase-mediator treatments altered the lignin structures in such a way that more lignin was recovered in the xylan-lignin fractions, as shown by Klason lignin estimation, with smaller amounts of both syringyl (S) and guaiacyl (G) uncondensed units, as shown by thioacidolysis and gas chromatography, especially after the PcL-HBT treatment. The laccase-mediator treatment produced oxidation at Cα and cleavage of Cα and Cβ bonds in pulp lignin, as shown by pyrolysis-GC-MS. The general mechanism of residual lignin degradation in the pulp by laccase-mediator treatments is discussed in light of the results obtained.

  17. Evaluation of Pulp and Paper Properties obtained from Maple Juvenile Wood through Organosolv Alcohol Method Catalyzed by Calcium and Magnesium Salts

    Directory of Open Access Journals (Sweden)

    Reza Naghdi

    2015-05-01

    Full Text Available The properties of catalyzed organosolv pulp obtained from maple juvenile wood were studied. The physical properties of fiber (e.g. length, width, and cell membrane thickness and chemical composition of maple juvenile wood (e.g. average cellulose, lignin, extractives, and ash content were determined. The variables were cooking temperature (190 and 200 ºC and time (40, 60, and 80 minutes. Chemical charge ( 280 ml methanol, 70 ml water, and 0.025 mols of Calcium Chloride and Magnesium Nitrate was kept constant. Pulp screen yields (54.9 to 60.91% and Kappa No. (15.5 to 18.4 were measured. Pulp freeness was reduced to 350 ml CSF in PFI mill, and ten 60 g/m2 handsheets were made from the selected pulps. The strength properties of catalyzed organosolv handsheets including tear length (3.83 to 4.25 km, tear index (10.22 to 12.81 mN.m2/g, and burst index (1.74 to 2.15 kPa.m2/g were compared with those of the conventional Kraft handsheets of maple juvenile wood. The least allowed values of the mentioned properties in the Indian (IS and Japanese international standards (JIS reveal that while the tear length value is slightly below that of the standards, the values of tear and burst indices are well beyond the given standards, and the environmentally-friendly catalyzed organosolv pulping process (higher yield and lower Kappa No. compared to Kraft can be recommended to produce paper pulp from maple juvenile wood.

  18. Increased delignification rate of Dendrocalamus strictus (Roxburgh nees by Schizophyllum commune Fr.; Fr. to reduce chemical consumption during pulping process

    Directory of Open Access Journals (Sweden)

    Vipin Kumar Saini

    2013-08-01

    Full Text Available Pulp and paper industry is traditionally known to be a large contributor to environmental pollution due its largeconsumption of energy and chemicals. To reduce the chemical consumption, rate of delignification was increased bySchizophyllum commune in destructured sample of Dendrocalamus stictus, which was destructured by Impressafiner (compression-cum dewatering process. The extent of delignification was determined and comparison was made between thenon-destructured and destructured samples. The influence of physical parameters like incubation time, moisture level, media,media concentration, pH and temperature were also examined during the study. It was found that rate of delignification wassignificantly 6.43% more in destructured sample than non-destructured sample. Kraft pulping of treated destructured sampleshows 2.59 point reduction in kappa number than untreated non-destructured sample. Thus this paper provides an insight ofthe delignification extent in Dendrocalamus strictus after mechanical operation at varying physical parameters.

  19. Vahur Kraft kraamis eile oma sahtlid Eesti Pangas tühjaks / Urmas Tooming

    Index Scriptorium Estoniae

    Tooming, Urmas

    2005-01-01

    6. juunil oli Vahur Krafti viimane tööpäev Eesti Panga presidendina. Lisad: CV; Keskpanga ekspresident Vahur Kraft juhtis 10 aastat Eesti pangandust. Kommenteerivad Eesti Panga endine asepresident Heldur Meerits ja endine Hansapanga juht Indrek Neivelt

  20. Jens Kraft og "De vilde Folk" (1760) - manden, forfatterskbet, værket

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2000-01-01

    that all cultures have passed through similar stages of development? C. What contemporary intellectual and institutional circumstances in Denmark and what personal motives might have induced Kraft to write a secular history of human development? In attempting to answere these and other questions, I put......Jens Kraft and his Brief Account of the Principal Institutions, Customs and Ideas of the Savage Peoples, to Inform about the General Origins and Development of Humanity, Sorø, 1760 - The man, his writings, his book. The present dissertation presents some results of my research on Jens Kraft...... Norse peoples, thus offering an explanation of the general development of human culture: how it originates, and, more importantly, why, in some cases it did not progress beyond a certain level. Kraft shows that man's natural mode of development is a slow, uncertain process, quickened only...

  1. Precipitation and characterisation of lignin obtained from South African kraft mill black liquor

    CSIR Research Space (South Africa)

    Namane, M

    2014-07-01

    Full Text Available International Conference on Chemical Thermodynamics and South African Institution of Chemical Engineering Conference, Durban, South Africa, 27 July - 1 August 2014 Precipitation and characterisation of lignin obtained from South African kraft mill black...

  2. New alternative energy pathway for chemical pulp mills: From traditional fibers to methane production.

    Science.gov (United States)

    Rodriguez-Chiang, Lourdes; Vanhatalo, Kari; Llorca, Jordi; Dahl, Olli

    2017-07-01

    Chemical pulp mills have a need to diversify their end-product portfolio due to the current changing bio-economy. In this study, the methane potential of brown, oxygen delignified and bleached pulp were evaluated in order to assess the potential of converting traditional fibers; as well as microcrystalline cellulose and filtrates; to energy. Results showed that high yields (380mL CH 4 /gVS) were achieved with bleached fibers which correlates with the lower presence of lignin. Filtrates from the hydrolysis process on the other hand, had the lowest yields (253mL CH 4 /gVS) due to the high amount of acid and lignin compounds that cause inhibition. Overall, substrates had a biodegradability above 50% which demonstrates that they can be subjected to efficient anaerobic digestion. An energy and cost estimation showed that the energy produced can be translated into a significant profit and that methane production can be a promising new alternative option for chemical pulp mills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Caracterização de compostos reduzidos de enxofre gerados na produção de celulose kraft e pré-hidrólise kraft.

    Directory of Open Access Journals (Sweden)

    Afonso Moraes de Moura

    2010-08-01

    Full Text Available Um problema ambiental da indústria de celulose kraft é o odor causado pela emissão dos compostos reduzidos de enxofre gerados pela deslignificação de madeiras de um modo em geral. Para monitorar essas emissões, existem equipamentos simples, desenvolvidos para a medição contínua do "total reduced sulphur" (TRS, tal como o analisador coulométrico. Neste trabalho, foram analisados sulfeto de hidrogênio (H2S, metil mercaptana (CH3SH, dimetil sulfeto [(CH32S] e dimetil dissulfeto [(CH32S2], gerados em deslignificações laboratoriais kraft e pré-hidrólise kraft de dois grupos de madeiras de folhosas. Um dos grupos de madeiras continha 25% e o outro 20% de lignina, base peso seco. Foi observado que as madeiras com menores teores de lignina geraram significativamente menores quantidades de compostos reduzidos de enxofre de TRS. Não foram notadas diferenças significativas nas quantidades totais geradas entre os processos de deslignificação estudados. O processo pré-hidrólise kraft foi mais sensível aos teores de lignina da madeira que o processo kraft. Recomenda-se, por isso, trabalhar com madeiras com menores teores de lignina quando do uso do processo pré-hidrólise kraft para produção de celulose. As principais formas geradas de TRS foram dimetil sulfeto e metil mercaptana.

  4. Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp.

    Science.gov (United States)

    Manda, B M Krishna; Blok, Kornelis; Patel, Martin K

    2012-11-15

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO(2)) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO(2) coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10-35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13GJ/ton paper) and GHG emission reduction by 75% (0.6 tonCO(2)eq./ton paper). Micro TiO(2) coated CTMP paper offered NREU savings by 25% (3GJ/ton paper) and savings of GHG emissions by 10% (0.1 tonCO(2)eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then the

  5. Innovations in papermaking: An LCA of printing and writing paper from conventional and high yield pulp

    International Nuclear Information System (INIS)

    Manda, B.M. Krishna; Blok, Kornelis; Patel, Martin K.

    2012-01-01

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO 2 ) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO 2 coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10–35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13 GJ/ton paper) and GHG emission reduction by 75% (0.6 ton CO 2 eq./ton paper). Micro TiO 2 coated CTMP paper offered NREU savings by 25% (3 GJ/ton paper) and savings of GHG emissions by 10% (0.1 ton CO 2 eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then

  6. Atmospheric emission of nitrogen oxide from kraft recovery boilers in Sweden

    International Nuclear Information System (INIS)

    Kjoerk, Anders; Herstad Swaerd, Solvie

    2000-05-01

    Recovery boiler NO x emissions are low compared with those from power boilers. However tighter environmental requirements to decrease the acidic emissions implies that all sources have to be addressed. There are an ongoing evaluation and development of NO x control technologies in the pulp industry. Basically air staging, selective catalytic reduction, SCR, and selective noncatalytic reduction, SNCR, have been discussed. Other NO x control options may be available as a result of ongoing research and development. As a background in the work to reduce the acid rain it has been considered necessary to have a good picture of the NO x emission from recovery boilers, and the Thermal Engineering Research Institute in Sweden have therefore sponsored this study. The intention is to give a good general view and try to explain the reasons for the large differences between boilers. Data from the 30 kraft recovery boilers which were in operation in Sweden during 1999 have been collected. Both NO x levels and specific conditions which could have an influence on the level have been included. The evaluation show a clear correlation between the nitrogen content in the liquor and the NO x level. It seams also that a long retention time in the furnace give an opportunity to reduce the amount of nitrogen oxide. For most boilers in Sweden the NO x levels are reported in mg/MJ and comparison could be done between different types of boilers. However for recovery boilers there could be a large uncertainty in the calculation which gives the amount (mg) of NO x , the definition of the heat input to be used (MJ) is either not clear. As a base for the study the measured concentration in ppm is used instead. The reported values are in the range of 30 - 100 ppm, however the majority of the boilers operate in a more narrow range 60-80 ppm. Air staging and other combustion methods could not reasonably reduce the NO x emission with more than 20% in the next decade. If the goal is higher other

  7. Effect of Soda-Anthraquinone Pulping Conditions and Beating Revolution on the Mechanical Properties of Paper made from Gigantochloa scortechinii (Semantan Bamboo)

    International Nuclear Information System (INIS)

    Nurul Husna Mohd Hassan; Suhaimi Muhammed

    2013-01-01

    The effect of soda-AQ pulping conditions and beating revolution on the mechanical properties of paper made from Semantan bamboo (Gigantochloa scortechinii) was studied. The bamboo chips were pulped using MK digester pulping unit with 10 to 20 % alkali charge and 150 to 170 degree Celsius cooking temperature. The screened yield varies from 38.7 to 48.4 %, and each yield went through beating process at 1000 or 8000 beating revolutions. The bamboo pulp was then made into 60 g/ m 2 laboratory scale papers and their mechanical properties were assessed conforming to TAPPI standards. The results revealed that tensile index, bursting index, tearing index and folding endurance ranged from 42.04 to 91.09 Nm/ g, 2.68 to 7.10 kPa.m 2 /g, 11.03 to 26.64 mN.m 2 /g and 30 to 1127 double folds, respectively. The highest paper properties were found from pulping condition of 15 % alkali charge and 150 degree Celsius cooking temperature based on the fibre bonding index, with tensile index at 87.71 Nm/g, bursting index at 6.94 kPa.m 2 / g, tearing index at 12.72 mN.m 2 / g and folding endurance at 613 double folds. Such findings indicate that comparable high strength mechanical properties of paper can be produced from Semantan bamboo pulp with more environmentally friendly pulping process compared to the kraft pulping process that had been used in bamboo pulping. (author)

  8. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  9. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.

    Science.gov (United States)

    Mockos, Gregory R; Smith, William A; Loge, Frank J; Thompson, David N

    2008-03-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste-activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25 degrees C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  10. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    Science.gov (United States)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  11. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    Science.gov (United States)

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are

  12. Levels of enamel erosion for the application of bleaching agents

    OpenAIRE

    Díaz Soriano, Ana; Departamento Académico de Estomatología Biosocial.; Pérez Vargas, Luis; Departamento Academico de Estomatología Biosocial.; Mattos Vela, Manuel; Departamento Academico de Estomatología Biosocial.; Asurza Ruiz, José; Instituto Nacional de Enfermedades Neoplásicas - INEN.; Bernuy Torres, Luis

    2014-01-01

    Dental bleaching systems and its use of toothpaste with bleaching agents lead to search the effect of these systems on the enamel surface. Scientific evidence shows that these systems can provoke an answer in chemical shucture of the dental enamel with loss of calcium . The concentration of calcium was measured in ppm in 27 crowns of human bicuspids. The enamel erosion was measured through the liberation of calcium salts into teeth in two kinds of bleaching toothpastes : Crest whitening and C...

  13. Coral mass bleaching and reef temperatures at Navassa Island, 2006

    Science.gov (United States)

    Miller, M. W.; Piniak, G. A.; Williams, D. E.

    2011-01-01

    Bleaching and associated mortality is an extreme threat to the persistence of coral populations in the projected warming regime of the next few decades. Recent evidence indicates that thermal bleaching thresholds may be affected by water quality gradients. The unexpected encounter of a coral mass bleaching event at a remote, uninhabited Caribbean island (Navassa) during a routine reef assessment cruise in November 2006 provided the opportunity to characterize bleaching responses and thermal exposure in an oceanic area with negligible continental influence or human impact on water quality. The coral taxa most susceptible to bleaching were Agaricia spp. and Montastraea faveolata. Siderastraea siderea, Diploria spp. and Porites porites were intermediately affected, while Porites astreoides and Montastraea cavernosa were minimally affected and negligible bleaching was observed in Acropora palmata. Bleaching prevalence (colonies > 4 cm diameter) ranged from 0.16 to 0.63 among sites. Deeper sites (between 18 and 37 m) had significantly higher prevalence of bleaching than shallow sites (<10 m). This general pattern of more bleaching in deeper sites also occurred within species. Though exposure to high-temperature stress was not greater at deeper sites, water motion, which may bolster bleaching resistance, was likely less. In situ loggers indicated temperatures over 30 °C initiated at shallow sites in mid-August, at deeper sites in early September, and were persistent at all sites until mid-October. Long term (1983-2007) climatologies constructed from AVHRR SSTs suggest that the mass bleaching event observed at Navassa in 2006 corresponded with greater intensity and duration of warm temperature anomalies than occurred in 2005, for which no in situ observations (bleaching nor temperature) are available.

  14. Effects of a New Bleaching Gel on Tooth Whitening

    Science.gov (United States)

    2016-05-17

    include ease of application, reduced chair time and cost, high success rate, and safety of materials.6 Furthermore, bleaching teeth with 10... dental workhorse for over 70 years.4 HP’s bleaching success is attributed to its ability to penetrate tooth structure and produce free radicals that...home whitening. Due to the prevalence of HP and CP in many bleaching products, the dental literature is saturated with research on their respective

  15. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals

    DEFF Research Database (Denmark)

    Murray, A.S.; Thomsen, Kristina Jørkov; Masuda, N.

    2012-01-01

    the likely significance of the difficult-to-bleach residual feldspar signals in non-aeolian samples. For a set of mainly Late Pleistocene non-aeolian sediments, large aliquot quartz doses are then used to predict feldspar doses (based on a knowledge of the sample dose rates). The differences between observed...... that the large aliquot data are more likely to be correct. We conclude that a comparison of quartz and feldspar doses provides a useful independent method for identifying well-bleached quartz samples, and that it is unwise to apply statistical models to dose distributions without clear evidence for the physical...

  16. Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse

    Directory of Open Access Journals (Sweden)

    Natthapong Phinichka

    2018-01-01

    Full Text Available The need for biodegradable films for packaging, absorbents, and fibers has encouraged the development of novel biodegradable films made from natural sources, especially agricultural byproducts. The present investigation involved preparation of alpha cellulose and regenerated cellulose film, in view of the use of sugarcane bagasse, the cellulose-rich waste from the sugar industry. In order to prepare a cellulose pulp, the bagasse was exploded separately by saturated steam at temperatures of 195 °C and 205 °C for 5 min, washed, oven-dried, and submitted to an alkali pulping and bleaching process. The chemical compositions consisted of alpha cellulose, holocellulose, lignin, and the extractives of the bagasse and its pulp were analyzed. The results showed that the pulp contained high levels of alpha cellulose and low lignin. The cellulose pulp was being successfully regenerated as cellulosic films in an acid coagulation bath at different coagulation times. The characteristics of the steam exploded bagasse, cellulose pulp, and regenerated cellulose were investigated by SEM, XRD, FITR, TGA, tensile test, contact angle, and water retention measurement. The results of the XRD, FTIR and TGA all indicated that high alpha cellulose with low lignin pulp could successfully be made from steam-exploded sugarcane bagasse. The SEM images, contact angles, and water retention values also revealed that the regenerated films coagulated in an acid bath for 15 min were more hydrophilic than those that had coagulated for 30 min. The tensile test indicated that the regenerated cellulose films coagulated for 30 min were stronger than those coagulated for 15 min.

  17. Kinetics of pulp mill effluent treatment by ozone-based processes

    International Nuclear Information System (INIS)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-01-01

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  18. Kinetics of pulp mill effluent treatment by ozone-based processes.

    Science.gov (United States)

    Ko, Chun-Han; Hsieh, Po-Hung; Chang, Meng-Wen; Chern, Jia-Ming; Chiang, Shih-Min; Tzeng, Chewn-Jeng

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  19. Use of an expert system for energy cost calculations in the pulp and paper industry

    International Nuclear Information System (INIS)

    Viinikainen, S.; Malinen, H.

    1991-12-01

    In this paper, an application for the calculation of energy prices and product energy costs in the pulp and paper industry by using the Xi Plus expert system is presented. The use of expert systems in the energy field and also the Xi Plus expert system and its general features are also discussed. The application has been made after collecting data from several sources. It runs in an IBM AT compatible microcomputer therefore being easily used in mills. The name of the application is PRODUCT ENERGY COST. It has a three level structure: the mill level, the department level and the main equipment level. Currently, the mill level and, in the energy production area, the department level (power plant) and the equipment level (boilers, turbines) are used. The application consists of four knowledge base groups. Altogether there are 52 separate knowledge bases having 534 rules or demons. The knowledge base groups are: BASIC DATA, ENERGY USE, ENERGY PRODUCTION and ENERGY COSTS. The application can be used for various heat and electrical energy price calculations or for energy cost calculations for different pulp and paper products. In this study, the energy prices for kraft pulp, TMP, newsprint and fine paper in different operating conditions and the associated energy costs of the products are calculated. Also, in some cases a sensitivity analysis is done. The expert system is quite suitable for this type of calculation and the method could be further developed for specific industrial needs, e.g. to enhance the energy management systems

  20. Generation of Hydrogen, Lignin and Sodium Hydroxide from Pulping Black Liquor by Electrolysis

    Directory of Open Access Journals (Sweden)

    Guangzai Nong

    2015-12-01

    Full Text Available Black liquor is generated in Kraft pulping of wood or non-wood raw material in pulp mills, and regarded as a renewable resource. The objective of this paper was to develop an effective means to remove the water pollutants by recovery of both lignin and sodium hydroxide from black liquor, based on electrolysis. The treatment of a 1000 mL of black liquor (122 g/L solid contents consumed 345.6 kJ of electric energy, and led to the generation of 30.7 g of sodium hydroxide, 0.82 g of hydrogen gas and 52.1 g of biomass solids. Therefore, the recovery ratios of elemental sodium and biomass solids are 80.4% and 76%, respectively. Treating black liquor by electrolysis is an environmentally friendly technology that can, in particular, be an alternative process in addressing the environmental issues of pulping waste liquor to the small-scale mills without black liquor recovery.

  1. Therapeutic effectiveness of a new enzymatic bleaching dentifrice.

    Science.gov (United States)

    Forner, Leopaldo; Amengual, José; Liena, Carmen; Riutord, Pere

    2012-01-01

    Research into bleaching focuses on new products in order to minimize undesirable effects. This study evaluated the bleaching effectiveness of a new enzymatic-activated dentifrice. A total of 20 volunteers were bleached with a dentifrice containing 5% lactoperoxidase and 3% carbamide peroxide applied three times a day for two minutes over 21 days. Color was recorded before and after the treatment using a spectrophotometer. CIELAB differences were calculated before and after treatment using the paired t test (P whitening teeth. Enzymatic dental bleaching is able to increase the efficiency of low concentration peroxides, reducing the potential risk of peroxides on oral tissues.

  2. Coral community response to bleaching on a highly disturbed reef.

    Science.gov (United States)

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-02-15

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  3. Fracture resistance of endodontically-treated teeth submitted to bleaching treatment with hydrogen peroxide and titanium dioxide nanoparticles photoactivated by LED-laser

    Directory of Open Access Journals (Sweden)

    Keren Cristina JORDÃO-BASSO

    Full Text Available Objective: The aim of this study was evaluate the fracture resistance of endodontically-treated teeth after bleaching treatment using 15% hydrogen peroxide plus titanium dioxide nanoparticles (15HPTiO2 photoactivated by LED-laser, in comparison with protocols using 35% hydrogen peroxide (35HP, 37% carbamide peroxide (37CP or sodium perborate (SP. Material and method: After endodontic treatment, fifty bovine extracted incisors were divided into five groups (n = 10: G1- without bleaching; G2- 35HP; G3- 37CP; G4- 15HPTiO2 photoactivated by LED-laser and G5- SP. In G2 and G4, the bleaching protocol was applied in 4 sessions, with a 7 day interval between each session. In G3 and G5, the materials were kept in the pulp chamber for 21 days, but replaced every 7 days. After 21 days, the crowns were subjected to compressive load at a cross head speed of 0.5 mm/min, applied at 135° to the long axis of the root using an eletromechanical testing machine, until fracture. The data were submitted to ANOVA and Tukey tests (p = 0.05. Result: The bleaching treatment in endodontically-treated teeth with 15HP plus TiO2 nanoparticles and photoactivated by LED-laser caused reduction of the fracture resistance similarly provided by 35HP, 37CP or SP (p>0.05. All bleaching treatments reduced the fracture resistance compared to unbleached teeth (p<0.05. Conclusion: All bleaching protocols reduced the fracture resistance of endodontically-treated teeth, but there were no differences between each other.

  4. A comparison of cellulose nanofibrils produced from Cladophora glomerata algae and bleached eucalyptus pulp

    Science.gov (United States)

    Zhouyang Xiang; Wenhua Gao; Liheng Chen; Wu Lan; Junyong Zhu; Troy Runge

    2016-01-01

    Cladophora, a fresh-water green macroalgae, has unique cellulose properties and thus may be promising for production of cellulose nanofibrils (CNFs). Cellulose was extracted from Cladophora glomerata and subjected to microfluidization with or without enzymatic hydrolysis pretreatment to produce CNFs. Increasing...

  5. Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?

    Science.gov (United States)

    Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel

    2015-01-01

    The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825

  6. Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp.

    Science.gov (United States)

    Bankeeree, Wichanee; Lotrakul, Pongtharin; Prasongsuk, Sehanat; Chaiareekij, Somporn; Eveleigh, Douglas E; Kim, Seung Wook; Punnapayak, Hunsa

    2014-01-01

    In an attempt to find a thermostable xylanase enzyme for potential application in the pretreatment prior to H2O2 bleaching of paper pulp for industry, an extracellular xylanase from Aureobasidium pullulans CBS 135684 was purified 17.3-fold to apparent homogeneity with a recovery yield of 13.7%. Its molecular mass was approximately 72 kDa as determined by SDS-PAGE. The optimal pH and temperature for activity of the purified enzyme were pH 6.0 and 70°C, respectively. The enzyme was relatively stable at 50°C, retaining more than half of its original activity after 3-h incubation. The thermostability of the enzyme was improved by the addition of 0.75 mM sorbitol prolonging the enzyme's activity up to 10-fold at 70°C. When the potential of using the enzyme in pretreatment of rice straw pulp prior to bleaching was evaluated, the greatest efficiency was obtained in a mixture containing xylanase and sorbitol. Treatment of the rice straw pulp with xylanase prior to treatment with 10% (v/v) H2O2 and production of hand sheets increased the ISO sheet brightness by 13.5% and increased the tensile and tear strengths of the pulp by up to 1.16 and 1.71-fold, respectively, compared with pulps treated with H2O2 alone. The results suggested the potential application of the enzyme before the bleaching process of paper pulp when the maintenance of high temperature and enzyme stability are desirable.

  7. The influence of bleaching agent and temperature on bleaching efficacy and volatile components of fluid whey and whey retentate.

    Science.gov (United States)

    Fox, A J; Smith, T J; Gerard, P D; Drake, M A

    2013-10-01

    Fluid whey or retentate are often bleached to remove residual annatto Cheddar cheese colorant, and this process causes off-flavors in dried whey proteins. This study determined the impact of temperature and bleaching agent on bleaching efficacy and volatile components in fluid whey and fluid whey retentate. Freshly manufactured liquid whey (6.7% solids) or concentrated whey protein (retentate) (12% solids, 80% protein) were bleached using benzoyl peroxide (BP) at 100 mg/kg (w/w) or hydrogen peroxide (HP) at 250 mg/kg (w/w) at 5 °C for 16 h or 50 °CC for 1 h. Unbleached controls were subjected to a similar temperature profile. The experiment was replicated three times. Annatto destruction (bleaching efficacy) among treatments was compared, and volatile compounds were extracted and separated using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS). Bleaching efficacy of BP was higher than HP (P 0.05). Retentate bleached with HP at either temperature had higher relative abundances of pentanal, hexanal, heptanal, and octanal than BP bleached retentate (P < 0.05). Liquid wheys generally had lower concentrations of selected volatiles compared to retentates. These results suggest that the highest bleaching efficacy (within the parameters evaluated) in liquid whey is achieved using BP at 5 or 50 °C and at 50 °C with HP or BP in whey protein retentate. © 2013 Institute of Food Technologists®

  8. Comparison of laser and power bleaching techniques in tooth color change

    OpenAIRE

    Fekrazad, Reza; Alimazandarani, Shervin; Kalhori, Katayoun A.M.; Assadian, Hadi; Mirmohammadi, Seyed-Mahdi

    2017-01-01

    Background Laser-assisted bleaching uses laser beam to accelerate release of free radicals within the bleaching gel to decrease time of whitening procedure. The aim of this study was to compare the efficacy of power bleaching using Opalescence Xtra Boost? and laser bleaching technique using LaserSmile gel and diode laser as an activator in their tooth whitening capacity. Material and Methods Student t test showed that the laser bleaching group significantly outperformed the power bleaching gr...

  9. Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules.

    Science.gov (United States)

    Bombeck, Pierre-Louis; Khatri, Vinay; Meddeb-Mouelhi, Fatma; Montplaisir, Daniel; Richel, Aurore; Beauregard, Marc

    2017-01-01

    Lignocellulosic biomass will progressively become the main source of carbon for a number of products as the Earth's oil reservoirs disappear. Technology for conversion of wood fiber into bioproducts (wood biorefining) continues to flourish, and access to reliable methods for monitoring modification of such fibers is becoming an important issue. Recently, we developed a simple, rapid approach for detecting four different types of polymer on the surface of wood fibers. Named fluorescent-tagged carbohydrate-binding module (FTCM), this method is based on the fluorescence signal from carbohydrate-binding modules-based probes designed to recognize specific polymers such as crystalline cellulose, amorphous cellulose, xylan, and mannan. Here we used FTCM to characterize pulps made from softwood and hardwood that were prepared using Kraft or chemical-thermo-mechanical pulping. Comparison of chemical analysis (NREL protocol) and FTCM revealed that FTCM results were consistent with chemical analysis of the hemicellulose composition of both hardwood and softwood samples. Kraft pulping increased the difference between softwood and hardwood surface mannans, and increased xylan exposure. This suggests that Kraft pulping leads to exposure of xylan after removal of both lignin and mannan. Impact of enzyme cocktails from Trichoderma reesei (Celluclast 1.5L) and from Aspergillus sp. (Carezyme 1000L) was investigated by analysis of hydrolyzed sugars and by FTCM. Both enzymes preparations released cellobiose and glucose from pulps, with the cocktail from Trichoderma being the most efficient. Enzymatic treatments were not as effective at converting chemical-thermomechanical pulps to simple sugars, regardless of wood type. FTCM revealed that amorphous cellulose was the primary target of either enzyme preparation, which resulted in a higher proportion of crystalline cellulose on the surface after enzymatic treatment. FTCM confirmed that enzymes from Aspergillus had little impact on

  10. INFLUÊNCIA DA DENSIDADE BÁSICA DA MADEIRA DE CLONES DE Eucalyptus grandis x Eucalyptus urophylla NA QUALIDADE DA POLPA BRANQUEADA

    Directory of Open Access Journals (Sweden)

    Sheila Rodrigues dos Santos

    2007-01-01

    Full Text Available The study analyzed the wood basic density effect in two Eucalyptus grandis x Eucalyptus urophylla hybrid clones (440 kg/m3 e 508 kg/m3 on bleached pulp quality (fiber dimensions and physical-mechanical properties. The woods performance on pulping, bleaching and beating results were analyzed. The Kraft pulping was carried out in forced circulation digester in order to obtain 17±1 kappa number targets. The pulps were bleached to 90±1 using delignification oxygen and D0EOPD1 bleaching sequence. Bleached pulp of low basic density clone showed, significantly, lowest revolutions number in the PFI mill to reach tensile index of 70 N.m/g, low Schopper Riegler degree and generated sheets with higher values to bulk and opacity. These characteristics and properties allow concluding that bleached pulp of low basic density clone was the most indicated to produce printing and writing sheets. The bleached pulp of high basic density clone showed higher values of bulk and capillarity Klemm and lower water retention value when analyzed without beating. The bleached pulp of high basic density clone showed more favorable characteristics to the production of tissue papers.

  11. In vitro effect of low intensity laser on the cytotoxicity produced by substances released by bleaching gel

    Directory of Open Access Journals (Sweden)

    Caroline Maria Gomes Dantas

    2010-12-01

    Full Text Available This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC, and the cells grown in conditioned medium and non-irradiated served as negative control group (NC. Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm² emitting at visible red (660 nm; RL or near infrared (780 nm; NIR using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05. The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.

  12. Preparation of clinker from paper pulp industry wastes.

    Science.gov (United States)

    Buruberri, Leire H; Seabra, M P; Labrincha, J A

    2015-04-09

    The production of paper pulp by the Kraft method generates considerable amounts of wastes. Namely, lime mud generated in the recovery circuit of chemical reagents, biological sludge from the wastewater treatment of wood digestion process and fly ash collected in the fluidized bed combustor used to generate electricity from biomass burning. The final destination of such wastes is an important concern, since environmental regulations are becoming stricter regarding their landfill. Driven by this fact, industries are looking for more sustainable solutions, such as the recycling in distinct products. This work tested these wastes as secondary raw materials to produce clinker/cement that was then experienced in mortar formulations. The first step involved the residues detailed characterization and a generated amounts survey. Then, specific but simple steps were suggested, aiming to facilitate transport and manipulation. Distinct blends were prepared and fired in order to get belitic and Portland clinkers. The Portland clinkers were processed at lower temperatures than the normally used in the industry due to the presence of mineralizing impurities in some wastes. Belite-based cements were used to produce mortars that developed satisfactory mechanical strength and did not reveal signs of deterioration or durability weaknesses. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Does deposition depth control the OSL bleaching of fluvial sediment?

    NARCIS (Netherlands)

    Cunningham, A. C.; Wallinga, J.; Hobo, N.; Versendaal, A. J.; Makaske, B.; Middelkoop, H.

    2014-01-01

    The Optically Stimulated Luminescence (OSL) signal from fluvial sediment often contains a remnant from the previous deposition cycle, leading to a partially bleached equivalent-dose distribution. Although identification of the burial dose is of primary concern, the degree of bleaching could

  14. Investigating Motivations for Women's Skin Bleaching in Tanzania

    Science.gov (United States)

    Lewis, Kelly M.; Robkin, Navit; Gaska, Karie; Njoki, Lillian Carol

    2011-01-01

    Why do many African women continue to use damaging skin-bleaching cosmetics that contain dangerous chemicals (e.g., mercury) that may increase their rates of infertility, skin cancer, and serious skin/brain/kidney disease? To address this question, our study investigated motivations driving the preservation of skin-bleaching practices in Tanzania.…

  15. The evaluation of hydrogen peroxide bleaching of Gonometa ...

    African Journals Online (AJOL)

    The effect of hydrogen peroxide bleaching on Gonometa postica silk and the influence that temperature, pH and time duration had on hydrogen peroxide release , colour change, breaking load and stiffness were determined. The best bleaching (81 delta E) of the Gonometa postica silk fabric was obtained with 60 minutes ...

  16. The bleaching syndrome: manifestation of a post-colonial pathology ...

    African Journals Online (AJOL)

    The post-colonial root of African problems is directly related to skin color. Under the cloak of personal preference, light skin among African women has replaced dark skin as the native ideal. The aftermath is manifestation of the Bleaching Syndrome. Social Work professionals have overlooked the Bleaching Syndrome as ...

  17. Anolyte as an alternative bleach for stained cotton fabrics ...

    African Journals Online (AJOL)

    ... as the two- and three-factor interactions. The results from the study indicated that Anolyte was less effective than sodium hypochlorite as a stain remover for blood, tea, soot/mineral oil and blackcurrant juice. It was noted that the temperature of bleach liquids had an influence on the removal of stains by both bleach liquids.

  18. Color Recovery Effect of Different Bleaching Systems on a ...

    African Journals Online (AJOL)

    Background and Purpose: Discoloration of resin‑based composites is a commonly encountered problem, and bleaching agents may be used for the therapy of the existing discoloration. The purpose of this study was to investigate in vitro color recovery effect of different bleaching systems on the heavily discolored composite ...

  19. The Bleaching Syndrome: Manifestation of a Post-Colonial ...

    African Journals Online (AJOL)

    The post-colonial root of African problems is directly related to skin color. Under the cloak of personal preference, light skin among African women has replaced dark skin as the native ideal. The aftermath is manifestation of the Bleaching Syndrome. Guidance and Counselling professionals have overlooked the Bleaching ...

  20. Symbiont Dependent Thermal Bleaching Susceptiblity in Two Reef ...

    African Journals Online (AJOL)

    Symbiont Dependent Thermal Bleaching Susceptiblity in Two Reef-building Corals, Stylophora pistillata and Platygyra ryukyuensis . ... Symbiodinium ITS2 types exhibit diverse photo-physiological responses to thermal stress, and may partially explain the variable bleaching susceptibilities of some hermatypic coral species.

  1. Alkali and bleach treatment of the extracted cellulose from pineapple ...

    African Journals Online (AJOL)

    We successfully extracted cellulose from pineapple leaves (Ananas comosus) using alkali treatment and bleaching. Alkali treatment was done using aqueous sodium hydroxide while bleaching was done using acetate buffer and aqueous sodium chlorite. The extracted cellulose was characterized using Scanning electron ...

  2. Color Recovery Effect of Different Bleaching Systems on a ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... Odontology 2016;104:305-9. 29. Joiner A. The bleaching of teeth: A review of the literature. J Dent 2006;34:412-9. 30. Haywood VB, Heymann HO. Nightguard vital bleaching: How safe is it? Quintessence Int 1991;22:515-23. 31. Fay RM, Servos T, Powers JM. Color of restorative materials after staining and ...

  3. Effects of bleaching agents on surface roughness of filling materials.

    Science.gov (United States)

    Markovic, Ljubisa; Jordan, Rainer Andreas; Glasser, Marie-Claire; Arnold, Wolfgang Hermann; Nebel, Jan; Tillmann, Wolfgang; Ostermann, Thomas; Zimmer, Stefan

    2014-01-01

    The aim of this study was to use a non-tactile optical measurement system to assess the effects of three bleaching agents' concentrations on the surface roughness of dental restoration materials. Two composites (Grandio, Venus) and one glass ionomer cement (Ketac Fil Plus) were used in this in vitro study. Specimens were treated with three different bleaching agents (16% and 22% carbamide peroxide (Polanight) and 38% hydrogen peroxide (Opalescence Boost)). Surface roughness was measured with an optical profilometer (Infinite Focus G3) before and after the bleaching treatment. Surface roughness increased in all tested specimens after bleaching treatment (p<0.05). Our in vitro study showed that dental bleaching agents influenced the surface roughness of different restoration materials, and the restoration material itself was shown to have an impact on alteration susceptibility. There seemed to be no clinical relevance in case of an optimal finish.

  4. Coral bleaching pathways under the control of regional temperature variability

    Science.gov (United States)

    Langlais, C. E.; Lenton, A.; Heron, S. F.; Evenhuis, C.; Sen Gupta, A.; Brown, J. N.; Kuchinke, M.

    2017-11-01

    Increasing sea surface temperatures (SSTs) are predicted to adversely impact coral populations worldwide through increasing thermal bleaching events. Future bleaching is unlikely to be spatially uniform. Therefore, understanding what determines regional differences will be critical for adaptation management. Here, using a cumulative heat stress metric, we show that characteristics of regional SST determine the future bleaching risk patterns. Incorporating observed information on SST variability, in assessing future bleaching risk, provides novel options for management strategies. As a consequence, the known biases in climate model variability and the uncertainties in regional warming rate across climate models are less detrimental than previously thought. We also show that the thresholds used to indicate reef viability can strongly influence a decision on what constitutes a potential refugia. Observing and understanding the drivers of regional variability, and the viability limits of coral reefs, is therefore critical for making meaningful projections of coral bleaching risk.

  5. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration

    OpenAIRE

    Hu, Lei; Gao, Zhenhua; Xu, Junji; Zhu, Zhao; Fan, Zhipeng; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2017-01-01

    Endodontic regeneration shows promise in treating dental pulp diseases; however, no suitable scaffolds exist for pulp regeneration. Acellular natural extracellular matrix (ECM) is a favorable scaffold for tissue regeneration since the anatomical structure and ECM of the natural tissues or organs are well-preserved. Xenogeneic ECM is superior to autologous or allogeneic ECM in tissue engineering for its unlimited resources. This study investigated the characteristics of decellularized dental p...

  6. Experimental Studies on the Hydrotreatment of Kraft Lignin to Aromatics and Alkylphenolics Using Economically Viable Fe-Based Catalysts

    NARCIS (Netherlands)

    Agarwal, Shilpa; Chowdari, Ramesh Kumar; Hita, Idoia; Heeres, Hero Jan

    Limonite, a low-cost iron ore, was investigated as a potential hydrotreatment catalyst for kraft lignin without the use of an external solvent (batch reactor, initial H-2 pressure of 100 bar, 4 h). The best results were obtained at 450 degrees C resulting in 34 wt % of liquefied kraft lignin (lignin

  7. Pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Viinikainen, S.; Nousiainen, I.; Edelman, K.; Manninen, J.

    2002-07-01

    The pulp and paper industry has played a major role in Finland with regards to energy use, technological development and the economy. Finland's market share in printing and writing paper exports is 25%. Finnish companies now figure among the world's biggest pulp and paper enterprises through international consolidations. Finnish equipment manufacturers, control system suppliers and consulting engineering firms are also global players. Rapid technological changes have taken place in the unit sizes of main process equipment or whole production lines. Environmental effects have been reduced significantly, e.g. biological oxygen demand load has been reduced from 530 000 to 18 000 t/a in the last 30 years, even though the production of paper and board has tripled. Competitiveness in the future depends on the supply of raw material, energy use, environmental issues as well as on the development of information and communication technology (ICT) for transferring and storing information. The growth rate of paper products has been closely interconnected with economic development. The average annual increase in the production volume has been 2-3%, whereas the real price of products has followed a declining trend. The first indication of the effects of ICT is seen in the reduced newsprint demand in the US market. It is foreseen that the use of cut-size office papers will increase, together with individual printing. Global growth in the demand for paper products is expected to slow down but not to cease because of this development. Forest growth in Finland currently exceeds annual harvesting. Taking into account the changes in forest ownership, taxation principles and forest land protection, an increase in harvesting of 5-10% is feasible. The amount of imported wood is expected to increase also in the future. Utilisation of the available fibre supply has to be further optimised in terms of endproduct properties. Since the investment in a new production line is already

  8. Bleaching of reef coelenterates in the San Blas Islands, Panama

    Science.gov (United States)

    Lasker, Howard R.; Peters, Esther C.; Coffroth, Mary Alice

    1984-12-01

    Starting in June 1983, 25 species of hermatypic corals, gorgonians, hydrocorals, anemones and zoanthids in the San Blas Islands, Panama, began showing signs of a loss of colour leading in some cases to a white “bleached” appearance. Histologic examination of six coral species indicated that bleaching was associated with drastic reductions in the density of zooxanthellae and with the atrophy and necrosis of the animal tissue. The severity of the bleaching varied among species and many species were unaffected. The species most extensively affected were: Agaricia spp., which became completely bleached and frequently died; Montastraea annularis which bleached and continued to survive; and Millepora spp. which bleached white but quickly regained their colouration. Shallow reefs dominated by Agaricia spp. suffered the most extensive bleaching. At one site, Pico Feo, 99% of the Agaricia (32% of the living cover) was bleached. On fore reers, which were dominated by Agaricia spp. and M. annularis, the proportion of M. annularis bleached ranged from 18 to 100% and that of Agaricia spp. from 30 to 53%. Transects at Sail Rock and House Reef were surveyed in August 1983 and January 1984. At those sites, 53% of the Agaricia cover died between August and January. The remaining living cover of Agaricia and of all other species exhibited normal colouration in January. Salinity and temperature were monitored every second day at 4 m depth between May 10 and August 28, 1983 at one of the localities. Bleaching was first observed within two weeks of a 2 °C rise in temperature which occurred in late May 1983. Temperatures remained at or above 31.5 °C for the following 3 weeks and were at or above 30 °C for an additional 4 weeks. The bleaching of corals in the San Blas was most likely due to those elevanted temperatures.

  9. Evaluation of lignins from side-streams generated in an olive tree pruning-based biorefinery: Bioethanol production and alkaline pulping.

    Science.gov (United States)

    Santos, José I; Fillat, Úrsula; Martín-Sampedro, Raquel; Eugenio, María E; Negro, María J; Ballesteros, Ignacio; Rodríguez, Alejandro; Ibarra, David

    2017-12-01

    In modern lignocellulosic-based biorefineries, carbohydrates can be transformed into biofuels and pulp and paper, whereas lignin is burned to obtain energy. However, a part of lignin could be converted into value-added products including bio-based aromatic chemicals, as well as building blocks for materials. Then, a good knowledge of lignin is necessary to define its valorisation procedure. This study characterized different lignins from side-streams produced from olive tree pruning bioethanol production (lignins collected from steam explosion pretreatment with water or phosphoric acid as catalysts, followed by simultaneous saccharification and fermentation process) and alkaline pulping (lignins recovered from kraft and soda-AQ black liquors). Together with the chemical composition, the structure of lignins was investigated by FTIR, 13 C NMR, and 2D NMR. Bioethanol lignins had clearly distinct characteristics compared to pulping lignins; a certain number of side-chain linkages (mostly alkyl-aryl ether and resinol) accompanied with lower phenolic hydroxyls content. Bioethanol lignins also showed a significant amount of carbohydrates, mainly glucose and protein impurities. By contrast, pulping lignins revealed xylose together with a dramatical reduction of side-chains (some resinol linkages survive) and thereby higher phenol content, indicating rather severe lignin degradation during alkaline pulping processes. All lignins showed a predominance of syringyl units. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comparison of two continuous fungal bioreactors for posttreatment of anaerobically pretreated weak black liquor from kraft pulp mills.

    Science.gov (United States)

    Ortega-Clemente, Alfredo; Marín-Mezo, G; Ponce-Noyola, M T; Montes-Horcasitas, M C; Caffarel-Méndez, S; Barrera-Cortés, Josefina; Poggi-Varaldo, Héctor M

    2007-03-01

    The purpose of this work was to evaluate and compare two continuous systems of posttreatment of anaerobically pretreated weak black liquor (WBL). The first system consisted of a packed bed reactor (PBR) with Trametes versicolor (Tv) immobilized on wood cubes of holm oak (biocubes). The second system was a fluidized bed reactor (FBR) with Lentinus edodes (Le) immobilized on wood cubes of holm oak. The reactors operated for 65 days at a hydraulic retention time (HRT) of 5 days, at 28 degrees C, with continuous aeration. Response variables monitored were conventional and specific, unit, net removal efficiency (eta and eta(sun), respectively) of chemical oxygen demand (COD), color, and ligninoids, and enzymatic activities of manganese peroxidase (MnP), lignin peroxidase (LiP), laccase (Lac) and proteases. The PBR showed an average color eta superior to that of the FBR (52.42 +/- 21.78% and 25.34 +/- 14.38% for PBR and FBR, respectively); removals of COD and ligninoids presented a similar pattern to that of color. Lac activity was significantly larger in PBR than in FBR. Activity of MnP in PBR was higher than that of the FBR (0.004 and 0.002 U MnP/mL, respectively). This difference could be ascribed to the different fungi present in each bioreactor. LiP activity was very low in both reactors. Average value of proteases was almost double in the FBR as compared with PBR (0.472 and 0.209 U Proteases/mL, respectively). During the last 2 weeks of operation, biocubes in the FBR experienced a significant loss of the attached Le biomass, probably by attrition. This and higher protease activity in the FBR could explain the lower pollutant removals achieved in the FBR. Overall, PBR with immobilized Tv showed a better performance than the FBR with Le for the posttreatment of the recalcitrant anaerobic effluent. Extended and sustained pollutant removal (65 days) was achieved in the PBR, although more research is needed to evaluate bioreactor performance at shorter hydraulic retention times.

  11. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Improved efficacy of ultrafiltered xylanase-pectinase concoction in biobleaching of plywood waste soda pulp.

    Science.gov (United States)

    Sharma, Divya; Agrawal, Sharad; Yadav, Ravi Dutt; Mahajan, Ritu

    2017-05-01

    The effect of ultrafiltered xylanase-pectinase concoction produced simultaneously by a bacterial isolate using agro-waste-based media was assessed in prebleaching of plywood waste pulp. Ultrafiltered enzymes caused 12.5% reduction in kappa number at reduced enzyme dose of xylanase-pectinase (4.0-0.8 IU) per gram of pulp under optimized conditions at pH 8.5, temperature 55 °C, and treatment period of 2 h. Using this methodology, amount of Cl 2 -ClO 2 consumption can be reduced up to 30 and 28.86%. Significant improvement in physical and optical properties of pulp was obtained along with an additional reduction in BOD and COD values up to 18.13 and 21.66% using this novel biodelignification approach. This is the first report showing the advantages of using ultrafiltered xylanase-pectinase over crude enzymes in enhancing the bleaching capacity of pulp. This study focussing on the development of good quality paper with less pollution generating strategy will definitely prove a boon for industries.

  13. Jens Kraft og "De vilde Folk" (1760) - manden, forfatterskbet, værket

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2000-01-01

    to call it a programmatic statement of Kraft's mindset and preoccupations as a mathematician. In addition, I believe that he was a heterodox Christian who wished to show that a man could acquire a true knowledge of God only with the help of Revelation. To him mathematical truth and divine truth were two...... be viewed as an expression of that fact and as an aplogetics of the theology of Revelation and Providence directed against the assumptions of a deistic natural religion and naturalistic materialism. 5. Kraft's interest in acquiring an understanding of man's natural cognitive processes derived from a wish...

  14. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Science.gov (United States)

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  15. determination of lipophilic extractives in ionic liquid extracts

    African Journals Online (AJOL)

    dell

    Chem. 9: 63-69. Freire CSR, Pinto PCR, Santiago AS,. Silvestre AJD, Evtuquin DV and Neto. CP 2006a Comparative study of lipophilic extractives of hardwoods and corresponding ECF bleached kraft pulps. BioResources. 1: 3-17. Freire CSR, Silvestre AJD and Neto CP. 2005. Lipophilic extractives in. Eucalyptus globulus.

  16. Effects of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses

    Science.gov (United States)

    X.L. Luo; Junyong Zhu; Roland Gleisner; H.Y. Zhan

    2011-01-01

    This article reports the effect of wet-pressing-induced fiber hornification on enzymatic saccharification of lignocelluloses. A wet cellulosic substrate of bleached kraft eucalyptus pulp and two wet sulfite-pretreated lignocellulosic substrates of aspen and lodgepole pine were pressed to various moisture (solids) contents by variation of pressing pressure and pressing...

  17. Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers

    Science.gov (United States)

    Junyong Zhu; Ronald Sabo; Xiaolin Luo

    2011-01-01

    This study demonstrates the feasibility of integrating the production of nano-fibrillated cellulose (NFC), a potentially highly valuable biomaterial, with sugar/biofuel (ethanol) from wood fibers. Commercial cellulase enzymes were used to fractionate the less recalcitrant amorphous cellulose from a bleached Kraft eucalyptus pulp, resulting in a highly crystalline and...

  18. Optimizing cellulose fibrillation for the production of cellulose nanofibrils by a disk grinder

    Science.gov (United States)

    Chuanshuang Hu; Yu Zhao; Kecheng Li; J.Y. Zhu; Roland Gleisner

    2015-01-01

    The fibrillation of a bleached kraft eucalyptus pulp was investigated by means of a laboratory-scale disk grinder for the production of cellulose nanofibrils (CNF), while the parameters disk rotating speed, solid loading, and fibrillation duration were varied. The cumulative energy consumption was monitored during fibrillation. The degree of polymerization (DP) and...

  19. Invited review: Annatto usage and bleaching in dairy foods.

    Science.gov (United States)

    Kang, E J; Campbell, R E; Bastian, E; Drake, M A

    2010-09-01

    Annatto is a yellow/orange colorant that is widely used in the food industry, particularly in the dairy industry. Annatto, consisting of the carotenoids bixin and norbixin, is most commonly added to produce orange cheese, such as Cheddar, to achieve a consistent color over seasonal changes. This colorant is not all retained in the cheese, and thus a percentage remains in the whey, which is highly undesirable. As a result, whey is often bleached. Hydrogen peroxide and benzoyl peroxide are the 2 bleaching agents currently approved for bleaching whey in the United States. Recent studies have highlighted the negative effect of bleaching on whey flavor while concurrently there is a dearth of current studies on bleaching conditions and efficacy. Recent international mandates have placed additional concern on the use of benzoyl peroxide as a bleaching agent. This review discusses the advantages, disadvantages, regulatory concerns, flavor implications, and optimal usage conditions of 2 widely used bleaching agents, hydrogen peroxide and benzoyl peroxide, as well as a few alternative methods including lipoxygenase, peroxidase, and lactoperoxidase systems. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. A bleaching earth from egyptian local deposits

    Directory of Open Access Journals (Sweden)

    El Kinawy, Omayma S.

    2001-10-01

    Full Text Available The present investigation deals with the bleaching of vegetable oils using activated clays collected from some deposits in Egypt as compared to Tonsil FF currently used by local oil industry. The comparison was made; not only on the basis of the decolourising power of the earth, but also on the basis of its effects on the oil acidity, formation of the oil peroxides and the decomposition rate of the formed peroxides to aldehydes and ketones during the bleaching process. The activation of the collected earth samples was made using 4N HCl, 6N HCl and 30 % H2SO4. The bleaching tests of the activated samples were performed using the major four oil types processed in Egypt being cottonseed, sunflower, soybean and palm oils. In addition to the laboratory-evaluation tests, the performance of the activated samples, which showed promise on the lab-scale have been also tested on an industrial scale. The industrial application has proved that the activated local earth's can be successfully used as bleaching earth of local oils. Thus it can be used as a substitute of the varieties currently imported and used by the local oil sector.La presente investigación trata de la decoloración de aceites vegetales usando tierras activadas obtenidas de yacimientos egipcios, comparándola con el Tonsil FF usado normalmente en la industria oleícola local. La comparación se realizó, no sólo sobre la base del poder decolorante de la tierra, sino también sobre la base de sus efectos en la acidez del aceite, la formación de peróxidos y la velocidad de descomposición de los peróxidos formados en aldehidos y cetonas durante el proceso de decoloración. La activación de las muestras de tierras recogidas se hizo utilizando ClH 4N, ClH 6N y H2SO4 30 %. Los tests de decoloración de las muestras activadas se llevaron a cabo usando los cuatro tipos mayoritarios de aceites procesados en Egipto: aceite de semilla de algodón, de girasol, de soja y de palma. Además de los